WO2023243701A1 - Polyester and molded article composed of same - Google Patents

Polyester and molded article composed of same Download PDF

Info

Publication number
WO2023243701A1
WO2023243701A1 PCT/JP2023/022360 JP2023022360W WO2023243701A1 WO 2023243701 A1 WO2023243701 A1 WO 2023243701A1 JP 2023022360 W JP2023022360 W JP 2023022360W WO 2023243701 A1 WO2023243701 A1 WO 2023243701A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
mol
diol
unit
content
Prior art date
Application number
PCT/JP2023/022360
Other languages
French (fr)
Japanese (ja)
Inventor
浩志 松木
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2023243701A1 publication Critical patent/WO2023243701A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a polyester suitable as a raw material for extrusion blow molding and a molded article made from the same.
  • Polyesters such as polyethylene terephthalate have excellent properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, when polyester is made into a molded product, there is less concern about residual monomers or harmful additives, and it is also excellent in hygiene and safety. Therefore, taking advantage of these properties, polyester has recently been widely used as a substitute for vinyl chloride resin in hollow containers for filling juices, soft drinks, seasonings, oils, cosmetics, detergents, and the like.
  • Patent Document 1 describes polyester pellets formed by condensation polymerization of terephthalic acid, ethylene glycol, cyclohexanedimethanol or bisphenol A ethylene oxide adduct, and polyvalent ester.
  • Patent Document 2 describes a polyester containing 15 to 500 ppm of a component derived from 1,2-propanediol.
  • Patent Document 3 describes that in a polyester whose main acid component is terephthalic acid and whose main glycol component is ethylene glycol, a compound represented by propylene glycol or the like is added in an amount of 0.5 to 30 mol% based on the total glycol component.
  • a copolymerized polyester containing 2 to 30 ppm of an alkali metal compound is disclosed.
  • the polyester described in Patent Document 1 contains a structural unit derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct.
  • a structural unit derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct When containing a structural unit derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct, the physical properties of the polyester, particularly impact resistance, are improved.
  • the number of structural units derived from the bisphenol A ethylene oxide adduct increases, it is necessary to use a large amount of bisphenol A, which is a raw material for synthesizing the bisphenol A ethylene oxide adduct.
  • Patent Documents 2 and 3 only include 1,2-propanediol and cyclohexanedimethanol among the many examples of copolymerizable monomers, and do not provide any information regarding the impact resistance of polyester. Not listed.
  • the present invention was made to solve the above problems, and provides a polyester that has good impact resistance even when the content of structural units derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct is small.
  • the purpose is to
  • polyester containing dicarboxylic acid units and specific diol units is suitable as a raw material for molding with little impact on the environment, particularly as a raw material for extrusion blow molding, and that it is possible to use the polyester. It was discovered that a molded article with good impact resistance could be obtained by using the method, and based on this knowledge, further studies were conducted to arrive at the present invention.
  • a polyester containing a dicarboxylic acid unit and a diol unit wherein the dicarboxylic acid unit includes a structural unit derived from terephthalic acid, and the diol unit includes a first diol unit, a second diol unit, and a third diol unit.
  • the first diol unit is a structural unit derived from ethylene glycol
  • the second diol unit is a structural unit derived from 1,2-propanediol
  • the third diol unit is a structural unit derived from bisphenol A.
  • a polyester can be obtained that is suitable as a raw material for extrusion blow molding with little impact on the environment and that can produce molded products with good impact resistance.
  • the polyester of the present invention is a polyester containing a dicarboxylic acid unit and a diol unit, wherein the dicarboxylic acid unit includes a structural unit derived from terephthalic acid, and the diol unit includes a first diol unit, a second diol unit, and a third diol unit, the first diol unit is a structural unit derived from ethylene glycol, the second diol unit is a structural unit derived from 1,2-propanediol, and the third diol unit is a structural unit derived from 1,2-propanediol.
  • the polyester of the present invention has a structural unit derived from 1,2-propanediol as the second diol unit, and a bisphenol A ethylene oxide adduct as the third diol unit. and cyclohexanedimethanol, or both.
  • the polyester contains the third diol unit, impact resistance becomes good.
  • the melting point of the polyester can be lowered, and the molding temperature in direct blow molding can also be lowered.
  • the polyester preferably contains a structural unit derived from cyclohexanedimethanol as the third diol unit.
  • the polyester contains a structural unit derived from a bisphenol A ethylene oxide adduct as the third diol unit.
  • the polyester contains the third diol unit
  • the impact resistance becomes good, but from the viewpoint of impact on the environment and living organisms and recycling, the content of the third diol unit should not be too large. is desirable.
  • the present inventor has discovered that by containing a certain amount of a structural unit derived from 1,2-propanediol as the second diol unit, the third diol unit is It has been found that impact resistance is good even when the content is small.
  • the polyester of the present invention contains a certain amount or more of a component derived from 1,2-propanediol, which is the second diol unit, the amorphousness is further increased, so that it is easy to obtain a transparent and beautiful bottle.
  • the content of structural units derived from terephthalic acid in the polyester of the present invention is preferably 80 mol% or more, more preferably 90 mol% or more, when the total of dicarboxylic acid units in the polyester is 100 mol%. More preferably, it is 95 mol% or more, and even more preferably, the dicarboxylic acid units in the polyester are substantially only structural units derived from terephthalic acid.
  • the first diol unit is a structural unit derived from ethylene glycol.
  • the content of structural units derived from ethylene glycol is not particularly limited, but is preferably 75 to 98 mol% when the total diol units contained in the polyester is 100 mol%.
  • the content of the structural unit derived from ethylene glycol is more preferably 78 mol% or more, even more preferably 80 mol% or more, and preferably 83 mol% or more, 85 mol% or more, 88 mol% or more, or 90 mol% or more. There is also.
  • the content of the structural unit derived from ethylene glycol is more preferably 97.5 mol% or less, and may be preferably 97 mol% or less, 96 mol% or less, or 95 mol% or less.
  • the structural unit derived from ethylene glycol may be derived from biomass-derived ethylene glycol.
  • the second diol unit is a structural unit derived from 1,2-propanediol, and when the total of diol units contained in the polyester is 100 mol%, the content X of the second diol unit is It is 0.001 to 0.5 mol%. If the content X of the second diol unit is more than the above upper limit, the impact resistance of the polyester container etc. will deteriorate. In particular, from the viewpoint of improving the impact resistance of containers etc., the content X of the second diol unit is preferably 0.4 mol% or less, more preferably 0.35 mol% or less, and 0.3 mol% or less. More preferred.
  • the lower limit of the content of the second diol unit is preferably 0.01 mol% or more, more preferably 0.05 mol% or more, even more preferably 0.08 mol% or more, 0.10 mol% or more, 0.13 mol% or more, 0.137 mol% or more, 0.14 mol% or more, 0.15 mol% or more, 0.16 mol% or more, 0.162 mol% or more, 0.17 mol% or more, 0 .18 mol% or more or 0.189 mol% or more may be preferable in some cases. If it is less than the lower limit, it is not preferable because it is necessary to increase the content of the third diol unit in order to improve impact resistance.
  • the component of the structural unit derived from 1,2-propanediol refers to the total amount of 1,2-propanediol detected when polyester is decomposed and analyzed, and it is the total amount of 1,2-propanediol that is copolymerized in the polymer chain. It represents the total amount of 1,2-propanediol consisting of a structure derived from 1,2-propanediol and 1,2-propanediol mixed between the polymer. That is, this 1,2-propanediol may be partially copolymerized in the polyester main chain, or may be contained as a single 1,2-propanediol without being copolymerized.
  • the third diol unit is a structural unit derived from bisphenol A ethylene oxide adduct and/or cyclohexanedimethanol.
  • the structural unit derived from the bisphenol A ethylene oxide adduct is one in which at least one ethylene oxide is added to each hydroxyl group of bisphenol A.
  • the amount of ethylene oxide added is usually 2 to 4 mol % based on 1 mol of bisphenol A.
  • cyclohexanedimethanol examples include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol. Among them, 1,4- Cyclohexane dimethanol is preferred.
  • the structural unit derived from cyclohexanedimethanol includes a cis-form and a trans-form, and the ratio thereof is not particularly limited, but in particular, the ratio of the cis-form/trans-form of cyclohexanedimethanol is in the range of 0/100 to 50/50.
  • the total (Y+Z) is 2 to 25 mol%. If Y+Z is less than 2 mol%, the impact resistance and transparency of the resulting molded product will decrease.
  • Y+Z is preferably 2.5 mol% or more, more preferably 3 mol% or more, even more preferably 4 mol% or more, and sometimes preferably 6 mol% or more or 8 mol% or more.
  • Y+Z is preferably 20 mol% or less, 18 mol% or less, 15 mol% or less, 13 mol% or less, 10 mol% or less, or 8 mol% or less.
  • the content of structural units derived from the bisphenol A ethylene oxide adduct when the total diol units contained in the polyester is 100 mol%.
  • Y is 25 mol% or less, preferably 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less. The reason is as mentioned above.
  • the content Z of structural units derived from cyclohexanedimethanol is 25 mol% or less when the total diol units contained in the polyester is 100 mol%.
  • the content is preferably 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less. The reason is as mentioned above.
  • the content Y (mol %) of the structural unit derived from the bisphenol A ethylene oxide adduct and the content Z (mol %) of the structural unit derived from cyclohexanedimethanol with respect to the content X (mol %) of the second diol unit. %) [(Y+Z)/X] is more preferably 10 or more, and even more preferably 12 or more.
  • the ratio [(Y+Z)/X] is more preferably 60 or less, further preferably 40 or less, and particularly preferably 30 or less. When the ratio [(Y+Z)/X] is below the above upper limit, the hue tends to be excellent.
  • the total content of the first diol unit, second diol unit, and third diol unit contained in the polyester of the present invention is usually 75 mol% or more when the total of diol units in the polyester is 100 mol%. is preferable, 90 mol% or more is more preferable, and even more preferably 95 mol% or more.
  • the total content is usually 100 mol% or less.
  • the polyester may contain 1 to 5 mol% of units derived from diethylene glycol, which is a by-product during the polycondensation reaction, based on the total 100 mol% of diol units in the polyester.
  • the polyester of the present invention may have a unit derived from a polyvalent ester, if necessary.
  • the polyvalent ester include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] and 1,3,5-tris[2-[3-(3,5- Examples include di-tert-butyl-4-hydroxyphenyl)propanoyloxy]ethyl]hexahydro-1,3,5-triazine-2,4,6-trione.
  • the unit derived from the polyvalent ester is a carboxylic acid ester of a trivalent or higher polyol, and the carboxylic acid is derived from a polyvalent ester having a hindered phenol group, the unit derives from the polyvalent ester. It may be contained in the polyester of the present invention by melt-kneading and condensation polymerization with terephthalic acid, ethylene glycol, and cyclohexanedimethanol and/or bisphenol A ethylene oxide adduct. In the condensation polymerization, the polyol unit of the polyvalent ester and the carboxylic acid unit having a hindered phenol group are contained in the polyester by a transesterification reaction.
  • the polyol unit is contained in the main chain, branch chain, or terminal of the polyester.
  • a part of the polyol unit becomes a crosslinking point and acts as a crosslinking agent.
  • a part of the carboxylic acid unit having a hindered phenol group is contained at the end of the polyester, and a part is contained in the polyester together with the polyol unit in a state of being bonded to the polyol unit.
  • the polyvalent ester is preferably a carboxylic acid ester of a polyol having a valence of 3 or more and 5 or less.
  • the content thereof is preferably 0.005 to 0.040% by mass.
  • the content of the component derived from the polyester in the polyester is the total amount of the polyester-derived unit incorporated into the polyester chain and the component not incorporated into the polyester chain.
  • the polyvalent ester added during melt-kneading is considered to be generally contained in the polyester chain. If the content of units derived from the polyvalent ester is less than 0.005% by mass, there is a risk that the drawdown resistance of the polyester will decrease, or that the polyester may be heated during polymerization or molding. Polyester tends to yellow, and the color tone of the resulting molded product may deteriorate.
  • the content of the units derived from the polyvalent ester exceeds 0.040% by mass, crosslinking by the units derived from the polyvalent ester will progress too much, leading to the risk of the melt viscosity becoming too high and the resulting molded product being Impact resistance may decrease.
  • the content of the units derived from the polyvalent ester is more preferably 0.030% by mass or less, and even more preferably 0.020% by mass or less.
  • the polyester of the present invention contains a structural unit derived from the polyester
  • the polyester contains a structural unit derived from terephthalic acid, a structural unit derived from ethylene glycol, a structural unit derived from cyclohexanedimethanol, and bisphenol A ethylene.
  • the total content of the structural units derived from the oxide adduct and the structural units derived from the polyvalent ester is preferably 75 mol% or more, more preferably 90 mol% or more, based on the total of all structural units in the polyester. , more preferably 95 mol% or more.
  • the total content is usually 100 mol% or less.
  • the polyester of the present invention has a structural unit derived from terephthalic acid, a first diol unit, a second diol unit, and a structural unit derived from a bifunctional compound other than the third diol unit, if necessary. You can leave it there.
  • the content of structural units derived from the bifunctional compound (if two or more types of units are included, the total) is 20 mol% or less, when the total of all structural units constituting the polyester is 100 mol%.
  • the content is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 5 mol% or less.
  • the bifunctional compound may be any dicarboxylic acid, diol, hydroxycarboxylic acid, or ester, and these may be aliphatic, alicyclic aliphatic, or aromatic.
  • aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid and their ester-forming derivatives; cyclohexanedicarboxylic acid, adipic acid, sebacic acid, dimer acid aliphatic dicarboxylic acids or their ester-forming derivatives such as; aliphatic diols such as neopentyl glycol, 1,4-butanediol, 1,5-pentamethylene diol, 1,6-hexamethylene diol, diethylene glycol, dimer diol, etc. ; ethylene oxide adduct of bisphenol S; and the like.
  • the polyester of the present invention may have a structural unit derived from a polyfunctional compound as long as it does not impede the effects of the present invention.
  • the structural unit derived from a polyfunctional compound is a polyfunctional compound derived from a polyfunctional compound having three or more carboxyl groups, hydroxyl groups, and/or their ester-forming groups.
  • the content of the structural unit derived from the polyfunctional compound (if it has two or more types of units, the total) is 0.05% by mass or less, when the total of all structural units of the polyester is 100 mol%.
  • the content is preferably 0.04% by mass or less, and more preferably 0.04% by mass or less.
  • Polyfunctional compound units include 2-[3-(2-hydroxyethyl)-4-(2-hydroxyethoxy)phenyl]-2-[4-(2-hydroxyethoxy)phenyl]propane, trimellitic acid, Examples include polyfunctional compound units derived from pyromellitic acid, trimesic acid, trimethylolpropane, and glycerin. On the other hand, when containing a structural unit derived from the polyfunctional compound, the content is preferably 0.01% by mass or more.
  • the polyester of the present invention may have polymerization ends and branched ends sealed with a monofunctional compound, if necessary.
  • monofunctional compounds include benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthalenecarboxylic acid, stearic acid, stearyl alcohol, monocarboxylic acids other than carboxylic acids having hindered phenol groups, and monoalcohols. and ester-forming derivatives thereof.
  • the monofunctional compound seals the molecular chain end groups and/or branched chain end groups of the polyester, thereby preventing excessive crosslinking and gel formation in the polyester.
