WO2023243846A1 - 태양전지 및 그 제조 방법 - Google Patents

태양전지 및 그 제조 방법 Download PDF

Info

Publication number
WO2023243846A1
WO2023243846A1 PCT/KR2023/005453 KR2023005453W WO2023243846A1 WO 2023243846 A1 WO2023243846 A1 WO 2023243846A1 KR 2023005453 W KR2023005453 W KR 2023005453W WO 2023243846 A1 WO2023243846 A1 WO 2023243846A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
thin film
transparent resin
resin layer
cover glass
Prior art date
Application number
PCT/KR2023/005453
Other languages
English (en)
French (fr)
Inventor
이규현
김준엽
김덕열
Original Assignee
주식회사 메카로에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메카로에너지 filed Critical 주식회사 메카로에너지
Publication of WO2023243846A1 publication Critical patent/WO2023243846A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method of manufacturing the same, and more specifically, to a transparent solar cell that produces electricity and has an improved light transmission function at the same time.
  • the solar cell market is expected to grow steadily based on recent environmental issues and carbon neutral policies, and as movements around the world to respond to the climate crisis, such as mandatory zero-energy buildings, are accelerating, the BIPV market is a market to pay attention to in the future.
  • the need for transparent solar cells is expected to increase day by day.
  • the present invention was developed to solve the above-mentioned problem, and its purpose is to provide a solar cell with excellent visibility and a method of manufacturing the same by using a sealing member with a similar refractive index to that of a thin film solar cell deposited on a glass substrate.
  • the present invention seeks to provide a solar cell and manufacturing method with minimal image distortion, high transmittance, and excellent energy conversion efficiency.
  • a method of manufacturing a solar cell according to an embodiment of the present invention to solve the above-described problem includes a first step of forming a lower transparent resin layer on a lower cover glass; A second step in which a plurality of thin film solar cells and a plurality of glass blocks are disposed on the lower transparent resin layer; A third step in which an upper transparent resin layer is formed on top of the plurality of thin film solar cells and the plurality of glass blocks; And a fourth step of forming a solar cell by placing an upper cover glass on the upper transparent resin layer, wherein the second step includes forming a plurality of glass blocks on the transparent resin layer to form a solar cell. are placed in between.
  • the second step may further include inserting a transparent resin between the glass block and the thin film solar cell.
  • irregularities may be formed on the surface of the lower cover glass or the upper cover glass.
  • the thin film solar cell may be configured to have conductive tape-structured electrodes bonded to both ends, or the electrodes may be bonded by ultrasonic bonding or thermal bonding.
  • electrodes at both ends of the aligned thin film solar cells may be connected to each other in parallel or in series.
  • the second step is a step of fixing the lower cover glass on which the plurality of thin film solar cells and the plurality of glass blocks are arranged using high-temperature tape, a fixing housing, or a bracket. It may further include ;.
  • the thin film solar cell is a CIGS (Copper, Indium, Gallium, Selenium Thin Film Solar Cell), a perovskite solar cell, or a perovskite-CIGS tandem solar cell. It can be composed of a battery (Perovskite-CIGS Tandem Solar Cell).
  • the solar cell is vacuum heat-treated, and the lower cover glass, the thin film ocean cell, the glass block, and the like are formed by the lower transparent resin layer, the upper transparent resin layer, and the transparent resin.
  • a fifth step of bonding the upper cover glasses to each other may be further included.
  • a solar cell includes a lower cover glass; a lower transparent resin layer formed on the lower cover glass; A plurality of thin film solar cells disposed on the lower transparent resin layer; a plurality of glass blocks disposed between each of the plurality of thin film solar cells on the lower transparent resin layer; an upper transparent resin layer formed on top of the plurality of thin film solar cells and the plurality of glass blocks; and an upper cover glass disposed on the upper transparent resin layer.
  • a sealing member with a similar refractive index to a thin film solar cell deposited on a glass substrate by using a sealing member with a similar refractive index to a thin film solar cell deposited on a glass substrate, a solar cell with excellent visibility and a method of manufacturing the same can be provided.
  • FIG. 1 is an exploded perspective view of a solar cell according to an embodiment of the present invention.
  • Figure 2 is a side view of a solar cell according to an embodiment of the present invention.
  • Figure 3 is a top view of a solar cell according to an embodiment of the present invention.
  • Figure 4 is a flowchart for explaining a method of manufacturing a solar cell according to an embodiment of the present invention.
  • Figure 5 is a diagram for explaining a method of fixing a solar cell according to an embodiment of the present invention.
  • Figure 6 is a diagram showing a solar cell according to an embodiment of the present invention.
  • Figure 7 is a diagram showing image distortion occurring in a solar cell according to the prior art.
