WO2023245867A1 - 能谱计数窗口的定位方法、装置、电子设备及存储介质 - Google Patents

能谱计数窗口的定位方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023245867A1
WO2023245867A1 PCT/CN2022/116502 CN2022116502W WO2023245867A1 WO 2023245867 A1 WO2023245867 A1 WO 2023245867A1 CN 2022116502 W CN2022116502 W CN 2022116502W WO 2023245867 A1 WO2023245867 A1 WO 2023245867A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy spectrum
section
spectrum section
partitions
candidate
Prior art date
Application number
PCT/CN2022/116502
Other languages
English (en)
French (fr)
Inventor
赵超
唐方东
何林锋
Original Assignee
上海市计量测试技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市计量测试技术研究院 filed Critical 上海市计量测试技术研究院
Priority to EP22941881.9A priority Critical patent/EP4328627A1/en
Publication of WO2023245867A1 publication Critical patent/WO2023245867A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the technical field of energy spectrum measurement, for example, to positioning methods, devices, electronic equipment and storage media for energy spectrum counting windows.
  • gamma spectrometers gamma spectrometers, alpha spectrometers and liquid scintillation counters are common energy spectrum measuring instruments.
  • the measured radioactive performance spectrum is generally expressed as a series of data corresponding to the track address and count.
  • the counts it contributes to the energy spectrum are generally concentrated in the corresponding road site area. Only the counts in this area are considered during energy spectrum analysis, which can avoid interference from the background and counts contributed by other isotopes outside the area. , therefore, this area is called the counting window.
  • This application provides a positioning method, device, electronic equipment and storage medium for the energy spectrum counting window to solve the problem of difficulty in accurately positioning the energy spectrum counting window, realize automatic positioning of the energy spectrum counting window, and reduce time complexity .
  • a method for locating an energy spectrum counting window includes: obtaining an energy spectrum to be processed, dividing the energy spectrum to be processed into at least two energy spectrum partitions according to the road address, and determining at least one energy spectrum partition according to the at least two energy spectrum partitions.
  • a candidate energy spectrum section wherein each candidate energy spectrum section includes at least one energy spectrum partition; determining the window positioning index of each candidate energy spectrum section, according to the window of the at least one candidate energy spectrum section The positioning index determines a marked energy spectrum section from the at least one candidate energy spectrum section; and determines a target counting window of the energy spectrum to be processed according to the marked energy spectrum section.
  • a positioning device for an energy spectrum counting window including: an energy spectrum dividing module, configured to obtain the energy spectrum to be processed, divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address, and according to the at least The two energy spectrum partitions determine at least one candidate energy spectrum section, wherein each candidate energy spectrum section includes at least one energy spectrum section; the energy spectrum section marking module is configured to determine the value of each candidate energy spectrum section.
  • a window positioning index which determines a marker energy spectrum segment from the at least one candidate energy spectrum segment according to the window positioning index of the at least one candidate energy spectrum segment;
  • a counting window determination module configured to determine the marker energy spectrum segment according to the window positioning index of the at least one candidate energy spectrum segment; Sections determine the target count window of the energy spectrum to be processed.
  • the electronic device includes: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores a computer program that can be executed by the at least one processor. , the computer program is executed by the at least one processor, so that the at least one processor can perform the positioning method of the energy spectrum counting window described in any embodiment of the present application.
  • a computer-readable storage medium stores computer instructions.
  • the computer instructions are used to enable a processor to implement the positioning method of the energy spectrum counting window described in any embodiment of the present application when executed. .
  • Figure 1 is a schematic flow chart of a method for positioning an energy spectrum counting window provided in Embodiment 1 of the present application;
  • Figure 2 is a schematic flow chart of a method for positioning an energy spectrum counting window provided in Embodiment 2 of the present application;
  • Figure 3 is a schematic flowchart of a method for positioning an energy spectrum counting window provided in Embodiment 3 of the present application;
  • Figure 4 is a schematic diagram of an energy spectrum to be processed provided in Embodiment 4 of the present application.
  • FIG. 5 is a schematic diagram of the energy spectrum of the first partition provided by Embodiment 4 of the present application.
  • FIG. 6 is a schematic diagram of the energy spectrum of the second partition provided by Embodiment 4 of the present application.
  • Figure 7 is a schematic diagram of the energy spectrum of the third partition provided by Embodiment 4 of the present application.
  • Figure 8 is a schematic diagram of the energy spectrum of the fourth partition provided by Embodiment 4 of the present application.
  • Figure 9 is a schematic diagram of the energy spectrum of the fifth partition provided by Embodiment 4 of the present application.
  • Figure 10 is a schematic diagram of the energy spectrum of the sixth partition provided by Embodiment 4 of the present application.
  • FIG 11 is a schematic structural diagram of an energy spectrum counting window device provided in Embodiment 7 of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device provided in Embodiment 8 of the present application.
  • FIG. 1 is a schematic flowchart of a method for positioning an energy spectrum counting window provided in Embodiment 1 of the present application. This embodiment can be applied to the situation of automatically positioning the counting window of the energy spectrum.
  • the method can be executed by the positioning device of the energy spectrum counting window.
  • the device can be implemented in the form of software and/or hardware.
  • the device can be configured in In electronic equipment, such as: PC, server, etc. As shown in Figure 1, the method includes the following steps.
  • the energy spectrum to be processed may be based on data measured by nuclear and nuclear radiation measuring instruments.
  • the energy spectrum partition may be an energy spectrum area obtained by dividing the energy spectrum to be processed according to preset rules, where the preset rules can be determined according to actual needs and are not limited.
  • Each candidate energy spectrum section includes at least one energy spectrum section.
  • Each energy spectrum section can be determined as a candidate energy spectrum section, or at least two adjacent energy spectrum sections can be determined as a candidate energy spectrum section. .
  • radioactivity spectrum measured by an energy spectrum type measuring instrument is generally expressed as a series of data corresponding to the track address and count, as shown in Table 1.
  • Road address usually has a positive correlation with energy, among which linear or logarithmic relationships are more common.
  • Road address i corresponds to count N i , and its physical meaning is that the nucleon and nuclear radiation measuring instrument records N i at the energy corresponding to the road address. counts.
  • the energy spectrum to be processed can be obtained, or the energy spectrum to be processed can be obtained from pre-measured and stored energy spectra.
  • the energy spectrum to be processed is divided according to the road address, and at least two energy spectrum partitions are obtained.
  • At least one candidate energy spectrum section may be determined based on a combination of at least two energy spectrum partitions.
  • the two or more energy spectrum partitions are continuously arranged.
  • the energy spectrum partitions include 1, 2, 3 and 4
  • the energy spectrum partitions 1, 2, 3 and 4 can be used as a candidate energy spectrum section respectively, or two adjacent energy spectrum partitions can be As a candidate energy spectrum section, such as energy spectrum partitions 1 and 2, energy spectrum partitions 2 and 3, and energy spectrum partitions 3 and 4, three adjacent energy spectrum partitions can also be used as a candidate energy spectrum section, such as Energy spectrum partitions 1-3 and energy spectrum partitions 2-4.
  • energy spectrum partitions 1-4 can also be used as a candidate energy spectrum section.
  • the energy spectrum to be processed can be divided into at least two energy spectrum partitions according to the road address in any of the following ways.
  • Method 1 Divide the energy spectrum to be processed into at least two energy spectrum partitions according to the total number of road addresses and the preset number of road addresses contained in the energy spectrum partition.
  • the number of road addresses that should be included in the energy spectrum partition can be preset according to actual needs, and the energy spectrum to be processed is divided according to the number of road addresses and the total number of road addresses to obtain at least two energy spectrum partitions. If the total number of road addresses is not an integral multiple of the preset number of road addresses contained in the energy spectrum partition, the remaining road addresses can be used as an energy spectrum partition alone, or the remaining road addresses can be added to the last energy spectrum partition. in spectrum partition.
  • the total number of road addresses is 256. If the preset number of road addresses included in the energy spectrum partition is 64, then 1-64, 65-128, 129-192 and 193-256 can be used as four Energy spectrum partition; if the preset number of addresses included in the energy spectrum partition is 80, then 1-80, 81-160, 161-240 and 241-256 can be used as four energy spectrum partitions or 1-80 , 81-160, and 161-256 are used as three energy spectrum partitions.
  • Method 2 Divide the energy spectrum to be processed into at least two energy spectrum partitions according to the total number of road addresses and the preset number of partitions corresponding to the energy spectrum partitions.
  • the number of partitions corresponding to the energy spectrum partitions can be preset according to actual needs, and the energy spectrum to be processed is divided according to the number of partitions and the total number of road addresses to obtain at least two energy spectrum partitions.
  • the total number of road addresses is 256. If the preset number of partitions corresponding to energy spectrum partitions is 8, then 1-32, 33-64, 65-96, 97-128, 129-160 can be , 161-192, 193-224 and 225-256 as eight energy spectrum partitions.
  • Method 3 According to the distribution of the energy spectrum data of the energy spectrum to be processed, the energy spectrum to be processed is divided into at least two energy spectrum partitions.
  • the distribution of energy spectrum data can be amplitude distribution, etc. It can be understood that the distribution of the energy spectrum data can be determined according to the energy spectrum to be processed, and the energy spectrum to be processed can be divided according to the distribution. For example, if the count value reaches a preset threshold, it can be divided into an energy spectrum region, etc.
  • the partition value corresponding to each road address in the energy spectrum to be processed is calculated based on a preset partition value algorithm; for each road address, the partition value of each road address and the preset value adjacent to each road address are calculated. Assuming the average value of the partition values of a number of road addresses, the energy spectrum to be processed is divided into at least two energy spectrum partitions by road address based on the average value of the partition values of multiple road addresses.
  • the default partition value algorithm is:
  • P is the partition value of each track address
  • i is the track address number
  • N i is the sample measurement spectrum count corresponding to track address i
  • B i is the background measurement spectrum count corresponding to track address i
  • T S is the sample measurement spectrum measurement live time.
  • T B is the background measurement spectrum measurement live time.
  • Calculating the partition value of each road address and the average value of the partition values of a preset number of addresses adjacent to each road address can smooth the partition value of each road address. It may be that the partition values of the 15 addresses at both ends of each address are used to calculate the average value corresponding to the address.
  • n is the actual total number of addresses used for average calculation
  • i is the address number of the address to be calculated
  • j is the address number of the address used for average calculation. Normally n is 31, but when the road address i is close to the edge of the energy spectrum, the invalid road address j needs to be deducted.
  • the energy spectrum to be processed is divided into at least two energy spectrum partitions according to the road address.
  • the partition number of each road address can be determined according to the average value corresponding to each road address, and Road addresses with consistent and consecutive partition numbers are divided into one partition.
  • partition number M of each road address can be calculated according to the following formula:
  • S120 Determine the window positioning index of each candidate energy spectrum section, and determine the marker energy spectrum section from at least one candidate energy spectrum section based on the window positioning index of at least one candidate energy spectrum section.
  • the window positioning index may be index data determined based on the energy spectrum data of at least one candidate energy spectrum section or the energy spectrum data of at least one candidate energy spectrum section and other data, and is used to measure the quality of the counting window.
  • the marked energy spectrum section may be one candidate energy spectrum section or multiple consecutive candidate energy spectrum sections among at least one candidate energy spectrum section, and the marked energy spectrum section is the optimal energy spectrum area of the counting window obtained by the current division. part.
  • the window positioning index of each candidate energy spectrum section can be calculated and determined separately.
  • a candidate energy spectrum section with the optimal window positioning index can be determined as a marked energy spectrum section. It is also possible to combine the optimal candidate energy spectrum section, the optimal candidate energy spectrum section and the candidate energy spectrum section adjacent to the left, the optimal candidate energy spectrum section and the candidate adjacent to the right. The energy spectrum section and the optimal candidate energy spectrum section and the adjacent candidate energy spectrum sections on both sides are calculated to calculate the window positioning index to determine the optimal window positioning index combined in the optimal combination.
  • the candidate energy spectrum section is the marked energy spectrum section.
  • the window positioning index is optimal is related to its calculation method, and its value is not limited here.
  • the optimal window positioning index may be the maximum value among the window positioning indexes, the minimum value among the window positioning indexes, the value closest to the set value among the window positioning indexes, or the window positioning index Intermediate values in indicators, etc.
  • the window positioning index is the figure of merit (FOM) proposed by the academic community in this field. It is usually defined as the ratio of the square of the detection efficiency to the background count rate. The larger the FOM value, the better the index effect. , the better the counting window effect.
  • FOM figure of merit
  • the window positioning indicator is defined as follows
  • F(R) is the window positioning index of the candidate energy spectrum section R
  • i is the track address number in the candidate energy spectrum section R
  • N i is the sample measurement spectrum count corresponding to track address i
  • B i is the sample measurement spectrum count corresponding to track address i.
  • the bottom measurement spectrum counts T S is the sample measurement spectrum measurement live time
  • T B is the background measurement spectrum measurement live time.
  • the window positioning indicator is defined as follows
  • F(R) is the window positioning index of the candidate energy spectrum section R
  • i is the track address number in the candidate energy spectrum section R
  • N i is the sample measurement spectrum count corresponding to track address i
  • B i is the sample measurement spectrum count corresponding to track address i.
  • the bottom measurement spectrum counts T S is the sample measurement spectrum measurement live time
  • T B is the background measurement spectrum measurement live time.
  • the window positioning indicator is defined as follows
  • F(R) is the window positioning index of the candidate energy spectrum section R
  • i is the address number in the candidate energy spectrum section R
  • L R is the width of the candidate energy spectrum section R (that is, the number of addresses it contains)
  • N i is the sample measurement spectrum count corresponding to the track address i
  • B i is the background measurement spectrum count corresponding to the track address i
  • T S is the sample measurement spectrum measurement live time
  • T B is the background measurement spectrum measurement live time.
  • window positioning index is only illustrative explanations and are not limitations on the calculation method of the window positioning index. Any index that can be used to evaluate the calculation window effect can be used as the window positioning index, which is not limited in this embodiment. .
  • candidate energy spectrum section 4 can be calculated , candidate energy spectrum section 3-4, candidate energy spectrum section 4-5 and the window positioning index of candidate energy spectrum section 3-5. If the window positioning index corresponding to candidate energy spectrum section 4 is optimal, the candidate will be Energy spectrum section 4 is used as the marked energy spectrum section; if the window positioning index corresponding to the candidate energy spectrum section 3-4 is the best, it will be expanded to determine the candidate energy spectrum section 3-4 and the candidate energy spectrum section 2- 4.
  • Window positioning indicators corresponding to candidate energy spectrum sections 3-5 and candidate energy spectrum sections 2-5 and determine the optimal section and expansion section in turn to determine the marked energy spectrum section; if the candidate energy spectrum section If the window positioning index of segment 4-5 or candidate energy spectrum segment 3-5 is optimal, the method of determining the marked energy spectrum segment is similar to the situation where the window positioning index corresponding to candidate energy spectrum segment 3-4 is optimal. This will not be described again.
  • the marked energy spectrum section After the marked energy spectrum section is determined, it can be considered that the marked energy spectrum section is the optimal energy spectrum section under the current division rule. In this case, the marked energy spectrum section can be used as the target counting window of the energy spectrum to be processed. You can also continue to divide the marked energy spectrum sections, that is, divide the marked energy spectrum sections as a basis, and calculate and compare the divided energy spectrum sections to determine the target counting window of the energy spectrum to be processed.
  • the technical solution of the embodiment of the present application is to obtain the energy spectrum to be processed and divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address to perform preliminary partitioning of the energy spectrum to be processed, and determine the energy spectrum based on the at least two energy spectrum partitions.
  • at least one candidate energy spectrum section determining a window positioning index for each candidate energy spectrum section, and determining a marked energy spectrum section from at least one candidate energy spectrum section based on the window positioning index of the at least one candidate energy spectrum section,
  • the target counting window of the energy spectrum to be processed is determined according to the marked energy spectrum section, which solves the problems of low calculation efficiency and poor practicality when determining the counting window, and realizes the automatic positioning of the counting window of the energy spectrum. And reduce the time complexity and improve the technical effect of practicality.
  • FIG. 2 is a schematic flowchart of a method for positioning an energy spectrum counting window provided in Embodiment 2 of the present application. This embodiment is based on the above embodiment. For the specific implementation of determining the target counting window of the energy spectrum to be processed according to the marked energy spectrum section, please refer to the technical solution of this embodiment. The explanation of terms that are the same as or corresponding to the above-mentioned embodiments will not be repeated here. As shown in Figure 2, the method includes the following steps.
  • S220 Determine the window positioning index of each candidate energy spectrum section, and determine the marker energy spectrum section from at least one candidate energy spectrum section based on the window positioning index of at least one candidate energy spectrum section.
  • the window positioning index of each candidate energy spectrum segment can be determined in any of the following ways:
  • Method 1 Determine based on the energy spectrum data of each candidate energy spectrum section or based on the energy spectrum data of each candidate energy spectrum section and the energy spectrum data of at least one candidate energy spectrum section among all candidate energy spectrum sections. Window positioning index for each candidate energy spectrum segment.
  • the window positioning index of the candidate energy spectrum section can be calculated and determined based on the energy spectrum data of the candidate energy spectrum section, or the window positioning index of the candidate energy spectrum section can be determined based on the energy spectrum data of the candidate energy spectrum section and the The energy spectrum data of the candidate energy spectrum section adjacent to the candidate energy spectrum section is calculated to determine the window positioning index of the candidate energy spectrum section.
  • the energy spectrum data includes at least one of sample count, background count, measurement time, channel address, and energy.
  • Method 2 Based on the energy spectrum data of each candidate energy spectrum segment and the energy spectrum data of the energy spectrum to be processed, or based on the energy spectrum data of each candidate energy spectrum segment and at least one candidate among all candidate energy spectrum segments.
  • the energy spectrum data of the energy spectrum section and the energy spectrum data of the energy spectrum to be processed are used to determine the window positioning index of each candidate energy spectrum section.
  • the window positioning index of the candidate energy spectrum section can be calculated and determined based on the energy spectrum data of the candidate energy spectrum section and the energy spectrum data of the energy spectrum to be processed, or the window positioning index of the candidate energy spectrum section can be determined based on the energy spectrum data of the candidate energy spectrum section.
  • the energy spectrum data of the spectrum section, the energy spectrum data of the candidate energy spectrum section adjacent to the candidate energy spectrum section, and the energy spectrum data of the energy spectrum to be processed are used to calculate and determine the window positioning index of the candidate energy spectrum section.
  • Method 3 Based on the energy spectrum data of each candidate energy spectrum section and the measured sample data corresponding to the energy spectrum to be processed, or based on the energy spectrum data of each candidate energy spectrum section, and at least one of all candidate energy spectrum sections.
  • the energy spectrum data of a candidate energy spectrum section and the measured sample data corresponding to the energy spectrum to be processed determine the window positioning index of each candidate energy spectrum section.
  • the measurement sample data is data related to the sample to be measured and is used to measure the measurement sample.
  • measuring sample data includes measuring at least one of sample activity, volume and mass.
  • the window positioning index of the candidate energy spectrum section can be calculated and determined based on the energy spectrum data of the candidate energy spectrum section and the measured sample data corresponding to the energy spectrum to be processed, or based on the The energy spectrum data of the candidate energy spectrum section, the energy spectrum data of the candidate energy spectrum section adjacent to the candidate energy spectrum section, and the measured sample data corresponding to the energy spectrum to be processed are calculated to determine the window positioning of the candidate energy spectrum section. index.
  • Method 4 Based on the energy spectrum data of each candidate energy spectrum section and the measurement environment data corresponding to the energy spectrum to be processed, or based on the energy spectrum data of each candidate energy spectrum section, and at least one of all candidate energy spectrum sections.
  • the energy spectrum data of a candidate energy spectrum section and the measurement environment data corresponding to the energy spectrum to be processed determine the window positioning index of each candidate energy spectrum section.
  • Measurement environment data can be used to measure environmental conditions when measurements are made using nuclear and nuclear radiation measuring instruments.
  • measuring the environmental data includes measuring at least one of temperature, humidity, particle count, dust, and electromagnetic measurement in the environment.
  • the window positioning index of the candidate energy spectrum section can be calculated and determined based on the energy spectrum data of the candidate energy spectrum section and the measurement environment data corresponding to the energy spectrum to be processed, or based on the The energy spectrum data of the candidate energy spectrum section, the energy spectrum data of the candidate energy spectrum section adjacent to the candidate energy spectrum section, and the measurement environment data corresponding to the energy spectrum to be processed are calculated to determine the window positioning of the candidate energy spectrum section. index.
  • Method 5 According to the energy spectrum data of each candidate energy spectrum section, the measurement sample data corresponding to the energy spectrum to be processed, and the measurement environment data corresponding to the energy spectrum to be processed, or based on the energy spectrum data of each candidate energy spectrum section, Energy spectrum data corresponding to at least one candidate energy spectrum section among all candidate energy spectrum sections, measurement sample data corresponding to the energy spectrum to be processed, and measurement environment data corresponding to the energy spectrum to be processed, determine each candidate energy spectrum area Segment window positioning indicator.
  • the candidate energy spectrum can be calculated and determined based on the energy spectrum data of the candidate energy spectrum section, the measurement sample data corresponding to the energy spectrum to be processed, and the measurement environment data corresponding to the energy spectrum to be processed.
  • the window positioning index of the section can also be based on the energy spectrum data of the candidate energy spectrum section, the energy spectrum data of the candidate energy spectrum section adjacent to the candidate energy spectrum section, the measured sample data corresponding to the energy spectrum to be processed, and Measurement environment data corresponding to the energy spectrum to be processed is calculated to determine the window positioning index of the candidate energy spectrum section.
  • the retained energy spectrum section can be understood as the energy spectrum section used in the next division and calculation.
  • the marked energy spectrum section can be determined as the reserved energy spectrum section, or the marked energy spectrum section and a certain number of energy spectrum partitions or tracks at the left and right ends of the marked energy spectrum section can also be determined. address as a reserved energy spectrum partition.
  • the retained energy spectrum section can be determined based on the marked energy spectrum section in any of the following ways:
  • Method 1 Use the marked energy spectrum section as the reserved energy spectrum section.
  • the retained energy spectrum sections are also energy spectrum partitions 3 and 4.
  • Method 2 Merge a first preset number of energy spectrum partitions adjacent to at least one of the two ends of the marked energy spectrum section into the marked energy spectrum section to obtain a retained energy spectrum section.
  • the first preset number is 1, and the marked energy spectrum sections are energy spectrum partitions 3 and 4. Then, the first preset number of energy spectrum partitions adjacent to the energy spectrum partitions at both ends of the marked energy spectrum section are Energy spectrum partition 2 and energy spectrum partition 5. At this time, the reserved energy spectrum section is energy spectrum partition 2-5.
  • the energy spectrum partitions adjacent to the left end or right end of the marked energy spectrum section can be merged into the marked energy spectrum section to obtain the retained energy spectrum section; the energy spectrum section can also be combined with The energy spectrum partitions adjacent to the left and right ends of the marked energy spectrum section are merged into the marked energy spectrum section to obtain the retained energy spectrum section.
  • the number of energy spectrum partitions merged at the left end and the number of energy spectrum partitions merged at the right end can be the same, or different.