  • the content of the monofunctional compound unit (if it has two or more units, the total) is such that the total of all structural units of the polyester is 100 mol.
  • the content of the monofunctional compound unit is such that the total of all structural units of the polyester is 100 mol.
  • it is preferably 1 mol% or less, more preferably 0.5 mol% or less. If the content of other monofunctional compound units in the polyester exceeds 1 mol %, the polymerization rate during production of the polyester becomes slow and productivity tends to decrease.
  • the polyester of the present invention may contain other additives as long as they do not impede the effects of the present invention, such as colorants such as dyes and pigments, stabilizers such as ultraviolet absorbers, and antistatic agents. , flame retardants, flame retardant aids, lubricants, plasticizers, inorganic fillers and the like.
  • the content of these additives is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the intrinsic viscosity of the polyester of the present invention is not particularly limited, but from the viewpoint of extrusion blow molding, the lower limit of the intrinsic viscosity is preferably 0.8 dL/g or more, and more preferably 0.9 dL/g or more. On the other hand, from the viewpoint of molding, the upper limit of the limiting viscosity is preferably 1.5 dL/g or less, more preferably 1.4 dL/g or less.
  • the polyester of the present invention can be produced by employing known production methods, including step (A) of esterifying or transesterifying carboxylic acids and diols, and melt polycondensation of the polyester oligomer obtained in step (A). step (B), and then step (C) of solid-phase polymerizing the composition obtained in step (B), where the diol is 1,2-propanediol, when the total of the diols is 100 mol%.
  • the polyester of the present invention can be efficiently produced by employing a method for producing polyester containing 0.001 to 0.5 mol% of.
  • the above-mentioned carboxylic acids may be used as they are, or carboxylic acid esters may be used.
  • the alcohol moiety of the carboxylic acid ester is not particularly limited, and examples include monools such as methanol and ethanol; polyols such as ethylene glycol, cyclohexanedimethanol, and bisphenol A ethylene oxide adduct, which are constituent units of the polyester.
  • the aforementioned diols may be used as they are, or monoesters or diesters of diols may be used.
  • the carboxylic acid moiety of the monoester or diester is not particularly limited, and includes carboxylic acids such as formic acid, acetic acid, and propionic acid.
  • a polyvalent ester When using a polyvalent ester, it may be reacted with the dicarboxylic acid and diol in the step (A), or it may be reacted with the polyester after obtaining the polyester oligomer.
  • phosphoric acid compounds such as phosphorous acid or esters thereof can be used, and these can be used alone or in combination of two or more. good.
  • the phosphoric acid compound include phosphorous acid, phosphorous ester, phosphoric acid, trimethyl phosphate, and triphenyl phosphate.
  • the amount of the coloring inhibitor used is preferably within the range of 80 to 1000 ppm based on the total of the dicarboxylic acid component and the diester component.
  • a cobalt compound such as cobalt acetate
  • the amount used is within the range of 100 to 1000 ppm based on the total of the dicarboxylic acid component and diester component. It is more preferable.
  • the polymerization catalyst used in the melt condensation polymerization is preferably a compound containing a germanium element, an antimony element, or a titanium element.
  • Compounds containing antimony element include antimony trioxide, antimony chloride, antimony acetate, etc.
  • Compounds containing germanium element include germanium dioxide, germanium tetrachloride, germanium tetraethoxide, etc. Examples of compounds used include tetraisopropyl titanate, tetrabutyl titanate, and the like.
  • antimony trioxide and germanium dioxide are preferred from the viewpoint of polymerization catalyst activity, physical properties of the resulting polyester, and cost.
  • the amount added is preferably in the range of 0.002 to 0.8% by mass based on the mass of the dicarboxylic acid component.
  • the above-mentioned esterification reaction or transesterification reaction is carried out by charging the above-mentioned raw materials, a polymerization catalyst, and optionally additives such as a coloring inhibitor into a reactor, and then heating the mixture under an absolute pressure of about 0.5 MPa or less or under normal pressure. It is preferable to carry out the reaction at a temperature of 160 to 280° C. while distilling off the water or alcohol produced.
  • the above-mentioned raw materials, polycondensation catalyst, and additives such as color inhibitors are added to the obtained polyester oligomer as necessary, and the pressure is reduced to 1 kPa or less. It is preferable to carry out the process at a temperature of 260 to 290° C. until a polyester of the desired viscosity is obtained.
  • the reaction temperature of the melt polycondensation reaction is lower than 260° C., the polymerization activity of the polymerization catalyst is low, and there is a possibility that a polyester having a target degree of polymerization cannot be obtained.
  • the melt polycondensation reaction can be carried out using, for example, a tank-type batch-type polycondensation apparatus, a continuous-type polycondensation apparatus consisting of a biaxially rotating horizontal reactor, or the like.
  • the intrinsic viscosity of the polyester obtained by melt polycondensation is preferably 0.4 dL/g or more. This not only improves handling properties but also improves productivity since the polyester obtained by melt polycondensation can be made to have a high molecular weight in a short time when it is further subjected to solid phase polymerization.
  • the limiting viscosity is more preferably 0.55 dL/g or more, and still more preferably 0.65 dL/g or more.
  • the intrinsic viscosity is preferably 0.9 dL/g or less, more preferably 0.85 dL/g or less, from the viewpoint of easily taking out the polyester from the reactor and suppressing coloring due to thermal deterioration. More preferably, it is 0.8 dL/g or less.
  • the polyester obtained as described above is extruded into shapes such as strands and sheets, and after cooling, it is cut with a strand cutter or sheet cutter to obtain shapes such as cylinders, ellipsoids, discs, and dice. Produce intermediate pellets.
  • the above-mentioned cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
  • the intermediate pellet may be subjected to solid phase polymerization. At this time, it is preferable to preliminarily crystallize a portion of the polyester by heating before solid phase polymerization. This can prevent pellets from sticking during solid phase polymerization.
  • the crystallization temperature is preferably 100-180°C.
  • the crystallization method it may be crystallized in a vacuum tumbler, or it may be crystallized by heating in an air circulation type heating device. When heating is performed in an air circulation type heating device, the internal temperature is preferably 100 to 160°C.
  • the time required for crystallization is not particularly limited, but is usually about 30 minutes to 24 hours. It is also preferred to dry the pellets at a temperature below 100°C prior to crystallization.
  • the temperature of solid phase polymerization is preferably 170 to 250°C. If the solid phase polymerization temperature is less than 170° C., the solid phase polymerization time may become longer and productivity may decrease.
  • the temperature of solid phase polymerization is more preferably 175°C or higher, and still more preferably 180°C or higher. On the other hand, if the solid phase polymerization temperature exceeds 250°C, there is a risk that the pellets will stick together.
  • the temperature of solid phase polymerization is more preferably 240°C or lower, and still more preferably 230°C or lower.
  • the solid phase polymerization time is usually about 5 to 70 hours. Further, the catalyst used in melt polymerization may be coexisting during solid phase polymerization.
  • the solid phase polymerization is preferably carried out under reduced pressure or in an inert gas such as nitrogen gas. Furthermore, it is preferable to carry out the solid phase polymerization while moving the pellets by an appropriate method such as a tumbling method or a gas fluidized bed method so as to prevent the pellets from sticking together.
  • the pressure is preferably 1 kPa or less.
  • the intrinsic viscosity of polyester obtained by solid phase polymerization may vary depending on the type of melt molding method for copolymerized polyester, but when used for melt molding involving melt extrusion, especially extrusion blow molding, it is 0.8 to 0.8. It is preferably 1.5 dL/g, and is preferably 0.9 to 1.4 dL/g, especially from the viewpoint of the mechanical properties, appearance, and productivity of the extrusion blow-molded product obtained when manufacturing the molded product. More preferred.
  • the half-crystallization time at the crystallization peak temperature of the polyester contained in the polyester obtained by solid phase polymerization may be 30 minutes or more.
  • crystallization peak temperature refers to the heating of amorphous polyester from room temperature (20°C) to a temperature above the melting point (280°C) at 10°C/min using a differential calorimeter (DSC). This is the temperature of the exothermic peak associated with crystallization measured as follows.
  • "half-crystallization time at crystallization peak temperature” means -50 °C after melting polyester by heating it to a temperature above the melting point (280 °C) using a differential calorimeter (DSC).
  • isothermal crystallization is performed by holding at that crystallization peak temperature. After reaching the crystallization peak temperature, the amount of heat generated by isothermal crystallization is equal to the total heat generation. It means the time it takes for the amount to decrease to 1/2.
  • the crystal melting enthalpy of the polyester of the present invention may be 20 J/g or more.
  • Pellets obtained by solid phase polymerization contain polyester that has been crystallized at high temperatures for a long period of time, and therefore may have such a large enthalpy of crystal fusion.
  • the polyester of the present invention has a high viscosity during melt molding, so it is suitable for extrusion blow molding.
  • the temperature of the resin composition during extrusion molding is preferably within the range of (melting point of polyester + 10°C) to (melting point of polyester + 70°C), and (melting point of polyester + 10°C) to (melting point of polyester + 40°C). It is more preferable to set the temperature within the range of (°C). Drawdown can be suppressed by extruding at a temperature relatively close to the melting point.
  • extrusion blow molding is particularly suitable for using the polyester of the present invention.
  • the extrusion blow molding method is not particularly limited, and can be performed in the same manner as conventionally known extrusion blow molding methods.
  • the polyester of the present invention is melt-extruded to form a cylindrical parison, and while the parison is in a softened state, it is sandwiched between blow molds, and a gas such as air is blown into the parison to shape the mold cavity. This can be done by expanding the tube into a predetermined hollow shape.
  • the extruded parison has good drawdown properties, and blow molded products can be manufactured with good productivity.
  • the molded product thus obtained has excellent transparency, good appearance and color tone, and high mechanical strength, especially impact resistance. Furthermore, it has excellent properties such as gas barrier properties, flavor barrier properties, moisture resistance, and chemical resistance, so it can be used for various purposes. Moreover, it can also be made into a molded product having a laminated structure with other thermoplastic resins. Molded articles obtained using the polyester have particularly excellent transparency. As described above, a molded article containing the polyester is a preferred embodiment of the present invention, a more preferred embodiment is a molded article formed by extrusion molding the polyester, and a molded article formed by extrusion blow molding the polyester. is a particularly preferred embodiment.
  • Ratio of monomer components The ratio of monomer components constituting polyester was determined by 1H -NMR spectrum (equipment: "JNM-ECZ 400S” manufactured by JEOL Ltd., solvent: deuterated trifluoroacetic acid). confirmed. The amount of 1,2-propanediol was calculated from the integral ratio of the peak of terephthalic acid around 7.9 to 8.5 ppm and the peak of 1,2-propanediol around 5.3 to 5.7 ppm.
  • Tg Glass transition temperature
  • Tm glass transition temperature
  • Tg glass transition temperature
  • Bottle molding, bottle drop strength test Using an extrusion blow molding device (“MSE-40E/32M-A (T1) type” manufactured by Tahara Co., Ltd.), the maximum cylinder temperature was 280 to 290°C, and the die temperature was 240 to 250°C.
  • the bottle As a drop test for the bottle, the bottle was filled with water that had been kept at a temperature of 23°C so that no air bubbles remained inside the bottle, was sealed with a cap, and then passed through a vertically installed cylinder with a diameter of 10 cm, and was dropped from a height of 125 cm onto horizontal concrete. They were dropped alternately onto a concrete surface tilted at a 45 degree angle. The bottle was repeatedly dropped up to 20 times, once on a horizontal surface and once on a 45-degree slope, until the bottle cracked or cracked and the water filled inside leaked out. A drop test was performed on five bottles for each composition, and the average value was taken as the bottle drop strength.
  • Bottle drop strength and accelerated bottle drop strength were used as indicators of impact resistance, and the higher the number of times, the better the impact resistance.
  • Example 1 100.00 parts by weight of terephthalic acid, 42.59 parts by weight of ethylene glycol, 9.49 parts by weight of bisphenol A ethylene oxide adduct, 2-[3-(2-hydroxyethyl)-4-(2-hydroxyethoxy)phenyl] A slurry consisting of 0.039 parts by weight of -2-[4-(2-hydroxyethoxy)phenyl]propane (hereinafter referred to as "HEPP") and 0.216 parts by weight of 1,2-propanediol was prepared, and 0.020 parts by weight of 1,2-propanediol was prepared. Parts by weight of germanium dioxide and 0.015 parts by weight of phosphorous acid were added.
  • HEPP -2-[4-(2-hydroxyethoxy)phenyl]propane
  • This slurry was heated to a temperature of 250° C. under pressure (absolute pressure 2.5 kg/cm 2 ), and an esterification reaction was performed until the esterification rate reached 95% to produce a low polymer. Subsequently, the above-mentioned low polymer was subjected to melt polycondensation at a temperature of 270° C. under a reduced pressure of 1 mmHg to produce a copolyester prepolymer having an intrinsic viscosity of 0.76 dL/g, which was passed through a nozzle in the form of a strand. It was extruded and cut into cylindrical chips (diameter 2.5 mm, length 3.5 mm).
  • Example 2 A slurry consisting of 100.00 parts by weight of terephthalic acid, 43.49 parts by weight of ethylene glycol, 5.64 parts by weight of bisphenol A ethylene oxide adduct, 0.216 parts by weight of 1,2-propanediol and 0.089 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
  • Example 3 100.00 parts by weight of terephthalic acid, 42.59 parts by weight of ethylene glycol, 9.52 parts by weight of 1,4-cyclohexanedimethanol, 0.216 parts by weight of 1,2-propanediol, and pentaerythritol tetrakis
  • 3-(3, Polyester was prepared in the same manner as in Example 1, except that a slurry containing 0.012 parts by weight of 5-di-tert-butyl-4-hydroxyphenyl)propionate was used and the solid-state polymerization time was as shown in Table 1. was manufactured and evaluated. The results are shown in Tables 1 and 2.
  • Example 4 A slurry consisting of 100.00 parts by weight of terephthalic acid, 40.69 parts by weight of ethylene glycol, 11.38 parts by weight of bisphenol A ethylene oxide adduct, 0.133 parts by weight of 1,2-propanediol and 0.046 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
  • Example 5 A slurry consisting of 100.00 parts by weight of terephthalic acid, 40.57 parts by weight of ethylene glycol, 11.51 parts by weight of bisphenol A ethylene oxide adduct, 0.033 parts by weight of 1,2-propanediol and 0.044 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
  • a bottle obtained by molding a polyester (Examples 1 to 5) having a first diol unit, a second diol unit, and a third diol unit and satisfying the above formulas (1) and (2) is: Despite the low content of the third diol unit, the bottle drop strength and accelerated bottle drop strength were good. On the other hand, bottles obtained by molding polyesters that do not contain the second diol unit (Comparative Examples 1 to 3) were inferior in bottle drop strength and accelerated bottle drop strength.
  • the present invention it is possible to obtain a polyester that is suitable as a raw material for extrusion blow molding with little impact on the environment and that can produce molded products with good impact resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

This polyester comprises a dicarboxylic acid unit and a diol unit, wherein: the dicarboxylic acid unit includes a structural unit derived from terephthalic acid; the diol unit includes a first diol unit, a second diol unit, and a third diol unit; the first diol unit is a structural unit derived from ethylene glycol; the second diol unit is a structural unit derived from 1,2-propanediol; and the third diol unit is a structural unit derived from a bisphenol A ethylene oxide adduct and/or cyclohexanedimethanol. Said polyester is suitable as a raw material for molding having less influence on the environment, in particular, a raw material for extrusion blow molding, and a molded article having favorable impact resistance is obtained by using said polyester.

