WO2023245953A1 - 电动汽车热管理水路***试验装置 - Google Patents

电动汽车热管理水路***试验装置 Download PDF

Info

Publication number
WO2023245953A1
WO2023245953A1 PCT/CN2022/129400 CN2022129400W WO2023245953A1 WO 2023245953 A1 WO2023245953 A1 WO 2023245953A1 CN 2022129400 W CN2022129400 W CN 2022129400W WO 2023245953 A1 WO2023245953 A1 WO 2023245953A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
power battery
stop valve
circuit
simulated motor
Prior art date
Application number
PCT/CN2022/129400
Other languages
English (en)
French (fr)
Inventor
赵千祥
陈超华
赵幸
陈涛
陈海忠
Original Assignee
江苏中关村科技产业园节能环保研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏中关村科技产业园节能环保研究有限公司 filed Critical 江苏中关村科技产业园节能环保研究有限公司
Publication of WO2023245953A1 publication Critical patent/WO2023245953A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing

Definitions

  • the invention relates to an electric vehicle thermal management waterway system testing device.
  • heat pump air conditioners are currently mainly used to regulate the heating and cooling of the passenger compartment.
  • the main types of heat pump air conditioners include direct heat pumps, indirect heat pumps, waste heat recovery heat pumps and air supplementation heat pumps.
  • Thermal management of batteries and motors mainly includes passive cooling, heating or cooling, low-temperature heating and waste heat recovery.
  • thermal management of electric vehicles only focuses on the characteristics of one or two aspects of the passenger compartment, battery and motor, and lacks comprehensive consideration of the energy flow of the entire vehicle.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the existing technology and provide an electric vehicle thermal management waterway system test device, which realizes the comprehensive vehicle energy flow characteristics of waste heat recovery and utilization of the passenger compartment and joint thermal management of the battery and motor. Research.
  • an electric vehicle thermal management waterway system test device including a passive heat dissipation branch, a heating or cooling branch, a power battery branch, a simulated motor branch, a connecting branch and Five-way valve group; wherein, the five-way valve group includes a first stop valve, a second stop valve, a third stop valve, a fourth stop valve and a fifth stop valve that are connected end to end in sequence; the head end of the heating or cooling branch and The first stop valve is connected to the first stop valve; the first end of the communication branch is connected to the second stop valve; the first end of the power battery branch is connected to the third stop valve; the first end of the analog motor branch is connected to the fourth stop valve; the passive heat dissipation branch The first end of the path is connected to the fifth stop valve; the tail ends of the heating or cooling branch, the connecting branch, the power battery branch, the simulated motor branch, and the passive heat dissipation branch are connected in parallel.
  • the passive heat dissipation branch includes a series-connected heat dissipation tank and an expansion kettle.
  • connection ports of the water radiator tank are respectively connected with temperature sensors of the water radiator tank.
  • the heating or cooling branch includes a heat exchanger and a high and low temperature cycle machine.
  • the high and low temperature cycle machine is connected to the two connections of the first heat exchange medium channel of the heat exchanger.
  • the two connecting ports of the second heat exchange medium channel are connected to the heating or cooling branch circuit.
  • heat exchanger temperature sensors are respectively connected to two connection ports of the second heat exchange medium channel of the heat exchanger.
  • a heating or cooling branch flow meter is provided in the heating or cooling branch.
  • the power battery branch circuit includes a power battery branch circuit heater, a power battery thermal management circuit and a power battery branch circuit pump connected in series.
  • power battery branch temperature sensors are respectively provided at the two connection ports of the power battery branch heater and/or at the two connection ports of the power battery thermal management circuit; the power battery thermal management circuit and the A power battery branch flow meter is connected between the power battery branch pumps.
  • the simulated motor branch circuit includes a series-connected simulated motor branch circuit heater, a water path resistance element unit and a simulated motor branch circuit pump.
  • the water path resistance element unit includes at least two water path resistance elements connected in parallel.
  • a first simulated motor branch temperature sensor is connected between a connection port of the simulated motor branch heater and the fourth stop valve; and/or another connection port of the simulated motor branch heater is connected to the waterway.
  • a pressure difference sensor is connected between the resistance element units; and/or a second analog motor branch temperature sensor and/or a simulated motor branch flow meter is connected between the water path resistance element unit and the analog motor branch pump.
  • the electric vehicle thermal management waterway system test device of the present invention can comprehensively and detailedly study the characteristics of the energy flow of the entire electric vehicle, save energy consumption while matching the thermal management design goals of the entire vehicle, and increase the overall energy flow. While researching vehicle thermal management, it simplifies the design process, reduces the physical part of the motor, and saves the cost and space of the device.
  • Figure 1 is a schematic connection diagram of the electric vehicle thermal management water circuit system test device of the present invention.
  • an electric vehicle thermal management waterway system test device includes a passive heat dissipation branch 100, a heating or cooling branch 200, a power battery branch 300, a simulated motor branch 400, a connecting branch and a five-way valve.
  • the five-way valve group 500 includes a first stop valve 1, a second stop valve 2, a third stop valve 3, a fourth stop valve 4 and a fifth stop valve 5 connected end to end in sequence; heating or cooling branch
