WO2023242998A1 - Respiratory protective equipment - Google Patents

Respiratory protective equipment Download PDF

Info

Publication number
WO2023242998A1
WO2023242998A1 PCT/JP2022/023966 JP2022023966W WO2023242998A1 WO 2023242998 A1 WO2023242998 A1 WO 2023242998A1 JP 2022023966 W JP2022023966 W JP 2022023966W WO 2023242998 A1 WO2023242998 A1 WO 2023242998A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
outside air
ozone
air
respiratory
Prior art date
Application number
PCT/JP2022/023966
Other languages
French (fr)
Japanese (ja)
Inventor
敬祐 内藤
庄一 寺田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Priority to PCT/JP2022/023966 priority Critical patent/WO2023242998A1/en
Publication of WO2023242998A1 publication Critical patent/WO2023242998A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators

Definitions

  • the present invention relates to a respiratory protective equipment, and in particular, a respiratory protective equipment used for the purpose of protecting the wearer's breathing in an environment where the atmosphere may contain substances belonging to VOC (Volatile Organic Compounds). Regarding protective equipment.
  • VOC Volatile Organic Compounds
  • VOC VOC-containing environment
  • VOCs there are substances that are difficult to be adsorbed by adsorption media.
  • substances with relatively small molecular weights having 4 or less carbon atoms and substances that exhibit hydrophilicity are difficult to adsorb onto activated carbon or the like. Therefore, if this kind of substance is contained in the atmosphere, it will not be adsorbed by the adsorption medium built into the mask, and will be sent in a mixed state as air for workers to breathe. As a result, high safety for workers may not be ensured.
  • the respiratory protector according to the present invention includes: a cover body that surrounds the wearer's breathing area; a processing unit that processes the taken in outside air to convert it into treated gas, and sends the treated gas toward the breathing area located between the cover body and the wearer's face; Equipped with The processing unit includes: an intake port that takes in the outside air; an ozone supply unit that supplies ozone to the outside air taken in from the intake port; It is characterized by comprising an air supply port that supplies the treated gas, which is the outside air after ozone has been supplied, toward the breathing area.
  • VOC is a general term for organic compounds that are volatile and become gaseous in the atmosphere, and is a group of substances including formaldehyde, acetaldehyde, toluene, xylene, acetone, isopropyl alcohol, ethylene oxide, etc. It is a generic term.
  • a part of the highly reactive atomic oxygen obtained by the formula (1) reacts with moisture in the outside air to generate even more highly reactive hydroxyl radicals (.OH) according to the formula (2).
  • HCHO formaldehyde
  • Hydrogen radicals (.H) are converted to hydroperoxyl radicals (.HO 2 ) according to the following formula (3d).
  • the hydroperoxyl radical is converted into a hydroxyl radical according to the following formula (3e) and is further utilized for the VOC decomposition reaction, and the hydroperoxyl radical alone is also used for the VOC decomposition reaction.
  • ⁇ H + O 2 ⁇ HO 2 .... (3d) ⁇ HO 2 + O 3 ⁇ OH + 2O 2 (3e)
  • C 2 H 4 O ethylene oxide
  • O oxygen atoms
  • the outside air may contain a substance, such as the above-mentioned ethylene oxide, that reacts with atomic oxygen obtained by decomposing ozone to generate hydroxyl radicals.
  • the above-mentioned processing is performed in the processing unit to decompose the VOCs contained in the outside air, and the processed gas is delivered to the breathing area of the wearer.
  • safe breathing air can be supplied to the wearer.
  • the harmful substances belonging to VOC are decomposed within the processing unit, there is no need to remove many harmful substances by adsorption as in the conventional case. As a result, there is no need to frequently replace the adsorption medium for the purpose of ensuring high safety, and an increase in work load is suppressed.
  • radicals are generated when a photocatalyst filter is irradiated with external light.
  • radicals are generated only on the surface layer of the photocatalytic filter. Radicals have extremely short lifetimes due to their high reactivity. For this reason, even if outside air containing VOCs is passed through a photocatalyst filter, the radicals present on the filter surface for a short time only come into contact with the outside air, so the ability to decompose VOCs is extremely low. For this reason, it is practically difficult to use a photocatalytic filter for the purpose of reducing the VOC concentration of outside air mixed with VOCs to the extent that the air can be used as breathing air for workers.
  • the ozone supply section may be configured to include an ultraviolet light source that emits ultraviolet light with a wavelength of less than 200 nm.
  • the ultraviolet light source may be an excimer lamp that emits ultraviolet light having a peak wavelength of less than 200 nm.
  • Oxygen molecules have an absorption region called Schumann-Runge Bands in the ultraviolet region below 200 nm. Therefore, when oxygen molecules contained in the outside air taken into the processing unit are irradiated with ultraviolet light having a wavelength of less than 200 nm, they are decomposed into atomic oxygen according to the following equation (5).
  • M represents a third body (the same applies hereinafter).
  • the wavelength of the ultraviolet rays is less than 180 nm
  • the proportion of atomic oxygen O( 1 D) which is in an excited state and has extremely high reactivity
  • an ultraviolet light source that emits such ultraviolet light
  • an excimer lamp filled with xenon (Xe) gas can be used.
  • the processing unit may include a fan that controls the intake amount of the outside air from the intake port.
  • the processing unit includes a fan capable of controlling the intake amount of the outside air from the intake port according to the lighting state of the ultraviolet light source. It does not matter if it has the following.
  • the processing unit will not exhibit the desired decomposition performance for VOCs contained in the outside air taken into the processing unit. According to the above configuration, if a malfunction occurs such as when the ultraviolet light source goes out or the illuminance decreases, the air intake amount of the fan can be automatically reduced as much as possible or stopped, so that harmful substances can be removed. It is possible to prevent outside air (treated gas) containing a certain concentration or more of gas from being delivered to the wearer's breathing area.
  • the processing unit includes an alarm output section that outputs an alarm sound.
  • the processing unit may include an ozone decomposition member at a position downstream of a region to which ozone is supplied from the ozone supply section with respect to the flow direction of the outside air.
  • the respiratory protector according to the present invention is configured to deliver treated gas, which is obtained by decomposing VOCs contained in the outside air by ozone introduced into the processing unit, to the breathing area of the wearer. be. Therefore, there is a possibility that the ozone introduced into the processing unit is delivered to the wearer's breathing area while being contained in the processed gas. If ozone were to be included in the treated gas at a high concentration, it could potentially affect the wearer's body.
  • the ozone decomposition member is disposed downstream of the area where ozone is supplied, the treated gas that remains without contributing to the decomposition of VOCs contained in the outside air is
  • the ozone contained can be decomposed by an ozone decomposition member.
  • ozone decomposition member for example, one having a structure in which an ozone decomposition catalyst is supported on a base material can be adopted.
  • the processing unit may include an air filter different from the ozone decomposition member at a position downstream of the ozone decomposition member with respect to the flow direction of the outside air.
  • the air filter may be an activated carbon filter.
  • the air filter is placed downstream of the ozone decomposition catalyst, the air filter is processed after the VOCs contained in the outside air are decomposed by ozone, and after the ozone is decomposed and removed by the ozone decomposition catalyst. The finished gas passes through the air filter. Therefore, since the amount of harmful substances contained in the outside air is already reduced before the air passes through the air filter, the frequency of replacing the air filter can be reduced to a greater extent than in the past.
  • the cover body is an inlet for introducing the treated gas sent from the processing unit into a ventilation path formed in the cover body; a vent for delivering the treated gas flowing through the vent passage to the breathing area;
  • the cover body may include an exhaust port for exhausting exhaled breath of the wearer to the outside of the cover body.
  • the exhaust port has a valve (exhaust valve) structure that shows an open state when the wearer exhales and the breathing area reaches a high positive pressure state, and shows a closed state when the wearer is inhaling. I don't mind.
  • the respiratory protective equipment includes an air supply pipe that connects the introduction port provided on the cover body and the air supply port provided on the processing unit,
  • the air supply pipe may be longer than the distance between the air intake port and the air supply port of the processing unit.
  • the cover body worn by the wearer near the face and the processing unit installed to decompose harmful substances such as VOCs contained in the outside air can be placed apart from each other. Therefore, the manner in which the respiratory protector is worn can be changed according to the usage needs of the wearer, and the degree of freedom when wearing the respiratory protector can be increased.
  • a constant flow rate of the treated gas with a reduced concentration of VOC can be ensured in the air supply pipe. Therefore, even if a malfunction occurs on the processing unit side and the processing performance of harmful substances contained in the outside air deteriorates, the processed gas existing in the air pipe will continue to leak to the wearer's body for a certain period of time. Since air can be delivered to the wearer's breathing area, the risk that outside air containing a lot of harmful substances will be delivered to the wearer's breathing area is reduced. This ensures the wearer's safety even in the event of an unexpected situation.
  • an ozone decomposition member may be installed inside the air pipe.
  • the ozone decomposition member is removably attached to the air pipe, the replacement work of the ozone decomposition member can be simplified.
  • the respiratory protector may include a harness that secures the processing unit to the wearer. It is also possible to include a battery for driving the processing unit.
  • the harness can have a structure such as a backpack, a waist belt, or a shoulder belt. Furthermore, by providing a battery for driving the processing unit, the wearer can easily move.
  • respirator of the present invention it is possible to provide respiratory protection to the wearer even in an atmosphere containing harmful substances such as VOC without requiring frequent replacement of adsorption media such as activated carbon. Can be provided.
  • FIG. 1 is a drawing schematically showing an embodiment of a respiratory protective device of the present invention. It is a drawing which shows typically an example of the cover body with which a respiratory protection device is provided. 1 is a drawing schematically showing the configuration of a respiratory protective device.
  • FIG. 2 is a side view schematically showing a configuration example of an excimer lamp as an ultraviolet light source.
  • 4A is a sectional view taken along the line A1-A1 in FIG. 4A.
  • FIG. It is a graph in which the spectrum of ultraviolet light emitted from an excimer lamp filled with a luminescent gas containing Xe and the absorption spectrum of oxygen (O 2 ) are superimposed.
  • FIG. 1 is a diagram schematically showing the structure of an experimental system simulating a processing unit included in a respiratory protective device. It is a drawing which shows typically another structure of a respiratory protective device. It is a drawing which shows typically another structure of a respiratory protection device. It is a drawing which shows typically another structure of a respiratory protection device.
  • the respiratory protector 1 includes a processing unit 10 and a cover body 20.
  • the processing unit 10 is a device that takes in outside air G1 and decomposes harmful substances contained in the outside air G1, as will be described later.
  • the gas (processed gas G2) after the outside air G1 has been processed in the processing unit 10 is sent to the cover body 20.
  • the cover body 20 is attached to the face or head of the wearer 2 and is configured to cover the breathing area 21 such as the nose and mouth of the wearer 2.
  • the cover body 20 and the processing unit 10 are connected by an air pipe 30.
  • the processing unit 10 is fixed to the wearer 2 by a harness 41.
  • the processing unit 10 is fixed near the waist of the wearer 2, but the fixing method is arbitrary.
  • the processing unit 10 may be fixed on the back of the wearer 2.
  • FIG. 2 is a drawing schematically showing an example of the cover body 20.
  • the cover body 20 includes an introduction port 24 connected to the air supply pipe 30, a ventilation path 25 through which the treated gas G2 introduced from the introduction port 24 flows, and a ventilation port 26 provided in the ventilation path 25. and an exhaust port 23 for discharging exhaled breath G3 of the person 2 (see FIG. 1).
  • FIG. 3 is a drawing schematically showing the configuration of the respiratory protector 1.
  • the processing unit 10 includes an intake port 11 for intake of outside air G1, an ultraviolet light source 12 for emitting ultraviolet light L1, and an air supply for supplying processed gas G2 toward an air supply pipe 30.
  • a mouth 13 is provided.
  • a region (ultraviolet irradiation region) 5 to which ultraviolet light L1 is irradiated from the ultraviolet light source 12 corresponds to an "ozone supply section.”
  • the outside air G1 taken into the processing unit 10 through the intake port 11 is irradiated with ultraviolet light L1 from the ultraviolet light source 12 while passing through the ultraviolet irradiation region 5 .
  • the ultraviolet light source 12 emits ultraviolet light L1 having a peak wavelength of less than 200 nm.
  • the ultraviolet light source 12 is configured with an excimer lamp.
  • the electrode 44a disposed on the outer wall of the outer tube 43a has a mesh shape. Therefore, a gap exists in the electrode 44a, and the ultraviolet light L1 is extracted outward from the outer tube 43a through this gap. This ultraviolet ray L1 is irradiated onto the outside air G1 flowing through the processing unit 10.
  • a luminescent gas 45G containing Xe is sealed in a tube 43, and a high frequency voltage of 14 W of input power and 4 kVpp of applied voltage is applied to each electrode (44a, 44b) from a power source (not shown). Then, ultraviolet light L1 having a peak wavelength of 172 nm was emitted.
  • the length of the air supply pipe 30 is configured to be longer than the length in the direction in which the outside air G1 flows within the processing unit 10, that is, the distance between the air intake port 11 and the air supply port 13. It is preferable to Thereby, a certain amount of flow rate of the processed gas G2 can be secured in the air pipe 30.
  • the ultraviolet light source 12 and fan 14 in the processing unit 10 may be driven by a battery (not shown).
  • the control section 51 and the alarm output section 52 may also be driven by a battery. As a result, the wearer can move over a wide range while working.
  • the processing unit 10 may include one or more other filters (air filters) in addition to the ozone decomposition member 16.
  • FIG. 8 is a drawing schematically showing the configuration of the respiratory protector 1 of this other embodiment, in which the processing unit 10 includes a dust filter 17a, an activated carbon filter 17b, and a HEPA filter (High Efficiency Particulate Air) 17c. An example is shown.
  • the dust filter 17a is arranged before the ultraviolet light source 12 (on the intake port 11 side), and the activated carbon filter 17b and the HEPA filter 17c are arranged after the ozone decomposition member 16 (on the air intake port 13 side). side).
  • these activated carbon filters 17b and HEPA filters 17c are located downstream of the ultraviolet light source 12, that is, downstream of the area (ultraviolet irradiation area 5) where ozone is introduced into the outside air G1 by being irradiated with ultraviolet rays L1. It is located in Therefore, the VOC concentration of the treated gas G2 passing through the activated carbon filter 17b and HEPA filter 17c has been reduced in advance, so the amount of substances adsorbed and removed by these filters (17b, 17c) is not so large. do not have. Therefore, safe breathing air (treated gas G2) can be supplied to the wearer 2 without frequently replacing the filters (17b, 17c) as in the conventional case.
  • the activated carbon filter 17b disposed on the second path 10b side is large-sized or configured in a multi-stage arrangement to the extent that it can remove harmful substances contained in the outside air G1 without being irradiated with the ultraviolet light L1 from the ultraviolet light source 12. . That is, when the activated carbon filter 17b is arranged on the first path 10a side, it is preferable that the activated carbon filter 17b is larger or has more stages than the activated carbon filter 17b. On the other hand, the activated carbon filter 17b is not essential on the first path 10a side.
  • the processing unit 10 includes the ultraviolet light source 12 as an ozone supply section.
  • the processing unit 10 only needs to be configured to be able to supply ozone to the outside air G1 taken in, and as long as this is the case, it does not necessarily need to include the ultraviolet light source 12.
  • the processing unit 10 may include a discharge type ozonizer instead of the ultraviolet light source 12.
  • NOx nitrogen oxides
  • the processing unit 10 may be directly connected and fixed to the cover body 20. That is, the respiratory protector 1 may not include the air pipe 30.
  • the processing unit 10 may include a gas sensor for detecting the concentration of VOC.
  • the gas sensor is preferably disposed in the processing unit 10 at a later stage than the ozone supply section (in the example of FIG. 3, at a later stage than the ultraviolet light source 12).
  • the gas sensor recognizes that the operating state of the processing unit 10 is poor, and performs the operation shown in FIG. Similarly to the configuration, the defect detection signal i12 may be output to the control section 51.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The present invention provides respiratory protective equipment with which it is possible to protect respiration in an atmosphere containing VOCs or other hazardous substances without requiring frequent replacement of active carbon or other adsorption media. This respiratory protective equipment comprises: a cover body that surrounds a respiration area of a wearer; and a processing unit that performs a process on outside air that is taken in to convert the outside air to processed air, the processing unit feeding the processed air into the respiration area, which is positioned between the cover body and the surface of the face of the wearer. The processing unit is provided with: an inhalation opening through which the outside air is inhaled; an ozone supply unit that supplies ozone to the outside air taken in through the inhalation opening; and an air feeding opening through which the processed air, which is the outside air after supply of the ozone, is fed into the respiration area.

