WO2023243422A1 - 粒子分取システム、粒子分取方法、及び粒子分取プログラム - Google Patents

粒子分取システム、粒子分取方法、及び粒子分取プログラム Download PDF

Info

Publication number
WO2023243422A1
WO2023243422A1 PCT/JP2023/020531 JP2023020531W WO2023243422A1 WO 2023243422 A1 WO2023243422 A1 WO 2023243422A1 JP 2023020531 W JP2023020531 W JP 2023020531W WO 2023243422 A1 WO2023243422 A1 WO 2023243422A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
scattered light
delay time
intensity
Prior art date
Application number
PCT/JP2023/020531
Other languages
English (en)
French (fr)
Inventor
謙作 高橋
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023243422A1 publication Critical patent/WO2023243422A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry

Definitions

  • the present technology relates to a particle separation system. More specifically, the present invention relates to a particle separation system, a particle separation method, and a particle separation program that separate particles contained in a fluid.
  • Flow cytometry is a process in which the particles to be analyzed are poured into a fluid in an aligned state, and the particles are irradiated with laser light, etc., and the fluorescence and scattered light emitted from each particle is detected. , is an analytical method for particle analysis and fractionation.
  • cells labeled with a fluorescent dye are irradiated with excitation light such as laser light having an appropriate wavelength and intensity. Then, the fluorescence emitted from the fluorescent dye is focused using a lens, etc., light in an appropriate wavelength range is selected using a wavelength selection element such as a filter or dichroic mirror, and the selected light is transferred to a photomultiplier tube (PMT). Detection is performed using a photodetector such as a multiplier tube.
  • PMT photomultiplier tube
  • Detection is performed using a photodetector such as a multiplier tube.
  • Fluorescence detection in flow cytometry involves selecting multiple discontinuous wavelength ranges of light using a wavelength selection element such as a filter and measuring the intensity of light in each wavelength range. Another method is to measure the intensity of light as a fluorescence spectrum.
  • fluorescence emitted from particles is separated using a spectroscopic element such as a prism or a grating. Then, the separated fluorescence is detected using a light receiving element array in which a plurality of light receiving elements having different detection wavelength ranges are arranged.
  • the light-receiving element array includes a PMT array or photodiode array in which light-receiving elements such as PMTs and photodiodes are arranged in one dimension, or a plurality of independent detection channels such as two-dimensional light-receiving elements such as CCD or CMOS. It is used.
  • Particle analysis such as flow cytometry, often uses optical methods that irradiate the particles to be analyzed with light such as a laser and detect the fluorescence and scattered light emitted from the particles. Based on the detected optical information, an analysis computer and software extract a histogram and perform analysis.
  • Patent Document 1 discloses an optical mechanism that irradiates each biological particle with light and detects the light from the biological particle, and an optical mechanism that irradiates each biological particle with light and detects the light from the biological particle. , comprising a control unit that detects the movement speed of the biological particles in the liquid flow, and a charging unit that applies an electric charge to the biological particles based on the movement speed of each of the biological particles.
  • Devices have been proposed for separating biological particles contained in a liquid flow.
  • Patent Document 2 also includes a detection unit that detects microparticles flowing through a flow channel, and an imaging unit that captures an image of a droplet containing the microparticles discharged from an orifice provided at an end of the flow channel.
  • a charging unit that applies an electric charge to the droplet; and a number of bright spots within a preset reference area in image information captured by the imaging device from the time when the microparticle is detected by the element, the charging unit that applies an electric charge to the droplet, and the detection unit.
  • a control unit that determines a delay time until a time when the detection unit detects the microparticles and enables the charging unit to apply a charge to the microparticles after the delay time;
  • a microparticle sorting device is disclosed. This microparticle sorting device can automatically, easily, and accurately control the exact timing at which a charge should be applied to droplets containing microparticles.
  • the main objective of the present technology is to provide a technology for more accurately specifying the timing from detecting light from particles to starting fractionation processing depending on the particle in particle separation technology.
  • This technology first includes a detection unit that detects light from particles contained in the fluid; a processing unit that specifies a delay time from detection in the detection unit to the start of preparative processing; has The processing unit provides a particle sorting system that specifies the delay time from the intensity of the scattered light detected by the detection unit based on the relationship between the intensity of the scattered light linked to the particle size and the delay time. do.
  • the start of the preparative separation process may be charging the droplet containing the particles, or applying an electric charge to an actuator for changing the pressure in the preparative flow path through which the fluid is separated.
  • the relationship may be an approximate expression indicating the relationship between the intensity of the scattered light obtained from particles of different sizes and the delay time.
  • the particle sorting system can include a storage unit that stores the relationship.
  • the storage unit may store the relationship set in advance. Further, the storage unit may also store the relationships set in advance in association with different separation conditions.
  • the sorting conditions can be one or more sorting conditions selected from the flow rate of the particles and the application conditions to the vibrating element for forming droplets. At this time, the conditions for the application may be one or more conditions selected from the frequency, vibration, and intensity of the drive voltage.
  • the preset relationship can be corrected based on the intensity of scattered light obtained from particles of at least one size. Further, the processing section can also specify the relationship between the intensity of the scattered light obtained from particles of different sizes and delay time.
  • forward scattered light can be used as the scattered light.
  • the particle separation system according to the present technology includes droplet imaging that images the state of the fluid stream including the droplets. can be provided with a section.
  • the delay time may be a time from when the particle is detected by the detection unit until it reaches a break-off point position, The break-off point can be specified based on a fluid stream image captured by the droplet imaging unit.
  • This technology next includes a detection step of detecting light from particles contained in the fluid; a processing step of specifying a delay time from detection in the detection step to the start of preparative processing;
  • the processing step provides a particle separation method in which the delay time is specified from the intensity of the scattered light detected by the detection unit based on the relationship between the intensity of the scattered light and the delay time that are linked to the particle size. do.
  • This technology further calculates the delay from the detection to the start of the preparative separation process based on the intensity of the scattered light detected from the particles contained in the fluid, based on the relationship between the intensity of the scattered light linked to the particle size and the delay time.
  • FIG. 1 is a schematic conceptual diagram schematically showing a first embodiment of a particle separation system 1 according to the present technology.
  • FIG. 2 is a schematic conceptual diagram schematically showing a second embodiment of a particle separation system 1 according to the present technology. It is a schematic conceptual diagram which shows typically 3rd Embodiment of the particle sorting system 1 based on this technique. It is a schematic conceptual diagram which shows typically 4th Embodiment of the particle sorting system 1 based on this technique.
  • FIG. 3 is a schematic conceptual diagram showing an installation example of a vibration element V and a charging section 103a.
  • FIG. 4 is an enlarged schematic conceptual diagram of a portion of a substrate T in which a flow path P of the particle separation system 1 according to the third embodiment shown in FIG. 3 is formed.
  • This photo shows particles of different sizes (large, small) flowing through the flow, and the particle positions at a certain time are captured by fluorescence observation. It is a graph showing the distribution density of white blood cells according to scattered light. It is a graph showing the relationship between forward scattered light detected when beads of different sizes are flowed and bead size ( ⁇ m). This is a graph in which beads of different sizes ( ⁇ 10 ⁇ m, ⁇ 24.4 ⁇ m) are flowed and the forward scattered light and arrival time to the separation position are plotted.
  • 5 is a flowchart of particle separation when using the particle separation system 1 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the fourth embodiment shown in FIG. 4.
  • FIG. 5 is a flowchart of particle separation when using the particle separation system 1 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the fourth embodiment shown in FIG. 4. It is a graph showing the intensity distribution of forward scattered light of cells used in Examples. It is a graph showing the intensity distribution of forward scattered light of cells used in Examples. It is a graph showing the relationship between the fractional yield of cells X and cells Y and Phase.
  • Particle separation system 1 (1) Flow path P (2) Light irradiation section 101 (3) Detection unit 102 (4) Sorting mechanism 103 (5) Processing unit 104 (6) Control unit 105 (7) Droplet imaging unit 106 (8) Storage unit 107 (9) Display section 108 (10) User interface 109 2. Particle separation method 3. Particle separation program
  • FIG. 1 is a schematic conceptual diagram schematically showing a first embodiment of a particle separation system 1 according to the present technology.
  • FIG. 2 is a schematic conceptual diagram schematically showing a second embodiment of the particle separation system 1 according to the present technology.
  • FIG. 3 is a schematic conceptual diagram schematically showing a third embodiment of the particle separation system 1 according to the present technology.
  • the particle separation system 1 according to the present technology includes at least a detection section 102 and a processing section 104.
  • the flow path P P11 to P13
  • processing unit 104 control unit 105, storage unit 107, display unit 108, user interface 109, etc. are provided in the particle separation device 10 as in the first embodiment shown in FIG.
  • a processing section 104, a control section 105, a storage section 107, a display section 108, and an information processing device 20 having a user interface 109 are provided in the particle separation device 10 as in the first embodiment shown in FIG.
  • the processing unit 104, control unit 105, storage unit 107, and display unit 108 may be provided in a cloud environment and connected to the particle separation system 1 via a network.
  • the processing unit 104, the control unit 105, the display unit 108, and the user interface 109 are provided in the information processing device 20, and the storage unit 107 is provided in a cloud environment, and the particle sorting device 10 and the information processing device 20.
  • particle analysis and sorting can be performed by detecting optical information obtained from particles aligned in a line in a flow cell (channel P).
  • the flow path P may be provided in the particle separation system 1 in advance, but it is also possible to install a commercially available flow path P or a disposable chip provided with a flow path P to perform analysis or separation. be.
  • the form of the flow path P is also not particularly limited and can be freely designed.
  • it is not limited to the flow path P formed in a two-dimensional or three-dimensional substrate T such as plastic or glass as shown in FIGS. 1, 3, and 4, but also as in the second embodiment shown in FIG.
  • a flow path P such as that used in a conventional flow cytometer can also be used in the particle separation system 1.
  • the channel width, channel depth, and channel cross-sectional shape of the channel P are not particularly limited as long as they can form laminar flow, and can be freely designed.
  • a microchannel with a channel width of 1 mm or less can also be used in the particle separation system 1.
  • a microchannel having a channel width of approximately 10 ⁇ m or more and 1 mm or less can be suitably used in the present technology.
  • the method for sending the particles is not particularly limited, and the particles can be passed through the flow path P depending on the form of the flow path P used.
  • the sample liquid containing particles is introduced into the sample liquid flow path P11, and the sheath liquid is introduced into the two sheath liquid flow paths P12a and P12b.
  • the sample liquid flow path P11 and the sheath liquid flow paths P12a and P12b merge to form a main flow path P13.
  • sample liquid laminar flow sent through the sample liquid flow path P11 and the sheath liquid laminar flow sent through the sheath liquid flow paths P12a and P12b merge in the main flow path P13, and the sample liquid laminar flow is A sheath flow sandwiched between sheath liquid laminar flows can be formed.
  • Particles flowing through the channel P include a wide range of biologically related particles such as cells, microorganisms, and ribosomes, and synthetic particles such as latex particles, gel particles, and industrial particles.
  • Biological particles include chromosomes, ribosomes, mitochondria, organelles (cell organelles), etc. that make up various cells.
  • Cells include animal cells (eg, blood cells, etc.) and plant cells.
  • Microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • biologically relevant particles may also include biologically relevant macromolecules such as nucleic acids, proteins, and complexes thereof.
  • the industrial particles may be, for example, organic or inorganic polymeric materials, metals, and the like.
  • Organic polymer materials include polystyrene, styrene/divinylbenzene, polymethyl methacrylate, and the like.
  • Inorganic polymer materials include glass, silica, magnetic materials, and the like.
  • Metals include colloidal gold, aluminum, and the like. Although the shape of these particles is generally spherical, in the present technology, they may be non-spherical, and their size, mass, etc. are not particularly limited.