  • Method 3 Merge a second preset number of road addresses adjacent to at least one of the two ends of the marked energy spectrum section into the marked energy spectrum section to obtain a retained energy spectrum section.
  • the second preset number is 10, and the energy spectrum sections are marked as energy spectrum partitions 3 and 4. Then, the 10 road addresses at the left end of the energy spectrum partition 3, the energy spectrum partitions 3-4 and the right end of the energy spectrum partition are The 10 road addresses are identified as reserved energy spectrum sections.
  • the road addresses adjacent to the left end or right end of the marked energy spectrum section can be merged into the marked energy spectrum section to obtain the retained energy spectrum section;
  • the adjacent road addresses at the left and right ends of the energy spectrum section are merged into the marked energy spectrum section to obtain a retained energy spectrum section.
  • the number of road addresses merged at the left end and the number of road addresses merged at the right end may be the same or different.
  • both the first preset quantity and the second preset quantity can be set according to actual usage requirements, and the size is not limited in this embodiment.
  • the retained energy spectrum sections can be divided in any of the following ways to obtain multiple energy spectrum partitions corresponding to the retained energy spectrum sections:
  • Method 1 Divide the reserved energy spectrum section into at least two energy spectrum partitions according to the total number of road sites and the preset number of road sites included in the energy spectrum partition.
  • the number of road sites that should be included in the energy spectrum partition can be preset according to actual needs, and the reserved energy spectrum sections can be divided according to the number of road sites and the total number of road sites to obtain at least two energy spectrum partitions. If the total number of road addresses is not an integral multiple of the preset number of road addresses contained in the energy spectrum partition, the remaining road addresses can be used as an energy spectrum partition alone, or the remaining road addresses can be added to the last energy spectrum partition. Spectrum partition.
  • Method 2 Divide the reserved energy spectrum section into at least two energy spectrum partitions according to the total number of road sites and the preset number of partitions corresponding to the energy spectrum partitions.
  • the number of partitions corresponding to the energy spectrum partitions can be preset according to actual needs, and the reserved energy spectrum sections can be divided according to the number of partitions and the total number of road sites to obtain at least two energy spectrum partitions.
  • Method 3 Divide the retained energy spectrum section into at least two energy spectrum partitions according to the energy spectrum data distribution of the retained energy spectrum section.
  • the distribution of the energy spectrum data can be determined according to the retained energy spectrum sections, and the distribution can be used to divide the retained energy spectrum sections, for example, when the count value reaches a preset threshold, it is divided into an energy spectrum area, etc.
  • Method 4 Divide the retained energy spectrum section into at least two energy spectrum partitions based on a preset random algorithm.
  • the reserved energy spectrum section can be divided into a random number of energy spectrum partitions, and the number of road addresses in each energy spectrum partition is also random.
  • Method 5 Determine the repartitioned energy spectrum section based on the number of energy spectrum partitions in the retained energy spectrum section and the arrangement information of the road address segment corresponding to at least one energy spectrum partition, and divide the repartitioned energy spectrum section according to the repartitioned energy spectrum section.
  • the partitioning result of the partitioned energy spectrum sections obtains multiple energy spectrum partitions corresponding to the retained energy spectrum sections.
  • the repartitioned energy spectrum section may be a section that is subsequently divided again among the retained energy spectrum sections, so the repartitioned energy spectrum section may be all or part of the retained energy spectrum section.
  • the arrangement information may include the positional relationship of at least one road address segment in the energy spectrum partition, the corresponding energy spectrum partition, etc.
  • the number of energy spectrum partitions included in the reserved energy spectrum partitions can be determined, as well as the arrangement information of the road address segments in each energy spectrum partition. If there are a large number of energy spectrum partitions in the reserved energy spectrum section, the middle area of the reserved energy spectrum section can be considered as a non-overdivided area and will not be divided temporarily. In this case, it can be arranged according to the road site section. Distribute the information and determine the repartitioned energy spectrum sections except the middle area; if the number of energy spectrum partitions in the retained energy spectrum section is small, all the retained energy spectrum sections can be considered as repartitioned energy spectrum sections. Divide the repartitioned energy spectrum sections to obtain multiple energy spectrum partitions corresponding to the retained energy spectrum sections.
  • the repartitioned energy spectrum section can be determined in the following way:
  • the energy spectrum section will be retained as a repartitioned energy spectrum section.
  • the total number of energy spectrum partitions included in the reserved energy spectrum section does not reach the first preset quantity threshold, it means that there are fewer energy spectrum partitions in the current reserved energy spectrum section, and all reserved energy spectrum sections will be regarded as Just re-partition the energy spectrum segments.
  • the first preset quantity threshold is 5. If the retained energy spectrum section contains energy spectrum partitions 4-7, and the total number of energy spectrum partitions is 4, which is less than the first preset quantity threshold 5, then the energy spectrum partitions will be retained.
  • the spectrum section is used as the repartitioned energy spectrum section, that is, the energy spectrum partitions 4-7 are used as the repartitioned energy spectrum section.
  • an energy spectrum composed of a sixth preset number of energy spectrum partitions located at at least one of the two ends of the retained energy spectrum section Segments serve as repartitioned energy spectrum segments.
  • the energy spectrum section composed of the sixth preset number of energy spectrum partitions located at at least one of the two ends of the retained energy spectrum section is used as the repartitioned energy spectrum section, so that the remaining parts can be retained or merged for subsequent repartitioning. It is a partition and will not be subdivided later.
  • the energy spectrum section consisting of at least one energy spectrum partition located at the left end or right end of the retained energy spectrum section can be used as the repartitioned energy spectrum section;
  • the energy spectrum section composed of at least one energy spectrum partition at the left end and the right end of the energy spectrum section is retained as the repartitioned energy spectrum section, where the number of energy spectrum partitions determined from the left end and the number of energy spectrum partitions determined from the right end can be Same or different.
  • the energy spectrum partitions in the reserved energy spectrum section are 4-10
  • the second preset number threshold is 5
  • the sixth preset number corresponding to the left end of the reserved energy spectrum section is 2
  • the right end of the reserved energy spectrum section The corresponding sixth preset number is 3.
  • the total number of energy spectrum partitions 7 has reached the second preset number threshold 5. Therefore, the 2 energy spectrum partitions located at the left end of the reserved energy spectrum section and the 3 energy spectrum partitions at the right end are divided into 4 energy spectrum partitions. -5 and energy spectrum partitions 8-10, as repartitioned energy spectrum sections.
  • the first preset quantity threshold may be less than or equal to the second preset quantity threshold. If the first preset quantity threshold is less than the second preset quantity threshold, then if the energy spectrum contained in the energy spectrum section is retained If the total number of partitions reaches the first preset quantity threshold but does not reach the second preset quantity threshold, any method can be used to determine the repartitioning energy spectrum section, which is not limited in this embodiment.
  • the following multiple steps can be used to update the marked energy spectrum section according to multiple energy spectrum partitions corresponding to the retained energy spectrum section:
  • Step 1 Traverse the combinations of multiple energy spectrum partitions in the retained energy spectrum section to obtain at least one combined energy spectrum section.
  • the combined energy spectrum section is obtained by combining two or more continuously arranged energy spectrum partitions.
  • Any two or more energy spectrum partitions in the retained energy spectrum section can be combined together, and multiple energy spectrum partitions are selected as continuous combinations to be selected as combined energy spectrum sections.
  • the reserved energy spectrum section includes energy spectrum partitions 1-4
  • the combined energy spectrum section includes energy spectrum partitions 1-2, 1-3, 1-4, 2-3, 2-4 and 3 -4.
  • Step 2 Update the marked energy spectrum section according to the window positioning indicators of multiple energy spectrum partitions and multiple combined energy spectrum sections.
  • the window positioning index can be calculated separately, multiple window positioning indicators can be compared, and the energy spectrum partition or combined energy spectrum corresponding to the optimal window positioning index can be determined based on the comparison results.
  • the segment is a new labeled energy spectrum segment.
  • dividing the repartitioned energy spectrum section may be to equally divide all the energy spectrum partitions with a partition width (number of road addresses) that is not 1 in the repartitioned energy spectrum section into two energy spectrum partitions, or to divide the energy spectrum section. Two energy spectrum partitions whose address numbers differ by 1.
  • the preset end partitioning condition may be a preset condition used to determine whether to stop and then perform partitioning.
  • the target count window may be the finally determined track area where the counts contributed by the radioactive isotope to be measured in the energy spectrum are concentrated.
  • the preset end partition conditions are met, it means that the iterative partitioning and calculation can be stopped at this time, and the marked energy spectrum section in the currently reserved energy spectrum section is used as the target counting window of the energy spectrum to be processed.
  • the preset end partition condition can be any of the following:
  • the first type is that the number of road addresses contained in the energy spectrum partitions other than the marked energy spectrum section in the reserved energy spectrum section reaches the first preset road address number threshold.
  • the first preset road address number threshold can be the number of road addresses used to determine whether the energy spectrum partitions other than the marked energy spectrum section can be subdivided.
  • the first preset road address number threshold is usually 1, or it can be based on the actual situation. Requirements setting.
  • the first preset threshold for the number of road addresses is 2. If the number of road addresses contained in the energy spectrum partition except the marked energy spectrum section in the reserved energy spectrum section is 1 or 2, then it means that the preset threshold has been met. Set the conditions for ending partitioning.
  • the number of updates of the marked energy spectrum section reaches the preset number threshold.
  • the preset number threshold can be a number used to determine whether the number of update iterations of the marked energy spectrum section meets the requirements, and the value can be set according to actual requirements.
  • the number of update iterations is 8. If the number of updates of the currently marked energy spectrum section is the 8th, it means that the preset end partition condition has been met.
  • the third method is that when the marked energy spectrum section is continuously updated a preset number of times, the change in the window positioning index of the marked energy spectrum section after each update does not exceed the preset change amount.
  • the preset number of consecutive updates may be a preset number of updates, which is used to implement the third preset end partition condition.
  • the preset change ratio may be a ratio used to determine whether the change of the window positioning indicator is large enough. It should be noted that the change in the window positioning index may be the relative change amount of the window positioning index in the two updates, or it may be the absolute change amount in the window positioning index in the two updates.
  • the preset change ratio is 1%
  • the current number of updates is 3
  • the change ratio of the window positioning indicator for the third update and the second update is 5%.
  • the change ratio of the window positioning indicator between the 4th update and the 3rd update, the change ratio of the window positioning indicator between the 5th update and the 4th update, and the change in the window positioning indicator between the 6th update and the 5th update When the ratio is less than 1%, the preset end partition conditions are met.
  • the window positioning index of the marked energy spectrum section is better than the preset window positioning index threshold.
  • the preset window positioning indicator threshold may be a value used to determine whether the window positioning indicator meets the requirements.
  • the preset window positioning index threshold is a, and the window positioning index with a larger value is better.
  • the window positioning index marking the energy spectrum section is b. If b>a, the preset partition condition is met, If b ⁇ a, the preset end partition condition is not met.
  • the retained energy spectrum section needs to be repartitioned. At this time, return to the operation of determining the reserved energy spectrum section according to the marked energy spectrum section, so that subsequent partitions can determine the target counting window.
  • the technical solution of the embodiment of the present application is to obtain the energy spectrum to be processed and divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address to perform preliminary partitioning of the energy spectrum to be processed, and determine the energy spectrum based on the at least two energy spectrum partitions.
  • the preliminary screening counting window uses the preliminary screening counting window to determine the retained energy spectrum section according to the marked energy spectrum section, divide the retained energy spectrum section, and obtain multiple energy spectrum partitions corresponding to the retained energy spectrum section, and based on the retained energy spectrum area Multiple energy spectrum partitions corresponding to the segment update the marked energy spectrum section. If the preset end partition conditions are met, the marked energy spectrum section will be used as the target counting window of the energy spectrum to be processed.
  • FIG. 3 is a schematic flowchart of a method for positioning an energy spectrum counting window provided in Embodiment 3 of the present application. Based on the above embodiment, this embodiment can refer to the technical solution of this embodiment for the specific implementation method of updating the marker energy spectrum section. , the explanation of terms that are the same as or corresponding to the above-mentioned embodiments will not be repeated here. As shown in Figure 3, the method includes the following steps.
  • S320 Determine the window positioning index of each candidate energy spectrum section, and determine the marked energy spectrum section from at least one candidate energy spectrum section according to the window positioning index of at least one candidate energy spectrum section.
  • S340 Determine the reference energy spectrum section based on the retained energy spectrum section, and determine at least one recombinant energy spectrum section based on the reference energy spectrum section and the energy spectrum partitions located at both ends of the reference energy spectrum section.
  • the reference energy spectrum section may be an energy spectrum section that serves as a basis for subsequent analysis.
  • the recombinant energy spectrum section may be an energy spectrum section obtained by different combinations of a reference energy spectrum section and energy spectrum partitions located at both ends of the reference energy spectrum section.
  • the energy spectrum partition whose window positioning index satisfies the preset reference conditions among the multiple energy spectrum partitions that retain the energy spectrum section can be determined as the reference energy spectrum section; it can also be determined whether the number of energy spectrum partitions in the marked energy spectrum section is greater than Preset the threshold for the number of partitions. If the number of energy spectrum partitions is greater than the preset threshold for the number of partitions, a certain number of energy spectrum partitions located at both ends of the retained energy spectrum section will be removed, and the remaining portion will be determined as the reference energy spectrum section; or The entire reserved energy spectrum section is used as the reference energy spectrum section.
  • the reference energy spectrum section and the energy spectrum partitions adjacent to both ends of the reference energy spectrum section can be combined respectively to obtain at least one reorganized energy spectrum section; the reference energy spectrum section can also be combined In the energy spectrum section, the energy spectrum partitions located at both ends of the reference energy spectrum section (the left end, the right end, and the energy spectrum partitions at the left and right ends) are respectively eliminated to obtain at least one reorganized energy spectrum section.
  • the reference energy spectrum section and at least one recombinant energy spectrum section can be determined through the following multiple steps:
  • Step 1 Determine the window positioning indicators of multiple energy spectrum partitions that retain the energy spectrum section, and use the energy spectrum partition whose window positioning index satisfies the preset reference conditions as the reference energy spectrum section, or if the energy spectrum section is marked If the number of energy spectrum partitions is greater than the preset partition number threshold, a third preset number of energy spectrum partitions located at at least one of the two ends of the retained energy spectrum section are removed from the retained energy spectrum section to obtain a reference energy spectrum section.
  • the preset reference condition may be a preset condition corresponding to the window positioning index, for example: the window positioning index is the largest, the window positioning index reaches a preset threshold, etc.
  • the preset partition number threshold may be a preset value used to determine whether the number of partitions meets the requirement for eliminating energy spectrum segments.
  • a third preset number of energy spectra located at at least one of the two ends of the reserved energy spectrum section are removed from the reserved energy spectrum section. Partitions are eliminated and the remaining parts are used as reference energy spectrum partitions.
  • the energy spectrum partition located at the left or right end of the retained energy spectrum section can be removed from the retained energy spectrum section to obtain the reference energy spectrum section; the energy spectrum section located at the left end or right end can also be removed.
  • the energy spectrum partitions at the left and right ends of the retained energy spectrum section are eliminated from the retained energy spectrum section to obtain the reference energy spectrum section.
  • the number of energy spectrum partitions eliminated at the left end and the number of energy spectrum partitions eliminated at the right end can be the same or different.
  • Step 2 Determine the energy spectrum section to be combined based on a fourth preset number of energy spectrum partitions adjacent to at least one of the two ends of the reference energy spectrum section, and merge the reference energy spectrum section and the energy spectrum section to be combined, At least one recombinant energy spectrum segment is obtained.
  • the energy spectrum sections to be combined may be a fourth preset number of energy spectrum partitions adjacent to the reference energy spectrum section.
  • the fourth preset number of energy spectrum partitions outside the reference energy spectrum section and adjacent to the reference energy spectrum section and located at at least one of both ends of the reference energy spectrum section are all used as energy spectrum sections to be combined.
  • the reference energy spectrum section is combined with at least one energy spectrum section to be combined to obtain at least one recombined energy spectrum section.
  • the energy spectrum section to be combined can be determined based on the energy spectrum partition adjacent to the left end or right end of the reference energy spectrum section; the energy spectrum section to be combined can also be determined based on the left end and the right end of the reference energy spectrum section.
  • the energy spectrum partitions adjacent to the right end determine the energy spectrum section to be combined, where the number of energy spectrum partitions determined at the left end and the number of energy spectrum partitions determined at the right end may be the same or different.
  • the reference energy spectrum section and at least one recombinant energy spectrum section can also be determined in the following manner:
  • the retained energy spectrum section is used as the reference energy spectrum section, the energy spectrum section to be eliminated is determined based on the fifth preset number of energy spectrum partitions located at at least one of the two ends of the reference energy spectrum section, and the energy spectrum section in the reference energy spectrum section is The energy spectrum segments to be eliminated are eliminated to obtain at least one reorganized energy spectrum segment.
  • the energy spectrum section to be eliminated may be a fifth preset number of energy spectrum partitions located at at least one of the two ends of the reference energy spectrum section.
  • the retained energy spectrum section is used as the reference energy spectrum section
  • the fifth preset number of energy spectrum partitions located at at least one of the two ends in the reference energy spectrum section is used as the energy spectrum section to be eliminated
  • at least one energy spectrum section to be eliminated is Spectrum segments are eliminated from the reference energy spectrum segments, and at least one recombinant energy spectrum segment can be obtained.
  • the energy spectrum section to be eliminated can be determined based on the energy spectrum partition located at the left end or right end of the reference energy spectrum section; it can also be determined based on the energy spectrum section located at the left end of the reference energy spectrum section. and the energy spectrum partitions on the right end determine the energy spectrum section to be eliminated, where the number of energy spectrum partitions determined on the left end and the number of energy spectrum partitions determined on the right end may be the same or different.
  • the window positioning index of the reorganized energy spectrum section is better than the window positioning index of the reference energy spectrum section, it means that the window effect of the reorganized energy spectrum section is better than that of the reference energy spectrum section. Therefore, the window positioning index is optimally reorganized
  • the energy spectrum section is updated to the reference energy spectrum section, and the operation of determining at least one reorganized energy spectrum section based on the reference energy spectrum section and the energy spectrum partitions located at both ends of the reference energy spectrum section is returned to determine the current reference energy spectrum section. Whether the spectrum section is optimal; if the window positioning indicators of the reorganized energy spectrum section are not better than the window positioning indicators of the reference energy spectrum section, it means that the window effect of the reference energy spectrum section is better than that of the reorganized energy spectrum section. There is no need to update again, and the reference spectrum section can be used as the mark spectrum section at this time.
  • the target counting window can be determined in the following ways:
  • the updated marked energy spectrum section will be used as Target count window for the spectrum to be processed.
  • the preset difference threshold can be used to compare the size of the energy spectrum partition in the recombined energy spectrum section with the energy spectrum partition in the reference energy spectrum section and whether it needs to be returned to re-determine.
  • the segment can be used as the target counting window of the energy spectrum to be processed.
  • the technical solution of the embodiment of the present application is to obtain the energy spectrum to be processed and divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address to perform preliminary partitioning of the energy spectrum to be processed, and determine the energy spectrum based on the at least two energy spectrum partitions.
  • at least one candidate energy spectrum section determining a window positioning index for each candidate energy spectrum section, and determining a marked energy spectrum section from at least one candidate energy spectrum section based on the window positioning index of the at least one candidate energy spectrum section,
  • Use the preliminary screening counting window to determine the retained energy spectrum section based on the marked energy spectrum section, determine the reference energy spectrum section based on the retained energy spectrum section, and determine the reference energy spectrum section and the energy spectrum located at both ends of the reference energy spectrum section.
  • the partition determines at least one recombinant energy spectrum section. If the window positioning index of at least one recombinant energy spectrum section among all recombinant energy spectrum sections is better than the window positioning index of the reference energy spectrum section, then the window positioning index with the optimal window positioning index will be The recombinant energy spectrum section is updated to the reference energy spectrum section, and returns to perform the operation of determining at least one recombinant energy spectrum section based on the reference energy spectrum section and the energy spectrum partitions located at both ends of the reference energy spectrum section; if all recombinant energy spectrum sections
  • the window positioning index of the segment is not better than the window positioning index of the reference spectrum segment, and the reference spectrum segment is used as the marked spectrum segment to update and determine the marked spectrum segment, if at least one of all recombined spectrum segments If the window positioning index of a recombined energy spectrum section is better than the window positioning index of the reference energy spectrum section, then the recombined energy spectrum section with the optimal window positioning index is updated to the reference energy
  • Segments and energy spectrum partitions located at both ends of the reference energy spectrum segment determine the operation of at least one reorganized energy spectrum segment; if the window positioning indicators of all reorganized energy spectrum segments are not better than the window positioning index of the reference energy spectrum segment, the reference energy spectrum segment will be referenced
  • the energy spectrum section solves the problems of low computational efficiency and poor practicality when determining the counting window, realizes the automatic positioning of the counting window of the energy spectrum, reduces time complexity, and improves practicality. Effect.
  • the ⁇ ray energy spectrum measured by the ⁇ spectrometer and the ⁇ ray energy spectrum measured by the ⁇ spectrometer are generally approximated by relatively sharp normal distribution counting peaks.
  • liquid scintillation counters are often used to measure beta rays with a continuous spectrum of energy, and there is often a quenching effect when measuring with liquid scintillation counters, resulting in varying degrees of deformation and movement of the energy spectrum.
  • the measured energy spectrum usually does not show The sharp normal distribution is even relatively flat, and the existing automatic peak-finding technology cannot be used.
  • the academic community has proposed the figure of merit (FOM) optimization principle: among all candidate counting windows, select the window with the best FOM value as the preferred counting window.
  • the FOM value is usually defined as the quotient of the square of the detection efficiency and the background count rate. The larger the value, the better.
  • the value-of-merit optimization principle lacks implementation methods. An easy-to-think method is to traverse all possible counting windows, compare their corresponding merit index sizes, and optimize the counting window. However, this method is too inefficient and impractical.
  • Embodiment 4 of the present application provides a method for positioning an energy spectrum counting window.
  • the explanation of terms that are the same as or corresponding to the above-mentioned embodiments will not be repeated here.
  • the positioning method of the energy spectrum counting window provided in Embodiment 4 of the present application includes the following steps.
  • the energy spectrum width is L, that is, the total number of addresses included in the energy spectrum to be processed is L, and L satisfies 2 k ⁇ L ⁇ 2 k + 1 , then the width of each partition is 2 k-3 , If there are remaining addresses that are not classified into partitions, they will be merged into the last partition. If the energy spectrum width is less than 8, each energy spectrum region with an energy spectrum width of 1 is regarded as an energy spectrum partition.