Description

呼吸用保護具respiratory protection
 本発明は呼吸用保護具に関し、特に、雰囲気にVOC(Volatile Organic Compounds:揮発性有機化合物)に属する物質が含まれるおそれのある環境下で、着用者の呼吸を保護する目的で用いられる呼吸用保護具に関する。 The present invention relates to a respiratory protective equipment, and in particular, a respiratory protective equipment used for the purpose of protecting the wearer's breathing in an environment where the atmosphere may contain substances belonging to VOC (Volatile Organic Compounds). Regarding protective equipment.
 人体に有害なおそれのある環境空気中で呼吸保護の目的で着用される器具として、呼吸用保護具が知られている。例えば、下記特許文献1には、粒子状物質のガス吸引を防ぎつつ呼吸を保護する道具として、フィルタ素子が内蔵されたマスクが開示されている。また、特許文献2には、有害な汚染物質を吸着する目的で、活性炭等の吸着媒体が内蔵されたフィルタカートリッジを含むマスクが開示されている。 Respiratory protectors are known as equipment worn for the purpose of respiratory protection in environmental air that may be harmful to the human body. For example, Patent Document 1 listed below discloses a mask with a built-in filter element as a tool for protecting breathing while preventing gas inhalation of particulate matter. Further, Patent Document 2 discloses a mask including a filter cartridge containing an adsorption medium such as activated carbon for the purpose of adsorbing harmful pollutants.
特表2004-523277号公報Special Publication No. 2004-523277 特表2013-508082号公報Special table 2013-508082 publication
 VOCに属する物質(以下、単に「VOC」と称することがある。)は、人体に対して影響を及ぼすことが知られている。このため、VOCが雰囲気中に含まれる可能性のある環境(以下、「VOC含有環境」と称することがある。)下で作業等を行う作業従事者は、安全な呼吸を確保する観点から呼吸用保護具を着用することが推奨される。 Substances belonging to VOC (hereinafter sometimes simply referred to as "VOC") are known to have an effect on the human body. For this reason, workers who work in an environment where VOCs may be contained in the atmosphere (hereinafter sometimes referred to as a "VOC-containing environment") should take precautions to ensure safe breathing. It is recommended that personal protective equipment be worn.
 上記特許文献1に記載されたマスクの場合、雰囲気中に含まれる粉塵等の微粒子を除去する機能は奏するが、VOCを含む雰囲気はそのまま通過してしまう。したがって、このマスクは、前記VOC含有環境で作業する作業従事者に対して安全性を確保する観点では、十分な効果が得られない。 In the case of the mask described in Patent Document 1, the mask functions to remove particulates such as dust contained in the atmosphere, but the atmosphere containing VOCs passes through as is. Therefore, this mask is not sufficiently effective in ensuring the safety of workers working in the VOC-containing environment.
 一方、特許文献2に記載されたマスクの場合、前記VOC含有環境下で使用された場合、VOC等の有害物質が活性炭等の吸着媒体に吸着される。このため、有害物質が除去された空気を作業従事者に供給できるため、従事者に対する安全性が確保できる。 On the other hand, in the case of the mask described in Patent Document 2, when used in the VOC-containing environment, harmful substances such as VOCs are adsorbed by an adsorption medium such as activated carbon. Therefore, air from which harmful substances have been removed can be supplied to the workers, ensuring safety for the workers.
 しかしながら、VOCの中には吸着媒体で吸着されにくい物質が存在する。例えば、炭素数が4以下の分子量が比較的小さい物質や親水性を示す物質は、活性炭等には吸着しづらい。このため、この種の物質が雰囲気中に含まれている場合には、マスクに内蔵された吸着媒体で吸着されず、混在した状態で作業従事者の呼吸用の空気として送られることになる。この結果、作業従事者に対する高い安全性が確保できない可能性がある。 However, among VOCs, there are substances that are difficult to be adsorbed by adsorption media. For example, substances with relatively small molecular weights having 4 or less carbon atoms and substances that exhibit hydrophilicity are difficult to adsorb onto activated carbon or the like. Therefore, if this kind of substance is contained in the atmosphere, it will not be adsorbed by the adsorption medium built into the mask, and will be sent in a mixed state as air for workers to breathe. As a result, high safety for workers may not be ensured.
 また、作業従事者が、活性炭等の吸着媒体を内蔵したマスクを用いて作業を行う場合、使用に伴って吸着媒体に有害物質が吸着されることで、経時的に吸着性能が低下する。このため、高い安全性を確保するためには、頻繁に吸着媒体を交換する必要があり、交換作業が追加的に必要になる。この結果、高い安全性を担保するためには、吸着媒体の交換時期を管理する必要があり、管理や交換作業に伴う作業負担が増大する可能性がある。 Furthermore, when workers work using a mask containing an adsorption medium such as activated carbon, the adsorption performance deteriorates over time as harmful substances are adsorbed to the adsorption medium as it is used. Therefore, in order to ensure high safety, it is necessary to frequently replace the adsorption medium, which requires additional replacement work. As a result, in order to ensure high safety, it is necessary to manage the replacement timing of the adsorption medium, which may increase the workload associated with management and replacement work.
 本発明は、上記の課題に鑑み、活性炭等の吸着媒体の頻繁な交換を必要とせず、VOC等の有害物質を含む雰囲気下での呼吸の保護を可能とする、呼吸用保護具を提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a respiratory protective device that does not require frequent replacement of adsorption media such as activated carbon and enables respiratory protection in an atmosphere containing harmful substances such as VOC. The purpose is to
 本発明に係る呼吸用保護具は、
 着用者の呼吸域を包囲するカバー体と、
 取り込まれた外気に対して処理を行って処理済気体に変換し、前記カバー体と前記着用者の顔面との間に位置する前記呼吸域に向けて前記処理済気体を送気する処理ユニットとを備え、
 前記処理ユニットは、
  前記外気を吸気する吸気口と、
  前記吸気口から取り込まれた前記外気に対してオゾンを供給するオゾン供給部と、
  オゾンが供給された後の前記外気である前記処理済気体を前記呼吸域に向かって送気する送気口とを備えることを特徴とする。
The respiratory protector according to the present invention includes:
a cover body that surrounds the wearer's breathing area;
a processing unit that processes the taken in outside air to convert it into treated gas, and sends the treated gas toward the breathing area located between the cover body and the wearer's face; Equipped with
The processing unit includes:
an intake port that takes in the outside air;
an ozone supply unit that supplies ozone to the outside air taken in from the intake port;
It is characterized by comprising an air supply port that supplies the treated gas, which is the outside air after ozone has been supplied, toward the breathing area.
 本明細書において、VOCとは、揮発性を有し、大気中で気体状となる有機化合物の総称であり、ホルムアルデヒド、アセトアルデヒド、トルエン、キシレン、アセトン、イソプロピルアルコール、エチレンオキサイド等を含む物質群の総称である。 In this specification, VOC is a general term for organic compounds that are volatile and become gaseous in the atmosphere, and is a group of substances including formaldehyde, acetaldehyde, toluene, xylene, acetone, isopropyl alcohol, ethylene oxide, etc. It is a generic term.
 上記の呼吸用保護具によれば、外気にVOCが含まれている場合であっても、このVOCを含む外気が処理ユニット内に取り込まれた後、この外気に対してオゾン供給部からのオゾンが供給される。オゾンは、反応性が比較的高いため、処理ユニット内において以下の(1)式に従って分解される。なお、下記(1)式内におけるEは、オゾンに加えられるエネルギーを示している。このエネルギーとしては、処理ユニット内に取り込まれて通流する外気の気流が有する運動エネルギーや熱エネルギーが対応する。また、処理ユニット内に紫外光源が内蔵されている場合には、前記エネルギーは、この紫外光源から出射される紫外線の光エネルギーに対応する。
  O3 + E → O2 + O ‥‥(1)
According to the above-mentioned respiratory protective equipment, even if the outside air contains VOCs, after the outside air containing the VOCs is taken into the processing unit, ozone from the ozone supply unit is applied to the outside air. is supplied. Since ozone has relatively high reactivity, it is decomposed in the processing unit according to the following equation (1). Note that E in the following formula (1) indicates energy added to ozone. This energy corresponds to kinetic energy and thermal energy possessed by the flow of outside air taken into the processing unit and flowing through it. Furthermore, if an ultraviolet light source is built into the processing unit, the energy corresponds to the optical energy of ultraviolet light emitted from the ultraviolet light source.
O 3 + E → O 2 + O (1)
 (1)式で得られた反応性の高い原子状酸素の一部は、外気中の水分と反応して、(2)式に従って更に反応性の高いヒドロキシラジカル(・OH)を生成する。
  O + H2O → 2・OH ‥‥(2)
A part of the highly reactive atomic oxygen obtained by the formula (1) reacts with moisture in the outside air to generate even more highly reactive hydroxyl radicals (.OH) according to the formula (2).
O + H 2 O → 2・OH (2)
 例えば、外気中にVOCの一種であるホルムアルデヒド(HCHO)が含まれていた場合、以下の(3a)~(3c)の反応を経て分解される。
  HCHO + ・OH → ・CHO + H2O ‥‥(3a)
  ・CHO + O2 → CO + ・HO2 ‥‥(3b)
  CO + ・OH → CO2 + ・H ‥‥(3c)
For example, if formaldehyde (HCHO), a type of VOC, is contained in the outside air, it is decomposed through the following reactions (3a) to (3c).
HCHO + ・OH → ・CHO + H 2 O (3a)
・CHO + O 2 → CO + ・HO 2 (3b)
CO + ・OH → CO 2 + ・H (3c)
 水素ラジカル(・H)は、下記式(3d)に従ってヒドロペルオキシルラジカル(・HO2)に変換される。ヒドロペルオキシルラジカルは、下記式(3e)に従ってヒドロキシラジカルに変換されて更にVOCの分解反応に利用される他、ヒドロペルオキシルラジカル単独でもVOCの分解反応に利用される。
 ・H + O2 →・HO2 ‥‥(3d)
 ・HO2 + O3 →・OH + 2O2 ‥‥(3e)
Hydrogen radicals (.H) are converted to hydroperoxyl radicals (.HO 2 ) according to the following formula (3d). The hydroperoxyl radical is converted into a hydroxyl radical according to the following formula (3e) and is further utilized for the VOC decomposition reaction, and the hydroperoxyl radical alone is also used for the VOC decomposition reaction.
・H + O 2 →・HO 2 ‥‥ (3d)
・HO 2 + O 3 →・OH + 2O 2 (3e)
 ここでは、VOCの例としてHCHOの場合を挙げて説明したが、処理ユニット内に供給されたオゾンから、反応性の高い酸素原子やヒドロキシラジカルが生成されることで、C-C結合、C-H結合、C-O結合等を含む他のVOC物質に対しても、同様に分解処理を行うことができる。 Here, we have explained the case of HCHO as an example of VOC, but highly reactive oxygen atoms and hydroxyl radicals are generated from ozone supplied into the processing unit, resulting in C-C bonds, C- Other VOC substances containing H bonds, C—O bonds, etc. can also be similarly decomposed.
 なお、VOCの一種であるエチレンオキサイド(ここでは「C24O」と記載する。)は、酸素原子(O)と反応することで、下記(4)式のようにヒドロキシラジカルを生成する。この(4)式は、エチレンオキサイドの分解反応の途中で生じる反応を示している。
 C24O + O → ・OH + Oxiranyl (C23O) ‥‥(4)
In addition, ethylene oxide (herein referred to as "C 2 H 4 O"), which is a type of VOC, generates hydroxyl radicals as shown in the following formula (4) by reacting with oxygen atoms (O). . This formula (4) shows a reaction that occurs during the decomposition reaction of ethylene oxide.
C 2 H 4 O + O → ・OH + Oxiranyl (C 2 H 3 O) (4)
 VOCが雰囲気中に含有されている可能性の高い環境においては、特定のVOC物質のみが雰囲気中に含有されていることは少なく、複数種のVOC物質が雰囲気中に含まれていることが一般的である。このため、上記エチレンオキサイドのように、オゾンが分解されて得られた原子状酸素と反応してヒドロキシラジカルを生成する物質が外気中に含まれることがある。 In environments where there is a high possibility that VOCs are contained in the atmosphere, it is rare that only a specific VOC substance is contained in the atmosphere, and it is common that multiple types of VOC substances are contained in the atmosphere. It is true. For this reason, the outside air may contain a substance, such as the above-mentioned ethylene oxide, that reacts with atomic oxygen obtained by decomposing ozone to generate hydroxyl radicals.
 つまり、処理ユニット内にオゾンが供給されることで、このオゾンが外気に含まれるVOC物質に対して反応し、反応性の高いヒドロキシラジカル等のラジカル物質が生成される。そして、このラジカルによって、VOCが二酸化炭素や水といった安全な物質に分解される。 That is, by supplying ozone into the processing unit, this ozone reacts with VOC substances contained in the outside air, and highly reactive radical substances such as hydroxyl radicals are generated. These radicals then decompose VOCs into safe substances such as carbon dioxide and water.
 従って、上記呼吸用保護具によれば、処理ユニット内で上記の処理が行われて外気に含まれるVOCが分解されてなる処理済気体が、着用者の呼吸域に送気される。この結果、着用者に対して安全な呼吸用空気を供給できる。 Therefore, according to the above-mentioned respiratory protection device, the above-mentioned processing is performed in the processing unit to decompose the VOCs contained in the outside air, and the processed gas is delivered to the breathing area of the wearer. As a result, safe breathing air can be supplied to the wearer.
 また、上記呼吸用保護具によれば、VOCに属する有害物質を処理ユニット内で分解する構成であるため、従来のように吸着によって多くの有害物質を除去する必要がない。この結果、高い安全性を確保する目的で吸着媒体を頻繁に交換する必要がなく、作業負担の増大を招くことが抑制される。 Moreover, according to the above-mentioned respiratory protection device, since the harmful substances belonging to VOC are decomposed within the processing unit, there is no need to remove many harmful substances by adsorption as in the conventional case. As a result, there is no need to frequently replace the adsorption medium for the purpose of ensuring high safety, and an increase in work load is suppressed.
 ところで、光触媒フィルタに対して外光が照射されることでラジカルが生成されることは知られている。しかし、この場合、ラジカルは光触媒フィルタの表層にのみ生成される。ラジカルは、反応性の高さに起因して、その寿命が極めて短い。このため、VOCが含有された外気を光触媒フィルタに通過させても、そのフィルタ表面に短時間にわたって存在するラジカルが外気に接触するのみであるため、VOCの分解能力は極めて低い。このため、VOCが混在した外気に対して、作業者の呼吸用空気として利用できる程度にまでVOC濃度を低下させる目的で光触媒フィルタを利用することは、現実的に困難である。 By the way, it is known that radicals are generated when a photocatalyst filter is irradiated with external light. However, in this case, radicals are generated only on the surface layer of the photocatalytic filter. Radicals have extremely short lifetimes due to their high reactivity. For this reason, even if outside air containing VOCs is passed through a photocatalyst filter, the radicals present on the filter surface for a short time only come into contact with the outside air, so the ability to decompose VOCs is extremely low. For this reason, it is practically difficult to use a photocatalytic filter for the purpose of reducing the VOC concentration of outside air mixed with VOCs to the extent that the air can be used as breathing air for workers.
 前記オゾン供給部は、200nm未満の紫外線を出射する紫外光源を含んで構成されるものとして構わない。
 前記紫外光源は、ピーク波長が200nm未満の紫外線を出射するエキシマランプであっても構わない。
The ozone supply section may be configured to include an ultraviolet light source that emits ultraviolet light with a wavelength of less than 200 nm.
The ultraviolet light source may be an excimer lamp that emits ultraviolet light having a peak wavelength of less than 200 nm.
 酸素分子は、200nm未満の紫外域にシューマン・ルンゲ帯(Schumann-Runge Bands)と呼ばれる吸収域を有している。このため、処理ユニット内に取り込まれた外気に含まれる酸素分子に対して、200nm未満の波長の紫外線が照射されると、下記(5)式に従って、原子状酸素に分解される。
 O2 + hν(λ) → O + O ‥‥(5)
