WO2023238619A1 - ガラス材及び光ファイバ - Google Patents

ガラス材及び光ファイバ Download PDF

Info

Publication number
WO2023238619A1
WO2023238619A1 PCT/JP2023/018317 JP2023018317W WO2023238619A1 WO 2023238619 A1 WO2023238619 A1 WO 2023238619A1 JP 2023018317 W JP2023018317 W JP 2023018317W WO 2023238619 A1 WO2023238619 A1 WO 2023238619A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass material
halogen
glass
material according
silica
Prior art date
Application number
PCT/JP2023/018317
Other languages
English (en)
French (fr)
Inventor
慎 佐藤
健美 長谷川
真二 石川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023238619A1 publication Critical patent/WO2023238619A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the present disclosure relates to glass materials and optical fibers.
  • This application claims priority based on Japanese Application No. 2022-094169 filed on June 10, 2022, and incorporates all the contents described in the said Japanese application.
  • Bromine and iodine can be used as upper dopants to increase the refractive index of glass.
  • Patent Documents 1 and 2 disclose optical fibers in which bromine and iodine are added to the core.
  • a glass material according to one aspect of the present disclosure is a glass material that is made of silica-based glass and contains a halogen element, which contains at least one of bromine and iodine, and which contains a halogen molecule X 2 and a halogen ion X -.
  • the concentration ratio satisfies [X ⁇ ]/[X 2 ] ⁇ 1.
  • An optical fiber includes a core made of silica-based glass and containing a halogen element, and a cladding made of silica-based glass surrounding the core, and the core includes at least one of bromine and iodine.
  • the concentration ratio of halogen molecule X 2 and halogen ion X ⁇ satisfies [X ⁇ ]/[X 2 ] ⁇ 1.
  • FIG. 1 is a sectional view showing an optical fiber according to an embodiment.
  • FIG. 2 is a graph showing the relationship between concentration ratio and transmission loss.
  • FIG. 3 is a graph showing the relationship between concentration ratio and transmission loss.
  • FIG. 4 is a graph showing the relationship between concentration ratio and transmission loss.
  • FIG. 5 is a graph showing the relationship between concentration ratio and transmission loss.
  • Bromine and iodine have a higher rate of increase in refractive index per added amount (mass %) than fluorine and chlorine. Therefore, it is possible to realize a glass material having the same refractive index with a low doping amount, and it is easy to suppress the influence of other impurities generated in the doping process.
  • halogen molecules in which halogen elements are bonded to each other may cause absorption loss in short wavelengths, that is, in the wavelength range of ultraviolet rays and visible light. Therefore, the applications of the glass material in the wavelength range of ultraviolet rays and visible light are limited.
  • An object of the present disclosure is to provide a glass material and an optical fiber that have low absorption in the ultraviolet and visible wavelength regions.
  • a glass material according to one aspect of the present disclosure is a glass material that is made of silica-based glass and contains a halogen element, and contains at least one of bromine and iodine, and contains halogen molecules X 2 and halogen ions X - satisfies [X - ]/[X 2 ] ⁇ 1.
  • This glass material has low absorption in the wavelength range of ultraviolet light and visible light.
  • the relative refractive index difference based on the refractive index of silica glass may be -0.1% or more and 0.3% or less.
  • this glass material is used to form the core, it is possible to suppress excessive addition of down dopants to the cladding.
  • the glass material of any one of (1) to (3) above may contain two or more types of halogen elements. In this case, inclusion of a large amount of a specific halogen element is suppressed. Therefore, a specific halogen element is prevented from reacting with other additive elements and becoming an impurity.
  • the glass material of (4) above may contain two or more types of halogen elements in a mass fraction of 50 ppm or more. In this case, it is further suppressed that the specific halogen element reacts with other additive elements and becomes an impurity.
  • the glass material in (4) above may contain two or more types of halogen elements in a mass fraction of 500 ppm or more. In this case, it is further suppressed that the specific halogen element reacts with other additive elements and becomes an impurity.
  • the glass material according to any one of (1) to (6) above may contain silica glass in a mass fraction of 90% or more. In this case, adverse effects on optical properties are suppressed.
  • An optical fiber includes a core made of silica-based glass and containing a halogen element, and a cladding made of silica-based glass surrounding the core, and the core contains bromine and iodine.
  • the concentration ratio of halogen molecule X 2 and halogen ion X ⁇ satisfies [X ⁇ ]/[X 2 ] ⁇ 1.
  • This optical fiber has low absorption in the ultraviolet and visible wavelength regions.
  • the glass material according to this embodiment is, for example, optical glass. More specifically, the glass material is, for example, a glass material for optical fiber, and is used for forming the core of the optical fiber.
  • the glass material is composed of silica-based glass containing silica glass as a main component.
  • the glass material further contains another element other than silicon (Si) and oxygen (O) that constitute silica glass.
  • the glass material may contain two or more types of halogen elements X, or may contain three or more types of halogen elements X.
  • halogen elements X When a large amount of one specific type of halogen element There is a risk that it will become When impurities are generated, optical properties are affected, and light absorption in the ultraviolet region in particular may increase.
  • the glass material contains multiple types of halogen elements X, the concentration of each halogen element X required to achieve a desired refractive index can be reduced. Thereby, impurity formation can be suppressed.
  • halogen elements X among Cl, F, Br, and I may be added in a mass ratio of 500 ppm or more while keeping the relative refractive index difference of the glass material within the above range.
  • Three or more types of halogen elements X may be added in a mass ratio of 500 ppm or more.
  • mass ratio means mass fraction.
  • the glass material may further contain elements that easily become cations, such as alkali metal elements, alkaline earth metal elements, group 13 elements, and group 14 elements.
  • alkali metal elements include lithium (Li), sodium (Na), potassium (K), and the like.
  • alkaline earth metal elements include magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba).
  • Group 13 elements include boron (B), aluminum (Al), gallium (Ga), and indium (In).
  • Group 14 elements include germanium (Ge), tin (Sn), and lead (Pb).
  • concentration ratio (molar ratio) is defined from the area intensity ratio of the obtained fitting function.
  • concentration ratio may satisfy [X ⁇ ]/[X 2 ] ⁇ 9, [X ⁇ ]/[X 2 ] ⁇ 90, or [X ⁇ ]/[X 2 ] ⁇ 900. May be filled. These concentration ratios also affect absorption in the ultraviolet region.
  • a glass material with low absorption in a wide wavelength range can be manufactured.
  • transmission loss of the optical fiber can be reduced.
  • the glass material contains two or more types of halogen elements, it is sufficient that at least one type of element satisfies the above concentration ratio.
  • the glass material is synthesized using a plasma melting method or the like.
  • a method that can generate halogen ion X ⁇ may be used.
  • addition may be performed by applying high pressure.
  • FIGS. 2 to 5 are graphs showing the relationship between concentration ratio and transmission loss.
  • the case of chlorine is shown.
  • the case of fluorine is shown.
  • the case of bromine is shown in FIG.
  • the case of iodine is shown in FIG.
  • Table 1 and FIGS. 2 to 5 it can be seen that as the concentration ratio increases, the transmission loss tends to decrease.
  • [X ⁇ ]/[X 2 ] ⁇ 1 it can be confirmed that transmission loss is suppressed for any halogen element.
  • Optical fiber 1a Central axis 10
  • Core 20 ... Clad

