WO2023243169A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023243169A1
WO2023243169A1 PCT/JP2023/010455 JP2023010455W WO2023243169A1 WO 2023243169 A1 WO2023243169 A1 WO 2023243169A1 JP 2023010455 W JP2023010455 W JP 2023010455W WO 2023243169 A1 WO2023243169 A1 WO 2023243169A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
interphase
positive electrode
negative electrode
laminated
Prior art date
Application number
PCT/JP2023/010455
Other languages
English (en)
French (fr)
Inventor
隆宏 荒木
健 徳山
滋久 青柳
英樹 宮崎
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2023243169A1 publication Critical patent/WO2023243169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • the main circuit of inverters used in automobiles is constructed using a printed circuit board for conducting current, and as a result, there is a need to improve productivity and reduce inductance while meeting the performance of hybrid and electric vehicles. It is necessary to respond to
  • Patent Document 1 discloses a configuration in which a positive electrode wiring and a negative electrode conductor connecting each power module and each capacitor are laminated to realize a reduction in inductance.
  • Patent Document 1 the positive electrode wiring and the negative electrode wiring are stacked in all areas, and each wiring is mixed.
  • each wiring is separated.
  • a problem arises in that electrical resistance increases. This makes it difficult to reduce the wiring temperature and requires improvement in cooling performance.
  • the power conversion device includes a plurality of circuit bodies each having a plurality of power semiconductor elements, and a wiring board electrically connected to the circuit bodies and provided with a plurality of positive electrode wirings and negative electrode wirings laminated in the thickness direction. , a plurality of smoothing capacitors provided corresponding to the plurality of circuit bodies, respectively, and the wiring board includes a plurality of laminated wiring portions to which the plurality of circuit bodies and the plurality of smoothing capacitors are connected, respectively; interphase wiring parts formed between the plurality of laminated wiring parts, in the laminated wiring part, the positive electrode wiring and the negative electrode wiring are stacked on top of each other, and in the interphase wiring part, the plurality of the The positive electrode wiring and the plurality of negative electrode wirings are separately stacked on a plane of the wiring board, and the interphase wiring portion has a via penetrating the wiring board in a thickness direction.
  • the present invention it is possible to provide a power converter device that achieves both high current and low inductance of the substrate while improving heat dissipation.
  • the plurality of circuit bodies 1 constituting the power conversion circuit are each composed of semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • Two series-connected circuit bodies 1 and one capacitor 2 form a pair, each forming a circuit for one phase, forming a three-phase power conversion circuit.
  • Each circuit is connected to a positive electrode wiring 3 and a negative electrode wiring 4.
  • the circuit body 1 has a high voltage side terminal for the main circuit (a collector terminal for an IGBT, a drain terminal for a MOSFET) and a low voltage side terminal for the main circuit (an emitter terminal for an IGBT, a source terminal for a MOSFET). , and a control terminal (gate terminal).
  • the power conversion device 100 includes a plurality of circuit bodies 1 each having a plurality of power semiconductor elements, and a plurality of positive electrode wirings 3 and negative electrode wirings 4 which are electrically connected to the circuit bodies 1 and are laminated in the thickness direction.
  • the circuit board 6 includes a wiring board 6 (hereinafter referred to as a board 6), and a plurality of smoothing capacitors 2 provided corresponding to the plurality of circuit bodies 1, respectively.
  • the positive electrode wiring 3 and the negative electrode wiring 4 are stacked on each other in the thickness direction of the substrate 6 (from the front to the back of the paper in FIG. 2), and connect the capacitors 2 of each phase to the circuit body 1 (see FIGS. 4 to 4 for details). (described later in Section 8). Note that FIG.
  • circuit body 1 shows a configuration example in which four circuit bodies 1 are arranged in parallel, eight circuit bodies 1 are used as a one-phase circuit, and three phases are provided on the board 6. In this way, the circuit body 1 may be arranged in multiple parallel connections depending on the desired output current value.
  • the substrate 6 has a plurality of conductor layers in the thickness direction, and each conductor layer is laminated with a resin layer interposed therebetween.
  • a positive electrode wiring 3, a negative electrode wiring 4, an output wiring 7, and a signal wiring 9 are formed on the conductor layer of the substrate 6.
  • the circuit body 1 and the capacitor 2 are connected to the positive electrode wiring 3 and the negative electrode wiring 4 using a bonding material such as solder.
  • the circuit body 1 has a signal terminal 8 for connection to a signal wiring 9.