Oxygen molecules have an absorption region called Schumann-Runge Bands in the ultraviolet region below 200 nm. Therefore, when oxygen molecules contained in the outside air taken into the processing unit are irradiated with ultraviolet light having a wavelength of less than 200 nm, they are decomposed into atomic oxygen according to the following equation (5).
O 2 + hν(λ) → O + O (5)
 一部の原子状酸素は、外気に含まれる酸素分子と反応してオゾンを生成する。なお、(6)式においてMは第三体を示す(以下同様)。
 O + O2 + M → O3 + M ‥‥(6)
Some atomic oxygen reacts with oxygen molecules in the outside air to produce ozone. Note that in formula (6), M represents a third body (the same applies hereinafter).
O + O 2 + M → O 3 + M (6)
 よって、処理ユニット内に取り込まれた外気に対して紫外光源からの紫外線が照射されることで、オゾンが生成され、このオゾンが外気に対して反応することで、上述したように、VOCを分解することができる。 Therefore, when the outside air taken into the processing unit is irradiated with ultraviolet rays from the ultraviolet light source, ozone is generated, and this ozone reacts with the outside air to decompose VOCs as described above. can do.
 特に、紫外線の波長が180nm未満である場合には、(5)式で生成される原子状酸素のうち、励起状態を示し反応性の極めて高い原子状酸素O(1D)の割合が高まる。このため、上記(2)式に従って生成されるヒドロキシラジカルの量が高められるため、VOCの分解速度を更に速めることができる。このような紫外線を発する紫外光源の例としては、たとえばキセノン(Xe)ガスが封入されたエキシマランプを利用できる。 In particular, when the wavelength of the ultraviolet rays is less than 180 nm, the proportion of atomic oxygen O( 1 D), which is in an excited state and has extremely high reactivity, increases among the atomic oxygen generated by equation (5). Therefore, since the amount of hydroxyl radicals generated according to the above formula (2) is increased, the decomposition rate of VOC can be further accelerated. As an example of an ultraviolet light source that emits such ultraviolet light, an excimer lamp filled with xenon (Xe) gas can be used.
 前記処理ユニットは、前記吸気口からの前記外気の吸気量を制御するファンを備えていても構わない。 The processing unit may include a fan that controls the intake amount of the outside air from the intake port.
 処理ユニット内に取り込まれる外気の流量が時間ごとに大きく変化してしまうと、処理ユニット内における処理ムラが生じるおそれがある。上記のように処理ユニットがファンを備えることで、吸気口から処理ユニットに取り込まれる外気の吸気量をほぼ一定に調整することが可能となるため、呼吸域に対して送気される処理済気体に含まれるVOC濃度を、常時安全な範囲内に抑制できる。 If the flow rate of outside air taken into the processing unit changes significantly from time to time, there is a risk that processing unevenness will occur within the processing unit. By equipping the processing unit with a fan as described above, it becomes possible to adjust the intake amount of outside air taken into the processing unit from the intake port to a nearly constant level, so that the processed gas delivered to the breathing area becomes The concentration of VOCs contained in the product can be kept within a safe range at all times.
 なお、前記オゾン供給部が前記紫外光源を含んで構成される場合には、前記処理ユニットが、前記紫外光源の点灯状態に応じて、前記吸気口からの前記外気の吸気量を制御可能なファンを備えるものとしても構わない。 Note that when the ozone supply section includes the ultraviolet light source, the processing unit includes a fan capable of controlling the intake amount of the outside air from the intake port according to the lighting state of the ultraviolet light source. It does not matter if it has the following.
 仮に、紫外光源に不具合が生じると、処理ユニットに取り込まれた外気に含まれるVOCに対して、当該処理ユニット内で所望の分解性能を奏しない場合が想定される。上記の構成によれば、紫外光源が不点灯となったり、照度が低下した場合などの不具合が生じると、自動的にファンの吸気量を極力低下させるか又は停止させることができるため、有害物質が一定濃度以上含まれる外気(処理済気体)を、着用者の呼吸域に送気させないようにできる。 If a problem occurs in the ultraviolet light source, it is conceivable that the processing unit will not exhibit the desired decomposition performance for VOCs contained in the outside air taken into the processing unit. According to the above configuration, if a malfunction occurs such as when the ultraviolet light source goes out or the illuminance decreases, the air intake amount of the fan can be automatically reduced as much as possible or stopped, so that harmful substances can be removed. It is possible to prevent outside air (treated gas) containing a certain concentration or more of gas from being delivered to the wearer's breathing area.
 なお、前記のように、紫外光源に不具合が生じた場合には、着用者に対してその旨の警告信号を報知して、着用者に対して現場から直ちに退避させることを促すのが好ましい。
具体的な一例として、前記処理ユニットが、警告音を出力する警報出力部を備える構成を採用できる。
Note that, as described above, if a malfunction occurs in the ultraviolet light source, it is preferable to notify the wearer of the problem with a warning signal to urge the wearer to immediately evacuate from the scene.
As a specific example, a configuration may be adopted in which the processing unit includes an alarm output section that outputs an alarm sound.
 前記処理ユニットは、前記外気の通流方向に関して、前記オゾン供給部からオゾンが供給される領域よりも下流側の位置に、オゾン分解部材を備えるものとしても構わない。 The processing unit may include an ozone decomposition member at a position downstream of a region to which ozone is supplied from the ozone supply section with respect to the flow direction of the outside air.
 上述したように、本発明に係る呼吸用保護具は、処理ユニット内に導入されるオゾンによって外気に含まれるVOCが分解されてなる処理済気体を、着用者の呼吸域に送気する構成である。このため、処理ユニット内に導入されたオゾンが、処理済気体に含有された状態で着用者の呼吸域に送気される可能性がある。万一、オゾンが高濃度で処理済気体に含有されてしまうと、着用者の人体に影響を及ぼす可能性が考えられる。 As described above, the respiratory protector according to the present invention is configured to deliver treated gas, which is obtained by decomposing VOCs contained in the outside air by ozone introduced into the processing unit, to the breathing area of the wearer. be. Therefore, there is a possibility that the ozone introduced into the processing unit is delivered to the wearer's breathing area while being contained in the processed gas. If ozone were to be included in the treated gas at a high concentration, it could potentially affect the wearer's body.
 これに対し、上記の構成によれば、オゾンが供給される領域よりも下流側にオゾン分解部材が配置されているため、外気に含まれるVOC分解に寄与せずに残存した、処理済気体に含有するオゾンを、オゾン分解部材によって分解することができる。これにより、処理ユニットから着用者の呼吸域に送気される処理済気体のオゾン含有濃度を確実に低下でき、着用者の安全性が担保される。 On the other hand, according to the above configuration, since the ozone decomposition member is disposed downstream of the area where ozone is supplied, the treated gas that remains without contributing to the decomposition of VOCs contained in the outside air is The ozone contained can be decomposed by an ozone decomposition member. Thereby, the ozone content concentration of the treated gas delivered from the processing unit to the wearer's breathing region can be reliably reduced, and the wearer's safety is ensured.
 オゾン分解部材としては、例えば基材にオゾン分解触媒が担持された構造のものを採用することができる。 As the ozone decomposition member, for example, one having a structure in which an ozone decomposition catalyst is supported on a base material can be adopted.
 前記処理ユニットは、前記外気の通流方向に関して、前記オゾン分解部材よりも下流側の位置に、前記オゾン分解部材とは異なるエアフィルタを備えるものとしても構わない。
 前記エアフィルタが活性炭フィルタであっても構わない。
The processing unit may include an air filter different from the ozone decomposition member at a position downstream of the ozone decomposition member with respect to the flow direction of the outside air.
The air filter may be an activated carbon filter.
 上記の構成によれば、外気に含まれる有害物質のうち、オゾンによって分解されなかった残留物が存在する場合であっても、エアフィルタによって除去することができるため、着用者に対する安全性を更に高めることができる。また、エアフィルタがオゾン分解触媒よりも後段に配置されているため、オゾンによって外気に含まれるVOCが分解処理された後であって、且つ、オゾン分解触媒によってオゾンが分解除去された後の処理済ガスがエアフィルタを通過する。したがって、エアフィルタを通過する前段階で、外気中に含まれる有害物質の量はそもそも低下されているため、エアフィルタの交換頻度は従来よりも大幅に抑制される。 According to the above configuration, even if there is a residue of harmful substances contained in the outside air that has not been decomposed by ozone, it can be removed by the air filter, further increasing safety for the wearer. can be increased. In addition, since the air filter is placed downstream of the ozone decomposition catalyst, the air filter is processed after the VOCs contained in the outside air are decomposed by ozone, and after the ozone is decomposed and removed by the ozone decomposition catalyst. The finished gas passes through the air filter. Therefore, since the amount of harmful substances contained in the outside air is already reduced before the air passes through the air filter, the frequency of replacing the air filter can be reduced to a greater extent than in the past.
 前記カバー体は、
  前記処理ユニットから送気された前記処理済気体を当該カバー体内に形成された通気路に導入する導入口と、
  前記通気路を通流する前記処理済気体を前記呼吸域に送気する通気口と、
  前記着用者の呼気を前記カバー体の外側に排気するための排気口とを備えるものとしても構わない。
The cover body is
an inlet for introducing the treated gas sent from the processing unit into a ventilation path formed in the cover body;
a vent for delivering the treated gas flowing through the vent passage to the breathing area;
The cover body may include an exhaust port for exhausting exhaled breath of the wearer to the outside of the cover body.
 前記排気口は、着用者が呼気を吐き出して呼吸域が高い陽圧状態になった時点で開口状態を示し、着用者が吸気中には閉塞状態を示すような弁(排気弁)構造であっても構わない。 The exhaust port has a valve (exhaust valve) structure that shows an open state when the wearer exhales and the breathing area reaches a high positive pressure state, and shows a closed state when the wearer is inhaling. I don't mind.
 前記呼吸用保護具は、前記カバー体に設けられた前記導入口と、前記処理ユニットに設けられた前記送気口とを連結する送気管を備え、
 前記送気管は、前記処理ユニットの前記吸気口と前記送気口との間の離間距離よりも長いものとしても構わない。
The respiratory protective equipment includes an air supply pipe that connects the introduction port provided on the cover body and the air supply port provided on the processing unit,
The air supply pipe may be longer than the distance between the air intake port and the air supply port of the processing unit.
 上記構成によれば、着用者によって顔面近傍に装着されるカバー体と、外気に含まれるVOC等の有害物質を分解処理するために設置される処理ユニットとを離間させた状態で配置できる。これにより、着用者の利用ニーズに応じて呼吸用保護具の装着態様を変えることができ、装着時の自由度を上げることができる。 According to the above configuration, the cover body worn by the wearer near the face and the processing unit installed to decompose harmful substances such as VOCs contained in the outside air can be placed apart from each other. Thereby, the manner in which the respiratory protector is worn can be changed according to the usage needs of the wearer, and the degree of freedom when wearing the respiratory protector can be increased.
 更に、上記構成によれば、送気管内にVOCの含有濃度が低下した処理済気体を一定流量確保することができる。このため、仮に処理ユニット側に不具合が生じて、外気中に含まれる有害物質の処理性能が低下した場合であっても、ある程度の時間にわたって、送気管内に存在する処理済気体が着用者の呼吸域に対して送気できるため、直ちに有害物質を多く含む外気が着用者の呼吸域に送気されるリスクが低下する。これにより、不測の事態が生じた場合であっても、着用者の安全性が担保される。 Further, according to the above configuration, a constant flow rate of the treated gas with a reduced concentration of VOC can be ensured in the air supply pipe. Therefore, even if a malfunction occurs on the processing unit side and the processing performance of harmful substances contained in the outside air deteriorates, the processed gas existing in the air pipe will continue to leak to the wearer's body for a certain period of time. Since air can be delivered to the wearer's breathing area, the risk that outside air containing a lot of harmful substances will be delivered to the wearer's breathing area is reduced. This ensures the wearer's safety even in the event of an unexpected situation.
 なお、送気管の内部に、オゾン分解部材が搭載されていても構わない。例えば、送気管に対してオゾン分解部材を着脱可能に取り付けることができる構成であれば、オゾン分解部材の交換作業が簡素化できる。 Note that an ozone decomposition member may be installed inside the air pipe. For example, if the ozone decomposition member is removably attached to the air pipe, the replacement work of the ozone decomposition member can be simplified.
 前記呼吸用保護具は、前記処理ユニットを前記着用者に固定するハーネスを備えるものとしても構わない。
 前記処理ユニットを駆動するためのバッテリーを備えるものとしても構わない。
The respiratory protector may include a harness that secures the processing unit to the wearer.
It is also possible to include a battery for driving the processing unit.
 上記構成によれば、着用者が作業従事中に移動した場合であっても、処理ユニットが着用者に対して固定されるため、着用者の安全性が確保できる。ハーネスは、背負具、腰ベルト、肩ベルト等の構造を採用することができる。
 また、処理ユニットを駆動するためのバッテリーを備えることによって、着用者の移動が容易に可能となる。
According to the above configuration, even if the wearer moves while engaged in work, the processing unit is fixed to the wearer, so the safety of the wearer can be ensured. The harness can have a structure such as a backpack, a waist belt, or a shoulder belt.
Furthermore, by providing a battery for driving the processing unit, the wearer can easily move.
 本発明の呼吸用保護具によれば、活性炭等の吸着媒体の頻繁な交換を必要とすることなく、VOC等の有害物質を含む雰囲気下であっても、着用者に対して呼吸の保護を提供できる。 According to the respirator of the present invention, it is possible to provide respiratory protection to the wearer even in an atmosphere containing harmful substances such as VOC without requiring frequent replacement of adsorption media such as activated carbon. Can be provided.
本発明の呼吸用保護具の一実施形態を模式的に示す図面である。1 is a drawing schematically showing an embodiment of a respiratory protective device of the present invention. 呼吸用保護具が備えるカバー体の一例を模式的に示す図面である。It is a drawing which shows typically an example of the cover body with which a respiratory protection device is provided. 呼吸用保護具の構成を模式的に示す図面である。1 is a drawing schematically showing the configuration of a respiratory protective device. 紫外光源としてのエキシマランプの構成例を模式的に示す側面図である。FIG. 2 is a side view schematically showing a configuration example of an excimer lamp as an ultraviolet light source. 図4A内のA1-A1線断面図である。4A is a sectional view taken along the line A1-A1 in FIG. 4A. FIG. Xeを含む発光ガスが封入されたエキシマランプから出射される紫外光のスペクトルと、酸素(O2)の吸収スペクトルとを重ねて表示したグラフである。It is a graph in which the spectrum of ultraviolet light emitted from an excimer lamp filled with a luminescent gas containing Xe and the absorption spectrum of oxygen (O 2 ) are superimposed. 呼吸用保護具が備える処理ユニットを模擬した実験系の構造を模式的に示す図面である。1 is a diagram schematically showing the structure of an experimental system simulating a processing unit included in a respiratory protective device. 呼吸用保護具の別の構成を模式的に示す図面である。It is a drawing which shows typically another structure of a respiratory protective device. 呼吸用保護具の更に別の構成を模式的に示す図面である。It is a drawing which shows typically another structure of a respiratory protection device. 呼吸用保護具の更に別の構成を模式的に示す図面である。It is a drawing which shows typically another structure of a respiratory protection device.
