WO2023240732A1 - 一种高抗蠕变性能镍基粉末高温合金及其制备方法 - Google Patents

一种高抗蠕变性能镍基粉末高温合金及其制备方法 Download PDF

Info

Publication number
WO2023240732A1
WO2023240732A1 PCT/CN2022/105971 CN2022105971W WO2023240732A1 WO 2023240732 A1 WO2023240732 A1 WO 2023240732A1 CN 2022105971 W CN2022105971 W CN 2022105971W WO 2023240732 A1 WO2023240732 A1 WO 2023240732A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
based powder
creep resistance
high creep
mass fraction
Prior art date
Application number
PCT/CN2022/105971
Other languages
English (en)
French (fr)
Inventor
张义文
贾建
刘建涛
陶宇
刘明东
Original Assignee
北京钢研高纳科技股份有限公司
钢铁研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京钢研高纳科技股份有限公司, 钢铁研究总院有限公司 filed Critical 北京钢研高纳科技股份有限公司
Publication of WO2023240732A1 publication Critical patent/WO2023240732A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • This application belongs to the technical field of high-temperature alloys, and specifically relates to a nickel-based powder high-temperature alloy with high creep resistance and a preparation method thereof.
  • the turbine disc is one of the most important hot-end components in the engine.
  • the turbine disc alloy is not only required to have high tensile strength, but also requires excellent high-temperature creep resistance, fatigue performance and high damage tolerance, as well as Excellent oxidation resistance and corrosion resistance, etc., and the turbine disk alloy is required to have a small tendency of topologically close-packed (TCP) phase precipitation during long-term service, so that the alloy has good high-temperature structural stability to ensure the attenuation of the alloy's mechanical properties. Reduce to minimum.
  • TCP topologically close-packed
  • this application aims to provide a nickel-based powder superalloy with high creep resistance and a preparation method thereof to solve the following technical problems:
  • the existing nickel-based powder superalloy has creep resistance at 815°C. lower.
  • this application provides a nickel-based powder superalloy with high creep resistance.
  • the mass fractions of each element of the nickel-based powder superalloy with high creep resistance include: C 0.055% ⁇ 0.065%, Co 14.0% ⁇ 18.0 %, Cr 9.0% ⁇ 11.0%, Mo 2.3% ⁇ 2.7%, W 4.0% ⁇ 6.0%, Ta 4.0% ⁇ 6.0%, Al 3.0% ⁇ 3.4%, Ti 2.8% ⁇ 3.2%, Nb 1.8% ⁇ 2.1% , Hf 0.2% ⁇ 0.4%, Zr 0.02% ⁇ 0.04%, B 0.02% ⁇ 0.04%, Mg 0.002% ⁇ 0.010%, La 0.002% ⁇ 0.012%, Ce 0.002% ⁇ 0.012%, and the balance Ni.
  • the total mass fraction of Co, Cr, Mo, and W is 32.0% to 36.5%.
  • the total mass fraction of W and Ta is 9.0% to 11.0%.
  • the mass fraction ratio of Ta and W, Ta/W is 0.8 to 1.3.
  • the total mass fraction of Al, Ti, Nb, Ta, and Hf is 11.5% to 14.5%.
  • the total mass fraction of Al and Ti is 6.0% to 6.5%.
  • the microstructure of the nickel-based powder superalloy with high creep resistance includes ⁇ matrix phase and precipitated phase.
  • the structure is uniform and the precipitated phase is dispersedly distributed; the precipitated phase mainly includes ⁇ ′ phase, MC type carbide and M 3 B Type 2 boride; the composition of ⁇ ' phase is (Ni,Co) 3 (Al, Ti, Ta, Nb, W, Hf) type, and the composition of MC type carbide is (Ti, Ta, Nb, Hf) C type ;
  • the element Ta is mainly distributed in the ⁇ 'phase; the elements Mg, rare earth elements La and Ce enter the ⁇ matrix phase and are segregated on the grain boundaries.
  • This application also provides a method for preparing a nickel-based powder superalloy with high creep resistance, which is used to prepare the above nickel-based powder superalloy with high creep resistance, including the following steps:
  • Step 1 Prepare the alloy according to the mass fraction ratio, using the vacuum induction melting process, and obtain the alloy bar;
  • Step 2 Use the plasma rotating electrode method to pulverize, sieve, and electrostatically treat the alloy bar to obtain 50 ⁇ m to 150 ⁇ m alloy powder;
  • Step 3 Under vacuum conditions, put the alloy powder into a low-carbon steel jacket, degassing and sealing welding, then perform hot isostatic pressing to obtain an ingot;
  • Step 4 Perform heat treatment on the ingot.
  • the heat treatment includes solution treatment and aging treatment to obtain a nickel-based powder superalloy with high creep resistance.
  • step 4 the solution treatment process parameters are: 1190°C ⁇ 1220°C/2h ⁇ 6h/air cooling, and the aging treatment process parameters are: 790°C ⁇ 820°C/4h ⁇ 20h/air cooling.
  • this application can achieve at least one of the following beneficial effects:
  • the nickel-based powder superalloy with high creep resistance in this application is made by adding solid solution strengthening elements (Co, Cr, Mo, W), ⁇ ′ phase forming elements (Al, Ti, Nb, Ta, Hf) and grain boundaries Strengthening by strengthening elements (B, Zr, Mg, La, Ce); by adding high (W + Ta) content, especially by adding appropriate amounts of elements Mg, rare earth elements La and Ce, and combining with coarse grains, the alloy is achieved Excellent high-temperature creep resistance; and by adjusting the total amount of Al, Ti, Nb and Ta elements, the ⁇ ′ phase content reaches 57% to 62% (mass fraction), giving full play to the ⁇ ′ phase strengthening, thereby obtaining Good range of ingredients with comprehensive mechanical properties.
