WO2023245845A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2023245845A1
WO2023245845A1 PCT/CN2022/113066 CN2022113066W WO2023245845A1 WO 2023245845 A1 WO2023245845 A1 WO 2023245845A1 CN 2022113066 W CN2022113066 W CN 2022113066W WO 2023245845 A1 WO2023245845 A1 WO 2023245845A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection
battery
conductive medium
battery according
medium
Prior art date
Application number
PCT/CN2022/113066
Other languages
English (en)
French (fr)
Inventor
李星
金海族
李振华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023245845A1 publication Critical patent/WO2023245845A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the present application provides a battery and an electrical device that can prevent failure problems caused by high-voltage sparking when a battery cell is thermally out of control, so that the battery and the electrical device have better safety.
  • this application provides a battery, which includes:
  • a number of battery cells are located in the receiving cavity.
  • the collection component is disposed in the accommodation cavity and is configured to collect the conductive medium ejected when at least part of the battery cells are thermally runaway.
  • a collection component is provided to collect the conductive medium ejected when at least part of the battery cells are thermally runaway, thereby preventing the conductive medium from overlapping between the poles of two adjacent battery cells, and/or overlapping.
  • High voltage is formed between the columns to avoid high voltage ignition, so the safety of the battery can be improved.
  • the temperature of the side of the battery cell where the pressure relief mechanism is installed can also be reduced, so as to improve the safety performance of the battery.
  • the collection component is used to collect the conductive medium ejected when all battery cells undergo thermal runaway.
  • the collecting assembly includes a plurality of collecting pieces, each collecting piece is used to collect the conductive medium ejected when at least one battery cell undergoes thermal runaway.
  • the entire collection assembly is divided into multiple collection pieces, which can collect the conductive media ejected by all battery cells during thermal runaway, while also making the assembly and setting of the collection assembly more flexible.
  • all collecting parts correspond to all battery cells one-to-one, and each collecting part is used to collect the conductive medium ejected when the corresponding battery cell thermally runs out of control.
  • the conductive medium ejected when each battery cell is thermally runaway can be collected, thereby preventing the conductive medium from overlapping between two adjacent battery cells or overlapping the same battery cell.
  • a high-voltage ignition is formed between the pole and the end cap, so that the battery has better safety.
  • the collection member includes a collection shell, the collection shell has a collection cavity and a collection port connected to the collection cavity, and the collection port is configured to allow the conductive medium to pass through and be stored in the collection cavity.
  • the collection case can collect the conductive medium when the conductive medium is ejected, thereby avoiding high-voltage ignition and thus improving the safety of the battery.
  • the collection piece includes a collection shell, the collection shell has a collection cavity and a collection port connected to the collection cavity, an insulating medium is provided in the collection cavity, and the collection port is configured to allow the conductive medium to pass through and enter the collection cavity, Insulating media is used to wrap conductive media.
  • the conductive medium Due to the wrapping of the insulating medium, the conductive medium can be insulated from the outside. In this way, no matter whether the conductive medium leaks from the collection case and comes into contact with the battery cells, it can avoid high-voltage ignition inside the battery, thus helping to improve the safety of the battery.
  • the insulating medium is formed by a suspended material structure formed by exciting and decomposing insulating powder by a conductive medium whose temperature is greater than a set threshold.
  • the setting of external heat sources is reduced, which facilitates the manufacturing difficulty and manufacturing cost of the battery.
  • the insulating powder occupies a smaller volume, so in the conductive medium Before entering the collection shell, more insulating powder can be placed in the collection shell. In this way, more suspended matter will be formed by decomposition, so that the conductive medium can be better wrapped to ensure that the conductive medium can be insulated from the outside.
  • the mass of the insulating powder is G
  • each battery cell has a pressure relief mechanism
  • the cross-sectional area of the pressure relief mechanism is S
  • the ratio of G to S satisfies the condition: 10 -4 grams/square millimeter (g /mm 2 ) ⁇ G/S ⁇ 5 grams/square millimeter (g/mm 2 ).
  • the insulating powder contained in the collection shell can be decomposed to form enough insulating medium for wrapping the conductive medium, thereby This ensures the reliability of the battery cell operation.
  • the ratio of G and S satisfies the condition: 10 -3 g/mm 2 ⁇ G/S ⁇ 0.5 g/mm 2 .
  • the insulating powder contained in the collection shell can be decomposed to form a sufficient amount of insulating medium for wrapping the conductive medium. , thus ensuring the safety of the battery cells.
  • the ratio of G and S satisfies the condition: 0.005g/mm 2 ⁇ G/S ⁇ 0.1 g/mm 2 .
  • the insulating medium formed by the decomposition of the insulating powder can completely wrap the conductive medium, thereby providing better safety.
  • the mass of the insulating powder is G
  • the working power of the battery cell is C
  • the ratio of G and C satisfies the conditions: 10 -4 grams/ampere hour (g/Ah) ⁇ G/C ⁇ 100 g/ Ampere hours (g/Ah).
  • the insulating powder contained in the collection shell can be decomposed to form an insulating medium sufficient for wrapping the conductive medium, thereby ensuring The safety of battery cells.
  • the ratio of G and C satisfies the condition: 0.004g/Ah ⁇ G/C ⁇ 2.2g/Ah.
  • the insulating powder contained in the collection shell can be decomposed to form an insulating medium sufficient for wrapping the conductive medium, thereby ensuring the safety of the battery cells.
  • the ratio of G and C satisfies the condition: 0.02g/Ah ⁇ G/C ⁇ 0.43g/Ah.
  • the insulating medium formed by the decomposition of the insulating powder can completely wrap the conductive medium, thereby providing better safety.
  • the battery cell has an ejection outlet for ejecting the conductive medium.
  • the distance between the plane where the collection outlet is located and the plane where the ejection outlet is located is H. H satisfies the condition: 0 millimeters (mm) ⁇ H ⁇ 20 mm (mm) range.
  • the thermally conductive medium can enter the collection shell at a relatively high temperature and excite the insulating powder, so that the insulating medium formed by the insulating powder can completely wrap the conductive medium, thereby ensuring the safety of the battery.
  • H satisfies the condition: 0mm ⁇ H ⁇ 10mm.
  • H By setting H to meet the condition: 0mm ⁇ H ⁇ 10mm, it is ensured that the insulating powder can be thermally decomposed to form an insulating medium, thereby avoiding high-voltage ignition of the battery.
  • the collection member further includes a cover body, and the cover body is configured to close the collection opening before the battery cell thermally runs out of control, so as to seal the insulating medium or insulating powder in the collection cavity.
  • the cover closes the collection port to seal the insulating medium or insulating powder in the collection cavity, thereby preventing the insulating powder from falling; when the battery cell thermally runs out of control, the cover Open the collection port to ensure that the conductive medium can enter the collection chamber and be collected. It can be seen that the setting of the cover ensures that the conductive medium can be wrapped, so it can avoid high-voltage ignition of the battery.
  • the cover opens the collection opening with the impact of the conductive medium.
  • the cover By arranging the cover to open the collection port with the impact of the conductive medium, the number of driving parts is reduced, thereby effectively reducing the manufacturing cost and manufacturing difficulty of the battery.
  • the present application provides an electrical device, which includes the battery in the above embodiment, and the battery is used to provide electrical energy to the electrical device.
  • Figure 1 is a schematic structural diagram of a vehicle according to some embodiments of the present application.
  • Figure 2 is an exploded view of a battery according to some embodiments of the present application.
  • Figure 3 is a cross-sectional view of a battery according to some embodiments of the present application.