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

ガラス材は、シリカ系ガラスで構成され、ハロゲン元素を含むガラス材であって、臭素及びヨウ素の少なくともいずれか一方を含み、ハロゲン分子X2とハロゲンイオンX-との濃度比が、[X-]/[X2]≧1を満たす。

Description

ガラス材及び光ファイバ
 本開示は、ガラス材及び光ファイバに関する。本出願は、2022年6月10日出願の日本出願第2022-094169号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 臭素及びヨウ素は、ガラスの屈折率を上げるアッパードーパントとして利用することができる。特許文献1,2には、臭素及びヨウ素がコアに添加された光ファイバが開示されている。
米国特許出願公開第2020/0087195号明細書 米国特許出願公開第2020/0049881号明細書
 本開示の一態様に係るガラス材は、シリカ系ガラスで構成され、ハロゲン元素を含むガラス材であって、臭素及びヨウ素の少なくともいずれか一方を含み、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす。
 本開示の一態様に係る光ファイバは、シリカ系ガラスで構成され、ハロゲン元素を含むコアと、シリカ系ガラスで構成され、コアを取り囲むクラッドと、を備え、コアは、臭素及びヨウ素の少なくともいずれか一方を含み、コアでは、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす。
図1は、実施形態に係る光ファイバを示す断面図である。 図2は、濃度比と伝送損失との関係を示すグラフである。 図3は、濃度比と伝送損失との関係を示すグラフである。 図4は、濃度比と伝送損失との関係を示すグラフである。 図5は、濃度比と伝送損失との関係を示すグラフである。
[本開示が解決しようとする課題]
 臭素及びヨウ素は、フッ素及び塩素と比較して、添加量(質量%)あたりの屈折率の増加率が高い。したがって、同じ屈折率のガラス材を低濃度の添加量で実現可能であり、添加プロセスにおいて発生する他の不純物の影響を抑制しやすい。一方で、ハロゲン元素同士が結合したハロゲン分子により、短波長、すなわち、紫外線及び可視光の波長領域で吸収損失が発生するおそれがある。よって、紫外線及び可視光の波長領域でのガラス材の用途が限られてしまう。
 光ファイバについても、ハロゲン分子による吸収損失の裾が伝送波長帯に影響する。また、ハロゲンイオンの結合の脱離に起因してガラス欠陥が発生すると、ガラス欠陥吸収の裾も伝送波長帯に影響する。この結果、伝送損失が増加するおそれがある。
 本開示は、紫外線及び可視光の波長領域における吸収が少ないガラス材及び光ファイバを提供することを目的とする。
[本開示の効果]
 本開示によれば、紫外線及び可視光の波長領域における吸収が少ないガラス材及び光ファイバを提供することができる。
[本開示の実施態様の説明]
 最初に本開示の実施態様を列記して説明する。(1)本開示の一態様に係るガラス材は、シリカ系ガラスで構成され、ハロゲン元素を含むガラス材であって、臭素及びヨウ素の少なくともいずれか一方を含み、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす。このガラス材では、紫外線及び可視光の波長領域における吸収が少ない。
 (2)上記(1)において、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧9を満たしてもよい。この場合、紫外線及び可視光の波長領域における吸収が更に少ない。
 (3)上記(1)または(2)において、シリカガラスの屈折率を基準とした比屈折率差は、-0.1%以上0.3%以下であってもよい。このガラス材をコア形成に用いた場合、ダウンドーパントをクラッドに過剰添加することを抑制可能である。
 (4)上記(1)から(3)のいずれかのガラス材は、二種類以上のハロゲン元素を含んでもよい。この場合、特定のハロゲン元素を多量に含むことが抑制される。よって、特定のハロゲン元素が他の添加元素と反応して不純物化することが抑制される。