  • the particles flowing through the channel P can be labeled with one or more types of dyes such as fluorescent dyes.
  • fluorescent dyes that can be used in this technology include, for example, Cascade Blue, Pacific Blue, Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Propidium iodide (PI), Texas red (TR), Peridinin chlorophyll protein (PerCP ), Allophycocyanin (APC), 4',6-Diamidino-2-phenylindole (DAPI), Cy3, Cy5, Cy7, Brilliant Violet (BV421), etc.
  • FITC Fluorescein isothiocyanate
  • PE Phycoerythrin
  • PI Propidium iodide
  • TR Texas red
  • API Allophycocyanin
  • DAPI 4',6-Diamidino-2-phenylindole
  • Light irradiation section 101 In the light irradiation unit 101, particles contained in the fluid are irradiated with excitation light.
  • the light irradiation unit 101 can also be provided with a plurality of light sources so that excitation light of different wavelengths can be irradiated. In this case, it is possible to irradiate a plurality of excitation lights with different wavelengths at different positions in the flow direction of the fluid.
  • the type of light emitted from the light irradiation unit 101 is not particularly limited, but in order to reliably generate fluorescence and scattered light from particles, it is desirable that the light direction, wavelength, and light intensity be constant. Examples include lasers, LEDs, etc.
  • the type is not particularly limited, but it may be an argon ion (Ar) laser, a helium-neon (He-Ne) laser, a dye laser, a krypton (Cr) laser, a semiconductor laser, or a semiconductor laser.
  • Ar argon ion
  • He-Ne helium-neon
  • Ce helium-neon
  • dye laser a krypton
  • semiconductor laser or a semiconductor laser.
  • One type or two or more types of solid-state lasers combined with wavelength conversion optical elements can be used in any combination.
  • the detection unit 102 detects light from particles contained in the fluid. Specifically, upon irradiation with the excitation light, fluorescence and scattered light emitted from the particles are detected and converted into electrical signals.
  • the photodetector that can be used in the detection unit 102 is not particularly limited in its specific photodetection method as long as it can detect light from particles, and any photodetector used in known photodetectors may be used.
  • the light detection method can be freely selected and employed. For example, fluorescence measuring instruments, scattered light measuring instruments, transmitted light measuring instruments, reflected light measuring instruments, diffracted light measuring instruments, ultraviolet spectrometers, infrared spectrometers, Raman spectrometers, FRET measuring instruments, FISH measuring instruments, etc.
  • Sorting mechanism 103 particles are sorted based on information about particles in the fluid detected by the detection unit 102.
  • particles can be fractionated downstream of the flow path P based on the analysis results of the particle size, shape, internal structure, etc., analyzed from the optical signal detected by the detection unit 102.
  • the fractionation method will be explained separately for each embodiment.
  • First embodiment, second embodiment, fourth embodiment In the particle separation system 1 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the fourth embodiment shown in FIG. It is formed. Specifically, when fluid containing particles is ejected as a jet flow JF from the orifice P14 of the main flow path P13, a vibration element V that vibrates at a predetermined frequency is used to vibrate all or part of the main flow path P13. By adding this, the horizontal section of the jet flow JF is modulated along the vertical direction in synchronization with the frequency of the vibrating element V, and droplets D are separated and generated at the break-off point BOP.
  • the vibration element V used in the present technology is not particularly limited, and any vibration element V that can be used in a particle sorting device such as a general flow cytometer can be freely selected and used.
  • An example is a piezo vibrating element.
  • the size of the droplet D can be adjusted by adjusting the amount of liquid sent to the sample liquid flow path P11, the sheath liquid flow paths P12a, P12b, and the main flow path P13, the diameter of the discharge port, the vibration frequency of the vibration element V, etc. can be adjusted to generate droplets D each containing a certain amount of particles.
  • the position of the vibrating element V is not particularly limited, and can be freely placed as long as it is possible to form droplets containing the particles.
  • the vibrating element V can be placed near the orifice P14 of the main flow path P13, or as shown in FIG. It is also possible to apply vibration to the whole or part of the flow path P or to the sheath flow inside the flow path P by arranging the V.
  • the droplet D containing the particles formed by the vibrating element V is fractionated. Specifically, the droplet D is charged with a positive or negative charge based on the analysis results of the particle size, shape, internal structure, etc., analyzed from the optical signal detected by the detection unit 102 (sign 103a). Then, the course of the charged droplet D is changed to a desired direction by the counter electrode 103b to which a voltage is applied, and the droplet D is fractionated.
  • the position of the charging unit 103a is not particularly limited, and can be freely placed as long as it is possible to charge the droplet D containing the particles.
  • the droplet D can be charged directly downstream of the break-off point BOP, or as shown in FIG.
  • a charging unit 103a composed of an electrode or the like on P12b or the like and charge it via the sheath liquid immediately before forming the droplet D containing the target particles.
  • FIG. 6 is an enlarged schematic conceptual diagram of a portion of the substrate T in which the flow path P of the particle separation system 1 according to the third embodiment shown in FIG. 3 is formed.
  • the particle separation system 1 according to the third embodiment shown in FIGS. 3 and 6 there are three separation channels P15 and waste channels P16a and P16b downstream of the main channel P13 formed in the substrate T.
  • a branch flow path is provided, and particles to be separated that are determined to satisfy predetermined characteristics are taken into the preparative flow path P15, and particles that are not to be separated and that are determined not to satisfy the predetermined characteristics are transferred to the preparative flow path P15. It can be separated by flowing into either one of the two waste channels P16a and P16b without being taken into the channel P15.
  • the particles to be separated can be introduced into the separation flow path P15 using a general method, but for example, the particles may be introduced into the separation flow path P15 using a piezoelectric element (not shown) such as a piezo element. This can be done by generating a negative pressure in the pressure chamber P151, and using this negative pressure to draw the sample liquid and sheath liquid containing the particles to be separated into the separation channel P15.
  • the particles to be separated can be taken into the separation channel P15 by controlling or changing the laminar flow direction using a valve electromagnetic force or a fluid stream (gas or liquid). It is also possible to do this.
  • the substrate T in which the flow path P of the particle separation system 1 according to the third embodiment is formed may further include a gate flow path P17 through which the gate liquid flows.
  • a gate flow path P17 through which the gate liquid flows.
  • one or more gate channels P17 are connected to one or more preparative channels P15 from the three branch channels of preparative channel P15 and waste channels P16a and P16b to just before the pressure chamber P151, or, for example, They are arranged to intersect perpendicularly.
  • the "gate liquid” is a liquid to be flowed into the gate flow path P17, and serves as the main solvent of the sample such as particles collected after fractionation, so various liquids can be selected depending on the purpose.
  • the liquid medium used for the particle-containing liquid, the sheath liquid, and when the particles are proteins a liquid depending on the particles, such as a buffer solution containing a surfactant and having adjusted pH, etc., can be flowed at a constant flow rate.
  • a cell culture solution, cell preservation solution, etc. can be used as the gate solution.
  • a cell culture solution it is suitable for performing subsequent steps on cells recovered after sorting, such as cell culture, cell activation, gene transfer, etc. Suitable for storing and transporting collected cells when using a cell preservation solution.
  • the cells to be sorted and collected are undifferentiated cells such as iPS cells, a differentiation-inducing solution can be used, and the next operation can be carried out efficiently.
  • gate flow the flow formed by the gate liquid as well.
  • gate flow the flow formed by the gate liquid
  • the gate flow can also be generated by branching from the sheath liquid flow.
  • the sheath liquid flow paths P12a and P12b may be connected to the upstream end of the gate flow path P17 so that the sheath liquid flow branches and also flows into the gate flow path P17 to form a gate flow.
  • a gate flow that attempts to proceed straight through the gate flow path P17 and a gate flow that heads toward the main flow path P13 side and the pressure chamber P151 side are also generated.
  • the latter gate flow can prevent particles that should not be obtained (non-target particles) from entering the pressure chamber P151 side of the separation channel P15.
  • the gate flow that has flowed through the gate flow path P17 flows out to the preparative flow path P15, and branches into a gate flow that heads toward the main flow path P13 side and the pressure chamber P151 side of the preparative flow path P15.
  • the former gate flow can prevent non-target particles from entering the pressure chamber P151 side of the separation channel P15.
  • a sample supply section is provided in the sample liquid flow path P11
  • a sheath liquid supply section is provided in the sheath liquid flow paths P12a and P12b
  • a preparative separation flow path P15 is provided with a sheath liquid supply section.
  • Processing unit 104 In the processing unit 104, a delay time from when light from particles is detected by the detection unit 102 to when the sorting mechanism 104 starts the sorting process is specified. More specifically, the processing unit 104 specifies the delay time from the intensity of the scattered light detected by the detection unit 102, based on the relationship between the intensity of the scattered light and the delay time, which is linked to the particle size.
  • FIG. 7 is a photograph in which particles of different sizes (large, small) are flowed and the particle positions at a certain time are captured by fluorescence observation.
  • the flow velocity of large particles Large
  • small particles Small
  • FIG. 8 is a graph showing the distribution density of white blood cells according to scattered light.
  • FIG. 9 is a graph showing the relationship between forward scattered light detected when beads of different sizes are flowed and bead size ( ⁇ m). As shown in the graphs shown in FIGS. 8 and 9, the intensity of scattered light shows a correlation with the particle size and internal structure. Although it is possible to predict the morphology of particles from the intensity of scattered light, the inventors of the present invention have found that the separation accuracy can be improved by specifying the delay time based on the intensity of scattered light. .
  • the scattered light detected from the particles to be separated can be calculated based on the relationship.
  • the optimum delay time for the particles to be sorted can be determined using the intensity of .
  • starting the sorting process differs depending on the form of the sorting mechanism 103, but includes, for example, the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the one shown in FIG.
  • this can be done when charging droplets containing particles. Alternatively, it can also be the time at which the particles reach the break-off point.
  • the pressure can be applied to the actuator to change the pressure in the separation flow path P15 through which the fluid is separated.
  • the third embodiment by controlling or changing the laminar flow direction using a valve electromagnetic force or a fluid stream (gas or liquid), particles to be separated are transferred into the separation channel P15.
  • the "start of preparative processing" can be the time to start controlling or changing the laminar flow direction.
  • the relationship between the intensity of the scattered light and the delay time, which is linked to the particle size, can be defined, for example, by an approximate expression showing the relationship between the intensity of the scattered light obtained from particles of different sizes and the delay time.
  • FIG. 10 is a graph in which beads of different sizes ( ⁇ 10 ⁇ m, ⁇ 24.4 ⁇ m) are flowed and the forward scattered light and arrival time to the separation position are plotted. As shown in the graph shown in Figure 10, if there is a relationship between the forward scattered light and the arrival time to the separation position at two or more points, a straight line can be drawn.
  • the relationship between the intensity of scattered light and delay time, which is linked to particle size, can be determined by using beads of different sizes in the calibration process before actually performing particle separation. Relationships set in advance according to the specifications of the device 10, relationships determined at the time of design evaluation of the particle sorting device 10, etc. are stored in the storage unit 107, which will be described later, and based on these, the particles to be sorted are The optimum delay time for the particles to be separated can be determined using the intensity of the scattered light detected from the particle.
  • the relationship between the intensity of scattered light and the delay time, which is linked to the particle size can also be set in relation to different separation conditions.
  • the relationship between the intensity of scattered light and the delay time is linked to one or more preparative separation conditions selected from the particle flow rate and the application conditions to the vibration element for droplet formation.
  • the application conditions in this case can be, for example, one or more conditions selected from the frequency, vibration, and intensity of the drive voltage.
  • the processing unit 104 calculates the relationship between the intensity of the scattered light and the delay time, which is associated with the particle size, based on the intensity of the scattered light obtained from particles of at least one size.
  • the relationship can be corrected. For example, in the calibration process before actually performing fractionation, the intensity of scattered light obtained from particles of at least one size and the time taken for the particles to arrive at the fractionation position are set in advance based on the calibration results. By correcting the calculated relationship, the precision of fractionation can be further improved.