  • Figure 4 is a cross-sectional view of the collector in the battery shown in Figure 3;
  • Figure 5 is an exploded view of a battery cell according to some embodiments of the present application.
  • Electrode assembly 20. Battery cell; 21. End cover; 22. Case; 23. Pole; 24. Pressure relief mechanism; 25. Electrode assembly; 30. Collection piece; 31. Collection shell; 32. Collection port; 33. Collection cavity.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. As battery application fields continue to expand, its market demand is also expanding.
  • the battery includes a box, several battery cells and collection components. All battery cells and collection components are equipped with In the box, the collection component can collect at least part of the conductive media ejected when the battery cells are thermally out of control, so as to prevent the conductive media from overlapping and causing high-voltage sparks, which can improve the reliability of battery operation and battery life.
  • the batteries disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery disclosed in this application. This will help reduce the risk of battery high-voltage sparking and improve battery safety and battery life.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • an electrical device is a vehicle.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery is provided inside the vehicle 1000 , and the battery may be provided at the bottom, head, or tail of the vehicle 1000 .
  • the battery may be used to power the vehicle 1000 , for example, the battery may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery to provide power to the motor 300 , for example, for starting, navigation, and operating power requirements of the vehicle 1000 .
  • the battery can not only be used as an operating power source of the vehicle 1000, but also can be used as a driving power source of the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • the battery 100 includes a box 10, a collection component and a plurality of battery cells 20.
  • the box 10 has a receiving cavity 13.
  • the collection component and the plurality of battery cells 20 are disposed in the containing cavity 13, and the collecting component is configured to be used.
  • the conductive medium ejected when at least some of the battery cells 20 are thermally runaway is collected.
  • the box 10 is used to provide accommodating space for the battery cells 20 and collection components, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 accommodating cavity 13.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving cavity.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole composed of the plurality of battery cells 20 can be accommodated in the accommodation cavity 13 of the box 10; of course, the battery 100 can also be composed of multiple batteries.
  • the battery cells 20 are first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 10 .
  • the battery 100 may also include other structures.
  • the battery 100 may further include a bus component for realizing electrical connections between multiple battery cells 20 .
  • each battery cell 20 can be a secondary battery or a primary battery; it can also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the battery cell 20 refers to the smallest unit that constitutes the battery 100 . As shown in FIG. 5 , the battery cell 20 includes an end cover 21 , a case 22 , an electrode assembly 25 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the case 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 21 is less likely to deform when subjected to extrusion and collision, so that the battery cell 20 can have better properties. With high structural strength, safety performance can also be improved.
  • the end cap 21 may be provided with functional components such as pole posts 23 and the like.
  • the pole 23 can be used to electrically connect with the electrode assembly 25 for outputting or inputting electric energy of the battery cell 20 .
  • the end cap 21 may also be provided with a pressure relief mechanism 24 for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the end cap 21 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiment of the present application.
  • the housing 22 is a component used to cooperate with the end cover 21 to form an internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 25 , the electrolyte, and other components.
  • the housing 22 and the end cover 21 may be independent components, and an opening may be provided on the housing 22.
  • the end cover 21 covers the opening at the opening to form the internal environment of the battery cell 20.
  • the end cover 21 and the housing 22 can also be integrated. Specifically, the end cover 21 and the housing 22 can form a common connection surface before other components are put into the housing. When it is necessary to encapsulate the inside of the housing 22 At this time, the end cover 21 covers the housing 22 again.
  • the housing 22 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the electrode assembly 25 .
  • the housing 22 may be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in the embodiments of the present application.
  • the electrode assembly 25 is a component in the battery cell 20 where electrochemical reactions occur.
  • One or more electrode assemblies 25 may be contained within the housing 22 .
  • the electrode assembly 25 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • Both the positive electrode sheet and the negative electrode sheet include a current collector and an active material layer located on the current collector. The active material layer on the positive electrode sheet and the active material layer on the negative electrode sheet react with the electrolyte to achieve charging and discharging.
  • the collection assembly is disposed in the accommodation cavity 13 and is used to collect the conductive medium ejected from the pressure relief mechanism 24 when at least part of the battery cells 20 are thermally runaway.
  • the conductive medium may be a conductive powder formed by the active material on the active material layer in the positive electrode sheet or negative electrode sheet at high temperature, or it may also be formed by the material on the current collector in the positive electrode sheet or negative electrode sheet at high temperature. Made of conductive powder.
  • the collection component can adopt a variety of structures.
  • the collection assembly is an integral body and is disposed on one side of the pressure relief mechanism 24 of some of the battery cells 20 to collect the conductive medium ejected by this part of the battery cells 20 .
  • the collection assembly may also include multiple collection units. All collection units correspond to all battery cells 20 one-to-one, and each collection unit is located on the side of the corresponding battery cell 20 where the pressure relief mechanism 24 is provided. And used to collect the conductive medium ejected by the corresponding battery cell 20 .
  • the collection component can be in various shapes, such as disk-shaped, box-shaped, etc.
  • a collection assembly is provided to collect at least part of the conductive medium ejected when the battery cells 20 are thermally runaway, thereby preventing the conductive medium from overlapping between the poles 23 of two adjacent battery cells 20, and /or overlap between the charged casings 22 of two adjacent battery cells 20, and/or overlap the charged casing 22 of one of the two adjacent battery cells 20
  • a high voltage is formed between the battery cell 20 and the pole 23 of another battery cell 20 to avoid high voltage ignition, so the safety of the battery 100 can be improved.
  • the temperature of the side of the battery cell 20 where the pressure relief mechanism 24 is disposed can also be reduced, so as to improve the safety performance of the battery 100 .
  • the collection assembly is used to collect the conductive medium ejected when all the battery cells 20 are thermally runaway.
  • the conductive medium ejected when any one of the battery cells 20 undergoes thermal runaway can be collected by the collection component.
  • the collection assembly includes a plurality of collection pieces 30.
  • Each collection piece 30 is used to collect the conductive medium ejected when at least one battery cell 20 is thermally runaway. .
  • each collecting member 30 can be used to collect the conductive medium ejected when one battery cell 20 is thermally runaway, or can be used to collect the conductive medium ejected when multiple battery cells 20 are thermally runaway. All the collecting parts 30 cooperate to collect all the conductive media ejected when the battery cells 20 are thermally runaway.
  • the entire collection assembly is divided into multiple collection pieces 30, which can collect the conductive medium ejected by all the battery cells 20 when they are thermally runaway, while also making the assembly and setting of the collection assembly more flexible.
  • all collecting parts 30 correspond to all battery cells 20 one-to-one, and each collecting part 30 is used to collect the conductive medium ejected when the corresponding battery cell 20 is thermally runaway.
  • the collecting piece 30 is the above-mentioned collecting unit.
  • each collection piece 30 is provided on the side of the corresponding battery cell 20 where the pressure relief mechanism 24 is provided, and is used to collect the conductive medium sprayed from the pressure relief mechanism 24 .
  • each collection piece 30 is located on the upper side of the corresponding battery cell 20 and is aligned with the pressure relief mechanism 24 .
  • the collecting member 30 may be cylindrical, conical, cubic, etc., and its specific shape is not limited here, as long as there is space within the collecting member 30 for collecting the conductive medium.
  • the conductive medium formed inside the battery cell 20 will be ejected from the pressure relief mechanism 24 of the battery cell 20 .
  • the conductive medium ejected when each battery cell 20 is thermally runaway can be collected, thereby preventing the conductive medium from overlapping between two adjacent battery cells 20 or overlapping at the same time.