  • the first end of 200 is connected to the first stop valve 1; the first end of the communication branch is connected to the second stop valve 2; the first end of the power battery branch 300 is connected to the third stop valve 3; the first end of the analog motor branch 400 Connected to the fourth stop valve 4; the first end of the passive heat dissipation branch 100 is connected to the fifth stop valve 5; the heating or cooling branch 200, the connecting branch, the power battery branch 300, the analog motor branch 400, the passive heat dissipation branch The ends of the road 100 are connected in parallel; when the third, valve 3, a fourth
  • the heating or cooling branch 200 and the power battery branch 300 are connected to form an active heat dissipation circuit for the power battery; when the fifth stop valve 5 is closed, the first stop valve 1, the second stop valve 2, the third stop valve 3 and the fourth When the stop valves 4 are both open, the power battery branch 300 is connected to the connecting branch to form a power battery active heating circuit, and the simulated motor branch 400 is connected to the heating or cooling branch 200 to form a simulated motor waste heat recovery circuit; when the first stop valve 1 , the fifth stop valve 5 are all closed, and the second stop valve 2, the third stop valve 3 and the fourth stop valve 4 are all open, the power battery branch 300 and the connecting branch are connected to form a power battery active heating circuit, simulating the motor support Road 400 is connected with the connecting branch to form a simulated motor locked-rotor loop.
  • the passive heat dissipation branch 100 includes a series-connected heat dissipation tank 101 and an expansion kettle 102 .
  • two connection ports of the heat dissipation tank 101 are respectively connected with heat dissipation tank temperature sensors, which are the first heat dissipation tank temperature sensor 103 and the second heat dissipation tank temperature sensor 104 respectively.
  • the heating or cooling branch 200 includes a heat exchanger 201 and a high and low temperature cycle machine 202.
  • the high and low temperature cycle machine 202 is connected to the first heat exchange medium channel of the heat exchanger 201.
  • the two connecting ports of the second heat exchange medium channel of the heat exchanger 201 are connected to the heating or cooling branch.
  • the high and low temperature cycle machine 202 has heating and cooling functions, and can have a built-in cycle machine pressure difference sensor and a cycle machine high-precision PT temperature sensor.
  • heat exchanger temperature sensors are respectively connected to the two connection ports of the second heat exchange medium channel of the heat exchanger 201, specifically the first heat exchanger temperature sensor 204 and the second heat exchanger temperature sensor.
  • Heat exchanger temperature sensor 205 is
  • a heating or cooling branch flow meter 203 is provided in the heating or cooling branch 200 .
  • the power battery branch circuit 300 includes a power battery branch circuit heater 301 , a power battery thermal management circuit 302 and a power battery branch circuit pump 303 connected in series.
  • power battery branch temperature sensors are respectively provided at the two connection ports of the power battery branch heater 301 and the two connection ports of the power battery thermal management circuit 302; the power battery branch temperature sensor
  • the two power battery branch circuit temperature sensors between a connection port of the heater 301 and a connection port of the power battery thermal management circuit 302 can be combined into one, which is the second power battery branch circuit temperature sensor 308 and the power battery branch circuit heater.
  • the power battery branch temperature sensor at the other connection port of 301 is the first power battery branch temperature sensor 307
  • the power battery branch temperature sensor at the other connection port of the power battery thermal management circuit is the third power battery branch. Temperature sensor 305.
  • a power battery branch flow meter 304 is connected between the power battery thermal management circuit 302 and the power battery branch pump 303 .
  • the simulated motor branch circuit 400 includes a series-connected simulated motor branch circuit heater 401 , a water path resistance element unit, and a simulated motor branch circuit pump 404 .
  • the waterway resistance element unit includes at least two waterway resistance elements connected in parallel.
  • the waterway resistance element unit includes two waterway resistance elements connected in parallel, which are a first waterway resistance element 402 and a second waterway resistance element 402. Waterway resistance element 403.
  • a first simulated motor branch temperature sensor 408 is connected between a connection port of the simulated motor branch heater 401 and the fourth stop valve 4; the other connection port of the simulated motor branch heater 401 is connected to the fourth stop valve 4.
  • a pressure difference sensor 407 is connected between the waterway resistance element units; a second simulated motor branch temperature sensor 406 and a simulated motor branch flow meter 405 are connected between the waterway resistance element unit and the simulated motor branch pump 404.
  • the water path formed is a passive heat dissipation circuit. , including the battery passive heat dissipation circuit and the simulated motor passive heat dissipation circuit.
  • the specific circuits are: battery passive heat dissipation circuit: heat dissipation tank 101 ⁇ expansion kettle 102 ⁇ power battery branch circuit pump 303 ⁇ power battery thermal management circuit 302 ⁇ power battery branch circuit heater 301 ⁇ Third stop valve 3 ⁇ Fifth stop valve 5 ⁇ Water radiator tank 101; simulated motor passive heat dissipation circuit: radiator tank 101 ⁇ expansion kettle 102 ⁇ simulated motor branch pump 404 ⁇ water path resistance element unit ⁇ simulated motor branch heater 401 ⁇ Fourth stop valve 4 ⁇ Fifth stop valve 5 ⁇ Heat radiator tank 101.