  • the positive electrode wiring 3, the negative electrode wiring 4, and the output wiring 7 are each formed to be thicker than the signal wiring 9 connected to the circuit body 1, and the current to be supplied to the load to which they are connected is larger than that of other wirings. This corresponds to the fact that it is an electric current.
  • the positive electrode wiring 3 and the negative electrode wiring 4 have through-vias 5 (hereinafter referred to as vias 5).
  • the via 5 is provided in a region where the positive electrode wiring 3 and the negative electrode wiring 4 of each phase are not stacked on each other.
  • vias 5 are formed by penetrating the substrate 6 in the thickness direction, so that the wirings having the same potential are electrically connected to each other.
  • the positive electrode wiring 3 is connected to the positive terminal of a DC voltage source such as a battery (not shown), and the negative electrode wiring 4 is connected to the negative terminal of a DC voltage source such as a battery (not shown).
  • a DC voltage source such as a battery (not shown)
  • the negative electrode wiring 4 is connected to the negative terminal of a DC voltage source such as a battery (not shown).
  • the capacitors 2 are connected in line along the substrate 6 in order to satisfy the capacitance determined according to the desired amount of input voltage fluctuation. It has a positive terminal 10 and a negative terminal 11 as terminals.
  • the positive electrode terminal 10 of the capacitor 2 is electrically connected to the main circuit high voltage side terminal of the circuit body 1 on the high side (upper arm) side by being connected to the positive electrode wiring 3. Further, the positive electrode wiring 3 is connected to the positive electrode terminal 10 of the capacitor 2 of the other phase and the high voltage side terminal for the main circuit of the circuit body 1 on the high side side of the other phase.
  • the negative electrode terminal 11 of the capacitor 2 is connected to the negative electrode wiring 4 and thereby connected to the main circuit low voltage side terminal of the circuit body 1 on the low side (lower arm) side.
  • the negative electrode wiring 4 is connected to the negative electrode terminal 11 of the capacitor 2 of the other phase and the main circuit low voltage side terminal 12 of the low side circuit body 1 of the other phase.
  • the main circuit low voltage side terminal of the circuit body 1 on the high side side is connected to the main circuit high voltage side terminal of the circuit body 1 on the low side side by the output wiring 7 of each phase.
  • the output wiring 7 of each phase is connected to a load such as a motor (not shown).
  • the control terminal of the circuit body 1 is connected to a control circuit (not shown), and is turned on or off based on a signal input from a higher-level control device such as a microcomputer, thereby outputting an alternating current voltage to a load such as a motor. do.
  • a control circuit not shown
  • the substrate 6 includes a plurality of laminated wiring sections 15 to which the plurality of circuit bodies 1 and a plurality of smoothing capacitors 2 are respectively connected, and interphase wiring sections 16 formed between the plurality of laminated wiring sections 15.
  • the positive electrode wires 3 and the negative electrode wires 4 are stacked on top of each other, but in the interphase wiring section 16, the plurality of positive electrode wires 3 and the plurality of negative electrode wires 4 are separated on the plane of the substrate 6, respectively. And they are wired in parallel and stacked. That is, the interphase wiring portion 16 is a region where the positive electrode wiring 3 and the negative electrode wiring 4 are not stacked on each other in the thickness direction of the substrate 6.
  • the interphase wiring section 16 has a via 5 that penetrates the substrate 6 in the thickness direction, but the laminated wiring section 15 does not have a via 5.
  • the interphase wiring section 16 has vias 5 to improve heat dissipation.
  • the laminated wiring section 15 does not have the via 5, it has a structure in which the positive electrode wiring 3 and the negative electrode wiring 4 are not separated by the through via 5, so that the wiring of the positive electrode wiring 3 and the negative electrode wiring 4 is This suppresses the reduction in cross-sectional area and reduces inductance.
  • the plurality of circuit bodies 1 have main circuit terminals 12 on the substrate 6.
  • This main circuit terminal 12 is arranged within a region 12a perpendicular to one side defined by the distance between the positive terminal 10 and the negative terminal 11 of the smoothing capacitor 2.
  • the laminated wiring section 15 As shown in FIG. 4, in the laminated wiring section 15, for example, when the substrate 6 has four conductor layers, the first and third layers from the top surface of the substrate 6 are the positive electrode wiring 3, and the second and fourth layers are the positive electrode wiring 3. This becomes the negative electrode wiring 4.
  • the laminated wiring portion 15 is a region where the positive electrode wiring 3 and the negative electrode wiring 4 are stacked and overlapped with each other.