  • the scattered light detected from particles is not particularly limited as long as it exhibits an intensity that is linked to the size of the particles.
  • any of forward scattered light, backward scattered light, and side scattered light can be used.
  • Control unit 105 The particle separation system 1 according to the present technology can include a control unit 105.
  • the control unit 105 can control the sorting mechanism 103 based on a delay time suitable for the particles to be sorted specified by the processing unit 104.
  • a command can be issued from the control unit 105 to the charging unit 103a of the sorting mechanism 103 to charge droplets containing particles.
  • the control unit 105 issues a command to the vibration element V of the separation mechanism 103 to control the formation of droplets at the time when the particles reach the break-off point position. You can also.
  • the controller 105 sends a piezoelectric element (not shown) of the sorting mechanism 103 A command is issued to generate a negative pressure in the pressure chamber P151 provided in the preparative flow path P15, and the fluid containing particles can be taken into the preparative flow path P15.
  • the control unit 105 issues commands to a mechanism (not shown) that generates a valve electromagnetic force, etc., a sheath liquid supply mechanism, a sample supply mechanism, a gate flow supply mechanism, and other valves and pumps. By controlling or changing the laminar flow direction of the fluid flowing through the main flow path P13, particles to be separated can be taken into the separation flow path P15.
  • the control unit 105 can also issue commands to each part of the particle separation system 1 to control each part.
  • the control unit 105 issues commands to valves and pumps of the sheath liquid supply mechanism, sample supply mechanism, gate flow supply mechanism, etc. to control the supply amount and flow rate of each laminar flow, and the light irradiation unit 101 and It is also possible to issue commands to the detection unit 102 to control light irradiation conditions and detection conditions.
  • the control unit 105 can also issue commands to a droplet imaging unit 106 and a strobe S, which will be described later, to control imaging conditions and imaging timing, light emission conditions and light emission timing, and the like.
  • Droplet imaging unit 106 In the case of the particle sorting system 1 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the fourth embodiment shown in FIG. 4, a droplet imaging section 106 can be provided.
  • the droplet imaging unit 106 images the state of a fluid stream containing droplets (hereinafter also referred to as "the fluid stream"). Further, a droplet imaging section 106 is arranged downstream of the detection section 102.
  • the specific configuration of the droplet imaging unit 106 is not limited as long as it can image the state of the fluid stream.
  • the configuration is not limited to a configuration including an image pickup device such as a CCD camera or a CMOS sensor, but can also be configured with a so-called line sensor, etc., in which a plurality of sensors capable of detecting light brightness information such as a light amount sensor are lined up.
  • the droplet imaging unit 106 is arranged at a position where it can image the state of the fluid stream between the orifice P14 and a counter electrode 103b, which will be described later.
  • the fluid stream image obtained by the droplet imaging unit 106 is analyzed by the processing unit 104. For example, a break-off point can be identified based on a fluid stream image captured by the droplet imaging unit 106. Further, the fluid stream image obtained by the droplet imaging unit 106 is displayed on a display unit 108 such as a display to be described later, so that the user can see the formation status of droplets and particle information (size, shape, etc.) in the fluid stream. , intervals, etc.).
  • a strobe S can be used as a light source for imaging the state of the fluid stream in the droplet imaging unit 106.
  • the strobe S can also be controlled by the control section 105.
  • the strobe S can be composed of an LED for imaging the fluid stream and a laser (for example, a red laser light source) for imaging the fluid stream, and the control unit 105 controls the light source to be used depending on the purpose of detection. Switching can be done.
  • the specific structure of the strobe S is not particularly limited, and one or more known circuits or elements can be selected and freely combined.
  • the particle separation system 1 can include a storage unit 107 that stores various data.
  • the storage unit 107 can store, for example, the relationship between the intensity of scattered light and delay time, which is associated with particle size.
  • the storage unit 107 may also store the relationship between the intensity of scattered light and the delay time, which are associated with particle sizes specified using beads of different sizes, etc., in a calibration step before actually performing fractionation.
  • this is possible, it is also possible to store in advance a relationship set in advance according to the specifications of the particle sorting device 10, a relationship determined at the time of design evaluation of the particle sorting device 10, or the like.
  • the storage unit 107 also stores image data captured by the droplet imaging unit 106, optical signal data from particles detected by the detection unit 102, sorting data of particles sorted by the sorting mechanism 103, and a processing unit. It is possible to store all kinds of data related to particle detection and particle sorting, such as processing data processed by the control unit 104 and control data controlled by the control unit 105.
  • the storage unit 107 can be provided in a cloud environment, so each user can share various information recorded in the storage unit 107 on the cloud via a network. It is.
  • the storage unit 107 is not essential, and it is also possible to store various data using an external storage device or the like.
  • the particle separation system 1 can include a display section 108 that displays various data.
  • the display unit 108 displays, for example, optical signal data from particles detected by the detection unit 102, sorting data of particles sorted by the sorting mechanism 103, processed data processed by the processing unit 104, and control by the control unit 105. It is possible to display all kinds of data related to particle detection and particle sorting, such as control data taken by the droplet imaging unit 106 and image data taken by the droplet imaging unit 106.
  • the display unit 108 is not essential, and an external display device may be connected.
  • the display unit 108 for example, a display, a printer, etc. can be used.
  • the particle separation system 1 can include a user interface 109, which is a part operated by a user. A user can access each part and each device through the user interface 109 and control each part and each device.
  • the user interface 109 is not essential, and an external operating device may be connected.
  • an external operating device may be connected.
  • the user interface 109 for example, a mouse, a keyboard, etc. can be used.
  • FIG. 11 is a flowchart of particle separation when using the particle separation system 1 according to the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 2, and the fourth embodiment shown in FIG. .
  • the flowchart shown in FIG. 11 is a method of correcting a preset relationship between the intensity of scattered light and delay time, which is linked to particle size, using calibration beads or the like in the calibration step S1.
  • calibration beads of known size are flowed, the light irradiation section 101 is used to irradiate the calibration beads with light, and the detection section 102 is used to detect scattered light from the calibration beads (S11).
  • the droplet imaging unit 106 is used to image the fluid stream near the break-off point (S12). Based on the fluid stream image captured by the droplet imaging unit 106, the time (delay time) from when the calibration beads are detected by the detection unit 102 until they reach the break-off point position is calculated (S13).
  • a preset relational expression is corrected using the calculated delay time and the intensity of the scattered light detected by the detection unit 102 (S14). This completes the calibration process.
  • the particles to be actually fractionated are passed through, and the target particles are fractionated (S2).
  • the light irradiation unit 101 is used to irradiate particles with light
  • the detection unit 102 is used to detect scattered light from the particles (S21).
  • a delay time suitable for the particle is specified (S22).
  • the target particles are fractionated based on the specified delay time (S23).
  • the flowchart shown in FIG. 12 is a method of specifying the relationship between the intensity of scattered light associated with particle size and delay time using two or more types of calibration beads, etc. in the calibration step S1.
  • the light irradiation section 101 is used to irradiate the calibration beads with light
  • the detection section 102 is used to detect scattered light from the calibration beads (S11 ).
  • the droplet imaging unit 106 is used to image the fluid stream near the break-off point (S12).
  • the time (delay time) from when the calibration beads are detected by the detection unit 102 until they reach the break-off point position is calculated (S13).
  • the relationship between the intensity of the scattered light and the delay time, which is associated with the particle size is specified (S15). This completes the calibration process.
  • the particles to be actually fractionated are passed through, and the target particles are fractionated (S2).
  • the light irradiation unit 101 is used to irradiate particles with light
  • the detection unit 102 is used to detect scattered light from the particles (S21).
  • a delay time suitable for the particle is specified (S22).
  • the target particles are fractionated based on the specified delay time (S23).
  • the calibration step S1 is not an essential step.
  • the target particles can be fractionated (S2) without performing the calibration step S1. It is also possible to do this.
  • the particle separation method according to the present technology includes at least a detection step and a treatment step. Moreover, a light irradiation process, a fractionation process, a control process, an imaging process, a storage process, a display process, etc. can be performed as necessary.
  • each step is the same as the step performed by each part of the particle separation system 1 according to the present technology described above, so a description thereof will be omitted here.
  • Particle sorting program uses at least the intensity of scattered light detected from particles contained in a fluid based on the relationship between the intensity of scattered light linked to the particle size and the delay time. This is a particle sorting program for causing a computer to implement a processing function that specifies the delay time from the detection to the start of sorting processing.
  • the particle sorting program according to the present technology may be a particle sorting program for causing a computer to realize a control function for controlling each part of the particle sorting system 1.
  • the particle sorting program according to the present technology may be stored in a recording medium such as a magnetic disk, optical disk, magneto-optical disk, flash memory, etc., and can also be distributed via a network.
  • a recording medium such as a magnetic disk, optical disk, magneto-optical disk, flash memory, etc.
  • each function is the same as the function performed by each part of the particle separation system 1 according to the present technology described above, so a description thereof will be omitted here.
  • the present technology can also take the following configuration.
  • a detection unit that detects light from particles contained in the fluid;
  • a processing unit that specifies a delay time from detection in the detection unit to the start of preparative processing; has The processing section specifies the delay time from the intensity of the scattered light detected by the detection section, based on the relationship between the intensity of the scattered light and the delay time, which are linked to particle size.
  • the start of the preparative separation process is an application to an actuator for charging the droplet containing the particles or changing the pressure in the preparative flow path through which the fluid is separated.
  • Particle separation system is an approximate expression indicating the relationship between the intensity of the scattered light obtained from particles of different sizes and the delay time.
  • the sorting conditions are one or more sorting conditions selected from a flow rate of the particles and an application condition to a vibrating element for forming droplets.
  • the application condition is one or more conditions selected from the frequency, vibration, and intensity of the driving voltage.
  • the start of the preparative separation process is charging of the droplet containing the particles,
  • the delay time indicates the time from when the particle is detected by the detection unit until it reaches a break-off point position,
  • a detection step of detecting light from particles contained in the fluid a processing step of specifying a delay time from detection in the detection step to the start of preparative processing; In the processing step, the delay time is specified from the intensity of the scattered light detected by the detection unit based on the relationship between the intensity of the scattered light and the delay time that are linked to the particle size.
  • a processing function that identifies the delay time from the detection to the start of preparative separation processing based on the intensity of scattered light detected from particles contained in the fluid, based on the relationship between the intensity of scattered light linked to particle size and delay time.
  • a particle separation program that allows computers to realize this.
  • the particles actually handled by the particle sorting system 1 are not only spheres such as beads, but also particles with different shapes and densities, such as cells. Therefore, in this example, it was verified whether the particle sorting system 1 according to the present technology can accurately sort particles using cells.
  • Particle sorting system 10 Particle sorting device 20 Information processing device P Channel P11 Sample liquid channel P12a, P12b Sheath liquid channel P13 Main channel P14 Orifice P15 Preparation channel P16a, P16b Waste channel 101 Light irradiation part 102 Detection unit 103 Sorting mechanism V Vibration element 103a Charging unit 103b Counter electrode JF Jet flow BOP Break-off point D Droplet 104 Processing unit 105 Control unit 106 Droplet imaging unit S Strobe 107 Storage unit 108 Display unit 109 User interface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

