WO2023237091A1 - 生产液体组合物的设备及其制备方法和用途 - Google Patents

生产液体组合物的设备及其制备方法和用途 Download PDF

Info

Publication number
WO2023237091A1
WO2023237091A1 PCT/CN2023/099327 CN2023099327W WO2023237091A1 WO 2023237091 A1 WO2023237091 A1 WO 2023237091A1 CN 2023099327 W CN2023099327 W CN 2023099327W WO 2023237091 A1 WO2023237091 A1 WO 2023237091A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
interface
compound
module
syringe
Prior art date
Application number
PCT/CN2023/099327
Other languages
English (en)
French (fr)
Inventor
王跃
唐艳旻
张颖
张爱丽
徐新盛
Original Assignee
北京先通国际医药科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京先通国际医药科技股份有限公司 filed Critical 北京先通国际医药科技股份有限公司
Publication of WO2023237091A1 publication Critical patent/WO2023237091A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • This application relates to the technical field of radiopharmaceuticals, specifically to equipment for producing liquid compositions and preparation methods and uses thereof.
  • Coronary heart disease is one of the most serious threats to human health. In my country, the incidence and mortality of coronary heart disease are on the rise. In 2007, data released by the Ministry of Health showed that approximately 3 million people die from cardiovascular disease in my country every year, which has become the number one cause of death among urban and rural populations in my country, accounting for nearly 40% of the deaths among residents in my country.
  • Myocardial perfusion imaging (MPI) single-photon emission computed tomography (SPECT) imaging technology is the main non-invasive perfusion imaging method currently used clinically for coronary heart disease detection and prognosis evaluation.
  • SPECT positron emission computed tomography
  • PET positron emission computed tomography
  • the standard tissue attenuation correction method can be used to achieve absolute quantification of coronary blood flow.
  • the short half-life of positron nuclides can effectively reduce the radiation dose around the target tissue, and the short half-life can also shorten the interval between resting and motion imaging.
  • myocardial perfusion PET imaging agents include: 15 OH 2 O, 13 N-NH 3 ⁇ H 2 O and 82 Rb, etc.
  • the half-lives of the above-mentioned imaging agents are short, and their clinical application is still greatly limited.
  • Compound I is a radioactive nucleus Analogs of 18 F-labeled mitochondrial respiratory chain complex-I (MC-I) inhibitors can remain in the myocardium for a long time, and their uptake in the heart is positively correlated with myocardial blood flow.
  • MC-I mitochondrial respiratory chain complex-I
  • Compound I has high cardiac uptake and hepatic uptake 15 minutes after intravenous injection, a good heart/liver ratio 60 minutes after injection, and has good myocardial perfusion imaging potential and clinical benefit.
  • Equipment for producing compound I liquid composition including:
  • the reaction module is used to react the enriched 18 F ions with the precursor of compound I to obtain crude compound I;
  • Purification module used to purify crude compound I to obtain pure compound I
  • the prescription module enriches and formulates the purified pure Compound I into a Compound I liquid composition
  • the preprocessing module includes:
  • a first valve, a second valve, a third valve, a fourth valve, a fifth valve, and a sixth valve the first valve to the sixth valve respectively include at least a first interface, a second interface, and a third interface
  • the first valve to the sixth valve can realize any two of the three interfaces to be connected or all three interfaces to be disconnected; the first interface of the first valve and the first positive pressure pipe
  • the second interface of the first valve is connected to the first interface of the second valve, the second interface of the second valve is connected to the first interface of the third valve, and the third valve
  • the second interface of the fourth valve is connected to the first interface of the fourth valve, the second interface of the fourth valve is connected to the first interface of the fifth valve, and the second interface of the fifth valve is connected to the first interface of the fourth valve.
  • the first interface of the six valves is connected;
  • the first recovery container is respectively connected to the first negative pressure pipeline and the third interface of the first valve;
  • the first reagent container is connected to the third interface of the second valve;
  • a first syringe connected to the third interface of the third valve
  • the second syringe is connected to the third interface of the sixth valve.
  • the first valve, the second valve, the third valve, the fourth valve, the fifth valve and the sixth valve are all electric control valves.
  • the preprocessing module also includes:
  • a first linear drive device capable of driving the piston of the first syringe to move within the empty barrel
  • a second linear drive device capable of driving the piston of the second syringe to move within the empty barrel.
  • the first linear drive device and the second linear drive device are selected from one of a pneumatic rod, a hydraulic rod, and a screw;
  • both the first linear drive device and the second linear drive device are screws, and the screws are driven by stepper motors.
