WO2023239181A1 - 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법 - Google Patents

고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법 Download PDF

Info

Publication number
WO2023239181A1
WO2023239181A1 PCT/KR2023/007874 KR2023007874W WO2023239181A1 WO 2023239181 A1 WO2023239181 A1 WO 2023239181A1 KR 2023007874 W KR2023007874 W KR 2023007874W WO 2023239181 A1 WO2023239181 A1 WO 2023239181A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel layer
high mobility
source electrode
drain electrode
driving device
Prior art date
Application number
PCT/KR2023/007874
Other languages
English (en)
French (fr)
Inventor
이수연
이진규
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230064950A external-priority patent/KR20230169844A/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2023239181A1 publication Critical patent/WO2023239181A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a driving device and a method of manufacturing the same, and more specifically, to a high-mobility thin-film transistor (TFT) driving device and a method of manufacturing the same in which a channel layer containing metal oxide is subjected to local fluorination treatment.
  • TFT thin-film transistor
  • a driving element is a type of semiconductor element used to convert or amplify electrical signals and is used in various fields such as computers, communications, control, medical care, automobiles, and home appliances.
  • a thin film transistor is one of the core devices of an integrated circuit and is a device that drives a screen using a transistor formed of a thin film.
  • Thin film transistor driving elements are known to be a technology that has begun to be mainly used in liquid crystal displays, and it is common to configure liquid crystal panels with a backlight to display colors.
  • thin film transistor driving elements are used in OLED and LCD displays used in large/small devices. This device has the advantages of low power consumption, high resolution and high contrast, and fast response speed.
  • TFT driving elements have the advantage of providing a better viewing angle compared to other types of liquid crystal displays. Element technologies for such TFT driving devices have continued to develop, and are now widely used in high-frequency signal amplifiers and optical communication receivers as well as most mobile devices.
  • the structure of a thin film transistor is generally the basic semiconductor material on which the thin film transistor is located. It consists of a substrate mainly using a silicon wafer, a gate electrode used to control the current, and a path for the current to flow into the area between the gate and the substrate. It consists of a channel controlled by a source electrode and a drain electrode, which are electrodes located on both sides of the channel and are responsible for the inflow and outflow of current.
  • Silicon is the most widely used semiconductor material for thin film transistors. Silicon is divided into amorphous silicon and polycrystalline silicon depending on the crystal form. Amorphous silicon has a simple manufacturing process, but has low charge mobility, which limits the manufacture of high-performance thin film transistors. Polycrystalline silicon has high charge mobility, but crystallizes silicon. There is a problem that manufacturing costs are high and the process is complicated because it requires several steps.
  • thin film transistors using oxide semiconductors which have higher electron mobility and higher on/off ratios than amorphous silicon, are cheaper than polycrystalline silicon, and have higher uniformity, are attracting attention. there is.
  • Oxide semiconductors have higher electrical stability and lower power consumption than general semiconductor devices, so their utilization is gradually increasing in various fields such as displays, solar cells, and sensors. In particular, it is highly utilized in the display field because the performance of displays can be greatly improved due to the high electrical stability and low power consumption of oxide semiconductors. Additionally, oxide semiconductors are highly regarded for their potential for use in the development of new devices such as flexible displays.
  • the purpose of the present invention is to provide a high-mobility driving device whose mobility is dramatically improved compared to a conventional driving device using an oxide semiconductor and a method of manufacturing the same.
  • the present invention includes: a substrate; an insulating film positioned on the substrate; a channel layer located on at least a portion of the insulating film and including a metal oxide; a source electrode and a drain electrode connected to the channel layer and positioned on the insulating film to face each other on both sides around the channel layer; A protective layer covering all of the channel layer, the source electrode, and the drain electrode, wherein the channel layer includes a plurality of local fluorination treatment areas (F treatment areas) in at least a portion of the area between the source electrode and the drain electrode.
  • F treatment areas local fluorination treatment areas
  • the area ratio (B) calculated by the following equation (1) may be in the range of 0.25% to 0.75%.
  • L is the gap between the source electrode and the drain electrode
  • W is the width of the source electrode or drain electrode
  • n is the number of fluorination treatment areas.
  • two of the plurality of fluorination treatment regions are spaced apart from each other in the width direction by a distance of the width (W) of the source electrode or drain electrode, and the plurality of fluorination treatment regions are in the width direction. They can be placed in a row at equal intervals from each other.
  • the plurality of fluorination treatment areas may be symmetrically arranged with respect to the center of the channel layer while being spaced apart from each other at a maximum interval calculated by the following equation (2).
  • W is the width of the source electrode or drain electrode, and n is the number of fluorination treatment areas.
  • the plurality of fluorination treatment areas may be arranged along a center line (A) extending in the width direction between the source electrode and the drain electrode.
  • the plurality of fluorinated regions may be formed on the upper surface of the channel layer.
  • the plurality of fluorination treatment areas may be 3 to 9.
  • the metal oxide of the channel layer may include indium-gallium-zinc oxide (IGZO).
  • IGZO indium-gallium-zinc oxide
  • a gate electrode may be further included between the substrate and the insulating layer.
  • the insulating film may include silicon oxide.
  • the protective layer may include silicon oxide.
  • the present invention includes the steps of preparing a substrate; forming a channel layer containing metal oxide on a substrate; disposing a photoresist having holes of a predetermined size formed at a predetermined position on the channel layer; exposing fluorine through the hole; removing the photoresist using a removal solution; forming source electrodes and drain electrodes to face each other on both sides around the channel layer; and forming a protective layer to cover all of the channel layer, the source electrode, and the drain electrode.
  • the metal oxide of the channel layer may include indium-gallium-zinc oxide (IGZO).
  • IGZO indium-gallium-zinc oxide
  • the protective layer may include silicon oxide.
  • the step of forming an insulating film on the substrate may be further included.
  • forming a gate electrode may be further included before forming the insulating film.
  • the insulating film may include silicon oxide.
  • Figure 1 is a cross-sectional view briefly showing a high mobility driving element according to an embodiment of the present invention when cut in the thickness direction.
  • Figure 2 is a plan view of a high mobility driving element according to an embodiment of the present invention when viewed from above.
  • Figure 3 is a schematic diagram of comparative examples and an embodiment of the present invention according to the presence or absence of a protective layer configured to cover all of the channel layer, source electrode, and drain electrode.
  • Figure 4 is a graph measuring the transfer curve and mobility ( ⁇ ) of the driving element depending on the presence or absence of a protective layer configured to cover all of the channel layer, source electrode, and drain electrode.
  • Figure 5 is a graph measuring the transfer curve and mobility ( ⁇ ) of the driving element according to the total area (number of holes) of the fluoridation treatment area.
  • Figure 6 is a graph measuring the transfer curve and mobility ( ⁇ ) of the driving element according to the spacing between fluoridation treatment areas.
  • Figure 7 is a perspective view showing a 3D stacked structure of a high mobility driving element according to an embodiment of the present invention.
  • Figure 8 is a process schematic diagram showing each step of the manufacturing method of a high mobility driving element according to another embodiment of the present invention.
  • Embodiments of the present invention are illustrated for the purpose of explaining the technical idea of the present invention.
  • the scope of rights according to the present invention is not limited to the embodiments presented below or the specific description of these embodiments.
  • a part of a layer, membrane, region, plate, etc. when a part of a layer, membrane, region, plate, etc. is said to be “on” or “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where there is another part in between. do. Conversely, when a part is said to be “right on top” of another part, it means that there is no other part in between.
  • being “on” or “on” a reference part means being located above or below the reference part, and does not necessarily mean being located “above” or “on” the direction opposite to gravity. .
  • plane image refers to the object of the present invention when viewed from above
  • cross-sectional image refers to the vertical cross-section of the object of the present invention when viewed from the side.
  • the left-right direction i.e., x-direction
  • the up-and-down direction i.e., y-direction, the width direction of the source electrode or drain electrode
  • the longitudinal direction It is defined as the “width direction”
  • the direction in which layers are stacked i.e., z-direction
  • the left side of the drawing is defined as left
  • the right side of the drawing is defined as right.
  • the high mobility driving element 1 according to an embodiment of the present invention will be described in detail with reference to FIG. 1.
  • FIG. 1 is a cross-sectional view briefly showing a high mobility driving element 1 according to an embodiment of the present invention.
  • a high mobility driving element 1 according to an embodiment of the present invention includes a substrate 10; an insulating film 30 located on the substrate 10; a channel layer 40 located on at least a portion of the insulating film 30 and including a metal oxide; A source electrode 50 and a drain electrode 60 connected to the channel layer 40 and positioned on the insulating film 30 to face both sides around the channel layer 40; It includes a protective layer 70 that covers all of the channel layer 40, the source electrode 50, and the drain electrode 60, and the channel layer 40 covers at least a portion between the source electrode 50 and the drain electrode 60.