  • the interphase wiring section 16 is a region provided between the laminated wiring sections 15, and the positive electrode wiring 3 and the negative electrode wiring 4 are stacked with each other without overlapping each other. There is.
  • the interphase wiring section 16 electrically connects the positive electrode wiring 3 and the negative electrode wiring 4, which have the same potential, to each other from the top to the bottom of the substrate 6 through the vias 5 provided in the thickness direction of the substrate 6. are doing.
  • Two or more vias 5 of the interphase wiring section 16 are provided in each of the positive electrode wiring 3 and the negative electrode wiring 4. Further, in the interphase wiring section 16, the via 5 is located at a position closer to the laminated wiring section 15 adjacent to the interphase wiring section 16 than the center line 6a perpendicular to the arrangement direction of the laminated wiring section 15 and the interphase wiring section 16. Each is provided. Thereby, even if only a small number of vias 5 are provided, the wiring temperature of the substrate 6 can be efficiently reduced. In addition, for the laminated wiring part 15 where the via 5 is not provided and it is difficult to cool the wiring, by arranging the via 5 near the laminated wiring part 15 in the interphase wiring part 16, the laminated wiring part 15 can be cooled. Reduces wiring temperature.
  • each wiring can be laminated using blind vias 5a.
  • the first and second layers from the top surface of the substrate 6 are used as positive electrode wiring 3
  • the third and fourth layers are used as negative electrode wiring 4
  • the wirings of the same potential are connected by blind vias 5a.
  • the positive electrode wiring 3 and the negative electrode wiring 4 can be stacked, respectively, without reducing the cross-sectional area of the positive electrode wiring 3 and the negative electrode wiring 4.
  • FIG. 7 A cooler 14 that cools the plurality of circuit bodies 1 is arranged on one surface of the board 6 .
  • An insulating heat radiating member 13 is provided between the cooler 14 and the substrate 6. Since the heat dissipation member 13 is a member that improves adhesion by following the steps and warpage of the substrate 6, a low-hardness resin or the like is used. Furthermore, the cooler 14 is constructed of a material with high thermal conductivity such as aluminum. As a result, heat generated when current is passed through the positive electrode wiring 3 and the negative electrode wiring 4 is radiated from the substrate 6 to the cooler 14 via the heat dissipation member 13 via the via 5 of the interphase wiring section 16. The wiring temperature of the board 6 can be reduced.
  • the via 5 must be provided on the substrate 6 where the positive electrode wiring 3 and the negative electrode wiring 4 are mixed in the past, so that the positive electrode wiring 3 and the negative electrode wiring 4 are separated by the amount of the via 5. Resolved the increasing number of issues.
  • the positive electrode wiring 3 and the negative electrode wiring 4 are arranged in parallel, so that the current flowing through the positive electrode wiring 3 and the current flowing through the negative electrode wiring 4 are opposite to each other on the left and right sides. Therefore, the magnetic field is canceled and the inductance is reduced. Furthermore, the resonance current generated between the capacitors 2 (see FIGS.
  • FIG. 9 shows a configuration example in which the high-side circuit body 1 and the low-side circuit body 1 are integrated. Thereby, the circuit body 1 can be easily mounted on the board 6, and the wiring inductance of each phase can be reduced and the temperature of the board 6 can be reduced at the same time.
  • the inverter of the present invention described above with reference to FIGS. 1 to 9 does not have to be limited to three-phase.
  • a wiring board provided with a plurality of circuit bodies 1 each having a plurality of power semiconductor elements, and a plurality of positive electrode wirings 3 and negative electrode wirings 4 which are electrically connected to the circuit body 1 and are laminated in the thickness direction. 6, and a plurality of smoothing capacitors 2 provided corresponding to the plurality of circuit bodies 1, respectively.
  • the wiring board 6 includes a plurality of laminated wiring sections 15 to which the plurality of circuit bodies 1 and a plurality of smoothing capacitors 2 are respectively connected, and interphase wiring sections 16 formed between the plurality of laminated wiring sections 15. ing.
  • the positive electrode wires 3 and the negative electrode wires 4 are stacked on top of each other, and in the interphase wiring section 16, the plurality of positive electrode wires 3 and the plurality of negative electrode wires 4 are separated and stacked on the plane of the wiring board 6,
  • the interphase wiring section 16 has vias 5 that penetrate through the wiring board 6 in the thickness direction.