  • a high-voltage spark is formed between the pole 23 and the end cap 21 of a battery 100, so that the battery 100 has better safety.
  • the collection piece 30 includes a collection shell 31 having a collection cavity 33 and a collection port 32 connected to the collection cavity 33.
  • the collection port 32 is configured to allow the conductive medium to pass through and be received in the collection cavity.
  • a door can be provided on each collection member 30 .
  • the door closes the collection opening 32 so that the collection opening 32 can remain in the collection cavity 33 .
  • the door can open or close the collection port 32, but it must be ensured that when the battery cell 20 suffers from thermal runaway, the collection port 32 can be opened.
  • the collection shell 31 may be in the shape of a cylinder, a cone, a cube, etc. with an opening.
  • the collection shell 31 can use low-melting point insulating materials such as PET, PP, and PE as the shell, with a melting point r ⁇ 1000°C. In some embodiments, the melting point r ⁇ 200°C. Materials with lower melting points have lower costs, so as to reduce the manufacturing cost of the battery 100 . However, what needs to be ensured is that before the collection shell 31 collects the conductive medium, the collection shell 31 needs to be able to maintain its shape and be able to collect the conductive medium.
  • the collection shell 31 can be a separate shell structure, which can contain the conductive medium in its collection cavity 33, or can also insulate the collected conductive medium before releasing it.
  • the collection case 31 can collect the conductive medium when the conductive medium is ejected, thereby avoiding high-voltage ignition, thus improving the safety of the battery 100.
  • the collection part 30 includes a collection shell 31.
  • the collection shell 31 has a collection cavity 33 and a collection port 32 connected with the collection cavity 33.
  • An insulating medium is provided in the collection cavity 33, and the collection port 32 is configured as The conductive medium is allowed to pass through and enter the collection cavity 33, and the insulating medium is used to wrap the conductive medium.
  • the insulating medium is a suspended substance, which can exist in the collection shell 31 before the conductive medium enters the collection shell 31, or it can also be formed from insulating powder during the process of the conductive medium entering the collection shell 31. Formed by thermal decomposition.
  • the heat source of the insulating powder may be a conductive medium or other external heat source.
  • the insulating medium wraps the conductive medium to achieve insulation treatment of the conductive medium.
  • the conductive medium Due to the wrapping of the insulating medium, the conductive medium can be insulated from the outside. In this way, no matter whether the conductive medium leaks from the collection case 31 and comes into contact with the battery cell 20, high-voltage ignition inside the battery 100 can be avoided, thus helping to improve the battery 100. security.
  • the insulating medium is formed by a suspended material structure formed by excitation and decomposition of insulating powder by a conductive medium whose temperature is greater than a set threshold.
  • the collection case 31 contains insulating powder.
  • the insulating powder can absorb the heat of the conductive medium and decompose to form an insulating medium that can wrap the conductive medium.
  • the insulating powder can be KHCO 3 (potassium bicarbonate), NH 4 H 2 PO 4 (ammonium dihydrogen phosphate), NaHCO 3 (sodium bicarbonate), K 2 CO 3 (potassium carbonate), (NH 4 ) 2 SO 4 (ammonium sulfate), NH 4 HSO 4 (ammonium hydrogen sulfate), K 4 Fe(CN) 6 ⁇ 3H 2 O (potassium ferricyanide trihydrate), Na 2 CO 3 (sodium carbonate), in ammonium phosphate salts One kind or several kinds.
  • KHCO 3 (potassium bicarbonate), NH 4 H 2 PO 4 (ammonium dihydrogen phosphate), NaHCO 3 (sodium bicarbonate), K 2 CO 3 (potassium carbonate), (NH 4 ) 2 SO 4 (ammonium sulfate), NH 4 HSO 4 (ammonium bisulfate), K 4 Fe(CN) 6 ⁇ 3H 2 O (potassium ferricyanide trihydrate), Na 2 CO 3 (sodium carbonate), each of the ammonium phosphate salts can Under the excitation of the conductive medium, it decomposes to form a suspended substance formed by mixing particles and gas.
  • K 2 CO 3 K 2 O+CO 2 ⁇
  • the installation of external heat sources is reduced, which facilitates the manufacturing difficulty and manufacturing cost of the battery 100.
  • the insulating powder occupies a smaller volume, which improves conductivity. Before the medium enters the collection shell 31, more insulating powder can be placed in the collection shell 31. In this way, more suspended matter will be formed by decomposition, thereby better wrapping the conductive medium to ensure that the conductive medium can be insulated from the outside.
  • the mass of the insulating powder is G
  • each battery cell 20 has a pressure relief mechanism 24, the cross-sectional area of the pressure relief mechanism 24 is S, and the ratio of G to S satisfies the condition: 10 -4 Gram/square millimeter (g/mm 2 ) ⁇ G/S ⁇ 5 grams/square millimeter (g/mm 2 ).
  • the cross-sectional area of the pressure relief mechanism 24 refers to the cross-sectional area of the pressure relief mechanism 24 and the end cover 21 which are arranged parallel to each other.
  • the cross-sectional area of the pressure relief mechanism 24 is positively related to the working power C of the battery cell 20. The greater the working power C of the battery cell 20, the more gas is generated during the working process.
  • the pressure relief The cross-sectional area of the mechanism 24 should also be set larger. Then, when the battery cell 20 of this type undergoes thermal runaway, the larger the volume of the conductive medium it ejects, the greater the demand for the insulating medium in the collection case 31 for wrapping the conductive medium.
  • the insulating powder contained in the collection shell 31 can be decomposed to form sufficient insulating medium for wrapping the conductive medium. This ensures the reliability of the operation of the battery cell 20 .
  • the ratio of G to S satisfies the condition: 10 -3 g/mm 2 ⁇ G/S ⁇ 0.5 g/mm 2 .
  • the insulating powder contained in the collection shell 31 can be decomposed to form a sufficient amount of insulation for wrapping the conductive medium. medium, thereby ensuring the safety of the battery cell 20 .
  • the ratio of G to S satisfies the condition: 0.005g/mm 2 ⁇ G/S ⁇ 0.1 g/mm 2 .
  • the insulating medium formed by the decomposition of the insulating powder can completely wrap the conductive medium, thereby providing better safety.
  • the mass of the insulating powder is G
  • the working power of the battery cell 20 is C
  • the ratio of G and C satisfies the condition: 10 -4 grams/ampere hour (g/Ah) ⁇ G/C ⁇ 100 grams/amp hour (g/Ah).
  • the working power refers to the power of the battery cell 20 during operation, which may be the initial power or may be less than the initial power. It can be determined that as the usage time of the battery cell 20 is extended, the operating power of the battery cell 20 gradually decreases.
  • the initial power refers to the power of the battery cell 20 when it is not used.
  • the greater the working capacity C of the battery cell 20 the greater the volume of conductive medium ejected by the battery cell 20 when thermal runaway occurs, and the volume of the conductive medium wrapped in the collection case 31 will be larger.
  • the demand for insulating media is also greater.
  • the insulating powder contained in the collection shell 31 can be decomposed to form an insulating medium sufficient for wrapping the conductive medium, thereby ensuring The safety of the battery cell 20 is improved.
  • the ratio of G and C satisfies the condition: 0.004g/Ah ⁇ G/C ⁇ 2.2g/Ah.
  • the insulating powder contained in the collection shell 31 can be decomposed to form an insulating medium sufficient for wrapping the conductive medium, thereby ensuring the safety of the battery cells 20 .