  • the pretreatment module also includes a positive pressure and negative pressure pipeline and a liquid adding pipe. paths, respectively passing through the piston of the second syringe and extending into the second syringe.
  • a flow meter is provided on the liquid adding pipeline.
  • reaction module includes:
  • the seventh valve, the eighth valve, the ninth valve, the tenth valve, the eleventh valve, and the twelfth valve respectively include at least a first interface, a second interface, and a third valve. Three interfaces, and the seventh valve to the twelfth valve can realize conduction of any two interfaces of the three interfaces or non-conduction of all three interfaces; the first interface of the seventh valve and all the The pretreatment module is connected, the second interface of the seventh valve is connected to the first interface of the eighth valve, the second interface of the eighth valve is connected to the first interface of the ninth valve, the The second interface of the ninth valve is connected to the first interface of the tenth valve, the second interface of the tenth valve is connected to the first interface of the eleventh valve, and the second interface of the eleventh valve is connected to the first interface of the eleventh valve.
  • the interface is connected to the first interface of the twelfth valve, and the third interface of the twelfth valve is connected to the purification
  • the reaction vessel is respectively connected to the second negative pressure pipeline and the third interface of the seventh valve;
  • a temperature control component for heating and/or cooling the reaction vessel
  • a third syringe connected to the third interface of the eighth valve
  • the third reagent container is connected to the third interface of the eleventh valve.
  • the seventh valve, eighth valve, ninth valve, tenth valve, eleventh valve and twelfth valve are all electric control valves.
  • reaction module further includes:
  • a third linear drive device capable of driving the piston of the third syringe to move within the empty barrel
  • a fourth linear drive device can drive the piston of the fourth syringe to move within the empty barrel.
  • the third linear drive device and the fourth linear drive device are selected from pneumatic One of the rods, hydraulic rods, and screws;
  • both the third linear drive device and the fourth linear drive device are screws, and the screws are driven by stepper motors.
  • the purification module includes:
  • each of the thirteenth valve and the fourteenth valve includes at least a first interface, a second interface, a third interface, a fourth interface, a fifth interface, and a sixth interface
  • the thirteenth valve and the fourteenth valve can each be switched between a first mode and a second mode.
  • the first mode is the connection between the first interface and the second interface, and the connection between the third interface and the fourth interface.
  • the second interface is connected to the third interface, the fourth interface is connected to the fifth interface, and the sixth interface is connected to the first interface.
  • the fourth interface of the thirteenth valve is connected to the reaction module;
  • the second interface of the thirteenth valve is connected to the first interface of the fourteenth valve;
  • the second interface of the fourteenth valve is connected to The third interface of the fourteenth valve is connected through an external pipeline;
  • a chromatography column assembly is connected between the fifth interface of the fourteenth valve and the sixth interface of the fourteenth valve;
  • a quantitative loop, the quantitative loop is connected between the third interface of the thirteenth valve and the sixth interface of the thirteenth valve;
  • the second recovery container is connected to the fifth interface of the thirteenth valve
  • the fifteenth valve includes at least a first interface, a second interface, and a third interface.
  • the fifteenth valve can realize communication between the first interface and the second interface or the first interface and the third interface. conduction; the first interface of the fifteenth valve is connected to the fourth interface of the fourteenth valve, the second interface of the fifteenth valve is connected to the prescription module, and the third interface of the fifteenth valve Three interfaces are connected to the second recovery container.
  • the thirteenth valve, the fourteenth valve, and the fifteenth valve are all electric control valves.
  • the prescription module includes:
  • the sixteenth valve, the seventeenth valve, the eighteenth valve, the nineteenth valve, the twentieth valve, and the twenty-first valve, the sixteenth valve to the twenty-first valve respectively include at least a first interface, the second interface, and the third interface, and the sixteenth valve to the twenty-first valve can realize conduction of any two interfaces among the three interfaces or non-conduction of all three interfaces; wherein, The first interface of the sixteenth valve is connected to the second interface of the twelfth valve, the second interface of the sixteenth valve is connected to the first interface of the seventeenth valve, and the tenth valve
  • the second interface of the seven valves is connected to the first interface of the eighteenth valve, the second interface of the eighteenth valve is connected to the first interface of the nineteenth valve, and the first interface of the nineteenth valve
  • the second interface is connected to the first interface of the twentieth valve, the second interface of the twentieth valve is connected to the first interface of the twenty-first valve, and the third interface of the sixteenth valve is connected to The purification module is
  • the fourth reagent container is connected to the third interface of the seventeenth valve
  • Compound I enrichment warehouse connected between the third interface of the eighteenth valve and the third interface of the nineteenth valve;
  • the first transfer container is connected to the third interface of the twentieth valve
  • the second transfer container is respectively connected to the third interface of the twenty-first valve, the finished product collection container, and the fourth negative pressure pipeline.