  • Figure 8 is a diagram showing improved visibility of a solar cell according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a solar cell according to an embodiment of the present invention
  • FIG. 2 is a side view of a solar cell according to an embodiment of the present invention
  • FIG. 3 is a top view of a solar cell according to an embodiment of the present invention. It is also a degree.
  • a solar cell according to an embodiment of the present invention includes a lower cover glass 110, a lower transparent resin layer 120, a thin film solar cell 130, a glass block 140, a transparent resin 150, and an upper transparent resin layer ( 160) and an upper cover glass 170.
  • a lower transparent resin layer 120 is formed on the lower cover glass 110.
  • the lower transparent resin layer 120 may be composed of a photo-curable resin or a thermo-curable resin. More specifically, the lower transparent resin layer 120 is made of EVA (Ethylene Vinyl Acetate) and can be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110, It may be placed on the lower cover glass 110 with a thickness of 0.1 to 1 mm.
  • EVA Ethylene Vinyl Acetate
  • the lower cover glass 110 may be tempered glass and may be configured to further include an anti-reflection film.
  • the lower cover glass 110 may have irregularities formed on the surface where it is joined to the lower transparent resin layer 120 to minimize light reflection. Meanwhile, the thickness of the lower cover glass 110 may be 0.5 to 10 mm.
  • a plurality of the thin film solar cells 130 are disposed on the lower transparent resin layer 120.
  • the thin film solar cell 130 may be configured so that electrodes of a conductive tape structure are bonded to both ends, or the electrodes may be bonded by ultrasonic bonding or thermal bonding, and both ends of the thin film solar cell 130 are aligned.
  • the electrodes of a stage may be connected to each other in parallel or in series.
  • the thin film solar cell 130 is a CIGS (Copper, Indium, Gallium, Selenium Thin Film Solar Cell), a perovskite solar cell, or a perovskite-CIGS tandem solar cell (Perovskite-CIGS). It can be composed of a Tandem Solar Cell).
  • CIGS Copper, Indium, Gallium, Selenium Thin Film Solar Cell
  • perovskite solar cell or a perovskite-CIGS tandem solar cell (Perovskite-CIGS). It can be composed of a Tandem Solar Cell).
  • the thin film solar cells 130 may be connected to each other in series or parallel, and in order to connect the electrodes, the thin film solar cells 130 of a monolithic structure may be connected to each other in series or parallel. It can be constructed by joining an electrode ribbon to the end.
  • the bonding method may include bonding using conductive tape, ultrasonic bonding, or thermal bonding. Additionally, in order to minimize contact resistance during bonding, part of the thin film can be removed and configured to contact the electrode.
  • EVA lower transparent resin layer 120, transparent resin 150, and upper It can be configured to be thinner than the thickness of the transparent resin layer 160.
  • the plurality of glass blocks 140 are respectively disposed between the plurality of thin film solar cells 130 on the lower transparent resin layer 120.
  • the glass block 140 may be formed at the same height as the thin film solar cell 130.
  • transparent resin 150 made of EVA material can be additionally inserted between each.
  • the width of the glass block 140 may be 10 to 50 mm and the height may be 5 to 20 mm, and may be adjusted to suit the aperture ratio and capacity of the thin film solar cell 130.
  • the glass block 140 may be made of the same material as the lower cover glass 110 and the upper cover glass 170 in order to minimize refractive index and heterogeneity.
  • the upper transparent resin layer 160 is formed on the plurality of thin film solar cells 130 and the plurality of glass blocks 140, and the upper cover glass 170 is formed on the upper transparent resin layer 160. is placed in
  • an upper transparent resin layer 160 made of EVA material is additionally placed on the top, and then the upper cover glass 170 is placed to cover it.
  • the upper transparent resin layer 160 is made of EVA (Ethylene Vinyl Acetate) and can be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110, and may be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110. It can be configured to a thickness of 1 mm.
  • EVA Ethylene Vinyl Acetate
  • the upper cover glass 170 may be configured the same as the lower cover glass 110.
  • the upper cover glass 170 may have irregularities formed on the surface joined to the upper transparent resin layer 160 to minimize light reflection, and the thickness of the upper cover glass 170 is It may consist of 0.5 to 10 mm.
  • the solar cell in which the upper cover glass 170 is disposed on the upper transparent resin layer 160 is completely bonded through a vacuum heat treatment process.
  • FIG. 4 is a flowchart for explaining a method of manufacturing a solar cell according to an embodiment of the present invention
  • FIG. 5 is a diagram for explaining a method for fixing a solar cell according to an embodiment of the present invention.
  • the lower transparent resin layer 120 is formed on the lower cover glass 110 (S410).
  • the lower transparent resin layer 120 is made of EVA (Ethylene Vinyl Acetate) and can be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110, and may be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110. It can be placed on the lower cover glass 110 with a thickness of 1 mm.