Description

ポリエステル及びそれからなる成形品Polyester and molded products made from it
 本発明は、押出ブロー成形用の原料として適したポリエステルおよびそれからなる成形品に関する。 The present invention relates to a polyester suitable as a raw material for extrusion blow molding and a molded article made from the same.
 ポリエチレンテレフタレートなどのポリエステルは、透明性、力学的特性、ガスバリヤー性、フレーバーバリヤー性などの特性に優れている。さらに、ポリエステルは、成形品にした際に残留モノマーや有害な添加剤の心配が少なく、衛生性および安全性にも優れている。そのため、ポリエステルは、それらの特性を活かし塩化ビニル樹脂代替として、ジュース、清涼飲料、調味料、油、化粧品、洗剤などを充填するための中空容器として近年広く使用されている。 Polyesters such as polyethylene terephthalate have excellent properties such as transparency, mechanical properties, gas barrier properties, and flavor barrier properties. Furthermore, when polyester is made into a molded product, there is less concern about residual monomers or harmful additives, and it is also excellent in hygiene and safety. Therefore, taking advantage of these properties, polyester has recently been widely used as a substitute for vinyl chloride resin in hollow containers for filling juices, soft drinks, seasonings, oils, cosmetics, detergents, and the like.
 ポリエステルからなる中空成形品を製造するための成形法として、ダイオリフィスを通して溶融可塑化した樹脂を円筒状のパリソンとして押出し、そのパリソンが軟化状態にある間に金型で挟んで内部に空気などの流体を吹き込んで成形を行う押出ブロー成形法が知られている。この方法は、射出ブロー成形法に比べて、工程が簡単で、しかも金型の作製および成形に高度な技術を必要としないため、設備費や金型の製作費などが安く、多品種・少量生産に適している。しかも、細物、深物、大物、取っ手などを有する複雑な形状の成形品の製造も可能であるという利点がある。 As a molding method for manufacturing hollow molded products made of polyester, melted plasticized resin is extruded through a die orifice as a cylindrical parison, and while the parison is in a softened state, it is sandwiched between molds and air etc. An extrusion blow molding method that performs molding by blowing fluid is known. Compared to the injection blow molding method, this method has a simpler process and does not require advanced technology for mold production and molding, so equipment costs and mold production costs are low, and high-mix, low-volume production is possible. suitable for production. Moreover, it has the advantage that it is possible to manufacture molded products with complex shapes, such as thin, deep, large, and handles.
 特許文献1には、テレフタル酸、エチレングリコール、シクロヘキサンジメタノール又はビスフェノールAエチレンオキサイド付加物、及び多価エステルを縮重合させてなるポリエステルペレットが記載されている。特許文献2には、1,2-プロパンジオール由来の成分を15~500ppm含有するポリエステルが記載されている。また、特許文献3には、主たる酸成分がテレフタル酸であり、主たるグリコール成分がエチレングリコールであるポリエステルにおいて、プロピレングリコール等で示される化合物を全グリコール成分に対して0.5~30モル%共重合せしめ、且つ2~30ppmのアルカリ金属化合物を含有せしめた共重合ポリエステルが開示されている。 Patent Document 1 describes polyester pellets formed by condensation polymerization of terephthalic acid, ethylene glycol, cyclohexanedimethanol or bisphenol A ethylene oxide adduct, and polyvalent ester. Patent Document 2 describes a polyester containing 15 to 500 ppm of a component derived from 1,2-propanediol. Furthermore, Patent Document 3 describes that in a polyester whose main acid component is terephthalic acid and whose main glycol component is ethylene glycol, a compound represented by propylene glycol or the like is added in an amount of 0.5 to 30 mol% based on the total glycol component. A copolymerized polyester containing 2 to 30 ppm of an alkali metal compound is disclosed.
国際公報第2016/104689号International Publication No. 2016/104689 国際公報第2013/35559号International Publication No. 2013/35559 特開平2-191626号公報Japanese Unexamined Patent Publication No. 2-191626
 特許文献1に記載されたポリエステルは、シクロヘキサンジメタノール又はビスフェノールAエチレンオキサイド付加物に由来する構造単位を含む。シクロヘキサンジメタノール又はビスフェノールAエチレンオキサイド付加物に由来する構造単位を含む場合、ポリエステルの物性、特に耐衝撃性が向上する。一方で、ビスフェノールAエチレンオキサイド付加物に由来する構造単位が増加すると、ビスフェノールAエチレンオキサイド付加物を合成する際の原料となるビスフェノールAを多く使用する必要がある。大気中や、河川等に放出されたビスフェノールAは、動物の体内へ取り込まれると、神経や行動、乳腺や前立腺への悪影響を及ぼすことが報告されており、その観点からは、ビスフェノールAの使用量を抑えること、ひいてはビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量が多すぎないことが望ましい。また、シクロヘキサンジメタノールに由来する構造単位の含有量が増加すると、相対的にエチレングリコールに由来する構造単位の含有量が減少し、PETとしての性質が損なわれてしまう。この場合、ポリエステルのリサイクルシステムから外れてしまい、リサイクル印及び識別番号「1」または「PET」としてのリサイクルができなくなるため、この観点からは、シクロヘキサンジメタノールに由来する構造単位が多すぎないことが望ましい。したがって、シクロヘキサンジメタノール又はビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量を減少させた場合にも、これらの含有量が多い場合と同等の物性を維持できるポリエステルが求められている。特許文献2及び3には、共重合可能な単量体として多数例示されたものの中に、1,2-プロパンジオールやシクロヘキサンジメタノールが含まれているのみであり、ポリエステルの耐衝撃性について何ら記載されていない。 The polyester described in Patent Document 1 contains a structural unit derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct. When containing a structural unit derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct, the physical properties of the polyester, particularly impact resistance, are improved. On the other hand, when the number of structural units derived from the bisphenol A ethylene oxide adduct increases, it is necessary to use a large amount of bisphenol A, which is a raw material for synthesizing the bisphenol A ethylene oxide adduct. It has been reported that when bisphenol A released into the atmosphere or rivers is taken into the body of animals, it has an adverse effect on the nerves, behavior, mammary glands, and prostate glands. It is desirable to suppress the amount, and furthermore, it is desirable that the content of the structural unit derived from the bisphenol A ethylene oxide adduct is not too large. Furthermore, when the content of structural units derived from cyclohexanedimethanol increases, the content of structural units derived from ethylene glycol relatively decreases, and the properties as PET are impaired. In this case, it will be removed from the polyester recycling system and cannot be recycled with the recycling mark and identification number "1" or "PET," so from this point of view, it is important that there are not too many structural units derived from cyclohexanedimethanol. is desirable. Therefore, even when the content of structural units derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct is reduced, there is a need for a polyester that can maintain the same physical properties as when the content is high. Patent Documents 2 and 3 only include 1,2-propanediol and cyclohexanedimethanol among the many examples of copolymerizable monomers, and do not provide any information regarding the impact resistance of polyester. Not listed.
 本発明は前記課題を解決するためになされたものであり、シクロヘキサンジメタノール又はビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量が少ない場合にも良好な耐衝撃性を有するポリエステルを提供することを目的とする。 The present invention was made to solve the above problems, and provides a polyester that has good impact resistance even when the content of structural units derived from cyclohexanedimethanol or bisphenol A ethylene oxide adduct is small. The purpose is to
 本発明者らは鋭意検討した結果、ジカルボン酸単位と特定のジオール単位を含むポリエステルは、環境への影響の少ない成形用の原料、特に押出ブロー成形用の原料として適するとともに、当該ポリエステルを用いることにより耐衝撃性が良好である成形品が得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明に至った。 As a result of intensive studies, the present inventors have found that polyester containing dicarboxylic acid units and specific diol units is suitable as a raw material for molding with little impact on the environment, particularly as a raw material for extrusion blow molding, and that it is possible to use the polyester. It was discovered that a molded article with good impact resistance could be obtained by using the method, and based on this knowledge, further studies were conducted to arrive at the present invention.
 本発明は、下記[1]~[6]を提供する。
[1]ジカルボン酸単位とジオール単位を含むポリエステルであって、前記ジカルボン酸単位がテレフタル酸に由来する構造単位を含み、前記ジオール単位が第1のジオール単位、第2のジオール単位、及び第3のジオール単位を含み、第1のジオール単位がエチレングリコールに由来する構造単位であり、第2のジオール単位が1,2-プロパンジオールに由来する構造単位であり、第3のジオール単位がビスフェノールAエチレンオキサイド付加物及び/又はシクロヘキサンジメタノールに由来する構造単位であり、前記ポリエステルに含まれるジオール単位の合計を100モル%としたとき第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)、シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(1)及び(2)を満たす、ポリエステル。
 0.001≦X≦0.5  (1)
 2≦Y+Z≦25 (2)
[2]第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)及び前記シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(3)を満たす、[1]に記載のポリエステル。
 5≦(Y+Z)/X≦100(3)
[3]前記ポリエステルに含まれるジオール単位の合計を100モル%としたとき、第1のジオール単位の含有量が75~98モル%である、[1]又は[2]に記載のポリエステル。
[4]極限粘度が0.8~1.5dL/gである、[1]~[3]に記載のポリエステル。
[5][1]~[4]のいずれかに記載のポリエステルを含有する、成形品。
[6][1]~[5]のいずれかに記載のポリエステルを押出ブロー成形してなる、成形品。
The present invention provides the following [1] to [6].
[1] A polyester containing a dicarboxylic acid unit and a diol unit, wherein the dicarboxylic acid unit includes a structural unit derived from terephthalic acid, and the diol unit includes a first diol unit, a second diol unit, and a third diol unit. The first diol unit is a structural unit derived from ethylene glycol, the second diol unit is a structural unit derived from 1,2-propanediol, and the third diol unit is a structural unit derived from bisphenol A. It is a structural unit derived from an ethylene oxide adduct and/or cyclohexanedimethanol, and when the total of diol units contained in the polyester is 100 mol%, the content of the second diol unit X (mol%), the bisphenol A polyester in which the content Y (mol%) of structural units derived from the ethylene oxide adduct and the content Z (mol%) of structural units derived from cyclohexanedimethanol satisfy the following formulas (1) and (2).
0.001≦X≦0.5 (1)
2≦Y+Z≦25 (2)
[2] Content X (mol%) of the second diol unit, content Y (mol%) of the structural unit derived from the bisphenol A ethylene oxide adduct, and content Y (mol%) of the structural unit derived from the cyclohexanedimethanol. The polyester according to [1], wherein Z (mol %) satisfies the following formula (3).
5≦(Y+Z)/X≦100(3)
[3] The polyester according to [1] or [2], wherein the content of the first diol unit is 75 to 98 mol% when the total amount of diol units contained in the polyester is 100 mol%.
[4] The polyester according to [1] to [3], which has an intrinsic viscosity of 0.8 to 1.5 dL/g.
[5] A molded article containing the polyester according to any one of [1] to [4].
[6] A molded article obtained by extrusion blow molding the polyester according to any one of [1] to [5].
 本発明によれば、環境への影響の少ない押出ブロー成形用の原料として適するとともに、耐衝撃性が良好である成形品を製造可能なポリエステルが得られる。 According to the present invention, a polyester can be obtained that is suitable as a raw material for extrusion blow molding with little impact on the environment and that can produce molded products with good impact resistance.
 以下、本発明の実施の形態について説明するが、本発明はこれらに限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.
 本発明のポリエステルは、ジカルボン酸単位とジオール単位を含むポリエステルであって、前記ジカルボン酸単位がテレフタル酸に由来する構造単位を含み、前記ジオール単位が第1のジオール単位、第2のジオール単位、及び第3のジオール単位を含み、第1のジオール単位がエチレングリコールに由来する構造単位であり、第2のジオール単位が1,2-プロパンジオールに由来する構造単位であり、第3のジオール単位がビスフェノールAエチレンオキサイド付加物及び/又はシクロヘキサンジメタノールに由来する構造単位であり、前記ポリエステルに含まれるジオール単位の合計を100モル%としたとき、第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)、シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(1)及び(2)を満たす、ポリエステルである。
 0.001≦X≦0.5 (1)
 2≦Y+Z≦25 (2)
The polyester of the present invention is a polyester containing a dicarboxylic acid unit and a diol unit, wherein the dicarboxylic acid unit includes a structural unit derived from terephthalic acid, and the diol unit includes a first diol unit, a second diol unit, and a third diol unit, the first diol unit is a structural unit derived from ethylene glycol, the second diol unit is a structural unit derived from 1,2-propanediol, and the third diol unit is a structural unit derived from 1,2-propanediol. is a structural unit derived from bisphenol A ethylene oxide adduct and/or cyclohexanedimethanol, and when the total of diol units contained in the polyester is 100 mol%, the content of the second diol unit X (mol% ), the content Y (mol%) of structural units derived from the bisphenol A ethylene oxide adduct, and the content Z (mol%) of structural units derived from cyclohexanedimethanol are expressed by the following formulas (1) and (2). Made of polyester.
0.001≦X≦0.5 (1)
2≦Y+Z≦25 (2)
 本発明のポリエステルは、第1のジオール単位であるエチレングリコールの他に、第2のジオール単位として1,2-プロパンジオールに由来する構造単位と、第3のジオール単位としてビスフェノールAエチレンオキサイド付加物とシクロヘキサンジメタノールのいずれかまたは両方に由来する構造単位を含む。ポリエステルが第3のジオール単位を含むことにより、耐衝撃性が良好となる。また、ポリエステルが第3のジオール単位を含むことにより、ポリエステルの融点を低下させることができ、ダイレクトブロー成形における成形温度を下げることもできる。低温における耐衝撃性の観点からは、前記ポリエステルが第3のジオール単位として、シクロヘキサンジメタノールに由来する構造単位を含有することが好ましい。一方、高濃度のアルコールに対する耐薬品性の観点からは、前記ポリエステルが第3のジオール単位として、ビスフェノールAエチレンオキサイド付加物由来の構造単位を含有することが好ましい。 In addition to ethylene glycol as the first diol unit, the polyester of the present invention has a structural unit derived from 1,2-propanediol as the second diol unit, and a bisphenol A ethylene oxide adduct as the third diol unit. and cyclohexanedimethanol, or both. When the polyester contains the third diol unit, impact resistance becomes good. Furthermore, by including the third diol unit in the polyester, the melting point of the polyester can be lowered, and the molding temperature in direct blow molding can also be lowered. From the viewpoint of impact resistance at low temperatures, the polyester preferably contains a structural unit derived from cyclohexanedimethanol as the third diol unit. On the other hand, from the viewpoint of chemical resistance against high concentration alcohol, it is preferable that the polyester contains a structural unit derived from a bisphenol A ethylene oxide adduct as the third diol unit.
 上述の通り、ポリエステルが第3のジオール単位を含むことにより耐衝撃性は良好になるものの、環境及び生物への影響及びリサイクルの観点からは、第3のジオール単位の含有量が多すぎないことが望ましい。本発明者は、第1のジオール単位及び第3のジオール単位に加え、第2のジオール単位として1,2-プロパンジオールに由来する構造単位を一定量含有させることにより、第3のジオール単位の含有量が少ない場合にも耐衝撃性が良好となることを見出した。また、本発明のポリエステルは、第2のジオール単位である1,2-プロパンジオール由来成分を一定量以上含んでいることで、非晶性がさらに上がるため、透明で美麗なボトルを得やすい。 As mentioned above, when the polyester contains the third diol unit, the impact resistance becomes good, but from the viewpoint of impact on the environment and living organisms and recycling, the content of the third diol unit should not be too large. is desirable. In addition to the first diol unit and the third diol unit, the present inventor has discovered that by containing a certain amount of a structural unit derived from 1,2-propanediol as the second diol unit, the third diol unit is It has been found that impact resistance is good even when the content is small. Furthermore, since the polyester of the present invention contains a certain amount or more of a component derived from 1,2-propanediol, which is the second diol unit, the amorphousness is further increased, so that it is easy to obtain a transparent and beautiful bottle.