  • each partition itself as a candidate energy spectrum section, calculate its window positioning index, and use the candidate energy spectrum section with the largest window positioning index as the reference energy spectrum section.
  • the window positioning index F is defined as follows. The larger the window positioning index, the better:
  • F(R) is the window positioning index of the energy spectrum section R
  • i is the road address number in the candidate energy spectrum section R
  • N i is the sample measurement spectrum count corresponding to the road address i
  • B i is the sample measurement spectrum count corresponding to the road address i.
  • the background measurement spectrum is counted
  • T S is the sample measurement spectrum measurement live time
  • T B is the background measurement spectrum measurement live time.
  • c) Determine the following three recombinant energy spectrum sections based on the reference energy spectrum section (both the reference energy spectrum section and the recombinant energy spectrum section belong to the candidate energy spectrum sections): (i) The reference energy spectrum section is adjacent to its left side The segment obtained by merging adjacent partitions; (ii) the segment obtained by merging the reference energy spectrum segment and its adjacent partitions on the right; (iii) the segment obtained by merging the reference energy spectrum segment and its adjacent partitions on both sides.
  • step d) If the window positioning index of the reorganized energy spectrum section is better than the window positioning index of the reference energy spectrum section, then update the reorganized energy spectrum section with the optimal window positioning index to the reference energy spectrum section, and repeat step c), If none of the window positioning indicators of the recombined energy spectrum section is better than the window positioning index of the reference energy spectrum section, then step d) is performed.
  • step e.1 If the marked energy spectrum section only contains two or less partitions, merge the marked energy spectrum section and the two adjacent partitions outside the marked energy spectrum section as the reserved energy spectrum section, refer to step a) Re-divide the retained energy spectrum section into 8-15 consecutive partitions, and then perform steps b)-d) to update the marked energy spectrum section.
  • the section consisting of the following three sections will be regarded as the reserved energy spectrum section: (i) The leftmost partition and the rightmost section within the marked energy spectrum section The remaining energy spectrum section after partition elimination; (ii) the energy spectrum section obtained by merging the leftmost partition within the marked energy spectrum section and the left adjacent partition outside the marked energy spectrum section; (iii) the energy spectrum section within the marked energy spectrum section The energy spectrum section obtained by merging the rightmost partition with the right adjacent partition outside the marked energy spectrum section;
  • the method of dividing the reserved energy spectrum sections is as follows: the energy spectrum section (i) is merged into one partition, and the energy spectrum section (ii) and energy spectrum section (iii) are divided into 4-7 consecutive sections according to step a). Partitions (the width of each partition is 2 k-2 -2); then merge the obtained partitions with the energy spectrum section (i) as the reference energy spectrum section, and perform steps c)-d) to update the marked energy spectrum section .
  • step f) Repeat step e) until the following preset end partitioning conditions are met, and the marked energy spectrum section is used as the target counting window of the energy spectrum to be processed: e.1)
  • the partition width of the reserved energy spectrum section is: 1, or e.2)
  • the energy spectrum section (ii) and energy spectrum section (iii) in the reserved energy spectrum section are divided into partitions with a width of 1.
  • Figure 4 is a schematic diagram of the energy spectrum to be processed, showing the measured energy spectrum to be automatically positioned for counting windows.
  • the thick line represents the sample measurement spectrum
  • the thin line represents the background measurement spectrum.
  • FIG. 5 is a schematic diagram of the energy spectrum of the first partition. As shown in Figure 5, the entire energy spectrum is divided into 8 equal-width partitions according to road addresses, and the width of each partition is 32.
  • Table 2 shows the boundary road address and window positioning index of each partition in the first partition. Among them, partition No. 2 has the largest window positioning index of 0.4232, which is determined as the initial reference energy spectrum section.
  • Table 3 shows the update process of the marked energy spectrum section during the first partition.
  • the partition number is used in the table to represent the marked energy spectrum section.
  • energy spectrum section 2 represents the energy spectrum section composed of partition 2 alone.
  • the energy spectrum Sections 1-3 represent the energy spectrum sections formed by partitions 1, 2, and 3 together. Partition 2 has been determined as the initial reference energy spectrum section, and then the window positioning indicators of energy spectrum sections 2, 1-2, 2-3, and 1-3 are calculated. Among them, energy spectrum section 1-3 has the largest Window positioning index, therefore, update the reference energy spectrum section to energy spectrum section 1-3; then calculate the window positioning index of energy spectrum sections 1-3 and 1-4 (partition No.
  • the energy spectrum section 1-3 is already the leftmost partition, so (Regardless of the section obtained by merging with the adjacent partition on the left), the energy spectrum section 1-3 still has the largest window positioning index. Therefore, the first partition energy spectrum section 1-3 is the final reference energy spectrum section. , updated to mark the energy spectrum section. Tables 5, 7, 9, 11, and 13 sequentially show the update process of the reference energy spectrum section after each partition.
  • Figure 6 is a schematic diagram of the energy spectrum of the second partition.
  • the first partition determined that energy spectrum sections 1-3 were marked energy spectrum sections, including 3 partitions. Therefore, according to e.2) partition, the original energy spectrum section 1 (road address 1-32) was divided into 4 areas. Zone, the original energy spectrum section 2 (road address 33-64) is divided into 1 zone and serves as the initial reference energy spectrum section, and the original energy spectrum section 3-4 (road address 65-128) is divided into 4 zones Partition.
  • Table 4 shows the boundary address of each partition and its window positioning index during the second partition.
  • Table 5 shows the update process of marked energy spectrum sections during the second partition. Partition 5 has been determined as the initial reference energy spectrum section, and then the energy spectrum sections 2-6 of the second partition have been determined as the final reference energy. Spectrum segment and updated to mark spectrum segment.
  • Figure 7 is a schematic diagram of the energy spectrum of the third partition.
  • the second partition determined that energy spectrum sections 2-6 are marked energy spectrum sections, including 5 partitions. Therefore, according to e.2) partition, the original energy spectrum sections 1-2 (road addresses 1-16) are divided into 4 partitions, original energy spectrum sections 3-5 (road addresses 17-64) are divided into 1 partition and used as the initial reference energy spectrum section, original energy spectrum sections 6-7 (road addresses 65-96) Divided into 4 zones.
  • Table 6 shows the boundary address of each partition and its window positioning index in the third partition.
  • Table 7 shows the update process of marked energy spectrum sections during the third partition. Partition 5 has been determined as the initial reference energy spectrum section, and then the energy spectrum sections 3-7 of the third partition have been determined as the final reference energy. Spectrum segment and updated to mark spectrum segment.
  • Figure 8 is a schematic diagram of the energy spectrum of the fourth partition.
  • the third partition determined that energy spectrum sections 3-7 are marked energy spectrum sections, including 5 partitions. Therefore, according to e.2) partition, the original energy spectrum section 2-3 (road address 5-12) is divided into 4 partitions, original energy spectrum sections 4-6 (road addresses 13-72) are divided into 1 partition and used as the initial reference energy spectrum section, original energy spectrum sections 7-8 (road addresses 73-88) Divided into 4 zones.
  • Table 8 shows the boundary address of each partition and its window positioning index in the fourth partition.
  • Table 9 shows the update process of marked energy spectrum sections during the fourth partition. Partition 5 has been determined as the initial reference energy spectrum section, and then the energy spectrum sections 2-8 of the fourth partition have been determined as the final reference energy. Spectrum segment and updated to mark spectrum segment.
  • Figure 9 is a schematic diagram of the energy spectrum of the fifth partition.
  • the fourth partition determined energy spectrum sections 2-8 as marked energy spectrum sections, including 7 partitions. Therefore, according to e.2) partition, the original energy spectrum sections 1-2 (road addresses 5-8) were divided into 4 partitions, original energy spectrum sections 3-7 (road addresses 9-80) are divided into 1 partition and used as the initial reference energy spectrum section, original energy spectrum sections 8-9 (road addresses 81-88) Divided into 4 zones.
  • Table 10 shows the boundary address of each partition and its window positioning index in the fifth partition.
  • Table 11 shows the update process of marked energy spectrum sections during the fifth partition. Partition 5 has been determined as the initial reference spectrum section before, and then the energy spectrum sections 4-7 of the fifth partition were determined as the final reference. Energy spectrum section, and updated to mark the energy spectrum section.
  • Figure 10 is a schematic diagram of the energy spectrum of the sixth partition.
  • the fifth partition determined that energy spectrum sections 4-7 are marked energy spectrum sections, including 4 partitions, so they are divided according to e.2), and the original energy spectrum section 3-4 (road address 7-8) partition width is 1, no need to divide.
  • the original energy spectrum section 5-6 (road address 9-82) is divided into 1 partition and used as the initial reference energy spectrum section.
  • the original energy spectrum section 7-8 (road address 83- 86) is divided into 4 zones.
  • Table 12 shows the boundary road addresses and window positioning indicators of each partition in the sixth partition.
  • Table 13 shows the update process of marked energy spectrum sections during the 6th partitioning. Partition 3 has been determined as the initial reference energy spectrum section before, and then the 6th partitioning energy spectrum sections 2-5 were determined as the final reference energy. Spectrum segment and updated to mark spectrum segment.
  • the marked energy spectrum section 2-5 (road address 8-84) of this partition is taken as the target counting window.
  • the technical solution of the embodiment of the present application divides the energy spectrum to be processed into at least two energy spectrum partitions according to the road address, and determines each energy spectrum partition as a candidate energy spectrum section, based on multiple candidate energy spectrum areas.
  • the window positioning index of the segment determines the marked energy spectrum segment, and expands the marked energy spectrum segment into a new candidate energy spectrum segment to update the marked energy spectrum segment according to the window positioning index until the marked energy spectrum segment no longer changes.
  • determine the retained energy spectrum section according to the marked energy spectrum section re-divide the retained energy spectrum section, and update the marked energy spectrum section according to the newly divided partition.
  • the updated The marked energy spectrum section is used as the target counting window of the energy spectrum to be processed, which solves the problems of low computational efficiency and poor practicality when determining the counting window, realizes the automatic positioning of the counting window of the radioactive energy spectrum, and reduces the time complexity. Technical effects that improve practicality.
  • FIG. 11 is a schematic structural diagram of an energy spectrum counting window device provided in Embodiment 5 of the present application. As shown in Figure 11, the device includes: an energy spectrum dividing module 710, an energy spectrum section marking module 720, and a counting window determination module 730.
  • the energy spectrum dividing module 710 is configured to obtain the energy spectrum to be processed, divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address, and determine at least one candidate energy spectrum section based on the at least two energy spectrum partitions. , wherein each candidate energy spectrum section includes at least one energy spectrum partition; the energy spectrum section marking module 720 is configured to determine the window positioning index of each candidate energy spectrum section, according to the at least one energy spectrum candidate The window positioning index of the section determines the marked energy spectrum section from the at least one candidate energy spectrum section; the counting window determination module 730 is configured to determine the energy spectrum to be processed according to the marked energy spectrum section. Target count window.
  • the counting window determination module 730 is configured to determine the retained energy spectrum section according to the marked energy spectrum section; divide the retained energy spectrum section to obtain the retained energy spectrum section corresponding to the retained energy spectrum section. multiple energy spectrum partitions, and update the marked energy spectrum section according to the multiple energy spectrum partitions corresponding to the retained energy spectrum section; if the preset end partition conditions are met, the updated marked energy spectrum The section serves as the target counting window of the energy spectrum to be processed; if the preset end partition condition is not met, the operation of determining the retained energy spectrum section according to the marked energy spectrum section is returned to execution.
  • the counting window determination module 730 is configured to use the marked energy spectrum section as a reserved energy spectrum section; or, to set the first preset number of adjacent ends of at least one of the two ends of the marked energy spectrum section.
  • the energy spectrum partitions are merged into the marked energy spectrum section to obtain a retained energy spectrum section; or, a second preset number of road addresses adjacent to at least one end of the marked energy spectrum section are merged into the The retained energy spectrum section is obtained from the marked energy spectrum section.
  • the counting window determination module 730 is also configured to determine a reference energy spectrum section based on the retained energy spectrum section, and determine the reference energy spectrum section based on the reference energy spectrum section and the energy spectrum located at both ends of the reference energy spectrum section.
  • the partition determines at least one recombinant energy spectrum section; if the window positioning index of the at least one recombinant energy spectrum section is better than the window positioning index of the reference energy spectrum section, then the recombinant energy spectrum section with the optimal window positioning index is updated For the reference energy spectrum section, return to perform the operation of determining at least one recombinant energy spectrum section based on the reference energy spectrum section and the energy spectrum partitions located at both ends of the reference energy spectrum section; if the at least one recombination If the window positioning index of the energy spectrum section is not better than the window positioning index of the reference energy spectrum section, the reference energy spectrum section is used as the marked energy spectrum section.
  • the counting window determination module 730 is configured to determine the window positioning indicators of multiple energy spectrum partitions of the reserved energy spectrum section, and uses the energy spectrum partitions whose window positioning indicators meet the preset reference conditions as the reference energy.
  • spectrum section or, if the number of energy spectrum partitions in the marked energy spectrum section is greater than the preset partition number threshold, a third preset number of energy spectra located at at least one of the two ends of the reserved energy spectrum section Partitions are eliminated from the retained energy spectrum sections to obtain reference energy spectrum sections; the energy spectrum sections to be combined are determined based on a fourth preset number of energy spectrum divisions adjacent to at least one end of the reference energy spectrum section. , merging the reference energy spectrum section and the energy spectrum section to be combined to obtain at least one recombined energy spectrum section.
  • the counting window determination module 730 is configured to use the reserved energy spectrum section as a reference energy spectrum section, based on a fifth preset number of energy located at at least one of both ends of the reference energy spectrum section.
  • the spectrum partition determines the energy spectrum section to be eliminated, and the energy spectrum section to be eliminated in the reference energy spectrum section is eliminated to obtain at least one recombined energy spectrum section.
  • the device further includes: a judgment and determination module, configured to determine if there is a difference between the number of road addresses in the energy spectrum partitions in each recombined energy spectrum section and the number of road addresses in the energy spectrum partitions in the reference energy spectrum section. If the value does not exceed the preset difference threshold, the marked energy spectrum section is used as the target counting window of the energy spectrum to be processed.
  • a judgment and determination module configured to determine if there is a difference between the number of road addresses in the energy spectrum partitions in each recombined energy spectrum section and the number of road addresses in the energy spectrum partitions in the reference energy spectrum section. If the value does not exceed the preset difference threshold, the marked energy spectrum section is used as the target counting window of the energy spectrum to be processed.
  • the counting window determination module 730 is configured to traverse the combination of multiple energy spectrum partitions in the retained energy spectrum section to obtain at least one combined energy spectrum section, where each combined energy spectrum section consists of two It is obtained by combining one or more continuously arranged energy spectrum partitions; the marked energy spectrum section is updated according to the window positioning index of the multiple energy spectrum partitions and at least one combined energy spectrum section.
  • the counting window determination module 730 is configured to divide the reserved energy spectrum section into at least two energy spectrum partitions according to the total number of road addresses and the preset number of road addresses included in the energy spectrum partition. ; Or, according to the total number of road addresses and the preset number of partitions corresponding to the energy spectrum partitions, the reserved energy spectrum section is divided into at least two energy spectrum partitions; or, according to the reserved energy spectrum section According to the energy spectrum data distribution, the retained energy spectrum section is divided into at least two energy spectrum partitions; or, the retained energy spectrum section is divided into at least two energy spectrum partitions based on a preset random algorithm; or, Determine the repartitioned energy spectrum section according to the number of multiple energy spectrum partitions in the retained energy spectrum section and the arrangement information of the road address segments corresponding to the multiple energy spectrum partitions, and divide the repartitioned energy spectrum section , according to the division result of the repartitioned energy spectrum section, a plurality of energy spectrum partitions corresponding to the retained energy spectrum section are obtained.
  • the counting window determination module 730 is configured to treat the retained energy spectrum section as a reuse if the total number of energy spectrum partitions included in the retained energy spectrum section does not reach the first preset quantity threshold. Partition energy spectrum sections; if the total number of energy spectrum partitions contained in the reserved energy spectrum section reaches a second preset quantity threshold, then the sixth predetermined area located at at least one of the two ends of the reserved energy spectrum section will be Let the energy spectrum section composed of a number of energy spectrum partitions be regarded as the repartitioned energy spectrum section.
  • the preset end partition condition includes that the number of road addresses contained in the energy spectrum partitions in the reserved energy spectrum section except the marked energy spectrum section reaches the first preset road address number threshold, or , the number of updates of the marked energy spectrum section reaches a preset number of times threshold, or, in the case where the marked energy spectrum section is continuously updated a preset number of times, the window positioning indicator of the marked energy spectrum section after each update The change does not exceed the preset change amount, or the window positioning index of the marked energy spectrum section is better than the preset window positioning index threshold.
  • the energy spectrum section marking module 720 is configured to be based on the energy spectrum data of each candidate energy spectrum section or based on the energy spectrum data of each candidate energy spectrum section and with all candidate energy spectrum sections.
  • the energy spectrum data of at least one candidate energy spectrum section determines the window positioning index of each candidate energy spectrum section; or, based on the energy spectrum data of each candidate energy spectrum section and the energy spectrum of the energy spectrum to be processed Data or based on the energy spectrum data of each candidate energy spectrum section, the energy spectrum data of at least one candidate energy spectrum section among all candidate energy spectrum sections, and the energy spectrum data of the energy spectrum to be processed, determine the said The window positioning index of each candidate energy spectrum section; or, based on the energy spectrum data of each candidate energy spectrum section and the measured sample data corresponding to the energy spectrum to be processed, or based on the energy spectrum section of each candidate energy spectrum section.
  • Spectral data energy spectrum data corresponding to at least one candidate energy spectrum section among all candidate energy spectrum sections, and measured sample data corresponding to the energy spectrum to be processed, determining the window positioning of each candidate energy spectrum section Indicator; or, based on the energy spectrum data of each candidate energy spectrum section and the measurement environment data corresponding to the energy spectrum to be processed or based on the energy spectrum data of each candidate energy spectrum section, and all candidate energy spectrum sections Determine the window positioning index of each candidate energy spectrum section based on the energy spectrum data of at least one candidate energy spectrum section and the measurement environment data corresponding to the energy spectrum to be processed; or, according to each candidate energy spectrum
  • the energy spectrum data includes at least one of sample count, background count, measurement time, channel address and energy;
  • the measured sample data includes measuring at least one of sample activity, volume and mass;
  • the measured environmental data includes at least one of temperature, humidity, particle count, dust and electromagnetic measurement in the measured environment.
  • the technical solution of the embodiment of the present application is to obtain the energy spectrum to be processed, divide the energy spectrum to be processed into at least two energy spectrum partitions according to the road address, so as to perform preliminary partitioning of the energy spectrum to be processed, and determine at least one candidate according to the energy spectrum partition.
  • Energy spectrum section determine the window positioning index of each candidate energy spectrum section, and determine the marked energy spectrum section from at least one candidate energy spectrum section according to the window positioning index of at least one candidate energy spectrum section for preliminary screening
  • the counting window determines the target counting window of the energy spectrum to be processed according to the marked energy spectrum section, which solves the problems of low calculation efficiency and poor practicality when determining the counting window, realizes the automatic positioning of the counting window of the energy spectrum, and reduces the time complexity, and technical effects that improve practicality.
  • the positioning device for the energy spectrum counting window provided by the embodiments of this application can execute the positioning method of the energy spectrum counting window provided by any embodiment of this application, and has functional modules corresponding to the execution method.
  • FIG. 12 shows a schematic structural diagram of an electronic device 10 that can be used to implement embodiments of the present application.
  • Electronic devices are intended to refer to various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital assistants, cellular phones, smartphones, wearable devices (eg, helmets, glasses, watches, etc.), and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are examples only and are not intended to limit the implementation of the present application as described and/or claimed herein.
  • the electronic device 10 includes at least one processor 11, and a memory communicatively connected to the at least one processor 11, such as a read-only memory (Read-Only Memory, ROM) 12, a random access memory (Random Access Memory, RAM) 13, etc., in which the memory stores computer programs that can be executed by at least one processor.
  • the processor 11 can execute a variety of functions according to the computer program stored in the ROM 12 or the computer program loaded into the RAM 13 from the storage unit 18. Proper action and handling. In the RAM 13, various programs and data required for the operation of the electronic device 10 can also be stored.
  • the processor 11, the ROM 12 and the RAM 13 are connected to each other via the bus 14.
  • An input/output (I/O) interface 15 is also connected to bus 14.
  • the I/O interface 15 Multiple components in the electronic device 10 are connected to the I/O interface 15, including: an input unit 16, such as a keyboard, a mouse, etc.; an output unit 17, such as various types of displays, speakers, etc.; a storage unit 18, such as a magnetic disk, an optical disk, etc. etc.; and communication unit 19, such as network card, modem, wireless communication transceiver, etc.
  • the communication unit 19 allows the electronic device 10 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks.
  • Processor 11 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the processor 11 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (GPU), a variety of dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, a variety of running Machine learning model algorithm processor, digital signal processor (Digital Signal Processor, DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 11 performs multiple methods and processes described above, such as the positioning method of the energy spectrum counting window.
  • the positioning method of the energy spectrum counting window can be implemented as a computer program, which is tangibly included in a computer-readable storage medium, such as the storage unit 18 .
  • part or all of the computer program may be loaded and/or installed onto the electronic device 10 via the ROM 12 and/or the communication unit 19.
  • the processor 11 may be configured to perform the positioning method of the energy spectrum counting window in any other suitable manner (for example, by means of firmware).
  • Various implementations of the systems and techniques described above may be implemented in digital electronic circuit systems, integrated circuit systems, Field Programmable Gata Array (FPGA), Application Specific Integrated Circuit (ASIC), Application Specific Standard Parts (ASSP), System on Chip (SOC), Complex Programmable Logic Device (CPLD), computer hardware, firmware, software, and/or they realized in a combination.
  • FPGA Field Programmable Gata Array
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Standard Parts
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor
  • the processor which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • Computer programs for implementing the methods of the present application may be written in any combination of one or more programming languages. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that the computer program, when executed by the processor, causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium. Examples of machine-readable storage media may include one or more wire-based electrical connections, a portable computer disk, a hard drive, RAM, ROM, Erasable Programmable Read-Only Memory (EPROM) or flash memory. Flash memory, optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • EPROM Erasable Programmable Read-Only Memory
  • the systems and techniques described herein may be implemented on an electronic device having a display device (e.g., a cathode ray tube (CRT) or liquid crystal) for displaying information to the user.
  • a display device e.g., a cathode ray tube (CRT) or liquid crystal
  • a display Liquid Crystal Display, LCD monitor
  • a keyboard and pointing device e.g., a mouse or a trackball
  • Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problems that exist in traditional physical host and virtual private server (VPS) services. It has the disadvantages of difficult management and weak business scalability.
  • VPN virtual private server