 本発明に係る呼吸用保護具の実施形態につき、図面を参照して説明する。なお、以下の各図面は、模式的に図示されたものであり、図面上の寸法比と実際の寸法比は必ずしも一致していない。また、各図面間においても、寸法比は必ずしも一致していない。 Embodiments of the respiratory protector according to the present invention will be described with reference to the drawings. Note that the following drawings are schematically illustrated, and the dimensional ratios on the drawings and the actual dimensional ratios do not necessarily match. Furthermore, the dimensional ratios do not necessarily match between the drawings.
 図1は、本発明に係る呼吸用保護具の一実施形態を模式的に示す図面である。呼吸用保護具1は、着用者2に取り付けられて利用される。着用者2は、例えば化学工場や、薬品倉庫、医療現場、滅菌工場、廃液処理工場等、有害物質が雰囲気中に含まれる可能性のある環境下で作業に従事する人間が想定されている。 FIG. 1 is a drawing schematically showing an embodiment of a respiratory protector according to the present invention. The respiratory protective equipment 1 is used by being attached to the wearer 2. The wearer 2 is assumed to be a person who works in an environment where harmful substances may be contained in the atmosphere, such as a chemical factory, a drug warehouse, a medical site, a sterilization factory, or a waste liquid treatment factory.
 呼吸用保護具1は、処理ユニット10とカバー体20とを有する。処理ユニット10は、後述されるように、外気G1を取り込んで、外気G1中に含まれる有害物質を分解処理する装置である。処理ユニット10内で外気G1に対して処理された後の気体(処理済気体G2)は、カバー体20へと送気される。 The respiratory protector 1 includes a processing unit 10 and a cover body 20. The processing unit 10 is a device that takes in outside air G1 and decomposes harmful substances contained in the outside air G1, as will be described later. The gas (processed gas G2) after the outside air G1 has been processed in the processing unit 10 is sent to the cover body 20.
 カバー体20は、着用者2の顔又は頭部に取り付けられて、着用者2の鼻や口といった呼吸域21を覆うように構成される。図1の例では、カバー体20と処理ユニット10とは、送気管30によって連結されている。処理ユニット10は、ハーネス41によって着用者2に固定されている。図1の例では、処理ユニット10が着用者2の腰付近に固定されている例が図示されているが、固定方法は任意である。他の例として、処理ユニット10が着用者2の背中に背負われる形で固定されていても構わない。 The cover body 20 is attached to the face or head of the wearer 2 and is configured to cover the breathing area 21 such as the nose and mouth of the wearer 2. In the example of FIG. 1, the cover body 20 and the processing unit 10 are connected by an air pipe 30. The processing unit 10 is fixed to the wearer 2 by a harness 41. In the example of FIG. 1, an example is shown in which the processing unit 10 is fixed near the waist of the wearer 2, but the fixing method is arbitrary. As another example, the processing unit 10 may be fixed on the back of the wearer 2.
 図2は、カバー体20の一例を模式的に示す図面である。カバー体20は、送気管30に連結される導入口24と、導入口24から導入された処理済気体G2を通流させる通気路25と、通気路25に設けられた通気口26と、着用者2(図1参照)の呼気G3を排出するための排気口23とを備える。 FIG. 2 is a drawing schematically showing an example of the cover body 20. The cover body 20 includes an introduction port 24 connected to the air supply pipe 30, a ventilation path 25 through which the treated gas G2 introduced from the introduction port 24 flows, and a ventilation port 26 provided in the ventilation path 25. and an exhaust port 23 for discharging exhaled breath G3 of the person 2 (see FIG. 1).
 外気G1中に含まれる有害物質が処理ユニット10で分解された後の気体である、処理済気体G2は、送気管30を経由して、導入口24よりカバー体20内に導入される。この処理済気体G2は、通気路25及び通気口26を介して、着用者2の呼吸域21に送気される。着用者2は、この呼吸域21に送気された、外気G1に対して有害物質が処理された後の空気である処理済気体G2を、呼吸用の吸気として利用できる。着用者2は、処理済気体G2を吸気した後、呼気G3を吐き出すと、この呼気G3が排気口23より外部に排出される。これにより、着用者2に対する安全な呼吸が確保される。 The processed gas G2, which is the gas after harmful substances contained in the outside air G1 are decomposed in the processing unit 10, is introduced into the cover body 20 from the inlet 24 via the air pipe 30. This treated gas G2 is delivered to the breathing area 21 of the wearer 2 via the ventilation path 25 and the ventilation port 26. The wearer 2 can utilize the treated gas G2, which is air after harmful substances have been treated with respect to the outside air G1, which is supplied to the breathing area 21, as intake air for breathing. When the wearer 2 inhales the treated gas G2 and then exhales the exhaled air G3, this exhaled air G3 is discharged to the outside from the exhaust port 23. This ensures safe breathing for the wearer 2.
 図3は、呼吸用保護具1の構成を模式的に示す図面である。図3に示すように、処理ユニット10は、外気G1を吸気するための吸気口11と、紫外線L1を出射する紫外光源12と、処理済気体G2を送気管30に向けて送気する送気口13を備える。本実施形態において、紫外光源12から紫外線L1が照射される領域(紫外線照射領域)5が、「オゾン供給部」に対応する。 FIG. 3 is a drawing schematically showing the configuration of the respiratory protector 1. As shown in FIG. 3, the processing unit 10 includes an intake port 11 for intake of outside air G1, an ultraviolet light source 12 for emitting ultraviolet light L1, and an air supply for supplying processed gas G2 toward an air supply pipe 30. A mouth 13 is provided. In this embodiment, a region (ultraviolet irradiation region) 5 to which ultraviolet light L1 is irradiated from the ultraviolet light source 12 corresponds to an "ozone supply section."
 図3に示す処理ユニット10は、ファン14を備える。このファン14は、吸気口11から取り込まれる外気G1の流量(吸気量)を制御する。 The processing unit 10 shown in FIG. 3 includes a fan 14. This fan 14 controls the flow rate (intake amount) of outside air G1 taken in from the intake port 11.
 図3に示す処理ユニット10は、外気G1の通流方向に関して、紫外線照射領域5よりも下流側の位置にオゾン分解部材16を備える。このオゾン分解部材16の機能については後述される。 The processing unit 10 shown in FIG. 3 includes an ozone decomposition member 16 at a position downstream of the ultraviolet irradiation region 5 with respect to the flow direction of the outside air G1. The function of this ozone decomposition member 16 will be described later.
 吸気口11から処理ユニット10内に取り込まれた外気G1は、紫外線照射領域5を通過する間に、紫外光源12からの紫外線L1が照射される。紫外光源12は、ピーク波長が200nm未満の紫外線L1を出射する。一例として、紫外光源12は、エキシマランプで構成される。 The outside air G1 taken into the processing unit 10 through the intake port 11 is irradiated with ultraviolet light L1 from the ultraviolet light source 12 while passing through the ultraviolet irradiation region 5 . The ultraviolet light source 12 emits ultraviolet light L1 having a peak wavelength of less than 200 nm. As an example, the ultraviolet light source 12 is configured with an excimer lamp.
 図4A及び図4Bは、紫外光源12の一例としてのエキシマランプの構成例を模式的に示す図面である。図4Aは、エキシマランプの側面図に対応し、図4Bは、図4A内のA1-A1線における断面図に対応する。 4A and 4B are drawings schematically showing a configuration example of an excimer lamp as an example of the ultraviolet light source 12. 4A corresponds to a side view of the excimer lamp, and FIG. 4B corresponds to a cross-sectional view taken along line A1-A1 in FIG. 4A.
 紫外光源12としてのエキシマランプは、管軸方向d1に沿って延伸する管体43を有する。図4A及び図4Bに示す例では、管体43は二重管構造を呈している。より詳細には、図4Bに示すように、管体43は、円筒形状を呈し外側に位置する外側管43aと、外側管43aの内側において外側管43aと同軸上に配置され外側管43aよりも内径が小さい円筒形状を呈した内側管43bとを有する。いずれの管体43(43a,43b)も、合成石英ガラスなどの誘電体材料で構成される。 The excimer lamp as the ultraviolet light source 12 has a tube body 43 extending along the tube axis direction d1. In the example shown in FIGS. 4A and 4B, the tube body 43 has a double tube structure. More specifically, as shown in FIG. 4B, the tube body 43 includes an outer tube 43a that has a cylindrical shape and is located on the outside, and an outer tube 43a that is arranged coaxially with the outer tube 43a inside the outer tube 43a and that is located on the outer side of the outer tube 43a. The inner tube 43b has a cylindrical shape with a small inner diameter. Both tube bodies 43 (43a, 43b) are made of a dielectric material such as synthetic quartz glass.
 外側管43aと内側管43bとは、共に管軸方向d1に係る端部において封止されており(不図示)、両者の間には管軸方向d1から見たときに円環形状を呈する発光空間が形成される。この発光空間内には、放電によってエキシマ分子を形成する発光ガス45Gが封入されている。 Both the outer tube 43a and the inner tube 43b are sealed at their ends in the tube axis direction d1 (not shown), and there is a light emitting tube between them that has an annular shape when viewed from the tube axis direction d1. A space is formed. This light-emitting space is filled with a light-emitting gas 45G that forms excimer molecules by electric discharge.
 外側管43aの外壁には、一方の電極44aが配設されている。本実施形態では、この電極44aはメッシュ形状又は線形状を呈している。また、内側管43bの内側には、管軸方向d1に沿って延在する棒状の電極44bが挿通されている。電極(44a,44b)は、例えばステンレス、アルミニウム、銅、タングステン、チタン、ニッケル等の金属材料で構成される。 One electrode 44a is arranged on the outer wall of the outer tube 43a. In this embodiment, the electrode 44a has a mesh shape or a linear shape. Further, a rod-shaped electrode 44b extending along the tube axis direction d1 is inserted inside the inner tube 43b. The electrodes (44a, 44b) are made of a metal material such as stainless steel, aluminum, copper, tungsten, titanium, or nickel.
 不図示の点灯電源から、給電線を介して電極(44a,44b)の間に例えば1kHz~5MHz程度の高周波の交流電圧が印加されることで、発光ガス45Gに対して管体43を介して前記電圧が印加される。このとき、発光ガス45Gが封入されている放電空間内で放電プラズマが生じ、発光ガス45Gの原子が励起されてエキシマ状態となり、この原子が基底状態に移行する際にエキシマ発光を生じる。 By applying a high-frequency alternating current voltage of, for example, about 1 kHz to 5 MHz between the electrodes (44a, 44b) from a lighting power source (not shown) via a power supply line, the light emitting gas 45G is heated via the tube body 43. The voltage is applied. At this time, discharge plasma is generated in the discharge space in which the luminescent gas 45G is sealed, and the atoms of the luminescent gas 45G are excited to become an excimer state, and when these atoms shift to the ground state, excimer light emission occurs.
 発光ガス45Gの材料によって、管体43から発せられる紫外線L1の波長が決定される。発光ガス45Gとして、キセノン(Xe)を含むガスを用いた場合には、このエキシマ発光は、172nm近傍にピーク波長を有する紫外線L1となる。 The wavelength of the ultraviolet light L1 emitted from the tube body 43 is determined by the material of the luminescent gas 45G. When a gas containing xenon (Xe) is used as the light-emitting gas 45G, this excimer light emission becomes ultraviolet light L1 having a peak wavelength near 172 nm.
 なお、発光ガス45Gとして利用する物質を異ならせることで、紫外線L1の波長を変えることができる。例えば、発光ガス45Gとしては、ArBr(主ピーク波長165nm近傍)、ArCl(主ピーク波長175nm近傍)、ArF(主ピーク波長193nm近傍)などを利用することができる。ここでは、発光ガス45GがXeを含むガスである場合について説明する。 Note that by changing the substance used as the luminescent gas 45G, the wavelength of the ultraviolet light L1 can be changed. For example, as the luminescent gas 45G, ArBr (main peak wavelength near 165 nm), ArCl (main peak wavelength near 175 nm), ArF (main peak wavelength near 193 nm), etc. can be used. Here, a case where the luminescent gas 45G is a gas containing Xe will be described.
 上述したように、本実施形態の紫外光源12において、外側管43aの外壁に配設された電極44aはメッシュ形状を呈している。このため、電極44aには隙間が存在し、紫外線L1は、この隙間を通じて外側管43aよりも外側に向かって取り出される。この紫外線L1が、処理ユニット10内を通流する外気G1に対して照射される。 As described above, in the ultraviolet light source 12 of this embodiment, the electrode 44a disposed on the outer wall of the outer tube 43a has a mesh shape. Therefore, a gap exists in the electrode 44a, and the ultraviolet light L1 is extracted outward from the outer tube 43a through this gap. This ultraviolet ray L1 is irradiated onto the outside air G1 flowing through the processing unit 10.
 図5は、Xeを含む発光ガス45Gが封入されたエキシマランプ(紫外光源12)から出射される紫外線L1のスペクトルと、酸素(O2)の吸収スペクトルとを重ねて表示したグラフである。図5において、横軸は波長を示し、左縦軸は紫外線L1の光強度の相対値を示し、右縦軸は酸素(O2)の吸収係数を示す。 FIG. 5 is a graph in which the spectrum of ultraviolet light L1 emitted from an excimer lamp (ultraviolet light source 12) filled with luminescent gas 45G containing Xe and the absorption spectrum of oxygen (O 2 ) are displayed superimposed. In FIG. 5, the horizontal axis shows the wavelength, the left vertical axis shows the relative value of the light intensity of ultraviolet light L1, and the right vertical axis shows the absorption coefficient of oxygen (O 2 ).
 発光ガス45GとしてXeを含むガスを用いる場合、図5に示されるように、紫外光源12から出射される紫外線L1は、ピーク波長が172nm近傍であり、およそ155nm以上200nm未満の範囲内に帯域を有する。酸素(O2)は、光の波長が190nmよりも長くなるに伴い、吸収係数の低下が顕著となり、波長が200nmを超えると吸収係数が極めて低くなる。つまり、200nmよりも長波長の光(例えば波長222nmの光)を酸素に照射しても、酸素をほとんど透過してしまう。 When a gas containing Xe is used as the light-emitting gas 45G, as shown in FIG. 5, the ultraviolet light L1 emitted from the ultraviolet light source 12 has a peak wavelength of around 172 nm and a band within the range of about 155 nm or more and less than 200 nm. have As the wavelength of light becomes longer than 190 nm, the absorption coefficient of oxygen (O 2 ) decreases significantly, and when the wavelength exceeds 200 nm, the absorption coefficient becomes extremely low. In other words, even if oxygen is irradiated with light with a wavelength longer than 200 nm (for example, light with a wavelength of 222 nm), most of the oxygen will pass through.
 外気G1に対して、紫外光源12から出射された200nm未満の波長λの紫外線L1が照射されると、紫外線L1が酸素(O2)に吸収されて、上述した(5)式の反応が進行する。以下において、(5)式を再掲する。
 O2 + hν(λ) → O + O ‥‥(5)
When outside air G1 is irradiated with ultraviolet light L1 with a wavelength λ of less than 200 nm emitted from the ultraviolet light source 12, the ultraviolet light L1 is absorbed by oxygen (O 2 ), and the reaction of equation (5) described above proceeds. do. Below, equation (5) is reproduced.
O 2 + hν(λ) → O + O (5)
 なお、紫外線L1の波長が200nmよりも長波長である場合には、酸素に対して吸収される光量が極めて少ないため、(5)式の反応がほとんど生じないことになる。 Note that when the wavelength of the ultraviolet light L1 is longer than 200 nm, the amount of light absorbed by oxygen is extremely small, so the reaction of formula (5) hardly occurs.