  • a method for producing a liquid composition of Compound I using the equipment described in any one of items 1 to 8, including:
  • reaction module uses the reaction module to react the enriched 18 F ions with the precursor of compound I to obtain crude compound I;
  • the equipment provided by this application for producing a compound I liquid composition can prepare a crude compound I, and purify, enrich, and formulate the crude compound I to prepare a compound I liquid composition for direct clinical use.
  • each valve can be controlled through a microprocessor control system (such as PLC, etc.) to realize equipment automation.
  • this application provides methods for using the above equipment.
  • Figure 1 Schematic assembly diagram of the pretreatment module, reaction module, and formulation module of the equipment for producing compound I;
  • Figure 4(a) ⁇ Figure 4(d) A schematic diagram of the three-way valve in Figure 3(a) ⁇ Figure 3(h) ( Figure 4(a) is a schematic diagram corresponding to the three-way valve in Figure 3(b) ; Figure 4(b) is a simplified diagram corresponding to the three-way valve in Figure 3(c); Figure 4(c) is a simplified diagram corresponding to the three-way valve in Figure 3(d); Figure 4(d) is corresponding to Figure 3(e) ) ⁇ Figure 3(h) Simplified diagram of three-way valve);
  • Figure 9 Schematic diagram of total negative pressure pipeline connection.
  • V1 three-way valve body
  • V2 three-way valve core
  • V3 six-way valve body
  • Reaction vessel 30. Third syringe; 31. Second reagent container; 32. Fourth syringe; 33. Third reagent container;
  • P0 the positive pressure pipeline of the positive pressure and negative pressure pipeline
  • P1 the first positive pressure pipeline
  • N total negative pressure pipeline
  • N0 negative pressure pipeline of positive pressure and negative pressure pipeline
  • N1 first negative pressure pipeline
  • N4 the fourth negative pressure pipeline.
  • This embodiment provides a method for producing 2-tert-butyl-4-chloro-5-((3-((4-((2-(2-fluoro[ 18F ]ethoxy)ethoxy)methyl) )-1H-1,2,3-triazol-1-yl)methyl)benzyl)oxy)pyridazin-3(2H)-one (hereinafter referred to as "Compound I”) liquid composition (such as injection) equipment, including:
  • the reaction module is used to react the enriched 18 F ions with the precursor of compound I to obtain crude compound I;
  • Purification module used to purify crude compound I to obtain pure compound I
  • the prescription module enriches and formulates the purified Compound I pure product into a Compound I liquid composition.
  • compound I is prepared through a one-step reaction using compound I precursor and radioactive fluorine [ 18F ] ions as starting materials.
  • Fluorine [ 18 F] ion nucleophilically substitutes the tosyloxy group (-OTs) in the precursor of compound I to obtain crude compound I.
  • the synthetic route of crude compound I is shown in the figure below.
  • K 222 is 4,7,13,16,21,24-hexoxo-1,10-diazabicyclo[8.8.8]hexadecane, referred to as aminopolyether.
  • This embodiment provides a device for producing compound I liquid composition (such as injection), which first enriches 18 F ions through the pretreatment module; the enriched 18 F ions enter the reaction module, and then in the reaction module React with the precursor of compound I to obtain crude compound I; the crude compound I enters the purification module for purification, thereby obtaining pure compound I; further, the pure compound I enters the prescription module, and the pure compound I is enriched and formulated into compound I liquid composition.
  • compound I liquid composition such as injection
  • the crude compound I can be obtained, and the crude compound I It was purified, enriched, and formulated for direct clinical use.
  • the Preprocessing modules include:
  • the first valve 1 , the second valve 2 , the third valve 3 , the fourth valve 4 , the fifth valve 5 , and the sixth valve 6 respectively include at least a first interface, a second interface, and a second valve 6 .