  • EVA Ethylene Vinyl Acetate
  • the lower cover glass 110 may be tempered glass and may be configured to further include an anti-reflection film.
  • the lower cover glass 110 may have irregularities formed on the surface where it is joined to the lower transparent resin layer 120 to minimize light reflection. Meanwhile, the thickness of the lower cover glass 110 may be 0.5 to 10 mm.
  • the thin film solar cell 130 may be configured so that electrodes of a conductive tape structure are bonded to both ends, or the electrodes may be bonded by ultrasonic bonding or thermal bonding, and both ends of the thin film solar cell 130 are aligned.
  • the electrodes of a stage may be connected to each other in parallel or in series.
  • the thin film solar cell 130 is a CIGS (Copper, Indium, Gallium, Selenium Thin Film Solar Cell), a perovskite solar cell, or a perovskite-CIGS tandem solar cell (Perovskite-CIGS). It can be composed of a Tandem Solar Cell).
  • CIGS Copper, Indium, Gallium, Selenium Thin Film Solar Cell
  • perovskite solar cell or a perovskite-CIGS tandem solar cell (Perovskite-CIGS). It can be composed of a Tandem Solar Cell).
  • the thin film solar cell 130 and the glass block 140 may be sequentially placed on the lower transparent resin layer 120.
  • a transparent resin 150 made of EVA material may be additionally inserted between them.
  • the width of the glass block 140 may be 10 to 50 mm and the height may be 5 to 20 mm, and may be adjusted to suit the aperture ratio and capacity of the thin film solar cell 130.
  • the glass block 140 may be made of the same material as the lower cover glass 110 and the upper cover glass 170 in order to minimize the refractive index and the sense of heterogeneity.
  • the electrodes of the thin film solar cell 130 are connected (S430).
  • electrode ribbons can be bonded to both ends of the thin film solar cell 130 of a monolithic structure.
  • the bonding method may include bonding using conductive tape, ultrasonic bonding, or thermal bonding. Additionally, in order to minimize contact resistance during bonding, part of the thin film can be removed and configured to contact the electrode.
  • EVA lower transparent resin layer 120, transparent resin 150, and upper It can be configured to be thinner than the thickness of the transparent resin layer 160.
  • the thin film solar cell 130 and the lower cover glass 110 on which the glass block 140 is disposed can be fixed using high-temperature tape, a fixing housing, or a bracket (S440).
  • a fixing means 201 such as high-temperature tape, a fixing housing, or a bracket.
  • an upper transparent resin layer 160 is formed on the plurality of thin film solar cells 130 and the plurality of glass blocks 140, and an upper cover glass 170 is formed on the upper transparent resin layer 160. Construct a solar cell by placing it in (S450).
  • an upper transparent resin layer 160 made of EVA material is additionally placed on the top, and then the upper cover glass 170 is covered.
  • the upper transparent resin layer 160 is made of EVA (Ethylene Vinyl Acetate) and can be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110, and may be configured to adhere the thin film solar cell 130 and the glass block 140 to the lower cover glass 110. It can be configured to a thickness of 1 mm.
  • EVA Ethylene Vinyl Acetate
  • the upper cover glass 170 may be configured the same as the lower cover glass 110.
  • the upper cover glass 170 may have irregularities formed on the surface joined to the upper transparent resin layer 160 to minimize light reflection, and the thickness of the upper cover glass 170 is It may consist of 0.5 to 10 mm.
  • the solar cell is subjected to vacuum heat treatment, and the lower cover glass 110 and the lower cover glass 110 are formed by the lower transparent resin layer 120, the upper transparent resin layer 160, and the transparent resin 140.
  • the thin film solar cell 130, the glass block 140, and the upper cover glass 170 are bonded to each other.
  • a vacuum heat treatment process can be performed to achieve perfect bonding of the lower cover glass 110, the thin film solar cell 130, the glass block 140, and the upper cover glass 170 by EVA.
  • the vacuum heat treatment ranges from 50 to 200°C, and more specifically, 150°C is the optimal vacuum heat treatment temperature.
  • Figure 6 is a diagram showing a solar cell according to an embodiment of the present invention
  • Figure 7 is a diagram showing an image distortion phenomenon occurring in a solar cell according to the prior art
  • Figure 8 is a diagram showing an embodiment of the present invention. This is a diagram showing the visibility of solar cells.
  • the solar cell according to an embodiment of the present invention has very excellent visibility.
  • the solar cell according to the prior art causes image distortion due to distortion of light
  • the solar cell according to the present invention is a thin film solar cell deposited on a glass substrate. It can be confirmed that visibility is very excellent by using a sealing member with a similar refractive index to that of the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양전지 및 그 제조 방법에 관한 것으로, 본 발명에 따른 태양전지의 제조 방법은 하부 커버유리 상에 하부 투명 수지층이 형성되는 제1 단계; 다수의 박막 태양전지와 다수의 유리블록이 상기 하부 투명 수지층 상에 배치되는 제2 단계; 상부 투명 수지층이 다수의 상기 박막 태양전지와 상기 다수의 유리블록의 상부에 형성되는 제3 단계; 및 상부 커버유리가 상기 상부 투명 수지층 상에 배치되어 태양전지를 구성하는 제4 단계;를 포함하고, 상기 제2 단계는 다수의 유리블록이 상기 투명 수지층 상에서 다수의 각 상기 박막 태양전지들의 사이에 각각 배치된다.