  • solid solution strengthening elements Co, Cr, Mo, W
  • ⁇ ′ phase forming elements Al, Ti, Nb, Ta, Hf
  • grain boundaries Strengthening by strengthening elements B, Zr, Mg, La, Ce
  • W + Ta grain boundaries Strengthening by strengthening elements
  • the microstructure of the high-temperature alloy in this application includes The ⁇ matrix phase and precipitated phase have a uniform structure, and the precipitated phase is dispersedly distributed; the precipitated phase mainly includes ⁇ ′ phase, MC type carbide and M 3 B 2 type boride; the composition of ⁇ ′ phase is (Ni,Co) 3 ( Al, Ti, Ta, Nb, W, Hf) type, MC type carbide is composed of (Ti, Ta, Nb, Hf) C type; the element Ta is mainly distributed in the ⁇ 'phase; the element Mg, the rare earth element La and Ce enters the ⁇ matrix phase and segregates on the grain boundaries.
  • the nickel-based powder high-temperature alloy provided by this application has excellent comprehensive properties.
  • the alloy has high creep resistance above 815°C, so that the maximum working temperature of the high-temperature alloy in this application can reach above 815°C, making it suitable for higher temperatures. Maximum operating temperature.
  • Figure 1 shows the grain structure characterization results of the heat-treated GNPM01-19 nickel-based powder superalloy in the embodiment of the present application.
  • Figure 2 is the characterization result of the relationship between LM parameter P and stress ⁇ of GNPM01-19 nickel-based powder superalloy in the embodiment of the present application.
  • the mass fraction of each element of the nickel-based powder superalloy with high creep resistance includes: C 0.055% ⁇ 0.065%, Co 14.0% ⁇ 18.0%, Cr 9.0% ⁇ 11.0%, Mo 2.3% ⁇ 2.7%, W 4.0% ⁇ 6.0%, Ta 4.0% ⁇ 6.0%, Al 3.0% ⁇ 3.4%, Ti 2.8% ⁇ 3.2%, Nb 1.8% ⁇ 2.1%, Hf 0.2 % ⁇ 0.4%, Zr 0.02% ⁇ 0.04%, B 0.02% ⁇ 0.04%, Mg 0.002% ⁇ 0.010%, La 0.002% ⁇ 0.012%, Ce 0.002% ⁇ 0.012%, and the balance Ni; where (C+ The mass fraction ratio of Ti)/(Ti+Nb+Ta+Hf) is 0.27 ⁇ 0.42, the total mass fraction of Co, Cr, Mo and W is 32.0% ⁇ 36.5%, and the total mass fraction of W and Ta is 9.0 ⁇ 11.0% , the mass fraction ratio Ta/W of Ta and W is 0.8 to 1.3, the total mass fraction of Ti/(Ti+Nb+Ta+Hf
  • the microstructure of the nickel-based powder superalloy with high creep resistance in this application includes a ⁇ matrix phase and a precipitated phase.
  • the structure is uniform and the precipitated phase is dispersedly distributed;
  • the precipitated phase mainly includes ⁇ ′ phase, MC type carbide and M 3 B 2 type boride;
  • the composition of ⁇ ′ phase is (Ni,Co) 3 (Al, Ti, Ta, Nb, W, Hf) type, and the composition of MC type carbide is (Ti, Ta, Nb, Hf )C type;
  • element Ta is mainly distributed in the ⁇ 'phase; elements Mg, rare earth elements La and Ce enter the ⁇ matrix phase and segregate at the grain boundaries.
  • the content of the above-mentioned ⁇ ' phase is 57% to 62% (mass fraction).
  • the complete dissolution temperature of the above ⁇ ′ phase is 1170°C to 1200°C.
  • the grain size of the above-mentioned high creep resistance nickel-based powder superalloy is 4.5 to 5.0.
  • solid solution strengthening elements Co, Cr, Mo, W
  • ⁇ ' phase forming elements Al, Ti, Nb, Ta, Hf
  • grain boundary strengthening elements B, Zr, Mg, La, Ce
  • the elements Mg, rare earth elements La and Ce enter the ⁇ matrix phase and segregate on the grain boundaries, thereby strengthening the grain boundaries, thereby improving creep resistance and lasting strength.
  • Mg and element S form high melting point MgS, which plays a role in purifying grain boundaries and reducing the harmful effects of S.
  • An appropriate amount of Mg can effectively disperse and refine coarse carbides at grain boundaries. Too low a content of Mg has no obvious effect.
  • the high content of Mg causes the aggregation of grain boundary carbides, which easily forms cracks during the creep process and has adverse effects. Therefore, in this application, Mg is controlled to be 0.002% to 0.010%.
  • Rare earth elements La and Ce can remove O, S and N, causing the oxides, sulfides and nitrides segregated along the grain boundaries to disappear, reducing the harmful effects of O, S and N, and purifying the grain boundaries; secondly , La and Ce segregate at the grain boundaries, affecting the segregation behavior of other elements at the grain boundaries, causing changes in the precipitation of carbides. Appropriate amounts of La and Ce slow down the precipitation rate of carbides, delay the formation of cracks, and hinder crack expansion. ; Third, La and Ce increase the creep activation energy of the alloy and reduce the creep rate, thereby improving creep resistance and durability; excessively high contents of La and Ce can form undesirable phases with Ni, weakening the grain boundaries.
  • La is controlled at 0.002% to 0.012%
  • Ce is controlled at 0.002% to 0.012%.
  • La 0.003% ⁇ 0.01%
  • Ce 0.003% ⁇ 0.01%.
  • This application coordinately controls the content of elements such as Co, Cr, Mo, W, and Ta to reduce the tendency of TCP phase precipitation, improve the high-temperature structural stability of the alloy, and enable the alloy to have a higher maximum operating temperature. Therefore, in this application, the total mass fraction of Co, Cr, Mo, and W is controlled to be 32.0% to 36.5%.
  • W and Ta Due to factors such as the crystal structure, atomic size, self-diffusion coefficient of elements W and Ta, W and Ta can enter both the ⁇ matrix and the ⁇ ′ phase. Most of Ta enters the ⁇ ′ phase, thus strengthening the ⁇ matrix and ⁇ ′ phase at the same time.
  • Ta has a more significant effect in strengthening the ⁇ ' phase; W and Ta help to improve the high-temperature creep resistance of the alloy, especially Ta, which has a more obvious effect on improving the high-temperature creep resistance; as the amount of Ta increases, W enters the ⁇ matrix
  • the amount of phases increases; the higher the total amount of W and Ta, the better the high-temperature creep resistance and durability; only when the total mass fraction of W and Ta is more than 9.0%, can excellent 815°C creep resistance and durability be obtained. performance. Therefore, in this application, the total mass fraction of W and Ta is controlled to be 9.0% to 11.0%, and the mass fraction ratio of Ta and W, Ta/W, is 0.8 to 1.3.