  • interface, the third interface, and the first valve 1 to the sixth valve 6 can realize conduction of any two interfaces of the three interfaces or non-conduction of all three interfaces;
  • the first valve of the first valve 1 The interface is connected to the first positive pressure pipeline P1
  • the second interface of the first valve 1 is connected to the first interface of the second valve 2
  • the second interface of the second valve 2 is connected to the third valve 3 is connected to the first interface
  • the second interface of the third valve 3 is connected to the first interface of the fourth valve 4
  • the second interface of the fourth valve 4 is connected to the first interface of the fifth valve 5
  • the interfaces are connected, and the second interface of the fifth valve 5 is connected to the first interface of the sixth valve 6;
  • the first recovery container 22 is respectively connected to the first negative pressure pipeline N1 and the third interface of the first valve 1;
  • the first reagent container 23 is connected to the third interface of the second valve.
  • the first reagent container 23 is used to hold 18 F eluent (such as: acetonitrile + water + K 222 + K 2 CO 3 , etc.) ;
  • the first syringe 24 is connected to the third interface of the third valve 3;
  • 18 F ion enrichment chamber 25 is connected between the third interface of the fourth valve 4 and the third interface of the fifth valve 5, and the 18 F ion enrichment chamber 25 is filled with anion exchange resin;
  • the second syringe 26 is connected to the third interface of the sixth valve 6;
  • the first valve 1, the second valve 2, the third valve 3, the fourth valve 4, the fifth valve 5 and the sixth valve 6 are all electric control valves (such as solenoid valves).
  • a three-way valve is provided that can achieve the above
  • the functions of the first to sixth valves 1 to 6 are described.
  • the functions of the seventh to 12th valves 7 to 12 and the 16th to 21st valves 16 to 21 described below can also be realized, which will not be described in detail below. .
  • the three-way valve includes a three-way valve core V2 with a circular cross-section, and a three-way valve body V1 outside the three-way valve core V2.
  • the one-way valve body V1 is provided with a first interface 1 on the left side, a second interface 2 on the right side, and a third interface 3 on the upper side.
  • a T-shaped flow channel is provided in the three-way valve core V2.
  • the first interface 1 and the third interface 3 can be connected (as shown in Figure 3(b)), the first interface 1 can be connected with the second interface 2 (as shown in Figure 3(c)), and the first interface 1 can be connected with the second interface 2 (as shown in Figure 3(c)).
  • the second interface 2 is connected to the third interface 3 (as shown in Figure 3(d)), and the three interfaces are not connected (as shown in Figure 3(e) to Figure 3(h)).
  • Electromagnetic control for example, setting a stepper motor to control the rotation of the three-way valve spool V2).
  • Figures 4(a) to 4(d) provide schematic diagrams of the three-way valve in Figures 3(a) to 3(h), where, Figure 4(a) is a simplified diagram corresponding to the three-way valve in Figure 3(b); Figure 4(b) is a simplified diagram corresponding to the three-way valve in Figure 3(c); Figure 4(c) is corresponding to Figure 3(d) A schematic diagram of a three-way valve; Figure 4(d) is a schematic diagram of the three-way valve corresponding to Figures 3(e) to 3(h).
  • the first negative pressure pipeline N1 specifically provides negative pressure through vacuuming.
  • the negative pressure pipeline N0, the second negative pressure pipeline N2, and the third negative pressure pipeline N3 of the positive pressure and negative pressure pipelines below are The fourth negative pressure pipeline N4 can also provide negative pressure through vacuuming, which will not be described again below.
  • the negative pressure pipeline N0, the first negative pressure pipeline N1, the second negative pressure pipeline N2, the third negative pressure pipeline N3, and the fourth negative pressure pipeline N4 of the positive pressure and negative pressure pipeline can be connected individually. Vacuuming equipment, two or more of them can also be connected to one vacuuming equipment/pipeline. Specifically, as shown in FIG.
  • the third recovery container 43 is connected to the total negative pressure pipeline N, and the other negative pressure pipelines (the negative pressure pipeline N0 of the positive pressure and negative pressure pipeline, the first negative pressure pipeline N1 , more than one of the second negative pressure pipeline N2, the third negative pressure pipeline N3, and the fourth negative pressure pipeline N4) is also connected to the third recovery container 43 (specifically, the left side of the third recovery container 43 in Figure 9 pipeline connection), so that more than one negative pressure pipeline work can be driven through one vacuum equipment operation, and the liquid flowing in from the negative pressure pipeline can be stored in the third recovery container 43.
  • the first positive pressure pipeline P1 provides positive pressure by blowing out inert gases (such as nitrogen, argon, etc.).
  • inert gases such as nitrogen, argon, etc.
  • a filter membrane can be installed in the first positive pressure pipeline P1 to ensure the cleanliness of the inert gas entering the equipment.