  • the positive electrode wiring 3 and the negative electrode wiring 4 of the interphase wiring section 16 are arranged parallel to each other on the plane of the wiring board 6. By doing this, the current flowing through the positive electrode wiring 3 and the current flowing through the negative electrode wiring 4 face in opposite directions on the left and right sides, so that the magnetic field is canceled out and the inductance is reduced.
  • the plurality of circuit bodies 1 have main circuit terminals 12 on the wiring board 6, and the main circuit terminals 12 are defined by the distance between the positive terminal 10 and the negative terminal 11 of the smoothing capacitor 2. It is arranged in a region 12a perpendicular to the side. By doing this, the wiring length of the laminated wiring connecting the capacitor 2 and the circuit body 1 can be shortened, so the wiring inductance of the laminated wiring part 15 is reduced, and the switching control of the circuit body 1 can be performed faster. becomes possible. Further, switching loss generated in the circuit body 1 is reduced, and the circuit body 1 and the inverter 100 can be miniaturized as a whole.
  • the interphase wiring section 16 has two or more vias 5 in each of the positive electrode wiring 3 and the negative electrode wiring 4.
  • the vias 5 are each provided at a position closer to the laminated wiring portion 15 adjacent to the interphase wiring portion 16 than the center line 6a of the interphase wiring portion 16 perpendicular to the arrangement direction of the laminated wiring portion 15 and the interphase wiring portion 16. .
  • a cooler 14 for cooling the plurality of circuit bodies 1 is arranged on one surface of the wiring board 6, and an insulating heat radiating member 13 is provided between the cooler 14 and the wiring board 6.
  • Circuit body (power module) 2 Capacitor 3 Positive wiring 4 Negative wiring 5 Via 5a Blind via 6 Wiring board 6a Center line 7 Output wiring 8 Signal terminal 9 Signal wiring 10 Capacitor positive terminal 11 Capacitor negative terminal 12 Circuit body main circuit terminal 12a Arrangement area 13 Heat radiation member 14 Cooling device 15 laminated wiring section 16 interphase wiring section 100 power converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置は、複数の回路体と、配線基板と、平滑キャパシタと、を備え、前記配線基板は、複数の前記回路体および複数の前記平滑キャパシタがそれぞれ接続される複数の積層配線部と、複数の前記積層配線部の間にそれぞれ形成される相間配線部とを有し、前記積層配線部において、前記正極配線と前記負極配線は互いに重なって積層し、前記相間配線部において、複数の前記正極配線と複数の前記負極配線は前記配線基板の平面においてそれぞれ分かれて積層し、前記相間配線部は、前記配線基板の厚さ方向に貫通するビアを有する。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 自動車に用いられるインバータは、通電電流を流すためのプリント基板を用いて主回路が構築されることで、ハイブリッド自動車や電気自動車の性能に対応しつつ、生産性向上と低インダクタンス化を両立する要求に応える必要がある。