  • the mass fraction of each element in the high creep resistance nickel-based powder superalloy of the present application can include: C 0.058% ⁇ 0.062%, Co 15.9% ⁇ 16.2%, Cr 9.5% ⁇ 10.5%, Mo 2.45% ⁇ 2.6%, W 4.3% ⁇ 5.5%, Ta 4.3% ⁇ 5.7%, Al 3.1% ⁇ 3.3%, Ti 2.9% ⁇ 3.2%, Nb 1.95% ⁇ 2.1%, Hf 0.25% ⁇ 0.38%, Zr 0.025% ⁇ 0.04%, B 0.02% ⁇ 0.03%, Mg 0.004% ⁇ 0.010%, La 0.003% ⁇ 0.008%, Ce 0.003% ⁇ 0.007%, and the balance Ni.
  • the (C+Ti)/(Ti+Nb+Ta+Hf) mass fraction ratio is controlled to be 0.28 to 0.35.
  • the total mass fraction of Co, Cr, Mo, and W is controlled to be 32.0% to 34.5%.
  • the total mass fraction of W and Ta is controlled to be 9.5% to 11.0%.
  • the mass fraction ratio Ta/W of Ta and W is controlled to be 0.8 to 1.25.
  • the total mass fraction of Al, Ti, Nb, Ta, and Hf is controlled to be 12.5% to 14.2%.
  • the total mass fraction of Al and Ti is controlled to be 6.1% to 6.45%.
  • This application also provides a method for preparing a nickel-based powder superalloy with high creep resistance, including the following steps:
  • Step 1 Prepare the alloy according to the mass fraction ratio, using the vacuum induction melting process, and obtain the alloy bar;
  • Step 2 Use the plasma rotating electrode method to pulverize, sieve, and electrostatically treat the alloy bar to obtain 50 ⁇ m to 150 ⁇ m alloy powder;
  • Step 3 Under vacuum conditions, put the alloy powder into a low-carbon steel jacket, degassing and sealing welding, then perform hot isostatic pressing to obtain an ingot;
  • Step 4 Perform heat treatment on the ingot.
  • the heat treatment includes solution treatment and aging treatment to obtain a nickel-based powder superalloy with high creep resistance.
  • step 2 above the powder is cooled in an argon + helium mixed gas at an extremely fast cooling rate to obtain micron-sized alloy powder with uniform alloy composition.
  • the process parameters of hot isostatic pressing are: temperature is 1190°C ⁇ 1210°C, pressure is 120MPa ⁇ 140MPa, and holding time is 2h ⁇ 6h.
  • the solution treatment process parameters are: 1190°C ⁇ 1220°C/2h ⁇ 6h/air cooling
  • the aging treatment process parameters are: 790°C ⁇ 820°C/4h ⁇ 20h/air cooling.
  • the alloy composition is uniform.
  • microstructure of the nickel-based powder superalloy with high creep resistance in this application is uniform, and the precipitated phases are dispersedly distributed, eliminating macrosegregation, which can further improve the degree of alloying and make the alloy have good high-temperature tensile strength, yield strength and high-temperature resistance. Creep resistance.
  • the mechanical properties of the above-mentioned high creep resistance nickel-based powder superalloy are as follows:
  • tensile strength is above 1590MPa (for example, 1595 ⁇ 1620MPa)
  • yield strength is above 1260MPa (for example, 1260 ⁇ 1275MPa)
  • elongation after break is above 10.0% (for example, 10.2% ⁇ 11%)
  • section shrinkage is above 11% (For example, 11.5% to 13%).
  • tensile strength reaches more than 1170MPa (for example, 1175 ⁇ 1185MPa), yield strength reaches more than 1040MPa (for example, 1045 ⁇ 1060MPa), elongation after break is more than 5.5% (for example, 5.8% ⁇ 6.0%), and section shrinkage is 7.5 % or more (for example, 7.8% to 8.5%).
  • Test condition 815°C Creep resistance Test condition 815°C/450MPa: Durable life is more than 890h, such as 895 ⁇ 920h; Test condition 815°C/400MPa: Plastic strain is less than 0.1% in 50h, such as 0.08% ⁇ 0.1%.
  • air cooling is used in the solid solution treatment and aging treatment steps to obtain a nickel-based powder superalloy with high creep resistance.
  • the process is simple, and compared with commonly used cooling methods such as salt cooling or oil cooling, it is economical and Environmentally friendly and widely applicable.
  • the maximum working temperature of the nickel-based powder superalloy with high creep resistance in this application can reach above 815°C, which can meet the stringent requirements of engines for material properties at high temperatures and can be used as high-temperature materials in temperature scenarios above 815°C.
  • This embodiment provides a nickel-based powder superalloy with high creep resistance.
  • the composition and process conditions of the nickel-based powder superalloy with high creep resistance in this embodiment are as shown in Table 1 below.
  • GNPM01-19, GNPM01-19-1, and GNPM01-19-2 are embodiments of the present application.
  • GNPM01-17, 1 # and 2 # are samples with relatively poor effects during the inventor's research process, and are used as comparative examples in this application.
  • the preparation method of nickel-based powder superalloy with high creep resistance is as follows:
  • the microstructure of the nickel-based powder superalloy provided by this application is mainly composed of matrix ⁇ phase, ⁇ ′ phase, MC type carbide and M 3 B 2 type boride.
  • the composition of ⁇ ′ phase is (Ni,Co) 3 ( Al, Ti, Ta, Nb, W, Hf) type
  • the composition of MC type carbide is (Ti, Ta, Nb, Hf) C type.
  • the ⁇ ′ phase content of GNPM01-17, GNPM01-19, GNPM01-19-1, GNPM01-19-2, 1 # and 2 # nickel-based powder superalloys is 58% to 60% (mass fraction), and the ⁇ ′ phase is completely
  • the dissolution temperature is 1180°C ⁇ 1200°C, and the grain size is 4.5 ⁇ 5.0. Coarse grains are beneficial to improving creep resistance and durability.