 (5)式によって生成された原子状酸素(O)は、外気G1中の酸素分子と反応し、上述した(6)式によってオゾン(O3)を生成する。以下において、(6)式を再掲する。
 O + O2 + M → O3 + M ‥‥(6)
The atomic oxygen (O) generated according to the equation (5) reacts with oxygen molecules in the outside air G1, and generates ozone (O 3 ) according to the above-mentioned equation (6). Below, equation (6) will be reproduced.
O + O 2 + M → O 3 + M (6)
 処理ユニット10内において、紫外光源12からの紫外線L1が照射される領域(紫外線照射領域5)を外気G1が通過することで、オゾンが生成される。つまり、本実施形態では、この紫外線照射領域5が「オゾン供給部」に対応する。 In the processing unit 10, ozone is generated when the outside air G1 passes through a region (ultraviolet irradiation region 5) that is irradiated with the ultraviolet rays L1 from the ultraviolet light source 12. That is, in this embodiment, this ultraviolet irradiation region 5 corresponds to the "ozone supply section".
 紫外線照射領域5内を外気G1が通過中に生成されたオゾンに対して、紫外光源12からの紫外線L1が照射されると、上述した(1)式の反応が進行する。以下において、(1)式を再掲する。なお、(1)式におけるEは、本実施形態においては紫外線L1の光エネルギーhν(λ)に対応する。
  O3 + E → O2 + O ‥‥(1)
When the ultraviolet light L1 from the ultraviolet light source 12 is irradiated to the ozone generated while the outside air G1 is passing through the ultraviolet irradiation area 5, the reaction of the above-mentioned formula (1) proceeds. Below, equation (1) is reproduced. Note that E in equation (1) corresponds to the optical energy hv(λ) of the ultraviolet ray L1 in this embodiment.
O 3 + E → O 2 + O (1)
 (5)式や(1)式の反応によって生成された、反応性の高い原子状酸素は、外気G1中に水蒸気として含まれる水と反応し、上記(2)式に従って更に反応性の高いヒドロキシラジカル(・OH)を生成する。以下において、(2)式を再掲する。
  O + H2O → 2・OH ‥‥(2)
The highly reactive atomic oxygen produced by the reaction of formula (5) or formula (1) reacts with water contained in the outside air G1 as water vapor, and according to formula (2) above, the highly reactive atomic oxygen Generates radicals (.OH). Below, equation (2) is reproduced.
O + H 2 O → 2・OH (2)
 このヒドロキシラジカルが外気G1中に含まれるVOCに作用することで、VOCが分解される。この結果、吸気口11から取り込まれた外気G1は、紫外線照射領域5を通過した後に、VOC濃度が低下した処理済気体G2に変化する。 The VOCs are decomposed by the action of these hydroxyl radicals on the VOCs contained in the outside air G1. As a result, after passing through the ultraviolet irradiation area 5, the outside air G1 taken in through the intake port 11 changes into treated gas G2 with a reduced VOC concentration.
 図6は、処理ユニット10を模擬した実験系の構造を模式的に示す図面である。実験系60は、VOCを含む外気G1を模擬するための被処理気体G1aが貯留されているガス源61と、処理用筐体62と、処理用筐体62から排気される処理済気体G2が導入されるサンプリングバッグ63とを備えて構成される。 FIG. 6 is a drawing schematically showing the structure of an experimental system simulating the processing unit 10. The experimental system 60 includes a gas source 61 in which a gas to be treated G1a for simulating outside air G1 containing VOC is stored, a processing case 62, and a processed gas G2 exhausted from the processing case 62. A sampling bag 63 to be introduced.
 処理用筐体62は、上述したエキシマランプからなる紫外光源12を備える。このエキシマランプは、外径20mmで発光長X1が95mmであった。また、処理用筐体62は、内径40mm(直径)、肉厚3mmのSUS製の筒状体であり、長さが350mmであった。エキシマランプは、管体43の管軸を処理用筐体62の中心軸にほぼ一致させた状態で、処理用筐体62内に配置された。エキシマランプからの紫外線L1が進行する長さ(光路長)Y1は、約10mmとされた。 The processing casing 62 includes the ultraviolet light source 12 made of the excimer lamp described above. This excimer lamp had an outer diameter of 20 mm and a light emission length X1 of 95 mm. Further, the processing casing 62 was a cylindrical body made of SUS with an inner diameter of 40 mm (diameter) and a wall thickness of 3 mm, and a length of 350 mm. The excimer lamp was placed in the processing casing 62 with the tube axis of the tube 43 substantially aligned with the central axis of the processing casing 62. The length (optical path length) Y1 along which the ultraviolet ray L1 from the excimer lamp travels was approximately 10 mm.
 エキシマランプはXeを含む発光ガス45Gが管体43内に封入されており、不図示の電源から各電極(44a,44b)に対して投入電力14W、印加電圧4kVppの高周波電圧が印加されることで、ピーク波長が172nmの紫外線L1を出射した。 In the excimer lamp, a luminescent gas 45G containing Xe is sealed in a tube 43, and a high frequency voltage of 14 W of input power and 4 kVpp of applied voltage is applied to each electrode (44a, 44b) from a power source (not shown). Then, ultraviolet light L1 having a peak wavelength of 172 nm was emitted.
 ガス源61から供給される被処理気体G1aとして、純粋空気に対してVOCとしてのホルムアルデヒド(HCHO)の含有濃度を異ならせた5種類を準備した。それぞれの被処理気体G1aを、紫外光源12から紫外線L1を出射させた状態の処理用筐体62内に導入し、サンプリングバッグ63で収容された処理済気体G2に含まれるホルムアルデヒドの濃度を測定した。この結果を表1に示す。 Five types of gas to be treated G1a supplied from the gas source 61 were prepared, each having a different concentration of formaldehyde (HCHO) as a VOC compared to pure air. Each gas to be treated G1a was introduced into the processing casing 62 in which ultraviolet light L1 was emitted from the ultraviolet light source 12, and the concentration of formaldehyde contained in the treated gas G2 contained in the sampling bag 63 was measured. . The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果によれば、紫外光源12からの紫外線L1が被処理気体G1aに照射されることで、被処理気体G1a中に含まれるホルムアルデヒドが分解されていることが確認される。よって、(1)式、(2)式、(5)式及び(6)式を参照して上述したように、空気とVOCが混在する被処理気体G1aに対して紫外線L1が照射されることで、オゾンが生成されると共に、このオゾンから反応性の高いヒドロキシラジカルが生成されることで、VOCが分解されることが分かる。特に、VOCとしてホルムアルデヒドを含む場合には、上述した(3a)~(3c)式に基づいてH2OやCO2に分解されることが分かる。 According to the results in Table 1, it is confirmed that formaldehyde contained in the gas to be treated G1a is decomposed by irradiating the gas to be treated G1a with the ultraviolet light L1 from the ultraviolet light source 12. Therefore, as described above with reference to equations (1), (2), (5), and (6), the ultraviolet ray L1 is irradiated to the gas to be treated G1a in which air and VOCs are mixed. It can be seen that VOCs are decomposed by generating ozone and highly reactive hydroxyl radicals from the ozone. In particular, when formaldehyde is included as a VOC, it can be seen that it is decomposed into H 2 O and CO 2 based on the above-mentioned formulas (3a) to (3c).
 なお、(3b)式に示したように、分解反応過程では中間生成物としてCOが生成される。しかし、(3c)式に従って最終的にはCO2にまで反応が進むため、COによる中毒の恐れはない。ただし、反応の進行が不十分となってCOが残留する可能性に鑑み、安全性をより担保する観点から、処理後気体G2内のCO濃度が、許容濃度とされる50ppmよりも低い値であることを確認するための濃度検知部を、送気口13又は送気管30内に設けても構わない。この場合、濃度検知部において許容濃度に近い所定値(例えば40ppm)に達したことを検知すると、例えば後述する図7に示す警報出力部52より警告信号i52を出力するものとしても構わない。 Note that, as shown in equation (3b), CO is produced as an intermediate product in the decomposition reaction process. However, since the reaction eventually progresses to CO 2 according to equation (3c), there is no risk of CO poisoning. However, in view of the possibility that the reaction may not proceed sufficiently and CO may remain, and from the perspective of further ensuring safety, the CO concentration in the post-treatment gas G2 must be lower than the permissible concentration of 50 ppm. A concentration detecting section for confirming the presence of air may be provided inside the air supply port 13 or the air supply pipe 30. In this case, when the concentration detection section detects that the concentration has reached a predetermined value (for example, 40 ppm) close to the permissible concentration, the alarm output section 52 shown in FIG. 7, which will be described later, may output a warning signal i52.
 図3に戻って説明を続ける。処理済気体G2は、オゾン分解部材16を通過した後、送気口13を介して送気管30に送られる。この処理済気体G2は、送気管30内をカバー体20に向かって通流した後、着用者2の呼吸域21に対して供給される。以上により、呼吸用保護具1によれば、外気G1と比較して含有VOC濃度が大幅に低下した処理済気体G2を着用者2の呼吸用気体として供給できるため、着用者2の呼吸を保護することができる。 Returning to FIG. 3, the explanation continues. After passing through the ozone decomposition member 16, the treated gas G2 is sent to the air pipe 30 via the air supply port 13. This treated gas G2 flows through the air pipe 30 toward the cover body 20, and then is supplied to the breathing area 21 of the wearer 2. As described above, according to the respirator 1, the treated gas G2, which has a significantly lower VOC concentration than the outside air G1, can be supplied as the breathing gas for the wearer 2, so that the breathing of the wearer 2 is protected. can do.
 また、図3によれば、オゾン分解部材16を通過した処理済気体G2を着用者2に対して供給できるため、処理ユニット10内で生成されたオゾンが高濃度で処理済気体G2に含有された状態で着用者2に供給されることがなく、着用者2に対する安全性は担保される。 Further, according to FIG. 3, since the treated gas G2 that has passed through the ozone decomposition member 16 can be supplied to the wearer 2, the ozone generated in the processing unit 10 is contained in the treated gas G2 at a high concentration. It is not supplied to the wearer 2 in an unconventional state, and safety for the wearer 2 is ensured.
 オゾン分解部材16は、例えばアルミニウム、ステンレス、セラミックスなどの金属製のハニカム構造体からなる基材に触媒を担持した構造のものを採用することができる。触媒としては、パラジウム(Pd)、ロジウム(Rh)、白金(Pt)などの貴金属触媒や、二酸化マンガン(MnO2)、酸化第二鉄(Fe23)、酸化ニッケル(NiO)など金属酸化物を利用することができる。 The ozone decomposition member 16 may have a structure in which a catalyst is supported on a base material made of a honeycomb structure made of metal such as aluminum, stainless steel, or ceramics. Catalysts include noble metal catalysts such as palladium (Pd), rhodium (Rh), and platinum (Pt), and metal oxides such as manganese dioxide (MnO 2 ), ferric oxide (Fe 2 O 3 ), and nickel oxide (NiO). can use things.
 図3に示すように、呼吸用保護具1がファン14を備えることで、外気G1を所定の流量で処理ユニット10に対して取り込むことが可能となる。この結果、処理ユニット10側から着用者2の呼吸域21に向かう気流が常に確保されるため、排気口23から呼吸域21に向かって外気G1が逆流することが防止される。なお、図2に示すように、カバー体20が着用者2の頭部を覆うようなヘルメット型の構造である場合には、呼吸域21が外気G1に対して陽圧となるため、そもそも排気口23から外気G1が呼吸域21に向かって逆流する現象は生じにくい。 As shown in FIG. 3, the respiratory protector 1 includes the fan 14, which allows the outside air G1 to be taken into the processing unit 10 at a predetermined flow rate. As a result, the airflow from the processing unit 10 side toward the breathing area 21 of the wearer 2 is always ensured, so that the outside air G1 is prevented from flowing back toward the breathing area 21 from the exhaust port 23. In addition, as shown in FIG. 2, when the cover body 20 has a helmet-shaped structure that covers the head of the wearer 2, the breathing area 21 has a positive pressure with respect to the outside air G1, so that the exhaust gas is A phenomenon in which the outside air G1 flows back toward the breathing area 21 from the mouth 23 is unlikely to occur.
 図7に示すように、処理ユニット10は、ファン14を制御する制御部51を備えるものとしても構わない。図7の例では、処理ユニット10が、紫外光源12の点灯状態を検知する検知手段(不図示)を設けており、この検知手段からの検知結果に関する信号(検知信号)i12が、制御部51に送られる構成が図示されている。例えば、検知手段は、紫外光源12に対して供給される電流量を検知すると共に、検知された電流量が正常の発光動作時に流れるであろう基準値よりも大きく低下している場合には、紫外光源12の運転状態が不良であると認識し、その旨の不良検知信号i12を制御部51に出力する。 As shown in FIG. 7, the processing unit 10 may include a control section 51 that controls the fan 14. In the example of FIG. 7, the processing unit 10 is provided with a detection means (not shown) that detects the lighting state of the ultraviolet light source 12, and a signal (detection signal) i12 regarding the detection result from this detection means is sent to the control unit 51. The configuration that is sent to is illustrated. For example, the detection means detects the amount of current supplied to the ultraviolet light source 12, and if the detected amount of current is significantly lower than the reference value that would flow during normal light emission operation, It recognizes that the operating state of the ultraviolet light source 12 is defective, and outputs a defect detection signal i12 to that effect to the control unit 51.
 別の例として、検知手段が紫外線L1の照度を検知するものとしても構わない。この場合には、検知手段は、検知した照度値が、紫外光源12が正常の発光動作時に検知されるであろう基準値よりも大きく低下しているときに、紫外光源12の運転状態が不良であると認識し、その旨の不良検知信号i12を制御部51に出力する。 As another example, the detection means may detect the illuminance of the ultraviolet light L1. In this case, the detection means detects that the operating state of the ultraviolet light source 12 is poor when the detected illuminance value is significantly lower than the reference value that would be detected when the ultraviolet light source 12 is in normal light emission operation. It recognizes that this is the case, and outputs a defect detection signal i12 to that effect to the control unit 51.
 不良検知信号i12が制御部51に対して入力されることは、紫外光源12が正しく動作していないことを意味するため、処理ユニット10内においてVOCに対する分解性能が低下している蓋然性が高い。このため、制御部51は、この不良検知信号i12が入力されると、ファン14に対して回転数を低下させる又は停止させる制御を行う。これにより、含有VOC濃度があまり低下できていない処理済気体G2が、着用者2の呼吸域21に対して多く供給されることを防止できる。 Since the failure detection signal i12 being input to the control unit 51 means that the ultraviolet light source 12 is not operating correctly, there is a high probability that the decomposition performance for VOCs in the processing unit 10 has deteriorated. Therefore, when the defect detection signal i12 is input, the control unit 51 controls the fan 14 to reduce the rotation speed or stop the fan 14. Thereby, it is possible to prevent a large amount of the treated gas G2 whose contained VOC concentration has not been significantly reduced from being supplied to the breathing area 21 of the wearer 2.
 なお、図7に示すように、呼吸用保護具1は、不良検知信号i12が制御部51に対して入力されたことを着用者2に対して報知するための警報出力部52を備えるものとしても構わない。この警報出力部52は、警告信号i52を音声信号として出力するものとしても構わないし、着用者2が携帯するスマートフォンなどの通信機器に対して通知するための通信信号として出力するものとしても構わない。着用者2は、この警告信号i52によって処理ユニット10の異常を認識でき、作業現場から直ちに退避する等、安全面を考慮した適切な行動を行うことができる。 As shown in FIG. 7, the respiratory protective device 1 is provided with an alarm output section 52 for notifying the wearer 2 that the defect detection signal i12 has been input to the control section 51. I don't mind. This alarm output unit 52 may output the warning signal i52 as an audio signal, or may output it as a communication signal for notifying a communication device such as a smartphone carried by the wearer 2. . The wearer 2 can recognize an abnormality in the processing unit 10 by this warning signal i52, and can take appropriate actions in consideration of safety, such as immediately evacuating from the work site.