 (5)上記(4)のガラス材は、二種類以上のハロゲン元素を質量分率でそれぞれ50ppm以上含んでもよい。この場合、特定のハロゲン元素が他の添加元素と反応して不純物化することが更に抑制される。
 (6)上記(4)のガラス材は、二種類以上のハロゲン元素を質量分率でそれぞれ500ppm以上含んでもよい。この場合、特定のハロゲン元素が他の添加元素と反応して不純物化することが更に抑制される。
 (7)上記(1)から(6)のいずれかのガラス材は、シリカガラスを質量分率で90%以上含んでもよい。この場合、光学特性に悪影響が及ぶことが抑制される。
 (8)本開示の一態様に係る光ファイバは、シリカ系ガラスで構成され、ハロゲン元素を含むコアと、シリカ系ガラスで構成され、コアを取り囲むクラッドと、を備え、コアは、臭素及びヨウ素の少なくともいずれか一方を含み、コアでは、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす。この光ファイバでは、紫外線及び可視光の波長領域における吸収が少ない。
[本開示の実施形態の詳細]
 本開示のガラス材及び光ファイバの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(ガラス材)
 本実施形態に係るガラス材は、例えば、光学用ガラスである。より具体的には、ガラス材は、例えば、光ファイバ用ガラス材であり、光ファイバのコアの形成に用いられる。ガラス材は、シリカガラスを主成分として含むシリカ系ガラスで構成される。ガラス材は、シリカガラスを構成するケイ素(Si)及び酸素(O)以外の別の元素を更に含んでいる。
 ガラス材は、ハロゲン元素Xを含んでいる。ハロゲン元素Xは、フッ素(F)、塩素(Cl)、臭素(Br)、及び、ヨウ素(I)のいずれかである。ガラス材は、複数種類のハロゲン元素を含んでいてもよい。ガラス材は、臭素及びヨウ素の少なくともいずれか一方を含んでいる。
 ガラス材に含まれるハロゲン元素Xの濃度は、質量比で50ppm以上であってもよく、500ppm以上であってもよく、1000ppm以上であってもよい。これにより、添加元素の濃度変化が及ぼすガラスの粘性の変化量が小さくなり、ガラスの光学特性のばらつきが小さくなる。ガラス材に含まれるハロゲン元素Xの濃度は、質量比で50000ppm以下であってもよい。これにより、多量添加に起因した光学特性の変化の影響を抑制でき、シリカガラスの光学特性に近いガラス材を得ることができる。上記濃度の範囲は、ハロゲン元素XがCl,F,Br,Iのいずれの場合であっても同等である。すなわち、ガラス材に二種類以上のハロゲン元素Xが含まれる場合、各ハロゲン元素Xの濃度を上記範囲内に収めればよい。ここで、質量比とは質量分率を意味する。
 ガラス材は、二種類以上のハロゲン元素Xを含んでいてもよく、三種類以上のハロゲン元素Xを含んでいてもよい。ガラス材に特定の一種類のハロゲン元素Xが多量に添加されていると、当該ハロゲン元素Xが、例えば、アルカリ金属元素などの他の添加元素と反応して他の物質相に転移し、不純物化するおそれがある。不純物が発生すると光学特性に影響が及び、特に紫外領域での光吸収が増加するおそれがある。ガラス材が複数種類のハロゲン元素Xを含んでいる場合、所望の屈折率を実現する際に必要となる各ハロゲン元素Xの濃度を低減することができる。これにより、不純物化を抑制することができる。
 光ファイバ用ガラス材では、ファイバ化の過程で他の物質相が発生すると、ガラス内の硬度が不均一になる結果、目的のファイバ径、屈折率プロファイルを実現することができなくなる。よって、光ファイバの歩留り低下を抑制するためにも、各ハロゲン元素Xの濃度を抑制することが重要である。
 純シリカガラス(SiO、すなわちシリカガラス)の屈折率を基準としたガラス材の比屈折率差Δは、-0.1%以上0.3%以下であってもよく、0%以上0.3%以下であってもよく、0.1%以上0.3%以下であってもよい。このようなガラス材をコア形成に用いた場合、Fなどのダウンドーパントをクラッドに過剰添加することを抑制可能である。よって、添加濃度増加による伝送損失増加を抑制することができる。