  • the ratio of G to C satisfies the condition: 0.02g/Ah ⁇ G/C ⁇ 0.43g/Ah.
  • the insulating medium formed by the decomposition of the insulating powder can completely wrap the conductive medium, thereby providing better safety.
  • the battery cell 20 has an ejection port for ejecting conductive medium.
  • the distance between the plane where the collection port 32 is located and the plane where the ejection port is located is H, and H satisfies the condition: 0 millimeters (mm) Within the range of ⁇ H ⁇ 20 millimeters (mm).
  • the conductive medium ejected from the discharge port directly enters the collection case 31 through the collection port 32 and allows the insulating powder to be thermally decomposed to form an insulating medium. If the collection port 32 is far away from the ejection port, the conductive medium entering the collection shell 31 may have a low temperature and be unable to excite the insulating powder, resulting in failure in forming the insulating medium.
  • the heat-conducting medium can enter the collection shell 31 and excite the insulating powder at a higher temperature, so that The insulating medium formed by the insulating powder can completely wrap the conductive medium, thereby ensuring the safety of the battery 100 .
  • the collection piece in order to reduce the occupied volume of the collection piece 30, the collection piece is generally made of materials with thin side walls. Then when the conductive medium is ejected and passes through the collection port 32, the distance traveled by the conductive medium in the thickness direction of the side wall of the collection member is negligible, and on this distance, it can be considered that the conductive medium has almost no heat loss.
  • H satisfies the condition: 0mm ⁇ H ⁇ 10mm.
  • the collection member 30 further includes a cover configured to close the collection opening 32 before the battery cell 20 thermally runs out of control to seal the insulating medium or insulating powder within the collection cavity 33 .
  • the cover is used to open and close the collection port 32 .
  • the cover can close or open the collection port 32 under the driving of the driving member, or the cover can also be fixed at the collection port 32 and open the collection port 32 under the impact of the conductive medium.
  • the cover closes the collection port 32 to seal the insulating medium or insulating powder in the collection cavity 33, thus preventing the insulating powder from falling; , the cover opens the collection port 32 to ensure that the conductive medium can enter the collection cavity 33 and be collected. It can be seen that the arrangement of the cover ensures that the conductive medium can be wrapped, thus preventing the battery 100 from igniting at high voltage.
  • the cover opens the collection opening 32 by the impact force of the conductive medium.
  • the cover may be a sealing film, a sealing cover, or the like.
  • the cover opens the collection opening 32 with the help of the impact force of the conductive medium.
  • the cover breaks under the impact of the conductive medium to form an opening that can pass through the conductive medium and at least partially overlap the collection opening 32.
  • the cover opens the collection opening 32 under the impact of the conductive medium.
  • the medium is separated from the collection shell 31 under the impact, so as to completely open the collection port 32.
  • the conductive medium is wrapped by the insulating medium, and then falls into the box 10 through the collection port 32 . Due to the wrapping of the insulating medium, the conductive medium can be prevented from contacting the battery cells 20 in the box 10 to conduct electricity, thereby preventing the battery 100 from igniting under high voltage.
  • the cover By arranging the cover to open the collection port 32 with the impact of the conductive medium, the number of driving parts is reduced, thereby effectively reducing the manufacturing cost and manufacturing difficulty of the battery 100 .
  • H satisfies the condition: 0 mm ⁇ H ⁇ 20 mm
  • H satisfies the condition: 0 ⁇ H ⁇ 10 mm.
  • the cover can use The impact force of the conductive medium opens the collection opening 32 .