Description

태양전지 및 그 제조 방법
본 발명은 태양전지 및 그 제조 방법에 관한 것으로, 보다 상세하게는 태양전지의 전기 생산과 동시에 빛 투과 기능이 향상된 투명형 태양전지에 관한 것이다.
지구 환경 문제와 화석에너지 고갈, 원자력발전의 폐기물처리 및 신규발전소 건설에 따른 위치 선정 등의 문제로 인해 신재생 에너지에 대한 관심이 고조되고 있는 실정에서 친환경적이며, 지속 가능한 청정에너지인 태양전지에 대한 관심은 날로 증가하고 있다.
또한, 최근 환경문제, 탄소 중립 정책 등을 기반으로 태양전지 시장은 꾸준하게 성장할 것으로 예상되며, 제로에너지 건축물 의무화 등 기후 위기에 대응하는 세계각국의 움직임이 가속화되는 실정에서 BIPV 시장은 앞으로 주목해야 할 시장이며, 이와 더불어 투명한 태양전지의 필요성은 나날이 증가할 것으로 예상된다.
현재, 박막 태양전지를 응용한 투명태양전지에 대한 연구가 활발하게 진행되고 있으나, 50% 이상의 투과율을 갖는 태양전지는 겨우 5% 수준의 에너지 전환 효율을 보이고 있다.
따라서, 투과율이 높고 에너지 전환효율이 우수한 태양전지 및 그 제조 방법에 대한 요구가 높아지고 있다.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 유리 기판 위에 증착된 박막 태양전지와 굴절율이 유사한 밀봉부재를 사용함으로써, 시인성이 우수한 태양전지 및 그 제조 방법을 제공하는 데 그 목적이 있다.
또한, 본 발명은 이미지 왜곡이 최소화되며, 투과율이 높고 에너지 전환효율이 우수한 태양전지 및 제조 방법을 제공하고자 한다.
전술한 문제를 해결하기 위한 본 발명의 일실시예에 따른 태양전지의 제조 방법은, 하부 커버유리 상에 하부 투명 수지층이 형성되는 제1 단계; 다수의 박막 태양전지와 다수의 유리블록이 상기 하부 투명 수지층 상에 배치되는 제2 단계; 상부 투명 수지층이 다수의 상기 박막 태양전지와 상기 다수의 유리블록의 상부에 형성되는 제3 단계; 및 상부 커버유리가 상기 상부 투명 수지층 상에 배치되어 태양전지를 구성하는 제4 단계;를 포함하고, 상기 제2 단계는 다수의 유리블록이 상기 투명 수지층 상에서 다수의 각 상기 박막 태양전지들의 사이에 각각 배치된다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 상기 유리블록과 상기 박막 태양전지의 사이에 투명 수지가 추가로 삽입되는 단계;를 더 포함할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 하부 커버유리 또는 상기 상부 커버유리는 표면에 요철이 형성될 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 박막 태양전지는 양단에 전도성 테잎 구조의 전극이 접합되도록 구성되거나, 초음파 접합 또는 열접합에 의해 전극이 접합될 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 정렬된 상기 박막 태양전지의 양끝단의 전극이 상호간에 병렬 또는 직렬로 연결될 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 제2 단계는 고온용 테잎, 고정용 하우징 또는 브라켓을 이용하여, 상기 다수의 박막 태양전지와 다수의 유리블록이 배치된 상기 하부 커버유리가 고정되는 단계;를 더 포함할 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 박막 태양전지는 CIGS(Copper, Indium, Gallium, Selenium Thin Film Solar Cell), 페로브스카이트 태양 전지(Perovskite Solar Cell) 또는 페로브스카이트-CIGS 텐덤 태양 전지(Perovskite-CIGS Tandem Solar Cell)로 구성될 수 있다.
본 발명의 다른 일실시예에 따르면, 상기 태양전지가 진공열처리되어, 상기 하부 투명 수지층, 상기 상부 투명 수지층 및 상기 투명 수지에 의해, 상기 하부 커버유리, 상기 박막 대양전지, 상기 유리블록 및 상기 상부 커버유리가 상호 접합되는 제5 단계;를 더 포함할 수 있다.
또한, 본 발명의 일실시예에 따른 태양전지는 하부 커버유리; 상기 하부 커버유리 상에 형성되는 하부 투명 수지층; 상기 하부 투명 수지층 상에 배치되는 다수의 박막 태양전지; 상기 하부 투명 수지층 상에서 다수의 각 상기 박막 태양전지들의 사이에 각각 배치되는 다수의 유리블록; 다수의 상기 박막 태양전지와 상기 다수의 유리블록의 상부에 형성되는 상부 투명 수지층; 및 상기 상부 투명 수지층 상에 배치되는 상부 커버유리;를 포함하여 구성된다.
본 발명에 따르면 유리 기판 위에 증착된 박막 태양전지와 굴절율이 유사한 밀봉부재를 사용함으로써, 시인성이 우수한 태양전지 및 그 제조 방법을 제공할 수 있다.
또한, 본 발명에 따르면 이미지 왜곡이 최소화되며, 투과율이 높고 에너지 전환효율이 우수한 태양전지 및 제조 방법을 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 태양전지의 분해 사시도이다.
도 2는 본 발명의 일실시예에 따른 태양전지의 측면도이다.
도 3은 본 발명의 일실시예에 따른 태양전지의 상면도이다.
도 4는 본 발명의 일실시예에 따른 태양전지의 제조 방법을 설명하기 위한 흐름도이다.
도 5는 본 발명의 일실시예에 따른 태양전지의 고정 방법을 설명하기 위한 도면이다.
도 6은 본 발명의 일실시예에 따른 태양전지를 도시한 도면이다.
도 7은 종래 기술에 따른 태양전지에서 발생하는 이미지 왜곡 현상을 도시한 도면이다.
도 8은 본 발명의 일실시예에 따른 태양전지의 시인성이 향상된 것을 도시한 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.