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种能谱计数窗口的定位方法、装置、电子设备及存储介质,该方法包括:获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,根据至少两个能谱分区确定至少一个候选能谱区段(S110),其中,每个候选能谱区段包括至少一个能谱分区;确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段(S120);根据标记能谱区段确定待处理能谱的目标计数窗口(S130)。

Description

能谱计数窗口的定位方法、装置、电子设备及存储介质
本申请要求在2022年06月20日提交中国专利局、申请号为202210697329.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及能谱测量技术领域,例如涉及能谱计数窗口的定位方法、装置、电子设备及存储介质。
背景技术
核子及核辐射测量仪器中,γ谱仪、α谱仪以及液体闪烁计数器均为常见的能谱型测量仪器,其测得的放射性能谱一般表示为道址与计数相对应的一系列数据。
对于特定放射性同位素,其在能谱中贡献的计数一般会集中分布在相应的道址区域,能谱分析时只考虑这一区域的计数,可以避免区域外本底和其它同位素所贡献计数的干扰,因此,称这一区域为计数窗口。
对于液体闪烁计数器测量的能谱,业内还没有很好的计数窗口自动定位方法,这主要是因为液体闪烁计数器经常被用于测量能量为连续谱的β射线,而且液体闪烁计数器测量时往往存在猝灭效应,导致能谱有不同程度的变形与移动,其测量的能谱通常不呈尖锐的正态分布,甚至较为平坦,无法沿用已有的自动寻峰技术。通过遍历所有可能的计数窗口的优值指数(Figure of merit,FOM),比较FOM值的大小来定位计数窗口,这种方法效率过低,实用性较差。
发明内容
本申请提供了一种能谱计数窗口的定位方法、装置、电子设备及存储介质,以解决能谱的计数窗口难以准确定位的问题,实现能谱的计数窗口的自动定位,并降低时间复杂度。
提供了一种能谱计数窗口的定位方法,包括:获取待处理能谱,按照道址将所述待处理能谱划分为至少两个能谱分区,根据所述至少两个能谱分区确定至少一个候选能谱区段,其中,每个候选能谱区段包括至少一个能谱分区;确定所述每个候选能谱区段的窗口定位指标,根据所述至少一个候选能谱区段的窗口定位指标从所述至少一个候选能谱区段中确定出标记能谱区段;根据所述标记能谱区段确定所述待处理能谱的目标计数窗口。
提供了一种能谱计数窗口的定位装置,包括:能谱划分模块,设置为获取待处理能谱,按照道址将所述待处理能谱划分为至少两个能谱分区,根据所述至少两个能谱分区确定至少一个候选能谱区段,其中,每个候选能谱区段包括至少一个能谱分区;能谱区段标记模块,设置为确定所述每个候选能谱区段的窗口定位指标,根据所述至少一个候选能谱区段的窗口定位指标从所述至少一个候选能谱区段中确定出标记能谱区段;计数窗口确定模块,设置为根据所述标记能谱区段确定所述待处理能谱的目标计数窗口。
提供了一种电子设备,所述电子设备包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的能谱计数窗口的定位方法。
提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现本申请任一实施例所述的能谱计数窗口的定位方法。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一所提供的一种能谱计数窗口的定位方法的流程示意图;
图2为本申请实施例二所提供的一种能谱计数窗口的定位方法的流程示意图;
图3为本申请实施例三所提供的一种能谱计数窗口的定位方法的流程示意图;
图4为本申请实施例四所提供的一种待处理能谱的示意图;
图5为本申请实施例四所提供的一种第1次分区的能谱示意图;
图6为本申请实施例四所提供的一种第2次分区的能谱示意图;
图7为本申请实施例四所提供的一种第3次分区的能谱示意图;
图8为本申请实施例四所提供的一种第4次分区的能谱示意图;
图9为本申请实施例四所提供的一种第5次分区的能谱示意图;
图10为本申请实施例四所提供的一种第6次分区的能谱示意图;
图11为本申请实施例七所提供的一种能谱的计数窗口装置的结构示意图;
图12为本申请实施例八所提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1为本申请实施例一所提供的一种能谱计数窗口的定位方法的流程示意图。本实施例可适用于对能谱的计数窗口进行自动定位的情况,该方法可以由能谱计数窗口的定位装置来执行,该装置可采用软件和/或硬件的方式实现,该装置可配置于电子设备中,如:PC端、服务器等。如图1所示,该方法包括如下步骤。
S110、获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,根据至少两个能谱分区确定至少一个候选能谱区段。
待处理能谱可以是基于核子及核辐射测量仪器测得的数据。能谱分区可以是将待处理能谱按照预设规则进行划分后得到的能谱区域,其中,预设规则可以根据实际需求确定,不做限定。每个候选能谱区段包括至少一个能谱分区,可以是每个能谱分区确定为一个候选能谱区段,还可以是相邻的至少两个能谱分区确定为一个候选能谱区段。
需要说明的是,通过能谱型测量仪器测得的放射性能谱一般表示为道址与计数相对应的一系列数据,如表1所示。道址通常与能量呈正相关关系,其中线性关系或对数关系较为常见,道址i对应计数N i,其物理含义为该核子及核 辐射测量仪器在该道址对应的能量下记录了N i个计数。
表1
道址 1 2 i i+1 n
计数 N 1 N 2 N i N i+1 N n
基于核子及核辐射测量仪器可以获取待处理能谱,或者获取预先测量存储的待处理能谱。根据预设规则,将待处理能谱按照道址进行划分,得到至少两个能谱分区。根据至少两个能谱分区的组合可以确定至少一个候选能谱区段。可选地,当每个候选能谱区段中包括两个或两个以上的能谱分区时,两个或两个以上能谱分区连续排布。
示例性的,若能谱分区包括1、2、3和4,则可以将能谱分区1、2、3和4分别作为一个候选能谱区段,也可以将相邻的两个能谱分区作为一个候选能谱区段,如能谱分区1和2、能谱分区2和3以及能谱分区3和4,还可以将相邻的三个能谱分区作为一个候选能谱区段,如能谱分区1-3和能谱分区2-4,当然,也可以将能谱分区1-4作为一个候选能谱区段。
在本实施例的基础上,可以通过下述任意一种方式来按照道址将待处理能谱划分为至少两个能谱分区。
方式一、按照道址的总数量和预先设定的与能谱分区包含的道址数量,将待处理能谱划分为至少两个能谱分区。
可以按照实际需求预先设定能谱分区中应当包含的道址数量,根据该道址数量以及道址的总数量对待处理能谱进行划分,得到至少两个能谱分区。若道址的总数量不是预先设定的与能谱分区包含的道址数量的整数倍,则可以将剩余的道址单独作为一个能谱分区,也可以将剩余的道址添加至最后一个能谱分区中。
示例性的,道址的总数量为256,若预先设定的与能谱分区包含的道址数量为64,则可以将1-64、65-128、129-192以及193-256作为四个能谱分区;若预先设定的与能谱分区包含的道址数量为80,则可以将1-80、81-160、161-240以及241-256作为四个能谱分区或者将1-80、81-160、161-256作为三个能谱分区。
方式二、按照道址的总数量和预先设定的与能谱分区对应的分区数量,将待处理能谱划分为至少两个能谱分区。
可以按照实际需求预先设定与能谱分区对应的分区数量,根据该分区数量以及道址的总数量对待处理能谱进行划分,得到至少两个能谱分区。
示例性的,道址的总数量为256,若预先设定的与能谱分区对应的分区数量为8,则可以将1-32、33-64、65-96、97-128、129-160、161-192、193-224以及225-256作为八个能谱分区。
方式三、按照待处理能谱的能谱数据的分布,将待处理能谱划分为至少两个能谱分区。
能谱数据的分布可以是幅值分布等。可以理解的是,根据待处理能谱可以确定能谱数据的分布情况,以该分布情况可以对待处理能谱进行划分,例如计数值达到预设阈值划分为一个能谱区域等。
可以是,基于预设分区值算法计算待处理能谱中每个道址对应的分区值;针对每个道址,计算所述每个道址的分区值以及邻近所述每个道址的预设数量的道址的分区值的平均值,根据多个道址的分区值的平均值将待处理能谱按道址划分为至少两个能谱分区。
预设分区值算法为:
Figure PCTCN2022116502-appb-000001
P为每个道址的分区值,i为道址编号,N i为道址i对应样品测量谱计数,B i为道址i对应本底测量谱计数,T S为样品测量谱测量活时间,T B为本底测量谱测量活时间。
计算所述每个道址的分区值以及邻近所述每个道址的预设数量的道址的分区值的平均值,能够对每个道址的分区值进行平滑处理。可以是,采用所述每个道址的两端15个的道址的分区值来计算该道址对应的平均值
Figure PCTCN2022116502-appb-000002
Figure PCTCN2022116502-appb-000003
n用于平均值计算的道址的实际总数量,i为待计算平均值的道址的道址编号,j为用于平均值计算的道址的道址编号。n一般情况下取31,但道址i靠近能谱边缘时,需要扣除道址j无效的情况。
根据每个道址的分区值的平均值将待处理能谱按道址划分为至少两个能谱分区,可以是,根据每个道址对应的平均值确定每个道址的分区编号,将分区编号一致且连续的道址划分为一个分区。
示例性地,可按如下公式计算每个道址的分区编号M:
Figure PCTCN2022116502-appb-000004
S120、确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段。
窗口定位指标可以是根据至少一个候选能谱区段的能谱数据或者至少一个候选能谱区段的能谱数据以及其他数据确定的指标数据,用于衡量计数窗口的优劣程度。标记能谱区段可以是至少一个候选能谱区段中的一个候选能谱区段或连续多个候选能谱区段,标记能谱区段为当前划分得到的计数窗口最优的能谱区段。
根据窗口定位指标的计算方式,可以分别计算确定每个候选能谱区段的窗口定位指标。可以将窗口定位指标最优的一个候选能谱区段确定为标记能谱区段。也可以将最优的一个候选能谱区段、最优的一个候选能谱区段和左侧相邻的候选能谱区段、最优的一个候选能谱区段和右侧相邻的候选能谱区段以及最优的一个候选能谱区段和两侧相邻的候选能谱区段进行窗口定位指标的计算,以确定以最优的组合方式组合成的具有最优窗口定位指标的候选能谱区段为标记能谱区段。
需要说明的是,本申请实施例中,窗口定位指标是否最优与其计算方式相关,在此并不对其取值进行限定。例如,最优的窗口定位指标可能是窗口定位指标中的最大值,也可能是窗口定位指标中的最小值,又可能是窗口定位指标中的最为邻近设定值的值,还可能是窗口定位指标中的中间值等。
可选的,窗口定位指标为本领域学术界提出的优值指数(Figure of merit,FOM),其定义通常为探测效率的平方与本底计数率之比,FOM值越大,指标效果越优,计数窗口的效果越好。
可选的,窗口定位指标定义如下
Figure PCTCN2022116502-appb-000005
F(R)为候选能谱区段R的窗口定位指标,i为候选能谱区段R内的道址编号,N i为道址i对应样品测量谱计数,B i为道址i对应本底测量谱计数,T S为样品测量谱测量活时间,T B为本底测量谱测量活时间。
可选的,窗口定位指标定义如下
Figure PCTCN2022116502-appb-000006
F(R)为候选能谱区段R的窗口定位指标,i为候选能谱区段R内的道址编号,N i为道址i对应样品测量谱计数,B i为道址i对应本底测量谱计数,T S为样品测量谱测量活时间,T B为本底测量谱测量活时间。
可选的,窗口定位指标定义如下
Figure PCTCN2022116502-appb-000007
F(R)为候选能谱区段R的窗口定位指标,i为候选能谱区段R内的道址编号,L R为候选能谱区段R的宽度(即其包含的道址数),N i为道址i对应样品测量谱计数,B i为道址i对应本底测量谱计数,T S为样品测量谱测量活时间,T B为本底测量谱测量活时间。
上述多个确定窗口定位指标的方式只是示例性说明,并非对窗口定位指标的计算方式的限制,任何可以用来评价计算窗口效果的指标都可以作为窗口定位指标,在本实施例中不做限定。
示例性的,总共有8个候选能谱区段,候选能谱区段4对应的窗口定位指标为8个候选能谱区段中最优的一个,此时,可以计算候选能谱区段4、候选能谱区段3-4、候选能谱区段4-5以及候选能谱区段3-5的窗口定位指标,若候选能谱区段4对应的窗口定位指标最优,则将候选能谱区段4作为标记能谱区段;若候选能谱区段3-4对应的窗口定位指标最优,则进行扩张,确定候选能谱区段3-4、候选能谱区段2-4、候选能谱区段3-5以及候选能谱区段2-5对应的窗口定位指标,并依次确定最优区段和扩张区段,以确定标记能谱区段;若候选能谱区段4-5或候选能谱区段3-5的窗口定位指标最优,则确定标记能谱区段的方式与候选能谱区段3-4对应的窗口定位指标最优的情况类似,在此不再赘述。
S130、根据标记能谱区段确定待处理能谱的目标计数窗口。
在确定出标记能谱区段后,可以认为标记能谱区段在当前划分规则下为最优的能谱区段。在此情况下,可以将标记能谱区段作为待处理能谱的目标计数窗口。也可以对标记能谱区段继续进行划分,即,以标记能谱区段为基准进行分区,并对划分后的能谱分区进行计算和比较,确定待处理能谱的目标计数窗口。
本申请实施例的技术方案,通过获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,以进行待处理能谱的初步分区,根据至少两个能谱 分区确定至少一个候选能谱区段,确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段,以初步筛选计数窗口,根据标记能谱区段确定待处理能谱的目标计数窗口,解决了确定计数窗口时计算效率低以及实用性较差的问题,实现了能谱的计数窗口的自动定位,并降低时间复杂度,提高实用性的技术效果。
实施例二
图2为本申请实施例二所提供的一种能谱计数窗口的定位方法的流程示意图。本实施例在上述实施例的基础上,针对根据标记能谱区段确定待处理能谱的目标计数窗口的具体实施方式可参见本实施例的技术方案。与上述多个实施例相同或相应的术语的解释在此不再赘述。如图2所示,该方法包括如下步骤。
S210、获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,根据至少两个能谱分区确定至少一个候选能谱区段。
S220、确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段。
在本实施例的基础上,可以通过下述任意一种方式来确定每个候选能谱区段的窗口定位指标:
方式一、根据每个候选能谱区段的能谱数据或根据每个候选能谱区段的能谱数据以及与所有候选能谱区段中的至少一个候选能谱区段的能谱数据确定每个候选能谱区段的窗口定位指标。
针对每个候选能谱区段,可以根据该候选能谱区段的能谱数据,计算确定该候选能谱区段的窗口定位指标,也可以根据该候选能谱区段的能谱数据以及与该候选能谱区段相邻的候选能谱区段的能谱数据,计算确定该候选能谱区段的窗口定位指标。
可选的,能谱数据包括样品计数、本底计数、测量时间、道址以及能量中的至少一项。
方式二、根据每个候选能谱区段的能谱数据以及待处理能谱的能谱数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及待处理能谱的能谱数据,确定每个候选能谱区段的窗口定位指标。
针对每个候选能谱区段,可以根据该候选能谱区段的能谱数据以及待处理能谱的能谱数据,计算确定该候选能谱区段的窗口定位指标,也可以根据该候选能谱区段的能谱数据、与该候选能谱区段相邻的候选能谱区段的能谱数据以及待处理能谱的能谱数据,计算确定该候选能谱区段的窗口定位指标。
方式三、根据每个候选能谱区段的能谱数据以及与待处理能谱对应的测量样品数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及与待处理能谱对应的测量样品数据,确定每个候选能谱区段的窗口定位指标。
测量样品数据为与待测量的样品相关的数据,用于对测量样品进行衡量。可选的,测量样品数据包括测量样品活度、体积以及质量中的至少一项。
针对每个候选能谱区段,可以根据该候选能谱区段的能谱数据以及与待处理能谱对应的测量样品数据,计算确定该候选能谱区段的窗口定位指标,也可以根据该候选能谱区段的能谱数据、与该候选能谱区段相邻的候选能谱区段的能谱数据以及与待处理能谱对应的测量样品数据,计算确定该候选能谱区段的窗口定位指标。
方式四、根据每个候选能谱区段的能谱数据以及与待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及与待处理能谱对应的测量环境数据,确定每个候选能谱区段的窗口定位指标。
测量环境数据可以用于衡量使用核子及核辐射测量仪器进行测量时的环境情况。
可选的,测量环境数据包括测量环境中的温度、湿度、粒子计数、粉尘以及电磁测量中的至少一项。
针对每个候选能谱区段,可以根据该候选能谱区段的能谱数据以及与待处理能谱对应的测量环境数据,计算确定该候选能谱区段的窗口定位指标,也可以根据该候选能谱区段的能谱数据、与该候选能谱区段相邻的候选能谱区段的能谱数据以及与待处理能谱对应的测量环境数据,计算确定该候选能谱区段的窗口定位指标。
方式五、根据每个候选能谱区段的能谱数据、与待处理能谱对应的测量样品数据以及待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据、与待处理能谱对应的测量样品数据以及与待处理能谱对应的测量环境数据,确定每个候选能谱区段的窗口定位指标。
针对每个候选能谱区段,可以根据该候选能谱区段的能谱数据、与待处理能谱对应的测量样品数据以及与待处理能谱对应的测量环境数据,计算确定该候选能谱区段的窗口定位指标,也可以根据该候选能谱区段的能谱数据、与该候选能谱区段相邻的候选能谱区段的能谱数据、与待处理能谱对应的测量样品 数据以及与待处理能谱对应的测量环境数据,计算确定该候选能谱区段的窗口定位指标。
S230、根据标记能谱区段确定保留能谱区段。
保留能谱区段可以理解为下一次进行划分和计算时所使用的能谱区段。
在确定标记能谱区段后,可以将标记能谱区段确定为保留能谱区段,还可以将标记能谱区段和与标记能谱区段左右两端的一定数量的能谱分区或道址作为保留能谱分区。
可选的,可以通过下述任意一种方式来根据标记能谱区段确定保留能谱区段:
方式一、将标记能谱区段作为保留能谱区段。
示例性的,标记能谱区段为能谱分区3和4,那么,保留能谱区段也为能谱分区3和4。
方式二、将与标记能谱区段两端中至少一端邻近的第一预设数量的能谱分区合并至标记能谱区段中得到保留能谱区段。
示例性的,第一预设数量为1,标记能谱区段为能谱分区3和4,那么,与标记能谱区段两端的能谱分区邻近的第一预设数量的能谱分区为能谱分区2和能谱分区5。此时,保留能谱区段为能谱分区2-5。
需要说明的是,在设定第一预设数量后,可以将与标记能谱区段左端或右端邻近的能谱分区合并至标记能谱区段中得到保留能谱区段;还可以将与标记能谱区段左端和右端邻近的能谱分区合并至标记能谱区段中得到保留能谱区段,其中,左端合并的能谱分区数量和右端合并的能谱分区数量可以相同,也可以不同。
方式三、将与标记能谱区段两端中至少一端邻近的第二预设数量的道址合并至标记能谱区段中得到保留能谱区段。
示例性的,第二预设数量为10,标记能谱区段为能谱分区3和4,那么,将能谱分区3左端的10个道址、能谱分区3-4以及能谱分区右端的10个道址确定为保留能谱区段。
需要说明的是,在设定第二预设数量后,可以将与标记能谱区段左端或右端邻近的道址合并至标记能谱区段中得到保留能谱区段;还可以将与标记能谱区段左端和右端邻近的道址合并至标记能谱区段中得到保留能谱区段,其中,左端合并的道址数量和右端合并的道址数量可以相同,也可以不同。
还需要说明的是,第一预设数量和第二预设数量都可以根据实际使用需求 进行设定,大小在本实施例中不做限定。