  • the room temperature, 815°C mechanical properties and 815°C creep resistance of GNPM01-17, GNPM01-19, GNPM01-19-1, GNPM01-19-2 , 1 # and 2 # nickel-based powder superalloys are listed in Table 2, respectively.
  • Table 3 and Table 4 the relationship between LM parameter P and stress ⁇ is shown in Figure 2.
  • the minimum creep rate of the alloy of the present application at 815°C is greatly reduced, and the durable life and durable strength are also greatly improved; in particular, adding A small amount of Mg, Ce, and La reduces the minimum creep rate of the alloy and increases the durability life (GNPM01-19 alloy compared with GNPM01-17 alloy); at the same time, the total amount of W and Ta added increases from 8.0% to about 10.0% Improved creep resistance (GNPM01-19 alloy compared with 1 # and 2 # alloys).
  • the 815°C/100h lasting strength of the alloy of this application is greater than 520MPa, and the GNPM01-19 alloy reaches 590MPa. It can be seen that the nickel-based powder superalloy provided by this application has excellent high-temperature creep resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高抗蠕变性能镍基粉末高温合金及其制备方法,属于高温合金技术领域,用以解决现有的镍基粉末高温合金用于815℃时抗蠕变性能较低的问题。高温合金的各元素的质量分数包括:C 0.055%~0.065%,Co 14.0%~18.0%,Cr 9.0%~11.0%,Mo 2.3%~2.7%,W 4.0%~6.0%,Ta 4.0%~6.0%,Al 3.0%~3.4%,Ti 2.8%~3.2%,Nb 1.8%~2.1%,Hf 0.2%~0.4%,Zr 0.02%~0.04%,B 0.02%~0.04%,Mg 0.002%~0.010%,La 0.002%~0.012%,Ce 0.002%~0.012%,以及余量的Ni。该高抗蠕变性能镍基粉末高温合金在815℃以上具有高抗蠕变性能。

Description

一种高抗蠕变性能镍基粉末高温合金及其制备方法 技术领域
本申请属于高温合金技术领域,具体涉及一种高抗蠕变性能镍基粉末高温合金及其制备方法。
背景技术
涡轮盘是发动机中最重要的热端部件之一,其在服役过程中,不仅要求涡轮盘合金具有高拉伸强度,而且要求优异的高温抗蠕变性能、疲劳性能和高损伤容限,以及优异的抗氧化和耐腐蚀性等,而且要求涡轮盘合金在长时服役过程中拓扑密堆(TCP)相析出倾向很小,使合金具有良好的高温组织稳定性,以保证合金力学性能的衰减降低到最低。
随着发动机的发展,涡轮盘的工作温度越来越高,目前新开发、研制的发动机要求涡轮盘的工作温度要达到815℃。而现有的用于涡轮盘的镍基粉末高温合金,如FGH4098合金,其最高使用温度限制在750℃,超过750℃蠕变抗力下降,同时出现严重的拓扑密堆(TCP)相,无法满足在815℃高温下蠕变性能的要求。
发明内容
鉴于上述分析,本申请旨在提供一种高抗蠕变性能镍基粉末高温合金及其制备方法,用于解决以下技术问题:现有的镍基粉末高温合金用于815℃时抗蠕变性能较低。
本申请的目的主要是通过以下技术方案实现的:
一方面,本申请提供了一种高抗蠕变性能镍基粉末高温合金,高抗蠕变性能镍基粉末高温合金的各元素的质量分数包括:C  0.055%~0.065%,Co 14.0%~18.0%,Cr 9.0%~11.0%,Mo 2.3%~2.7%,W 4.0%~6.0%,Ta 4.0%~6.0%,Al 3.0%~3.4%,Ti 2.8%~3.2%,Nb 1.8%~2.1%,Hf 0.2%~0.4%,Zr 0.02%~0.04%,B 0.02%~0.04%,Mg 0.002%~0.010%,La 0.002%~0.012%,Ce 0.002%~0.012%,以及余量的Ni。
进一步的,(C+Ti)/(Ti+Nb+Ta+Hf)质量分数比值为0.27~0.42。
进一步的,Co、Cr、Mo、W的总质量分数为32.0%~36.5%。
进一步的,W、Ta的总质量分数为9.0%~11.0%。
进一步的,Ta、W的质量分数比值Ta/W为0.8~1.3。
进一步的,Al、Ti、Nb、Ta、Hf的总质量分数为11.5%~14.5%。
进一步的,Al、Ti的总质量分数为6.0%~6.5%。
进一步的,高抗蠕变性能镍基粉末高温合金的显微组织包括γ基体相和析出相,组织均匀,析出相呈弥散分布;析出相主要包括γ′相、MC型碳化物和M 3B 2型硼化物;γ′相的组成为(Ni,Co) 3(Al,Ti,Ta,Nb,W,Hf)型,MC型碳化物的组成为(Ti,Ta,Nb,Hf)C型;元素Ta主要分配在γ′相中;元素Mg、稀土元素La和Ce进入γ基体相偏聚在晶界上。
本申请还提供了一种高抗蠕变性能镍基粉末高温合金的制备方法,用于制备上述高抗蠕变性能镍基粉末高温合金,包括以下步骤:
步骤1、按质量分数配比,采用真空感应熔炼工艺制备合金,并获得合金棒料;
步骤2、采用等离子旋转电极法将合金棒料制粉、筛分、静电处理,获得50μm~150μm合金粉末;
步骤3、在真空条件下,将合金粉末装入低碳钢包套、脱气和封焊后,进行热等静压成形,获得锭坯;
步骤4、对锭坯进行热处理,热处理包括固溶处理和时效处理,得到高抗蠕变性能镍基粉末高温合金。
进一步的,步骤4中,固溶处理工艺参数为:1190℃~1220℃/2h~6h/空冷,时效处理工艺参数为:790℃~820℃/4h~20h/空冷。