 本発明のポリエステル中のテレフタル酸に由来する構造単位の含有量は、前記ポリエステル中のジカルボン酸単位の合計を100モル%としたとき、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましく、前記ポリエステル中のジカルボン酸単位が実質的にテレフタル酸に由来する構造単位のみであることがよりさらに好ましい。 The content of structural units derived from terephthalic acid in the polyester of the present invention is preferably 80 mol% or more, more preferably 90 mol% or more, when the total of dicarboxylic acid units in the polyester is 100 mol%. More preferably, it is 95 mol% or more, and even more preferably, the dicarboxylic acid units in the polyester are substantially only structural units derived from terephthalic acid.
 本発明において、第1のジオール単位はエチレングリコールに由来する構造単位である。エチレングリコールに由来する構造単位の含有量は特に制限はないが、ポリエステルに含まれるジオール単位の合計を100モル%としたとき、75~98モル%が好ましい。前記エチレングリコールに由来する構造単位の含有量は78モル%以上がより好ましく、80モル%以上がさらに好ましく、83モル%以上、85モル%以上、88モル%以上又は90モル%以上が好ましい場合もある。前記エチレングリコールに由来する構造単位の含有量は97.5モル%以下がより好ましく、97モル%以下、96モル%以下又は95モル%以下が好ましい場合もある。エチレングリコールに由来する構造単位は、バイオマス由来のエチレングリコールから誘導されたものであってもよい。 In the present invention, the first diol unit is a structural unit derived from ethylene glycol. The content of structural units derived from ethylene glycol is not particularly limited, but is preferably 75 to 98 mol% when the total diol units contained in the polyester is 100 mol%. The content of the structural unit derived from ethylene glycol is more preferably 78 mol% or more, even more preferably 80 mol% or more, and preferably 83 mol% or more, 85 mol% or more, 88 mol% or more, or 90 mol% or more. There is also. The content of the structural unit derived from ethylene glycol is more preferably 97.5 mol% or less, and may be preferably 97 mol% or less, 96 mol% or less, or 95 mol% or less. The structural unit derived from ethylene glycol may be derived from biomass-derived ethylene glycol.
 本発明において、第2のジオール単位は1,2-プロパンジオールに由来する構造単位であり、ポリエステルに含まれるジオール単位の合計を100モル%としたとき、第2のジオール単位の含有量Xは0.001~0.5モル%である。第2のジオール単位の含有量Xが上記上限より多い場合、ポリエステルからなる容器等の耐衝撃性が悪化する。特に容器等の耐衝撃性を向上させる観点から、第2のジオール単位の含有量Xは、0.4モル%以下が好ましく、0.35モル%以下がより好ましく、0.3モル%以下がさらに好ましい。一方、第2のジオール単位の含有量の下限は、0.01モル%以上が好ましく、0.05モル%以上がより好ましく、0.08モル%以上がさらに好ましく、0.10モル%以上、0.13モル%以上、0.137モル%以上、0.14モル%以上、0.15モル%以上、0.16モル%以上、0.162モル%以上、0.17モル%以上、0.18モル%以上又は0.189モル%以上が好ましい場合もある。前記下限よりも少ない場合、耐衝撃性を良好にするために第3のジオール単位の含有量を多くする必要があり、好ましくない。 In the present invention, the second diol unit is a structural unit derived from 1,2-propanediol, and when the total of diol units contained in the polyester is 100 mol%, the content X of the second diol unit is It is 0.001 to 0.5 mol%. If the content X of the second diol unit is more than the above upper limit, the impact resistance of the polyester container etc. will deteriorate. In particular, from the viewpoint of improving the impact resistance of containers etc., the content X of the second diol unit is preferably 0.4 mol% or less, more preferably 0.35 mol% or less, and 0.3 mol% or less. More preferred. On the other hand, the lower limit of the content of the second diol unit is preferably 0.01 mol% or more, more preferably 0.05 mol% or more, even more preferably 0.08 mol% or more, 0.10 mol% or more, 0.13 mol% or more, 0.137 mol% or more, 0.14 mol% or more, 0.15 mol% or more, 0.16 mol% or more, 0.162 mol% or more, 0.17 mol% or more, 0 .18 mol% or more or 0.189 mol% or more may be preferable in some cases. If it is less than the lower limit, it is not preferable because it is necessary to increase the content of the third diol unit in order to improve impact resistance.
 なお、1,2-プロパンジオールに由来する構造単位の成分とは、ポリエステルを分解して分析した際に検出される1,2-プロパンジオールの総量であって、ポリマー鎖中に共重合されている1,2-プロパンジオール由来構造からなる1,2-プロパンジオールとポリマー間に混在している1,2-プロパンジオールの総量を表す。すなわちこの1,2-プロパンジオールはポリエステル主鎖中に一部共重合されていてもよく、共重合されずに1,2-プロパンジオール単体として含有されていてもよい。 In addition, the component of the structural unit derived from 1,2-propanediol refers to the total amount of 1,2-propanediol detected when polyester is decomposed and analyzed, and it is the total amount of 1,2-propanediol that is copolymerized in the polymer chain. It represents the total amount of 1,2-propanediol consisting of a structure derived from 1,2-propanediol and 1,2-propanediol mixed between the polymer. That is, this 1,2-propanediol may be partially copolymerized in the polyester main chain, or may be contained as a single 1,2-propanediol without being copolymerized.
 本発明において、第3のジオール単位はビスフェノールAエチレンオキサイド付加物及び/又はシクロヘキサンジメタノールに由来する構造単位である。 In the present invention, the third diol unit is a structural unit derived from bisphenol A ethylene oxide adduct and/or cyclohexanedimethanol.
 前記ビスフェノールAエチレンオキサイド付加物由来の構造単位は、ビスフェノールAの各水酸基にエチレンオキサイドが少なくとも1つ付加したものである。エチレンオキサイドの付加量は、通常、ビスフェノールA1モルに対して、2~4モル%である。 The structural unit derived from the bisphenol A ethylene oxide adduct is one in which at least one ethylene oxide is added to each hydroxyl group of bisphenol A. The amount of ethylene oxide added is usually 2 to 4 mol % based on 1 mol of bisphenol A.
 前記シクロヘキサンジメタノールとしては1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノールが挙げられる。中でも、入手の容易性、前記ポリエステルを結晶性のものにしやすい点、固相重合時にペレット間の膠着が生じにくい点、得られる成形品の耐衝撃性がさらに向上する点から、1,4-シクロヘキサンジメタノールが好ましい。 Examples of the cyclohexanedimethanol include 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol. Among them, 1,4- Cyclohexane dimethanol is preferred.
 前記シクロヘキサンジメタノールに由来する構造単位はシス体とトランス体を含み、その割合は特に制限されないが、なかでも、シクロヘキサンジメタノールのシス体/トランス体の割合が0/100~50/50の範囲であることにより、本発明のポリエステルの結晶性を高め易く、固相重合時にペレット間の膠着が生じにくく、また、得られる成形品の耐衝撃性がさらに向上する。 The structural unit derived from cyclohexanedimethanol includes a cis-form and a trans-form, and the ratio thereof is not particularly limited, but in particular, the ratio of the cis-form/trans-form of cyclohexanedimethanol is in the range of 0/100 to 50/50. By doing so, it is easy to improve the crystallinity of the polyester of the present invention, it is difficult for pellets to stick together during solid phase polymerization, and the impact resistance of the obtained molded product is further improved.
 本発明において、ポリエステルに含まれるジオール単位の合計を100モル%としたときの、ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y、及びシクロヘキサンジメタノールに由来する構造単位の含有量Zの合計(Y+Z)は2~25モル%である。Y+Zが2モル%未満の場合には、得られる成形品の耐衝撃性及び透明性が低下する。Y+Zは、2.5モル%以上が好ましく、3モル%以上がより好ましく、4モル%以上がさらに好ましく、6モル%以上又は8モル%以上が好ましい場合もある。一方、Y+Zが25モル%を超える場合には、固相重合温度を高くすることが困難になり、生産性が低下するとともに、得られる成形品の色調が悪化する。Y+Zは20モル%以下、18モル%以下、15モル%以下、13モル%以下、10モル%以下又は8モル%以下が好ましい場合もある。 In the present invention, the content Y of structural units derived from bisphenol A ethylene oxide adduct and the content Z of structural units derived from cyclohexanedimethanol, when the total of diol units contained in the polyester is 100 mol%. The total (Y+Z) is 2 to 25 mol%. If Y+Z is less than 2 mol%, the impact resistance and transparency of the resulting molded product will decrease. Y+Z is preferably 2.5 mol% or more, more preferably 3 mol% or more, even more preferably 4 mol% or more, and sometimes preferably 6 mol% or more or 8 mol% or more. On the other hand, when Y+Z exceeds 25 mol%, it becomes difficult to raise the solid state polymerization temperature, productivity decreases, and the color tone of the obtained molded product deteriorates. In some cases, Y+Z is preferably 20 mol% or less, 18 mol% or less, 15 mol% or less, 13 mol% or less, 10 mol% or less, or 8 mol% or less.
 本発明において、第3のジオール成分としてビスフェノールAエチレンオキサイド付加物を用いる場合、ポリエステルに含まれるジオール単位の合計を100モル%としたときのビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Yは25モル%以下であり、20モル%以下が好ましく、15モル%以下がより好ましく、10モル%以下がさらに好ましい。理由は前述のとおりである。 In the present invention, when a bisphenol A ethylene oxide adduct is used as the third diol component, the content of structural units derived from the bisphenol A ethylene oxide adduct when the total diol units contained in the polyester is 100 mol%. Y is 25 mol% or less, preferably 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less. The reason is as mentioned above.
 本発明において、第3のジオール成分としてシクロヘキサンジメタノールを用いる場合、ポリエステルに含まれるジオール単位の合計を100モル%としたときのシクロヘキサンジメタノールに由来する構造単位の含有量Zは25モル%以下であり、20モル%以下が好ましく、15モル%以下がより好ましく、10モル%以下がさらに好ましい。理由は前述のとおりである。 In the present invention, when cyclohexanedimethanol is used as the third diol component, the content Z of structural units derived from cyclohexanedimethanol is 25 mol% or less when the total diol units contained in the polyester is 100 mol%. The content is preferably 20 mol% or less, more preferably 15 mol% or less, and even more preferably 10 mol% or less. The reason is as mentioned above.
 本発明において、第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)、前記シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(3)を満たすことが好ましい。これにより、耐衝撃性、特に前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位やシクロヘキサンジメタノールに由来する構造単位の含有量が少ない場合における耐衝撃性をさらに向上させることができる。
 5≦(Y+Z)/X≦100 (3)
In the present invention, the content X (mol %) of the second diol unit, the content Y (mol %) of the structural unit derived from the bisphenol A ethylene oxide adduct, the content Y (mol %) of the structural unit derived from the cyclohexanedimethanol, It is preferable that the amount Z (mol %) satisfies the following formula (3). This can further improve impact resistance, particularly when the content of structural units derived from the bisphenol A ethylene oxide adduct and structural units derived from cyclohexanedimethanol is small.
5≦(Y+Z)/X≦100 (3)
 第2のジオール単位の含有量X(モル%)に対する、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)及びシクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)の合計の比[(Y+Z)/X]は10以上がより好ましく、12以上がさらに好ましい。一方、比[(Y+Z)/X]は60以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましい。比[(Y+Z)/X]が上記上限以下であると、色相に優れる傾向にある。 The content Y (mol %) of the structural unit derived from the bisphenol A ethylene oxide adduct and the content Z (mol %) of the structural unit derived from cyclohexanedimethanol with respect to the content X (mol %) of the second diol unit. %) [(Y+Z)/X] is more preferably 10 or more, and even more preferably 12 or more. On the other hand, the ratio [(Y+Z)/X] is more preferably 60 or less, further preferably 40 or less, and particularly preferably 30 or less. When the ratio [(Y+Z)/X] is below the above upper limit, the hue tends to be excellent.
 本発明のポリエステルに含まれる第1のジオール単位、第2ジオール単位、及び第3ジオール単位の合計含有量は、前記ポリエステル中のジオール単位の合計を100モル%としたとき、通常75モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましい。前記合計含有量は通常100モル%以下である。前記ポリエステルは、縮重合反応中の副生物であるジエチレングリコールに由来する単位を前記ポリエステル中のジオール単位の合計100モル%に対して1~5モル%含有してもよい。 The total content of the first diol unit, second diol unit, and third diol unit contained in the polyester of the present invention is usually 75 mol% or more when the total of diol units in the polyester is 100 mol%. is preferable, 90 mol% or more is more preferable, and even more preferably 95 mol% or more. The total content is usually 100 mol% or less. The polyester may contain 1 to 5 mol% of units derived from diethylene glycol, which is a by-product during the polycondensation reaction, based on the total 100 mol% of diol units in the polyester.
 本発明のポリエステルは、必要に応じて、多価エステル由来の単位を有していてもよい。前記多価エステルとしては、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]及び1,3,5-トリス[2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパノイルオキシ]エチル]ヘキサヒドロ-1,3,5-トリアジン-2,4,6-トリオンなどが挙げられる。 The polyester of the present invention may have a unit derived from a polyvalent ester, if necessary. Examples of the polyvalent ester include pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] and 1,3,5-tris[2-[3-(3,5- Examples include di-tert-butyl-4-hydroxyphenyl)propanoyloxy]ethyl]hexahydro-1,3,5-triazine-2,4,6-trione.
 前記多価エステル由来の単位が3価以上のポリオールのカルボン酸エステルであって、該カルボン酸がヒンダードフェノール基を有する多価エステル由来のものである場合、当該単位は、前記多価エステルをテレフタル酸、エチレングリコール、及びシクロヘキサンジメタノール及び/又はビスフェノールAエチレンオキサイド付加物とともに溶融混練して縮重合させることにより、本発明のポリエステルに含有されてもよい。当該縮重合において、前記多価エステルのポリオール単位やヒンダードフェノール基を有するカルボン酸単位がエステル交換反応によって前記ポリエステルに含有される。前記ポリオール単位は、前記ポリエステルの主鎖、分岐鎖又は末端に含有される。そして、前記ポリオール単位の一部は架橋点となり、架橋剤として作用する。一方、ヒンダードフェノール基を有するカルボン酸単位の一部は、前記ポリエステルの末端に含有され、一部は、前記ポリオール単位に結合した状態で当該ポリオール単位とともに前記ポリエステルに含有される。以上のように、前記多価エステル由来の単位が前記ポリエステルに含有されることにより、本発明のポリエステルの耐ドローダウン性が向上するとともに、得られる成形品の色調がさらに良好になるものと考えられる。前記多価エステルは、3価以上5価以下のポリオールのカルボン酸エステルであることが好ましい。 When the unit derived from the polyvalent ester is a carboxylic acid ester of a trivalent or higher polyol, and the carboxylic acid is derived from a polyvalent ester having a hindered phenol group, the unit derives from the polyvalent ester. It may be contained in the polyester of the present invention by melt-kneading and condensation polymerization with terephthalic acid, ethylene glycol, and cyclohexanedimethanol and/or bisphenol A ethylene oxide adduct. In the condensation polymerization, the polyol unit of the polyvalent ester and the carboxylic acid unit having a hindered phenol group are contained in the polyester by a transesterification reaction. The polyol unit is contained in the main chain, branch chain, or terminal of the polyester. A part of the polyol unit becomes a crosslinking point and acts as a crosslinking agent. On the other hand, a part of the carboxylic acid unit having a hindered phenol group is contained at the end of the polyester, and a part is contained in the polyester together with the polyol unit in a state of being bonded to the polyol unit. As described above, it is believed that by containing the units derived from the polyvalent ester in the polyester, the drawdown resistance of the polyester of the present invention is improved, and the color tone of the obtained molded product is further improved. It will be done. The polyvalent ester is preferably a carboxylic acid ester of a polyol having a valence of 3 or more and 5 or less.