또한, 명세서 전체에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다. 또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 1은 본 발명의 일실시예에 따른 태양전지의 분해 사시도이고, 도 2는 본 발명의 일실시예에 따른 태양전지의 측면도이고, 도 3은 본 발명의 일실시예에 따른 태양전지의 상면도이다.
이후부터는 도 1 내지 도 3을 참조하여 본 발명의 일실시예에 따른 태양전지의 구성을 설명하기로 한다.
본 발명의 일실시예에 따른 태양전지는 하부 커버유리(110), 하부 투명 수지층(120), 박막 태양전지(130), 유리블록(140), 투명 수지(150), 상부 투명 수지층(160) 및 상부 커버유리(170)를 포함하여 구성될 수 있다.
상기 하부 커버유리(110) 상에는 하부 투명 수지층(120)이 형성된다.
이때, 상기 하부 투명 수지층(120)은 광 경화성 수지 또는 열 경화성 수지로 구성될 수 있다. 보다 구체적으로, 상기 하부 투명 수지층(120)은 EVA(Ethylene Vinyl Acetate)로 구성되어 상기 하부 커버유리(110)에 박막 태양전지(130)과 유리블록(140)을 점착하도록 구성될 수 있으며, 0.1 내지 1 mm의 두께로 상기 하부 커버유리(110) 상에 배치될 수 있다.
이때, 상기 하부 커버유리(110)는 강화유리일 수 있으며, 반사 방지막을 더 포함하도록 구성될 수 있다.
또한, 상기 하부 커버유리(110)는 상기 하부 투명 수지층(120)과 접합하는 면에 빛 반사를 최소화하기 위하여 요철이 형성될 수 있다. 한편, 상기 하부 커버유리(110)의 두께는 0.5 내지 10 mm로 구성될 수 있다.
다수의 상기 박막 태양전지(130)는 상기 하부 투명 수지층(120) 상에 배치된다.
이때, 상기 박막 태양전지(130)는 양단에 전도성 테잎 구조의 전극이 접합되도록 구성되거나, 초음파 접합 또는 열접합에 의해 전극이 접합되도록 구성될 수 있으며, 정렬된 상기 박막 태양전지(130)의 양끝단의 전극이 상호간에 병렬 또는 직렬로 연결될 수 있다.
또한, 상기 박막 태양전지(130)는 CIGS(Copper, Indium, Gallium, Selenium Thin Film Solar Cell), 페로브스카이트 태양 전지(Perovskite Solar Cell) 또는 페로브스카이트-CIGS 텐덤 태양 전지(Perovskite-CIGS Tandem Solar Cell)로 구성될 수 있다.
그뿐만 아니라, 본 발명의 일실시예에 따른 박막 태양전지(130)는 상호간에 직렬 또는 병렬로 연결될 수 있으며, 전극을 연결하기 위하여, 모노리직(monolithic) 구조의 박막 태양전지(130)의 양 끝단에 전극용 리본을 접합하여 구성할 수 있다. 상기 접합 방법으로는 전도성 테잎을 이용한 접합, 초음파 접합, 열접합등의 방식이 사용될 수 있다. 또한, 접합시 접촉저항을 최소화하기 위하여 박막의 일부를 제거하여 전극에 접촉하도록 구성할 수 있다.
이때, 상부 커버유리(170)와의 접합 시 단차에 의한 접합 불량 및 기포가 발생하지 않도록 하기 위하여, 전극 연결부위의 단차를 최소화하여 EVA(하부 투명 수지층(120), 투명 수지(150) 및 상부 투명 수지층(160))의 두께보다 얇게 구성할 수 있다.
한편, 다수의 상기 유리블록(140)은 상기 하부 투명 수지층(120) 상에서 다수의 각 상기 박막 태양전지(130)들의 사이에 각각 배치된다.
이때, 상기 유리블록(140)은 상기 박막 태양전지(130)와 동일한 높이로 형성될 수 있다.
아울러, 박막 태양전지(130)과 유리블록(140) 간의 계면 접합을 위하여 각 사이에 EVA 재료의 투명 수지(150)를 추가로 삽입할 수 있다.
또한, 상기 유리블록(140)의 폭은 10 내지 50 mm, 높이는 5 내지 20 mm로 구성될 수 있으며, 개구율 및 상기 박막 태양전지(130)의 용량에 맞도록 조절할 수 있다.
한편, 상기 유리블록(140)은 굴절율과 이질감을 최소화하기 위하여 상기 하부 커버유리(110) 및 상기 상부 커버유리(170)와 동일한 재료를 사용할 수 있다.
상기 상부 투명 수지층(160)은 다수의 상기 박막 태양전지(130)와 상기 다수의 유리블록(140)의 상부에 형성되고, 상기 상부 커버유리(170)는 상기 상부 투명 수지층(160) 상에 배치된다.
즉, 상기 고정된 모듈을 보호하고 유리블록과의 원활한 접합을 위하여 EVA 재료의 상부 투명 수지층(160)을 상부에 추가 배치한 후, 상부 커버유리(170)가 덮도록 배치된다.
이때, 상기 상부 투명 수지층(160)은 EVA(Ethylene Vinyl Acetate)로 구성되어 상기 하부 커버유리(110)에 박막 태양전지(130)과 유리블록(140)을 점착하도록 구성될 수 있으며, 0.1 내지 1 mm의 두께로 구성될 수 있다.
또한, 상기 상부 커버유리(170)는 상기 하부 커버유리(110)와 동일하게 구성될 수 있다.
보다 상세하게 설명하면, 상기 상부 커버유리(170)는 상기 상부 투명 수지층(160)과 접합하는 면에 빛 반사를 최소화하기 위하여 요철이 형성될 수 있으며, 상기 상부 커버유리(170)의 두께는 0.5 내지 10 mm로 구성될 수 있다.
이와 같이 상부 투명 수지층(160)에 상부 커버유리(170)가 배치된 태양전지는 진공열처리 공정을 통해 완전히 접합된다.
도 4는 본 발명의 일실시예에 따른 태양전지의 제조 방법을 설명하기 위한 흐름도이고, 도 5는 본 발명의 일실시예에 따른 태양전지의 고정 방법을 설명하기 위한 도면이다.
이후부터는 도 4 및 도 5를 참조하여 본 발명의 일실시예에 따른 태양전지의 제조 방법을 설명하기로 한다.
먼저, 하부 커버유리(110) 상에 하부 투명 수지층(120)을 형성한다(S410).
이때, 상기 하부 투명 수지층(120)은 EVA(Ethylene Vinyl Acetate)로 구성되어 상기 하부 커버유리(110)에 박막 태양전지(130)과 유리블록(140)을 점착하도록 구성될 수 있으며, 0.1 내지 1 mm의 두께로 상기 하부 커버유리(110) 상에 배치될 수 있다.