与现有技术相比,本申请至少可实现如下有益效果之一:
a)本申请的高抗蠕变性能镍基粉末高温合金通过添加固溶强化元素(Co、Cr、Mo、W)、γ′相形成元素(Al、Ti、Nb、Ta、Hf)和晶界强化元素(B、Zr、Mg、La、Ce)进行强化;通过添加高(W+Ta)含量,特别是通过添加适量的元素Mg、稀土元素La和Ce,并配合粗大晶粒,来实现合金的优异的高温抗蠕变性能;以及通过调控Al、Ti、Nb和Ta元素总量设计,使γ′相含量达到57%~62%(质量分数),充分发挥γ′相强化,从而获得具有良好的综合力学性能的成分范围。
b)本申请的高温合金通过控制(C+Ti)/(Ti+Nb+Ta+Hf)含量比值小于0.5,消除MC型碳化物在粉末原始颗粒边界析出,即消除粉末原始颗粒边界组织(PPBS),以避免由此导致的力学性能衰减;通过协调控制Co、Cr、Mo、W、Ta含量以降低TCP相析出倾向,改善合金的高温组织稳定性;本申请的高温合金的显微组织包括γ基体相和析出相,组织均匀,析出相呈弥散分布;析出相主要包括γ′相、MC型碳化物和M 3B 2型硼化物;γ′相的组成为(Ni,Co) 3(Al,Ti,Ta,Nb,W,Hf)型,MC型碳化物的组成为(Ti,Ta,Nb,Hf)C型;元素Ta主要分配在γ′相中;元素Mg、稀土元素La和Ce进入γ基体相偏聚在晶界上。
c)本申请提供的镍基粉末高温合金具有优异的综合性能,合金在815℃以上具有高抗蠕变性,使得本申请的高温合金的最高工作温度可以达到815℃以上,能够适合更高的最高工作温度。
d)本申请的制备方法中,固溶处理和时效处理步骤中采用空冷即可得到高抗蠕变性能镍基粉末高温合金,工艺简单,与常用的盐冷或油冷等冷却方式相比,经济,环保,适用范围广。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分的从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在所写的说明书以来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本申请的限制。
图1为本申请的实施例中GNPM01-19镍基粉末高温合金的热处理态的晶粒组织表征结果。
图2为本申请实施例中GNPM01-19镍基粉末高温合金LM参数P与应力σ关系表征结果。
具体实施方式
下面具体描述本申请的优选实施例,实施例仅用于阐释本申请的原理,并非用于限定本申请的范围。
本申请提供了一种高抗蠕变性能镍基粉末高温合金,高抗蠕变性能镍基粉末高温合金的各元素的质量分数包括:C 0.055%~0.065%,Co 14.0%~18.0%,Cr 9.0%~11.0%,Mo 2.3%~2.7%,W 4.0%~6.0%,Ta 4.0%~6.0%,Al 3.0%~3.4%,Ti 2.8%~3.2%,Nb 1.8%~2.1%,Hf 0.2%~0.4%,Zr 0.02%~0.04%,B 0.02%~0.04%,Mg 0.002%~0.010%,La 0.002%~0.012%,Ce 0.002%~0.012%,以及余量的Ni;其中(C+Ti)/(Ti+Nb+Ta+Hf)质量分数比值为0.27~0.42,Co、Cr、Mo、W的总质量分数为32.0%~36.5%,W、Ta的总质量分数为9.0~11.0%,Ta、W的质量分数比值Ta/W为0.8~1.3,Al、Ti、Nb、Ta、Hf的总质量分数为11.5%~14.5%,Al、Ti的总质量分数为6.0%~6.5%。
具体的,本申请的高抗蠕变性能镍基粉末高温合金的显微组织包括γ基体相和析出相,组织均匀,析出相呈弥散分布;析出相主要包括γ′相、MC型碳化物和M 3B 2型硼化物;γ′相的组成为(Ni,Co) 3(Al,Ti,Ta,Nb,W,Hf)型,MC型碳化物的组成为(Ti,Ta,Nb,Hf)C型;元素Ta主要分配在γ′相中;元素Mg、稀土元素La和Ce进入γ基体相偏聚在晶界上。
具体的,上述γ′相的含量为57%~62%(质量分数)。
具体的,有62%~70%的Ta进入γ′相。
具体的,上述γ′相完全溶解温度为1170℃~1200℃。
具体的,考虑到粗大晶粒对提高蠕变抗力的作用不容忽视,因此,上述高抗蠕变性能镍基粉末高温合金的晶粒度为4.5~5.0级。
下面对本申请中的元素详细地进行说明,含量均指各个元素的质量分数。
本申请通过添加固溶强化元素(Co、Cr、Mo、W)、添加γ′相形成元素(Al、Ti、Nb、Ta、Hf)和晶界强化元素(B、Zr、Mg、La、Ce)进行强化,通过添加高(W+Ta)含量,特别是通过添加适量的元素Mg、稀土元素La和Ce,并配合粗大晶粒,来实现合金的优异的高温抗蠕变性能,从而获得具有良好的综合力学性能的成分范围。
本申请的高抗蠕变性能镍基粉末高温合金中,元素Mg、稀土元素La和Ce进入γ基体相偏聚在晶界上,起到强化晶界的作用,从而提高蠕变抗力和持久强度。Mg与元素S形成高熔点的MgS,起到净化晶界和减小S的有害作用;适量的Mg可有效的使晶界粗大碳化物分散和细化,过低含量的Mg作用不明显,过高含量的Mg使晶界碳化物聚集,在蠕变过程中易于形成裂纹,产生不利影响。因此,本申请中控制Mg0.002%~0.010%。
稀土元素La和Ce能脱O脱S脱N,使沿晶界偏聚的氧化物、硫化 物和氮化物消失,减小O、S和N的有害作用,起到净化晶界的作用;其次,La和Ce偏聚于晶界,影响其他元素在晶界上的偏聚行为,使碳化物的析出发生变化,适量的La和Ce减缓碳化物的析出速率,延缓裂纹的形成,阻碍裂纹扩展;第三,La和Ce提高合金的蠕变激活能,降低蠕变速率,从而提高蠕变抗力和持久寿命;过高含量的La和Ce能与Ni形成不希望得到的相,使晶界弱化;同时添加适量的Mg、La和Ce,可以发挥各自优势,起到协调强化作用,更好地强化晶界。因此,本申请中控制La 0.002%~0.012%,Ce 0.002%~0.012%。优选的,La 0.003%~0.01%,Ce 0.003%~0.01%。
本申请通过控制(C+Ti)/(Ti+Nb+Ta+Hf)含量比值小于0.5,消除MC型碳化物在粉末原始颗粒边界析出,即消除粉末原始颗粒边界组织(PPBS),以避免由此导致的力学性能衰减;因此,本申请中控制(C+Ti)/(Ti+Nb+Ta+Hf)质量分数比值为0.27~0.42。
本申请通过协调控制Co、Cr、Mo、W、Ta等元素含量,降低TCP相析出倾向,改善合金的高温组织稳定性,使合金具有更高的最高工作温度。因此,本申请中控制Co、Cr、Mo、W的总质量分数为32.0%~36.5%。
由于元素W和Ta的晶体结构、原子尺寸、自扩散系数等因素,W和Ta既可进入γ基体,又可进入γ′相,Ta大部分进入γ′相,因此同时强化γ基体和γ′相,Ta强化γ′相效果更显著;W和Ta有助于提高合金的高温蠕变抗力,尤其是Ta对提高高温蠕变抗力效果更加明显;随着Ta添加量的提高,W进入γ基体相的量增加;W、Ta总量越高,高温抗蠕变性能、持久性能越好;只有W、Ta的总质量分数为9.0%以上时,才能获得优异的815℃抗蠕变性能、持久性能。因此,本申请中控制W、Ta的总质量分数为9.0%~11.0%,Ta、W的质量分数比值Ta/W为0.8~1.3。