  • the flow rates of the power battery branch pump 303 and the simulated motor branch pump 404 are adjusted respectively, through the first power battery branch temperature sensor 307 , the second power battery branch temperature sensor 308 and the third power battery branch temperature sensor 305 obtain the inlet and outlet temperature difference between the power battery branch heater 301 and the power battery thermal management circuit 302, and then pass the power battery branch flow meter 304 By obtaining the mass flow rate at this time, the heat capacity and heat exchange amount of the power battery thermal management circuit 302 can be obtained. At the same time, the outlet water temperature of the power battery thermal management circuit 302 can also be monitored.
  • the simulated motor part (water path resistance element unit and The combination of the simulated motor branch circuit heater 401) is the mass flow rate collected by the simulated motor branch circuit flow meter 405 after obtaining the temperature difference between the first simulated motor branch circuit temperature sensor 408 and the second simulated motor branch circuit temperature sensor 406, that is, The heat exchange amount and outlet temperature under the flow resistance of the waterway resistance element unit can be obtained; the temperatures of the first heat dissipation tank temperature sensor 103 and the second heat dissipation tank temperature sensor 104 are collected to obtain the inlet and outlet temperatures of the heat dissipation tank 101, and the heat dissipation tank 101 can be obtained The heat dissipation effect.
  • simulated motor passive heat dissipation circuit hot water tank 101 ⁇ expansion kettle 102 ⁇ simulated motor branch pump 404 ⁇ waterway resistance element unit ⁇ simulated motor branch heater 401 ⁇ fourth stop valve 4 ⁇ fifth stop valve 5 ⁇ Water tank 101, heat exchanger 201 ⁇ power battery branch pump 303 ⁇ power battery thermal management circuit 302 ⁇ power battery branch heater 301 ⁇ third stop valve 3 ⁇ first stop valve 1 ⁇ heat exchanger 201.
  • the temperatures of the third power battery branch temperature sensor 305, the first power battery branch temperature sensor 307, and the second power battery branch temperature sensor 308 are respectively obtained by the heat exchanger 201, the power battery thermal management circuit 302, and the power battery branch.
  • the temperature difference between the inlet and outlet of the heater 301 and the mass flow collected by the heating or cooling branch flow meter 203 and the power battery branch flow meter 304 can be used to obtain the heat exchanger 201, the power battery thermal management circuit 302 and the power battery branch.
  • the heat exchange rate of the heater 301 is monitored while the outlet water temperature of the power battery thermal management circuit 302 is monitored; given the heating power of the simulated motor branch heater and the resistance of the water path resistance elements 402 and 403, the flow rate of the simulated motor branch pump 404 is adjusted. , collect the temperatures of the first simulated motor branch temperature sensor 408 and the second simulated motor branch temperature sensor 406, and use the mass flow rate collected by the simulated motor branch flow meter 405 to obtain the heat exchanger and outlet temperature of the simulated motor part. At this time, the heat dissipation effect of the heat dissipation tank 101 can be obtained through the temperatures of the first heat dissipation tank temperature sensor 103 and the second heat dissipation tank temperature sensor 104 .
  • the loop formed is a waste heat recovery loop.
  • the specific circuit is: power battery active heating circuit: second stop valve 2 ⁇ power battery branch pump 303 ⁇ power battery thermal management circuit 302 ⁇ power battery branch heater ⁇ third stop valve 3 ⁇ second stop valve 2; simulation Motor waste heat recovery circuit: heat exchanger 201 ⁇ simulated motor branch pump 404 ⁇ water path resistance element unit ⁇ simulated motor branch heater 401 ⁇ fourth stop valve 4 ⁇ first stop valve 1 ⁇ heat exchanger 201.
  • the temperatures of the second simulated motor branch temperature sensor 406, the first heat exchanger temperature sensor 204 and the second heat exchanger temperature sensor 205 are used to obtain the temperature difference between the inlet and outlet of the simulated motor part and the heat exchanger 201, using the simulated motor branch
  • the mass flow rate collected by the flow meter 405 and the heating or cooling branch flow meter 203 can be used to obtain the heat transfer amount and outlet temperature of the simulated motor part and the heat exchanger 201 respectively; given the heating power of the power battery branch heater 301, Adjust the flow rate of the power battery branch circuit pump 303 and collect the temperatures of the third power battery branch circuit temperature sensor 305, the first power battery branch circuit temperature sensor 307 and the second power battery branch circuit temperature sensor 308 to obtain the power battery thermal management circuit 302
  • the circuit formed is a motor stall heating circuit.
  • the specific circuit is: second stop valve 2 ⁇ power battery branch pump 303 ⁇ power battery thermal management circuit 302 ⁇ power battery branch heater 301 ⁇ third stop valve 3 ⁇ second stop valve 2 ⁇ power battery branch pump 303 , the second stop valve 2 ⁇ the simulated motor branch pump 404 ⁇ the water path resistance element unit ⁇ the simulated motor branch heater 401 ⁇ the fourth stop valve 4 ⁇ the second stop valve 2.
  • the temperatures of the second simulated motor branch circuit temperature sensor 406, the third power battery branch circuit temperature sensor 305, and the second power battery branch circuit temperature sensor 308 are measured using the simulated motor branch circuit flow meter 405 and the power battery branch circuit flow meter 304.
  • the flow rate can be used to obtain the heat exchange amount and outlet temperature of the simulated motor and power battery thermal management circuit 302, thereby obtaining the effect of simulating the locked-rotor heating of the power battery thermal management circuit 302.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车热管理水路***试验装置,包括被动散热支路(100)、加热或冷却支路(200)、动力电池支路(300)、模拟电机支路(400)、连通支路和五通阀组(500);五通阀组(500)包括依次首尾连通的第一截止阀(1)、第二截止阀(2)、第三截止阀(3)、第四截止阀(4)和第五截止阀(5);加热或冷却支路(200)的首端与第一截止阀(1)相连;连通支路的首端与第二截止阀(2)相连;动力电池支路(300)的首端与第三截止阀(3)相连;模拟电机支路(400)的首端与第四截止阀(4)相连;被动散热支路(100)的首端与第五截止阀(5)相连;加热或冷却支路(200)、连通支路、动力电池支路(300)、模拟电机支路(400)、被动散热支路(100)的尾端并接在一起,实现对乘员舱余热回收利用、电池和电机联合热管理的整车能量流特性的综合研究。