 本発明のポリエステルが前記多価エステル由来の単位を有している場合、その含有量は、0.005~0.040質量%であることが好ましい。ここで、ポリエステル中の前記多価エステル由来の成分の含有量は、ポリエステル鎖中に組み込まれた前記多価エステル由来の単位と、ポリエステル鎖中に組み込まれなかった成分の合計量である。なお、溶融混練する際に添加される前記多価エステルは、概ねポリエステル鎖中に含有されると考えられる。前記多価エステル由来の単位の含有量が0.005質量%未満の場合には、ポリエステルの耐ドローダウン性が低下するおそれや、重合時や成形時において、ポリエステルが加熱された際に、当該ポリエステルが黄変し易くなり、得られる成形品の色調が低下するおそれがある。一方、前記多価エステル由来の単位の含有量が0.040質量%を超えると、多価エステル由来の単位による架橋が進行しすぎてしまい、溶融粘度が高くなり過ぎるおそれや得られる成形品の耐衝撃性が低下するおそれがある。前記多価エステル由来の単位の含有量は、0.030質量%以下がより好ましく、0.020質量%以下がさらに好ましい。 When the polyester of the present invention has units derived from the polyvalent ester, the content thereof is preferably 0.005 to 0.040% by mass. Here, the content of the component derived from the polyester in the polyester is the total amount of the polyester-derived unit incorporated into the polyester chain and the component not incorporated into the polyester chain. Note that the polyvalent ester added during melt-kneading is considered to be generally contained in the polyester chain. If the content of units derived from the polyvalent ester is less than 0.005% by mass, there is a risk that the drawdown resistance of the polyester will decrease, or that the polyester may be heated during polymerization or molding. Polyester tends to yellow, and the color tone of the resulting molded product may deteriorate. On the other hand, if the content of the units derived from the polyvalent ester exceeds 0.040% by mass, crosslinking by the units derived from the polyvalent ester will progress too much, leading to the risk of the melt viscosity becoming too high and the resulting molded product being Impact resistance may decrease. The content of the units derived from the polyvalent ester is more preferably 0.030% by mass or less, and even more preferably 0.020% by mass or less.
 本発明のポリエステルが前記多価エステルに由来する構造単位を含む場合、前記ポリエステル中のテレフタル酸に由来する構造単位、エチレングリコールに由来する構造単位、シクロヘキサンジメタノールに由来する構造単位、ビスフェノールAエチレンオキサイド付加物に由来する構造単位及び多価エステルに由来する構造単位の合計含有量が、前記ポリエステル中の全構造単位の合計に対して、75モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上がさらに好ましい。前記合計含有量が75モル%未満のポリエステルを製造する場合、固相重合する際に樹脂の軟化による膠着が生じ易く、高重合度化が困難になるおそれがある。前記合計含有量は通常100モル%以下である。 When the polyester of the present invention contains a structural unit derived from the polyester, the polyester contains a structural unit derived from terephthalic acid, a structural unit derived from ethylene glycol, a structural unit derived from cyclohexanedimethanol, and bisphenol A ethylene. The total content of the structural units derived from the oxide adduct and the structural units derived from the polyvalent ester is preferably 75 mol% or more, more preferably 90 mol% or more, based on the total of all structural units in the polyester. , more preferably 95 mol% or more. When producing a polyester having a total content of less than 75 mol%, sticking may occur due to softening of the resin during solid phase polymerization, and it may be difficult to achieve a high degree of polymerization. The total content is usually 100 mol% or less.
 本発明のポリエステルは、必要に応じて、テレフタル酸に由来する構造単位、第1のジオール単位、第2のジオール単位、第3のジオール単位以外の2官能性化合物に由来する構造単位を有していてもよい。前記2官能性化合物に由来する構造単位の含有量(2種以上の単位を有する場合はその合計)は、前記ポリエステルを構成する全構造単位の合計を100モル%としたとき、20モル%以下であることが好ましく、10モル%以下であることがより好ましく、5モル%以下であることがさらに好ましい。前記2官能性化合物としては、ジカルボン酸、ジオール、ヒドロキシカルボン酸、エステルのいずれであってもよく、これらは脂肪族、脂環式脂肪族、芳香族のいずれであってもよい。例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸などの芳香族ジカルボン酸およびそれらのエステル形成性誘導体;シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸などの脂肪族ジカルボン酸またはそれらのエステル形成性誘導体;ネオペンチルグリコール、1,4-ブタンジオール、1,5-ペンタメチレンジオール、1,6-ヘキサメチレンジオール、ジエチレングリコール、ダイマージオールなどの脂肪族ジオール;ビスフェノールSのエチレンオキシド付加体;などが挙げることができる。 The polyester of the present invention has a structural unit derived from terephthalic acid, a first diol unit, a second diol unit, and a structural unit derived from a bifunctional compound other than the third diol unit, if necessary. You can leave it there. The content of structural units derived from the bifunctional compound (if two or more types of units are included, the total) is 20 mol% or less, when the total of all structural units constituting the polyester is 100 mol%. The content is preferably 10 mol% or less, more preferably 5 mol% or less, and even more preferably 5 mol% or less. The bifunctional compound may be any dicarboxylic acid, diol, hydroxycarboxylic acid, or ester, and these may be aliphatic, alicyclic aliphatic, or aromatic. For example, aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid and their ester-forming derivatives; cyclohexanedicarboxylic acid, adipic acid, sebacic acid, dimer acid aliphatic dicarboxylic acids or their ester-forming derivatives such as; aliphatic diols such as neopentyl glycol, 1,4-butanediol, 1,5-pentamethylene diol, 1,6-hexamethylene diol, diethylene glycol, dimer diol, etc. ; ethylene oxide adduct of bisphenol S; and the like.
 本発明のポリエステルは、本発明の効果を阻害しない範囲であれば、多官能性化合物に由来する構造単位を有していてもよい。多官能性化合物に由来する構造単位は、カルボキシル基、ヒドロキシル基および/またはそれらのエステル形成性基を3個以上有する多官能性化合物から誘導される多官能性化合物である。多官能性化合物に由来する構造単位の含有量(2種以上の単位を有する場合はその合計)は、前記ポリエステルの全構造単位の合計を100モル%としたとき、0.05質量%以下であることが好ましく、0.04質量%以下であることがより好ましい。多官能性化合物単位としては、2-[3-(2-ヒドロキシエチル)-4-(2-ヒドロキシエトキシ)フェニル]-2-[4-(2-ヒドロキシエトキシ)フェニル]プロパン、トリメリット酸、ピロメリット酸、トリメシン酸、トリメチロールプロパン及びグリセリンから誘導される多官能性化合物単位などが例示される。一方、前記多官能性化合物に由来する構造単位を含有させる場合、その含有量は、0.01質量%以上が好ましい。 The polyester of the present invention may have a structural unit derived from a polyfunctional compound as long as it does not impede the effects of the present invention. The structural unit derived from a polyfunctional compound is a polyfunctional compound derived from a polyfunctional compound having three or more carboxyl groups, hydroxyl groups, and/or their ester-forming groups. The content of the structural unit derived from the polyfunctional compound (if it has two or more types of units, the total) is 0.05% by mass or less, when the total of all structural units of the polyester is 100 mol%. The content is preferably 0.04% by mass or less, and more preferably 0.04% by mass or less. Polyfunctional compound units include 2-[3-(2-hydroxyethyl)-4-(2-hydroxyethoxy)phenyl]-2-[4-(2-hydroxyethoxy)phenyl]propane, trimellitic acid, Examples include polyfunctional compound units derived from pyromellitic acid, trimesic acid, trimethylolpropane, and glycerin. On the other hand, when containing a structural unit derived from the polyfunctional compound, the content is preferably 0.01% by mass or more.
 本発明のポリエステルは、必要に応じて、単官能性化合物により重合末端や分岐末端が封止されていてもよい。単官能性化合物としては、例えば、安息香酸、2,4,6-トリメトキシ安息香酸、2-ナフタレンカルボン酸、ステアリン酸、ステアリルアルコール、ヒンダードフェノール基を有するカルボン酸以外のモノカルボン酸、モノアルコールおよびそれらのエステル形成性誘導体が挙げられる。単官能性化合物は、ポリエステルの分子鎖末端基および/または分岐鎖末端基の封止を行い、ポリエステル中の過度の架橋やゲルの発生を防止する。前記ポリエステルがこのような単官能性化合物単位を有する場合は、単官能性化合物単位の含有量(2種以上の単位を有する場合はその合計)が、前記ポリエステルの全構造単位の合計を100モル%としたとき、1モル%以下であることが好ましく、0.5モル%以下であることがより好ましい。前記ポリエステルにおける他の単官能性化合物単位の含有量が1モル%を超えると、ポリエステルを製造する際の重合速度が遅くなって、生産性が低下し易い。 The polyester of the present invention may have polymerization ends and branched ends sealed with a monofunctional compound, if necessary. Examples of monofunctional compounds include benzoic acid, 2,4,6-trimethoxybenzoic acid, 2-naphthalenecarboxylic acid, stearic acid, stearyl alcohol, monocarboxylic acids other than carboxylic acids having hindered phenol groups, and monoalcohols. and ester-forming derivatives thereof. The monofunctional compound seals the molecular chain end groups and/or branched chain end groups of the polyester, thereby preventing excessive crosslinking and gel formation in the polyester. When the polyester has such a monofunctional compound unit, the content of the monofunctional compound unit (if it has two or more units, the total) is such that the total of all structural units of the polyester is 100 mol. When expressed as %, it is preferably 1 mol% or less, more preferably 0.5 mol% or less. If the content of other monofunctional compound units in the polyester exceeds 1 mol %, the polymerization rate during production of the polyester becomes slow and productivity tends to decrease.
 本発明のポリエステルは、本発明の効果を阻害しない範囲であればその他の添加剤を含有していてもよく、例えば、染料や顔料などの着色剤、紫外線吸収剤などの安定剤、帯電防止剤、難燃剤、難燃補助剤、潤滑剤、可塑剤、無機充填剤などが挙げられる。これらの添加剤の含有量は、10質量%以下が好ましく、5質量%以下がより好ましい。 The polyester of the present invention may contain other additives as long as they do not impede the effects of the present invention, such as colorants such as dyes and pigments, stabilizers such as ultraviolet absorbers, and antistatic agents. , flame retardants, flame retardant aids, lubricants, plasticizers, inorganic fillers and the like. The content of these additives is preferably 10% by mass or less, more preferably 5% by mass or less.
 本発明のポリエステルの極限粘度については、特に制限はないが、押し出しブロー成形の観点から極限粘度の下限は0.8dL/g以上が好ましく、0.9dL/g以上がより好ましい。一方、成形上の観点から極限粘度の上限は1.5dL/g以下が好ましく、1.4dL/g以下がより好ましい。 The intrinsic viscosity of the polyester of the present invention is not particularly limited, but from the viewpoint of extrusion blow molding, the lower limit of the intrinsic viscosity is preferably 0.8 dL/g or more, and more preferably 0.9 dL/g or more. On the other hand, from the viewpoint of molding, the upper limit of the limiting viscosity is preferably 1.5 dL/g or less, more preferably 1.4 dL/g or less.
 本発明のポリエステルは、公知の製造方法を採用することにより製造できるが、中でもカルボン酸及びジオールをエステル化またはエステル交換させる工程(A)、工程(A)で得られたポリエステルオリゴマーを溶融重縮合する工程(B)、次いで工程(B)で得られた組成物を固相重合する工程(C)からなり、前記ジオールの合計を100モル%としたとき、前記ジオールが1,2-プロパンジオールを0.001~0.5モル%含む、ポリエステルの製造方法を採用することにより、本発明のポリエステルが効率よく製造できる。 The polyester of the present invention can be produced by employing known production methods, including step (A) of esterifying or transesterifying carboxylic acids and diols, and melt polycondensation of the polyester oligomer obtained in step (A). step (B), and then step (C) of solid-phase polymerizing the composition obtained in step (B), where the diol is 1,2-propanediol, when the total of the diols is 100 mol%. The polyester of the present invention can be efficiently produced by employing a method for producing polyester containing 0.001 to 0.5 mol% of.
 ポリエステルの製造において、ジカルボン酸単位を形成させるため、前述のカルボン酸をそのまま用いてもよく、カルボン酸エステルを用いてもよい。当該カルボン酸エステルのアルコール部分は、特に限定されず、メタノール、エタノールなどのモノオール;前記ポリエステルの構成単位であるエチレングリコール、シクロヘキサンジメタノール、ビスフェノールAエチレンオキサイド付加物等のポリオールなどが挙げられる。 In the production of polyester, in order to form dicarboxylic acid units, the above-mentioned carboxylic acids may be used as they are, or carboxylic acid esters may be used. The alcohol moiety of the carboxylic acid ester is not particularly limited, and examples include monools such as methanol and ethanol; polyols such as ethylene glycol, cyclohexanedimethanol, and bisphenol A ethylene oxide adduct, which are constituent units of the polyester.
 ポリエステルの製造において、ジオール単位を形成させるため、前述のジオールをそのまま用いても良く、ジオールのモノエステルまたはジエステルを用いてもよい。当該モノエステルまたはジエステルのカルボン酸部分は、特に限定されず、ギ酸、酢酸、プロピオン酸などのカルボン酸が挙げられる。 In the production of polyester, in order to form diol units, the aforementioned diols may be used as they are, or monoesters or diesters of diols may be used. The carboxylic acid moiety of the monoester or diester is not particularly limited, and includes carboxylic acids such as formic acid, acetic acid, and propionic acid.
 多価エステルを用いる場合は、前記工程(A)にてジカルボン酸とジオールと共に反応させてもよく、ポリエステルオリゴマーを得たのちに、多価エステルと反応させてもよい。 When using a polyvalent ester, it may be reacted with the dicarboxylic acid and diol in the step (A), or it may be reacted with the polyester after obtaining the polyester oligomer.
 前記縮重合において着色防止剤を使用する場合は、例えば、亜リン酸を始めとしたリン酸化合物又はそのエステルを用いることができ、これは単独で使用しても2種類以上を併用してもよい。リン酸化合物としては、例えば亜リン酸、亜リン酸エステル、リン酸、リン酸トリメチル、リン酸トリフェニル等が挙げられる。着色防止剤の使用量は、ジカルボン酸成分とジエステル成分の合計に対し、80~1000ppmの範囲内であるのが好ましい。また、ポリエステルの熱分解による着色を抑制するために、酢酸コバルト等のコバルト化合物を添加するのが好ましく、その使用量はジカルボン酸成分とジエステル成分の合計に対し、100~1000ppmの範囲内であることがより好ましい。 When using a coloring inhibitor in the polycondensation, for example, phosphoric acid compounds such as phosphorous acid or esters thereof can be used, and these can be used alone or in combination of two or more. good. Examples of the phosphoric acid compound include phosphorous acid, phosphorous ester, phosphoric acid, trimethyl phosphate, and triphenyl phosphate. The amount of the coloring inhibitor used is preferably within the range of 80 to 1000 ppm based on the total of the dicarboxylic acid component and the diester component. In addition, in order to suppress coloration due to thermal decomposition of polyester, it is preferable to add a cobalt compound such as cobalt acetate, and the amount used is within the range of 100 to 1000 ppm based on the total of the dicarboxylic acid component and diester component. It is more preferable.
 前記溶融縮重合に使用する重合触媒としては、ゲルマニウム元素、アンチモン元素、チタン元素を含有する化合物が好ましい。アンチモン元素を含有する化合物としては、三酸化アンチモン、塩化アンチモン、酢酸アンチモン等が用いられ、ゲルマニウム元素を含む化合物としては、二酸化ゲルマニウム、四塩化ゲルマニウム、ゲルマニウムテトラエトキシド等が用いられ、チタン元素を含む化合物としては、テトライソプロピルチタネート、テトラブチルチタネート等が用いられる。このなかでも、重合触媒活性、得られるポリエステルの物性及びコストの点から、三酸化アンチモン及び二酸化ゲルマニウムが好ましい。重縮合触媒を用いる場合、その添加量は、ジカルボン酸成分の質量に基づいて0.002~0.8質量%の範囲内の量であるのが好ましい。 The polymerization catalyst used in the melt condensation polymerization is preferably a compound containing a germanium element, an antimony element, or a titanium element. Compounds containing antimony element include antimony trioxide, antimony chloride, antimony acetate, etc. Compounds containing germanium element include germanium dioxide, germanium tetrachloride, germanium tetraethoxide, etc. Examples of compounds used include tetraisopropyl titanate, tetrabutyl titanate, and the like. Among these, antimony trioxide and germanium dioxide are preferred from the viewpoint of polymerization catalyst activity, physical properties of the resulting polyester, and cost. When a polycondensation catalyst is used, the amount added is preferably in the range of 0.002 to 0.8% by mass based on the mass of the dicarboxylic acid component.