 ここで、図1に示す呼吸用保護具1によれば、処理ユニット10とカバー体20とは、送気管30によって連結されている。このため、仮に紫外光源12に対して運転異常が生じた場合であっても、この運転異常が発現する前段階で外気G1に対して処理が行われることで生成された処理済気体G2が、送気管30内に残存している。よって、紫外光源12に対して異常が発生した時点からしばらくの間にわたって、着用者2に対して含有VOC濃度が低下した安全な処理済気体G2を供給することができる。これにより、着用者2に対する高い安全性が担保される。 Here, according to the respiratory protector 1 shown in FIG. 1, the processing unit 10 and the cover body 20 are connected by the air pipe 30. Therefore, even if an operational abnormality occurs in the ultraviolet light source 12, the processed gas G2 generated by processing the outside air G1 before the operational abnormality occurs, It remains in the air pipe 30. Therefore, safe treated gas G2 with a reduced concentration of VOCs can be supplied to the wearer 2 for a while after an abnormality occurs in the ultraviolet light source 12. This ensures high safety for the wearer 2.
 上記の観点からは、送気管30の長さは、処理ユニット10内において外気G1が流れる方向に係る長さ、すなわち、吸気口11と送気口13との間の離間距離よりも長く構成されるのが好適である。これにより、送気管30内にある程度の流量の処理済気体G2を確保できる。
 処理ユニット10内の紫外光源12、ファン14は、不図示のバッテリーで駆動されてもよい。さらには、必要に応じて、制御部51と警報出力部52もバッテリーで駆動されてもよい。
 この結果、着用者が作業従事中に広い範囲に移動することが可能となる。
From the above point of view, the length of the air supply pipe 30 is configured to be longer than the length in the direction in which the outside air G1 flows within the processing unit 10, that is, the distance between the air intake port 11 and the air supply port 13. It is preferable to Thereby, a certain amount of flow rate of the processed gas G2 can be secured in the air pipe 30.
The ultraviolet light source 12 and fan 14 in the processing unit 10 may be driven by a battery (not shown). Furthermore, if necessary, the control section 51 and the alarm output section 52 may also be driven by a battery.
As a result, the wearer can move over a wide range while working.
 [別実施形態]
 以下、別実施形態につき説明する。
[Another embodiment]
Another embodiment will be described below.
 〈1〉処理ユニット10は、オゾン分解部材16の他に、1以上の別のフィルタ(エアフィルタ)を備えていても構わない。図8は、この別実施形態の呼吸用保護具1の構成を模式的に示す図面であり、処理ユニット10が、防塵フィルタ17a、活性炭フィルタ17b、及びHEPAフィルタ(High Efficiency Particulate Air)17cを備えている例が図示されている。なお、図8の例では、防塵フィルタ17aが紫外光源12よりも前段(吸気口11側)に配置されており、活性炭フィルタ17b及びHEPAフィルタ17cがオゾン分解部材16よりも後段(送気口13側)に配置されている。 <1> The processing unit 10 may include one or more other filters (air filters) in addition to the ozone decomposition member 16. FIG. 8 is a drawing schematically showing the configuration of the respiratory protector 1 of this other embodiment, in which the processing unit 10 includes a dust filter 17a, an activated carbon filter 17b, and a HEPA filter (High Efficiency Particulate Air) 17c. An example is shown. In the example of FIG. 8, the dust filter 17a is arranged before the ultraviolet light source 12 (on the intake port 11 side), and the activated carbon filter 17b and the HEPA filter 17c are arranged after the ozone decomposition member 16 (on the air intake port 13 side). side).
 図8に示す構造によれば、外気G1中に含まれる粉塵が事前に防塵フィルタ17aによって除去されるため、紫外光源12の表面に付着することに伴う紫外線L1の照度低下等の不具合を未然に防ぐことができる。また、処理ユニット10が追加的に活性炭フィルタ17bやHEPAフィルタ17cを備えることで、処理済気体G2内に含有される有害物質を更に低下できる。 According to the structure shown in FIG. 8, since the dust contained in the outside air G1 is removed in advance by the dust filter 17a, problems such as a decrease in the illuminance of the ultraviolet light L1 due to adhesion to the surface of the ultraviolet light source 12 can be prevented. It can be prevented. Furthermore, by additionally providing the processing unit 10 with an activated carbon filter 17b and a HEPA filter 17c, the amount of harmful substances contained in the processed gas G2 can be further reduced.
 なお、これらの活性炭フィルタ17bやHEPAフィルタ17cは、紫外光源12よりも後段、すなわち、紫外線L1が照射されることで外気G1に対してオゾンが導入される領域(紫外線照射領域5)よりも後段に配置されている。このため、活性炭フィルタ17bやHEPAフィルタ17cを通過する処理済気体G2は、事前に含有VOC濃度が低下されているため、これらのフィルタ(17b,17c)によって吸着除去される物質の量はそれほど多くない。よって、従来のように、フィルタ(17b,17c)を頻繁に交換することなく、安全な呼吸用空気(処理済気体G2)を着用者2に対して供給できる。 Note that these activated carbon filters 17b and HEPA filters 17c are located downstream of the ultraviolet light source 12, that is, downstream of the area (ultraviolet irradiation area 5) where ozone is introduced into the outside air G1 by being irradiated with ultraviolet rays L1. It is located in Therefore, the VOC concentration of the treated gas G2 passing through the activated carbon filter 17b and HEPA filter 17c has been reduced in advance, so the amount of substances adsorbed and removed by these filters (17b, 17c) is not so large. do not have. Therefore, safe breathing air (treated gas G2) can be supplied to the wearer 2 without frequently replacing the filters (17b, 17c) as in the conventional case.
 〈2〉図9に示すように、処理ユニット10は、紫外光源12によって外気G1に対して処理を行う経路(第一経路10a)とは別に、活性炭フィルタ17dによる吸着処理を行う経路(第二経路10b)を備えていても構わない。図9に示す呼吸用保護具1の例では、処理ユニット10が流路切替用の閉塞板71を備えており、閉塞板71を移動させることで、外気G1に対して、紫外線L1による処理を行う第一経路10aを通流させるか、活性炭フィルタ17dによる吸着処理を行う第二経路10bを通流させるかを選択できる構成である。なお、図9に示す例では、処理ユニット10内において、第二経路10b側にも防塵フィルタ17aが設けられている。 <2> As shown in FIG. 9, the processing unit 10 has a path (first path 10a) in which outside air G1 is processed by the ultraviolet light source 12, and a path (second path) in which adsorption processing is performed by the activated carbon filter 17d. A route 10b) may also be provided. In the example of the respiratory protector 1 shown in FIG. 9, the processing unit 10 is equipped with a blockage plate 71 for flow path switching, and by moving the blockage plate 71, the outside air G1 is treated with ultraviolet light L1. The configuration allows selection of whether to flow through the first path 10a, which performs adsorption treatment, or to flow through the second path 10b, which performs adsorption processing by the activated carbon filter 17d. In the example shown in FIG. 9, a dust filter 17a is also provided on the second path 10b side in the processing unit 10.
 第二経路10b側に配置された活性炭フィルタ17bは、紫外光源12からの紫外線L1が照射されることなく、外気G1中に含まれる有害物質を除去できる程度に、大型又は多段配置で構成される。すなわち、この活性炭フィルタ17bは、第一経路10a側に活性炭フィルタ17bが配置される場合には、この活性炭フィルタ17bよりも大型又は多段であることが好ましい。一方で、第一経路10a側には、活性炭フィルタ17bは必須ではない。 The activated carbon filter 17b disposed on the second path 10b side is large-sized or configured in a multi-stage arrangement to the extent that it can remove harmful substances contained in the outside air G1 without being irradiated with the ultraviolet light L1 from the ultraviolet light source 12. . That is, when the activated carbon filter 17b is arranged on the first path 10a side, it is preferable that the activated carbon filter 17b is larger or has more stages than the activated carbon filter 17b. On the other hand, the activated carbon filter 17b is not essential on the first path 10a side.
 かかる構成によれば、紫外光源12が正常に運転中である場合には、閉塞板71を第二経路10b側の吸気口72を閉塞するように配置させることで、上記実施形態と同様に、外気G1に対して紫外線L1が照射されることで、外気G1中に含まれるVOCを分解処理できる。また、仮に紫外光源12に対して故障が生じた場合には、閉塞板71の位置を切り替えて第一経路10a側の吸気口11を閉塞するように配置させることで、活性炭フィルタ17dによって外気G1中に含まれるVOCを吸着除去できる。つまり、紫外光源12が正常に動作しない等の非常時においても、着用者2の呼吸域21に対して、VOC濃度の低下した安全性の高い呼吸用空気を供給し続けることが可能となる。 According to this configuration, when the ultraviolet light source 12 is operating normally, by arranging the closing plate 71 so as to close the intake port 72 on the second path 10b side, as in the above embodiment, By irradiating the outside air G1 with the ultraviolet rays L1, VOCs contained in the outside air G1 can be decomposed. Furthermore, if a failure occurs in the ultraviolet light source 12, the position of the closing plate 71 is changed to close the intake port 11 on the first path 10a side, so that the activated carbon filter 17d can filter out the outside air G1. VOCs contained in it can be adsorbed and removed. That is, even in an emergency such as when the ultraviolet light source 12 does not operate normally, it is possible to continue supplying highly safe breathing air with reduced VOC concentration to the breathing area 21 of the wearer 2.
 なお、この図9に示す呼吸用保護具1において、第二経路12bはあくまでバックアップ用の経路として利用されるのが好適である。これにより、活性炭フィルタ17dでVOCを吸着除去する頻度は極めて低いため、活性炭フィルタ17dを高い頻度で交換する必要性が生じることはない。 Note that in the respiratory protector 1 shown in FIG. 9, it is preferable that the second path 12b be used only as a backup path. As a result, the frequency at which the activated carbon filter 17d adsorbs and removes VOCs is extremely low, so there is no need to frequently replace the activated carbon filter 17d.
 〈3〉図4A及び図4Bを参照して上述した紫外光源12の構造はあくまで一例である。紫外光源12は、ピーク波長が200nm未満の紫外線L1を処理ユニット10内に取り込んだ外気G1に対して照射可能な光源であれば、どのような構造であっても構わない。例えば、他の形状のエキシマランプであっても構わないし、LED素子などの固体光源であっても構わない。 <3> The structure of the ultraviolet light source 12 described above with reference to FIGS. 4A and 4B is only an example. The ultraviolet light source 12 may have any structure as long as it can irradiate the outside air G1 taken into the processing unit 10 with ultraviolet light L1 having a peak wavelength of less than 200 nm. For example, an excimer lamp of another shape may be used, or a solid light source such as an LED element may be used.
 〈4〉上記実施形態では、処理ユニット10がオゾン供給部としての紫外光源12を備える場合について説明した。しかし、処理ユニット10は、取り込んだ外気G1に対してオゾンを供給できる構成であればよく、この限りにおいて、必ずしも紫外光源12を備えなくても構わない。例えば、処理ユニット10が、紫外光源12に代えて放電式のオゾナイザを備えるものとしても構わない。ただしこの場合、外気G1中の窒素分子の結合が切断されて窒素酸化物(NOx)が発生する可能性があるため、処理ユニット10内に窒素酸化物を除去する機能を別途搭載するのが好ましい。また、高効率なNOxフリーの放電式オゾナイザが実用化されれば、これを利用することも可能である。 <4> In the above embodiment, the case where the processing unit 10 includes the ultraviolet light source 12 as an ozone supply section has been described. However, the processing unit 10 only needs to be configured to be able to supply ozone to the outside air G1 taken in, and as long as this is the case, it does not necessarily need to include the ultraviolet light source 12. For example, the processing unit 10 may include a discharge type ozonizer instead of the ultraviolet light source 12. However, in this case, there is a possibility that the bonds of nitrogen molecules in the outside air G1 are broken and nitrogen oxides ( NOx ) are generated, so it is recommended to separately install a function to remove nitrogen oxides in the processing unit 10. preferable. Furthermore, if a highly efficient NO x -free discharge type ozonizer is put into practical use, it will also be possible to utilize it.
 また、別の例として、処理ユニット10内にオゾンボンベを搭載しておき、このオゾンボンベから外気G1に対してオゾンを供給する構成を採用しても構わない。 As another example, an ozone cylinder may be installed in the processing unit 10, and ozone may be supplied to the outside air G1 from this ozone cylinder.
 〈5〉処理ユニット10が、カバー体20に対して直接、連結固定されているものとしても構わない。すなわち、呼吸用保護具1が送気管30を備えないものとしても構わない。 <5> The processing unit 10 may be directly connected and fixed to the cover body 20. That is, the respiratory protector 1 may not include the air pipe 30.
 〈6〉処理ユニット10が、VOCの濃度を検知するためのガスセンサを備えるものとしても構わない。この場合、ガスセンサは、処理ユニット10内において、オゾン供給部よりも後段(図3の例では、紫外光源12よりも後段)に配置されるのが好ましい。ガスセンサは、処理済気体G2に含有されるVOC濃度が、安全性が担保されるVOCの基準濃度よりも極めて高い場合には、処理ユニット10の運転状態が不良であると認識し、図7の構成と同様に、不良検知信号i12を制御部51に出力するものとして構わない。 <6> The processing unit 10 may include a gas sensor for detecting the concentration of VOC. In this case, the gas sensor is preferably disposed in the processing unit 10 at a later stage than the ozone supply section (in the example of FIG. 3, at a later stage than the ultraviolet light source 12). When the VOC concentration contained in the treated gas G2 is extremely higher than the reference concentration of VOC that ensures safety, the gas sensor recognizes that the operating state of the processing unit 10 is poor, and performs the operation shown in FIG. Similarly to the configuration, the defect detection signal i12 may be output to the control section 51.
1     :呼吸用保護具
2     :着用者
5     :紫外線照射領域
10    :処理ユニット
10a   :第一経路
10b   :第二経路
11    :吸気口
12    :紫外光源
12b   :第二経路
13    :送気口
14    :ファン
16    :オゾン分解部材
17a   :防塵フィルタ
17b   :活性炭フィルタ
17c   :HEPAフィルタ
17d   :活性炭フィルタ
20    :カバー体
21    :呼吸域
23    :排気口
24    :導入口
25    :通気路
26    :通気口
30    :送気管
41    :ハーネス
43    :管体
43a   :外側管
43b   :内側管
44a   :電極
44b   :電極
45G   :発光ガス
51    :制御部
52    :警報出力部
60    :実験系
61    :ガス源
62    :処理用筐体
63    :サンプリングバッグ
71    :閉塞板
72    :吸気口
G1    :外気
G2    :処理済気体
G3    :呼気
L1    :紫外線
1: Respiratory protective equipment 2: Wearer 5: Ultraviolet irradiation area 10: Processing unit 10a: First path 10b: Second path 11: Intake port 12: Ultraviolet light source 12b: Second path 13: Air supply port 14: Fan 16: Ozone decomposition member 17a: Dust filter 17b: Activated carbon filter 17c: HEPA filter 17d: Activated carbon filter 20: Cover body 21: Breathing area 23: Exhaust port 24: Inlet port 25: Ventilation path 26: Vent port 30: Air supply pipe 41 : Harness 43 : Tube body 43a : Outer tube 43b : Inner tube 44a : Electrode 44b : Electrode 45G : Luminescent gas 51 : Control part 52 : Alarm output part 60 : Experimental system 61 : Gas source 62 : Processing casing 63 : Sampling Bag 71: Closure plate 72: Intake port G1: Outside air G2: Processed gas G3: Exhaled air L1: Ultraviolet light