  • the positive pressure pipeline P0 of the positive pressure and negative pressure pipeline below can also provide positive pressure in this way, which will not be described again below.
  • the negative pressure pipeline N0 of the positive pressure and negative pressure pipeline, the first negative pressure pipeline N1, the second negative pressure pipeline N2, the third negative pressure pipeline N3, A control valve (such as an electric control valve, specifically a solenoid valve) is provided on the third negative pressure pipeline N4, the positive pressure pipeline P0 of the positive pressure and negative pressure pipeline, and the first positive pressure pipeline P1 to control the on and off of the pipelines. , and/or set up a flow valve/flow meter to control the positive pressure/negative pressure, etc., which will not be described again in this article.
  • an empty cylinder and a piston within the empty cylinder are necessary components of a syringe.
  • the piston can be a long strip structure, and the piston can move relative to the empty cylinder by pushing the part of the piston outside the empty cylinder; the piston can also be just a rubber head that has a sealing function and is located inside the empty cylinder.
  • the piston is A core rod will be installed, and the core rod can be pushed to drive the relative movement of the piston and the empty cylinder.
  • the structure of the syringe is composed of a hollow cylinder, a piston and a core rod.
  • the states of the first to sixth valves 1 to 6 are as shown in Figure 6(a).
  • the first negative pressure pipeline N1 is evacuated.
  • the second syringe 26 pushes out the oxygen [ 18 O] eighteen water containing 18 F ions.
  • the oxygen [ 18 O] eighteen water containing 18 F ions flows through the 18 F ion enrichment chamber 25, the 18 F ions are in 18 F
  • the ion enrichment chamber 25 is enriched, and the remaining liquid flows into the first recovery container 22;
  • This embodiment provides a specific pretreatment module that can simply and conveniently enrich 18 F ions and elute the enriched 18 F ions and send them to the subsequent reaction module. Especially when each valve, positive pressure pipeline, negative pressure pipeline, and injector are automatically controlled, automatic processing of 18 F ion enrichment, elution, and delivery to the reaction module can be realized.
  • the preprocessing module also includes:
  • a first linear drive device (not shown in the drawings), the first linear drive device can drive the piston of the first syringe 24 to move within the empty barrel;
  • the second linear drive device can drive the piston of the second syringe 26 to move within the empty barrel;
  • the first linear drive device and the second linear drive device are selected from one of a pneumatic rod, a hydraulic rod, and a screw;
  • both the first linear drive device and the second linear drive device are screws, and the screws are driven by stepper motors.
  • the first linear drive device and the second linear drive device are provided to control the first syringe 24 and the second syringe 26 .
  • the stroke of the pistons in the first syringe 24 and the second syringe 26 can be accurately controlled.
  • the screw is driven by a stepper motor, it is convenient to cooperate with a microprocessor control system (PLC, etc.) to realize the first syringe 24, Automatic and precise control of the second syringe 26.
  • PLC microprocessor control system
  • the screw driven by the stepper motor can be assembled by yourself, or you can directly purchase the finished electric actuator (a screw system).
  • the pretreatment module also includes a positive pressure and negative pressure pipeline 27 and a liquid adding pipeline 28.
  • the positive pressure and negative pressure pipeline 27 and the liquid adding pipeline 28 respectively pass through the first
  • the piston of the second syringe 26 extends into the closed space formed by the piston of the second syringe 26 and the empty cylinder;
  • the liquid adding pipeline 28 is provided with a flow meter, so that the amount of liquid added can be controlled, and/or the liquid adding pipeline 28 is provided with a control valve (such as an electric control valve, specifically a solenoid valve), The control valve can control the opening and closing of the pipeline, thereby controlling whether to add liquid.
  • a control valve such as an electric control valve, specifically a solenoid valve
  • the positive pressure and negative pressure pipeline 27 is a positive pressure pipeline P0 of the positive pressure and negative pressure pipeline, and a negative pressure pipeline N0 of the positive pressure and negative pressure pipeline connected to one pipeline. Pass through the piston (as shown in Figure 1); or, the positive pressure pipeline P0 of the positive pressure and negative pressure pipeline, and the negative pressure pipeline N0 of the positive pressure and negative pressure pipeline pass through the piston respectively.
  • the present application provides a solution for adding liquid (oxygen [ 18 O]octahydrate containing 18 F ions) to the second syringe 26.
  • liquid oxygen [ 18 O]octahydrate containing 18 F ions
  • the liquid is added through the liquid adding pipeline 28.