Description

电动汽车热管理水路***试验装置 技术领域
本发明涉及一种电动汽车热管理水路***试验装置。
背景技术
目前,碳中和、碳达峰的时代背景下,新能源电动汽车迎来蓬勃式的发展。电动汽车相对于燃油车,主要的发展难题在于快速充电问题和冬季采暖带来的续航里程问题,因此,电动汽车空调能耗和电池超充对电动汽车热管理提出了较高的要求。为了提高续航里程,乘员舱热管理方面目前主要采用热泵空调来对乘员舱进行冷热调节,而热泵空调的类型主要有直接热泵、间接热泵、余热回收热泵和补气增焓热泵。电池和电机热管理方面主要有被动散热、加热或冷却、低温加热和余热回收利用。在电动汽车热管理方面,目前缺乏一个综合全面的实验装置对热管理各零部件之间的温度、压力、流量和换热量的特性进行详细研究和分析。
目前对电动汽车热管理的设计,只针对乘员舱、电池和电机中的一个或两个方面的特性进行研究,缺乏对整车能量流的综合考虑。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种电动汽车热管理水路***试验装置,它实现对乘员舱余热回收利用、电池和电机联合热管理的整车能量流特性的综合研究。
为了解决上述技术问题,本发明的技术方案是:一种电动汽车热管理水路***试验装置,包括被动散热支路、加热或冷却支路、动力电池支路、模拟电机支路、连通支路和五通阀组;其中,五通阀组包括依次首尾连通的第一截止阀、第二截止阀、第三截止阀、第四截止阀和第五截止阀;加热或冷却支路的首端与第一截止阀相连;连通支路的首端与第二截止阀相连;动力电池支路的首端与第三截止阀相连;模拟电机支路的首端与第四截止阀相连;被动散热支路的首端与第五截止阀相连;所述加热或冷却支路、所述连通支路、所述动力电池支路、所述模拟电机支路、所述被动散热支路的尾端并接在一起;当第三截止阀、第四截止阀、第五截止阀均开启和第一截止阀、第二截止阀均关闭时,所述被动散热支路和所述动力电池支路连接形成动力电池被动散热回路,所述被动散热支路和所述模拟电机支路连接形成模拟电机被动散热回路,并且动力电池被动散热回路和模拟电机被动散热回路并联;当第二截止阀关闭和第一截止阀、第三截止阀、 第四截止阀、第五截止阀均开启时,所述被动散热支路和所述模拟电机支路连接形成模拟电机被动散热回路,所述加热或冷却支路和所述动力电池支路连接形成动力电池主动散热回路;当第五截止阀关闭,第一截止阀、第二截止阀、第三截止阀和第四截止阀均开启时,所述动力电池支路和所述连通支路相连形成动力电池主动加热回路,所述模拟电机支路和所述加热或冷却支路相连形成模拟电机余热回收回路;当第一截止阀、第五截止阀均关闭,第二截止阀、第三截止阀和第四截止阀均开启时,所述动力电池支路和所述连通支路相连形成动力电池主动加热回路,所述模拟电机支路和所述连通支路相连形成模拟电机堵转回路。
进一步,所述被动散热支路包括串联的散热水箱和膨胀水壶。
进一步,所述散热水箱的两连接口处分别连接有散热水箱温度传感器。
进一步,所述加热或冷却支路包括换热器和高低温循环机,所述高低温循环机与所述换热器的第一换热介质通道的两连接口相连,所述换热器的第二换热介质通道的两连接口接入加热或冷却支路中。
进一步,所述换热器的第二换热介质通道的两连接口处分别连接有换热器温度传感器。
进一步,所述加热或冷却支路中设有加热或冷却支路流量计。
进一步,所述动力电池支路包括串联的动力电池支路加热器、动力电池热管理回路和动力电池支路泵。
进一步,所述动力电池支路加热器的两连接口处和/或所述动力电池热管理回路的两连接口处分别设有动力电池支路温度传感器;所述动力电池热管理回路和所述动力电池支路泵之间连接有动力电池支路流量计。
进一步,所述模拟电机支路包括串联的模拟电机支路加热器、水路阻力元件单元和模拟电机支路泵。
进一步,所述水路阻力元件单元包括并联连接的至少两水路阻力元件。
进一步,所述模拟电机支路加热器的一连接口与第四截止阀之间连接有第一模拟电机支路温度传感器;和/或所述模拟电机支路加热器的另一连接口与水路阻力元件单元之间连接有压差传感器;和/或所述水路阻力元件单元和所述模拟电机支路泵之间连接有第二模拟电机支路温度传感器和/或模拟电机支路流量计。
采用了上述技术方案后,本发明的电动汽车热管理水路***试验装置能够全面详细的研究电动汽车整车能量流的特性,在匹配整车热管理设计目标的同时节约能源的能耗,增加整车热管理研究内容的同时简约了设计流程,减少了电机实体部分,节约了装置的成本和占地空间。
附图说明
图1为本发明的电动汽车热管理水路***试验装置的连接示意图。
具体实施方式
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。