Claims (12)

  1.  呼吸用保護具であって、
     着用者の呼吸域を包囲するカバー体と、
     取り込まれた外気に対して処理を行って処理済気体に変換し、前記カバー体と前記着用者の顔面の間に位置する前記呼吸域に向けて前記処理済気体を送気する処理ユニットとを備え、
     前記処理ユニットは、
      前記外気を吸気する吸気口と、
      前記吸気口から取り込まれた前記外気に対してオゾンを供給するオゾン供給部と、
      オゾンが供給された後の前記外気である前記処理済気体を前記呼吸域に向かって送気する送気口とを備えることを特徴とする呼吸用保護具。
    A respiratory protective equipment,
    a cover body that surrounds the wearer's breathing area;
    a processing unit that processes the taken in outside air to convert it into treated gas, and sends the treated gas toward the breathing area located between the cover body and the face of the wearer; Prepare,
    The processing unit includes:
    an intake port that takes in the outside air;
    an ozone supply unit that supplies ozone to the outside air taken in from the intake port;
    A respiratory protective device comprising: an air supply port that supplies the treated gas, which is the outside air to which ozone has been supplied, toward the breathing area.
  2.  前記オゾン供給部は、200nm未満の紫外線を出射する紫外光源を含んで構成されることを特徴とする、請求項1に記載の呼吸用保護具。 The respiratory protective device according to claim 1, wherein the ozone supply unit includes an ultraviolet light source that emits ultraviolet light with a wavelength of less than 200 nm.
  3.  前記紫外線光源が、エキシマランプであることを特徴とする、請求項1に記載の呼吸用保護具。 The respiratory protector according to claim 1, wherein the ultraviolet light source is an excimer lamp.
  4.  前記処理ユニットは、前記吸気口からの前記外気の吸気量を制御するファンを備えていることを特徴とする、請求項1に記載の呼吸用保護具。 The respiratory protector according to claim 1, wherein the processing unit includes a fan that controls the intake amount of the outside air from the intake port.
  5.  前記処理ユニットは、前記紫外光源の点灯状態に応じて、前記吸気口からの前記外気の吸気量を制御可能なファンを備えることを特徴とする、請求項2に記載の呼吸用保護具。 The respiratory protector according to claim 2, wherein the processing unit includes a fan that can control the intake amount of the outside air from the intake port depending on the lighting state of the ultraviolet light source.
  6.  前記処理ユニットは、前記外気の通流方向に関して、前記オゾン供給部からオゾンが供給される領域よりも下流側の位置に、オゾン分解部材を備えることを特徴とする、請求項1項に記載の呼吸用保護具。 2. The processing unit according to claim 1, wherein the processing unit includes an ozone decomposition member at a position downstream of a region to which ozone is supplied from the ozone supply section with respect to the flow direction of the outside air. Respiratory protection.
  7.  前記処理ユニットは、前記外気の通流方向に関して、前記オゾン分解部材よりも下流側の位置に、前記オゾン分解部材とは異なるエアフィルタを備えることを特徴とする、請求項6に記載の呼吸用保護具。 The respiratory device according to claim 6, wherein the processing unit includes an air filter different from the ozone decomposition member at a position downstream of the ozone decomposition member with respect to the flow direction of the outside air. Protective equipment.
  8.  前記エアフィルタが活性炭フィルタであることを特徴とする、請求項7に記載の呼吸用保護具。 The respiratory protector according to claim 7, wherein the air filter is an activated carbon filter.
  9.  前記カバー体は、
      前記処理ユニットから送気された前記処理済気体を当該カバー体内に形成された通気路に導入する導入口と、
      前記通気路を通流する前記処理済気体を前記呼吸域に送気する通気口と、
      前記着用者の呼気を前記カバー体の外側に排気するための排気口とを備えることを特徴とする、請求項1項に記載の呼吸用保護具。
    The cover body is
    an inlet for introducing the treated gas sent from the processing unit into a ventilation path formed in the cover body;
    a vent for delivering the treated gas flowing through the vent passage to the breathing area;
    The respiratory protector according to claim 1, further comprising an exhaust port for exhausting exhaled breath of the wearer to the outside of the cover body.
  10.  前記カバー体に設けられた前記導入口と、前記処理ユニットに設けられた前記送気口とを連結する送気管を備え、
     前記送気管は、前記処理ユニットの前記吸気口と前記送気口との間の離間距離よりも長いことを特徴とする、請求項9に記載の呼吸用保護具。
    an air supply pipe that connects the introduction port provided on the cover body and the air supply port provided on the processing unit;
    The respiratory protector according to claim 9, wherein the air supply pipe is longer than the separation distance between the air intake port and the air supply port of the processing unit.
  11.  前記処理ユニットを前記着用者に固定するハーネスを備えたことを特徴とする、請求項1項に記載の呼吸用保護具。 The respiratory protector according to claim 1, further comprising a harness for fixing the processing unit to the wearer.
  12.  前記処理ユニットを駆動するためのバッテリーを備えたことを特徴とする、請求項1項に記載の呼吸用保護具。 The respiratory protector according to claim 1, further comprising a battery for driving the processing unit.
PCT/JP2022/023966 2022-06-15 2022-06-15 Respiratory protective equipment WO2023242998A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023966 WO2023242998A1 (en) 2022-06-15 2022-06-15 Respiratory protective equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023966 WO2023242998A1 (en) 2022-06-15 2022-06-15 Respiratory protective equipment