 前記したエステル化反応またはエステル交換反応は、上述した原料、重合触媒及び必要に応じて着色防止剤等の添加剤を反応器に仕込み、絶対圧で約0.5MPa以下の加圧下または常圧下に、160~280℃の温度で、生成する水またはアルコールを留去させながら行うことが好ましい。 The above-mentioned esterification reaction or transesterification reaction is carried out by charging the above-mentioned raw materials, a polymerization catalyst, and optionally additives such as a coloring inhibitor into a reactor, and then heating the mixture under an absolute pressure of about 0.5 MPa or less or under normal pressure. It is preferable to carry out the reaction at a temperature of 160 to 280° C. while distilling off the water or alcohol produced.
 エステル化反応またはエステル交換反応に続く溶融重縮合は、得られたポリエステルオリゴマーに、必要に応じて、上述した原料、重縮合触媒及び着色防止剤などの添加剤を添加して、1kPa以下の減圧下に、260~290℃の温度で、所望の粘度のポリエステルが得られるまで行うのが好ましい。溶融重縮合反応の反応温度が260℃未満の場合、重合触媒の重合活性が低く、目標の重合度のポリエステルが得られないおそれがある。一方、溶融重合反応の反応温度が290℃を超える場合、分解反応が進みやすくなり、その結果、目標の重合度のポリエステルが得られないおそれがある。溶融重縮合反応は、例えば、槽型のバッチ式重縮合装置、2軸回転式の横型反応器からなる連続式重縮合装置などを用いて行うことができる。 In the melt polycondensation following the esterification reaction or transesterification reaction, the above-mentioned raw materials, polycondensation catalyst, and additives such as color inhibitors are added to the obtained polyester oligomer as necessary, and the pressure is reduced to 1 kPa or less. It is preferable to carry out the process at a temperature of 260 to 290° C. until a polyester of the desired viscosity is obtained. When the reaction temperature of the melt polycondensation reaction is lower than 260° C., the polymerization activity of the polymerization catalyst is low, and there is a possibility that a polyester having a target degree of polymerization cannot be obtained. On the other hand, when the reaction temperature of the melt polymerization reaction exceeds 290° C., the decomposition reaction tends to proceed, and as a result, there is a possibility that a polyester having a target degree of polymerization cannot be obtained. The melt polycondensation reaction can be carried out using, for example, a tank-type batch-type polycondensation apparatus, a continuous-type polycondensation apparatus consisting of a biaxially rotating horizontal reactor, or the like.
 溶融重縮合により得られるポリエステルの極限粘度は0.4dL/g以上が好ましい。これにより、取り扱い性が向上するとともに、溶融重縮合により得られたポリエステルをさらに固相重合する際に、短時間で高分子量化できるため生産性が向上する。前記極限粘度は、より好ましくは0.55dL/g以上であり、さらに好ましくは0.65dL/g以上である。一方、反応器からポリエステルを容易に取り出せる点や熱劣化による着色が抑制される点から、前記極限粘度は好ましくは0.9dL/g以下であり、より好ましくは0.85dL/g以下であり、さらに好ましくは0.8dL/g以下である。 The intrinsic viscosity of the polyester obtained by melt polycondensation is preferably 0.4 dL/g or more. This not only improves handling properties but also improves productivity since the polyester obtained by melt polycondensation can be made to have a high molecular weight in a short time when it is further subjected to solid phase polymerization. The limiting viscosity is more preferably 0.55 dL/g or more, and still more preferably 0.65 dL/g or more. On the other hand, the intrinsic viscosity is preferably 0.9 dL/g or less, more preferably 0.85 dL/g or less, from the viewpoint of easily taking out the polyester from the reactor and suppressing coloring due to thermal deterioration. More preferably, it is 0.8 dL/g or less.
 前記のようにして得られたポリエステルをストランド状、シート状などの形状に押出し、冷却後、ストランドカッターやシートカッターなどにより裁断して、円柱状、楕円柱状、円盤状、ダイス状などの形状の中間ペレットを製造する。前記した押出し後の冷却は、例えば、水槽を用いる水冷法、冷却ドラムを用いる方法、空冷法などにより行うことができる。 The polyester obtained as described above is extruded into shapes such as strands and sheets, and after cooling, it is cut with a strand cutter or sheet cutter to obtain shapes such as cylinders, ellipsoids, discs, and dice. Produce intermediate pellets. The above-mentioned cooling after extrusion can be performed by, for example, a water cooling method using a water tank, a method using a cooling drum, an air cooling method, or the like.
 前記中間ペレットの重合度をさらに高くするために当該中間ペレットを固相重合することが挙げられる。このとき、固相重合する前に加熱して予めポリエステルの一部を結晶化させることが好ましい。これにより、固相重合時のペレットの膠着を防止することができる。結晶化の温度は、好適には100~180℃である。結晶化の方法としては、真空タンブラー中で結晶化させてもよいし、空気循環式加熱装置内で加熱して結晶化させてもよい。空気循環式加熱装置内で加熱する場合には、内部の温度が100~160℃であることが好ましい。空気循環式加熱装置を用いて加熱する場合には、真空タンブラーを用いて結晶化する場合に比べて、熱伝導が良好なので結晶化に要する時間を短縮できるし、装置も安価である。結晶化に要する時間は特に限定されないが、通常30分~24時間程度である。結晶化に先立って、100℃未満の温度でペレットを乾燥することも好ましい。 In order to further increase the degree of polymerization of the intermediate pellet, the intermediate pellet may be subjected to solid phase polymerization. At this time, it is preferable to preliminarily crystallize a portion of the polyester by heating before solid phase polymerization. This can prevent pellets from sticking during solid phase polymerization. The crystallization temperature is preferably 100-180°C. As for the crystallization method, it may be crystallized in a vacuum tumbler, or it may be crystallized by heating in an air circulation type heating device. When heating is performed in an air circulation type heating device, the internal temperature is preferably 100 to 160°C. When heating is performed using an air circulation type heating device, compared to crystallizing using a vacuum tumbler, heat conduction is better, so the time required for crystallization can be shortened, and the device is also inexpensive. The time required for crystallization is not particularly limited, but is usually about 30 minutes to 24 hours. It is also preferred to dry the pellets at a temperature below 100°C prior to crystallization.
 固相重合の温度は、好適には170~250℃である。固相重合の温度が170℃未満の場合には、固相重合の時間が長くなり生産性が低下するおそれがある。固相重合の温度は、より好適には175℃以上であり、さらに好適には180℃以上である。一方、固相重合の温度が250℃を超える場合には、ペレットが膠着するおそれがある。固相重合の温度は、より好適には240℃以下であり、さらに好適には230℃以下である。固相重合の時間は、通常5~70時間程度である。また、固相重合時に溶融重合で使用した触媒を共存させてもよい。 The temperature of solid phase polymerization is preferably 170 to 250°C. If the solid phase polymerization temperature is less than 170° C., the solid phase polymerization time may become longer and productivity may decrease. The temperature of solid phase polymerization is more preferably 175°C or higher, and still more preferably 180°C or higher. On the other hand, if the solid phase polymerization temperature exceeds 250°C, there is a risk that the pellets will stick together. The temperature of solid phase polymerization is more preferably 240°C or lower, and still more preferably 230°C or lower. The solid phase polymerization time is usually about 5 to 70 hours. Further, the catalyst used in melt polymerization may be coexisting during solid phase polymerization.
 また、固相重合は、減圧下または窒素ガスなどの不活性ガス中で行うことが好ましい。また、ペレット間の膠着が生じないように、転動法、気体流動床法などの適当な方法でペレットを動かしながら固相重合を行うことが好ましい。減圧下で固相重合を行う場合の圧力は好適には1kPa以下である。 Furthermore, the solid phase polymerization is preferably carried out under reduced pressure or in an inert gas such as nitrogen gas. Furthermore, it is preferable to carry out the solid phase polymerization while moving the pellets by an appropriate method such as a tumbling method or a gas fluidized bed method so as to prevent the pellets from sticking together. When solid phase polymerization is carried out under reduced pressure, the pressure is preferably 1 kPa or less.
 固相重合して得られるポリエステルの極限粘度は、共重合ポリエステルの溶融成形法の種類などに応じて変わり得るが、溶融押出を伴う溶融成形、特に押出ブロー成形に用いる場合は、0.8~1.5dL/gであることが好ましく、特に得られる押出ブロー成形品の機械的性質、外観、成形品製造時の生産性などの点から、0.9~1.4dL/gであることがより好ましい。特に、押出ブロー成形を行う場合に、共重合ポリエステルの極限粘度が0.8dL/g未満の場合は、押出ブロー成形時にパリソンのドローダウンが大きくなり成形不良となり易く、さらに得られる成形品の引張強さ、耐衝撃性などの機械的性質が低下し易い。一方、共重合ポリエステルの極限粘度が1.5dL/gよりも大きい場合は、溶融粘度が高くなり過ぎて、得られる成形品の外観が不良となり易く、しかも押出時にトルクが高くなるために押出量が不均一になり易いなどの成形上の問題を生じ易くなる。また所定量の共重合ポリエステルを押出すのに要する時間が長くなり、成形品の生産性が低下し易くなる。 The intrinsic viscosity of polyester obtained by solid phase polymerization may vary depending on the type of melt molding method for copolymerized polyester, but when used for melt molding involving melt extrusion, especially extrusion blow molding, it is 0.8 to 0.8. It is preferably 1.5 dL/g, and is preferably 0.9 to 1.4 dL/g, especially from the viewpoint of the mechanical properties, appearance, and productivity of the extrusion blow-molded product obtained when manufacturing the molded product. More preferred. In particular, when extrusion blow molding is performed, if the intrinsic viscosity of the copolyester is less than 0.8 dL/g, the drawdown of the parison becomes large during extrusion blow molding, which tends to result in poor molding, and the resulting molded product is prone to tensile stress. Mechanical properties such as strength and impact resistance tend to deteriorate. On the other hand, if the intrinsic viscosity of the copolyester is greater than 1.5 dL/g, the melt viscosity will be too high and the resulting molded product will likely have a poor appearance, and the torque during extrusion will be high, resulting in an extrusion amount. Molding problems such as non-uniformity tend to occur. Moreover, the time required to extrude a predetermined amount of copolymerized polyester becomes longer, and the productivity of molded products tends to decrease.
 得られる成形品の透明性がさらに向上する観点から、固相重合して得られるポリエステルに含まれるポリエステルの結晶化ピーク温度における半結晶化時間が30分以上であってもよい。本発明において「結晶化ピーク温度」とは、示差熱量分析計(DSC)を用いて、非晶ポリエステルを10℃/分にて常温(20℃)から融点以上の温度(280℃)まで昇温して測定される結晶化に伴う発熱ピークの温度である。また、「結晶化ピーク温度における半結晶化時間」とは、示差熱量分析計(DSC)を用いて、ポリエステルを融点以上の温度(280℃)まで昇温して溶融させた後、-50℃/分にて結晶化ピーク温度まで急冷した後、当該結晶化ピーク温度で保持して等温結晶化を行った場合において、結晶化ピーク温度に到達してから、等温結晶化による発熱量が総発熱量の1/2になるまでの時間を意味する。 From the viewpoint of further improving the transparency of the resulting molded product, the half-crystallization time at the crystallization peak temperature of the polyester contained in the polyester obtained by solid phase polymerization may be 30 minutes or more. In the present invention, "crystallization peak temperature" refers to the heating of amorphous polyester from room temperature (20°C) to a temperature above the melting point (280°C) at 10°C/min using a differential calorimeter (DSC). This is the temperature of the exothermic peak associated with crystallization measured as follows. In addition, "half-crystallization time at crystallization peak temperature" means -50 °C after melting polyester by heating it to a temperature above the melting point (280 °C) using a differential calorimeter (DSC). /min to the crystallization peak temperature, and then isothermal crystallization is performed by holding at that crystallization peak temperature. After reaching the crystallization peak temperature, the amount of heat generated by isothermal crystallization is equal to the total heat generation. It means the time it takes for the amount to decrease to 1/2.
 固相重合時にタンブラー内部にペレットが膠着するのを防ぐ観点から、本発明のポリエステルの結晶融解エンタルピーが20J/g以上であってもよい。固相重合して得られたペレットには長時間高温下で結晶化を進行させたポリエステルが含まれているので、このような大きな結晶融解エンタルピーを有していることがある。 From the viewpoint of preventing pellets from sticking inside the tumbler during solid phase polymerization, the crystal melting enthalpy of the polyester of the present invention may be 20 J/g or more. Pellets obtained by solid phase polymerization contain polyester that has been crystallized at high temperatures for a long period of time, and therefore may have such a large enthalpy of crystal fusion.
 本発明のポリエステルを溶融成形することによって様々な成形品を得ることができる。成形方法は特に限定されず、押出成形、射出成形など、各種の溶融成形方法を採用することができる。また、溶融成形品をさらに二次加工して成形品を得ることもできる。中でも、本発明のポリエステルは溶融成形時の粘度が高いので、押出ブロー成形に適している。押出成形時の樹脂組成物の温度は、(ポリエステルの融点+10℃)~(ポリエステルの融点+70℃)の範囲内の温度にするのが好ましく、(ポリエステルの融点+10℃)~(ポリエステルの融点+40℃)の範囲内の温度にするのがより好ましい。比較的融点に近い温度で押出すことによって、ドローダウンを抑制できる。 Various molded products can be obtained by melt molding the polyester of the present invention. The molding method is not particularly limited, and various melt molding methods such as extrusion molding and injection molding can be employed. Moreover, a molded article can also be obtained by further secondary processing the melt-molded article. Among these, the polyester of the present invention has a high viscosity during melt molding, so it is suitable for extrusion blow molding. The temperature of the resin composition during extrusion molding is preferably within the range of (melting point of polyester + 10°C) to (melting point of polyester + 70°C), and (melting point of polyester + 10°C) to (melting point of polyester + 40°C). It is more preferable to set the temperature within the range of (°C). Drawdown can be suppressed by extruding at a temperature relatively close to the melting point.
 本発明のポリエステルを用いて、例えば、Tダイ法やインフレーション法などの押出成形によってシートやフィルムを製造する場合には、ドローダウン、ネックイン、膜揺れ、未溶融ブツの発生がなく、高品質のシートまたはフィルムを生産性よく製造することができる。そして、そのようにして得られたシートまたはフィルムを用いて熱成形などの二次加工を行った場合には、深絞りの成形品や大型の成形品を成形する際に、ドローダウンが小さく、結晶化の程度が良好であり、真空吸引または圧縮空気などの外力を加える工程での厚み斑や白化を生じにくく、良好な賦形性で目的とする成形品を得ることができる。 When manufacturing sheets or films using the polyester of the present invention by extrusion molding, such as the T-die method or the inflation method, there is no drawdown, neck-in, film shaking, or unmelted particles, and the quality is high. sheet or film can be manufactured with high productivity. When the sheet or film obtained in this way is subjected to secondary processing such as thermoforming, the drawdown is small when forming deep drawing molded products or large molded products. The degree of crystallization is good, thickness unevenness and whitening are less likely to occur during the process of applying external force such as vacuum suction or compressed air, and the desired molded product can be obtained with good formability.