 ガラス材の比屈折率差を上記範囲に収めつつ、Cl,F,Br,Iのうち二種類以上のハロゲン元素Xが質量比でそれぞれ500ppm以上添加されていてもよい。三種類以上のハロゲン元素Xが質量比でそれぞれ500ppm以上添加されていてもよい。ここで、質量比とは質量分率を意味する。
 ガラス材は、アルカリ金属元素、アルカリ土類金属元素、13族元素、14族元素などの陽イオンとなり易い元素を更に含んでいてもよい。アルカリ金属元素としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)などが挙げられる。アルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)などが挙げられる。13族元素としては、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられる。14族元素としては、ゲルマニウム(Ge)、錫(Sn)、鉛(Pb)などが挙げられる。
 ガラス材が陽イオンを含むことにより、後述のように、ハロゲン元素Xの一価の陰イオンXが生成され易くなる。これにより、ハロゲン分子Xの生成を抑制し易いという効果が奏される。一方で、複数元素の添加により添加物質の相分離が発生すると、光学特性に悪影響が及ぶ。よって、主成分であるシリカガラスの割合は、質量比で90%以上であってもよく、95%以上であってもよく、98%以上であってもよい。
 ハロゲン分子X及びハロゲンイオンXの濃度は、例えば、X線光電子分光法(XPS)を用いて算出される。XPSでは、元素の価数状態の変化を捉えることが可能である。Iについては、Iに由来するピークが618から620eVの間に認められ、Iに由来するピークが620から621eVの間に認められる。Brについては、Brに由来するピークが70から72eVの間に認められ、Brに由来するピークが68から69eVの間に認められる。
 これらのピークについて、ガウス関数でフィッティングを行い、得られたフィッティング関数の面積強度比から濃度比(モル比)を定義する。ハロゲン分子Xと、ハロゲン分子Xと同じハロゲン元素XのハロゲンイオンXとの濃度比は、元素によらず、[X]/[X]≧1を満たす。濃度比は、[X]/[X]≧9を満たしてもよく、[X]/[X]≧90を満たしてもよく、[X]/[X]≧900を満たしてもよい。これらの濃度比は紫外領域の吸収にも影響を及ぼす。ハロゲンイオンXの濃度の比率を高くすることにより、広い波長領域において吸収が少ないガラス材を製造することができる。このガラス材を用いて光ファイバを形成することにより、光ファイバの伝送損失を低減することができる。また、ガラス材が二種類以上のハロゲン元素を含む場合、少なくとも一種類の元素が上記の濃度比を満たせばよい。
 ガラス材は、プラズマ溶融法などを用いて合成される。ハロゲン分子Xの生成を抑制するために、ハロゲンイオンXを生成できる手法であってもよい。ハロゲンイオンXを生成するために、高圧印加による添加を実施してもよい。
(光ファイバ)
 図1は、実施形態に係る光ファイバを示す断面図である。実施形態に係る光ファイバ1は、中心軸1aに沿って延びるコア10と、コア10を取り囲むクラッド20と、を備える。光ファイバ1は、実施形態に係るガラス材を用いて形成されている。より具体的には、コア10が実施形態に係るガラス材を用いて形成されている。クラッド20は、シリカガラスを主成分として含むシリカ系ガラスで構成される。
 表1に、濃度比と伝送損失との関係を示す。
Figure JPOXMLDOC01-appb-T000001
 図2から図5は、濃度比と伝送損失との関係を示すグラフである。図2には、塩素の場合が示されている。図3には、フッ素の場合が示されている。図4には、臭素の場合が示されている。図5には、ヨウ素の場合が示されている。表1及び図2から図5に示されるように、濃度比が高くなるにつれて、伝送損失が低下する傾向にあることがわかる。[X]/[X]≧1の場合、いずれのハロゲン元素においても伝送損失が抑制されていることが確認できる。
 以上、実施形態について説明してきたが、本開示は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
1…光ファイバ
1a…中心軸
10…コア
20…クラッド