 下記の特許文献1では、各パワーモジュールと各キャパシタを接続する正極配線と負極導体が積層され、インダクタンスの低減を実現した構成が開示されている。
特許第5830480号公報
 特許文献1では、正極配線と負極配線が全ての領域で積層され、それぞれの配線が混在するような構成であったが、このような構成では、放熱用ビアを設けた際に各配線の分断箇所が多くなり断面積が減少することで、電気抵抗が増大する課題が発生する。これにより、配線温度を低減しにくくなり、冷却性能の向上が必要になる。これを鑑みて、本発明では、基板の大電流化と低インダクタンス化を両立しつつ、放熱性を向上させた電力変換装置を提供することを目的とする。
 電力変換装置は、複数のパワー半導体素子をそれぞれ有する複数の回路体と、前記回路体に電気的に接続され、厚さ方向に複数の正極配線および負極配線がそれぞれ積層されて設けられる配線基板と、複数の前記回路体にそれぞれ対応して設けられる複数の平滑キャパシタと、を備え、前記配線基板は、複数の前記回路体および複数の前記平滑キャパシタがそれぞれ接続される複数の積層配線部と、複数の前記積層配線部の間にそれぞれ形成される相間配線部とを有し、前記積層配線部において、前記正極配線と前記負極配線は互いに重なって積層し、前記相間配線部において、複数の前記正極配線と複数の前記負極配線は前記配線基板の平面においてそれぞれ分かれて積層し、前記相間配線部は、前記配線基板の厚さ方向に貫通するビアを有する。
 本発明によれば、基板の大電流化と低インダクタンス化を両立しつつ、放熱性を向上させた電力変換装置を提供できる。
電力変化装置における複数の回路体を示す電気回路図 本発明の第一実施形態に係る、電力変換装置の基板全体図 本発明の第一実施形態に係る、積層配線部、相間配線部、主回路端子の配置領域を示す図 図2のA-A’断面であり、積層配線部を示す図 図2のB-B’断面であり、相間配線部を示す図 図4の変形例(第1変形例) 図5の積層配線部に冷却器を配置した断面図 基板における積層配線部と相間配線部の関係を示す断面斜視図 図2の変形例(第2変形例)
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(本発明の一実施形態と全体構成)
(図1)
 電力変換回路を構成する複数の回路体1は、それぞれIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの半導体素子によって構成される。直列接続された2つの回路体1と1つのキャパシタ2が対になることでそれぞれ1相分の回路になり、3相の電力変換回路を構成している。それぞれの回路は、正極配線3および負極配線4と接続されている。
 回路体1は、主回路用高圧側端子(IGBTであればコレクタ端子、MOSFETであればドレイン端子)と、主回路用低圧側端子(IGBTであればエミッタ端子、MOSFETであればソース端子)と、制御用端子(ゲート端子)の3つの端子を有している。
(図2)
 電力変換装置100は、複数のパワー半導体素子をそれぞれ有する複数の回路体1と、回路体1に電気的に接続され、厚さ方向に複数の正極配線3および負極配線4がそれぞれ積層されて設けられる配線基板6(以下基板6)と、複数の回路体1にそれぞれ対応して設けられる複数の平滑キャパシタ2と、を備えている。正極配線3および負極配線4は、基板6の厚さ方向(図2の紙面手前-奥方向)に互いに積層され、かつ各相のキャパシタ2と回路体1を接続する(詳細は図4~図8で後述)。なお、図2は、回路体1を4つずつ並列配置し、8つの回路体1を1相の回路として、3相分を基板6上に備えた構成例を示している。このように、所望の出力電流値に応じて、回路体1は多並列接続する配置にしてもよい。
 基板6は、前述したように厚さ方向に複数の導体層を有し、それぞれの導体層は樹脂層を介して積層されている。基板6の導体層には、正極配線3と、負極配線4と、出力配線7と、信号配線9が形成されている。正極配線3および負極配線4には、回路体1やキャパシタ2が、はんだなどの接合材によって接続される。回路体1は、信号配線9と接続するための信号端子8を有している。正極配線3と負極配線4と出力配線7は、回路体1に接続される信号配線9よりもそれぞれが太く形成されており、接続先の負荷へ供給するための電流が他の配線よりも大きい電流であることに対応している。
 正極配線3および負極配線4は、貫通ビア5(以下ビア5)を有している。ビア5は、各相の正極配線3および負極配線4が互いに積層されていない領域に設けられる。複数の正極配線3または負極配線4は、それぞれが基板6の厚さ方向に貫通してビア5が形成されることによって、同電位の配線同士が互いに電気的に導通されている。
 正極配線3は図示されていないバッテリなどの直流電圧源の正極端子に接続され、負極配線4は図示されていないバッテリなど直流電圧源の負極端子に接続される。これにより、各相の回路には直流電圧が供給される。
 キャパシタ2は、所望の入力電圧変動量に応じて定まるキャパシタ容量を満足させるため、基板6に沿って並んで接続されており、また、基板6の正極配線3および負極配線4に接続するための端子として、正極端子10および負極端子11を有している。
 キャパシタ2の正極端子10は、正極配線3に接続されることで、ハイサイド(上アーム)側の回路体1の主回路用高圧側端子に電気的に接続される。また、正極配線3は、他相のキャパシタ2の正極端子10および他相のハイサイド側の回路体1の主回路用高圧側端子に接続される。キャパシタ2の負極端子11は、負極配線4に接続されることで、ローサイド(下アーム)側の回路体1の主回路低圧側端子に接続される。負極配線4は、他相のキャパシタ2の負極端子11および他相のローサイド側回路体1の主回路用低圧側端子12に接続される。ハイサイド側の回路体1の主回路低圧側端子は、各相の出力配線7によってローサイド側の回路体1の主回路高圧側端子に接続される。各相の出力配線7は、図示されていないモータなどの負荷に接続される。