  • the area may include a plurality of local fluoridation treatment areas (F treatment area) 80.
  • a gate electrode 20 may be positioned on the substrate 10.
  • the gate electrode 20 does not necessarily have to be located directly above the substrate 10, and can be formed at any position as long as the function of the gate electrode 20 can be exercised.
  • the gate electrode 20 may be made of a metal or a conductor, and the specific material is not particularly limited, but is one or more metals or alloys selected from the group consisting of aluminum, silver, copper, molybdenum, chromium, tantalum, titanium, or alloys thereof. It is preferable to be formed as
  • An insulating film 30 is formed on the substrate 10 and/or the gate electrode 20. Since the thickness of the insulating film 30 does not have a particular effect on the effect aimed at by the present invention, the thickness is not particularly limited. As a non-limiting example, it is formed at a thickness of 100 to 300 nm, which is a commonly used thickness for adjusting the threshold voltage. It can be.
  • the insulating film 30 includes an insulating material, which may include silicon oxide (SiO 2 ) or silicon nitride (SiN y ). It is generally preferable that the insulating film 30 is formed through a separate film forming process before forming the channel layer 40.
  • a channel layer 40 is formed on at least a portion of the insulating film 30.
  • This channel layer 40 may include a metal oxide, preferably indium-gallium-zinc oxide (IGZO).
  • IGZO indium-gallium-zinc oxide
  • Indium-gallium-zinc oxide is a material that has recently been in the spotlight as a promising material in the semiconductor industry. It has transparent and flexible characteristics and also has high electrical conductivity and charge mobility, so the channel layer 40 is made of indium-gallium-zinc oxide. When formed from oxide, the responsiveness of the device is improved, making high-resolution displays possible.
  • a source electrode 50 and a drain electrode 60 are located along with the channel layer 40.
  • the source electrode 50 and the drain electrode 60 are connected to the channel layer 40 and are positioned to face each other on both sides with the channel layer 40 as the center. That is, when described with reference to FIG. 1, a source electrode 50 and a drain electrode 60 are formed in contact with both edges in the longitudinal direction of the channel layer 40, respectively.
  • the source electrode 50 and the drain electrode 60 may be made of metal or a conductor, and the specific material is not particularly limited, but may include molybdenum, chromium, nickel, titanium, copper, aluminum, or any of these. It is preferably formed from an alloy.
  • one gate electrode 20, one source electrode 50, and one drain electrode 60 together with the channel layer 40 form a thin film transistor (TFT).
  • TFT thin film transistor
  • the high mobility driving element 1 includes a protective layer 70 over the channel layer 40, the source electrode 50, and the drain electrode 60. do.
  • This protective layer 70 is preferably formed to cover all of the channel layer 40, the source electrode 50, and the drain electrode 60.
  • This protective layer 70 may be formed to have a contact surface with all of the channel layer 40, the source electrode 50, and the drain electrode 60.
  • This protective layer 70 may include an inorganic insulating material such as silicon nitride (SiN y ) or silicon oxide (SiO 2 ), an organic insulating material, or a low dielectric constant insulating material.
  • the channel layer 40 of the high mobility driving element 1 has a plurality of cells in at least a partial area between the source electrode 50 and the drain electrode 60.
  • Two fluorination treatment areas 80 are formed. Additionally, the fluorination treatment area 80 is formed with a significantly smaller area compared to the area of the entire channel layer 40.
  • the fluorination treatment region 80 can be formed by exposing and diffusing fluorine gas to only a portion of the channel layer 40 using a photoresist or the like. In the present invention, this partial area exposed to and diffused by fluorine gas is defined as a 'local fluoridation treatment area'.
  • the plurality of fluorinated regions 80 are formed by diffusion of fluorine from the upper surface of the channel layer 40 in the thickness direction, and the plurality of fluorinated regions 80 are formed on the upper surface of the channel layer 40. It will happen. At this time, the plurality of fluorination treated areas were formed with intended spacing in a dot arrangement manner by fluorine treatment only in local areas after confirming that a different effect was achieved than treating the entire area on the channel layer with fluorine.
  • the high mobility driving device 1 it is important that a bonding region is formed between the fluorinated region 80 and the protective layer 70. That is, in the present invention, the protective layer 70 is formed to directly face the channel layer 40, and since the fluorination treatment area 80 is formed on the upper surface of the channel layer 40, the fluorination treatment area naturally A bonding area may be formed between (80) and the protective layer (70).
  • Figure 3 is a schematic diagram of comparative examples (Comparative Examples 1 to 3 in Figure 4) and an embodiment of the present invention according to the presence or absence of a protective layer configured to cover all of the channel layer, source electrode, and drain electrode.
  • FIG. 4 shows experimental data demonstrating the effect of increasing the mobility of the driving element 1 by the bonding region between the fluorinated region 80 and the protective layer 70 for each comparative example and embodiment shown in FIG. 3. It represents.
  • V th threshold voltage
  • the plurality of fluorination treatment regions 80 are arranged along the center line A extending in the width direction between the source electrode 50 and the drain electrode 60, as shown in Figure 2. desirable.
  • the plurality of fluorination treatment areas 80 are preferably arranged along the center line A extending in the width direction between the source electrode 50 and the drain electrode 60 and arranged in a row at equal intervals from each other.
  • the plurality of fluorination treatment areas may be arranged not simply in one row, but in two or three rows.
  • the shape of the fluorination treatment area 80 is not particularly limited, and the effect intended by the present inventor can be obtained even if it is formed in any shape, such as square, rectangular, circular, or oval, as long as it is formed as a local area.
  • the number of fluorination treatment regions 80 is not particularly limited, but considering the size of a typical device and the area ratio (B) described later, the number of fluorination treatment regions 80 is preferably 3 to 9. , it is more preferable to have 3 to 5 pieces.
  • Figure 5 is a graph measuring the transfer curve and mobility ( ⁇ ) of the driving element according to the total area (number of holes) of the fluoridation treatment area.
  • the inventors of the present invention conducted an in-depth study on how the change in the total area of the fluorination treatment area 80 affects the mobility of the driving element 1. As a result, as the number of fluorination treatment areas 80 increases (i.e., as the total area increases), the mobility of the device increases to a certain range, but when the fluorination treatment is excessive (i.e., the fluorination treatment area 80 ), it was confirmed that when the number was excessively large, the mobility of the driving element 1 was reduced again.
  • the inventors of the present invention recognized that the total area of the fluorination treatment area 80 should be controlled within a certain range, and the area of the channel layer 40 between the source electrode 50 and the drain electrode 60 The area of the fluoridation treatment area 80 was limited using the ratio of the total area of the fluorination treatment area 80 to .
  • the total area of the fluorination treatment region 80 is the area of the channel layer 40 between the source electrode 50 and the drain electrode 60. It can be defined as the area ratio (B) to the area (W ⁇ L). That is, the area ratio (B) can be calculated by the following equation (1), and the value is preferably within the range of 0.25% to 0.75%, and more preferably within the range of 0.25% to 0.42%.
  • L is the gap between the source electrode 50 and the drain electrode 60
  • W is the width of the source electrode 50 or the drain electrode 60
  • n is the number of fluorination treatment regions 80.
  • Figure 6 is a graph measuring the transfer curve and mobility ( ⁇ ) of the driving element according to the spacing between fluoridation treatment areas.
  • the inventors of the present invention studied the effect of the spacing of the fluorination treatment area 80 on the mobility of the driving element 1. As a result, the inventors of the present invention confirmed that the mobility significantly increases when the spacing between the plurality of fluoridation treatment areas 80 is the maximum interval under the same conditions.
  • two of the plurality of fluorination treatment regions 80 are spaced apart from each other in the width direction by a distance equal to the width W of the source electrode 50 or the drain electrode 60.
  • any one of the plurality of fluorination treatment regions 80 is an extension of the upper edge of the source electrode 50 or the drain electrode 60 with respect to FIG. 2.
  • the other fluorination treatment region 80 of the plurality of fluorination treatment regions 80 is located on an extension of the lower edge of the source electrode 50 or the drain electrode 60 with reference to FIG. 2.
  • both fluorination treatment areas 80 are spaced apart by a distance equal to the width W of the source electrode 50 or the drain electrode 60. If these conditions are satisfied, two fluorination treatment areas 80 adjacent to each other can be arranged along the center line A extending in the width direction between the source electrode 50 and the drain electrode 60 at a maximum distance.