如图1所示,一种电动汽车热管理水路***试验装置,包括被动散热支路100、加热或冷却支路200、动力电池支路300、模拟电机支路400、连通支路和五通阀组500;其中,五通阀组500包括依次首尾连通的第一截止阀1、第二截止阀2、第三截止阀3、第四截止阀4和第五截止阀5;加热或冷却支路200的首端与第一截止阀1相连;连通支路的首端与第二截止阀2相连;动力电池支路300的首端与第三截止阀3相连;模拟电机支路400的首端与第四截止阀4相连;被动散热支路100的首端与第五截止阀5相连;加热或冷却支路200、连通支路、动力电池支路300、模拟电机支路400、被动散热支路100的尾端并接在一起;当第三截止阀3、第四截止阀4、第五截止阀5均开启和第一截止阀1、第二截止阀2均关闭时,被动散热支路100和动力电池支路300连接形成动力电池被动散热回路,被动散热支路100和模拟电机支路400连接形成模拟电机被动散热回路,并且动力电池被动散热回路和模拟电机被动散热回路并联;当第二截止阀2关闭和第一截止阀1、第三截止阀3、第四截止阀4、第五截止阀5均开启时,被动散热支路100和模拟电机支路400连接形成模拟电机被动散热回路,加热或冷却支路200和动力电池支路300连接形成动力电池主动散热回路;当第五截止阀5关闭,第一截止阀1、第二截止阀2、第三截止阀3和第四截止阀4均开启时,动力电池支路300和连通支路相连形成动力电池主动加热回路,模拟电机支路400和加热或冷却支路200相连形成模拟电机余热回收回路;当第一截止阀1、第五截止阀5均关闭,第二截止阀2、第三截止阀3和第四截止阀4均开启时,动力电池支路300和连通支路相连形成动力电池主动加热回路,模拟电机支路400和连通支路相连形成模拟电机堵转回路。
在本实施例中,如图1所示,被动散热支路100包括串联的散热水箱101和膨胀水壶102。
在本实施例中,如图1所示,散热水箱101的两连接口处分别连接有散热水箱温度传感器,分别为第一散热水箱温度传感器103和第二散热水箱温度传感器104。
在本实施例中,如图1所示,加热或冷却支路200包括换热器201和高低温循环机202,高低温循环机202与换热器201的第一换热介质通道的两连接口相连,换热器201的第二换热介质通道的两连接口接入加热或冷却支路中。
在本实施例中,高低温循环机202具有加热和降温功能,可内置有循环机压差传感 器和循环机高精度PT温度传感器。
在本实施例中,如图1所示,换热器201的第二换热介质通道的两连接口处分别连接有换热器温度传感器,具体为第一换热器温度传感器204和第二换热器温度传感器205。
在本实施例中,如图1所示,加热或冷却支路200中设有加热或冷却支路流量计203。
在本实施例中,如图1所示,动力电池支路300包括串联的动力电池支路加热器301、动力电池热管理回路302和动力电池支路泵303。
在本实施例中,如图1所示,动力电池支路加热器301的两连接口处和动力电池热管理回路302的两连接口处分别设有动力电池支路温度传感器;动力电池支路加热器301的一连接口和动力电池热管理回路302的一连接口之间的两动力电池支路温度传感器可以并为一个,为第二动力电池支路温度传感器308,动力电池支路加热器301的另一连接口处的动力电池支路温度传感器为第一动力电池支路温度传感器307,动力电池热管理回路的另一连接口处的动力电池支路温度传感器为第三动力电池支路温度传感器305。
在本实施例中,如图1所示,动力电池热管理回路302和动力电池支路泵303之间连接有动力电池支路流量计304。
在本实施例中,如图1所示,模拟电机支路400包括串联的模拟电机支路加热器401、水路阻力元件单元和模拟电机支路泵404。
如图1所示,水路阻力元件单元包括并联连接的至少两水路阻力元件,在本实施例中,水路阻力元件单元包括并联连接的两水路阻力元件,分别为第一水路阻力元件402和第二水路阻力元件403。
如图1所示,模拟电机支路加热器401的一连接口与第四截止阀4之间连接有第一模拟电机支路温度传感器408;模拟电机支路加热器401的另一连接口与水路阻力元件单元之间连接有压差传感器407;水路阻力元件单元和模拟电机支路泵404之间连接有第二模拟电机支路温度传感器406和模拟电机支路流量计405。
具体地,在本实施例中,当第一截止阀1、第二截止阀2关闭,第三截止阀3、第四截止阀4和第五截止阀5打开时,形成的水路为被动散热回路,包括电池被动散热回路和模拟电机被动散热回路,具体回路为:电池被动散热回路:散热水箱101→膨胀水壶102→动力电池支路泵303→动力电池热管理回路302→动力电池支路加热器301→第三截止阀3→第五截止阀5→散热水箱101;模拟电机被动散热回路:散热水箱101→膨胀水壶102→模拟电机支路泵404→水路阻力元件单元→模拟电机支路加热器401→第四截止阀4→第五截止阀5→散热水箱101。给定动力电池支路加热器301和模拟电机支路 加热器401的不同加热功率,分别调节动力电池支路泵303和模拟电机支路泵404的流量,通过第一动力电池支路温度传感器307、第二动力电池支路温度传感器308、第三动力电池支路温度传感器305得到动力电池支路加热器301和动力电池热管理回路302的进出口温度差,又通过动力电池支路流量计304得到此时的质量流量,即可得到动力电池热管理回路302的热容和换热量,同时也监测到动力电池热管理回路302的出水温度;同理,模拟电机部分(水路阻力元件单元和模拟电机支路加热器401的组合)在得到第一模拟电机支路温度传感器408和第二模拟电机支路温度传感器406的温度差后通过模拟电机支路流量计405采集到的质量流量,即可得到水路阻力元件单元流阻下的换热量和出口温度;采集第一散热水箱温度传感器103和第二散热水箱温度传感器104的温度,得到散热水箱101的进出口温度,可以得到散热水箱101的散热效果。