이때, 상기 하부 커버유리(110)는 강화유리일 수 있으며, 반사 방지막을 더 포함하도록 구성될 수 있다.
또한, 상기 하부 커버유리(110)는 상기 하부 투명 수지층(120)과 접합하는 면에 빛 반사를 최소화하기 위하여 요철이 형성될 수 있다. 한편, 상기 하부 커버유리(110)의 두께는 0.5 내지 10 mm로 구성될 수 있다.
이후, 상기 하부 투명 수지층(120) 상에 다수의 박막 태양전지(130)와 다수의 유리블록(140)을 배치한다(S420).
이때, 상기 박막 태양전지(130)는 양단에 전도성 테잎 구조의 전극이 접합되도록 구성되거나, 초음파 접합 또는 열접합에 의해 전극이 접합되도록 구성될 수 있으며, 정렬된 상기 박막 태양전지(130)의 양끝단의 전극이 상호간에 병렬 또는 직렬로 연결될 수 있다.
또한, 상기 박막 태양전지(130)는 CIGS(Copper, Indium, Gallium, Selenium Thin Film Solar Cell), 페로브스카이트 태양 전지(Perovskite Solar Cell) 또는 페로브스카이트-CIGS 텐덤 태양 전지(Perovskite-CIGS Tandem Solar Cell)로 구성될 수 있다.
한편, 배치된 하부 투명 수지층(120) 상에 박막 태양전지(130)과 유리블록(140)을 순차적으로 배치할 수 있다. 이때, 박막 태양전지(130)과 유리블록(140) 간의 계면 접합을 위하여 각 사이에 EVA 재료의 투명 수지(150)를 추가로 삽입할 수 있다.
또한, 상기 유리블록(140)의 폭은 10 내지 50 mm, 높이는 5 내지 20 mm로 구성될 수 있으며, 개구율 및 상기 박막 태양전지(130)의 용량에 맞도록 조절할 수 있다.
이때, 상기 유리블록(140)은 굴절율과 이질감을 최소화하기 위하여 상기 하부 커버유리(110) 및 상기 상부 커버유리(170)와 동일한 재료를 사용할 수 있다.
이후에는, 상기 박막 태양전지(130)의 전극을 연결한다(S430).
즉, 상기 박막 태양전지(130)의 전극을 연결하기 위하여, 모노리직(monolithic) 구조의 박막 태양전지(130)의 양 끝단에 전극용 리본을 접합할 수 있다. 상기 접합 방법으로는 전도성 테잎을 이용한 접합, 초음파 접합, 열접합등의 방식이 사용될 수 있다. 또한, 접합시 접촉저항을 최소화하기 위하여 박막의 일부를 제거하여 전극에 접촉하도록 구성할 수 있다.
이때, 상부 커버유리(170)와의 접합 시 단차에 의한 접합 불량 및 기포가 발생하지 않도록 하기 위하여, 전극 연결부위의 단차를 최소화하여 EVA(하부 투명 수지층(120), 투명 수지(150) 및 상부 투명 수지층(160))의 두께보다 얇게 구성할 수 있다.
이후, 고온용 테잎, 고정용 하우징 또는 브라켓을 이용하여, 상기 박막 태양전지(130)와 유리블록(140)이 배치된 하부 커버유리(110)를 고정할 수 있다(S440).
즉, 도 5에 도시된 바와 같이 작업 공정 중 발생할 수 있는 태양전지(100)의 변형등을 막기 위하여 고온용 테잎, 고정용 하우징 또는 브라켓 등의 고정수단(201)를 사용하여 고정할 수 있다.
이후에는 다수의 상기 박막 태양전지(130)와 상기 다수의 유리블록(140)의 상부에 상부 투명 수지층(160)을 형성하고, 상부 커버유리(170)를 상기 상부 투명 수지층(160) 상에 배치하여 태양전지를 구성한다(S450).
즉, 상기 고정된 모듈을 보호하고 유리블록과의 원활한 접합을 위하여 EVA 재료의 상부 투명 수지층(160)을 상부에 추가 배치한 후 상부 커버유리(170)를 덮는다.
이때, 상기 상부 투명 수지층(160)은 EVA(Ethylene Vinyl Acetate)로 구성되어 상기 하부 커버유리(110)에 박막 태양전지(130)과 유리블록(140)을 점착하도록 구성될 수 있으며, 0.1 내지 1 mm의 두께로 구성될 수 있다.
또한, 상기 상부 커버유리(170)는 상기 하부 커버유리(110)와 동일하게 구성될 수 있다.
보다 상세하게 설명하면, 상기 상부 커버유리(170)는 상기 상부 투명 수지층(160)과 접합하는 면에 빛 반사를 최소화하기 위하여 요철이 형성될 수 있으며, 상기 상부 커버유리(170)의 두께는 0.5 내지 10 mm로 구성될 수 있다.
이후에는, 라미네이션 처리가 이루어진다(S460).
보다 상세하게 설명하면, 상기 태양전지를 진공열처리 하여, 상기 하부 투명 수지층(120), 상기 상부 투명 수지층(160) 및 상기 투명 수지(140)에 의해, 상기 하부 커버유리(110), 상기 박막 태양전지(130), 상기 유리블록(140) 및 상기 상부 커버유리(170)가 상호 접합된다.
즉, EVA에 의해 상기 하부 커버유리(110), 상기 박막 태양전지(130), 상기 유리블록(140) 및 상기 상부 커버유리(170)가 완벽한 접합이 이룰수 있도록 진공열처리 공정이 이루어질 수 있으며, 이때의 진공열처리는 50 내지 200℃로 서, 보다 구체적으로 150℃가 최적의 진공열처리 온도이다.
도 6은 본 발명의 일실시예에 따른 태양전지를 도시한 도면이고, 도 7은 종래 기술에 따른 태양전지에서 발생하는 이미지 왜곡 현상을 도시한 도면이고, 도 8은 본 발명의 일실시예에 따른 태양전지의 시인성을 도시한 도면이다.
도 6에 도시된 바와 같이 본 발명의 일실시예에 따른 태양전지는 시인성이 매우 우수한 것을 확인할 수 있다.
또한, 도 7에 도시된 바와 같이 종래 기술에 따른 태양전지는 빛의 왜곡으로 인해 이미지 왜곡 현상이 발생하는데 반하여, 도 8에 도시된 바와 같이 본 발명에 따른 태양전지는 유리 기판 위에 증착된 박막 태양전지와 굴절율이 유사한 밀봉부재를 사용함으로써 시인성이 매우 우수한 것을 확인할 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (13)