  • the plurality of fluorination treatment areas 80 may be symmetrically arranged with respect to the center of the channel layer 40 while being spaced apart from each other at a maximum distance calculated by the following equation (2).
  • the center of the channel layer 40 refers to the source electrode defined by the width (W) of the source electrode 50 or the drain electrode 60 and the gap (L) between the source electrode 50 or the drain electrode 60. 50) or may be defined as the exact center of the area of the channel layer 40 between the drain electrodes 60.
  • W is the width of the source electrode 50 or the drain electrode 60
  • n is the number of fluorination treatment regions 80.
  • Figure 7 is a perspective view showing a 3D stacked structure of a high mobility driving element according to an embodiment of the present invention.
  • the stacked structure of the high-mobility driving element according to the embodiment of the present invention described above is easily expressed as shown in FIG. 7.
  • Figure 8 is a process schematic diagram showing each step of the manufacturing method of a high mobility driving element according to another embodiment of the present invention.
  • IGZO indium-gallium-zinc oxide
  • the method of forming the channel layer 40 is not particularly limited, and known technologies such as solution processing, atomic layer deposition (ALD), and sputter deposition (DC or RF) can be used.
  • a photoresist with holes of a predetermined size formed at a predetermined position is placed on the channel layer 40, and then fluorine is supplied and exposed so that the fluorine diffuses into the channel layer 40 through the hole. Afterwards, the photoresist is removed using a removal solution such as acetone.
  • the source electrode 50 and the drain electrode 60 are formed to face each other on both sides centered on the channel layer 40, and the channel layer 40, the source electrode 50, and the drain electrode 60 are all
  • the protective layer 70 to cover, the high mobility driving device 1 according to an embodiment of the present invention can be manufactured.
  • the threshold voltage was extracted using the constant current method, which extracts the threshold voltage at a specified current value.
  • V DS 10.1 V, which is the saturation range.
  • the mobility was extracted from the saturation region rather than the linear region, and the mobility can be derived by substituting the current in the saturation region into equation (3) below.
  • a high-mobility driving element 1 having the structure shown in FIG. 1 was manufactured according to the above-described manufacturing method (invention example 1).
  • silicon oxide (SiO 2 ) was used as the insulating film 30, the width (W) of the source electrode 50 and the drain electrode 60 was 50 ⁇ m, and the gap between the source electrode 50 and the drain electrode 60 was 50 ⁇ m.
  • the spacing (L) was manufactured to be 6 ⁇ m.
  • a total of five fluorination treatment areas 80 were formed in a square shape of 0.5 ⁇ m width and 0.5 ⁇ m length, and silicon was placed on them to cover the channel layer 40, source electrode 50, and drain electrode 60.
  • a protective layer 70 made of oxide (SiO 2 ) was formed.
  • Comparative Example 1 is a case where neither the fluorination treatment area 80 nor the protective layer 70 is formed in Inventive Example 1
  • Comparative Example 2 is a case where only the fluorination treatment area 80 is not formed
  • 3 is a case where only the protective layer 70 is not formed.
  • the threshold voltage (V th ) and mobility ( ⁇ ) of the driving element 1 were measured under the same conditions for each of Inventive Example 1 and Comparative Examples 1 to 3, and the results are shown in Table 1 and FIG. 3.
  • Invention Example 1 which had a locally fluorinated channel layer 40 and this channel layer 40 formed a bonding area with the protective layer 70, had a fluorinated region 80 and a protective layer ( 70), the threshold voltage (V th ) of the gate voltage (V G ) was lowered compared to Comparative Examples 1 to 3 lacking at least one of the following, and the mobility of the device was also increased.
  • high-mobility drive elements 1 having the structure shown in FIG. 1 were manufactured according to the above-described manufacturing method.
  • silicon oxide (SiO 2 ) was used as the insulating film 30, the width (W) of the source electrode 50 and the drain electrode 60 was set to 50 ⁇ m, and the source electrode 50 and the drain electrode 60 were The spacing (L) between them was manufactured to be 6 ⁇ m.
  • the fluoridation treatment areas 80 were each formed in a square shape of 0.5 ⁇ m width and 0.5 ⁇ m length, and the number of fluorination treatment areas 80 was formed differently for each embodiment: 0, 3, 5, and 9. .
  • a protective layer 70 made of silicon oxide (SiO 2 ) was formed to cover all of the channel layer 40, the source electrode 50, and the drain electrode 60.
  • the present inventors conducted additional experiments to determine changes in the threshold voltage (V th ) and mobility ( ⁇ ) of the high-mobility driving device according to an embodiment of the present invention according to the width direction spacing of the fluorinated region. proceeded.
  • Three fluorination treatment areas were formed in a square shape of 0.5 ⁇ m width and 0.5 ⁇ m length, and then a protective layer made of silicon oxide (SiO 2 ) was formed to cover the channel layer, source electrode, and drain electrode.
  • SiO 2 silicon oxide
  • the movement characteristics of the device were best when the spacing between the fluorination treatment areas 80 was maximized and uniformly spread based on the center, as in Inventive Example 10. That is, the maximum spacing between the fluoridation treatment areas 80 is calculated by the above-mentioned equation (2) (for example, when the width (W) is 50 ⁇ m and the number of fluorination treatment areas 80 is 3 as in the experiment, It can be interpreted that it has the best movement characteristics when spaced apart by a maximum distance of 25 ⁇ m.
  • W Width of source electrode or drain electrode
  • A Center line extending in the width direction between the source electrode and the drain electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

본 발명은, 기판, 상기 기판 위에 위치하는 절연막, 상기 절연막의 적어도 일부 영역 위에 위치하고 금속 산화물을 포함하는 채널 층, 상기 채널 층과 연결되어 있으며, 상기 채널 층을 중심으로 양측으로 마주하도록 상기 절연막 상에 위치하는 소스 전극 및 드레인 전극, 상기 채널 층, 상기 소스 전극 및 상기 드레인 전극을 모두 덮는 보호층을 포함하고, 상기 채널 층은 상기 소스 전극 및 상기 드레인 전극 사이의 적어도 일부 영역에 복수 개의 불소화 처리 영역(F treatment area)을 포함하는 고이동도 구동 소자 및 이의 제조방법에 관한 것이다.

Description

고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법
본 발명은 구동 소자 및 이의 제조방법에 대한 것으로서, 보다 구체적으로는 금속 산화물을 포함하는 채널 층에 국부적인 불소화 처리를 실시한 고이동도 박막 트랜지스터(TFT) 구동 소자 및 이의 제조방법에 대한 것이다.
구동 소자는 전기 신호를 전환하거나 증폭하는데 사용되는 반도체 소자의 일종으로서 컴퓨터, 통신, 제어, 의료, 자동차 및 가전 제품 등 다양한 분야에서 사용된다.
반도체 구동 소자 중 박막 트랜지스터(Thin Film Transistor; TFT)는 집적회로의 핵심 소자 중 하나로서, 박막으로 형성된 트랜지스터를 이용하여 화면을 구동하는 소자이다. 박막 트랜지스터 구동 소자는 주로 액정 디스플레이에서 사용되기 시작한 기술로 알려져 있으며, 색상을 표시하기 위한 백라이트와 함께 액정 패널을 구성하는 것이 일반적이다.
또한, 박막 트랜지스터 구동소자는 대형/소형 장치에서 사용되는 OLED 및 LCD 디스플레이에 사용되고 있다. 이 소자는 전력 소모가 적고, 고해상도와 고대비를 제공하며, 빠른 응답 속도를 가지는 장점을 가진다. 게다가 TFT 구동소자는 다른 종류의 액정 디스플레이에 비해 더 좋은 시야각을 제공하는 이점도 있다. 이와 같은 TFT 구동소자는 요소 기술들이 계속적으로 발전해 왔으며, 이제는 대부분의 모바일 기기뿐만 아니라 고주파 신호 증폭기, 광통신 수신기 등에 널리 사용되고 있다.
박막 트랜지스터의 구조는 일반적으로 박막 트랜지스터가 위치하는 기본적인 반도체 재료이며 주로 실리콘 웨이퍼를 사용하는 기판, 전류를 제어하는데 사용되는 게이트 전극, 게이트와 기판 사이의 영역으로 전류가 흐르는 경로를 제공하고 게이트 전극에 의해 제어되는 채널, 그리고 채널 양쪽에 위치한 전극으로서 전류의 유입과 배출을 담당하는 소스와 드레인 전극으로 이루어져 있다.