  • the present application also provides an electrical device, including the battery 100 of any of the above embodiments, and the battery 100 is used to provide electrical energy for the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a battery 100.
  • the battery 100 includes a box 10, several battery cells 20 and a collection assembly.
  • the collection assembly and all battery cells 20 They are all located in the accommodation cavity 13, and the collection assembly includes a plurality of collection pieces 30 corresponding to all battery cells 20.
  • Each collection piece 30 is configured to collect the corresponding battery cells 20 ejected when thermal runaway.
  • conductive medium The collection piece 30 includes a collection shell 31 and a cover.
  • the collection shell 31 has a collection cavity 33 and a collection port 32 connected with the collection cavity 33.
  • the collection cavity 33 is provided with insulating powder, and the insulating powder is configured to decompose under the excitation of the conductive medium.
  • An insulating medium capable of wrapping the conductive medium is formed, the cover is configured to close the collection opening 32 before the battery cell 20 is thermally runaway, and the cover opens the collection opening 32 with the impact of the conductive medium.
  • the cover opens the collection port 32 with the impact of the conductive medium, so that the conductive medium can enter the collection cavity 33 .
  • the insulating powder absorbs the heat of the conductive medium and decomposes to form an insulating medium that can wrap the conductive medium. After that, the insulating medium wraps the conductive medium and falls from the collection member 30 to the outside.
  • the conductive medium is wrapped and cannot come into contact with the case 22, the end cap 21 and the pole 23, thereby preventing the battery cells 20 from being connected in series to form high-voltage sparks, thus improving the safety of the battery 100. sex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种电池及用电装置。电池包括:箱体,其内具有容纳腔;若干个电池单体,设于容纳腔内;收集组件,配接于容纳腔内,并被配置为用于收集每个电池单体热失控时喷出的导电介质。本申请中提及的电池及用电装置能够防止电池单体热失控时引发高压打火。

Description

电池及用电装置
交叉引用
本申请引用于2022年06月23日递交的名称为“电池及用电装置”的第2022215763570号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
传统的电池在其内的电池单体热失控时,容易引发高压打火,导致电池失效。
发明内容
鉴于上述问题,本申请提供一种电池及用电装置,能够防止电池单体热失控时引发高压打火而导致的失效问题,以使得电池及用电装置具有更优的安全性。
第一方面,本申请提供了一种电池,其包括:
箱体,其内具有容纳腔;
若干个电池单体,设于容纳腔内;以及
收集组件,设于容纳腔内,并被配置为用于收集至少部分电池单体热失控时喷出的导电介质。
在本申请中,通过设置收集组件收集至少部分电池单体热失控时喷出的导电介质,从而可防止导电介质搭接在相邻的两个电池单体的极柱之间,和/或搭接在相邻的两个电池单体带电的壳体之间,和/或搭接在相邻的两个电池单体中其中一个电池单体的带电的壳体与另一个电池单体的极柱之间等而形成高压,以避免高压打火,故能够提升电池的安全性。此外,通过设置收集组件收集导电介质,还可降低电池单体中设置泄压机构一侧的温度,以便于改善电池的安全性能。
在一实施例中,收集组件用于收集所有电池单体热失控时喷出的导电介质。
这样,能够避免导电介质搭接在相邻的两个电池单体的极柱之间,和/或搭接在相邻的两个电池单体带电的壳体之间,和/或搭接在相邻的两个电池单体中其中一个电池单体的带电的壳体与另一个电池单体的极柱之间等而形成高压,以避免高压打火,故能够提升电池的安全性。
在一实施例中,收集组件包括若干个收集件,每个收集件用于收集至少一个电池单体热失控时喷出的导电介质。
在该种设计下,整个收集组件被分割成了多个收集件,在能够收集所有电池单体热失控时喷出的导电介质的同时,还使得收集组件的装配及设置更灵活。
在一实施例中,所有收集件与所有电池单体一一对应,每个收集件用于收集对应的电池单体热失控时喷出的导电介质。
通过设置若干个收集件,可收集每个电池单体热失控时喷出的导电介质,从而可防止导电介质搭接在相邻的两个电池单体之间,或者搭接在同一个电池的极柱与端盖之间而形成高压打火,以使得电池具有较优的安全性。
在一实施例中,收集件包括收集壳,收集壳具有收集腔及与收集腔连通的收集口,收集口被配置为允许导电介质通过并收纳于收集腔内。
通过设置收集壳,收集壳能够在导电介质喷出时收集导电介质,从而可避免高压打火,故能够提升电池的安全性。
在一实施例中,收集件包括收集壳,收集壳具有收集腔及与收集腔连通的收集口,收集腔内设置有绝缘介质,收集口被配置为允许导电介质通过并进入至收集腔内,绝缘介质用于包裹导电介质。
由于绝缘介质的包裹,导电介质可与外部绝缘,这样,无论导电介质是否从收集壳内泄漏并与电池单体接触,均可避免电池内部高压打火,从而有助于提升电池的安全性。
在一实施例中,绝缘介质为由温度大于设定阈值的导电介质激发并分解绝缘粉末所形成的悬浮物质构造形成。
在该种设计下,一方面,减少了外部热源的设置,便于降低电池的制造难度及制造成本,另一方面,相较于悬浮物质来说,绝缘粉末占据的体积更小,则在导电介质进入收集壳前,可在收集壳内设置更多的绝缘粉末,这样,分解形成的悬浮物质也更多,从而能够更好的包裹导电介质,以保证导电介质能够与外部绝缘。
在一实施例中,绝缘粉末的质量为G,每个电池单体具有泄压机构,泄压机构的横截面面积为S,G与S的比值满足条件:10 -4克/平方毫米(g/mm 2)≤G/S≤5克/平方毫米(g/mm 2)。
通过设置G与S的比值满足条件:10 -4g/mm 2≤G/S≤5g/mm 2,使得收集壳内容纳的绝缘粉末能够分解形成足够的用于包裹导电介质的绝缘介质,从而保证了电池单体工作的可靠性。
在一实施例中,G与S的比值满足条件:10 -3g/mm 2≤G/S≤0.5g/mm 2
通过设置G与S的比值满足条件:10 -3g/mm 2≤G/S≤0.5g/mm 2,使得收集壳内容纳的绝缘粉末能够分解形成足量的用于包裹导电介质的绝缘介质,从而保证了电池单体的安全 性。
在一实施例中,G与S的比值满足条件:0.005g/mm 2≤G/S≤0.1g/mm 2
在该种实施例下,当导电介质进入至收集腔内时,绝缘粉末分解形成的绝缘介质能够完全包裹导电介质,从而具有较优的安全性。
在一实施例中,绝缘粉末的质量为G,电池单体的工作电量为C,G与C的比值满足条件:10 -4克/安培小时(g/Ah)≤G/C≤100克/安培小时(g/Ah)。
通过设置G与C的比值满足条件:10 -4g/Ah≤G/C≤100g/Ah,可使得收集壳内容纳的绝缘粉末能够分解形成足够用于包裹导电介质的绝缘介质,从而保证了电池单体的安全性。
在一实施例中,G与C的比值满足条件:0.004g/Ah≤G/C≤2.2g/Ah。