S240、对保留能谱区段进行划分,得到与保留能谱区段对应的多个能谱分区,并根据与保留能谱区段对应的多个能谱分区更新标记能谱区段。
对保留能谱区段进行划分,并对保留能谱区段划分后得到的多个能谱分区进行分析或组合分析等。根据多个能谱分区的分析结果可以确定新的标记能谱区段以进行更新。
可选的,可以通过下述任意一种方式来对保留能谱区段进行划分,得到与保留能谱区段对应的多个能谱分区:
方式一、按照道址的总数量和预先设定的与能谱分区包含的道址数量,将保留能谱区段划分为至少两个能谱分区。
可以按照实际需求预先设定能谱分区中应当包含的道址数量,根据该道址数量以及道址的总数量对保留能谱区段进行划分,得到至少两个能谱分区。若道址的总数量不是预先设定的与能谱分区包含的道址数量的整数倍,则可以将剩余的道址单独作为一个能谱分区,也可以将剩余的道址添加至最后一个能谱分区中。
方式二、按照道址的总数量和预先设定的与能谱分区对应的分区数量,将保留能谱区段划分为至少两个能谱分区。
可以按照实际需求预先设定与能谱分区对应的分区数量,根据该分区数量以及道址的总数量对保留能谱区段进行划分,得到至少两个能谱分区。
方式三、按照保留能谱区段的能谱数据分布,将保留能谱区段划分为至少两个能谱分区。
根据保留能谱区段可以确定能谱数据的分布情况,以及该分布情况可以对保留能谱区段进行划分,例如计数值达到预设阈值划分为一个能谱区域等。
方式四、基于预设的随机算法将保留能谱区段划分为至少两个能谱分区。
基于预设的随机算法可以将保留能谱区段分为随机数量的能谱分区,每个能谱分区中的道址数量也是随机的。
方式五、根据保留能谱区段中能谱分区的数量以及至少一个能谱分区对应的道址段的排布信息确定重分区能谱区段,对重分区能谱区段进行划分,根据重分区能谱区段的划分结果得到与保留能谱区段对应的多个能谱分区。
重分区能谱区段可以是保留能谱区段中后续进行再次划分的区段,因此重分区能谱区段可以是全部的或部分的保留能谱区段。排布信息可以包括能谱分区中至少一个道址段的位置关系,以及所属的能谱分区等。
在确定保留能谱区段后,可以确定保留能谱分区中包含的能谱分区的数量,以及每个能谱分区中道址段的排布信息。若保留能谱区段中的能谱分区数量较多,则可以认为保留能谱区段的中间区域为不重分的区域,暂不进行划分,此种情况下,可以按照道址段的排布信息,确定出除中间区域外的重分区能谱区段;若保留能谱区段中的能谱分区数量较少,则可以认为全部的保留能谱区段为重分区能谱区段。对重分区能谱区段进行划分,得到与保留能谱区段对应的多个能谱分区。
可选的,可以通过下述方式来确定重分区能谱区段:
如果保留能谱区段中包含的能谱分区的总数量未达到第一预设数量阈值,则将保留能谱区段作为重分区能谱区段。
如果保留能谱区段中包含的能谱分区的总数量未达到第一预设数量阈值,则说明当前的保留能谱区段中的能谱分区较少,将全部的保留能谱区段作为重分区能谱区段即可。
示例性的,第一预设数量阈值为5,若保留能谱区段中包含能谱分区4-7,能谱分区的总数量为4,小于第一预设数量阈值5,则将保留能谱区段作为重分区能谱区段,即将能谱分区4-7作为重分区能谱区段。
如果保留能谱区段中包含的能谱分区的总数量达到第二预设数量阈值,则将位于保留能谱区段两端中至少一端的第六预设数量的能谱分区组成的能谱区段作为重分区能谱区段。
如果保留能谱区段中包含的能谱分区的总数量达到第二预设数量阈值,则说明当前的保留能谱区段中的能谱分区较多,若直接将保留能谱区段作为重分区能谱区段,则重分区后的每个能谱区段包含的能谱分区较多,计算量较大。因此,将位于保留能谱区段两端中至少一端的第六预设数量的能谱分区组成的能谱区段作为重分区能谱区段,以便后续再分区,将剩余的部分保留或者合并为一个分区,不进行后续再分区。
需要说明的是,在设定第六预设数量后,可以将位于保留能谱区段左端或右端的至少一个能谱分区组成的能谱区段作为重分区能谱区段;还可以将位于保留能谱区段左端和右端的至少一个能谱分区组成的能谱区段作为重分区能谱区段,其中,从左端确定出的能谱分区数量和从右端确定出的能谱分区数量可以相同,也可以不同。
示例性的,保留能谱区段中的能谱分区为4-10,第二预设数量阈值为5,保留能谱区段左端对应的第六预设数量为2和保留能谱区段右端对应的第六预设数量为3。此时,能谱分区的总数量7达到了第二预设数量阈值5,因此,将位 于保留能谱区段左端的2个能谱分区和右端的3个能谱分区,即能谱分区4-5和能谱分区8-10,作为重分区能谱区段。
需要说明的是,第一预设数量阈值可以小于或等于第二预设数量阈值,若第一预设数量阈值小于第二预设数量阈值,那么,如果保留能谱区段中包含的能谱分区的总数量达到第一预设数量阈值单未达到第二预设数量阈值,则可以采用任意一种方式来确定重分区能谱区段,在本实施例中不做限定。
可选的,可以通过下述多个步骤来根据与保留能谱区段对应的多个能谱分区更新标记能谱区段:
步骤一、遍历保留能谱区段中多个能谱分区的组合,得到至少一个组合能谱区段。
组合能谱区段由两个或两个以上连续排布的能谱分区组合得到。
保留能谱区段中任意两个或两个以上的能谱分区可以组合在一起,将其中多个能谱分区为连续的组合筛选出来作为组合能谱区段。
示例性的,保留能谱区段中包含能谱分区1-4,那么,组合能谱区段包括能谱分区1-2、1-3、1-4、2-3、2-4以及3-4。
步骤二、根据多个能谱分区以及多个组合能谱区段的窗口定位指标更新标记能谱区段。
针对每个能谱分区以及每个组合能谱区段,可以分别计算窗口定位指标,将多个窗口定位指标进行比较,根据比较结果确定最优的窗口定位指标对应的能谱分区或组合能谱区段为新的标记能谱区段。
示例性地,对重分区能谱区段进行划分,可以是将重分区能谱区段内所有分区宽度(道址数量)不为1的能谱分区等分为2个能谱分区,或者道址数量相差为1的两个能谱分区。
S250、如果满足预设结束分区条件,则将更新后的标记能谱区段作为待处理能谱的目标计数窗口,如果不满足预设结束分区条件,则返回执行S230。
预设结束分区条件可以是预先设置的用于判断停止再进行分区的条件。目标计数窗口可以是最终确定出的待测量的放射性同位素在能谱中贡献的计数集中分布的道址区域。
如果满足预设结束分区条件,则说明此时可以停止迭代分区和计算,将当前保留能谱区段中的标记能谱区段作为待处理能谱的目标计数窗口。
可选的,预设结束分区条件可以为以下任意一种:
第一种、保留能谱区段中除标记能谱区段之外的能谱分区包含的道址数量 达到第一预设道址数量阈值。
第一预设道址数量阈值可以是用于判断除标记能谱区段之外的能谱分区是否可再分的道址数量,第一预设道址数量阈值通常为1,也可以根据实际需求设定。
示例性的,第一预设道址数量阈值为2,若保留能谱区段中除标记能谱区段之外的能谱分区包含的道址数量为1或2,那么,说明已经满足预设结束分区条件。
第二种、标记能谱区段的更新次数达到预设次数阈值。
预设次数阈值可以是用于判断标记能谱区段的更新迭代次数是否满足需求的数量,数值可以根据实际需求设定。
示例性的,更新迭代次数为8,若当前标记能谱区段的更新次数为第8次,那么,说明已经满足预设结束分区条件。
第三种、在标记能谱区段连续更新预设次数的情况下每次更新后标记能谱区段的窗口定位指标的变化不超过预设变化量。
连续更新预设次数可以是预先设定的更新次数,用于实施第三种预设结束分区条件的条件。预设变化比例可以是用于判断窗口定位指标的变化情况是否足够大的比例。需要说明的是,窗口定位指标的变化可以是两次更新中窗口定位指标的相对变化量,也可以是两次更新中窗口定位指标的绝对变化量。
示例性的,连续更新预设次数为3,预设变化比例为1%,当前更新次数为3,那么第3次更新和第2次更新的窗口定位指标的变化比例为5%,此时没有满足预设分区条件,进行下一次更新。在第4次更新和第3次更新的窗口定位指标的变化比例、第5次更新和第4次更新的窗口定位指标的变化比例以及第6次更新和第5次更新的窗口定位指标的变化比例均小于1%时,满足预设结束分区条件。
第四种、标记能谱区段的窗口定位指标优于预设窗口定位指标阈值。
预设窗口定位指标阈值可以是判断窗口定位指标是否满足需求的数值。
示例性的,预设窗口定位指标阈值为a,窗口定位指标数值大的为优,当前迭代中,标记能谱区段的窗口定位指标为b,若b>a,则满足预设分区条件,若b≤a,则不满足预设结束分区条件。
如果没有满足预设结束分区条件,则需要对保留能谱区段进行再分区处理。此时,返回执行根据标记能谱区段确定保留能谱区段的操作,以便后续分区再确定目标计数窗口。
本申请实施例的技术方案,通过获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,以进行待处理能谱的初步分区,根据至少两个能谱分区确定至少一个候选能谱区段,确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段,以初步筛选计数窗口,根据标记能谱区段确定保留能谱区段,对保留能谱区段进行划分,得到与保留能谱区段对应的多个能谱分区,并根据与保留能谱区段对应的多个能谱分区更新标记能谱区段,如果满足预设结束分区条件,则将标记能谱区段作为待处理能谱的目标计数窗口,如果不满足预设结束分区条件,则返回执行根据标记能谱区段确定保留能谱区段的操作,解决了确定计数窗口时计算效率低以及实用性较差的问题,实现了能谱的计数窗口的自动定位,并降低时间复杂度,提高实用性的技术效果。
实施例三
图3为本申请实施例三所提供的一种能谱计数窗口的定位方法的流程示意图。本实施例在上述实施例的基础上,针对标记能谱区段更新的具体实施方式可参见本实施例的技术方案。,与上述多个实施例相同或相应的术语的解释在此不再赘述。如图3所示,该方法包括如下步骤。
S310、获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,根据至少两个能谱分区确定至少一个候选能谱区段。
S320、确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段。
S330、根据标记能谱区段确定保留能谱区段。
S340、根据保留能谱区段确定参考能谱区段,并根据参考能谱区段以及位于参考能谱区段两端的能谱分区确定至少一个重组能谱区段。
如果所有重组能谱区段中的至少一个重组能谱区段的窗口定位指标优于参考能谱区段的窗口定位指标,则执行S360,在执行完S360后,继续执行S340;如果所有重组能谱区段的窗口定位指标均不优于参考能谱区段的窗口定位指标,则执行S350。
参考能谱区段可以是作为后续分析基准的能谱区段。重组能谱区段可以是参考能谱区段和位于参考能谱区段两端的能谱分区进行不同的组合得到的能谱区段。
可以将保留能谱区段的多个能谱分区中窗口定位指标满足预设参考条件的能谱分区确定为参考能谱区段;还可以判断标记能谱区段中能谱分区的数量是否大于预设分区数量阈值,若能谱分区的数量大于预设分区数量阈值,则将位 于保留能谱区段两端的一定数量的能谱分区剔除,将剩余部分确定为参考能谱区段;也可以将整个的保留能谱区段作为参考能谱区段。可以将参考能谱区段以及与参考能谱区段两端相邻的能谱分区(左端、右端以及左右两端的能谱分区)进行分别组合得到至少一个重组能谱区段;还可以将参考能谱区段中位于参考能谱区段两端的能谱分区(左端、右端以及左右两端的能谱分区进行分别剔除得到至少一个重组能谱区段。
可选的,可以通过下述多个步骤确定参考能谱区段以及至少一个重组能谱区段:
步骤一、确定保留能谱区段的多个能谱分区的窗口定位指标,将窗口定位指标满足预设参考条件的能谱分区作为参考能谱区段,或者,如果标记能谱区段中的能谱分区数量大于预设分区数量阈值,将位于保留能谱区段的两端中至少一端的第三预设数量的能谱分区从保留能谱区段中剔除,得到参考能谱区段。
预设参考条件可以是预先设置的与窗口定位指标相对应的条件,例如:窗口定位指标最大,窗口定位指标达到预设阈值等。预设分区数量阈值可以是预先设置的用于判断分区数量是否满足剔除能谱区段需求的数值。
可以通过计算保留能谱区段的多个能谱分区的窗口定位指标,并判断多个能谱分区的窗口定位指标是否满足预设参考条件,将满足预设参考条件的能谱分区作为参考能谱区段。也可以在标记能谱区段的能谱分区数量大于预设分区数量阈值时,从保留能谱区段中将位于保留能谱区段的两端中至少一端的第三预设数量的能谱分区剔除,将剩余部分作为参考能谱分区。
需要说明的是,在设定第三预设数量后,可以将位于保留能谱区段左端或右端的能谱分区从保留能谱区段中剔除,得到参考能谱区段;还可以将位于保留能谱区段左端和右端的能谱分区从保留能谱区段中剔除,得到参考能谱区段,左端剔除的能谱分区数量和右端剔除的能谱分区数量可以相同,也可以不同。
步骤二、根据与参考能谱区段两端中至少一端邻近的第四预设数量的能谱分区确定待组合能谱区段,将参考能谱区段与待组合能谱区段进行合并,得到至少一个重组能谱区段。
待组合能谱区段可以是与参考能谱区段相邻的第四预设数量的能谱分区。
将参考能谱区段之外,与参考能谱区段相邻的位于参考能谱区段两端中至少一端的第四预设数量的能谱分区都作为待组合能谱区段。将参考能谱区段与至少一个待组合能谱区段进行组合,得到至少一个重组能谱区段。
需要说明的是,在设定第四预设数量后,可以根据与参考能谱区段左端或右端邻近的能谱分区确定待组合能谱区段;还可以根据与参考能谱区段左端和 右端邻近的能谱分区确定待组合能谱区段,其中,左端确定出的能谱分区的数量和右端确定出的能谱分区的数量可以相同,也可以不同。
可选的,还可以通过下述方式确定参考能谱区段以及至少一个重组能谱区段:
将保留能谱区段作为参考能谱区段,根据位于参考能谱区段两端中至少一端的第五预设数量的能谱分区确定待剔除能谱区段,将参考能谱区段中的待剔除能谱区段进行剔除,得到至少一个重组能谱区段。
待剔除能谱区段可以是参考能谱区段中位于两端中至少一端的第五预设数量的能谱分区。
将保留能谱区段作为参考能谱区段,将参考能谱区段中位于两端中至少一端的第五预设数量的能谱分区作为待剔除能谱区段,将至少一个待剔除能谱区段从参考能谱区段中剔除,可以得到至少一个重组能谱区段。
需要说明的是,在设定第五预设数量后,可以根据位于参考能谱区段中左端或右端的能谱分区确定待剔除能谱区段;还可以根据位于参考能谱区段中左端和右端的能谱分区确定待剔除能谱区段,其中,左端确定出的能谱分区的数量和右端确定出的能谱分区的数量可以相同,也可以不同。
如果重组能谱区段的窗口定位指标优于参考能谱区段的窗口定位指标,则说明重组能谱区段的窗口效果优于参考能谱区段,因此,将窗口定位指标最优的重组能谱区段更新为参考能谱区段,并且返回执行根据参考能谱区段以及位于参考能谱区段两端的能谱分区确定至少一个重组能谱区段的操作,以判断当前的参考能谱区段是否为最优;如果重组能谱区段的窗口定位指标均不优于参考能谱区段的窗口定位指标,就说明参考能谱区段的窗口效果优于重组能谱区段,不用再进行更新,此时可将参考能谱区段作为标记能谱区段。
S350、将参考能谱区段作为标记能谱区段。
S360、将窗口定位指标最优的重组能谱区段更新为参考能谱区段。
S370、如果满足预设结束分区条件,则将更新后的标记能谱区段作为待处理能谱的目标计数窗口;如果不满足预设结束分区条件,返回执行S330。
可选的,可以通过下述方式来确定目标计数窗口:
如果重组能谱区段中能谱分区的道址数量与参考能谱区段中能谱分区的道址数量的差值不超过预设差值阈值,则将更新后的标记能谱区段作为待处理能谱的目标计数窗口。
预设差值阈值可以用于比较重组能谱区段中能谱分区与参考能谱区段中能 谱分区的大小是否需要再返回重新确定。
先计算重组能谱区段中能谱分区的道址数量,以及参考能谱区段中能谱分区的道址数量,将二者之间的差值与预设差值阈值比较,若差值未超过预设差值阈值,则说明重组能谱区段与参考能谱区段之间的道址数量的差距较小,无需再返回重新确定保留能谱区段的操作,直接将标记能谱区段作为待处理能谱的目标计数窗口即可。
本申请实施例的技术方案,通过获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,以进行待处理能谱的初步分区,根据至少两个能谱分区确定至少一个候选能谱区段,确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段,以初步筛选计数窗口,根据标记能谱区段确定保留能谱区段,根据保留能谱区段确定参考能谱区段,并根据参考能谱区段以及位于参考能谱区段两端的能谱分区确定至少一个重组能谱区段,如果所有重组能谱区段中的至少一个重组能谱区段的窗口定位指标优于参考能谱区段的窗口定位指标,则将窗口定位指标最优的重组能谱区段更新为参考能谱区段,返回执行根据参考能谱区段以及位于参考能谱区段两端的能谱分区确定至少一个重组能谱区段的操作;如果所有重组能谱区段的窗口定位指标不优于参考能谱区段的窗口定位指标,将参考能谱区段作为标记能谱区段,以更新确定标记能谱区段,如果所有重组能谱区段中的至少一个重组能谱区段的窗口定位指标优于参考能谱区段的窗口定位指标,则将窗口定位指标最优的重组能谱区段更新为参考能谱区段,返回执行根据参考能谱区段以及位于参考能谱区段两端的能谱分区确定至少一个重组能谱区段的操作;如果所有重组能谱区段的窗口定位指标不优于参考能谱区段的窗口定位指标,将参考能谱区段作为标记能谱区段,解决了确定计数窗口时计算效率低以及实用性较差的问题,实现了能谱的计数窗口的自动定位,并降低时间复杂度,提高实用性的技术效果。
实施例四
在介绍本申请实施例的技术方案之前,先介绍一下技术背景。
因为放射性同位素释放的γ射线与α射线为单一能量或多个单一能量,γ谱仪测量的γ射线能谱与α谱仪测量的α射线能谱一般近似为较为尖锐的正态分布计数峰,业内已经有比较成熟的算法自动寻找计数峰位置及其边界,作为对应同位素的计数窗口。但是对于液体闪烁计数器测量的能谱,业内还没有很好的计数窗口自动定位方法。这主要是因为液体闪烁计数器经常被用于测量能量为连续谱的β射线,而且液体闪烁计数器测量时往往存在猝灭效应,导致能谱有不同程度的变形与移动,其测量能谱通常不呈尖锐的正态分布,甚至较为 平坦,无法沿用已有的自动寻峰技术。
针对液体闪烁计数器测量能谱计数区间的优选问题,学术界提出了优值指数(FOM,figure of merit)优化原则:在所有候选的计数窗口中,选择FOM值最优的窗口作为优选的计数窗口,FOM值通常定义为探测效率的平方与本底计数率之商,其数值越大越优。但优值指数优化原则作为一种指导性原则,缺乏实现方法。一种易于想到的方法是遍历所有可能的计数窗口,比较其对应优值指数大小,实现计数窗口的优选,但是这一方法效率过低,并不实用。迄今为止,在工业界,所有液体闪烁计数器厂商都是在仪器内预设几种常见同位素(比如 3H、 14C、 32P)一定条件下(比如猝灭效应可以忽略的情况下)的计数窗口。当被测量同位素不在预设范围内,或者能谱因猝灭发生显著变化时,仪器就无法给出恰当的计数窗口,导致能谱难以分析。
本申请实施例四提供了一种能谱计数窗口的定位方法。与上述多个实施例相同或相应的术语的解释在此不再赘述。本申请实施例四提供的能谱计数窗口的定位方法包括如下步骤。
a)将待处理能谱按道址划分多个分区(如8-15个连续分区,即能谱分区)。
需要说明的是,假设能谱宽度为L,即待处理能谱包含的道址的总数量为L,L满足2 k≤L<2 k+1,则每个分区宽度取2 k-3,若存在剩余道址未被归入分区,则将其并入最后一个分区。若能谱宽度小于8,则将每个能谱宽度为1的能谱区域作为一个能谱分区。
示例性的,对于能谱宽度为256的待处理能谱(由于256=2 8,此时,k=8),每个分区宽度取32(2 5=32),共划分为8个分区。
b)以每个分区本身为候选能谱区段,计算其窗口定位指标,以窗口定位指标最大的候选能谱区段为参考能谱区段。
窗口定位指标F定义如下,该窗口定位指标越大越优越:
Figure PCTCN2022116502-appb-000008
其中,F(R)为能谱区段R的窗口定位指标,i为候选能谱区段R内的道址编号,N i为道址i对应样品测量谱计数,B i为道址i对应本底测量谱计数,T S为样品测量谱测量活时间,T B为本底测量谱测量活时间。
c)根据参考能谱区段确定如下三个重组能谱区段(参考能谱区段与重组能谱区段均属于候选能谱区段):(i)参考能谱区段与其左侧相邻分区合并所得区段;(ii)参考能谱区段与其右侧相邻分区合并所得区段;(iii)参考能谱区段与其两侧相邻分区合并所得区段。如果重组能谱区段的窗口定位指标优于参考能 谱区段的窗口定位指标,则将窗口定位指标最优的重组能谱区段更新为参考能谱区段,并重复执行步骤c),如果重组能谱区段的窗口定位指标均不优于参考能谱区段的窗口定位指标,则执行步骤d)。
d)将参考能谱区段作为标记能谱区段。