  • the negative pressure pipeline N0 of the positive pressure and negative pressure pipeline is evacuated to achieve liquid addition.
  • the liquid in the second syringe 26 can be discharged for subsequent processing by pushing the piston downward/pushing out the inert gas (pressurization) through the positive pressure pipeline P0 of the positive pressure and negative pressure pipeline.
  • This embodiment provides a solution for adding liquid to the second syringe 26 .
  • This can provide more oxygen [ 18O ]octahydrate containing 18F ions for 18F ion enrichment, and provide more 18F ions continuously for subsequent reactions.
  • And it can provide positive pressure through the positive pressure pipeline P0 of the positive pressure and negative pressure pipeline to add liquid to the subsequent process, or push the piston to more accurately add liquid to the subsequent process.
  • the reaction module includes:
  • the seventh valve 7 to the twelfth valve 12 respectively include at least a third valve.
  • One interface, a second interface, and a third interface, and the seventh valve 7 to the twelfth valve 12 can realize conduction of any two interfaces among the three interfaces or non-conduction of all three interfaces; so
  • the first interface of the seventh valve 7 is connected to the pretreatment module (the second interface of the sixth valve 6), and the second interface of the seventh valve 7 is connected to the first interface of the eighth valve 8.
  • the second interface of the eighth valve 8 is connected to the first interface of the ninth valve 9, and the second interface of the ninth valve 9 is connected to the first interface of the tenth valve 10
  • the second interface of the tenth valve 10 is connected to the first interface of the eleventh valve 11
  • the second interface of the eleventh valve 11 is connected to the first interface of the twelfth valve 12
  • the third interface of the twelfth valve 12 is connected to the purification module (the fourth interface of the thirteenth valve 13);
  • the reaction vessel 29 is connected to the second negative pressure pipeline N2 and the third interface of the seventh valve 7 respectively.
  • the second negative pressure pipeline N2 the reaction vessel 29 and the seventh valve 7 are connected to each other.
  • a control valve (such as an electric control valve, specifically a solenoid valve) is provided on the pipeline between the third interfaces of 7. The control valve can control the on/off of the pipeline, thereby ensuring that the reaction proceeds in the reaction vessel 29;
  • a temperature control component (not shown in the drawings) is used to heat and/or cool the reaction vessel 29.
  • the heating can be done by electric heating, and the cooling can be done by air cooling. Specifically, it can be done with reference to the existing technology. I won’t go into details here;
  • the third syringe 30 is connected to the third interface of the eighth valve 8, and the third syringe 30 contains the compound I precursor;
  • the second reagent container 31 is connected to the third interface of the ninth valve 9, and the second reagent container 31 contains an acetonitrile solution;
  • the fourth syringe 32 is connected to the third interface of the tenth valve 10;
  • the third reagent container 33 is connected to the third interface of the eleventh valve 11 , and the third reagent container 33 contains sodium chloride solution.
  • the seventh valve 7 , the eighth valve 8 , the ninth valve 9 , the tenth valve 10 , the eleventh valve 11 , and the twelfth valve 12 are all electric control valves (such as solenoid valves).
  • the state of the seventh valve 7 is as shown in Figure 7(a).
  • the enriched 18 F ions are passed by the pretreatment module into the reaction vessel 29 (reaction bottle) through the seventh valve 7.
  • the states of the first valve 1 to the seventh valve 7 are as shown in Figure 7(b).
  • the pipeline P1 outputs positive pressure (inert inert gas) to the reaction vessel 29, the second negative pressure pipeline N2 performs vacuuming, and the temperature control component heats the reaction vessel 29 to remove the solvent.
  • the heating temperature at this time is 80 to 130°C. °C, so that activated 18 F ions can be obtained.
  • the third syringe 30 injects 0.2 to 5 ml of acetonitrile solution of the compound I precursor (0.8 to 5 ml of acetonitrile solution containing 0.8 to 20 mg of the compound I precursor). ) is pushed into the reaction vessel 29; the temperature control component is heated, heated to 90-140°C under closed conditions and reacted for 5-60 minutes.
  • the precursor of compound I undergoes a nucleophilic substitution reaction with K 18 F/K 222 to generate compound I;
  • This embodiment provides a specific reaction module, by changing the changes of the seventh valve 7 to the twelfth valve 12 in different working states, as well as the first positive pressure pipeline P1, the second negative pressure pipeline N2 and the reaction module.