 そして、押出成形の中でも、特に本発明のポリエステルを用いることが適しているのは押出ブロー成形である。押出ブロー成形の方法は特に制限されず、従来既知の押出ブロー成形法と同様に行うことができる。例えば、本発明のポリエステルを溶融押出して円筒状のパリソンを形成し、このパリソンが軟化状態にある間にブロー用金型で挟んで、空気などの気体を吹き込んでパリソンを金型キャビィティの形状に沿った所定の中空形状に膨張させる方法によって行うことができる。本発明のポリエステルを用いた場合には、押出されたパリソンのドローダウン性が良好であり、中空成形品を生産性よく製造することができる。 Among extrusion molding methods, extrusion blow molding is particularly suitable for using the polyester of the present invention. The extrusion blow molding method is not particularly limited, and can be performed in the same manner as conventionally known extrusion blow molding methods. For example, the polyester of the present invention is melt-extruded to form a cylindrical parison, and while the parison is in a softened state, it is sandwiched between blow molds, and a gas such as air is blown into the parison to shape the mold cavity. This can be done by expanding the tube into a predetermined hollow shape. When the polyester of the present invention is used, the extruded parison has good drawdown properties, and blow molded products can be manufactured with good productivity.
 こうして得られる成形品は、透明性に優れ、外観、色調が良好で、機械的強度、なかでも耐衝撃性が高い。しかも、ガスバリヤー性、フレーバーバリヤー性、耐湿性、耐薬品性などの諸特性にも優れているので、様々な用途に用いることができる。また、他の熱可塑性樹脂などとの積層構造を有する成形品とすることもできる。当該ポリエステルを用いて得られる成形品は特に優れた透明性を有する。このように前記ポリエステルを含有する成形品が本発明の好適な実施態様であり、前記ポリエステルを押出成形してなる成形品がより好適な実施態様であり、前記ポリエステルを押出ブロー成形してなる成形品が特に好適な実施態様である。 The molded product thus obtained has excellent transparency, good appearance and color tone, and high mechanical strength, especially impact resistance. Furthermore, it has excellent properties such as gas barrier properties, flavor barrier properties, moisture resistance, and chemical resistance, so it can be used for various purposes. Moreover, it can also be made into a molded product having a laminated structure with other thermoplastic resins. Molded articles obtained using the polyester have particularly excellent transparency. As described above, a molded article containing the polyester is a preferred embodiment of the present invention, a more preferred embodiment is a molded article formed by extrusion molding the polyester, and a molded article formed by extrusion blow molding the polyester. is a particularly preferred embodiment.
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例および比較例において採用された、各評価方法を以下に示す。 The present invention will be specifically explained below using examples, but the present invention is not limited to these examples in any way. In addition, each evaluation method employed in the following Examples and Comparative Examples is shown below.
 (1)単量体成分の比率
 ポリエステルを構成する単量体成分の比率はH-NMRスペクトル(装置:日本電子株式会社製「JNM-ECZ 400S」、溶媒:重水素化トリフルオロ酢酸)により確認した。1,2-プロパンジオール量は、7.9~8.5ppm付近のテレフタル酸のピークと5.3~5.7ppm付近の1,2-プロパンジオールのピークの積分比から算出した。
(1) Ratio of monomer components The ratio of monomer components constituting polyester was determined by 1H -NMR spectrum (equipment: "JNM-ECZ 400S" manufactured by JEOL Ltd., solvent: deuterated trifluoroacetic acid). confirmed. The amount of 1,2-propanediol was calculated from the integral ratio of the peak of terephthalic acid around 7.9 to 8.5 ppm and the peak of 1,2-propanediol around 5.3 to 5.7 ppm.
 (2)極限粘度
 各実施例及び比較例で得られた共重合ポリエステルをフェノールと1,1,2,2-テトラクロロエタンの等質量の混合物を溶媒として用いて、30℃で、ウデローデ型粘度計(株式会社離合社製自動粘度測定装置「VMC-422型」)を用いて極限粘度を測定した。
(2) Intrinsic viscosity The copolymerized polyester obtained in each example and comparative example was measured using an Uderohde viscometer at 30°C using a mixture of equal mass of phenol and 1,1,2,2-tetrachloroethane as a solvent. The intrinsic viscosity was measured using an automatic viscosity measuring device "Model VMC-422" manufactured by Rigosha Co., Ltd.).
 (3)ガラス転移温度(Tg)及び融点(Tm)
 ポリエステルの融点(Tm)及びガラス転移温度(Tg)は、示差走査熱量計(TA インスツルメント製TA Q2000型)を用いて測定した。融点は、昇温速度10℃/分で30℃から280℃まで昇温したときの融解ピークとして測定し、ガラス転移温度(Tg)は昇温速度10℃/分で30℃から280℃まで昇温したのち、-50℃/分で30℃まで急冷してから、再び昇温速度10℃/分で昇温したときのデータより算出した。
(3) Glass transition temperature (Tg) and melting point (Tm)
The melting point (Tm) and glass transition temperature (Tg) of the polyester were measured using a differential scanning calorimeter (TA Q2000 model manufactured by TA Instruments). The melting point is measured as the melting peak when the temperature is raised from 30°C to 280°C at a heating rate of 10°C/min, and the glass transition temperature (Tg) is measured from 30°C to 280°C at a heating rate of 10°C/min. After heating, the temperature was rapidly cooled to 30°C at a rate of -50°C/min, and then the temperature was raised again at a rate of 10°C/min.
 (4)樹脂色(L色空間におけるb値)
 ポリエステルの色(b値)を、測色器(HunterLab社製「LSXE LabScan XE」)を用いて測定した。ガラスセルに測定用ペレットを詰め込み、ガラスセルを置く位置を変えて5回測定し、その平均値を算出した。
(4) Resin color (L * a * b * b * value in color space)
The color (b * value) of the polyester was measured using a colorimeter (“LSXE LabScan XE” manufactured by HunterLab). The measurement pellets were packed into a glass cell, and the measurement was performed five times by changing the position of the glass cell, and the average value was calculated.
 (5)ボトル成形、ボトル落下強度試験
押出ブロー成形装置(株式会社タハラ製「MSE-40E/32M-A(T1)型」)を用いて、シリンダー最高温度280~290℃、ダイス温度240~250℃、スクリュー回転数24rpm、押出し樹脂圧19~30MPa、金型温度30℃にて、容積220mLの透明ボトル(27.5g±0.5g)を成形した。成形後のボトルを23℃で24時間温調した。ボトルの落下試験としてボトル内に気泡が残らないよう23℃に温調した水を満たし、キャップで密封した後、垂直に設置された直径10cmの筒中を通過させて、高さ125cmから水平なコンクリート面と45度傾斜したコンクリート面に交互に落下させた。ボトルに割れ又は亀裂が発生し、内部に満たした水が漏洩するまでボトルを、水平面に1回、45度斜面に1回の順で最大20回落下を繰り返した。1組成につき、5本のボトルの落下試験を行い、その平均値をボトル落下強度とした。また、成形したボトルを50℃の恒温機内に67時間保管した後、前記ボトルの落下試験を高さのみ50cmに変更して行い、その回数の平均値を加速ボトル落下強度(常温3か月相当)とした。ボトル落下強度と加速ボトル落下強度を耐衝撃性の指標とし、回数が多いほど耐衝撃性に優れると評価した。
(5) Bottle molding, bottle drop strength test Using an extrusion blow molding device (“MSE-40E/32M-A (T1) type” manufactured by Tahara Co., Ltd.), the maximum cylinder temperature was 280 to 290°C, and the die temperature was 240 to 250°C. A transparent bottle (27.5 g ± 0.5 g) with a volume of 220 mL was molded at a temperature of 30° C., a screw rotation speed of 24 rpm, an extrusion resin pressure of 19 to 30 MPa, and a mold temperature of 30° C. The temperature of the molded bottle was controlled at 23° C. for 24 hours. As a drop test for the bottle, the bottle was filled with water that had been kept at a temperature of 23°C so that no air bubbles remained inside the bottle, was sealed with a cap, and then passed through a vertically installed cylinder with a diameter of 10 cm, and was dropped from a height of 125 cm onto horizontal concrete. They were dropped alternately onto a concrete surface tilted at a 45 degree angle. The bottle was repeatedly dropped up to 20 times, once on a horizontal surface and once on a 45-degree slope, until the bottle cracked or cracked and the water filled inside leaked out. A drop test was performed on five bottles for each composition, and the average value was taken as the bottle drop strength. In addition, after storing the molded bottle in a constant temperature machine at 50°C for 67 hours, the bottle was subjected to a drop test with only the height changed to 50 cm, and the average value of the number of tests was calculated as the accelerated bottle drop strength (equivalent to 3 months at room temperature). ). Bottle drop strength and accelerated bottle drop strength were used as indicators of impact resistance, and the higher the number of times, the better the impact resistance.
[実施例1]
 テレフタル酸100.00重量部、エチレングリコール42.59重量部、ビスフェノールAエチレンオキサイド付加物9.49重量部、2-[3-(2-ヒドロキシエチル)-4-(2-ヒドロキシエトキシ)フェニル]-2-[4-(2-ヒドロキシエトキシ)フェニル]プロパン(以下「HEPP」という)0.039重量部および1,2-プロパンジオール0.216重量部からなるスラリーをつくり、これに0.020重量部の二酸化ゲルマニウム、0.015重量部の亜リン酸を加えた。このスラリーを加圧下(絶対圧2.5kg/cm)で250℃の温度に加熱して、エステル化率が95%になるまでエステル化反応を行って低重合体を製造した。続いて、1mmHgの減圧下に、270℃の温度で前記の低重合体を溶融重縮合させて、極限粘度0.76dL/gの共重合ポリエステルのプレポリマーを生成させ、これをノズルからストランド状に押出して切断し、円柱状チップ(直径2.5mm、長さ3.5mm)にした。次いで、前記で得られた共重合ポリエステルのプレポリマーのチップを150℃の温度で5時間予備乾燥した後、0.1mmHgの減圧下に、200℃で固相重合を74時間行って、高分子量化された共重合ポリエステルを得た後、上記(1)~(5)の評価を行った。結果を表1及び2に示す。
[Example 1]
100.00 parts by weight of terephthalic acid, 42.59 parts by weight of ethylene glycol, 9.49 parts by weight of bisphenol A ethylene oxide adduct, 2-[3-(2-hydroxyethyl)-4-(2-hydroxyethoxy)phenyl] A slurry consisting of 0.039 parts by weight of -2-[4-(2-hydroxyethoxy)phenyl]propane (hereinafter referred to as "HEPP") and 0.216 parts by weight of 1,2-propanediol was prepared, and 0.020 parts by weight of 1,2-propanediol was prepared. Parts by weight of germanium dioxide and 0.015 parts by weight of phosphorous acid were added. This slurry was heated to a temperature of 250° C. under pressure (absolute pressure 2.5 kg/cm 2 ), and an esterification reaction was performed until the esterification rate reached 95% to produce a low polymer. Subsequently, the above-mentioned low polymer was subjected to melt polycondensation at a temperature of 270° C. under a reduced pressure of 1 mmHg to produce a copolyester prepolymer having an intrinsic viscosity of 0.76 dL/g, which was passed through a nozzle in the form of a strand. It was extruded and cut into cylindrical chips (diameter 2.5 mm, length 3.5 mm). Next, the chips of the copolymerized polyester prepolymer obtained above were pre-dried at a temperature of 150°C for 5 hours, and then solid phase polymerization was performed at 200°C for 74 hours under a reduced pressure of 0.1 mmHg to obtain a high molecular weight. After obtaining the copolymerized polyester, the above evaluations (1) to (5) were performed. The results are shown in Tables 1 and 2.
[実施例2]
 テレフタル酸100.00重量部、エチレングリコール43.49重量部、ビスフェノールAエチレンオキサイド付加物5.64重量部、1,2-プロパンジオール0.216重量部およびHEPP0.089重量部からなるスラリーを用いたこと及び固相重合時間を表1に示すとおりとした以外は実施例1と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[Example 2]
A slurry consisting of 100.00 parts by weight of terephthalic acid, 43.49 parts by weight of ethylene glycol, 5.64 parts by weight of bisphenol A ethylene oxide adduct, 0.216 parts by weight of 1,2-propanediol and 0.089 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
[実施例3]
 テレフタル酸100.00重量部、エチレングリコール42.59重量部、1,4-シクロヘキサンジメタノール9.52重量部、1,2-プロパンジオール0.216重量部及びペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]0.012重量部からなるスラリーを用いたこと及び固相重合時間を表1に示すとおりとした以外は実施例1と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[Example 3]
100.00 parts by weight of terephthalic acid, 42.59 parts by weight of ethylene glycol, 9.52 parts by weight of 1,4-cyclohexanedimethanol, 0.216 parts by weight of 1,2-propanediol, and pentaerythritol tetrakis [3-(3, Polyester was prepared in the same manner as in Example 1, except that a slurry containing 0.012 parts by weight of 5-di-tert-butyl-4-hydroxyphenyl)propionate was used and the solid-state polymerization time was as shown in Table 1. was manufactured and evaluated. The results are shown in Tables 1 and 2.
[実施例4]
 テレフタル酸100.00重量部、エチレングリコール40.69重量部、ビスフェノールAエチレンオキサイド付加物11.38重量部、1,2-プロパンジオール0.133重量部およびHEPP0.046重量部からなるスラリーを用いたこと及び固相重合時間を表1に示すとおりとした以外は実施例1と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[Example 4]
A slurry consisting of 100.00 parts by weight of terephthalic acid, 40.69 parts by weight of ethylene glycol, 11.38 parts by weight of bisphenol A ethylene oxide adduct, 0.133 parts by weight of 1,2-propanediol and 0.046 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
[実施例5]
 テレフタル酸100.00重量部、エチレングリコール40.57重量部、ビスフェノールAエチレンオキサイド付加物11.51重量部、1,2-プロパンジオール0.033重量部およびHEPP0.044重量部からなるスラリーを用いたこと及び固相重合時間を表1に示すとおりとした以外は実施例1と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[Example 5]
A slurry consisting of 100.00 parts by weight of terephthalic acid, 40.57 parts by weight of ethylene glycol, 11.51 parts by weight of bisphenol A ethylene oxide adduct, 0.033 parts by weight of 1,2-propanediol and 0.044 parts by weight of HEPP was used. Polyester was produced and evaluated in the same manner as in Example 1, except that the polymerization and solid phase polymerization times were as shown in Table 1. The results are shown in Tables 1 and 2.
[比較例1]
 1,2-プロパンジオールを添加しなかった以外は実施例1と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[比較例2]
 1,2-プロパンジオールを添加しなかったこと及び固相重合時間を表1に示すとおりとした以外は実施例2と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[比較例3]
 1,2-プロパンジオールを添加しなかったこと及び固相重合時間を表1に示すとおりとした以外は実施例3と同様にしてポリエステルの製造及び評価を行った。結果を表1及び2に示す。
[Comparative example 1]
Polyester was produced and evaluated in the same manner as in Example 1, except that 1,2-propanediol was not added. The results are shown in Tables 1 and 2.
[Comparative example 2]
Polyester was produced and evaluated in the same manner as in Example 2, except that 1,2-propanediol was not added and the solid phase polymerization time was as shown in Table 1. The results are shown in Tables 1 and 2.
[Comparative example 3]
Polyester was produced and evaluated in the same manner as in Example 3, except that 1,2-propanediol was not added and the solid phase polymerization time was as shown in Table 1. The results are shown in Tables 1 and 2.
 第1のジオール単位、第2のジオール単位及び第3のジオール単位を有し、上記式(1)及び(2)を満たすポリエステル(実施例1~5)を成形して得られたボトルは、第3のジオール単位の含有量が少ないにも関わらず、ボトル落下強度と加速ボトル落下強度が良好であった。一方で、第2のジオール単位を含まないポリエステル(比較例1~3)を成形して得られたボトルは、ボトル落下強度と加速ボトル落下強度が劣っていた。 A bottle obtained by molding a polyester (Examples 1 to 5) having a first diol unit, a second diol unit, and a third diol unit and satisfying the above formulas (1) and (2) is: Despite the low content of the third diol unit, the bottle drop strength and accelerated bottle drop strength were good. On the other hand, bottles obtained by molding polyesters that do not contain the second diol unit (Comparative Examples 1 to 3) were inferior in bottle drop strength and accelerated bottle drop strength.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明によれば、環境への影響の少ない押出ブロー成形用の原料として適するとともに、耐衝撃性が良好である成形品を製造可能なポリエステルが得られる。