为了进一步提高镍基粉末高温合金的抗蠕变性能,本申请的高抗蠕 变性能镍基粉末高温合金中各元素的质量分数可以包括:C 0.058%~0.062%,Co 15.9%~16.2%,Cr 9.5%~10.5%,Mo 2.45%~2.6%,W 4.3%~5.5%,Ta 4.3%~5.7%,Al 3.1%~3.3%,Ti 2.9%~3.2%,Nb 1.95%~2.1%,Hf 0.25%~0.38%,Zr 0.025%~0.04%,B 0.02%~0.03%,Mg 0.004%~0.010%,La 0.003%~0.008%,Ce 0.003%~0.007%,以及余量的Ni。
优选的,控制(C+Ti)/(Ti+Nb+Ta+Hf)质量分数比值为0.28~0.35。
优选的,控制Co、Cr、Mo、W的总质量分数为32.0%~34.5%。
优选的,控制W、Ta的总质量分数为9.5%~11.0%。
优选的,控制Ta、W的质量分数比值Ta/W为0.8~1.25。
优选的,控制Al、Ti、Nb、Ta、Hf的总质量分数为12.5%~14.2%。
优选的,控制Al、Ti的总质量分数为6.1%~6.45%。
本申请还提供了一种高抗蠕变性能镍基粉末高温合金的制备方法,包括以下步骤:
步骤1、按质量分数配比,采用真空感应熔炼工艺制备合金,并获得合金棒料;
步骤2、采用等离子旋转电极法将合金棒料制粉、筛分、静电处理,获得50μm~150μm合金粉末;
步骤3、在真空条件下,将合金粉末装入低碳钢包套、脱气和封焊后,进行热等静压成形,获得锭坯;
步骤4、对锭坯进行热处理,热处理包括固溶处理和时效处理,得到高抗蠕变性能镍基粉末高温合金。
具体的,上述步骤2中,制粉过程中在氩气+氦气混合气体中冷却,冷速极快,得到合金成分均匀的微米级合金粉末。
具体的,上述步骤3中,热等静压成形的工艺参数:温度为1190℃~1210℃,压力为120MPa~140MPa,保温时间为2h~6h。
具体的,上述步骤4中,固溶处理工艺参数为:1190℃~1220℃/2h~6h/空冷,时效处理工艺参数为:790℃~820℃/4h~20h/空冷。
本申请的制备方法中,由于高温合金的微米级合金粉末在高冷速下冷却形成,使得合金成分均匀。
本申请的高抗蠕变性能镍基粉末高温合金的微观组织均匀,析出相呈弥散分布,消除了宏观偏析,可以进一步提高合金化程度,使合金具有良好的高温抗拉强度、屈服强度和高温抗蠕变性能。
具体的,上述高抗蠕变性能镍基粉末高温合金的力学性能如下:
室温力学性能:抗拉强度达到1590MPa以上(例如1595~1620MPa),屈服强度1260MPa以上(例如1260~1275MPa),断后伸长率10.0%以上(例如10.2%~11%),断面收缩率11%以上(例如11.5%~13%)。
815℃的力学性能:抗拉强度达到1170MPa以上(例如1175~1185MPa),屈服强度1040MPa以上(例如1045~1060MPa),断后伸长率5.5%以上(例如5.8%~6.0%),断面收缩率7.5%以上(例如7.8%~8.5%)。
815℃抗蠕变性能:试验条件815℃/450MPa:持久寿命890h以上,例如895~920h;试验条件815℃/400MPa:50h塑性应变0.1%以下,例如0.08%~0.1%。
本申请的制备方法中,固溶处理和时效处理步骤中采用空冷即可得到高抗蠕变性能镍基粉末高温合金,工艺简单,与常用的盐冷或油冷等冷却方式相比,经济,环保,适用范围广。
本申请的高抗蠕变性能镍基粉末高温合金的最高工作温度可以达到815℃以上,能够满足发动机对高温下材料性能的苛刻要求,可以用作 815℃以上的温度场景下的高温材料。
下面将以具体的实施例与对比例来展示本申请的高抗蠕变性能镍基粉末高温合金的成分和工艺参数精确控制的优势。
实施例
本实施例提供了一种高抗蠕变性能镍基粉末高温合金。本实施例的高抗蠕变性能镍基粉末高温合金的成分及工艺条件如下表1所示。其中,GNPM01-19、GNPM01-19-1、GNPM01-19-2是本申请的实施例。GNPM01-17、1 #和2 #是发明人研究过程中效果相对较差的样品,作为本申请的对比例。
高抗蠕变性能镍基粉末高温合金的制备方法具体如下:
(1)按高温合金的化学成分及其质量分数配制原料,采用25kg真空感应熔炼工艺制备合金棒料;
(2)将合金棒料采用等离子旋转电极法制备高温合金粉末,合金粉末经过筛分、静电处理,得到粒度为50μm~150μm的合金粉末;
(3)在真空条件下,将合金粉末装入低碳钢包套、脱气和封焊;
(4)封焊后的包套进行热等静压成形,获得锭坯;
(5)对成形后的锭坯进行热处理,得到粉末高温合金制件;热处理包括固溶处理和时效处理。
表1镍基粉末高温合金样品的成分及制备工艺参数
Figure PCTCN2022105971-appb-000001
Figure PCTCN2022105971-appb-000002
Figure PCTCN2022105971-appb-000003
采用金相显微镜观察热处理态和长期时效后的上述合金的显微组织,表征制备得到的GNPM01-17、GNPM01-19、GNPM01-19-1、GNPM01-19-2、1 #和2 #镍基粉末高温合金的显微组织。
以GNPM01-19镍基粉末高温合金为典型,其热处理态的晶粒组织如图1所示。
本申请提供的镍基粉末高温合金的显微组织主要由基体γ相、γ′相、MC型碳化物和M 3B 2型硼化物组成,γ′相的组成为(Ni,Co) 3(Al,Ti,Ta,Nb,W,Hf)型,MC型碳化物的组成为(Ti,Ta,Nb,Hf)C型。
GNPM01-17、GNPM01-19、GNPM01-19-1、GNPM01-19-2、1 #和2 #镍基粉末高温合金的γ′相含量为58%~60%(质量分数),γ′相完全溶解温度 为1180℃~1200℃,晶粒度为4.5~5.0级。粗大晶粒有利于改善蠕变抗力和持久寿命。
显微组织观察表明,镍基粉末高温合金经815℃/3000h时效热处理后无TCP相析出,可见其在815℃下具有优异的高温组织稳定性。
GNPM01-17、GNPM01-19、GNPM01-19-1、GNPM01-19-2、1 #和2 #镍基粉末高温合金的室温、815℃力学性能和815℃抗蠕变性能分别列于表2、表3、表4中,LM参数P与应力σ关系如图2所示。
表2镍基粉末高温合金的室温力学性能
合金编号 R m/MPa R p0.2/MPa A/% Z/%
GNPM01-17 1612 1267 9.5 10.5
GNPM01-19 1610 1265 10.5 12.0