박막 트랜지스터의 반도체 재료로서 규소(Si)가 가장 많이 사용되고 있다. 규소는 결정 형태에 따라 비정질 규소 및 다결정 규소로 나누어지는데, 비정질 규소는 제조 공정이 단순한 반면 전하 이동도가 낮아 고성능 박막 트랜지스터를 제조하는데 한계가 있고, 다결정 규소는 전하 이동도가 높은 반면 규소를 결정화하는 단계가 요구되어 제조 비용이 높고 공정이 복잡한 문제가 있다.
이러한 비정질 규소와 다결정 규소의 단점을 보완하기 위하여 비정질 규소보다 전자 이동도가 높고 온/오프 비율이 높으며, 다결정 실리콘보다 원가가 저렴하고 균일도가 높은 산화물 반도체(oxide semiconductor)를 이용하는 박막 트랜지스터가 주목받고 있다.
산화물 반도체는 일반적인 반도체 소자보다 높은 전기적 안정성과 저전력 소비를 가지고 있어 디스플레이, 태양광 셀, 센서 등의 여러 분야에서 활용도가 점차 높아지고 있다. 특히 디스플레이 분야에서 활용도가 높은데, 이는 산화물 반도체의 높은 전기적 안정성과 저전력 소비로 인해 디스플레이의 성능을 크게 향상시킬 수 있기 때문이다. 또한 산화물 반도체는 플렉서블 디스플레이와 같은 새로운 분야의 소자 개발에도 그 활용 가능성을 높게 평가받고 있다.
본 발명의 목적은, 종래의 산화물 반도체를 이용한 구동 소자와 비교하여, 소자의 이동도가 획기적으로 향상된 고이동도 구동 소자 및 이의 제조방법을 제공하는 것에 있다.
본 발명의 목적은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 다른 목적은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위하여 본 발명은, 기판; 상기 기판 위에 위치하는 절연막; 상기 절연막의 적어도 일부 영역 위에 위치하고 금속 산화물을 포함하는 채널 층; 상기 채널 층과 연결되어 있으며, 상기 채널 층을 중심으로 양측으로 마주하도록 상기 절연막 상에 위치하는 소스 전극 및 드레인 전극; 상기 채널 층, 상기 소스 전극 및 상기 드레인 전극을 모두 덮는 보호층을 포함하고, 상기 채널 층은 상기 소스 전극 및 상기 드레인 전극 사이의 적어도 일부 영역에 복수 개의 국부적 불소화 처리 영역(F treatment area)을 포함하는 것인, 고이동도 구동 소자를 제공한다.
일 실시예에 따르면, 다음 식(1)에 의해 계산되는 면적 비율(B)이 0.25% 내지 0.75% 범위 내에 있을 수 있다.
식(1) : 면적비율(B) = (각 불소화 처리 영역의 면적 * n) / (W * L) * 100
(여기서, L은 소스 전극 및 드레인 전극 사이의 간격이고, W는 소스 전극 또는 드레인 전극의 폭이며, n은 불소화 처리 영역의 개수이다.)
일 실시예에 따르면, 상기 복수 개의 불소화 처리 영역 중 2개의 불소화 처리 영역은 폭 방향으로 소스 전극 또는 드레인 전극의 폭(W)의 거리만큼 서로 이격되어 있고, 상기 복수 개의 불소화 처리 영역들은 폭 방향으로 서로 등간격으로 일렬로 배치될 수 있다.
일 실시예에 따르면, 상기 복수 개의 불소화 처리 영역들은 서로 다음 식(2)에 의해 계산되는 최대 간격으로 이격되면서 채널 층의 중심을 기준으로 대칭으로 배열될 수 있다.
식(2) : 최대간격 = W / (n - 1)
(여기서, W는 소스 전극 또는 드레인 전극의 폭이며, n은 불소화 처리 영역의 개수이다.)
일 실시예에 따르면, 상기 복수 개의 불소화 처리 영역은 소스 전극 및 드레인 전극 사이의 폭 방향으로 연장하는 중심선(A)을 따라 배치될 수 있다.
일 실시예에 따르면, 상기 복수 개의 불소화 처리 영역은 상기 채널 층의 상부 표면 상에 형성될 수 있다.
일 실시예에 따르면, 상기 복수 개의 불소화 처리 영역은 3 개 내지 9 개일 수 있다.
일 실시예에 따르면, 상기 채널 층의 금속 산화물은 인듐-갈륨-아연 산화물(IGZO)을 포함할 수 있다.
일 실시예에 따르면, 상기 기판 및 상기 절연막 사이에 게이트 전극을 더 포함할 수 있다.
일 실시예에 따르면, 상기 절연막은 실리콘 산화물을 포함할 수 있다.
일 실시예에 따르면, 상기 보호층은 실리콘 산화물을 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 본 발명은 기판을 준비하는 단계; 기판 위에 금속 산화물을 포함하는 채널 층을 형성하는 단계; 소정의 위치에 소정의 크기의 구멍이 형성되어 있는 포토레지스트를 상기 채널 층 위로 배치하는 단계; 상기 구멍을 통해 불소를 노출시키는 단계; 제거 용액을 이용하여 상기 포토레지스트를 제거하는 단계; 상기 채널 층을 중심으로 양측으로 마주하도록 소스 전극 및 드레인 전극을 형성하는 단계; 및 상기 채널 층, 상기 소스 전극 및 상기 드레인 전극을 모두 덮도록 보호층을 형성하는 단계를 포함하는 고이동도 구동 소자의 제조방법을 제공한다.
다른 일 실시예에 따르면, 상기 채널 층의 금속 산화물은 인듐-갈륨-아연 산화물(IGZO)을 포함할 수 있다.
다른 일 실시예에 따르면, 상기 보호층은 실리콘 산화물을 포함할 수 있다.
다른 일 실시예에 따르면, 상기 채널 층을 형성하는 단계 전에, 기판 위에 절연막을 성막하는 단계를 더 포함할 수 있다.
다른 일 실시예에 따르면, 상기 절연막을 성막하는 단계 전에 게이트 전극을 형성하는 단계를 더 포함할 수 있다.
다른 일 실시예에 따르면, 상기 절연막은 실리콘 산화물을 포함할 수 있다.
이상 설명한 본 발명의 구성에 의하면, 종래의 산화물 반도체를 이용한 구동 소자와 비교하여 소자의 이동도가 획기적으로 향상된 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법을 제공할 수 있다.
도 1 은 본 발명의 일 실시예에 따른 고이동도 구동 소자를 두께 방향으로 잘랐을 때를 간략히 나타낸 단면도이다.
도 2 는 본 발명의 일 실시예에 따른 고이동도 구동 소자를 위에서 보았을 때의 평면도이다.
도 3 은, 채널 층, 소스 전극 및 드레인 전극을 모두 덮도록 구성되는 보호층의 유무에 따른 비교예들과 본 발명의 실시예에 대한 모식도이다.
도 4 는 채널 층, 소스 전극 및 드레인 전극을 모두 덮도록 구성되는 보호층의 유무에 따른 구동 소자의 트랜스퍼 곡선(transfer curve) 및 이동도(μ)를 측정한 그래프이다.
도 5 는 불소화 처리 영역의 총 면적(홀의 개수)에 따른 구동 소자의 트랜스퍼 곡선(transfer curve) 및 이동도(μ)를 측정한 그래프이다.
도 6 은 불소화 처리 영역 간의 간격에 따른 구동 소자의 트랜스퍼 곡선(transfer curve) 및 이동도(μ)를 측정한 그래프이다.
도 7 은 본 발명의 일 실시예에 따른 고이동도 구동 소자의 3D 적층 구조를 나타낸 사시도이다.
도 8 은 본 발명의 다른 일 실시예에 따른 고이동도 구동 소자의 제조방법의 각 단계를 도시한 공정 모식도이다.
본 발명의 실시예들은 본 발명의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 발명에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 발명에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 발명에 사용되는 모든 용어들은 본 발명을 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 발명에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 발명에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 발명에서 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에"있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향 쪽으로 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
본 발명에서 "평면 상"이라 함은 본 발명의 대상을 위에서 보았을 때를 말하며, "단면 상"이라 함은 본 발명의 대상을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
본 발명에서, 도 2 에 도시된 평면도를 기준으로, 좌우 방향(즉, x 방향)을 "길이 방향"으로 정의하고, 상하 방향(즉, y 방향, 소스 전극 또는 드레인 전극의 폭 방향)을 "폭 방향"으로 정의하며, 층들이 쌓이는 방향(즉, z 방향)을 "두께 방향"으로 정의한다. 또한 도 2 에 도시된 실시예를 기준으로 도면의 왼쪽을 좌측, 도면의 오른쪽을 우측으로 정의한다.