粒子分取技術において、粒子からの光を検出してから分取処理開始までのタイミングを、粒子に応じてより正確に特定する技術を提供すること。 流体に含まれる粒子からの光を検出する検出部と、前記検出部での検出から分取処理開始までのディレイタイムを特定する処理部と、を有し、前記処理部は、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取システムを提供する。

Description

粒子分取システム、粒子分取方法、及び粒子分取プログラム
 本技術は、粒子分取システムに関する。より詳しくは、流体に含まれる粒子の分取を行う粒子分取システム、粒子分取方法、及び粒子分取プログラムに関する。
 近年、分析手法の発展に伴い、細胞や微生物等の生体微小粒子、マイクロビーズ等の微小粒子などを流路中に通流させ、通流させる工程において、粒子等を個々に検出したり、検出した粒子等を解析又は分取したりする手法が開発されつつある。
 このような粒子の解析又は分取の手法の代表的な一例として、フローサイトメトリーと呼ばれる分析手法の技術改良が急速に進んでいる。フローサイトメトリーとは、解析の対象となる粒子を流体中に整列させた状態で流し込み、該粒子にレーザー光等を照射することにより、各粒子から発せられた蛍光や散乱光を検出することで、粒子の解析や分取を行う分析手法である。
 例えば、細胞の蛍光を検出する場合、蛍光色素により標識した細胞にレーザー光などの適当な波長かつ強度を有する励起光を照射する。そして、蛍光色素から発せられる蛍光をレンズなどで集光し、フィルタやダイクロイックミラー等の波長選択素子を用いて適当な波長域の光を選択し、選択された光をPMT(光電子倍増管:photo multiplier tube)などの受光素子を用いて検出する。このとき、波長選択素子と受光素子とを複数組み合わせることによって、細胞に標識された複数の蛍光色素からの蛍光を同時に検出し、解析することも可能である。更に、複数波長の励起光を組み合わせることで、解析可能な蛍光色素の数を増やすこともできる。
 フローサイトメトリーにおける蛍光検出には、フィルタなどの波長選択素子を用いて不連続な波長域の光を複数選択し、各波長域の光の強度を計測する方法の他に、連続した波長域における光の強度を蛍光スペクトルとして計測する方法もある。蛍光スペクトルの計測が可能なスペクトル型フローサイトメトリーでは、粒子から発せられる蛍光を、プリズム又はグレーティングなどの分光素子を用いて分光する。そして、分光された蛍光を、検出波長域が異なる複数の受光素子が配列された受光素子アレイを用いて検出する。受光素子アレイには、PMTやフォトダイオード等の受光素子を一次元に配列したPMTアレイ又はフォトダイオードアレイ、或いはCCD又はCMOS等の2次元受光素子などの独立した検出チャネルが複数並べられたものが用いられている。
 フローサイトメトリー等に代表される粒子の解析では、分析対象となる粒子にレーザーなどの光を照射し、粒子から発せられる蛍光や散乱光を検出する光学的手法が多く用いられている。そして、検出された光学的情報をもとに、解析用コンピュータとソフトウェアでヒストグラムを抽出し、解析が行われる。
 例えば、特許文献1には、生物学的粒子のそれぞれに光を照射して、該生物学的粒子からの光を検出する光学的機構と、前記生物学的粒子のそれぞれからの光に基づいて、前記液体フローにおける該生物学的粒子の移動速度を検出する制御部と、前記生物学的粒子のそれぞれの前記移動速度に基づいて、該生物学的粒子に電荷を与える荷電部とを備える、液体フローに含まれる生物学的粒子を分別する装置が提案されている。
 また、特許文献2には、流路内を通流する微小粒子を検出する検出部と、前記流路の端部に設けられたオリフィスから吐出された前記微小粒子を含む液滴を撮像する撮像素子と、前記液滴に電荷を付与する荷電部と、前記検出部により前記微小粒子が検出された時刻から、前記撮像素子により撮像される画像情報中の予め設定された基準領域内における輝点数を最大とする時刻までをディレイタイムとして決定し、前記検出部により前記微小粒子が検出されてから前記ディレイタイム後において前記荷電部による前記微小粒子に対する電荷の付与を可能にする制御部と、を備える微小粒子分取装置が開示されている。この微小粒子分取装置は、微粒子を含有する液滴に電荷を付与すべき正確なタイミングを、自動で簡便に且つ精度良く制御可能である。
特開2009-145213号公報 特開2013-210264号公報
 前述の通り、粒子分取技術において、粒子からの光を検出してから分取処理開始までのタイミングを制御する技術は開発されつつある。しかしながら、流体中の粒子の形態は様々であり、様々な形態の粒子において、粒子からの光を検出してから分取処理開始までのタイミングを正確に制御する技術の更なる開発が望まれていた。
 そこで、本技術では、粒子分取技術において、粒子からの光を検出してから分取処理開始までのタイミングを、粒子に応じてより正確に特定する技術を提供することを主目的とする。
 本技術では、まず、流体に含まれる粒子からの光を検出する検出部と、
 前記検出部での検出から分取処理開始までのディレイタイムを特定する処理部と、
 を有し、
 前記処理部は、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取システムを提供する。
 本技術において、前記分取処理開始は、前記粒子を含む液滴への荷電、又は、前記流体が分流される分取流路内の圧力を変化させるためのアクチュエーターへの印加とすることができる。
 本技術において、前記関係は、異なるサイズの粒子から得られる前記散乱光の強度と前記ディレイタイムの関係を示す近似式とすることができる。
 本技術に係る粒子分取システムには、前記関係を記憶する記憶部を備えることができる。
 本技術において、前記記憶部には、予め設定された前記関係を記憶しておくことができる。
 また、前記記憶部には、異なる分取条件に紐づいて予め設定された前記関係を記憶しておくこともできる。
 この場合、前記分取条件は、前記粒子の流速、及び、液滴形成のための振動素子への印加条件から選択される1以上の分取条件とすることができる。
 このとき、前記印加の条件は、駆動電圧の周波数、振動、及び強度から選択される1以上の条件とすることができる。
 本技術に係る粒子分取システムの前記処理部では、少なくとも1種類のサイズの粒子から得られる散乱光の強度に基づき、前記予め設定された前記関係を補正することができる。
 また、前記処理部は、異なるサイズの粒子から得られる前記散乱光の強度とディレイタイムとの関係を特定することもできる。
 本技術において、前記散乱光は、前方散乱光を用いることができる。
 本技術において、前記分取処理開始が、前記粒子を含む液滴への荷電である場合、本技術に係る粒子分取システムには、前記液滴を含む流体ストリームの状態を撮像する液滴撮像部を備えることができる。
 この場合、前記ディレイタイムは、前記粒子が前記検出部で検出されてからブレイクオフポイントの位置に到達するまでの時間とすることができ、
 前記ブレイクオフポイントは、前記液滴撮像部にて撮像された流体ストリーム画像に基づき特定することができる。
 本技術では、次に、流体に含まれる粒子からの光を検出する検出工程と、
 前記検出工程での検出から分取処理開始までのディレイタイムを特定する処理工程と、 を有し、
 前記処理工程では、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取方法を提供する。
 本技術では、更に、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、流体に含まれる粒子から検出された散乱光の強度から、前記検出から分取処理開始までのディレイタイムを特定する処理機能を、コンピューターに実現させるための粒子分取プログラムを提供する。
本技術に係る粒子分取システム1の第1実施形態を模式的に示す模式概念図である。 本技術に係る粒子分取システム1の第2実施形態を模式的に示す模式概念図である。 本技術に係る粒子分取システム1の第3実施形態を模式的に示す模式概念図である。 本技術に係る粒子分取システム1の第4実施形態を模式的に示す模式概念図である。 振動素子V及び荷電部103aの設置例を示す模式概念図である。 図3に示す第3実施形態に係る粒子分取システム1の流路Pが形成された基板Tの部分を拡大した模式概念図である。 大きさの異なる粒子(Large、small)を流し、ある時刻における粒子位置を蛍光観察で捉えた写真である。 散乱光による白血球の分布密度を示すグラフである。 異なる大きさのビーズを流した際に検出される前方散乱光とビーズサイズ(μm)との関係を示すグラフである。 異なる大きさのビーズ(φ10μm、φ24.4μm)を流し、前方散乱光と分取位置までの到達時間をプロットしたグラフである。 図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1を用いた場合の粒子分取のフローチャートである。 図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1を用いた場合の粒子分取のフローチャートである。 実施例で用いた細胞の前方散乱光の強度分布を示すグラフである。 実施例で用いた細胞の前方散乱光の強度分布を示すグラフである。 細胞X及び細胞Yの分収率とPhaseとの関係を示すグラフである。
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
 1.粒子分取システム1
 (1)流路P
 (2)光照射部101
 (3)検出部102
 (4)分取機構103
 (5)処理部104
 (6)制御部105
 (7)液滴撮像部106
 (8)記憶部107
 (9)表示部108
 (10)ユーザーインターフェース109
 2.粒子分取方法
 3.粒子分取プログラム
 1.粒子分取システム1
 図1は、本技術に係る粒子分取システム1の第1実施形態を模式的に示す模式概念図である。図2は、本技術に係る粒子分取システム1の第2実施形態を模式的に示す模式概念図である。図3は、本技術に係る粒子分取システム1の第3実施形態を模式的に示す模式概念図である。本技術に係る粒子分取システム1は、少なくとも、検出部102と、処理部104とを有する。また、必要に応じて、流路P(P11~13)、光照射部101、分取機構103、制御部105と、液滴撮像部106、記憶部107、表示部108、およびユーザーインターフェース109等を備えることができる。
 なお、処理部104、制御部105、記憶部107、表示部108、およびユーザーインターフェース109等については、図1に示す第1実施形態のように、粒子の分取を行う装置10内に設けてもよいし、図2に示す第2実施形態や図3に示す第3実施形態のように、光照射部101と、検出部102と、分取機構103と、を有する粒子分取装置10と、処理部104、制御部105、記憶部107、表示部108、およびユーザーインターフェース109を有する情報処理装置20と、を備える粒子分取システム1とすることもできる。
 また、図4に示す粒子分取システム1の第4実施形態のように、処理部104、制御部105、記憶部107、表示部108、およびユーザーインターフェース109を、それぞれ独立して設け、ネットワークを介して、粒子分取システム1と接続することも可能である。
 加えて、図示しないが、処理部104、制御部105、記憶部107、および表示部108を、クラウド環境に設けて、ネットワークを介して、粒子分取システム1と接続することも可能である。また、図示しないが、処理部104、制御部105、表示部108、およびユーザーインターフェース109を情報処理装置20内に設け、記憶部107をクラウド環境に設けて、ネットワークを介して、粒子分取装置10および情報処理装置20と接続することも可能である。この場合、情報処理装置20における各種処理の記録等を、クラウド上の記憶部107に記憶して、記憶部107に記憶された各種情報を、複数のユーザーで共有することも可能である。以下、各部の詳細について説明する。