Claims (15)

  1.  シリカ系ガラスで構成され、ハロゲン元素を含むガラス材であって、
     臭素及びヨウ素の少なくともいずれか一方を含み、
     ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす、
     ガラス材。
  2.  前記ハロゲン分子Xと前記ハロゲンイオンXとの濃度比が、[X]/[X]≧9を満たす、
     請求項1に記載のガラス材。
  3.  シリカガラスの屈折率を基準とした比屈折率差は、-0.1%以上0.3%以下である、
     請求項1または請求項2に記載のガラス材。
  4.  二種類以上の前記ハロゲン元素を含む、
     請求項1から請求項3のいずれか一項に記載のガラス材。
  5.  前記二種類以上の前記ハロゲン元素を質量分率でそれぞれ50ppm以上含む、
     請求項4に記載のガラス材。
  6.  前記二種類以上のハロゲン元素を質量分率でそれぞれ500ppm以上含む、
     請求項4に記載のガラス材。
  7.  シリカガラスを質量分率で90%以上含む、
     請求項1から請求項6のいずれか一項に記載のガラス材。
  8.  前記二種類以上の前記ハロゲン元素を質量分率でそれぞれ50000ppm以上含む、
     請求項4から請求項6のいずれか一項に記載のガラス材。
  9.  アルカリ金属元素、アルカリ土類金属元素、13族元素、および、14族元素の少なくともいずれか一つを更に含む、
     請求項1から請求項8のいずれか一項に記載のガラス材。
  10.  シリカガラスの屈折率を基準とした比屈折率差は、0%以上0.3%以下である、
     請求項1から請求項9のいずれか一項に記載のガラス材。
  11.  シリカガラスの屈折率を基準とした比屈折率差は、0.1%以上0.3%以下である、
     請求項1から請求項10のいずれか一項に記載のガラス材。
  12.  前記ハロゲン分子Xと前記ハロゲンイオンXとの濃度比が、[X]/[X]≧90を満たす、
     請求項1から請求項11のいずれか一項に記載のガラス材。
  13.  前記ハロゲン分子Xと前記ハロゲンイオンXとの濃度比が、[X]/[X]≧900を満たす、
     請求項1から請求項12のいずれか一項に記載のガラス材。
  14.  前記ハロゲン元素は、フッ素、塩素、臭素、および、ヨウ素のいずれかである、
     請求項1から請求項13のいずれか一項に記載のガラス材。
  15.  シリカ系ガラスで構成され、ハロゲン元素を含むコアと、
     シリカ系ガラスで構成され、前記コアを取り囲むクラッドと、を備え、
     前記コアは、臭素及びヨウ素の少なくともいずれか一方を含み、
     前記コアでは、ハロゲン分子XとハロゲンイオンXとの濃度比が、[X]/[X]≧1を満たす、
     光ファイバ。
PCT/JP2023/018317 2022-06-10 2023-05-16 ガラス材及び光ファイバ WO2023238619A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022094169 2022-06-10
JP2022-094169 2022-06-10