본 발명에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
이하, 첨부한 도면들을 참조하여, 본 발명의 실시예들을 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
아울러, 아래의 실시예는 본 발명의 권리범위를 한정하는 것이 아니라 본 발명의 청구범위에 제시된 구성요소의 예시적인 사항에 불과하며, 본 발명의 명세서 전반에 걸친 기술사상에 포함되고 청구범위의 구성요소에서 균등물로서 치환 가능한 구성요소를 포함하는 실시예는 본 발명의 권리범위에 포함될 수 있다.
먼저 도 1 을 참조하여 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)에 대하여 상세히 설명한다.
도 1 은 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)를 간략히 나타낸 단면도이다. 도 1 에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)는, 기판(10); 기판(10) 위에 위치하는 절연막(30); 절연막(30)의 적어도 일부 영역 위에 위치하고 금속 산화물을 포함하는 채널 층(40); 채널 층(40)과 연결되어 있으며, 채널 층(40)을 중심으로 양측으로 마주하도록 절연막(30) 상에 위치하는 소스 전극(50) 및 드레인 전극(60); 채널 층(40), 소스 전극(50) 및 드레인 전극(60)을 모두 덮는 보호층(70)을 포함하고, 채널 층(40)은 소스 전극(50) 및 드레인 전극(60) 사이의 적어도 일부 영역에 복수 개의 국부적 불소화 처리 영역(F treatment area)(80)을 포함할 수 있다.
도 1 을 참고하면, 기판(10) 위에 게이트 전극(20)이 위치할 수 있다. 다만 게이트 전극(20)이 반드시 기판(10)의 바로 위에 위치해야 하는 것은 아니며, 게이트 전극(20)의 기능이 발휘될 수 있다면 어느 위치에 라도 형성 가능하다. 게이트 전극(20)은 금속 또는 도전체로 이루어질 수 있으며, 구체적인 소재는 특별히 한정하지 않으나 알루미늄, 은, 구리, 몰리브덴, 크롬, 탄탈륨, 티타늄, 또는 이들의 합금으로 이루어진 군에서 선택되는 하나 이상의 금속 또는 합금으로 형성되는 것이 바람직하다.
기판(10) 위에 및/또는 게이트 전극(20) 위에 절연막(30)이 형성된다. 절연막(30)의 두께는 본 발명이 목적하는 효과에 특별한 영향을 미치지 않으므로 그 두께는 특별히 한정하지 않으며, 비제한적인 일 실시예로서 문턱전압 조절을 위해 통상적으로 사용되는 두께인 100~300nm로 형성될 수 있다. 절연막(30)은 절연 물질을 포함하며, 이 절연 물질은 실리콘 산화물(SiO2) 또는 실리콘 질화물(SiNy)을 포함할 수 있다. 절연막(30)은 대게 채널 층(40)을 형성하기 전에 별도의 성막 공정을 통해 형성되는 것이 바람직하다.
절연막(30)의 적어도 일부 영역 위에는 채널 층(40)이 형성되어 있다. 이 채널 층(40)은 금속 산화물을 포함할 수 있고, 바람직하게 이 금속 산화물은 인듐-갈륨-아연 산화물(IGZO)을 포함할 수 있다. 인듐-갈륨-아연 산화물은 최근 반도체 산업에서 유망한 소재로 각광받고 있는 소재로서, 투명하고 유연한 특징을 가지고 있으며, 또한 높은 전기 전도성과 전하 이동성을 가지고 있어, 채널 층(40)이 인듐-갈륨-아연 산화물로 형성되면 소자의 응답성이 향상되어 고해상도 디스플레이 구현이 가능해진다.
절연막(30) 상에는 채널 층(40)과 더불어 소스 전극(50) 및 드레인 전극(60)이 위치한다. 이 소스 전극(50) 및 드레인 전극(60)은 채널 층(40)과 연결되면서 채널 층(40)을 중심으로 양측으로 마주하도록 위치한다. 즉, 도 1 을 참조하여 설명하면 채널 층(40)의 길이방향 양측 에지에 접하여 각각 소스 전극(50) 및 드레인 전극(60)이 형성되어 있다. 게이트 전극(20)의 경우와 마찬가지로 소스 전극(50) 및 드레인 전극(60)은 금속 또는 도전체로 이루어질 수 있으며, 구체적인 소재는 특별히 한정하지 않으나 몰리브덴, 크롬, 니켈, 티타늄, 구리, 알루미늄 또는 이들의 합금으로 형성되는 것이 바람직하다.
비제한적인 일 실시예로서, 하나의 게이트 전극(20), 하나의 소스 전극(50), 하나의 드레인 전극(60)은 채널 층(40)과 함께 하나의 박막 트랜지스터(thin film transistor, TFT)를 이룰 수 있다.
도 1 에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)는 채널 층(40), 소스 전극(50) 및 드레인 전극(60) 위로 보호층(70)을 포함한다. 이 보호층(70)은 채널 층(40), 소스 전극(50) 및 드레인 전극(60)을 모두 덮도록 형성되는 것이 바람직하다. 이 보호층(70)은 채널 층(40), 소스 전극(50) 및 드레인 전극(60) 모두와의 접촉면을 가지도록 형성될 수 있다. 이 보호층(70)은 실리콘 질화물(SiNy)이나 실리콘 산화물(SiO2)과 같은 무기 절연물, 유기 절연물, 저유전율 절연물을 포함할 수 있다.
도 2 에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)의 채널 층(40)에는, 소스 전극(50) 및 드레인 전극(60) 사이의 적어도 일부 영역에 복수 개의 불소화 처리 영역(80)이 형성되어 있다. 또한 불소화 처리 영역(80)은 전체 채널 층(40)의 면적에 비해 현저하게 미소한 면적으로 형성된다.
불소화 처리 영역(80)은 채널 층(40) 위에 포토레지스트 등을 이용하여 일부의 영역에만 불소 가스를 노출 및 확산시킴으로써 형성할 수 있다. 본 발명에서는 이와 같이 일부의 영역이 불소 가스에 노출 및 확산된 부분을 '국부적 불소화 처리 영역'이라고 정의한다. 이 경우 복수 개의 불소화 처리 영역(80)은 채널 층(40)의 상부 표면으로부터 두께 방향으로 불소가 확산됨으로써 형성되며, 복수 개의 불소화 처리 영역(80)은 채널 층(40)의 상부 표면 상에 형성되게 된다. 이 때, 상기 복수 개의 불소화 처리 영역은 상기 채널 층 위의 전체 영역을 불소로 처리하는 것과는 다른 효과가 구현됨을 확인하고 국부적 영역에만 불소 처리를 하여 점 배열 방식과 같이 의도된 간격을 가지고 형성된 것이다.
본 발명의 일 실시예에 따른 고이동도 구동 소자(1)에서 불소화 처리 영역(80)과 보호층(70) 사이에 결합 영역이 형성되는 것이 중요하다. 즉, 본 발명에서는 채널 층(40) 상에 직접 마주하도록 보호층(70)이 형성되며, 이때 불소화 처리 영역(80)이 채널 층(40)의 상부 표면 상에 형성되어 있기 때문에 자연스럽게 불소화 처리 영역(80)과 보호층(70) 사이에 결합 영역이 형성될 수 있다.
도 3 은, 채널 층, 소스 전극 및 드레인 전극을 모두 덮도록 구성되는 보호층의 유무에 따른 비교예들(도 4의 비교예 1 내지 비교예 3)과 본 발명의 실시예에 대한 모식도이다.
도 4 는 도 3에 도시한 각각의 비교예와 실시예에 대하여 불소화 처리 영역(80)과 보호층(70) 사이에 결합 영역에 의한 구동 소자(1)의 이동도 증가 효과를 입증하는 실험 데이터를 나타낸 것이다. 도 4 에서 확인할 수 있는 바와 같이, 불소화 처리 영역(80)과 보호층(70) 사이에 결합 영역이 형성되어 있을 경우(발명예 1), 불소화 처리 영역(80)과 보호층(70) 중 어느 하나가 결여된 경우(비교예 1 내지 3)에 비해 문턱 전압(Vth)이 감소하고 이동도가 현저하게 향상되는 것을 확인할 수 있다.
다시 도 2 로 돌아와서, 복수 개의 불소화 처리 영역(80)은 도 2 에 도시된 바와 같이 소스 전극(50) 및 드레인 전극(60) 사이에서 폭 방향으로 연장하는 중심선(A)을 따라 배치되어 있는 것이 바람직하다. 또한 복수 개의 불소화 처리 영역(80)은 소스 전극(50) 및 드레인 전극(60) 사이의 폭 방향으로 연장하는 중심선(A)을 따라 배치되면서, 서로 등간격으로 일 열로 배치되는 것이 바람직하다. 다른 일 예에서, 상기 복수 개의 불소화 처리 영역은 단순히 일 열이 아니라, 이 열이나 삼 열로 배치되도록 형성될 수도 있다.