 (1)流路P
 本技術に係る粒子分取システム1では、フローセル(流路P)中で一列に整列させた粒子から得られる光学的情報を検出することにより、粒子の解析や分取を行うことができる。
 流路Pは、粒子分取システム1に予め備えていてもよいが、市販の流路Pや流路Pが設けられた使い捨てのチップなどを設置して解析又は分取を行うことも可能である。
 流路Pの形態も特に限定されず、自由に設計することができる。例えば、図1、図3、及び図4に示すような2次元又は3次元のプラスチックやガラス等の基板T内に形成した流路Pに限らず、図2に示す第2実施形態ように、従来のフローサイトメータで用いられているような流路Pも、粒子分取システム1に用いることができる。
 また、前記流路Pの流路幅、流路深さ、流路断面形状も、層流を形成し得る形態であれば特に限定されず、自由に設計することができる。例えば、流路幅1mm以下のマイクロ流路も、粒子分取システム1に用いることが可能である。特に、流路幅10μm以上1mm以下程度のマイクロ流路は、本技術に好適に用いることができる。
 粒子の送流方法は特に限定されず、用いる流路Pの形態に応じて、流路P内を通流させることができる。例えば、図1、図3、及び図4に示す基板T内に形成した流路Pの場合を説明する。粒子を含むサンプル液はサンプル液流路P11に、また、シース液は2本のシース液流路P12a、P12bに、それぞれ導入される。サンプル液流路P11とシース液流路P12a、P12bは合流して主流路P13となる。サンプル液流路P11内を送液されるサンプル液層流と、シース液流路P12a、P12b内を送液されるシース液層流と、は主流路P13内において合流し、サンプル液層流がシース液層流に挟み込まれたシースフローを形成することができる。
 流路Pを通流させる粒子は、細胞や微生物、リボソーム等の生体関連粒子、或いはラテックス粒子やゲル粒子、工業用粒子等の合成粒子などが広く含まれるものとする。
 生体関連粒子には、各種細胞を構成する染色体、リボソーム、ミトコンドリア、オルガネラ(細胞小器官)などが含まれる。細胞には、動物細胞(例えば、血球系細胞等)及び植物細胞が含まれる。微生物には、大腸菌等の細菌類、タバコモザイクウイルス等のウイルス類、イースト菌等の菌類などが含まれる。更に、生体関連粒子には、核酸やタンパク質、これらの複合体等の生体関連高分子も包含され得る。また、工業用粒子は、例えば、有機若しくは無機高分子材料、金属等であってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレート等が含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料等が含まれる。金属には、金コロイド、アルミ等が含まれる。これらの粒子の形状は、一般には球形であるのが普通であるが、本技術では、非球形であってもよく、また、その大きさ、質量等も特に限定されない。
 流路Pを通流させる粒子は、1種又は2種以上の蛍光色素等の色素で標識することができる。この場合、本技術で使用可能な蛍光色素としては、例えば、Cascade Blue、Pacific Blue、Fluorescein isothiocyanate(FITC)、Phycoerythrin(PE)、Propidium iodide(PI)、Texas red(TR)、Peridinin chlorophyll protein(PerCP)、Allophycocyanin(APC)、4’,6-Diamidino-2-phenylindole(DAPI)、Cy3、Cy5、Cy7、Brilliant Violet(BV421)等が挙げられる。
 なお、図3に示す第3実施形態に係る粒子分取システム1に設けられた他の流路P15、P16、P17については、後述する分取機構103で説明する。
 (2)光照射部101
 光照射部101では、流体に含まれる粒子への励起光の照射が行なわれる。光照射部101には、異なる波長の励起光を照射できるように、複数の光源を備えることもできる。この場合、波長の異なる複数の励起光を、流体の流れ方向に異なる位置で、照射するように構成することができる。
 光照射部101から照射される光の種類は特に限定されないが、粒子から蛍光や散乱光を確実に発生させるためには、光方向、波長、光強度が一定の光が望ましい。一例としては、レーザー、LED等を挙げることができる。レーザーを用いる場合、その種類も特に限定されないが、アルゴンイオン(Ar)レーザー、ヘリウム-ネオン(He-Ne)レーザー、ダイ(dye)レーザー、クリプトン(Cr)レーザー、半導体レーザー、又は、半導体レーザーと波長変換光学素子を組み合わせた固体レーザー等を、1種又は2種以上、自由に組み合わせて用いることができる。
 (3)検出部102
 検出部102では、流体に含まれる粒子からの光の検出が行われる。具体的には、前記励起光の照射により、粒子から発せられた蛍光や散乱光を検出して、電気信号へ変換する。
 本技術において、検出部102に用いることができる光検出器としては、粒子からの光の検出ができれば、その具体的な光検出方法は特に限定されず、公知の光検出器に用いられている光検出方法を自由に選択して採用することができる。例えば、蛍光測定器、散乱光測定器、透過光測定器、反射光測定器、回折光測定器、紫外分光測定器、赤外分光測定器、ラマン分光測定器、FRET測定器、FISH測定器その他各種スペクトラム測定器、PMTやフォトダイオード等の受光素子を一次元に配列したPMTアレイ又はフォトダイオードアレイ、或いはCCD又はCMOS等の2次元受光素子などの独立した検出チャネルが複数並べられたもの、等に用いられている光検出方法を1種又は2種以上自由に組み合わせて採用することができる。
 (4)分取機構103
 分取機構103では、検出部102により検出された流体中の粒子に関する情報に基づいて、粒子の分取が行われる。例えば、前記検出部102により検出された光信号から解析された粒子の大きさ、形態、内部構造等の解析結果に基づいて、流路Pの下流において、粒子の分取を行うことができる。以下、各実施形態に分けて分取方法を説明する。
 [第1実施形態、第2実施形態、第4実施形態]
 図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1では、まず、振動素子Vによって、前記粒子を含む液滴が形成される。具体的には、主流路P13のオリフィスP14から粒子を含む流体がジェットフローJFとして噴出される際、所定の周波数で振動する振動素子Vを用いて、主流路P13の全体若しくは一部に振動を加えることで、ジェットフローJFの水平断面が鉛直方向に沿って振動素子Vの周波数に同期して変調し、ブレイクオフポイントBOPにおいて、液滴Dが分離・発生する。
 なお、本技術に用いる振動素子Vは特に限定されず、一般的なフローサイトメータ等の粒子分取装置に用いることができる振動素子Vを自由に選択して用いることができる。一例としては、ピエゾ振動素子などを挙げることができる。また、サンプル液流路P11とシース液流路P12a、P12b、及び主流路P13への送液量、吐出口の径、振動素子Vの振動数などを調整することにより、液滴Dの大きさを調整し、粒子を一定量ずつ含む液滴Dを発生させることができる。
 本技術において、振動素子Vの位置は特に限定されず、前記粒子を含む液滴の形成が可能であれば、自由に配置することができる。例えば、図1、図2、及び図4に示すように、主流路P13のオリフィスP14近傍に振動素子Vを配置することもできるし、図5に示すように、流路Pの上流に振動素子Vを配置して、流路Pの全体、一部又は流路P内部のシース流に振動を加えることも可能である。
 次に、前記振動素子Vによって形成された前記粒子を含む液滴Dの分取が行なわれる。具体的には、前記検出部102により検出された光信号から解析された粒子の大きさ、形態、内部構造等の解析結果に基づいて、液滴Dにプラス又はマイナスの電荷を荷電する(符号103a参照)。そして、荷電された液滴Dは、電圧が印加された対向電極103bによって、その進路が所望の方向へ変更され、分取される。
 本技術において、荷電部103aの位置は特に限定されず、前記粒子を含む液滴Dへの荷電が可能であれば、自由に配置することができる。例えば、図1、図2、及び図4に示すように、ブレイクオフポイントBOPの下流で、液滴Dへ直接、荷電を行うこともできるし、図5に示すように、シース液流路P12a又はP12b等に、電極等で構成される荷電部103aを配置し、目的の粒子を含む液滴Dの形成直前に、シース液を介して荷電することも可能である。
 [第3実施形態]
 図6は、図3に示す第3実施形態に係る粒子分取システム1の流路Pが形成された基板Tの部分を拡大した模式概念図である。図3及び図6に示す第3実施形態に係る粒子分取システム1では、基板Tに形成された主流路P13の下流に、分取流路P15、及び、廃棄流路P16a、P16bの3つの分岐流路を設け、所定の特性を満たすと判定された分取対象の粒子を分取流路P15に取り込み、所定の特性を満たさないと判定された非分取対象の粒子は、分取流路P15内に取り込まれることなく、2本の廃棄流路P16a、P16bのいずれか一方に流れるようにすることで分取することができる。
 分取対象の粒子の分取流路P15内への取り込みは、一般的な方法を用いて行うことができるが、例えば、ピエゾ素子等の圧電素子(図示しない)によって分取流路P15に設けられた圧力室P151内に負圧を発生させ、この負圧を利用して分取対象の粒子を含むサンプル液及びシース液を分取流路P15内に吸い込むことによって行うことができる。また、図示しないが、バルブ電磁力、又は流体ストリーム(気体又は液体)等を用いて、層流方向の制御又は変更を行うことで、分取対象の粒子の分取流路P15内への取り込みを行うことも可能である。
 第3実施形態に係る粒子分取システム1の流路Pが形成された基板Tには、ゲート液が流れるゲート流路P17を更に備えていてもよい。ゲート流路P17は、例えば、分取流路P15および廃棄流路P16a、P16bの3つの分岐流路から圧力室P151手前までの分取流路P15と、1本以上接続し、又は、例えば、垂直に交差するように設けられている。「ゲート液」とは、ゲート流路P17に流す液体であり、分取後回収された粒子等のサンプルの主溶媒となるため、用途に応じて様々な液体を選択することができる。例えば、粒子含有液体に用いる液媒体や、シース液、粒子がタンパク質の場合は、界面活性剤入りのpH等が調節されたバッファー液等、粒子に応じた液体を一定流量で流すことができる。
 特に、粒子が細胞の場合は、ゲート液として、細胞培養液、細胞保存液等を使用することができる。細胞培養液を使用する場合、分取後回収された細胞へ施す次工程、例えば、細胞培養、細胞活性化、遺伝子導入等の工程を行う場合に適している。細胞保存液を使用する場合、回収した細胞を保管、輸送する場合に適している。また分取回収される細胞がiPS細胞等未分化の細胞の場合、分化誘導液を使用することでき、次の作業を効率的に進めることができる。
 なお、シース液も同様に様々な液体を選択することができる。本明細書において、ゲート液により形成される流れを「ゲート流」という。
 本技術においては、ゲート流路P17に導入する液体の流量はシース液流路P12a、P12bに導入する液体の流量に対し少ないため、ゲート流路P17のみに細胞培養液、細胞保存液、分化誘導液等の高価な液体を使用する場合において、経済的である。
 また、ゲート流は、シース液流から分岐して発生させることもできる。例えば、シース液流路P12a、P12bと、ゲート流路P17の上流端とを接続し、シース液流が分岐してゲート流路P17へも流入するようにし、ゲート流とすることもできる。その際には、ゲート流量が適切な流量となるよう、ゲート流路P17の流路抵抗を適切に設計する必要がある。