 回路体1の制御用端子は図示されていない制御回路に接続され、マイコンなど上位の制御装置より入力される信号に基づいてオンまたはオフされることにより、モータなどの負荷へ交流の電圧を出力する。
(図3)
 基板6は、複数の回路体1および複数の平滑キャパシタ2がそれぞれ接続される複数の積層配線部15と、複数の積層配線部15の間にそれぞれ形成される相間配線部16とを有している。積層配線部15において、正極配線3と負極配線4は互いに重なって積層しているが、相間配線部16においては、複数の正極配線3と複数の負極配線4は基板6の平面においてそれぞれ分かれ、かつ並行に配線されてそれぞれ積層している。つまり、相間配線部16は、正極配線3と負極配線4は基板6の厚さ方向に互いに積層されていない領域である。
 また、相間配線部16は、基板6の厚さ方向に貫通するビア5を有しているが、積層配線部15はビア5を有していない。相間配線部16は、ビア5を有していることで放熱性を向上させている。一方で、積層配線部15はビア5を有していないことで、正極配線3および負極配線4が貫通ビア5で分断されないような構造になっているため、正極配線3および負極配線4の配線断面積の低下を抑制でき、インダクタンスを低減している。
 複数の回路体1は、基板6上に主回路端子12を有している。この主回路端子12は、平滑キャパシタ2の正極端子10と負極端子11との間の距離で定義される1辺に対して垂直の領域12a内に配置される。このように主回路端子12を配置することで、キャパシタ2と回路体1を接続する積層配線の配線長を短縮することができるため、積層配線部15の配線インダクタンスが低減され、回路体1をより高速にスイッチング制御させることが可能となる。また、回路体1で発生するスイッチング損失が低減され、かつ回路体1およびインバータ100全体を小型化できる。
 以上説明した構成により、基板6の低インダクタンス化と大電流化(出力向上)の両立を維持しつつ放熱性を向上させることを実現している。
(図4、図5)
 図4に示すように、積層配線部15では、例えば基板6の導体層が4層の場合、基板6の上面から1層目と3層目が正極配線3、2層目と4層目が負極配線4となる。このように、積層配線部15は、正極配線3と負極配線4が互いに重なって積層している領域である。一方で、図5に示すように、相間配線部16は、積層配線部15同士の間に設けられる領域であり、正極配線3と負極配線4は重ならずにそれぞれの配線同士で積層している。また、相間配線部16は、基板6の厚さ方向に設けられているビア5により、正極配線3と負極配線4それぞれ同電位の配線同士を、基板6の上から下まで互いに電気的に接続している。
 相間配線部16のビア5は、正極配線3および負極配線4にそれぞれ2つ以上設けられている。また、ビア5は、相間配線部16において、積層配線部15と相間配線部16の配列方向に対して垂直な中心線6aよりも、相間配線部16に隣接する積層配線部15に近い位置にそれぞれ設けられる。これにより、少ないビア5が設けられるだけであっても、効率的に基板6の配線温度を低減できる。また、ビア5が設けられておらず、配線の冷却が難しい積層配線部15に対しては、相間配線部16において積層配線部15の近傍にビア5を配置することで、積層配線部15の配線温度を低減している。
(第1変形例)
(図6)
 積層配線部15は、ブラインドビア5aを用いて各配線を積層させることができる。つまり、基板6の上面から1層目と2層目を正極配線3、3層目と4層目を負極配線4として、それぞれ同電位の配線をブラインドビア5aで接続する構成にすることで、正極配線3および負極配線4の断面積を低下させずに、正極配線3と負極配線4をそれぞれ積層することができる。
(図7)
 基板6の一方の面には、複数の回路体1を冷却する冷却器14が配置される。冷却器14と基板6の間には、絶縁性の放熱部材13が設けられる。放熱部材13は、基板6の段差や反りに追従して密着性を向上させる部材であるため、低硬度の樹脂などが用いられる。また、冷却器14は、アルミなど熱伝導率の高い材料により構築される。これにより、正極配線3および負極配線4へ電流を流した際に生じる熱は、相間配線部16のビア5を介して基板6から放熱部材13を介して冷却器14へと放熱されるため、基板6の配線温度を低減できる。
(図8)
 積層配線部15では、基板6の厚さ方向に対して、複数の正極配線3と負極配線4が互いに重なり合うことでそれぞれの配線が積層している。一方で、相間配線部16では、基板6の厚さ方向に対して、複数の正極配線3と負極配線4は重ならず、それぞれの配線同士で積層されており、正極配線3と負極配線4は、基板6の平面において互いに並行するように配置される。また、相間配線部16では、正極配線3と負極配線4それぞれに同電位の配線を接続するビア5が設けられている。
 このような構成により、従来で正極配線3と負極配線4が混在している基板6に対してビア5を設けなければならないことにより、ビア5の分だけ正極配線3と負極配線4の分断が増えていた課題を解消している。また、このように、相間配線部16において、正極配線3と負極配線4が並行するように配置されることにより、正極配線3を流れる電流と負極配線4を流れる電流が左右で逆方向に対向するため、磁界が打ち消されてインダクタンスが低減される。さらに、基板6に沿って並んで配置されている各キャパシタ2(図2、図3参照)間で生じる共振電流が抑制され、電流の減少に伴い相間配線部16で発生する損失が低減される。またさらに、相間配線部16を流れる電流が積層配線部15の近傍で全層に分散されるため、配線発熱を低減することができ、放熱性が向上する。
(第2変形例)
(図9)