GNPM01-19-1 1608 1263 10.6 12.2
GNPM01-19-2 1610 1266 10.4 11.8
1 # 1595 1244 13.2 14.6
2 # 1585 1240 12.8 13.4
FGH4098 1587 1152 18.0 21.0
表3镍基粉末高温合金的815℃力学性能
合金编号 R m/MPa R p0.2/MPa A/% Z/%
GNPM01-17 1181 1039 6.5 7.0
GNPM01-19 1180 1050 6.0 8.0
GNPM01-19-1 1176 1048 5.8 7.8
GNPM01-19-2 1180 1052 6.0 8.2
1 # 1155 1023 8.5 10.5
2 # 1150 1018 8.0 11.4
FGH4098 990 830 26.0 26.5
表4镍基粉末高温合金的815℃抗蠕变性能
Figure PCTCN2022105971-appb-000004
Figure PCTCN2022105971-appb-000005
由表4中数据和图2可知,与现有的FGH4098合金相比,本申请合金815℃的最小蠕变速率有较大幅度降低,持久寿命和持久强度也有较大幅度提高;特别是,加入少量的Mg、Ce、La降低合金的最小蠕变速率,提高持久寿命(GNPM01-19合金与GNPM01-17合金相比);与此同时,加入W、Ta总量由8.0%提高到10.0%左右抗蠕变性能提高(GNPM01-19合金与1 #和2 #合金相比)。本申请合金815℃/100h持久强度大于520MPa,GNPM01-19合金达到590MPa。可见,本申请提供的镍基粉末高温合金具有优异的高温抗蠕变性能。
以上所述仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (10)

  1. 一种高抗蠕变性能镍基粉末高温合金,其特征在于,所述高抗蠕变性能镍基粉末高温合金的各元素的质量分数包括:C 0.055%~0.065%,Co 14.0%~18.0%,Cr 9.0%~11.0%,Mo 2.3%~2.7%,W 4.0%~6.0%,Ta 4.0%~6.0%,Al 3.0%~3.4%,Ti 2.8%~3.2%,Nb 1.8%~2.1%,Hf 0.2%~0.4%,Zr 0.02%~0.04%,B 0.02%~0.04%,Mg 0.002%~0.010%,La 0.002%~0.012%,Ce 0.002%~0.012%,以及余量的Ni。
  2. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,(C+Ti)/(Ti+Nb+Ta+Hf)质量分数比值为0.27~0.42。
  3. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,Co、Cr、Mo、W的总质量分数为32.0%~36.5%。
  4. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,W、Ta的总质量分数为9.0%~11.0%。
  5. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,Ta、W的质量分数比值Ta/W为0.8~1.3。
  6. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,Al、Ti、Nb、Ta、Hf的总质量分数为11.5%~14.5%。
  7. 根据权利要求1所述的高抗蠕变性能镍基粉末高温合金,其特征在于,Al、Ti的总质量分数为6.0%~6.5%。
  8. 根据权利要求1-7任一项所述的高抗蠕变性能镍基粉末高温合金,其特征在于,所述高抗蠕变性能镍基粉末高温合金的显微组织包括γ基体相和析出相,组织均匀,析出相呈弥散分布;析出相主要包括γ′相、MC型碳化物和M 3B 2型硼化物;γ′相的组成为(Ni,Co) 3(Al,Ti,Ta,Nb,W,Hf)型,MC型碳化物的组成为(Ti,Ta,Nb,Hf)C型;元素Ta主要分配在γ′相中; 元素Mg、稀土元素La和Ce进入γ基体相偏聚在晶界上。
  9. 一种高抗蠕变性能镍基粉末高温合金的制备方法,其特征在于,用于制造权利要求1-8任一项所述的高抗蠕变性能镍基粉末高温合金,包括以下步骤:
    步骤1、按质量分数配比,采用真空感应熔炼工艺制备合金,并获得合金棒料;
    步骤2、采用等离子旋转电极法将合金棒料制粉、筛分、静电处理,获得50μm~150μm合金粉末;
    步骤3、在真空条件下,将合金粉末装入低碳钢包套、脱气和封焊后,进行热等静压成形,获得锭坯;
    步骤4、对锭坯进行热处理,热处理包括固溶处理和时效处理,得到高抗蠕变性能镍基粉末高温合金。
  10. 根据权利要求9所述的制备方法,其特征在于,所述步骤4中,固溶处理工艺参数为:1190℃~1220℃/2h~6h/空冷,时效处理工艺参数为:790℃~820℃/4h~20h/空冷。
PCT/CN2022/105971 2022-06-16 2022-07-15 一种高抗蠕变性能镍基粉末高温合金及其制备方法 WO2023240732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210685132.7 2022-06-16
CN202210685132.7A CN117286382A (zh) 2022-06-16 2022-06-16 一种高抗蠕变性能镍基粉末高温合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023240732A1 true WO2023240732A1 (zh) 2023-12-21

Family

ID=89193044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105971 WO2023240732A1 (zh) 2022-06-16 2022-07-15 一种高抗蠕变性能镍基粉末高温合金及其制备方法

Country Status (2)

Country Link
CN (1) CN117286382A (zh)
WO (1) WO2023240732A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512404A (zh) * 2024-01-05 2024-02-06 中国航发北京航空材料研究院 析出相弥散强化抗氢脆镍基单晶高温合金及其制备方法
CN117660809A (zh) * 2024-01-30 2024-03-08 北京钢研高纳科技股份有限公司 一种高b低p镍基合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898371A (zh) * 2014-02-18 2014-07-02 上海发电设备成套设计研究院 700℃等级超超临界燃煤电站用镍基高温合金及其制备