 ゲート流路P17と分取流路P15とが交差したところで、ゲート流路P17を真っすぐ進もうとするゲート流とともに、主流路P13側と圧力室P151側とに向かうゲート流も生じる。後者のゲート流により、取得すべきでない粒子(非目標粒子)が分取流路P15の圧力室P151側へ侵入することを阻止できる。ゲート流路P17を流れてきたゲート流は分取流路P15へ流出し、分取流路P15の主流路P13側と圧力室P151側へ向かうゲート流に分岐する。前者のゲート流により、非目標粒子が分取流路P15の圧力室P151側へ侵入することを阻止できる。
 図3に示す第3実施形態に係る粒子分取システム1では、サンプル液流路P11にサンプル供給部を、シース液流路P12a、P12bにシース液供給部を、分取流路P15に分取液貯留部を、廃棄流路P16に廃液貯留部を、それぞれ連通させて接続することで、完全閉鎖型の分取装置とすることができる。例えば、分取対象のサンプルが、細胞製剤等に使用するための細胞等である場合は、滅菌環境を維持し、コンタミネーションを防止するため、図3に示す第3実施形態に係る粒子分取システム1のような完全閉鎖型になるように設計することが好ましい。
 (5)処理部104
 処理部104では、粒子からの光を検出部102で検出してから、分取機構104による分取処理開始までのディレイタイムの特定が行われる。より具体的には、処理部104は、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、検出部102で検出された散乱光の強度から、前記ディレイタイムを特定する。
 従来の技術では、実際に分取を行う前のキャリブレーション工程において、基準サイズのビーズ等を用いて、ビーズからの光を検出部102で検出してから分取機構103による分取処理開始までの時間を導出し、導出された時間で実際の分取を行っていた。
 しかしながら、流体中の粒子の形態は様々であり、粒子の形態によって、粒子からの光を検出部102で検出してから、分取機構103による分取位置までの到達時間が異なる。例えば、図7は、大きさの異なる粒子(Large、small)を流し、ある時刻における粒子位置を蛍光観察で捉えた写真である。図7に示す写真のように、大きい粒子(Large)の方が、小さい粒子(small)よりも流速が遅いことが分かる。従って、精度の高い分取を行うためには、粒子からの光を検出部102で検出してから、分取機構103による分取処理を開始すべきタイミングを、粒子の形態に合わせて特定することが需要である。
 図8は、散乱光による白血球の分布密度を示すグラフである。図9は、異なる大きさのビーズを流した際に検出される前方散乱光とビーズサイズ(μm)との関係を示すグラフである。図8や図9に示すグラフのように、散乱光の強度は、粒子の大きさや内部構造と相関を示す。散乱光の強度から、粒子の形態を予測することが可能であるが、本願発明者は、散乱光の強度に基づいて、ディレイタイムを特定することで、分取精度が向上することを見出した。即ち、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係を、予め、若しくは、キャリブレーション工程にて求めておけば、当該関係に基づいて、分取対象の粒子から検出される散乱光の強度を用いて、分取対象の粒子に最適なディレイタイムを特定することができる。
 本技術において、「分取処理開始」とは、分取機構103の形態に応じて異なるが、例えば、図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1では、粒子を含む液滴への荷電時とすることができる。また、粒子がブレイクオフポイントの位置に到達する時間とすることもできる。
 また、例えば、図3に示す第3実施形態に係る粒子分取システム1では、流体が分流される分取流路P15内の圧力を変化させるためのアクチュエーターへの印加時とすることができる。また、第3実施形態において、バルブ電磁力、又は流体ストリーム(気体又は液体)等を用いて、層流方向の制御又は変更を行うことで、分取対象の粒子の分取流路P15内への取り込みを行う場合には、「分取処理開始」は、層流方向の制御又は変更の開始時とすることができる。
 粒子サイズに紐づく散乱光の強度とディレイタイムとの関係は、例えば、異なるサイズの粒子から得られる前記散乱光の強度と前記ディレイタイムの関係を示す近似式で定義することができる。図10は、異なる大きさのビーズ(φ10μm、φ24.4μm)を流し、前方散乱光と分取位置までの到達時間をプロットしたグラフである。図10に示すグラフのように、前方散乱光と分取位置までの到達時間の関係が2点以上あれば、直線を引くことができるため、散乱光の強度と前記ディレイタイムの関係を、このような線形近似式で定義することができる。なお、本技術で用いる近似式の次数は特に限定されず、求められる分取精度に応じて、一次、二次、三次、又はそれ以上とすることで、分取精度を高めることができる。
 粒子サイズに紐づく散乱光の強度とディレイタイムとの関係は、実際に分取を行う前のキャリブレーション工程において、サイズの異なるビーズ等を用いて特定することも可能であるが、粒子分取装置10の仕様に応じて予め設定された関係や、粒子分取装置10の設計評価時に決定された関係等を後述する記憶部107に記憶させておき、これに基づいて、分取対象の粒子から検出される散乱光の強度を用いて、分取対象の粒子に最適なディレイタイムを特定することができる。
 また、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係は、異なる分取条件に紐づけて、設定することもできる。具体的には、例えば、粒子の流速、及び、液滴形成のための振動素子への印加条件から選択される1以上の分取条件に紐づけて、散乱光の強度とディレイタイムとの関係を設定することができる。この場合の印加条件とは、例えば、駆動電圧の周波数、振動、及び強度から選択される1以上の条件とすることができる。
 粒子サイズに紐づく散乱光の強度とディレイタイムとの関係が予め設定されている場合、処理部104は、少なくとも1種類のサイズの粒子から得られる散乱光の強度に基づき、前記予め設定された関係を補正することができる。例えば、実際に分取を行う前のキャリブレーション工程において、少なくとも1種類のサイズの粒子から得られる散乱光の強度と、当該粒子の分取位置到達時間等のキャリブレーション結果に基づいて、予め設定された関係を補正することで、分取の精度をより向上させることができる。
 本技術において、粒子から検出する散乱光は、粒子のサイズと紐づく強度を示せば特に限定されない。例えば、前方散乱光、後方散乱光、側方散乱光のいずれも用いることができる。
 (6)制御部105
 本技術に係る粒子分取システム1には、制御部105を備えることができる。制御部105は、前記処理部104にて特定された分取対象の粒子に適したディレイタイムに基づいて、分取機構103を制御することができる。
 具体的には、例えば、図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1の場合は、特定されたディレイタイムのタイミングにおいて、制御部105から分取機構103の荷電部103aへ指令を出して、粒子を含む液滴への荷電を行うことができる。また、特定されたディレイタイムのタイミングにおいて、制御部105から分取機構103の振動素子Vへ指令を出して、粒子がブレイクオフポイントの位置に到達する時間に液滴が形成されるように制御することもできる。
 また、例えば、図3及び図6に示す第3実施形態に係る粒子分取システム1の場合は、特定されたディレイタイムのタイミングにおいて、制御部105から分取機構103の圧電素子(図示しない)へ指令を出して、分取流路P15に設けられた圧力室P151内に負圧を発生させて、粒子を含む流体を分取流路P15に取り込むことができる。また、特定されたディレイタイムのタイミングにおいて、制御部105からバルブ電磁力等を発生させる機構(図示しない)や、シース液供給機構やサンプル供給機構、あるいはゲート流供給機構等のバルブやポンプへ指令を出して、主流路P13を通流する流体の層流方向の制御又は変更を行うことで、分取対象の粒子の分取流路P15内への取り込みを行うこともできる。
 また、制御部105は、粒子分取システム1の各部に指令を出して、各部の制御を行うことも可能である。例えば、制御部105は、シース液供給機構やサンプル供給機構、あるいはゲート流供給機構等のバルブやポンプへ指令を出して、各層流の供給量や流速等を制御したり、光照射部101や検出部102に指令を出して、光照射条件や検出条件を制御したりすることもできる。また、例えば、制御部105は、後述する液滴撮像部106やストロボSに指令を出して、撮像条件や撮像タイミングの制御、発光条件や発光タイミングの制御等を行うこともできる。
 (7)液滴撮像部106
 図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1の場合は、液滴撮像部106を備えることができる。液滴撮像部106は、液滴を含む流体ストリーム(以下、「前記流体ストリーム」とも称する)の状態を撮像する。また、液滴撮像部106は、前記検出部102の下流に配置されている。
 液滴撮像部106は、前記流体ストリームの状態を撮像することができれば、その具体的な構成は限定されない。例えば、CCDカメラ、CMOSセンサー等の撮像素子を備える構成に限らず、光量センサー等の光の輝度情報が検出できるセンサーを複数並べた、所謂、ラインセンサー等で構成することもできる。
 液滴撮像部106は、オリフィスP14と後述する対向電極103bの間における前記流体ストリームの状態を撮像可能な位置に配置される。
 液滴撮像部106により得られた流体ストリーム画像は、前記処理部104によって解析される。例えば、液滴撮像部106にて撮像された流体ストリーム画像に基づいて、ブレイクオフポイントを特定することができる。また、液滴撮像部106により得られた流体ストリーム画像は、後述するディスプレイ等の表示部108に表示されて、ユーザが液滴の形成状況や、前記流体ストリーム中の粒子情報(大きさ、形態、間隔等)を確認するためにも利用できる。
 液滴撮像部106において前記流体ストリームの状態を撮像するための光源としては、例えば、ストロボSを用いることができる。ストロボSは、前記制御部105によって制御することもできる。ストロボSは、前記流体ストリームを撮像するためのLED及び流体ストリームを撮像するためのレーザ(例えば、赤色レーザ光源)から構成することができ、制御部105により検出する目的に応じて使用する光源の切り替えが行うことができる。ストロボSの具体的な構造は特に限定されず、公知の回路又は素子を1種又は2種以上選択して、自由に組み合わせることができる。
 (8)記憶部107
 本技術に係る粒子分取システム1には、各種データを記憶させる記憶部107を備えることができる。記憶部107では、例えば、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係を記憶することができる。記憶部107には、実際に分取を行う前のキャリブレーション工程において、サイズの異なるビーズ等を用いて特定された粒子サイズに紐づく散乱光の強度とディレイタイムとの関係を記憶することも可能であるが、粒子分取装置10の仕様に応じて予め設定された関係や、粒子分取装置10の設計評価時に決定された関係等を、予め記憶させておくこともできる。
 また、記憶部107には、液滴撮像部106によって撮像された撮像データ、検出部102によって検出された粒子から光信号データ、分取機構103によって分取された粒子の分取データ、処理部104によって処理された処理データ、制御部105によって制御された制御データ等、粒子検出や粒子分取に関わるあらゆるデータを記憶することができる。
 また、前述したとおり、本技術では、記憶部107をクラウド環境に設けることができるため、ネットワークを介して、各ユーザーがクラウド上の記憶部107に記録された各種情報を、共用することも可能である。
 なお、本技術において、記憶部107は必須ではなく、外部の記憶装置等を用いて、各種データの記憶を行うことも可能である。