  • the cooperation of the container 29 and the temperature control component cleverly realizes the nucleophilic substitution reaction between the precursor of compound I and K 18 F/K 222 to generate the crude product of compound I through simple equipment.
  • the automation of the above two-step reaction can be realized.
  • reaction module further includes:
  • a third linear drive device (not shown in the drawings), the third linear drive device can drive the piston of the third syringe 30 to move within the empty barrel;
  • the fourth linear drive device can drive the piston of the fourth syringe 32 to move within the empty barrel.
  • the third linear drive device and the fourth linear drive device are selected from one of a pneumatic rod, a hydraulic rod, and a screw;
  • the third linear drive device and the fourth linear drive device are screws, and the screws are driven by stepper motors.
  • a third linear drive device and a fourth linear drive device are provided to control the third syringe 30 and the fourth syringe 32 respectively.
  • the stroke of the pistons in the third syringe 30 and the fourth syringe 32 can be accurately controlled.
  • the screw is driven by a stepper motor, it is convenient to cooperate with a microprocessor control system (PLC, etc.) to realize the third syringe 30, Automatic and precise control of the fourth syringe 32.
  • PLC microprocessor control system
  • the screw driven by the stepper motor can be assembled by yourself, or you can directly purchase the finished electric actuator (a screw system).
  • the purification module includes:
  • the thirteenth valve 13 and the fourteenth valve 14 include at least a first interface, a second interface, a third interface, a fourth interface, a fifth interface, and a third interface. With six interfaces (corresponding to 1 to 6 in Figures 5(a) to 5(b) respectively), the thirteenth valve 13 and the fourteenth valve 14 can both switch between the first mode and the second mode. Switching, the first mode is that the first interface is connected to the second interface, the third interface is connected to the fourth interface, the fifth interface is connected to the sixth interface; the second mode is that the second interface is connected to the third interface The interface is connected, the fourth interface is connected to the fifth interface, and the sixth interface is connected to the first interface; wherein, the fourth interface of the thirteenth valve 13 is connected to the reaction module.
  • Chromatography column assembly 34 the chromatography column assembly 34 is connected between the fifth interface of the fourteenth valve 14 and the sixth interface of the fourteenth valve 14;
  • the quantitative loop 35 (also called the sampling loop) is connected between the third interface of the thirteenth valve 13 and the sixth interface of the thirteenth valve 13;
  • the second recovery container 37 is connected to the fifth interface of the thirteenth valve 13;
  • the fifteenth valve 15 includes at least a first interface, a second interface, and a third interface.
  • the fifteenth valve 15 can realize communication between the first interface and the second interface or the connection between the first interface and the second interface.
  • the third interface is connected; the first interface of the fifteenth valve 15 is connected to the fourth interface of the fourteenth valve, and the second interface of the fifteenth valve 15 is connected to the prescription module (sixteenth valve 16), the third interface of the fifteenth valve 15 is connected to the second recovery container 37;
  • the thirteenth valve 13, the fourteenth valve 14, and the fifteenth valve 15 are all electric control valves.
  • a six-way valve is provided, which can realize the functions of the thirteenth valve 13 and the fourteenth valve 14 mentioned above.
  • the six-way valve includes a six-way valve core V4 with a circular cross-section, and a six-way valve body V3 outside the six-way valve core V4.
  • the valve body V3 is respectively provided with a first interface 1, a second interface 2, a third interface 3, a fourth interface 4, a fifth interface 5, and a sixth interface 6 in the counterclockwise direction.
  • the first interface 1 is connected to the second interface 2
  • the third interface 3 is connected to the fourth interface 4
  • the fifth interface 5 is connected to the sixth interface 6 (as shown in Figure 5(a))
  • the second interface 2 is connected to the third interface 3
  • the fourth interface 4 is connected to the fifth interface 5
  • the sixth interface 6 is connected to the first interface 1 (as shown in Figure 5(b)).
  • the fifteenth valve 15 is a three-way valve, which can realize the connection between the first interface 1 and the second interface 2 or the first interface 1 It is connected to the third interface 3, which is an existing technology, and the corresponding electric control valve (such as a solenoid valve) can be purchased directly on the market.
  • the chromatographic column is an existing technology and will not be described in detail here.
  • the chromatography column assembly 34 of the present application is an existing chromatography column or a combination of multiple chromatography columns (such as a series and/or parallel connection of multiple chromatography columns).
  • the states of the thirteenth valve 13 and the fourteenth valve 14 are as shown in Figure 2(a).
  • the solution that dissolves the crude compound I flowing in from the reaction module passes through the fourth interface 4 and the fourth port of the thirteenth valve 13.