본 발명에서 불소화 처리 영역(80)의 형상은 특별히 한정하지 아니하며, 정사각형, 직사각형, 원형, 타원형 등 어떠한 형상으로 형성해도 국부적인 영역으로 형성된다면 본 발명자가 의도한 효과를 얻을 수 있다. 또한 불소화 처리 영역(80)의 개수도 특별히 한정하지 않으나, 통상의 소자의 크기 및 후술하는 면적 비율(B)을 고려했을 때, 불소화 처리 영역(80)의 개수는 3 개 내지 9 개인 것이 바람직하며, 3 개 내지 5 개인 것이 보다 바람직하다.
도 5 는 불소화 처리 영역의 총 면적(홀의 개수)에 따른 구동 소자의 트랜스퍼 곡선(transfer curve) 및 이동도(μ)를 측정한 그래프이다.
본 발명의 발명자들은 불소화 처리 영역(80)의 총 면적의 변화가 구동 소자(1)의 이동도에 어떠한 영향을 주는 지에 대해 심도 있게 연구하였다. 그 결과 불소화 처리 영역(80)의 개수를 증가시킴에 따라(즉, 총 면적이 증가함에 따라) 일정 범위 까지는 소자의 이동도가 증가하였으나, 불소화 처리가 과도할 경우(즉, 불소화 처리 영역(80)의 개수가 과도하게 많을 경우) 오히려 구동 소자(1)의 이동도가 다시 감소되는 것을 확인하였다. 이러한 실험 결과에 따라 본 발명의 발명자들은 불소화 처리 영역(80)의 총 면적을 일정 범위 내로 제어해야 함을 인지하고, 소스 전극(50) 및 드레인 전극(60) 사이의 채널 층(40)의 면적에 대한 불소화 처리 영역(80)의 총 면적의 비율을 이용하여 불소화 처리 영역(80)의 면적을 한정하였다.
구체적으로 불소화 처리 영역(80)의 총 면적(즉, 각각의 국부적 불소화 처리 영역(80)의 면적을 모두 합한 면적)은 소스 전극(50) 및 드레인 전극(60) 사이의 채널 층(40)의 면적(W×L)에 대한 면적 비율(B)로서 한정될 수 있다. 즉, 면적 비율(B)은 다음 식(1)에 의해 계산될 수 있으며, 그 값은 0.25% 내지 0.75% 범위 내에 있는 것이 바람직하며, 0.25% 내지 0.42% 범위 내에 있는 것이 보다 바람직하다.
식(1) : 면적비율(B) = (각 불소화 처리 영역의 면적 * n) / (W * L) * 100
여기서, L은 소스 전극(50) 및 드레인 전극(60) 사이의 간격이고, W는 소스 전극(50) 또는 드레인 전극(60)의 폭이며, n은 불소화 처리 영역(80)의 개수이다.
도 6 은 불소화 처리 영역 간의 간격에 따른 구동 소자의 트랜스퍼 곡선(transfer curve) 및 이동도(μ)를 측정한 그래프이다.
다른 한편으로, 본 발명의 발명자들은 불소화 처리 영역(80)의 간격이 구동 소자(1)의 이동도에 미치는 영향을 연구하였다. 그 결과 본 발명의 발명자들은 동일한 조건에서 복수 개의 불소화 처리 영역(80)의 간격이 최대 간격(maximum interval)일 때 이동도가 현저히 증가하는 것을 확인하였다.
이러한 실험 결과를 반영하여 복수 개의 불소화 처리 영역(80) 중 2개의 불소화 처리 영역(80)은 폭 방향으로 소스 전극(50) 또는 드레인 전극(60)의 폭(W)의 거리만큼 서로 이격되는 것이 바람직하다. 즉, 도 2 에 도시된 바와 같이, 복수 개의 불소화 처리 영역(80) 중 어느 하나의 불소화 처리 영역(80)은 도 2 를 기준으로 소스 전극(50) 또는 드레인 전극(60)의 상측 에지의 연장선 상에 놓여 있고, 복수 개의 불소화 처리 영역(80) 중 다른 하나의 불소화 처리 영역(80)은 도 2 를 기준으로 소스 전극(50) 또는 드레인 전극(60)의 하측 에지의 연장선 상에 놓여 있게 되어 결과적으로 이들 양 불소화 처리 영역(80)은 소스 전극(50) 또는 드레인 전극(60)의 폭(W)의 거리만큼 이격되게 된다. 이와 같은 조건을 만족하면 서로 인접하는 2개의 불소화 처리 영역(80)은 최대 간격으로 소스 전극(50) 및 드레인 전극(60) 사이의 폭 방향으로 연장하는 중심선(A)을 따라 배치될 수 있다.
비제한적인 일 실시예로서, 복수 개의 불소화 처리 영역(80)은 서로 다음 식(2)에 의해 계산된 최대 간격을 두고 이격되면서 채널 층(40)의 중심을 기준으로 대칭으로 배치될 수 있다. 여기서 채널 층(40)의 중심이란, 소스 전극(50) 또는 드레인 전극(60)의 폭(W) 및 소스 전극(50) 또는 드레인 전극(60) 사이의 간격(L)으로 획정되는 소스 전극(50) 또는 드레인 전극(60) 사이의 채널 층(40) 영역의 정가운데 중심으로 정의될 수 있다.
식(2): 최대간격 = W / (n - 1)
여기서, W는 소스 전극(50) 또는 드레인 전극(60)의 폭이며, n은 불소화 처리 영역(80)의 개수이다.
도 7 은 본 발명의 일 실시예에 따른 고이동도 구동 소자의 3D 적층 구조를 나타낸 사시도이다. 앞서서 설명하였던 본 발명의 실시예에 따르는 고이동도 구동 소자의 적층 구조를 알기 쉽게 표현하면 도 7과 같다.
다음으로 본 발명의 다른 일 실시예에 따른 고이동도 구동 소자(1)의 제조방법에 대해 설명한다. 다만 다음에서 설명하는 제조방법은 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)를 제조하는 여러 방법 중 어느 하나의 예에 불과하다.
도 8 은 본 발명의 다른 일 실시예에 따른 고이동도 구동 소자의 제조방법의 각 단계를 도시한 공정 모식도이다.
먼저 기판(10)을 준비하고, 그 위에 게이트 전극(20)과 절연층을 형성한다. 만일 게이트 전극(20)을 다른 위치에 형성하거나 절연층이 이미 형성되어 있는 경우 이 단계를 생략할 수 있다.
이후 절연층 위에 금속 산화물, 바람직하게는 인듐-갈륨-아연 산화물(IGZO)을 포함하는 채널 층(40)을 형성한다. 채널 층(40)을 형성하는 방법은 특별히 한정하지 않으며, 용액 공정법, 원자층 증착법(Atomic layer deposition, ALD), 스퍼터 증착법(DC 또는 RF) 등 공지의 기술을 사용할 수 있다.
소정의 위치에 소정의 크기의 구멍이 형성되어 있는 포토레지스트를 상기 채널 층(40) 위로 배치한 후 불소를 공급 및 노출시켜 구멍을 통해 채널 층(40)에 불소가 확산되도록 한다. 이후 아세톤 등의 제거 용액을 이용하여 포토레지스트를 제거한다.
그 다음 채널 층(40)을 중심으로 양측으로 마주하도록 소스 전극(50) 및 드레인 전극(60)을 형성하고, 채널 층(40), 상기 소스 전극(50) 및 상기 드레인 전극(60)을 모두 덮도록 보호층(70)을 형성하면 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)를 제작할 수 있다.
(실시예)
이하에서는 본 발명의 일 실시예에 따른 고이동도 구동 소자(1)의 효과에 대하여 실험 결과를 통해 설명한다.
(문턱 전압(Vth) 측정 방법)
본 발명의 실험에서 소자는 프로브 스테이션과 반도체 분석기(키슬리 4200-SCS)를 통하여 측정하였으며, 소자 측정 조건으로는 포화상태 구간인 VDS = 10.1 V에서 진행하였다. 문턱전압은 정전류 방식 (Constant current method)을 통해 추출하였으며, 이 방식은 지정된 전류 값에서의 문턱전압을 추출한다. 본 실험에서 사용한 지정 전류 값은 IDS = 10pA 이다.