 (9)表示部108
 本技術に係る粒子分取システム1には、各種データを表示する表示部108を備えることができる。表示部108では、例えば、検出部102によって検出された粒子から光信号データ、分取機構103によって分取された粒子の分取データ、処理部104によって処理された処理データ、制御部105によって制御された制御データ、液滴撮像部106によって撮像された撮像データ等、粒子検出や粒子分取に関わるあらゆるデータを表示することができる。
 本技術において、表示部108は必須ではなく、外部の表示装置を接続してもよい。表示部108としては、例えば、ディスプレイやプリンタなどを用いることができる。
 (10)ユーザーインターフェース109
 本技術に係る粒子分取システム1には、ユーザーが操作するための部位であるユーザーインターフェース109を備えることができる。ユーザーは、ユーザーインターフェース109を通じて、各部や各装置にアクセスし、各部や各装置を制御することができる。
 本技術において、ユーザーインターフェース109は必須ではなく、外部の操作装置を接続してもよい。ユーザーインターフェース109としては、例えば、マウスやキーボード等を用いることができる。
 以上説明した本技術に係る粒子分取システム1を用いた粒子分取の流れについて、図11及び図12を用いて説明する。図11は、図1に示す第1実施形態、図2に示す第2実施形態、及び図4に示す第4実施形態に係る粒子分取システム1を用いた場合の粒子分取のフローチャートである。
 図11に示すフローチャートは、キャリブレーション工程S1において、粒子サイズに紐づく散乱光の強度とディレイタイムとの予め設定された関係を、校正用ビーズ等を用いて補正する方法である。まず、サイズの分かっている校正用ビーズを流し、光照射部101を用いて校正用ビーズへの光照射を行い、検出部102を用いて校正用ビーズからの散乱光を検出する(S11)。次に、液滴撮像部106を用いて、ブレイクオフポイント付近の流体ストリームの撮像を行う(S12)。液滴撮像部106で撮像された流体ストリーム画像に基づいて、検出部102で校正用ビーズが検出されてからブレイクオフポイントの位置に到達するまでの時間(ディレイタイム)を算出する(S13)。算出されたディレイタイムと検出部102で検出された散乱光の強度を用いて、予め設定された関係式を補正する(S14)。以上でキャリブレーション工程は終了する。
 次に、実際に分取を行う粒子を流し、目的粒子の分取を行う(S2)。まず、光照射部101を用いて粒子への光照射を行い、検出部102を用いて粒子からの散乱光を検出する(S21)。検出部102で検出された散乱光の強度を、前記キャリブレーション工程S1で補正された関係式に代入することで、その粒子に適するディレイタイムを特定する(S22)。特定されたディレイタイムに基づいて、目的の粒子の分取を行う(S23)。
 図12に示すフローチャートは、キャリブレーション工程S1において、2種以上の校正用ビーズ等を用いて、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係を特定する方法である。まず、異なるサイズの2種以上の校正用ビーズを流し、光照射部101を用いて校正用ビーズへの光照射を行い、検出部102を用いて校正用ビーズからの散乱光を検出する(S11)。次に、液滴撮像部106を用いて、ブレイクオフポイント付近の流体ストリームの撮像を行う(S12)。液滴撮像部106で撮像された流体ストリーム画像に基づいて、検出部102で校正用ビーズが検出されてからブレイクオフポイントの位置に到達するまでの時間(ディレイタイム)を算出する(S13)。算出されたディレイタイムと検出部102で検出された散乱光の強度を用いて、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係を特定する(S15)。以上でキャリブレーション工程は終了する。
 次に、実際に分取を行う粒子を流し、目的粒子の分取を行う(S2)。まず、光照射部101を用いて粒子への光照射を行い、検出部102を用いて粒子からの散乱光を検出する(S21)。検出部102で検出された散乱光の強度を、前記キャリブレーション工程S1で特定された関係式に代入することで、その粒子に適するディレイタイムを特定する(S22)。特定されたディレイタイムに基づいて、目的の粒子の分取を行う(S23)。
 なお、本技術において、キャリブレーション工程S1は、必須の工程ではない。例えば、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係が予め設定されており、補正の必要がない場合には、キャリブレーション工程S1を行わずに、目的粒子の分取(S2)を行うことも可能である。
 また、例えば、図3に示す第3実施形態に係る粒子分取システム1のように、完全閉鎖型のシステムの場合は、校正用ビーズを事前に通流させるキャリブレーション工程S1を行うことが難しい場合があるため、キャリブレーション工程S1を行わずに、予め設定された関係に、検出部102で検出された分取対象となる粒子の散乱光の強度を代入することで、分取対象となる粒子に適したディレイタイムを特定し、目的粒子の分取(S2)を行うことも可能である。
 2.粒子分取方法
 本技術に係る粒子分取方法は、少なくとも、検出工程と、処理工程と、を有する。また、必要に応じて、光照射工程、分取工程、制御工程、撮像工程、記憶工程、及び、表示工程等を行うことができる。
 なお、各工程は、前述した本技術に係る粒子分取システム1の各部が行う工程と同一であるため、ここでは説明を割愛する。
 3.粒子分取プログラム
 本技術に係る粒子分取プログラムは、少なくとも、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、流体に含まれる粒子から検出された散乱光の強度から、前記検出から分取処理開始までのディレイタイムを特定する処理機能を、コンピューターに実現させるための粒子分取プログラムである。
 また、本技術に係る粒子分取プログラムは、粒子分取システム1の各部を制御するための制御機能を、コンピューターに実現させるための粒子分取プログラムであってもよい。
 本技術に係る粒子分取プログラムは、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等の記録媒体に格納されていてもよく、また、ネットワークを介して配信することもできる。
 なお、各機能は、前述した本技術に係る粒子分取システム1の各部が行う機能と同一であるため、ここでは説明を割愛する。
 なお、本技術では、以下の構成を取ることもできる。
(1)
 流体に含まれる粒子からの光を検出する検出部と、
 前記検出部での検出から分取処理開始までのディレイタイムを特定する処理部と、
 を有し、
 前記処理部は、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取システム。
(2)
 前記分取処理開始は、前記粒子を含む液滴への荷電、又は、前記流体が分流される分取流路内の圧力を変化させるためのアクチュエーターへの印加である、(1)に記載の粒子分取システム。
(3)
 前記関係は、異なるサイズの粒子から得られる前記散乱光の強度と前記ディレイタイムの関係を示す近似式である、(1)又は(2)に記載の粒子分取システム。
(4)
 前記関係を記憶する記憶部を有する、(1)から(3)のいずれかに記載の粒子分取システム。
(5)
 前記記憶部には、予め設定された前記関係が記憶されている、(4)に記載の粒子分取システム。
(6)
 前記記憶部には、異なる分取条件に紐づいて設定された前記関係が記憶されている、(4)に記載の粒子分取システム。
(7)
 前記分取条件は、前記粒子の流速、及び、液滴形成のための振動素子への印加条件から選択される1以上の分取条件である、(6)に記載の粒子分取システム。
(8)
 前記印加条件は、駆動電圧の周波数、振動、及び強度から選択される1以上の条件である、(7)に記載の分取システム。
(9)
 前記処理部では、少なくとも1種類のサイズの粒子から得られる散乱光の強度に基づき、前記予め設定された前記関係を補正する、(5)に記載の粒子分取システム。
(10)
 前記処理部は、異なるサイズの粒子から得られる前記散乱光の強度とディレイタイムとの関係を特定する、(1)から(9)のいずれかに記載の粒子分取システム。
(11)
 前記散乱光は、前方散乱光である、(1)から(10)のいずれかに記載の粒子分取システム。
(12)
 前記分取処理開始は、前記粒子を含む液滴への荷電であり、
 前記液滴を含む流体ストリームの状態を撮像する液滴撮像部を有する、(1)から(11)のいずれかに記載の粒子分取システム。
(13)
 前記ディレイタイムは、前記粒子が前記検出部で検出されてからブレイクオフポイントの位置に到達するまでの時間を示し、
 前記ブレイクオフポイントは、前記液滴撮像部にて撮像された流体ストリーム画像に基づき特定される、(12)に記載の粒子分取システム。
(14)
 流体に含まれる粒子からの光を検出する検出工程と、
 前記検出工程での検出から分取処理開始までのディレイタイムを特定する処理工程と、 を有し、
 前記処理工程では、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取方法。
(15)
 粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、流体に含まれる粒子から検出された散乱光の強度から、前記検出から分取処理開始までのディレイタイムを特定する処理機能を、コンピューターに実現させるための粒子分取プログラム。
 以下、実施例に基づいて本技術をさらに詳細に説明する。なお、以下に説明する実施例は、本技術の代表的な実施例の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。
 粒子分取システム1が実際に扱う粒子は、ビーズのような球体だけでなく、細胞等のように、形態や密度の異なる粒子である。そこで、本実施例では、細胞を用いて本技術に係る粒子分取システム1で正確に分取できるかを検証した。
 (1)方法
 図13に示す強度分布の前方散乱光を示す細胞を用いた。事前に確認しておいた直径10μmのビーズの前方散乱光の強度と同等の領域に強度を示す細胞Xと、事前に確認しておいた直径15μmのビーズの前方散乱光の強度と同等の領域に強度を示す細胞Yとを、ゲーティングした(図14参照)。ゲーティングした細胞X及び細胞Yを、異なるディレイタイムを用いてソーティングした。
 (2)評価
 ゲーティングした細胞X及び細胞Yを、異なるディレイタイムを用いてソーティングした際のそれぞれの分収率を算出した。
 (3)結果
 細胞X及び細胞Yの各ディレイタイムにおける分収率の結果を、図15に示す。図15に示すように、細胞X及び細胞Yの分収率の最大値のPhaseのズレは、100~150degであった。一方、事前に確認しておいた直径10μmのビーズと直径15μmのビーズの前方散乱光とPhaseの関係を示す線形近似グラフにおけるPhase差は、約130degであり、細胞X及び細胞Yの分収率の最大値のPhaseのズレと一致していた。この結果から、細胞のような形態や密度の異なる粒子であっても、本技術に係る粒子分取システム1で正確に分取できることが証明された。
1 粒子分取システム
10 粒子分取装置
20 情報処理装置
P 流路
P11 サンプル液流路
P12a,P12b シース液流路
P13 主流路
P14 オリフィス
P15 分取流路
P16a,P16b 廃棄流路
101 光照射部
102 検出部
103 分取機構
V 振動素子
103a 荷電部
103b 対向電極
JF ジェットフロー
BOP ブレイクオフポイント
D 液滴
104 処理部
105 制御部
106 液滴撮像部
S ストロボ
107 記憶部
108 表示部
109 ユーザーインターフェース
  