在这样的比值范围内,收集壳内容纳的绝缘粉末能够分解形成足够用于包裹导电介质的绝缘介质,从而保证了电池单体的安全性。
在一实施例中,G与C的比值满足条件:0.02g/Ah≤G/C≤0.43g/Ah。
在该种实施例下,当导电介质进入至收集腔内时,绝缘粉末分解形成的绝缘介质能够完全包裹导电介质,从而具有较优的安全性。
在一实施例中,电池单体具有喷出导电介质的喷出口,收集口所在的平面与喷出口所在的平面之间的间距为H,H满足条件:0毫米(mm)≤H≤20毫米(mm)的范围内。
在这样的范围内,导热介质能够保持在较高的温度状态下进入至收集壳内并激发绝缘粉末,以使得绝缘粉末形成的绝缘介质能够完全包裹导电介质,从而保证了电池的安全性。
在一实施例中,H满足条件:0mm≤H≤10mm的范围内。
通过设置H满足条件:0mm≤H≤10mm的范围内,从而保证了绝缘粉末可受热分解形成绝缘介质,从而可避免电池高压打火。
在一实施例中,收集件还包括盖体,在盖体被构造为在电池单体热失控前关闭收集口,以将绝缘介质或者绝缘粉末密封于收集腔内。
通过设置盖体,在电池单体热失控前,盖体关闭收集口,以将绝缘介质或者绝缘粉末密封于收集腔内,从而可防止绝缘粉末掉落;在电池单体热失控时,盖体打开收集口,以保证导电介质能够进入至收集腔内并进行收集。由此可见,盖体的设置,保证了导电介质能够被包裹,故能够避免电池高压打火。
在一实施例中,盖体借助导电介质的冲击力打开收集口。
而通过设置盖体借助导电介质的冲击力打开收集口,减少了驱动件的设置,从而便于有效降低电池的制造成本及制造难度。
第二方面,本申请提供了一种用电装置,其包括上述实施例中的电池,电池用于为用电装置提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的***图;
图3为本申请一些实施例的电池的剖面图;
图4为图3所示的电池中收集件的剖面图;
图5为本申请一些实施例的电池单体的***图。
附图标号:
1000、车辆;
100、电池;200、控制器;300、马达;
10、箱体;11、第一部分;12、第二部分;13、容纳腔;
20、电池单体;21、端盖;22、壳体;23、极柱;24、泄压机构;25、电极组件;30、收集件;31、收集壳;32、收集口;33、收集腔。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,电池的应用越加广泛。电池不仅被应用于水力、火力、风力和太阳能电站等储能电源***,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本申请人注意到,在实际使用的过程中,在电池中的电池单体热失控时,容易引发电池高压打火,导致电池失效。
通过申请人仔细研究发现,导致电池高压打火的原因之一在于:电池单体热失控时,电池单体内部喷出的导电介质容易搭接在同一个电池单体的极柱与端盖之间导致壳体与端盖均带电,和/或导电介质搭接在带电的两个端盖,或者带电的两个壳体之间导致相邻的两个电池单体串联,和/或导电介质搭接在相邻的两个电池单体的极柱之间导致相邻的两个电池单体串联,进而,串联的电池单体之间再通过导电介质继续串联,将引发高压打火,电池的安全性降低。
为了缓解电池单体热失控时引发高压打火的问题,申请人深入研究发现,设计了一种电池,电池包括箱体、若干个电池单体及收集组件,所有电池单体及收集组件均设于箱体内,且收集组件能够收集至少部分电池单体热失控时喷出的导电介质,以防止导电介质搭接而引发高压打火,能够提升电池工作的可靠性及电池寿命。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池等组成该用电装置的电源***,这样,有利于降低电池高压打火 的风险,提升电池的安全性及电池寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池,电池可以设置在车辆1000的底部或头部或尾部。电池可以用于车辆1000的供电,例如,电池可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2、图3及图4。电池100包括箱体10、收集组件及若干个电池单体20,箱体10内具有容纳腔13,收集组件及若干个电池单体20均设于容纳腔13内,且收集组件被配置为用于收集至少部分电池单体20热失控时喷出的导电介质。
其中,箱体10用于为电池单体20及收集组件提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳腔13。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳腔13;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10的容纳腔13内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电 池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请参照图5,电池单体20是指组成电池100的最小单元。如图5,电池单体20包括端盖21、壳体22、电极组件25以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。在一些实施例中,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如极柱23等的功能性部件。极柱23可以用于与电极组件25电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构24。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件25、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电极组件25的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件25是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件25。电极组件25主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片均包括集流体及设于集流体上的活性物质层,正极片上的活性物质层和负极片上的活性物质层与电解液发生反应,可实现充放电。
收集组件设于容纳腔13内,并用于收集至少部分电池单体20热失控时从泄压机构24处喷出的导电介质。其中,导电介质可以为由正极片或负极片中活性物质层上的活性物质在高温下形成的导电粉末构成,或者,也可以由正极片或负极片中集流体上的物质在高温下形成的导电粉末构成。
请再次参阅图3,并同时参阅图5,在一些实施例中,收集组件可以采用多种结构。在一些实施例中,收集组件为一个整体并设于部分电池单体20的泄压机构24的一侧,以用于收集该部分的电池单体20喷出的导电介质。在另一些实施例中,收集组件还可以包括多 个收集单元,所有的收集单元与所有电池单体20一一对应,每个收集单元位于对应的电池单体20设置泄压机构24的一侧并用于收集对应的电池单体20喷出的导电介质。当然,收集组件可以是多种形状,比如,盘状、箱状等等。
在本申请中,通过设置收集组件收集至少部分电池单体20热失控时喷出的导电介质,从而可防止导电介质搭接在相邻的两个电池单体20的极柱23之间,和/或搭接在相邻的两个电池单体20带电的壳体22之间,和/或搭接在相邻的两个电池单体20中其中一个电池单体20的带电的壳体22与另一个电池单体20的极柱23之间等而形成高压,以避免高压打火,故能够提升电池100的安全性。此外,通过设置收集组件收集导电介质,还可降低电池单体20中设置泄压机构24一侧的温度,以便于改善电池100的安全性能。
在本申请的一些实施例中,收集组件用于收集所有电池单体20热失控时喷出的导电介质。
也就是说,任意一个电池单体20发生热失控时喷出的导电介质均可被收集组件收集。
这样,能够避免导电介质搭接在相邻的两个电池单体20的极柱23之间,和/或搭接在相邻的两个电池单体20带电的壳体22之间,和/或搭接在相邻的两个电池单体20中其中一个电池单体20的带电的壳体22与另一个电池单体20的极柱23之间等而形成高压,以避免高压打火,故能够提升电池100的安全性。
请一并参阅图3及图4,在本申请的一些实施例中,收集组件包括若干个收集件30,每个收集件30用于收集至少一个电池单体20热失控时喷出的导电介质。
在一些实施例中,每个收集件30可以用于收集一个电池单体20热失控时喷出的导电介质,也可以用于收集多个电池单体20热失控时喷出的导电介质。所有的收集件30配合能够收集所有的电池单体20热失控时喷出的导电介质。
在该种设计下,整个收集组件被分割成了多个收集件30,在能够收集所有电池单体20热失控时喷出的导电介质的同时,还使得收集组件的装配及设置更灵活。
在本申请的一些实施例中,所有收集件30与所有电池单体20一一对应,每个收集件30用于收集对应的电池单体20热失控时喷出的导电介质。
可以理解地,收集件30即为上述收集单元。
具体地,每个收集件30设于对应的电池单体20中设置泄压机构24的一侧,并用于收集从泄压机构24处喷出的导电介质。在一些实施例中,每个收集件30位于对应的电池单体20的上侧,并与泄压机构24对齐设置。
在一些实施例中,收集件30可以为筒状、锥状、立方体状等等,其具体形状在此处不做限定,仅需保证收集件30内具有空间能够用于收集导电介质即可。
电池单体20发生热失控时,电池单体20内部形成的导电介质将从电池单体20的泄 压机构24处喷出。通过设置若干个收集件30,可收集每个电池单体20热失控时喷出的导电介质,从而可防止导电介质搭接在相邻的两个电池单体20之间,或者搭接在同一个电池100的极柱23与端盖21之间而形成高压打火,以使得电池100具有较优的安全性。