  1. 하부 커버유리 상에 하부 투명 수지층을 형성하는 제1 단계;
    다수의 박막 태양전지와 다수의 유리블록을 상기 하부 투명 수지층 상에 배치하는 제2 단계;
    상부 투명 수지층을 다수의 상기 박막 태양전지와 상기 다수의 유리블록의 상부에 형성하는 제3 단계; 및
    상부 커버유리를 상기 상부 투명 수지층 상에 배치하여 태양전지를 구성하는 제4 단계;를 포함하고,
    상기 제2 단계는,
    다수의 유리블록이 상기 투명 수지층 상에서 다수의 각 상기 박막 태양전지들의 사이에 각각 배치되는 태양전지의 제조 방법.
  2. 청구항 1에 있어서,
    상기 제2 단계는,
    상기 유리블록과 상기 박막 태양전지의 사이에 투명 수지가 추가로 삽입되는 단계;
    를 더 포함하는 태양전지의 제조 방법.
  3. 청구항 1에 있어서,
    상기 하부 커버유리 또는 상기 상부 커버유리는,
    표면에 요철이 형성되는 태양전지의 제조 방법.
  4. 청구항 1에 있어서,
    상기 박막 태양전지는,
    양단에 전도성 테잎 구조의 전극이 접합되도록 구성되거나, 초음파 접합 또는 열접합에 의해 전극이 접합되는 태양전지의 제조 방법.
  5. 청구항 4에 있어서,
    상기 제2 단계는,
    정렬된 상기 박막 태양전지의 양끝단의 전극이 상호간에 병렬 또는 직렬로 연결되는 태양전지의 제조 방법.
  6. 청구항 1에 있어서,
    상기 제2 단계는,
    고온용 테잎, 고정용 하우징 또는 브라켓을 이용하여, 상기 다수의 박막 태양전지와 다수의 유리블록이 배치된 상기 하부 커버유리가 고정되는 단계;
    를 더 포함하는 태양전지의 제조 방법.
  7. 청구항 1에 있어서,
    상기 박막 태양전지는,
    CIGS(Copper, Indium, Gallium, Selenium Thin Film Solar Cell), 페로브스카이트 태양 전지(Perovskite Solar Cell) 또는 페로브스카이트-CIGS 텐덤 태양 전지(Perovskite-CIGS Tandem Solar Cell)로 구성되는 태양전지의 제조 방법.
  8. 청구항 2에 있어서,
    상기 태양전지가 진공열처리 되어, 상기 하부 투명 수지층, 상기 상부 투명 수지층 및 상기 투명 수지에 의해, 상기 하부 커버유리, 상기 박막 대양전지, 상기 유리블록 및 상기 상부 커버유리가 상호 접합되는 제5 단계;
    를 더 포함하는 태양전지의 제조 방법.
  9. 하부 커버유리;
    상기 하부 커버유리 상에 형성되는 하부 투명 수지층;
    상기 하부 투명 수지층 상에 배치되는 다수의 박막 태양전지;
    상기 하부 투명 수지층 상에서 다수의 각 상기 박막 태양전지들의 사이에 각각 배치되는 다수의 유리블록;
    다수의 상기 박막 태양전지와 상기 다수의 유리블록의 상부에 형성되는 상부 투명 수지층;
    상기 상부 투명 수지층 상에 배치되는 상부 커버유리;
    를 포함하는 태양전지.
  10. 청구항 9에 있어서,
    상기 하부 커버유리 또는 상기 상부 커버유리는,
    표면에 요철이 형성되는 태양전지.
  11. 청구항 9에 있어서,
    상기 하부 투명 수지층 및 상기 상부 투명 수지층은,
    광 경화성 수지 또는 열 경화성 수지로 구성되는 태양전지.
  12. 청구항 9에 있어서,
    상기 박막 태양전지는,
    양단에 전도성 테잎 구조의 전극이 접합되도록 구성되거나, 초음파 접합 또는 열접합에 의해 전극이 접합되어, 정렬된 상기 박막 태양전지의 양끝단의 전극이 상호간에 병렬 또는 직렬로 연결하는 태양전지.
  13. 청구항 9에 있어서,
    상기 박막 태양전지는,
    CIGS(Copper, Indium, Gallium, Selenium Thin Film Solar Cell), 페로브스카이트 태양 전지(Perovskite Solar Cell) 또는 페로브스카이트-CIGS 텐덤 태양 전지(Perovskite-CIGS Tandem Solar Cell)로 구성되는 태양전지.
PCT/KR2023/005453 2022-06-13 2023-04-21 태양전지 및 그 제조 방법 WO2023243846A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220071332A KR20230171141A (ko) 2022-06-13 2022-06-13 태양전지 및 그 제조 방법
KR10-2022-0071332 2022-06-13