CN108330334A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种火电机组用高温合金及其制造方法
CN108467972A (zh) * 2018-04-16 2018-08-31 中国航发北京航空材料研究院 一种高承温能力的镍基变形高温合金及其制备方法
CN110205523A (zh) * 2019-07-04 2019-09-06 北京钢研高纳科技股份有限公司 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
CN110241331A (zh) * 2019-07-25 2019-09-17 北京钢研高纳科技股份有限公司 镍基粉末高温合金及其制备方法与应用
CN110643856A (zh) * 2018-06-26 2020-01-03 中南大学 一种镍基合金、其制备方法与一种制造物品
CN111187946A (zh) * 2020-03-02 2020-05-22 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法
JP2021172852A (ja) * 2020-04-24 2021-11-01 三菱パワー株式会社 Ni基合金補修部材および該補修部材の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898371A (zh) * 2014-02-18 2014-07-02 上海发电设备成套设计研究院 700℃等级超超临界燃煤电站用镍基高温合金及其制备
CN108330334A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种火电机组用高温合金及其制造方法
CN108467972A (zh) * 2018-04-16 2018-08-31 中国航发北京航空材料研究院 一种高承温能力的镍基变形高温合金及其制备方法
CN110643856A (zh) * 2018-06-26 2020-01-03 中南大学 一种镍基合金、其制备方法与一种制造物品
CN110205523A (zh) * 2019-07-04 2019-09-06 北京钢研高纳科技股份有限公司 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
CN110241331A (zh) * 2019-07-25 2019-09-17 北京钢研高纳科技股份有限公司 镍基粉末高温合金及其制备方法与应用
CN111187946A (zh) * 2020-03-02 2020-05-22 北京钢研高纳科技股份有限公司 一种高铝含量的镍基变形高温合金及制备方法
JP2021172852A (ja) * 2020-04-24 2021-11-01 三菱パワー株式会社 Ni基合金補修部材および該補修部材の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512404A (zh) * 2024-01-05 2024-02-06 中国航发北京航空材料研究院 析出相弥散强化抗氢脆镍基单晶高温合金及其制备方法
CN117512404B (zh) * 2024-01-05 2024-04-02 中国航发北京航空材料研究院 析出相弥散强化抗氢脆镍基单晶高温合金及其制备方法
CN117660809A (zh) * 2024-01-30 2024-03-08 北京钢研高纳科技股份有限公司 一种高b低p镍基合金及其制备方法
CN117660809B (zh) * 2024-01-30 2024-05-14 北京钢研高纳科技股份有限公司 一种高b低p镍基合金及其制备方法

Also Published As

Publication number Publication date
CN117286382A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN108467972B (zh) 一种高承温能力的镍基变形高温合金及其制备方法
WO2023240732A1 (zh) 一种高抗蠕变性能镍基粉末高温合金及其制备方法
JP4026883B2 (ja) タービンエンジン部品用ニッケル合金
JP5398123B2 (ja) ニッケル系合金
CN110205523B (zh) 一种具有高拉伸强度的镍基粉末高温合金及其制备方法
JP2778705B2 (ja) Ni基超耐熱合金およびその製造方法
WO2011062231A1 (ja) 耐熱超合金
JP2023526106A (ja) ニッケル基高温合金、その製造方法、部品および使用
JPWO2006059805A1 (ja) 耐熱超合金
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
CN108425037A (zh) 一种粉末高温合金及其制备方法
CN111471897B (zh) 一种高强镍基高温合金制备成型工艺
JP7450639B2 (ja) 低積層欠陥エネルギー超合金、構造部材及びその使用
JP4409409B2 (ja) Ni−Fe基超合金とその製造法及びガスタービン
CN116287871A (zh) 一种650℃用镍基高温合金及其增材制造方法
JP3084764B2 (ja) Ni基超合金部材の製造方法
CN115505790B (zh) 一种焊缝强度稳定的镍基高温合金及其制备方法和应用
CN115354195B (zh) 一种抗裂纹镍基高温合金及其制备方法和应用
CN108866387A (zh) 一种燃气轮机用高强抗热腐蚀镍基高温合金及其制备工艺和应用
CN109554580B (zh) 一种镍基合金、其制备方法与制造物品
CN114231767B (zh) 一种抗热腐蚀镍基高温合金的σ相析出控制方法
CN109554579A (zh) 一种镍基合金、其制备方法与制造物品
JP3286332B2 (ja) ニッケル基超合金およびそれから製造された単結晶形の工業用ガスタービン高温域部品
CN115198372B (zh) 一种具有分层微观结构的钴基单晶高温合金及其制备方法
CN115233074A (zh) 一种燃机动叶片用钴镍基高温合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946405

Country of ref document: EP

Kind code of ref document: A1