 図9は、ハイサイド側の回路体1とローサイド側の回路体1をそれぞれ一体化した構成例である。これにより、回路体1を基板6へ容易に実装でき、かつ各相の配線インダクタンスの低減と基板6の温度低減を両立できる。
 以上図1~図9で説明した本発明のインバータは三相に限らなくてもよい。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)複数のパワー半導体素子をそれぞれ有する複数の回路体1と、回路体1に電気的に接続され、厚さ方向に複数の正極配線3および負極配線4がそれぞれ積層されて設けられる配線基板6と、複数の回路体1にそれぞれ対応して設けられる複数の平滑キャパシタ2と、を備える。配線基板6は、複数の回路体1および複数の平滑キャパシタ2がそれぞれ接続される複数の積層配線部15と、複数の積層配線部15の間にそれぞれ形成される相間配線部16とを有している。積層配線部15において、正極配線3と負極配線4は互いに重なって積層し、相間配線部16において、複数の正極配線3と複数の負極配線4は配線基板6の平面においてそれぞれ分かれて積層し、相間配線部16は、配線基板6の厚さ方向に貫通するビア5を有する。このようにしたことで、基板の大電流化と低インダクタンス化を両立しつつ、放熱性を向上させた電力変換装置100を提供できる。
(2)相間配線部16の正極配線3と負極配線4は、配線基板6の平面において互いに並行するように配置される。このようにしたことで、正極配線3を流れる電流と負極配線4を流れる電流が左右で逆方向に対向するため、磁界が打ち消されてインダクタンスが低減される。
(3)複数の回路体1は、配線基板6上に主回路端子12を有し、主回路端子12は、平滑キャパシタ2の正極端子10と負極端子11との間の距離で定義される1辺に対して垂直の領域12a内に配置される。このようにしたことで、キャパシタ2と回路体1を接続する積層配線の配線長を短縮することができるため、積層配線部15の配線インダクタンスが低減され、回路体1をより高速にスイッチング制御させることが可能となる。また、回路体1で発生するスイッチング損失が低減され、かつ回路体1およびインバータ100全体を小型化できる。
(4)相間配線部16は、正極配線3および負極配線4にそれぞれ2つ以上のビア5を有している。ビア5は、積層配線部15と相間配線部16の配列方向に対して垂直な相間配線部16の中心線6aよりも、相間配線部16に隣接する積層配線部15に近い位置にそれぞれ設けられる。このようにしたことで、配線の冷却が難しい積層配線部15に対しては、相間配線部16において積層配線部15の近傍にビア5を配置することで、積層配線部15の配線温度を低減できる。
(5)配線基板6の一方の面には、複数の回路体1を冷却する冷却器14が配置され、冷却器14と配線基板6の間には、絶縁性の放熱部材13が設けられる。このようにしたことで、正極配線3および負極配線4へ電流を流した際に生じる熱は、相間配線部16のビア5を介して基板6から放熱部材13を介して冷却器14へと放熱されるため、基板6の配線温度を低減できる。
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
1 回路体(パワーモジュール)
2 キャパシタ
3 正極配線
4 負極配線
5 ビア
 5a ブラインドビア
6 配線基板
 6a 中心線
7 出力配線
8 信号端子
9 信号配線
10 キャパシタ正極端子
11 キャパシタ負極端子
12 回路体主回路端子
 12a 配置領域
13 放熱部材
14 冷却器
15 積層配線部
16 相間配線部
100 電力変換装置
 

Claims (5)

  1.  複数のパワー半導体素子をそれぞれ有する複数の回路体と、
     前記回路体に電気的に接続され、厚さ方向に複数の正極配線および負極配線がそれぞれ積層されて設けられる配線基板と、
     複数の前記回路体にそれぞれ対応して設けられる複数の平滑キャパシタと、を備え、
     前記配線基板は、複数の前記回路体および複数の前記平滑キャパシタがそれぞれ接続される複数の積層配線部と、複数の前記積層配線部の間にそれぞれ形成される相間配線部とを有し、
     前記積層配線部において、前記正極配線と前記負極配線は互いに重なって積層し、
     前記相間配線部において、複数の前記正極配線と複数の前記負極配線は前記配線基板の平面においてそれぞれ分かれて積層し、
     前記相間配線部は、前記配線基板の厚さ方向に貫通するビアを有する
     電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記相間配線部の前記正極配線と前記負極配線は、前記配線基板の平面において互いに並行するように配置される
     電力変換装置。
  3.  請求項1に記載の電力変換装置であって、
     複数の前記回路体は、前記配線基板上に主回路端子を有し、
     前記主回路端子は、前記平滑キャパシタの正極端子と負極端子との間の距離で定義される1辺に対して垂直の領域内に配置される
     電力変換装置。
  4.  請求項1に記載の電力変換装置であって、
     前記相間配線部は、前記正極配線および前記負極配線にそれぞれ2つ以上の前記ビアを有し、
     前記ビアは、前記積層配線部と前記相間配線部の配列方向に対して垂直な前記相間配線部の中心線よりも、前記相間配線部に隣接する前記積層配線部に近い位置にそれぞれ設けられる
     電力変換装置。
  5.  請求項1に記載の電力変換装置であって、
     前記配線基板の一方の面には、複数の前記回路体を冷却する冷却器が配置され、
     前記冷却器と前記配線基板の間には、絶縁性の放熱部材が設けられる
     電力変換装置。