Publications (1)

Publication Number Publication Date
WO2023243846A1 true WO2023243846A1 (ko) 2023-12-21

Family

ID=89191534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005453 WO2023243846A1 (ko) 2022-06-13 2023-04-21 태양전지 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR20230171141A (ko)
WO (1) WO2023243846A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216609A (ja) * 2011-03-31 2012-11-08 Nagasaki Prefecture 太陽電池設置建築構造体及び太陽電池パネル
KR20140084382A (ko) * 2012-12-26 2014-07-07 전자부품연구원 경량화 태양전지 모듈
KR20150093291A (ko) * 2014-02-06 2015-08-18 주성엔지니어링(주) 시인성이 향상된 태양 전지 및 그의 제조 방법
KR101988345B1 (ko) * 2019-01-11 2019-06-12 김길수 태양광 발전 겸용 조립식 자연채광 외장 모듈 및 구조체
KR102043919B1 (ko) * 2019-05-24 2019-11-12 이기우 건물 일체형 태양전지 모듈

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378495B1 (ko) 2021-11-01 2022-03-23 세종대학교산학협력단 니켈 이온에 특이적으로 결합하는 앱타머

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216609A (ja) * 2011-03-31 2012-11-08 Nagasaki Prefecture 太陽電池設置建築構造体及び太陽電池パネル
KR20140084382A (ko) * 2012-12-26 2014-07-07 전자부품연구원 경량화 태양전지 모듈
KR20150093291A (ko) * 2014-02-06 2015-08-18 주성엔지니어링(주) 시인성이 향상된 태양 전지 및 그의 제조 방법
KR101988345B1 (ko) * 2019-01-11 2019-06-12 김길수 태양광 발전 겸용 조립식 자연채광 외장 모듈 및 구조체
KR102043919B1 (ko) * 2019-05-24 2019-11-12 이기우 건물 일체형 태양전지 모듈

Also Published As

Publication number Publication date
KR20230171141A (ko) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2011078630A2 (ko) 태양광 발전장치
WO2016186317A1 (ko) 페로브스카이트 태양 전지 모듈
WO2010053301A2 (ko) 기능성 시트 및 이를 포함하는 태양전지 모듈
WO2011053077A2 (ko) 태양전지 및 이의 제조방법
WO2011002230A2 (ko) 태양전지 및 이의 제조방법
EP2678884A2 (en) Frame system for solar cell module
WO2012133973A1 (ko) 태양전지 모듈 및 이의 제조방법
WO2020204527A1 (ko) 태양전지 패널 및 그 제조 방법
WO2011043609A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2013147517A1 (en) Solar cell and method of fabricating the same
WO2023243846A1 (ko) 태양전지 및 그 제조 방법
WO2013162302A1 (en) Photovoltaic apparatus
WO2012015286A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2013105750A1 (ko) 전도성 페이스트를 전극으로 사용하는 실리콘 태양전지 모듈 및 그 제조 방법
WO2013077674A1 (en) Solar cell module and method of fabricating the same
WO2012015150A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2012046934A1 (ko) 태양광 발전장치 및 이의 제조방법
WO2024051519A1 (zh) 一种光伏组件的制备方法及光伏组件
WO2016085044A1 (ko) 화합물 박막을 이용한 다중접합 태양전지 제조 방법 및 다중접합 태양전지
WO2011083995A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2020004847A1 (ko) 태양 전지 모듈
WO2013133589A1 (en) Solar cell apparatus
WO2011055954A2 (ko) 태양전지 및 이의 제조방법
EP4109743B1 (en) Method for preparing a flexible and rollable back-contact solar cell module
WO2022260244A1 (ko) 태양광 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824072

Country of ref document: EP

Kind code of ref document: A1