e)根据标记能谱区段确定保留能谱区段,对保留能谱区段重新进行划分,并根据新划分的分区更新标记能谱区段:
e.1)如果标记能谱区段只包含两个或以下分区,则将标记能谱区段及标记能谱区段外相邻的两个分区合并作为保留能谱区段,参照步骤a)将保留能谱区段重新划分为8-15个连续分区,然后执行步骤b)-d),以更新标记能谱区段。
e.2)如果标记能谱区段包含三个或以上分区,则将以下三个区段组成的区段作为保留能谱区段:(i)标记能谱区段内最左分区与最右分区剔除后剩余的能谱区段;(ii)标记能谱区段内最左分区与标记能谱区段外左邻的分区合并所得的能谱区段;(iii)标记能谱区段内最右分区与标记能谱区段外右邻的分区合并所得的能谱区段;
保留能谱区段划分方法如下:能谱区段(i)合并为1个分区,能谱区段(ii)和能谱区段(iii)分别参照步骤a)分别划分为4-7个连续分区(每个分区宽度取2 k-2-2);然后以能谱区段(i)合并所得分区作为参考能谱区段,并执行步骤c)-d),以更新标记能谱区段。
f)反复执行步骤e),直至满足如下预设结束分区条件,将标记能谱区段作为所述待处理能谱的目标计数窗口:e.1)所述保留能谱区段划分分区宽度为1,或者e.2)所述保留能谱区段中的能谱区段(ii)和能谱区段(iii)划分分区宽度为1。
以下述示例来说明本申请实施例确定目标计数窗口的过程:
图4为待处理能谱的示意图,展示了待进行计数窗口自动定位的测量能谱,其中,粗线表示样品测量谱,细线表示本底测量谱。
图5为第1次分区的能谱示意图,如图5所示,整个能谱按道址被分为8个等宽分区,每个分区宽度为32。
表2展示了第1次分区时每个分区的边界道址及其窗口定位指标,其中,2号分区具有最大的窗口定位指标0.4232,确定为初始的参考能谱区段。
表2
Figure PCTCN2022116502-appb-000009
Figure PCTCN2022116502-appb-000010
表3展示了第1次分区时标记能谱区段的更新过程,表中用分区编号表示标记能谱区段,比如:能谱区段2表示分区2单独构成的能谱区段,能谱区段1-3表示分区1、2、3共同构成的能谱区段。前面已经确定分区2为初始的参考能谱区段,随后计算能谱区段2、1-2、2-3、1-3各自的窗口定位指标,其中能谱区段1-3具有最大的窗口定位指标,因此,更新参考能谱区段为能谱区段1-3;再计算能谱区段1-3以及1-4的窗口定位指标(1号分区已经是最左侧分区,所以不考虑与左侧相邻分区合并所得区段),能谱区段1-3仍具有最大的窗口定位指标,因此,第1次分区能谱区段1-3为最终的参考能谱区段,更新为标记能谱区段。表5、7、9、11、13依次表示之后每次分区后参考能谱区段的更新过程。
表3
Figure PCTCN2022116502-appb-000011
接下来,图6为第2次分区的能谱示意图。第1次分区确定了能谱区段1-3为标记能谱区段,包含3个分区,因此按e.2)分区,原能谱区段1(道址1-32)划为4个分区,原能谱区段2(道址33-64)划为1个分区,并作为初始的参考能谱区段,原能谱区段3-4(道址65-128)划为4个分区。
表4展示了第2次分区时每个分区的边界道址及其窗口定位指标。
表4
Figure PCTCN2022116502-appb-000012
Figure PCTCN2022116502-appb-000013
表5展示了第2次分区时标记能谱区段的更新过程,前面已经确定分区5为初始的参考能谱区段,随后确定第2次分区能谱区段2-6为最终的参考能谱区段,并更新为标记能谱区段。
表5
Figure PCTCN2022116502-appb-000014
接下来,图7为第3次分区的能谱示意图。第2次分区确定了能谱区段2-6为标记能谱区段,包含5个分区,因此按e.2)分区,原能谱区段1-2(道址1-16)划为4个分区,原能谱区段3-5(道址17-64)划为1个分区,并作为初始的参考能谱区段,原能谱区段6-7(道址65-96)划为4个分区。
表6展示了第3次分区时每个分区的边界道址及其窗口定位指标。
表6
Figure PCTCN2022116502-appb-000015
Figure PCTCN2022116502-appb-000016
表7展示了第3次分区时标记能谱区段的更新过程,前面已经确定分区5为初始的参考能谱区段,随后确定第3次分区能谱区段3-7为最终的参考能谱区段,并更新为标记能谱区段。
表7
Figure PCTCN2022116502-appb-000017
接下来,图8为第4次分区的能谱示意图。第3次分区确定了能谱区段3-7为标记能谱区段,包含5个分区,因此按e.2)分区,原能谱区段2-3(道址5-12)划为4个分区,原能谱区段4-6(道址13-72)划为1个分区,并作为初始的参考能谱区段,原能谱区段7-8(道址73-88)划为4个分区。
表8展示了第4次分区时每个分区的边界道址及其窗口定位指标。
表8
Figure PCTCN2022116502-appb-000018
Figure PCTCN2022116502-appb-000019
表9展示了第4次分区时标记能谱区段的更新过程,前面已经确定分区5为初始的参考能谱区段,随后确定第4次分区能谱区段2-8为最终的参考能谱区段,并更新为标记能谱区段。
表9
Figure PCTCN2022116502-appb-000020
接下来,图9为第5次分区的能谱示意图。第4次分区确定了能谱区段2-8为标记能谱区段,包含7个分区,因此按e.2)分区,原能谱区段1-2(道址5-8)划为4个分区,原能谱区段3-7(道址9-80)划为1个分区,并作为初始的参考能谱区段,原能谱区段8-9(道址81-88)划为4个分区。
表10展示了第5次分区时每个分区的边界道址及其窗口定位指标。
表10
Figure PCTCN2022116502-appb-000021
Figure PCTCN2022116502-appb-000022
表11展示了第5次分区时标记能谱区段的更新过程,前面已经确定分区5为初始的参考能谱区段,,随后确定第5次分区能谱区段4-7为最终的参考能谱区段,并更新为标记能谱区段。
表11
Figure PCTCN2022116502-appb-000023
接下来,图10为第6次分区的能谱示意图。第5次分区确定了能谱区段4-7为标记能谱区段,包含4个分区,因此按e.2)分区,原能谱区段3-4(道址7-8)分区宽度为1,无需划分,原能谱区段5-6(道址9-82)划为1个分区,并作为初始的参考能谱区段,原能谱区段7-8(道址83-86)划为4个分区。
表12展示了第6次分区时每个分区的边界道址及其窗口定位指标。
表12
Figure PCTCN2022116502-appb-000024
表13展示了第6次分区时标记能谱区段的更新过程,前面已经确定分区3为初始的参考能谱区段,随后确定第6次分区能谱区段2-5为最终的参考能谱区段,并更新为标记能谱区段。
表13
Figure PCTCN2022116502-appb-000025
由于第6次分区满足预设结束分区条件,因此,取本次分区的标记能谱区段2-5(道址8-84)作为目标计数窗口。
本申请实施例的技术方案,通过按照道址将所述待处理能谱划分为至少两个能谱分区,将每个能谱分区确定为一个候选能谱区段,基于多个候选能谱区段的窗口定位指标确定标记能谱区段,并将标记能谱区段扩张为新的候选能谱区段,以根据窗口定位指标更新标记能谱区段,直至标记能谱区段不再变化,根据标记能谱区段确定保留能谱区段,对保留能谱区段重新进行划分,并根据新划分的分区更新标记能谱区段,当满足预设结束分区条件时,将更新后的标记能谱区段作为待处理能谱的目标计数窗口,解决了确定计数窗口时计算效率低以及实用性较差的问题,实现了放射性能谱的计数窗口的自动定位,并降低时间复杂度,提高实用性的技术效果。
实施例五
图11为本申请实施例五所提供的一种能谱的计数窗口装置的结构示意图。如图11所示,该装置包括:能谱划分模块710、能谱区段标记模块720以及计数窗口确定模块730。
能谱划分模块710,设置为获取待处理能谱,按照道址将所述待处理能谱划分为至少两个能谱分区,根据所述至少两个能谱分区确定至少一个候选能谱区段,其中,每个候选能谱区段包括至少一个能谱分区;能谱区段标记模块720,设置为确定所述每个候选能谱区段的窗口定位指标,根据所述至少一个候选能谱区段的窗口定位指标从所述至少一个个候选能谱区段中确定出标记能谱区段;计数窗口确定模块730,设置为根据所述标记能谱区段确定所述待处理能谱的目标计数窗口。
可选的,计数窗口确定模块730,是设置为根据所述标记能谱区段确定保留 能谱区段;对所述保留能谱区段进行划分,得到与所述保留能谱区段对应的多个能谱分区,并根据与所述保留能谱区段对应的多个能谱分区更新所述标记能谱区段;如果满足预设结束分区条件,则将所述更新后的标记能谱区段作为所述待处理能谱的目标计数窗口;如果不满足预设结束分区条件,则返回执行根据所述标记能谱区段确定保留能谱区段的操作。
可选的,计数窗口确定模块730,是设置为将所述标记能谱区段作为保留能谱区段;或者,将所述标记能谱区段两端中至少一端邻近的第一预设数量的能谱分区合并至所述标记能谱区段中得到保留能谱区段;或者,将所述标记能谱区段两端中至少一端邻近的第二预设数量的道址合并至所述标记能谱区段中得到保留能谱区段。
可选的,计数窗口确定模块730,还设置为根据所述保留能谱区段确定参考能谱区段,并根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段;如果所述至少一个重组能谱区段的窗口定位指标优于参考能谱区段的窗口定位指标,则将窗口定位指标最优的重组能谱区段更新为所述参考能谱区段,返回执行根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段的操作;如果所述至少一个重组能谱区段的窗口定位指标不优于参考能谱区段的窗口定位指标,则将所述参考能谱区段作为标记能谱区段。
可选的,计数窗口确定模块730,是设置为确定所述保留能谱区段的多个能谱分区的窗口定位指标,将所述窗口定位指标满足预设参考条件的能谱分区作为参考能谱区段,或者,如果所述标记能谱区段中的能谱分区数量大于预设分区数量阈值,将位于所述保留能谱区段两端中至少一端的第三预设数量的能谱分区从所述保留能谱区段中剔除,得到参考能谱区段;根据所述参考能谱区段两端中至少一端邻近的第四预设数量的能谱分区确定待组合能谱区段,将所述参考能谱区段与所述待组合能谱区段进行合并,得到至少一个重组能谱区段。
可选的,计数窗口确定模块730,是设置为将所述保留能谱区段作为参考能谱区段,根据位于所述参考能谱区段两端中至少一端的第五预设数量的能谱分区确定待剔除能谱区段,将所述参考能谱区段中的所述待剔除能谱区段进行剔除,得到至少一个重组能谱区段。
可选的,所述装置还包括:判断确定模块,设置为如果每个重组能谱区段中能谱分区的道址数量与所述参考能谱区段中能谱分区的道址数量的差值不超过预设差值阈值,则将所述标记能谱区段作为所述待处理能谱的目标计数窗口。
可选的,计数窗口确定模块730,是设置为遍历所述保留能谱区段中多个能谱分区的组合,得到至少一个组合能谱区段,其中,每个组合能谱区段由两个 或两个以上连续排布的能谱分区组合得到;根据多个能谱分区以及至少一个组合能谱区段的窗口定位指标更新所述标记能谱区段。
可选的,计数窗口确定模块730,是设置为按照道址的总数量和预先设定的与能谱分区包含的道址数量,将所述保留能谱区段划分为至少两个能谱分区;或者,按照道址的总数量和预先设定的与能谱分区对应的分区数量,将所述保留能谱区段划分为至少两个能谱分区;或者,按照所述保留能谱区段的能谱数据分布,将所述保留能谱区段划分为至少两个能谱分区;或者,基于预设的随机算法将所述保留能谱区段划分为至少两个能谱分区;或者,根据所述保留能谱区段中多个能谱分区的数量以及多个能谱分区对应的道址段的排布信息确定重分区能谱区段,对所述重分区能谱区段进行划分,根据所述重分区能谱区段的划分结果得到与所述保留能谱区段对应的多个能谱分区。
可选的,计数窗口确定模块730,是设置为如果所述保留能谱区段中包含的能谱分区的总数量未达到第一预设数量阈值,则将所述保留能谱区段作为重分区能谱区段;如果所述保留能谱区段中包含的能谱分区的总数量达到第二预设数量阈值,则将位于所述保留能谱区段两端中至少一端的第六预设数量的能谱分区组成的能谱区段作为重分区能谱区段。
可选的,所述预设结束分区条件包括所述保留能谱区段中除所述标记能谱区段之外的能谱分区包含的道址数量达到第一预设道址数量阈值,或者,所述标记能谱区段的更新次数达到预设次数阈值,或者,在所述标记能谱区段连续更新预设次数的情况下每次更新后所述标记能谱区段的窗口定位指标的变化不超过预设变化量,或者,所述标记能谱区段的窗口定位指标优于预设窗口定位指标阈值。
可选的,能谱区段标记模块720,是设置为根据每个候选能谱区段的能谱数据或根据每个候选能谱区段的能谱数据以及与所有候选能谱区段中的至少一个候选能谱区段的能谱数据确定所述每个候选能谱区段的窗口定位指标;或者,根据每个候选能谱区段的能谱数据以及所述待处理能谱的能谱数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及所述待处理能谱的能谱数据,确定所述每个候选能谱区段的窗口定位指标;或者,根据每个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量样品数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量样品数据,确定所述每个候选能谱区段的窗口定位指标;或者,根据每个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数 据以及与所述待处理能谱对应的测量环境数据,确定所述每个候选能谱区段的窗口定位指标;或者,根据每个候选能谱区段的能谱数据、与所述待处理能谱对应的测量样品数据以及所述待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据、与所述待处理能谱对应的测量样品数据以及与所述待处理能谱对应的测量环境数据,确定所述每个候选能谱区段的窗口定位指标。
可选的,所述能谱数据包括样品计数、本底计数、测量时间、道址以及能量中的至少一项;所述测量样品数据包括测量样品活度、体积以及质量中的至少一项;所述测量环境数据包括测量环境中的温度、湿度、粒子计数、粉尘以及电磁测量中的至少一项。
本申请实施例的技术方案,通过获取待处理能谱,按照道址将待处理能谱划分为至少两个能谱分区,以进行待处理能谱的初步分区,根据能谱分区确定至少一个候选能谱区段,确定每个候选能谱区段的窗口定位指标,根据至少一个候选能谱区段的窗口定位指标从至少一个候选能谱区段中确定出标记能谱区段,以初步筛选计数窗口,根据标记能谱区段确定待处理能谱的目标计数窗口,解决了确定计数窗口时计算效率低以及实用性较差的问题,实现了能谱的计数窗口的自动定位,并降低时间复杂度,提高实用性的技术效果。
本申请实施例所提供的能谱计数窗口的定位装置可执行本申请任意实施例所提供的能谱计数窗口的定位方法,具备执行方法相应的功能模块。
实施例六
图12示出了可以用来实施本申请的实施例的电子设备10的结构示意图。电子设备旨在表示多种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示多种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图12所示,电子设备10包括至少一个处理器11,以及与至少一个处理器11通信连接的存储器,如只读存储器(Read-Only Memory,ROM)12、随机访问存储器(Random Access Memory,RAM)13等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器11可以根据存储在ROM12中的计算机程序或者从存储单元18加载到RAM13中的计算机程序,来执行多种适当的动作和处理。在RAM 13中,还可存储电子设备10操作所需的多种程序和数据。处理器11、ROM 12以及RAM 13通过总线14彼此相连。输入/输出 (Input/Output,I/O)接口15也连接至总线14。
电子设备10中的多个部件连接至I/O接口15,包括:输入单元16,例如键盘、鼠标等;输出单元17,例如多种类型的显示器、扬声器等;存储单元18,例如磁盘、光盘等;以及通信单元19,例如网卡、调制解调器、无线通信收发机等。通信单元19允许电子设备10通过诸如因特网的计算机网络和/或多种电信网络与其他设备交换信息/数据。
处理器11可以是多种具有处理和计算能力的通用和/或专用处理组件。处理器11的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、多种专用的人工智能(Artificial Intelligence,AI)计算芯片、多种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processor,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器11执行上文所描述的多个方法和处理,例如能谱计数窗口的定位方法。
在一些实施例中,能谱计数窗口的定位方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元18。在一些实施例中,计算机程序的部分或者全部可以经由ROM 12和/或通信单元19而被载入和/或安装到电子设备10上。当计算机程序加载到RAM 13并由处理器11执行时,可以执行上文描述的能谱计数窗口的定位方法的一个或多个步骤。可选地,在其他实施例中,处理器11可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行能谱计数窗口的定位方法。
本文中以上描述的***和技术的多种实施方式可以在数字电子电路***、集成电路***、场可编程门阵列(Field Programmable Gata Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上***的***(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些多种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程***上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储***、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储***、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框 图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。可选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例地会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的***和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的***和技术实施在包括后台部件的计算***(例如,作为数据服务器)、或者包括中间件部件的计算***(例如,应用服务器)、或者包括前端部件的计算***(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的***和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算***中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将***的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算***可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决 了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (16)