(이동도(μ) 측정 방법)
본 발명의 실험에서 소자는 프로브 스테이션과 반도체 분석기(키슬리 4200-SCS)를 통하여 측정하였으며, 소자 측정 조건으로는 포화상태 구간인 VDS = 10.1 V에서 진행하였다. 이동도는 선형 영역이 아닌 포화영역에서 추출을 진행하였으며, 포화영역에서의 전류를 아래의 식(3)에 대입하여 이동도를 도출할 수 있다.
식(3): μsat = (2L/W)(1/Cox)(d√Id / d VGS)2
(실험 1)
먼저 발명예로서 상술한 제조방법에 따라 도 1 과 같은 구조를 갖는 고이동도 구동 소자(1)를 제작하였다(발명예 1). 여기서 절연막(30)으로는 실리콘 산화물(SiO2)을 사용하였고, 소스 전극(50) 및 드레인 전극(60)의 폭(W)은 50㎛로 그리고 소스 전극(50)과 드레인 전극(60) 사이의 간격(L)은 6㎛로 제작하였다. 그리고 불소화 처리 영역(80)은 각각 가로 0.5㎛, 세로 0.5㎛ 의 정사각형 모양으로 총 5개 형성하였으며, 그 위로 채널 층(40), 소스 전극(50)과 드레인 전극(60)을 모두 덮도록 실리콘 산화물(SiO2)로 이루어지는 보호층(70)을 형성하였다.
반면에 비교예 1 은 위 발명예 1 에서 불소화 처리 영역(80) 및 보호층(70)을 모두 형성하지 않은 경우이며, 비교예 2 는 불소화 처리 영역(80)만을 형성하지 않은 경우이며, 비교예 3 은 보호층(70)만을 형성하지 않은 경우이다. 발명예 1, 비교예 1 내지 3 각각에 대하여 동일한 조건에서 구동 소자(1)의 문턱 전압(Vth) 및 이동도(μ)를 측정하였으며, 그 결과를 표 1 및 도 3 에 나타내었다.
구분 불소화 처리영역형성 여부 보호층 형성 여부 문턱 전압(Vth)(V) 이동도(μ)(cm2/Vs)
발명예 1 O O -4.09 18.31
비교예 1 X X 0.6 9.59
비교예 2 O X 0.3 9.58
비교예 3 X O 0.4 10.29
실험 결과로부터, 국부적으로 불소화 처리를 한 채널 층(40)을 갖고 이 채널 층(40)이 보호층(70)과 결합 영역을 형성한 발명예 1 은, 불소화 처리 영역(80) 및 보호층(70) 중 적어도 하나를 결여한 비교예 1 내지 3 에 비해 게이트 전압(VG)의 문턱 전압(Vth)이 낮아졌으며, 소자의 이동도도 증가하는 결과가 나타났다.
이러한 실험 1 의 결과를 통해 국부적으로 불소(F)와 실리콘 산화물(SiO2)의 결합 영역이 생겼을 때 소자의 이동도가 증가하는 효과가 나타남을 확인할 수 있었다.
(실험 2)
상술한 제조방법에 따라 도 1 과 같은 구조를 갖는 고이동도 구동 소자(1)를 4개 제작하였다. 여기서 절연막(30)으로는 실리콘 산화물(SiO2)을 사용하였고, 소스 전극(50) 및 드레인 전극(60)의 폭(W)은 50㎛로 하였으며, 소스 전극(50)과 드레인 전극(60) 사이의 간격(L)은 6㎛로 제작하였다. 그리고 불소화 처리 영역(80)은 각각 가로 0.5㎛, 세로 0.5㎛ 의 정사각형 모양으로 형성하였으며, 실시예마다 불소화 처리 영역(80)의 개수를 0개, 3개, 5개 및 9개로 각각 다르게 형성하였다. 이후 채널 층(40), 소스 전극(50)과 드레인 전극(60)을 모두 덮도록 실리콘 산화물(SiO2)로 이루어지는 보호층(70)을 형성하였다.
발명예 2 및 3, 비교예 4 및 5 에 대하여 동일한 조건에서 구동 소자(1)의 문턱 전압(Vth) 및 이동도(μ)를 측정하였으며, 그 결과를 표 2 및 도 4 에 나타내었다.
구분 불소화 처리영역 개수 면적 비율(B)(%) 문턱 전압(Vth)(V) 이동도(μ)(cm2/Vs)
비교예 4 0 0 -0.2 10.28
발명예 2 3 0.25 -5.8 16
발명예 3 5 0.42 -4.2 18.3
발명예 4 9 0.75 -3.9 12.5
실험 결과, 불소화 처리 영역의 개수가 증가함에 따라 문턱 전압이 낮아지고 이동도가 향상되었다. 면적 비율(B)이 0.4% 내외인 구간에서 이동도가 피크를 나타냈으며, 이보다 불소화 처리가 과도하면 문턱 전압이 소폭 증가하고 이동도도 점차 낮아지는 결과가 나타났다.
(실험 3)
본 발명자들은 본 발명의 일 실시예에 따른 고이동도 구동 소자에 대하여 불소화 처리 영역의 폭 방향 간격에 따른 구동 소자의 문턱 전압(Vth) 및 이동도(μ)의 변화를 알아보기 위하여 추가 실험을 진행하였다.
실험 1 또는 실험 2 와 마찬가지로, 상술한 제조방법에 따라 도 1 과 같은 구조를 갖는 고이동도 구동 소자를 6개 제작하였다. 여기서 절연막으로는 실리콘 산화물(SiO2)을 사용하였고, 소스 전극 및 드레인 전극의 폭(W)은 50㎛로 하였으며, 소스 전극과 드레인 전극 사이의 간격(L)은 6㎛로 제작하였다.
불소화 처리 영역은 각각 가로 0.5㎛, 세로 0.5㎛ 의 정사각형 모양으로 3개 형성하였고, 이후 채널 층, 소스 전극과 드레인 전극을 모두 덮도록 실리콘 산화물(SiO2)로 이루어지는 보호층을 형성하였다.
각 실시예마다 1개의 불소화 처리 영역은 정가운데에 형성하고, 나머지 2개의 위치를 달리하여 불소화 처리 영역 간의 간격을 다르게 변화시키면서 구동 소자의 문턱 전압(Vth) 및 이동도(μ)를 측정하였으며, 그 결과를 표 3 및 도 5 에 나타내었다.
구분 불소화 처리 영역 간 폭 방향 간격 (㎛) 문턱 전압(Vth)(V) 이동도(μ)(cm2/Vs)
발명예 5 2 -18.7 7.27
발명예 6 4 -17.7 7.49
발명예 7 10 -16.2 7.34
발명예 8 15 -13.7 9.59
발명예 9 20 -11.7 11.2
발명예 10 25 -7.4 12.9
실험 결과, 불소화 처리 영역(80) 간의 간격은 발명예 10 과 같이 중심을 기준으로 간격이 최대이고 균일하게 퍼져 있을 때 소자의 이동 특성이 가장 좋은 것으로 나타났다. 즉, 불소화 처리 영역(80)들이 상술한 식(2)에 의해 계산되는 최대 간격(예를 들어, 실험과 같이 폭(W)이 50㎛ 이고 불소화 처리 영역(80)의 개수가 3개일 때, 최대 간격은 25㎛)만큼 이격되어 있을 때 가장 좋은 이동 특성을 가지는 것으로 해석할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양하게 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
<부호의 설명>
1: 구동 소자
10: 기판
20: 게이트 전극
30: 절연막
40: 채널 층
50: 소스 전극
60: 드레인 전극
70: 보호층
80: 불소화 처리 영역
W: 소스 전극 또는 드레인 전극의 폭
L: 소스 전극 및 드레인 전극 사이의 간격
A: 소스 전극 및 드레인 전극 사이에서 폭 방향으로 연장하는 중심선

Claims (17)

  1. 고이동도 구동 소자로서,
    기판;
    상기 기판 위에 위치하는 절연막;
    상기 절연막의 적어도 일부 영역 위에 위치하고 금속 산화물을 포함하는 채널 층;
    상기 채널 층과 연결되어 있으며, 상기 채널 층을 중심으로 양측으로 마주하도록 상기 절연막 상에 위치하는 소스 전극 및 드레인 전극;
    상기 채널 층, 상기 소스 전극 및 상기 드레인 전극을 모두 덮는 보호층
    을 포함하고,
    상기 채널 층은 상기 소스 전극 및 상기 드레인 전극 사이의 적어도 일부 영역에 복수 개의 국부적 불소화 처리 영역(F treatment area)을 포함하는 것인, 고이동도 구동 소자.
  2. 제1항에 있어서,
    다음 식(1)에 의해 계산되는 면적 비율(B)이 0.25% 내지 0.75% 범위 내에 있는 것인, 고이동도 구동 소자.