在本申请的一些实施例中,收集件30包括收集壳31,收集壳31具有收集腔33及与收集腔33连通的收集口32,收集口32被配置为允许导电介质通过并收纳于收集腔33内。
比如,可以在每个收集件30上设置门体,当导电介质收纳于收集腔33内后,门体关闭收集口32,以使得收集口32能够保留在收集腔33内。至于在电池单体20未发生热失控时,门体可以打开或者关闭收集口32,但须保证当电池单体20发生热失控时,收集口32可打开即可。
在一些实施例中,收集壳31可以为具有开口的筒状、锥状、立方体状等等。
在一些实施例中,收集壳31可以采用PET、PP、PE等低熔点绝缘材料作为外壳,熔点r≤1000℃,在一些实施例中,熔点r≤200℃。熔点越低的材料成本越低,以便于降低电池100的制造成本。但是,需要保证的是,在收集壳31收集导电介质之前,需要收集壳31能够维持其形状并能够收集导电介质。
在一些实施例中,收集壳31可以为一单独的壳结构,其可以将导电介质收容于其收集腔33内,或者,也可以对收集到的导电介质进行绝缘处理后释放。
通过设置收集壳31,收集壳31能够在导电介质喷出时收集导电介质,从而可避免高压打火,故能够提升电池100的安全性。
在本申请的一些实施例中,收集件30包括收集壳31,收集壳31具有收集腔33及与收集腔33连通的收集口32,收集腔33内设置有绝缘介质,收集口32被配置为允许导电介质通过并进入至收集腔33内,绝缘介质用于包裹导电介质。
收集腔33其中,绝缘介质为悬浮物质,其可以在导电介质未进入收集壳31内前便存在于收集壳31内,或者,其也可以在导电介质进入收集壳31的过程中,由绝缘粉末受热分解形成。在一些实施例中,绝缘粉末的受热源可以为导电介质或者其他外部热源。
在导电介质进入收集壳31后,绝缘介质包裹导电介质,以实现对导电介质的绝缘处理。
由于绝缘介质的包裹,导电介质可与外部绝缘,这样,无论导电介质是否从收集壳31内泄漏并与电池单体20接触,均可避免电池100内部高压打火,从而有助于提升电池100的安全性。
在本申请的一些实施例中,绝缘介质为由温度大于设定阈值的导电介质激发并分解绝缘粉末所形成的悬浮物质构造形成。
也就是说,在导电介质进入至收集壳31内前,收集壳31内容纳的为绝缘粉末。当导电介质进入至收集壳31内后,绝缘粉末能够吸收导电介质的热量,并分解形成能够包裹 导电介质的绝缘介质。
其中,绝缘粉末可以为KHCO 3(碳酸氢钾)、NH 4H 2PO 4(磷酸二氢铵)、NaHCO 3(碳酸氢钠),K 2CO 3(碳酸钾)、(NH 4) 2SO 4(硫酸铵)、NH 4HSO 4(硫酸氢铵)、K 4Fe(CN) 6·3H 2O(三水合铁***)、Na 2CO 3(碳酸钠),磷酸铵盐中的一种或者几种。KHCO 3(碳酸氢钾)、NH 4H 2PO 4(磷酸二氢铵)、NaHCO 3(碳酸氢钠),K 2CO 3(碳酸钾)、(NH 4) 2SO 4(硫酸铵)、NH 4HSO 4(硫酸氢铵)、K 4Fe(CN) 6·3H 2O(三水合铁***)、Na 2CO 3(碳酸钠),磷酸铵盐中的每一种物质均能在导电介质的激发下分解形成颗粒与气体混合形成的悬浮物质。
例如,在受热条件下,KHCO 3(碳酸氢钾)、NaHCO 3(碳酸氢钠),K 2CO 3(碳酸钾),(NH 4) 2SO 4(硫酸铵)、Na 2CO 3(碳酸钠),受热分解的化学式为:
2KHCO 3=K 2CO 3+CO 2↑+H 2O;
2NaHCO 3=Na 2CO 3+CO 2↑+H 2O;
K 2CO 3=K 2O+CO 2↑;
3(NH 4) 2SO 4=4NH 3↑+3SO 2↑+N 2↑+6H 2O;
Na 2CO 3==Na 2O+CO 2↑。
在该种设计下,一方面,减少了外部热源的设置,便于降低电池100的制造难度及制造成本,另一方面,相较于悬浮物质来说,绝缘粉末占据的体积更小,则在导电介质进入收集壳31前,可在收集壳31内设置更多的绝缘粉末,这样,分解形成的悬浮物质也更多,从而能够更好的包裹导电介质,以保证导电介质能够与外部绝缘。
在本申请的一些实施例中,绝缘粉末的质量为G,每个电池单体20具有泄压机构24,泄压机构24的横截面面积为S,G与S的比值满足条件:10 -4克/平方毫米(g/mm 2)≤G/S≤5克/平方毫米(g/mm 2)。
其中,泄压机构24的横截面面积是指泄压机构24与端盖21平行设置的横截面的面积。一般地,泄压机构24的横截面面积与电池单体20的工作电量C成正相关,电池单体20的工作电量C越大,则在工作过程中产生的气体越多,对应地,泄压机构24的横截面面积也应设置的越大。那么,当该种电池单体20发生热失控时,其喷出的导电介质的体积也越多,则收集壳31内用于包裹导电介质的绝缘介质的需求量也越大。
通过设置G与S的比值满足条件:10 -4g/mm 2≤G/S≤5g/mm 2,使得收集壳31内容纳的绝缘粉末能够分解形成足够的用于包裹导电介质的绝缘介质,从而保证了电池单体20工作的可靠性。
在本申请的一些实施例中,G与S的比值满足条件:10 -3g/mm 2≤G/S≤0.5g/mm 2
通过设置G与S的比值满足条件:10 -3g/mm 2≤G/S≤0.5g/mm 2,使得收集壳31内容纳的绝缘粉末能够分解形成足量的用于包裹导电介质的绝缘介质,从而保证了电池单体20 的安全性。
在本申请的一些实施例中,G与S的比值满足条件:0.005g/mm 2≤G/S≤0.1g/mm 2
在该种实施例下,当导电介质进入至收集腔33内时,绝缘粉末分解形成的绝缘介质能够完全包裹导电介质,从而具有较优的安全性。
在本申请的一些实施例中,绝缘粉末的质量为G,电池单体20的工作电量为C,G与C的比值满足条件:10 -4克/安培小时(g/Ah)≤G/C≤100克/安培小时(g/Ah)。
其中,工作电量是指电池单体20工作过程中所具有的电量,其可能为初始电量,也可能小于初始电量。可以确定的是,随着电池单体20的使用时间延长,电池单体20的工作电量逐渐减小。初始电量是指电池单体20未使用时所具有的电量。
一般地,电池单体20的工作电量C越大,则当该种电池单体20发生热失控时,其喷出的导电介质的体积也越多,则收集壳31内用于包裹导电介质的绝缘介质的需求量也越大。
通过设置G与C的比值满足条件:10 -4g/Ah≤G/C≤100g/Ah,可使得收集壳31内容纳的绝缘粉末能够分解形成足够用于包裹导电介质的绝缘介质,从而保证了电池单体20的安全性。
在本申请的一些实施例中,G与C的比值满足条件:0.004g/Ah≤G/C≤2.2g/Ah。
在这样的比值范围内,收集壳31内容纳的绝缘粉末能够分解形成足够用于包裹导电介质的绝缘介质,从而保证了电池单体20的安全性。
在本申请的一些实施例中,G与C的比值满足条件:0.02g/Ah≤G/C≤0.43g/Ah。
在该种实施例下,当导电介质进入至收集腔33内时,绝缘粉末分解形成的绝缘介质能够完全包裹导电介质,从而具有较优的安全性。
在本申请的一些实施例中,电池单体20具有喷出导电介质的喷出口,收集口32所在的平面与喷出口所在的平面之间的间距为H,H满足条件:0毫米(mm)≤H≤20毫米(mm)的范围内。
当电池单体20发生热失控时,从喷出口喷出的导电介质直接通过收集口32进入至收集壳31内,并使得绝缘粉末能够受热分解形成绝缘介质。若收集口32距离喷出口较远,则进入至收集壳31内的导电介质有可能温度较低而无法激发绝缘粉末,导致绝缘介质形成失败。
而在本申请中,由于H满足条件:0mm≤H≤20mm的范围内,在这样的范围内,导热介质能够保持在较高的温度状态下进入至收集壳31内并激发绝缘粉末,以使得绝缘粉末形成的绝缘介质能够完全包裹导电介质,从而保证了电池100的安全性。
值得一提的是,为减小收集件30的占用体积,收集件一般采用侧壁厚度较薄的材料制作成型。则导电介质喷出并通过收集口32的过程中,导电介质在收集件的侧壁厚度方向 上行走的路程可以忽略不计,且在该路程上,可以认为导电介质几乎没有热量损失。
在本申请的一些实施例中,H满足条件:0mm≤H≤10mm的范围内。
收集口32所在的平面与喷出口所在的平面之间的间距越小,则进入至收集腔33内的导电介质的温度越高,绝缘粉末受热分解形成绝缘介质的可靠性也更高。
因此,通过设置H满足条件:0mm≤H≤10mm的范围内,从而保证了绝缘粉末可受热分解形成绝缘介质,从而可避免电池100高压打火。
在本申请的一些实施例中,收集件30还包括盖体,在盖体被构造为在电池单体20热失控前关闭收集口32,以将绝缘介质或者绝缘粉末密封于收集腔33内。
其中,盖体用于启闭收集口32。在一些实施例中,盖体可在驱动件的驱动下关闭或者打开收集口32,或者,盖体也可以固接在收集口32处,并在导电介质的冲击下打开收集口32。
通过设置盖体,在电池单体20热失控前,盖体关闭收集口32,以将绝缘介质或者绝缘粉末密封于收集腔33内,从而可防止绝缘粉末掉落;在电池单体20热失控时,盖体打开收集口32,以保证导电介质能够进入至收集腔33内并进行收集。由此可见,盖体的设置,保证了导电介质能够被包裹,故能够避免电池100高压打火。
在本申请的一些实施例中,盖体借助导电介质的冲击力打开收集口32。
在一些实施例中,盖体可以为密封膜、密封盖等等。
盖体借助导电介质的冲击力打开收集口32,比如,盖体在导电介质的冲击力的作用下破裂形成能够通过导电介质并与收集口32至少部分重叠的开口,又例如,盖体在导电介质的冲击下与收集壳31分离,以完全打开收集口32。
收集口32打开后,导电介质被绝缘介质包裹,而后再经收集口32掉落至箱体10内。由于绝缘介质的包裹,可防止导电介质与箱体10内的电池单体20接触而导电,从而避免了电池100高压打火。
而通过设置盖体借助导电介质的冲击力打开收集口32,减少了驱动件的设置,从而便于有效降低电池100的制造成本及制造难度。
此外,由于上述H满足条件:0mm≤H≤20mm的范围内,在一些实施例中,H满足条件:0≤H≤10mm的范围内,在该种距离范围内,还可保障盖体能够借助导电介质的冲击力打开收集口32。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一实施例的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或***。