  1. 一种能谱计数窗口的定位方法,包括:
    获取待处理能谱,按照道址将所述待处理能谱划分为至少两个能谱分区,根据所述至少两个能谱分区确定至少一个候选能谱区段,其中,每个候选能谱区段包括至少一个能谱分区;
    确定所述每个候选能谱区段的窗口定位指标,根据所述至少一个候选能谱区段的窗口定位指标从所述至少一个候选能谱区段中确定出标记能谱区段;
    根据所述标记能谱区段确定所述待处理能谱的目标计数窗口。
  2. 根据权利要求1所述的方法,其中,所述根据所述标记能谱区段确定所述待处理能谱的目标计数窗口,包括:
    根据所述标记能谱区段确定保留能谱区段;
    对所述保留能谱区段进行划分,得到与所述保留能谱区段对应的多个能谱分区,并根据与所述保留能谱区段对应的多个能谱分区更新所述标记能谱区段;
    在满足预设结束分区条件的情况下,将所述更新后的标记能谱区段作为所述待处理能谱的目标计数窗口;
    在不满足预设结束分区条件的情况下,返回执行根据所述标记能谱区段确定保留能谱区段的操作。
  3. 根据权利要求2所述的方法,其中,所述根据所述标记能谱区段确定保留能谱区段,包括:
    将所述标记能谱区段作为保留能谱区段;或者,
    将与所述标记能谱区段两端中至少一端邻近的第一预设数量的能谱分区合并至所述标记能谱区段中得到保留能谱区段;或者,
    将与所述标记能谱区段两端中至少一端邻近的第二预设数量的道址合并至所述标记能谱区段中得到保留能谱区段。
  4. 根据权利要求2所述的方法,其中,所述根据与所述保留能谱区段对应的多个能谱分区更新所述标记能谱区段,包括:
    根据所述保留能谱区段确定参考能谱区段,并根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段;
    在所有重组能谱区段中的至少一个重组能谱区段的窗口定位指标优于所述参考能谱区段的窗口定位指标的情况下,将窗口定位指标最优的重组能谱区段更新为参考能谱区段,返回执行根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段的操作;
    在所有重组能谱区段的窗口定位指标不优于所述参考能谱区段的窗口定位指标的情况下,将所述参考能谱区段作为标记能谱区段。
  5. 根据权利要求4所述的方法,其中,所述根据所述保留能谱区段确定参考能谱区段,并根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段,包括:
    确定所述保留能谱区段的多个能谱分区的窗口定位指标,将所述窗口定位指标满足预设参考条件的能谱分区作为参考能谱区段,或者,在所述标记能谱区段中的能谱分区数量大于预设分区数量阈值的情况下,将位于所述保留能谱区段两端中至少一端的第三预设数量的能谱分区从所述保留能谱区段中剔除,得到参考能谱区段;
    根据与所述参考能谱区段两端中至少一端邻近的第四预设数量的能谱分区确定待组合能谱区段,将所述参考能谱区段与所述待组合能谱区段进行合并,得到至少一个重组能谱区段。
  6. 根据权利要求4所述的方法,其中,所述根据所述保留能谱区段确定参考能谱区段,并根据所述参考能谱区段以及位于所述参考能谱区段两端的能谱分区确定至少一个重组能谱区段,包括:
    将所述保留能谱区段作为参考能谱区段,根据位于所述参考能谱区段两端中至少一端的第五预设数量的能谱分区确定待剔除能谱区段,将所述参考能谱区段中的所述待剔除能谱区段进行剔除,得到至少一个重组能谱区段。
  7. 根据权利要求4所述的方法,还包括:
    在每个重组能谱区段中能谱分区的道址数量与所述参考能谱区段中能谱分区的道址数量的差值不超过预设差值阈值的情况下,将所述标记能谱区段作为所述待处理能谱的目标计数窗口。
  8. 根据权利要求2所述的方法,其中,所述根据与所述保留能谱区段对应的多个能谱分区更新所述标记能谱区段,包括:
    遍历所述保留能谱区段中多个能谱分区的组合,得到至少一个组合能谱区段,其中,每个组合能谱区段由两个或两个以上连续排布的能谱分区组合得到;
    根据所述多个能谱分区以及所述至少一个组合能谱区段的窗口定位指标更新所述标记能谱区段。
  9. 根据权利要求2所述的方法,其中,所述对所述保留能谱区段进行划分,得到与所述保留能谱区段对应的多个能谱分区,包括:
    按照道址的总数量和预先设定的与能谱分区包含的道址数量,将所述保留 能谱区段划分为至少两个能谱分区;或者,
    按照道址的总数量和预先设定的与能谱分区对应的分区数量,将所述保留能谱区段划分为至少两个能谱分区;或者,
    按照所述保留能谱区段的能谱数据分布,将所述保留能谱区段划分为至少两个能谱分区;或者,
    基于预设的随机算法将所述保留能谱区段划分为至少两个能谱分区;或者,
    根据所述保留能谱区段中多个能谱分区的数量以及多个能谱分区对应的道址段的排布信息确定重分区能谱区段,对所述重分区能谱区段进行划分,根据所述重分区能谱区段的划分结果得到与所述保留能谱区段对应的多个能谱分区。
  10. 根据权利要求9所述的方法,其中,所述根据所述保留能谱区段中多个能谱分区的数量以及多个能谱分区对应的道址段的排布信息确定重分区能谱区段,包括:
    在所述保留能谱区段中包含的能谱分区的总数量未达到第一预设数量阈值的情况下,将所述保留能谱区段作为重分区能谱区段;
    在所述保留能谱区段中包含的能谱分区的总数量达到第二预设数量阈值的情况下,将位于所述保留能谱区段两端中至少一端的第六预设数量的能谱分区组成的能谱区段作为重分区能谱区段。
  11. 根据权利要求2所述的方法,其中,所述预设结束分区条件包括所述保留能谱区段中除所述标记能谱区段之外的能谱分区包含的道址数量达到第一预设道址数量阈值,或者,所述标记能谱区段的更新次数达到预设次数阈值,或者,在所述标记能谱区段连续更新预设次数的情况下每次更新后所述标记能谱区段的窗口定位指标的变化不超过预设变化量,或者,所述标记能谱区段的窗口定位指标优于预设窗口定位指标阈值。
  12. 根据权利要求1所述的方法,其中,所述确定所述每个候选能谱区段的窗口定位指标,包括:
    根据每个候选能谱区段的能谱数据或根据每个候选能谱区段的能谱数据以及与所有候选能谱区段中的至少一个候选能谱区段的能谱数据确定所述每个候选能谱区段的窗口定位指标;或者,
    根据每个候选能谱区段的能谱数据以及所述待处理能谱的能谱数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及所述待处理能谱的能谱数据,确定所述每个候选能谱区段的 窗口定位指标;或者,
    根据每个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量样品数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量样品数据,确定所述每个候选能谱区段的窗口定位指标;或者,
    根据每个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据以及与所述待处理能谱对应的测量环境数据,确定所述每个候选能谱区段的窗口定位指标;或者,
    根据每个候选能谱区段的能谱数据、与所述待处理能谱对应的测量样品数据以及与所述待处理能谱对应的测量环境数据或根据每个候选能谱区段的能谱数据、与所有候选能谱区段中的至少一个候选能谱区段的能谱数据、与所述待处理能谱对应的测量样品数据以及与所述待处理能谱对应的测量环境数据,确定所述每个候选能谱区段的窗口定位指标。
  13. 根据权利要求12所述的方法,其中,所述能谱数据包括样品计数、本底计数、测量时间、道址以及能量中的至少一项;所述测量样品数据包括测量样品活度、体积以及质量中的至少一项;所述测量环境数据包括测量环境中的温度、湿度、粒子计数、粉尘以及电磁测量中的至少一项。
  14. 一种能谱计数窗口的定位装置,包括:
    能谱划分模块,设置为获取待处理能谱,按照道址将所述待处理能谱划分为至少两个能谱分区,根据所述至少两个能谱分区确定至少一个候选能谱区段,其中,每个候选能谱区段包括至少一个能谱分区;
    能谱区段标记模块,设置为确定所述每个候选能谱区段的窗口定位指标,根据所述至少一个候选能谱区段的窗口定位指标从所述至少一个候选能谱区段中确定出标记能谱区段;
    计数窗口确定模块,设置为根据所述标记能谱区段确定所述待处理能谱的目标计数窗口。
  15. 一种电子设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要 求1-13中任一项所述的能谱计数窗口的定位方法。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-13中任一项所述的能谱计数窗口的定位方法。
PCT/CN2022/116502 2022-06-20 2022-09-01 能谱计数窗口的定位方法、装置、电子设备及存储介质 WO2023245867A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22941881.9A EP4328627A1 (en) 2022-06-20 2022-09-01 Energy spectrum counting window positioning method and apparatus, and electronic device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210697329.2A CN115097513B (zh) 2022-06-20 2022-06-20 能谱计数窗口的定位方法、装置、电子设备及存储介质
CN202210697329.2 2022-06-20