 
According to the present invention, it is possible to obtain a polyester that is suitable as a raw material for extrusion blow molding with little impact on the environment and that can produce molded products with good impact resistance.

Claims (6)

  1.  ジカルボン酸単位とジオール単位を含むポリエステルであって、前記ジカルボン酸単位がテレフタル酸に由来する構造単位を含み、前記ジオール単位が第1のジオール単位、第2のジオール単位、及び第3のジオール単位を含み、第1のジオール単位がエチレングリコールに由来する構造単位であり、第2のジオール単位が1,2-プロパンジオールに由来する構造単位であり、第3のジオール単位がビスフェノールAエチレンオキサイド付加物及び/又はシクロヘキサンジメタノールに由来する構造単位であり、前記ポリエステルに含まれるジオール単位の合計を100モル%としたとき、第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)、前記シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(1)及び(2)を満たす、ポリエステル。
     0.001≦X≦0.5 (1)
     2≦Y+Z≦25 (2)
    A polyester containing a dicarboxylic acid unit and a diol unit, wherein the dicarboxylic acid unit includes a structural unit derived from terephthalic acid, and the diol unit includes a first diol unit, a second diol unit, and a third diol unit. The first diol unit is a structural unit derived from ethylene glycol, the second diol unit is a structural unit derived from 1,2-propanediol, and the third diol unit is a bisphenol A ethylene oxide addition. is a structural unit derived from cyclohexanedimethanol and/or cyclohexanedimethanol, and when the total of diol units contained in the polyester is 100 mol%, the content of the second diol unit X (mol%), the bisphenol A ethylene A polyester in which the content Y (mol %) of structural units derived from the oxide adduct and the content Z (mol %) of the structural units derived from the cyclohexanedimethanol satisfy the following formulas (1) and (2).
    0.001≦X≦0.5 (1)
    2≦Y+Z≦25 (2)
  2.  第2のジオール単位の含有量X(モル%)、前記ビスフェノールAエチレンオキサイド付加物に由来する構造単位の含有量Y(モル%)及び前記シクロヘキサンジメタノールに由来する構造単位の含有量Z(モル%)が下記式(3)を満たす、請求項1に記載のポリエステル。
     5≦(Y+Z)/X≦100(3)
    The content X (mol%) of the second diol unit, the content Y (mol%) of the structural unit derived from the bisphenol A ethylene oxide adduct, and the content Z (mol%) of the structural unit derived from the cyclohexanedimethanol. %) satisfies the following formula (3).
    5≦(Y+Z)/X≦100(3)
  3.  前記ポリエステルに含まれるジオール単位の合計を100モル%としたとき、第1のジオール単位の含有量が75~98モル%である、請求項1又は2に記載のポリエステル。 The polyester according to claim 1 or 2, wherein the content of the first diol unit is 75 to 98 mol% when the total of diol units contained in the polyester is 100 mol%.
  4.  極限粘度が0.8~1.5dL/gである、請求項1~3のいずれかに記載のポリエステル。 The polyester according to any one of claims 1 to 3, which has an intrinsic viscosity of 0.8 to 1.5 dL/g.
  5.  請求項1~4のいずれかに記載のポリエステルを含有する、成形品。 A molded article containing the polyester according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載のポリエステルを押出ブロー成形してなる、成形品。

     
    A molded article obtained by extrusion blow molding the polyester according to any one of claims 1 to 4.

PCT/JP2023/022360 2022-06-17 2023-06-16 Polyester and molded article composed of same WO2023243701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097877 2022-06-17
JP2022-097877 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023243701A1 true WO2023243701A1 (en) 2023-12-21

Family

ID=89191492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022360 WO2023243701A1 (en) 2022-06-17 2023-06-16 Polyester and molded article composed of same

Country Status (1)

Country Link
WO (1) WO2023243701A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155360A (en) * 1987-12-14 1989-06-19 Kao Corp Electrophotographic developer composition
JPH01174582A (en) * 1987-12-28 1989-07-11 Mitsubishi Rayon Co Ltd Adhesive composition
JP2010116422A (en) * 2008-11-11 2010-05-27 Unitika Ltd Polyester resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155360A (en) * 1987-12-14 1989-06-19 Kao Corp Electrophotographic developer composition
JPH01174582A (en) * 1987-12-28 1989-07-11 Mitsubishi Rayon Co Ltd Adhesive composition
JP2010116422A (en) * 2008-11-11 2010-05-27 Unitika Ltd Polyester resin composition

Similar Documents

Publication Publication Date Title
CN104822742B (en) The copolyesters plastified with polymeric plasticiser for shrink film applications
US10723852B2 (en) Heat shrinkable film composition comprising polyethyleneterephtalate resin and polyester based copolymer, and heat shrinkable film
KR100733652B1 (en) Polyester resin and molded article
JP7193345B2 (en) Polyester, method for producing same, and molded article made of same
WO2003037956A9 (en) Crystalline polyglycolic acid, polyglycolic acid composition and processes for production of both
JP2009512756A (en) PET polymer with improved properties
JP6883023B2 (en) Polymer blend with furan polyester
US4358491A (en) Process for producing a hollow vessel having a frosted glass-like surface
JP2024501278A (en) Improved polyester compositions for extrusion blow molded containers
CA2326447C (en) Production of reduced gas-permeable polyalkylene terephthalate films by strain induced crystallization
JP6757669B2 (en) Polyester resin pellets, their manufacturing methods and molded products made from them
JP6152989B2 (en) Mixed pellet containing polyester pellet and resin composition
JP7033553B2 (en) Polyester, its manufacturing method and molded products made of it
JP3566250B2 (en) Copolyester with improved extrudability and color
WO2023243701A1 (en) Polyester and molded article composed of same
TW202411290A (en) Polyester and shaped article of the same
JPH0985810A (en) Direct blow molded product
JP2022506851A (en) Polymer composition
JP6300266B2 (en) Copolyester resin and its hollow container
JP5606803B2 (en) Method for producing solid phase polymerization pellets comprising polyester resin composition
KR20050100648A (en) Extrusion blow molded articles
WO2023132334A1 (en) Polyester and molded article comprising same
JPH08113631A (en) Polyester copolymer and packaging material and packaging container made thereof
JP3482641B2 (en) Copolyester applied to extrusion
JPH08337659A (en) Container made from copolyester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823991

Country of ref document: EP

Kind code of ref document: A1