根据本申请的一些实施例,请参阅图2至图4,本申请提供了一种电池100,电池100包括箱体10、若干个电池单体20及收集组件,收集组件及全部电池单体20均设于容纳 腔13内,且收集组件包括若干个与所有电池单体20一一对应的收集件30,每个收集件30被配置为用于收集对应的电池单体20热失控时喷出的导电介质。收集件30包括收集壳31及盖体,收集壳31具有收集腔33及与收集腔33连通的收集口32,收集腔33内设置有绝缘粉末,绝缘粉末被构造为在导电介质的激发下分解形成能够包裹导电介质的绝缘介质,盖体被构造为在电池单体20热失控前关闭收集口32,且盖体借助导电介质的冲击力打开收集口32。
当电池单体20发生热失控并喷出导电粉末时,盖体借助导电介质的冲击力打开收集口32,以使得导电介质能够进入至收集腔33内。进而,绝缘粉末吸收导电介质的热量,并分解形成能够包裹导电介质的绝缘介质,之后,绝缘介质包裹导电介质并从收集件30内掉落至外部。在这样的电池100中,导电介质被包裹而无法与壳体22、端盖21及极柱23接触,从而能够防止电池单体20之间串联而形成高压打火,故能够提升电池100的安全性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这都属于本申请的保护范围。

Claims (18)

  1. 一种电池,包括:
    箱体(10),其内具有容纳腔(13);
    若干个电池单体(20),设于所述容纳腔(13)内;以及
    收集组件,设于所述容纳腔(13)内,并被配置为用于收集至少部分所述电池单体(20)热失控时喷出的导电介质。
  2. 根据权利要求1所述的电池,其中,所述收集组件用于收集所有所述电池单体(20)热失控时喷出的导电介质。
  3. 根据权利要求2所述的电池,其中,所述收集组件包括若干个收集件(30),每个所述收集件(30)用于收集至少一个所述电池单体(20)热失控时喷出的导电介质。
  4. 根据权利要求3所述的电池,其中,所有所述收集件(30)与所有所述电池单体(20)一一对应,每个所述收集件(30)用于收集对应的所述电池单体(20)热失控时喷出的导电介质。
  5. 根据权利要求3-4任意一项所述的电池,其中,所述收集件(30)包括收集壳(31),所述收集壳(31)具有收集腔(33)及与所述收集腔(33)连通的收集口(32),所述收集口(32)被配置为允许所述导电介质通过并收纳于所述收集腔(33)内。
  6. 根据权利要求3-4任意一项所述的电池,其中,所述收集件(30)包括收集壳(31),所述收集壳(31)具有收集腔(33)及与所述收集腔(33)连通的收集口(32),所述收集腔(33)内设置有绝缘介质,所述收集口(32)被配置为允许所述导电介质通过并进入至所述收集腔(33)内,所述绝缘介质用于包裹所述导电介质。
  7. 根据权利要求6所述的电池,其中,所述绝缘介质为由温度大于设定阈值的所述导电介质激发并分解绝缘粉末所形成的悬浮物质构造形成。
  8. 根据权利要求7所述的电池,其中,所述绝缘粉末的质量为G,每个所述电池单体(20)具有泄压机构(24),所述泄压机构(24)的横截面面积为S,G与S的比值满足条件:10 -4克/平方毫米(g/mm 2)≤G/S≤5克/平方毫米(g/mm 2)。
  9. 根据权利要求8所述的电池,其中,G与S的比值满足条件:10 -3g/mm 2≤G/S≤0.g/mm 2
  10. 根据权利要求9所述的电池,其中,G与S的比值满足条件:0.005g/mm 2≤G/S≤0.1g/mm 2
  11. 根据权利要求7至10任意一项所述的电池,其中,所述绝缘粉末的质量为G,所述电池单体(20)的工作电量为C,G与C的比值满足条件:10 -4克/安培小时(g/Ah)≤G/C≤100克/安培小时(g/Ah)。
  12. 根据权利要求11所述的电池,其中,G与C的比值满足条件:0.004g/Ah≤G/C≤2.2g/Ah。
  13. 根据权利要求12所述的电池,其中,G与C的比值满足条件:0.02g/Ah≤G/C≤0.43g/Ah。
  14. 根据权利要求7至13任意一项所述的电池,其中,所述电池单体(20)具有喷出所述导电介质的喷出口,所述收集口(32)所在的平面与所述喷出口所在的平面之间的间距为H,H满足条件:0毫米(mm)≤H≤20毫米(mm)的范围内。
  15. 根据权利要求14所述的电池,其中,H满足条件:0mm≤H≤10mm的范围内。
  16. 根据权利要求7至15任意一项所述的电池,其中,所述收集件(30)还包括盖体,在所述盖体被构造为在所述电池单体(20)热失控前关闭所述收集口(32),以将所述绝缘介质或者所述绝缘粉末密封于所述收集腔(33)内。
  17. 根据权利要求16所述的电池,其中,所述盖体借助所述导电介质的冲击力打开所述收集口(32)。
  18. 一种用电装置,包括如上述权利要求1-17任意一项所述的电池,所述电池用于为所述用电装置提供电能。
PCT/CN2022/113066 2022-06-23 2022-08-17 电池及用电装置 WO2023245845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221576357.0U CN217468720U (zh) 2022-06-23 2022-06-23 电池及用电装置
CN202221576357.0 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023245845A1 true WO2023245845A1 (zh) 2023-12-28

Family

ID=83239026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113066 WO2023245845A1 (zh) 2022-06-23 2022-08-17 电池及用电装置

Country Status (2)

Country Link
CN (1) CN217468720U (zh)
WO (1) WO2023245845A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN213313059U (zh) * 2020-07-31 2021-06-01 湖北亿纬动力有限公司 一种灭火装置、电池包及车辆
CN215299375U (zh) * 2021-04-29 2021-12-24 宝能(广州)汽车研究院有限公司 一种电池箱、电池包及车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN213313059U (zh) * 2020-07-31 2021-06-01 湖北亿纬动力有限公司 一种灭火装置、电池包及车辆
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN215299375U (zh) * 2021-04-29 2021-12-24 宝能(广州)汽车研究院有限公司 一种电池箱、电池包及车辆

Also Published As

Publication number Publication date
CN217468720U (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
KR20220104219A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
KR20220110252A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
WO2023028745A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2024008054A1 (zh) 电池单体、电池及用电装置
WO2024045692A1 (zh) 电池模组、电池以及用电装置
WO2023193726A1 (zh) 电池及用电设备
WO2023245845A1 (zh) 电池及用电装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023193152A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电装置
CN218414891U (zh) 电池的箱体、电池、用电装置和制备电池的装置
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
CN220121974U (zh) 电池单体、电池及用电装置
CN220984705U (zh) 电池单体、电池及用电设备
CN220774523U (zh) 电池单体、电池及用电设备
CN220963648U (zh) 电池单体、电池及用电设备
CN220692248U (zh) 电池单体、电池以及用电装置
WO2024026829A1 (zh) 电池单体、电池以及用电装置
CN219017730U (zh) 电池单体、电池及用电设备
CN220272571U (zh) 电池和用电设备
CN219476809U (zh) 电池及用电装置
CN221352799U (zh) 电池单体、电池及用电装置
WO2024000367A1 (zh) 电池单体、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947586

Country of ref document: EP

Kind code of ref document: A1