Publications (1)

Publication Number Publication Date
WO2023245867A1 true WO2023245867A1 (zh) 2023-12-28

Family

ID=83291466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116502 WO2023245867A1 (zh) 2022-06-20 2022-09-01 能谱计数窗口的定位方法、装置、电子设备及存储介质

Country Status (3)

Country Link
EP (1) EP4328627A1 (zh)
CN (1) CN115097513B (zh)
WO (1) WO2023245867A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164407A1 (en) * 2007-01-10 2008-07-10 Yves Choquette Apparatus and method for monitoring snow water equivalent and soil moisture content using natural gamma radiation
US9069090B1 (en) * 2013-12-26 2015-06-30 Korea Institute Of Radiological & Medical Sciences Apparatus and method of determining optimal energy window for optimal positron emission tomography
CN107345923A (zh) * 2016-05-05 2017-11-14 清华大学 X射线探测方法、和x射线探测器
CN110012673A (zh) * 2016-09-30 2019-07-12 通用电气公司 用于光谱分析和增益调整的***和方法
CN110146915A (zh) * 2019-06-12 2019-08-20 成都理工大学 一种低活度γ能谱多峰稳谱方法
CN112904402A (zh) * 2021-02-03 2021-06-04 中国自然资源航空物探遥感中心 航空γ能谱测量质量控制方法
CN113189636A (zh) * 2021-05-10 2021-07-30 核工业航测遥感中心 基于多能量响应的航空γ能谱分析方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH466876A (de) * 1965-06-26 1968-12-31 Intertechnique Sa Verfahren zur automatischen Kompensation der durch die Fluoreszenzlösung bedingten Instabilitätsfaktoren
US4002909A (en) * 1967-09-28 1977-01-11 Packard Instrument Company, Inc. Data analyzing system having provision for optimizing counting conditions and thus improving statistical counting validity for enabling accurate computation of sample activity levels in liquid scintillation spectrometry
FR2958411B1 (fr) * 2010-04-02 2012-06-08 Commissariat Energie Atomique Procede d'analyse spectrometrique et dispositif apparente
CA2795445A1 (en) * 2010-06-30 2012-01-26 Schlumberger Canada Limited Neutron detection based on a boron shielded gamma detector
CN107167833B (zh) * 2017-05-10 2019-03-05 上海市计量测试技术研究院 一种γ谱假峰甄别方法、存储介质和***
CN112684490B (zh) * 2020-12-22 2024-05-24 上海工物高技术产业发展有限公司 能谱分区方法、装置、计算机设备和存储介质
CN113392509B (zh) * 2021-05-27 2022-08-23 南方医科大学 一种x射线实际能谱精确估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080164407A1 (en) * 2007-01-10 2008-07-10 Yves Choquette Apparatus and method for monitoring snow water equivalent and soil moisture content using natural gamma radiation
US9069090B1 (en) * 2013-12-26 2015-06-30 Korea Institute Of Radiological & Medical Sciences Apparatus and method of determining optimal energy window for optimal positron emission tomography
CN107345923A (zh) * 2016-05-05 2017-11-14 清华大学 X射线探测方法、和x射线探测器
CN110012673A (zh) * 2016-09-30 2019-07-12 通用电气公司 用于光谱分析和增益调整的***和方法
CN110146915A (zh) * 2019-06-12 2019-08-20 成都理工大学 一种低活度γ能谱多峰稳谱方法
CN112904402A (zh) * 2021-02-03 2021-06-04 中国自然资源航空物探遥感中心 航空γ能谱测量质量控制方法
CN113189636A (zh) * 2021-05-10 2021-07-30 核工业航测遥感中心 基于多能量响应的航空γ能谱分析方法

Also Published As

Publication number Publication date
EP4328627A1 (en) 2024-02-28
CN115097513A (zh) 2022-09-23
CN115097513B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US10366095B2 (en) Processing time series
US10127254B2 (en) Method of index recommendation for NoSQL database
US8364692B1 (en) Identifying non-distinct names in a set of names
WO2018176952A1 (zh) 一种室内定位方法及服务器
US10296656B2 (en) Managing database
US20220269655A1 (en) Design and implementation of data access metrics for automated physical database design
US10162867B2 (en) Low memory sampling-based estimation of distinct elements and deduplication
US20230177326A1 (en) Method and apparatus for compressing neural network model
CN108647261A (zh) 基于气象数据离散点网格化处理的全球等值线绘制方法
CN108399149B (zh) 一种富Hf矿物或岩石进行Hf同位素分析方法及***
CN103970646A (zh) 一种用于操作序列的自动分析方法及其***
CN109271466A (zh) 一种基于层次聚类与k均值算法的气象数据分析方法
WO2022252464A1 (zh) 一种路段的路面性能历史数据匹配方法、介质及***
WO2023245867A1 (zh) 能谱计数窗口的定位方法、装置、电子设备及存储介质
JPWO2014141660A1 (ja) システム分析装置、及び、システム分析方法
CN110737727B (zh) 一种数据处理的方法及***
US11287997B2 (en) Method, electronic device and computer program product for managing disk array
CA3052775A1 (en) Method, apparatus, medium and electronic device for analysis of user stability
CN113656529B (zh) 道路精度的确定方法、装置和电子设备
JP2024527231A (ja) エネルギスペクトル計数ウィンドウの位置決め方法、装置、電子機器及び記憶媒体
US20230273875A1 (en) Method for searching free blocks in bitmap data, and related components
CN114153899A (zh) 一种获取不同用地类型单位建筑面积就业岗位数的方法、电子设备
WO2023231184A1 (zh) 一种特征筛选方法、装置、存储介质及电子设备
US11410749B2 (en) Stable genes in comparative transcriptomics
CN113128574A (zh) 场景缩减方法、装置及终端设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023573365

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022941881

Country of ref document: EP

Effective date: 20231124