Claims (15)

  1.  流体に含まれる粒子からの光を検出する検出部と、
     前記検出部での検出から分取処理開始までのディレイタイムを特定する処理部と、
     を有し、
     前記処理部は、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取システム。
  2.  前記分取処理開始は、前記粒子を含む液滴への荷電、又は、前記流体が分流される分取流路内の圧力を変化させるためのアクチュエーターへの印加である、請求項1に記載の粒子分取システム。
  3.  前記関係は、異なるサイズの粒子から得られる前記散乱光の強度と前記ディレイタイムの関係を示す近似式である、請求項1に記載の粒子分取システム。
  4.  前記関係を記憶する記憶部を有する、請求項1に記載の粒子分取システム。
  5.  前記記憶部には、予め設定された前記関係が記憶されている、請求項4に記載の粒子分取システム。
  6.  前記記憶部には、異なる分取条件に紐づいて設定された前記関係が記憶されている、請求項4に記載の粒子分取システム。
  7.  前記分取条件は、前記粒子の流速、及び、液滴形成のための振動素子への印加条件から選択される1以上の分取条件である、請求項6に記載の粒子分取システム。
  8.  前記印加条件は、駆動電圧の周波数、振動、及び強度から選択される1以上の条件である、請求項7に記載の分取システム。
  9.  前記処理部では、少なくとも1種類のサイズの粒子から得られる散乱光の強度に基づき、前記予め設定された前記関係を補正する、請求項5に記載の粒子分取システム。
  10.  前記処理部は、異なるサイズの粒子から得られる前記散乱光の強度とディレイタイムとの関係を特定する、請求項1に記載の粒子分取システム。
  11.  前記散乱光は、前方散乱光である、請求項1に記載の粒子分取システム。
  12.  前記分取処理開始は、前記粒子を含む液滴への荷電であり、
     前記液滴を含む流体ストリームの状態を撮像する液滴撮像部を有する、請求項1に記載の粒子分取システム。
  13.  前記ディレイタイムは、前記粒子が前記検出部で検出されてからブレイクオフポイントの位置に到達するまでの時間を示し、
     前記ブレイクオフポイントは、前記液滴撮像部にて撮像された流体ストリーム画像に基づき特定される、請求項12に記載の粒子分取システム。
  14.  流体に含まれる粒子からの光を検出する検出工程と、
     前記検出工程での検出から分取処理開始までのディレイタイムを特定する処理工程と、 を有し、
     前記処理工程では、粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、前記検出部で検出された散乱光の強度から、前記ディレイタイムを特定する、粒子分取方法。
  15.  粒子サイズに紐づく散乱光の強度とディレイタイムとの関係に基づいて、流体に含まれる粒子から検出された散乱光の強度から、前記検出から分取処理開始までのディレイタイムを特定する処理機能を、コンピューターに実現させるための粒子分取プログラム。 
PCT/JP2023/020531 2022-06-14 2023-06-01 粒子分取システム、粒子分取方法、及び粒子分取プログラム WO2023243422A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-096049 2022-06-14
JP2022096049 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243422A1 true WO2023243422A1 (ja) 2023-12-21

Family

ID=89190955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020531 WO2023243422A1 (ja) 2022-06-14 2023-06-01 粒子分取システム、粒子分取方法、及び粒子分取プログラム

Country Status (1)

Country Link
WO (1) WO2023243422A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091442A (ja) * 1999-09-20 2001-04-06 Horiba Ltd 粒径分布解析方法
JP2010528289A (ja) * 2007-05-23 2010-08-19 ベックマン コールター, インコーポレイテッド フローセルサイトメーター用静電分類器の粒子軌跡の変動補償のための方法および装置
JP2015152439A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 粒子分取装置、粒子分取方法及びプログラム
JP2016145834A (ja) * 2016-03-16 2016-08-12 ソニー株式会社 微小粒子分取装置及びキャリブレーション用粒子
CN112903569A (zh) * 2021-01-20 2021-06-04 贝克曼库尔特生物科技(苏州)有限公司 用于计算液滴延迟时间的***和方法以及分选装置
WO2021155361A1 (en) * 2020-01-31 2021-08-05 The General Hospital Corporation Methods and systems for non-destructive estimation of scattering particle size

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091442A (ja) * 1999-09-20 2001-04-06 Horiba Ltd 粒径分布解析方法
JP2010528289A (ja) * 2007-05-23 2010-08-19 ベックマン コールター, インコーポレイテッド フローセルサイトメーター用静電分類器の粒子軌跡の変動補償のための方法および装置
JP2015152439A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 粒子分取装置、粒子分取方法及びプログラム
JP2016145834A (ja) * 2016-03-16 2016-08-12 ソニー株式会社 微小粒子分取装置及びキャリブレーション用粒子
WO2021155361A1 (en) * 2020-01-31 2021-08-05 The General Hospital Corporation Methods and systems for non-destructive estimation of scattering particle size
CN112903569A (zh) * 2021-01-20 2021-06-04 贝克曼库尔特生物科技(苏州)有限公司 用于计算液滴延迟时间的***和方法以及分选装置

Similar Documents

Publication Publication Date Title
JP4533382B2 (ja) マイクロ流体分析およびソーティング用の一体化された構造物
JP6102783B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP4990746B2 (ja) 液体フローに含まれる生物学的粒子を分別する装置ならびにその方法
US20240151630A1 (en) Microparticle sorting device, microparticle sorting system, droplet sorting device, droplet control device, and droplet control program
US20200072732A1 (en) Optimizing method of suction condition of microparticle and microparticle fractionating device
US11530975B2 (en) Control device, microparticle sorting device and microparticle sorting system using control device, and control method
US20130056656A1 (en) Optical measuring apparatus, flow cytometer, and optical measuring method
US20240125690A1 (en) Microparticle measuring apparatus and microparticle measuring method
EP3633347B1 (en) Method for optimizing suction conditions for microparticles, and microparticle separation device
JP2017122734A (ja) 粒子分取装置、粒子分取方法及びプログラム
JP6860015B2 (ja) 微小粒子測定装置及び微小粒子測定方法
JP2016145834A (ja) 微小粒子分取装置及びキャリブレーション用粒子
WO2022080482A1 (ja) 粒子検出装置、粒子検出システム、及び粒子検出方法
WO2023243422A1 (ja) 粒子分取システム、粒子分取方法、及び粒子分取プログラム
JP6801453B2 (ja) 制御装置、制御システム、解析装置、粒子分取装置、制御方法及び層流制御プログラム
JP6706011B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
WO2023218986A1 (ja) 液滴分取システム、液滴分取方法、及び液滴分取プログラム
US11686662B2 (en) Microparticle sorting device and method for sorting microparticles
JP5098650B2 (ja) 微小粒子の送流方法及び分析方法、並びに微小粒子分析用基板
WO2023189819A1 (ja) 粒子分取システム、及び粒子分取方法
US20220146403A1 (en) Microparticle measurement device, microparticle sorting device, microparticle measurement system, and microparticle sorting system
WO2021131415A1 (ja) 情報処理装置、粒子測定装置、粒子測定システム、粒子分取装置、粒子分取システム、情報処理方法、及び情報処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823715

Country of ref document: EP

Kind code of ref document: A1