当第二截止阀2关闭,第一截止阀1、第三截止阀3、第四截止阀4和第五截止阀5开启时,形成的水路分别为模拟电机被动散热回路和动力电池主动散热回路。具体回路为:模拟电机被动散热回路:散热水箱101→膨胀水壶102→模拟电机支路泵404→水路阻力元件单元→模拟电机支路加热器401→第四截止阀4→第五截止阀5→散热水箱101,换热器201→动力电池支路泵303→动力电池热管理回路302→动力电池支路加热器301→第三截止阀3→第一截止阀1→换热器201。给定动力电池支路加热器301加热功率和高低温循环机202的制冷功率,调节动力电池支路泵303的流量,采集第一换热器温度传感器204、第二换热器温度传感器205、第三动力电池支路温度传感器305、第一动力电池支路温度传感器307、第二动力电池支路温度传感器308的温度,分别得到换热器201、动力电池热管理回路302和动力电池支路加热器301的进出口温度差,利用加热或冷却支路流量计203和动力电池支路流量计304采集的质量流量,即可得到换热器201、动力电池热管理回路302和动力电池支路加热器301的换热量,同时监测动力电池热管理回路302的出水温度;给定模拟电机支路加热器的加热功率和水路阻力元件402和403的阻力,调节模拟电机支路泵404的流量,采集第一模拟电机支路温度传感器408和第二模拟电机支路温度传感器406的温度,利用模拟电机支路流量计405采集的质量流量,即可得到模拟电机部分的换热量和出口温度,此时通过第一散热水箱温度传感器103和第二散热水箱温度传感器104的温度,可以得到散热水箱101的散热效果。
当第五截止阀5关闭,第一截止阀1、第二截止阀2、第三截止阀3和第四截止阀4开启时,形成的回路为余热回收回路。具体回路为:动力电池主动加热回路:第二截止阀2→动力电池支路泵303→动力电池热管理回路302→动力电池支路加热器→第三截止阀3→第二截止阀2;模拟电机余热回收回路:换热器201→模拟电机支路泵404→水 路阻力元件单元→模拟电机支路加热器401→第四截止阀4→第一截止阀1→换热器201。给定模拟电机支路加热器401的加热功率和高低温循环机202的制冷功率,调节水路阻力元件单元的阻力,调节模拟电机支路泵404的流量,采集第一模拟电机支路温度传感器408、第二模拟电机支路温度传感器406、第一换热器温度传感器204和第二换热器温度传感器205的温度,得到模拟电机部分和换热器201的进出口温差,利用模拟电机支路流量计405和加热或冷却支路流量计203采集的质量流量,即可分别得到模拟电机部分和换热器201的换热量和出口温度;给定动力电池支路加热器301的加热功率,调节动力电池支路泵303的流量,采集第三动力电池支路温度传感器305、第一动力电池支路温度传感器307和第二动力电池支路温度传感器308的温度,得到动力电池热管理回路302和动力电池支路加热器301的进出口温度差,利用动力电池支路流量计304采集的质量流量即可得到动力电池热管理回路302和动力电池支路加热器301的换热量,通过换热量来了解可利用回收的热量,同时需要监测动力电池热管理回路302的出口温度,观察动力电池热管理回路302自平衡循环的特性。
当第一截止阀1、第五截止阀5关闭,第二截止阀2、第三截止阀3和第四截止阀4开启时,形成的回路为电机堵转加热回路。具体回路为:第二截止阀2→动力电池支路泵303→动力电池热管理回路302→动力电池支路加热器301→第三截止阀3→第二截止阀2→动力电池支路泵303,第二截止阀2→模拟电机支路泵404→水路阻力元件单元→模拟电机支路加热器401→第四截止阀4→第二截止阀2。给定模拟电机支路加热器401的加热功率,调节水路阻力元件单元的阻力,调节动力电池支路泵303和模拟电机支路泵404的流量,采集第一模拟电机支路温度传感器408、第二模拟电机支路温度传感器406、第三动力电池支路温度传感器305、第二动力电池支路温度传感器308的温度,利用模拟电机支路流量计405和动力电池支路流量计304采集的质量流量即可得到模拟电机和动力电池热管理回路302的换热量及出口温度,从而获得模拟电机堵转加热动力电池热管理回路302的效果。
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种电动汽车热管理水路***试验装置,其特征在于,包括被动散热支路(100)、加热或冷却支路(200)、动力电池支路(300)、模拟电机支路(400)、连通支路和五通阀组(500);其中,五通阀组(500)包括依次首尾连通的第一截止阀(1)、第二截止阀(2)、第三截止阀(3)、第四截止阀(4)和第五截止阀(5);加热或冷却支路(200)的首端与第一截止阀(1)相连;连通支路的首端与第二截止阀(2)相连;动力电池支路(300)的首端与第三截止阀(3)相连;模拟电机支路(400)的首端与第四截止阀(4)相连;被动散热支路(100)的首端与第五截止阀(5)相连;所述加热或冷却支路(200)、所述连通支路、所述动力电池支路(300)、所述模拟电机支路(400)、所述被动散热支路(100)的尾端并接在一起;当第三截止阀(3)、第四截止阀(4)、第五截止阀(5)均开启和第一截止阀(1)、第二截止阀(2)均关闭时,所述被动散热支路(100)和所述动力电池支路(300)连接形成动力电池被动散热回路,所述被动散热支路(100)和所述模拟电机支路(400)连接形成模拟电机被动散热回路,并且动力电池被动散热回路和模拟电机被动散热回路并联;当第二截止阀(2)关闭和第一截止阀(1)、第三截止阀(3)、第四截止阀(4)、第五截止阀(5)均开启时,所述被动散热支路(100)和所述模拟电机支路(400)连接形成模拟电机被动散热回路,所述加热或冷却支路(200)和所述动力电池支路(300)连接形成动力电池主动散热回路;当第五截止阀(5)关闭,第一截止阀(1)、第二截止阀(2)、第三截止阀(3)和第四截止阀(4)均开启时,所述动力电池支路(300)和所述连通支路相连形成动力电池主动加热回路,所述模拟电机支路(400)和所述加热或冷却支路(200)相连形成模拟电机余热回收回路;当第一截止阀(1)、第五截止阀(5)均关闭,第二截止阀(2)、第三截止阀(3)和第四截止阀(4)均开启时,所述动力电池支路(300)和所述连通支路相连形成动力电池主动加热回路,所述模拟电机支路(400)和所述连通支路相连形成模拟电机堵转回路;