Publications (1)

Publication Number Publication Date
WO2023242998A1 true WO2023242998A1 (en) 2023-12-21

Family

ID=89192437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023966 WO2023242998A1 (en) 2022-06-15 2022-06-15 Respiratory protective equipment

Country Status (1)

Country Link
WO (1) WO2023242998A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928825A (en) * 1995-07-14 1997-02-04 Koshin Denki Kogyo Kk Dustproof mask
JP2010504170A (en) * 2006-09-20 2010-02-12 ネクスト セーフティ インコーポレイテッド Respirator that sends clean air to individual users
JP2012533327A (en) * 2009-07-17 2012-12-27 パフテック テクノロジーズ ピーティーワイ リミテッド Respirator
CN111569287A (en) * 2020-04-28 2020-08-25 重庆中电大宇卫星应用技术研究所 High-efficient sterilization electronic gauze mask
CN211751918U (en) * 2020-03-27 2020-10-27 高嘉 Positive pressure protective hood capable of sterilizing by utilizing ozone
JP2020188897A (en) * 2019-05-21 2020-11-26 ウシオ電機株式会社 Gas treatment device
WO2020262478A1 (en) * 2019-06-28 2020-12-30 ウシオ電機株式会社 Gas treatment method and gas treatment device
US20210077762A1 (en) * 2019-09-12 2021-03-18 O2-O2, Inc. Respirator devices with source control mechanisms and associated systems and methods
WO2021131888A1 (en) * 2019-12-25 2021-07-01 ウシオ電機株式会社 Gas treatment method, storage chamber, incubator, and sterilizer
JP2021165452A (en) * 2020-04-08 2021-10-14 マフレン株式会社 mask
JP2022034591A (en) * 2020-08-19 2022-03-04 哲男 原田 Ozone injection device for mask
JP2022098646A (en) * 2020-12-22 2022-07-04 ウシオ電機株式会社 Respiration protector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928825A (en) * 1995-07-14 1997-02-04 Koshin Denki Kogyo Kk Dustproof mask
JP2010504170A (en) * 2006-09-20 2010-02-12 ネクスト セーフティ インコーポレイテッド Respirator that sends clean air to individual users
JP2012533327A (en) * 2009-07-17 2012-12-27 パフテック テクノロジーズ ピーティーワイ リミテッド Respirator
JP2020188897A (en) * 2019-05-21 2020-11-26 ウシオ電機株式会社 Gas treatment device
WO2020262478A1 (en) * 2019-06-28 2020-12-30 ウシオ電機株式会社 Gas treatment method and gas treatment device
US20210077762A1 (en) * 2019-09-12 2021-03-18 O2-O2, Inc. Respirator devices with source control mechanisms and associated systems and methods
WO2021131888A1 (en) * 2019-12-25 2021-07-01 ウシオ電機株式会社 Gas treatment method, storage chamber, incubator, and sterilizer
CN211751918U (en) * 2020-03-27 2020-10-27 高嘉 Positive pressure protective hood capable of sterilizing by utilizing ozone
JP2021165452A (en) * 2020-04-08 2021-10-14 マフレン株式会社 mask
CN111569287A (en) * 2020-04-28 2020-08-25 重庆中电大宇卫星应用技术研究所 High-efficient sterilization electronic gauze mask
JP2022034591A (en) * 2020-08-19 2022-03-04 哲男 原田 Ozone injection device for mask
JP2022098646A (en) * 2020-12-22 2022-07-04 ウシオ電機株式会社 Respiration protector

Similar Documents

Publication Publication Date Title
EP1799330B1 (en) Air decontamination device and method
KR101206360B1 (en) Apparatus and method for the chemical and biological warfare agent decontamination
US20070253860A1 (en) Process and device for sterilising ambient air
KR20100061665A (en) Uv air treatment method and device
JPWO2002053196A1 (en) Deodorizing device
EP4121127A1 (en) Atmospheric plasma filter
JP2022098646A (en) Respiration protector
JP7379864B2 (en) gas treatment equipment
WO2023242998A1 (en) Respiratory protective equipment
KR101991571B1 (en) Air cleaner
JP3000056B2 (en) Air purifier
US20220111234A1 (en) Personal air purifier
JP2003310723A (en) Air cleaner and catalyst
KR100458808B1 (en) Device for purification treatment of exhaust gas
EP4371582A1 (en) Air purifier and purification booth for preventing infection
JP7478436B2 (en) Air Purifier
US20230075460A1 (en) Apparatus for inactivation of airborne pathogens
JP4840552B2 (en) Ozone gas monitoring device
KR200360563Y1 (en) Manufacture of air purification cartridge
CN108525149A (en) Air cleaning unit and fire protection mask for fire protection mask
KR20240023947A (en) Oxygen generator with air sterilization and hazardous substance removal function
JP2006187380A (en) Air cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946817

Country of ref document: EP

Kind code of ref document: A1