    식(1): 면적비율(B) = (각 불소화 처리 영역의 면적 * n) / (W * L) * 100
    (여기서, L은 소스 전극 및 드레인 전극 사이의 간격이고, W는 소스 전극 또는 드레인 전극의 폭이며, n은 불소화 처리 영역의 개수이다.)
  3. 제1항 또는 제2항에 있어서,
    상기 복수 개의 불소화 처리 영역 중 2개의 불소화 처리 영역은 폭 방향으로 소스 전극 또는 드레인 전극의 폭(W)의 거리만큼 서로 이격되어 있고,
    상기 복수 개의 불소화 처리 영역들은 폭 방향으로 서로 등간격으로 일렬로 배치되는 것인, 고이동도 구동 소자.
  4. 제1항 또는 제2항에 있어서,
    상기 복수 개의 불소화 처리 영역들은 서로 다음 식(2)에 의해 계산되는 최대 간격으로 이격되면서 채널 층의 중심을 기준으로 대칭으로 배열되어 있는 것인, 고이동도 구동 소자.
    식(2) : 최대 간격 = W / (n - 1)
    (여기서, W는 소스 전극 또는 드레인 전극의 폭이며, n은 불소화 처리 영역의 개수이다.)
  5. 제1항 또는 제2항에 있어서,
    상기 복수 개의 불소화 처리 영역은 소스 전극 및 드레인 전극 사이의 폭 방향으로 연장하는 중심선(A)을 따라 배치되어 있는 것인, 고이동도 구동 소자.
  6. 제1항 또는 제2항에 있어서,
    상기 복수 개의 불소화 처리 영역은 상기 채널 층의 상부 표면 상에 형성되어 있는 것인, 고이동도 구동 소자.
  7. 제1항 또는 제2항에 있어서,
    상기 복수 개의 불소화 처리 영역은 3 개 내지 9 개인 것인, 고이동도 구동 소자.
  8. 제1항 또는 제2항에 있어서,
    상기 채널 층의 금속 산화물은 인듐-갈륨-아연 산화물(IGZO)을 포함하는 것인, 고이동도 구동 소자.
  9. 제1항 또는 제2항에 있어서,
    상기 기판 및 상기 절연막 사이에 게이트 전극을 더 포함하는 것인, 고이동도 구동 소자.
  10. 제1항 또는 제2항에 있어서,
    상기 절연막은 실리콘 산화물을 포함하는 것인, 고이동도 구동 소자.
  11. 제1항 또는 제2항에 있어서,
    상기 보호층은 실리콘 산화물을 포함하는 것인, 고이동도 구동 소자.
  12. 제1항에 따른 고이동도 구동 소자의 제조방법으로서,
    기판을 준비하는 단계;
    기판 위에 금속 산화물을 포함하는 채널 층을 형성하는 단계;
    소정의 위치에 소정의 크기의 구멍이 형성되어 있는 포토레지스트를 상기 채널 층 위로 배치하는 단계;
    상기 구멍을 통해 불소를 노출시키는 단계;
    제거 용액을 이용하여 상기 포토레지스트를 제거하는 단계;
    상기 채널 층을 중심으로 양측으로 마주하도록 소스 전극 및 드레인 전극을 형성하는 단계; 및
    상기 채널 층, 상기 소스 전극 및 상기 드레인 전극을 모두 덮도록 보호층을 형성하는 단계;
    를 포함하는 고이동도 구동 소자의 제조방법.
  13. 제12항에 있어서,
    상기 채널 층의 금속 산화물은 인듐-갈륨-아연 산화물(IGZO)을 포함하는 것인, 고이동도 구동 소자의 제조방법.
  14. 제12항에 있어서,
    상기 보호층은 실리콘 산화물을 포함하는 것인, 고이동도 구동 소자의 제조방법.
  15. 제12항에 있어서,
    상기 채널 층을 형성하는 단계 전에, 기판 위에 절연막을 성막하는 단계를 더 포함하는 것인, 고이동도 구동 소자의 제조방법.
  16. 제15항에 있어서,
    상기 절연막을 성막하는 단계 전에 게이트 전극을 형성하는 단계를 더 포함하는 것인, 고이동도 구동 소자의 제조방법.
  17. 제15항에 있어서,
    상기 절연막은 실리콘 산화물을 포함하는 것인, 고이동도 구동 소자의 제조방법.
PCT/KR2023/007874 2022-06-09 2023-06-08 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법 WO2023239181A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220070111 2022-06-09
KR10-2022-0070111 2022-06-09
KR10-2023-0064950 2023-05-19
KR1020230064950A KR20230169844A (ko) 2022-06-09 2023-05-19 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023239181A1 true WO2023239181A1 (ko) 2023-12-14

Family

ID=89118687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/007874 WO2023239181A1 (ko) 2022-06-09 2023-06-08 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2023239181A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060121488A (ko) * 2005-05-24 2006-11-29 삼성에스디아이 주식회사 유기박막 트랜지스터 및 그의 제조방법과 유기 박막트랜지스터를 구비한 평판표시장치
KR20080047152A (ko) * 2006-11-24 2008-05-28 삼성에스디아이 주식회사 표시장치용 소자기판 및 이의 제조방법
KR20120076062A (ko) * 2010-12-29 2012-07-09 삼성전자주식회사 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
JP2016072570A (ja) * 2014-10-01 2016-05-09 東京エレクトロン株式会社 電子デバイス、その製造方法、及びその製造装置
KR20190063022A (ko) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 박막 트랜지스터, 그 제조방법 및 이를 포함하는 표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060121488A (ko) * 2005-05-24 2006-11-29 삼성에스디아이 주식회사 유기박막 트랜지스터 및 그의 제조방법과 유기 박막트랜지스터를 구비한 평판표시장치
KR20080047152A (ko) * 2006-11-24 2008-05-28 삼성에스디아이 주식회사 표시장치용 소자기판 및 이의 제조방법
KR20120076062A (ko) * 2010-12-29 2012-07-09 삼성전자주식회사 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
JP2016072570A (ja) * 2014-10-01 2016-05-09 東京エレクトロン株式会社 電子デバイス、その製造方法、及びその製造装置
KR20190063022A (ko) * 2017-11-29 2019-06-07 엘지디스플레이 주식회사 박막 트랜지스터, 그 제조방법 및 이를 포함하는 표시장치

Similar Documents

Publication Publication Date Title
WO2012097564A1 (zh) 一种自对准薄膜晶体管的制作方法
WO2017024573A1 (zh) 一种阵列基板及其制作方法
WO2020082426A1 (zh) 薄膜晶体管的制备方法、薄膜晶体管及显示面板
WO2020209535A1 (ko) 수소 확산 방지막을 포함하는 표시 장치 및 그 제조 방법
WO2019019428A1 (zh) 柔性oled阵列基板及其制作方法
CN104040693A (zh) 一种金属氧化物tft器件及制造方法
WO2014112705A1 (en) Image sensor for x-ray and method of manufacturing the same
WO2016058172A1 (zh) 一种coa基板及其制作方法
WO2018107554A1 (zh) Oled显示面板以及oled显示装置
WO2019056517A1 (zh) 薄膜晶体管结构及其制作方法
WO2019024195A1 (zh) 一种低温多晶硅阵列基板的制程方法以及低温多晶硅薄膜晶体管的制程方法
WO2018120309A1 (zh) Oled显示装置的阵列基板及其制作方法
WO2019037268A1 (zh) Amoled显示面板及显示装置
WO2017035851A1 (zh) Tft、阵列基板及tft的制备方法
WO2017067062A1 (zh) 一种双栅极薄膜晶体管及其制作方法、以及阵列基板
WO2017054258A1 (zh) Tft阵列基板的制备方法、tft阵列基板及显示装置
WO2018084421A1 (ko) 듀얼 게이트 구조를 구비하는 산화물 반도체 트랜지스터 및 그 제조방법
WO2018101770A1 (ko) 2단자 수직형 1t-디램 및 그 제조 방법
WO2018218712A1 (zh) 低温多晶硅tft基板及其制作方法
WO2019029008A1 (zh) 薄膜晶体管及薄膜晶体管的制造方法、液晶显示面板
WO2019061711A1 (zh) 一种薄膜晶体管阵列基板的制作方法
WO2017152451A1 (zh) Ffs模式的阵列基板及制作方法
WO2009102165A2 (ko) 상온에서 동작하는 단전자 트랜지스터 및 그 제조방법
WO2016090690A1 (zh) 一种ltps像素单元及其制造方法
WO2023239181A1 (ko) 고이동도 박막 트랜지스터 구동 소자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23820116

Country of ref document: EP

Kind code of ref document: A1