PCT/JP2023/010455 2022-06-15 2023-03-16 電力変換装置 WO2023243169A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096835A JP2023183298A (ja) 2022-06-15 2022-06-15 電力変換装置
JP2022-096835 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243169A1 true WO2023243169A1 (ja) 2023-12-21

Family

ID=89192676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010455 WO2023243169A1 (ja) 2022-06-15 2023-03-16 電力変換装置

Country Status (2)

Country Link
JP (1) JP2023183298A (ja)
WO (1) WO2023243169A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102253A (ja) * 1998-09-25 2000-04-07 Hitachi Ltd 電力変換装置
JP2017163774A (ja) * 2016-03-11 2017-09-14 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2021035112A (ja) * 2019-08-21 2021-03-01 富士電機株式会社 電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102253A (ja) * 1998-09-25 2000-04-07 Hitachi Ltd 電力変換装置
JP2017163774A (ja) * 2016-03-11 2017-09-14 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2021035112A (ja) * 2019-08-21 2021-03-01 富士電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP2023183298A (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
US8705257B2 (en) Switching module including a snubber circuit connected in parallel to a series-connected unit of flowing restriction elements
US11538794B2 (en) Power converter with an upper arm and a lower arm and at least first and second semiconductor devices connected by a bridging member
US11270984B2 (en) Semiconductor module
JP5289348B2 (ja) 車載用電力変換装置
JP3723869B2 (ja) 半導体装置
US10720383B2 (en) Semiconductor device configuring upper and lower arms including auxiliary terminals
JP2013021318A (ja) スタック型ハーフブリッジ電力モジュール
CN113557603B (zh) 半导体装置
JP3673776B2 (ja) 半導体モジュール及び電力変換装置
US20220134889A1 (en) Power electronics assembly having staggered and diagonally arranged transistors
US11817794B2 (en) Electronic circuit module
JPWO2018109884A1 (ja) 電力変換装置
JP6123722B2 (ja) 半導体装置
WO2023243169A1 (ja) 電力変換装置
US20220140706A1 (en) Power electronics assembly having vertically stacked transistors
US11456673B2 (en) Power conversion device of a neutral point clamp type
JP2002093965A (ja) 半導体装置
JP2019062739A (ja) 電力変換装置
JP7428679B2 (ja) パワー半導体装置および電力変換装置
WO2021015050A1 (ja) 電気回路装置
US20230395457A1 (en) Power Semiconductor Device, Power Conversion Device, and Electric System
WO2022107439A1 (ja) パワー半導体モジュール
US11742267B2 (en) Power electronics assembly having flipped chip transistors
US20240023299A1 (en) Semiconductor apparatus
US20240049417A1 (en) Inverter structure of an inverter of a power electronics module for operating an electric drive of a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823473

Country of ref document: EP

Kind code of ref document: A1