Publications (1)

Publication Number Publication Date
WO2023238619A1 true WO2023238619A1 (ja) 2023-12-14

Family

ID=89118241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018317 WO2023238619A1 (ja) 2022-06-10 2023-05-16 ガラス材及び光ファイバ

Country Status (1)

Country Link
WO (1) WO2023238619A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113205A (ja) * 1988-10-24 1990-04-25 Fujikura Ltd 光ファイバ
JPH05229841A (ja) * 1991-11-22 1993-09-07 Fujikura Ltd イメージファイバ
WO2018110234A1 (ja) * 2016-12-12 2018-06-21 住友電気工業株式会社 光ファイバ母材製造方法、光ファイバ母材、および光ファイバ
JP2019505837A (ja) * 2015-12-22 2019-02-28 コーニング インコーポレイテッド 臭素ドープ光ファイバ及び上記臭素ドープ光ファイバを生産する方法
JP2021503630A (ja) * 2017-11-20 2021-02-12 コーニング インコーポレイテッド 2種類以上のハロゲンが共ドープされたコアを有する低損失の光ファイバ
JP2021534058A (ja) * 2018-08-08 2021-12-09 コーニング インコーポレイテッド 光ファイバ用にハロゲンを共ドープしたコアの製造方法、並びに光ファイバ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113205A (ja) * 1988-10-24 1990-04-25 Fujikura Ltd 光ファイバ
JPH05229841A (ja) * 1991-11-22 1993-09-07 Fujikura Ltd イメージファイバ
JP2019505837A (ja) * 2015-12-22 2019-02-28 コーニング インコーポレイテッド 臭素ドープ光ファイバ及び上記臭素ドープ光ファイバを生産する方法
WO2018110234A1 (ja) * 2016-12-12 2018-06-21 住友電気工業株式会社 光ファイバ母材製造方法、光ファイバ母材、および光ファイバ
JP2021503630A (ja) * 2017-11-20 2021-02-12 コーニング インコーポレイテッド 2種類以上のハロゲンが共ドープされたコアを有する低損失の光ファイバ
JP2021534058A (ja) * 2018-08-08 2021-12-09 コーニング インコーポレイテッド 光ファイバ用にハロゲンを共ドープしたコアの製造方法、並びに光ファイバ

Similar Documents

Publication Publication Date Title
CN106908897B (zh) 光学纤维
US10099957B2 (en) Infrared transmission chalcogenide glasses
US5146534A (en) SiO2 -based alkali-doped optical fiber
WO2016152507A1 (ja) マルチコア光ファイバ
US10031282B2 (en) Optical fiber
JP5280570B2 (ja) ヒ素およびアンチモンを含有しない酸化チタン含有ホウケイ酸ガラスおよびその製造方法
CN108700704B (zh) 光纤
EP3316010A1 (en) Doping optimized single-mode optical fibre with ultralow attenuation
WO2023157505A1 (ja) 光ファイバ
CN109250898B (zh) 光纤预制件
WO2023238619A1 (ja) ガラス材及び光ファイバ
Churbanov et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers
WO2015182359A1 (ja) 温度補償用部材及びそれを用いた光通信用光学デバイス
EP0249886B1 (en) Method of manufacturing hollow core optical fibers
WO2023238620A1 (ja) ガラス材及び光ファイバ
WO2024004546A1 (ja) ガラス材及び光ファイバ
WO2024004547A1 (ja) ガラス材及び光ファイバ
US10358378B2 (en) Near infrared cutoff filter glass
EP3553035B1 (en) Manufacturing method for an optical fiber base material
CN106604899B (zh) 光纤预制棒、光纤和光纤的制造方法
FR2801881A1 (fr) Flints legers exempts de plomb
KR20180041066A (ko) 화학 강화용 유리
WO2023228743A1 (ja) 光ファイバ
WO2020121915A1 (ja) 光ファイバおよび光ファイバの製造方法
CN113678039B (zh) 光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819603

Country of ref document: EP

Kind code of ref document: A1