    所述模拟电机支路(400)包括串联的模拟电机支路加热器(401)、水路阻力元件单元和模拟电机支路泵(404);
    所述加热或冷却支路(200)包括换热器(201)和高低温循环机(202),所述高低温循环机(202)与所述换热器(201)的第一换热介质通道的两连接口相连,所述换热器(201)的第二换热介质通道的两连接口接入加热或冷却支路中;
    所述模拟电机支路加热器(401)的一连接口与第四截止阀(4)之间连接有第一模拟电机支路温度传感器(408);所述模拟电机支路加热器(401)的另一连接口与水路阻力元件单元之间连接有压差传感器(407);所述水路阻力元件单元和所述模拟电机支 路泵(404)之间连接有第二模拟电机支路温度传感器(406)和模拟电机支路流量计(405);所述换热器(201)的第二换热介质通道的两连接口处分别连接有换热器温度传感器,具体为第一换热器温度传感器(204)和第二换热器温度传感器(205);
    所述加热或冷却支路(200)中设有加热或冷却支路流量计(203);
    所述动力电池支路(300)包括串联的动力电池支路加热器(301)、动力电池热管理回路(302)和动力电池支路泵(303);
    动力电池支路加热器(301)的两连接口处和动力电池热管理回路302的两连接口处分别设有动力电池支路温度传感器;动力电池支路加热器(301)的一连接口和动力电池热管理回路(302)的一连接口之间的两动力电池支路温度传感器可以并为一个,为第二动力电池支路温度传感器(308),动力电池支路加热器(301)的另一连接口处的动力电池支路温度传感器为第一动力电池支路温度传感器(307),动力电池热管理回路的另一连接口处的动力电池支路温度传感器为第三动力电池支路温度传感器(305);所述动力电池热管理回路(302)和所述动力电池支路泵(303)之间连接有动力电池支路流量计(304);
    给定模拟电机支路加热器(401)的加热功率和高低温循环机(202)的制冷功率,调节水路阻力元件单元的阻力,调节模拟电机支路泵(404)的流量,采集第一模拟电机支路温度传感器(408)、第二模拟电机支路温度传感器(406)、第一换热器温度传感器(204)和第二换热器温度传感器(205)的温度,得到模拟电机部分和换热器(201)的进出口温差,利用模拟电机支路流量计(405)和加热或冷却支路流量计(203)采集的质量流量,即可分别得到模拟电机部分和换热器(201)的换热量和出口温度;其中,模拟电机部分为水路阻力元件单元和模拟电机支路加热器401的组合;
    给定动力电池支路加热器(301)的加热功率,调节动力电池支路泵(303)的流量,采集第三动力电池支路温度传感器(305)、第一动力电池支路温度传感器(307)和第二动力电池支路温度传感器(308)的温度,得到动力电池热管理回路(302)和动力电池支路加热器(301)的进出口温度差,利用动力电池支路流量计(304)采集的质量流量即可得到动力电池热管理回路(302)和动力电池支路加热器(301)的换热量,通过换热量了解可利用回收的热量,同时需要监测动力电池热管理回路(302)的出口温度,观察动力电池热管理回路(302)自平衡循环的特性;
    给定模拟电机支路加热器(401)的加热功率,调节水路阻力元件单元的阻力,调节动力电池支路泵(303)和模拟电机支路泵(404)的流量,采集第一模拟电机支路温度传感器(408)、第二模拟电机支路温度传感器(406)、第三动力电池支路温度传感器(305)、第二动力电池支路温度传感器(308)的温度,利用模拟电机支路流量计(405) 和动力电池支路流量计(304)采集的质量流量即可得到模拟电机部分和动力电池热管理回路(302)的换热量及出口温度,从而获得模拟电机部分堵转加热动力电池热管理回路(302)的效果。
  2. 根据权利要求1所述的电动汽车热管理水路***试验装置,其特征在于,所述被动散热支路(100)包括串联的散热水箱(101)和膨胀水壶(102)。
  3. 根据权利要求2所述的电动汽车热管理水路***试验装置,其特征在于,所述散热水箱(101)的两连接口处分别连接有散热水箱温度传感器。
  4. 根据权利要求1所述的电动汽车热管理水路***试验装置,其特征在于,所述水路阻力元件单元包括并联连接的至少两水路阻力元件。
PCT/CN2022/129400 2022-06-20 2022-11-03 电动汽车热管理水路***试验装置 WO2023245953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210694928.9A CN114778142B (zh) 2022-06-20 2022-06-20 电动汽车热管理水路***试验装置
CN202210694928.9 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023245953A1 true WO2023245953A1 (zh) 2023-12-28

Family

ID=82420794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129400 WO2023245953A1 (zh) 2022-06-20 2022-11-03 电动汽车热管理水路***试验装置

Country Status (2)

Country Link
CN (1) CN114778142B (zh)
WO (1) WO2023245953A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114778142B (zh) * 2022-06-20 2022-09-16 江苏中关村科技产业园节能环保研究有限公司 电动汽车热管理水路***试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532405A (zh) * 2019-01-21 2019-03-29 吉林大学 一种电动汽车整车热管理***及其控制方法
CN110329112A (zh) * 2019-08-19 2019-10-15 厦门金龙联合汽车工业有限公司 一种汽车综合热管理***
CN110529628A (zh) * 2019-07-23 2019-12-03 上海蔚来汽车有限公司 一种多通阀、热管理***及电动汽车
CN111342089A (zh) * 2020-03-11 2020-06-26 中国汽车技术研究中心有限公司 一种燃料电池车热管理测试装置及方法
US20210159520A1 (en) * 2019-11-21 2021-05-27 Hyundai Motor Company Thermal Management System for Fuel Cell Vehicle
CN114778142A (zh) * 2022-06-20 2022-07-22 江苏中关村科技产业园节能环保研究有限公司 电动汽车热管理水路***试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532405A (zh) * 2019-01-21 2019-03-29 吉林大学 一种电动汽车整车热管理***及其控制方法
CN110529628A (zh) * 2019-07-23 2019-12-03 上海蔚来汽车有限公司 一种多通阀、热管理***及电动汽车
CN110329112A (zh) * 2019-08-19 2019-10-15 厦门金龙联合汽车工业有限公司 一种汽车综合热管理***
US20210159520A1 (en) * 2019-11-21 2021-05-27 Hyundai Motor Company Thermal Management System for Fuel Cell Vehicle
CN111342089A (zh) * 2020-03-11 2020-06-26 中国汽车技术研究中心有限公司 一种燃料电池车热管理测试装置及方法
CN114778142A (zh) * 2022-06-20 2022-07-22 江苏中关村科技产业园节能环保研究有限公司 电动汽车热管理水路***试验装置

Also Published As

Publication number Publication date
CN114778142B (zh) 2022-09-16
CN114778142A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN211427169U (zh) 一种燃料电池热管理测试***
CN105576321B (zh) 电池包热管理***
CN206148573U (zh) 一种电池包热管理***
Kuang et al. Research on control strategy for a battery thermal management system for electric vehicles based on secondary loop cooling
CN107768774A (zh) 一种新能源汽车三包动力电池冷却加热***
CN108592441A (zh) 电动汽车热管理***
CN111929087B (zh) 一种动力电池热管理***性能多功能测试台架
CN105633501B (zh) 电动车辆动力电池组液流热管理装置、管理***及其控制方法
WO2023245953A1 (zh) 电动汽车热管理水路***试验装置
CN108306072B (zh) 一种并联式热交换电池包
CN206532846U (zh) 电动汽车热管理装置
CN208170778U (zh) 电动汽车热管理***
CN108583348A (zh) 能为新能源汽车充电电池提供预热和冷却的充电站
CN109030557A (zh) 一种电动汽车动力电池温控板传热性能测试装置及方法
CN108232234A (zh) 一种燃料电池***及燃料电池汽车
CN209311114U (zh) 燃料电池热管理测试台架及燃料电池热管理监控***
Wang et al. Bidirectional heat transfer characteristics of cavity cold plate battery thermal management system: An experimental study
CN208421189U (zh) 一种动力电池热管理测试试验台
CN205355204U (zh) 电池包热管理***
CN218021116U (zh) 车辆冷却液集成***、车辆热管理***及车辆
CN109037845B (zh) 一种动力电池液体加热与冷却***
CN106468887A (zh) 新能源汽车热管理***仿真模型及仿真方法
CN206225500U (zh) 一种汽车用多股流板式换热器
CN209786135U (zh) 适用电动汽车的分布式温度控制电池***
CN208937522U (zh) 一种电动汽车动力电池温控板传热性能测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947690

Country of ref document: EP

Kind code of ref document: A1