  • the three interfaces 3 enter the quantitative loop 35, and a small amount of excess solution flows into the second recovery container 37 through the sixth interface 6 and the fifth interface 5 of the thirteenth valve 13.
  • the solution that dissolves the crude compound I will remain in the quantitative loop 35. middle.
  • the fifteenth valve 15 connects the first interface 1 and the third interface 3.
  • the liquid transfer pump 36 starts to work. .
  • the liquid transfer pump 36 pushes out the fluid (acetonitrile and water), and then the fluid flows through the first interface 1 and the sixth interface 6 of the thirteenth valve 13, and then brings out the solution of the crude compound I dissolved in the quantitative loop 35, and passes through the first interface 1 and the sixth interface 6 of the thirteenth valve 13.
  • the thirteenth valve 13 has the third interface 3, the second interface 2, the fourteenth valve 14 the first interface 1, the sixth interface 6, the chromatographic column assembly 34, the fourteenth valve 14 the fifth interface 5, and the fourth interface 4, thus Perform purification.
  • the fifteenth valve 15 connects the first interface 1 and the second interface 2, and the fluid pushed out by the liquid delivery pump 36 enters the purified compound I product solution into the prescription module.
  • the inlet end of the liquid delivery pump 36 is connected to two or more pipelines, especially when the fluid for purification (acetonitrile and water) and the fluid for flushing (such as water) are connected through the pipelines, then when the equipment After use (production of the liquid composition is completed), set the purification module as shown in Figure 2 (b) form, the liquid transfer pump 36 pushes out the flushing fluid, and then the purification module and other modules connected to the purification module can be flushed.
  • This embodiment provides a specific purification module.
  • the purification module is realized.
  • the crude compound I was purified to obtain the pure compound I.
  • the above-mentioned purification can be automated.
  • the prescription module includes:
  • a valve 21 includes at least a first interface, a second interface, and a third interface respectively, and the sixteenth valve 16 to the twenty-first valve 21 can realize the conduction or connection of any two interfaces among the three interfaces. None of the three interfaces are connected; wherein, the first interface of the sixteenth valve 16 is connected to the second interface of the twelfth valve 12, and the second interface of the sixteenth valve 16 is connected to the second interface of the twelfth valve 12.
  • the first interface of the seventeenth valve 17 is connected, the second interface of the seventeenth valve 17 is connected with the first interface of the eighteenth valve 18, and the second interface of the eighteenth valve 18 is connected with the first interface.
  • the first interface of the nineteenth valve 19 is connected to the first interface of the twentieth valve 20 .
  • the second interface of the twentieth valve 20 is connected to the first interface of the twentieth valve 20 .
  • the first interface of the twenty-one valve 21 is connected, and the third interface of the sixteenth valve 16 is connected with the purification module (the second interface of the fifteenth valve 15) (pipe B is connected to pipe B' ), the second interface of the twenty-first valve 21 is connected to the third negative pressure pipeline N3;
  • the fourth reagent container 38 is connected to the third interface of the seventeenth valve 17, and the fourth reagent container 38 is used to hold absolute ethanol;
  • the compound I enrichment chamber 39 is connected between the third interface of the eighteenth valve 18 and the third interface of the nineteenth valve 19.
  • the compound I enrichment chamber 39 is filled with octadecyl groups. bonded silicone;
  • the first transfer container 40 is connected to the third interface of the twentieth valve 20;
  • the finished product collection container 42 is connected to the second transfer container 41;
  • the second transfer container 41 is respectively connected to the third interface of the twenty-first valve 21, the finished product collection container 42, and the fourth negative pressure pipeline N4, wherein the second transfer container 41 contains Polyethylene glycol 400, sodium chloride solution (such as sodium chloride injection), for prescription.
  • the fourth syringe 32 pushes the extracted sodium chloride solution into The first transfer container 40; after diluting the pure Compound I in the first transfer container 40, pump the diluted Compound I solution into the fourth syringe 32;
  • the states of the tenth to twelfth valves 10 to 12 and the sixteenth to twenty-first valves 16 to 21 are as shown in Figure 8(d).
  • the fourth syringe 32 passes the extracted compound I solution through the compound.
  • the I enrichment bin 39 and the third negative pressure pipeline N3 are pushed out, and compound I is enriched in the compound I enrichment bin 39;
  • the states of the tenth to twelfth valves 10 to 12 and the sixteenth to twenty-first valves 16 to 21 are as shown in Figure 8(f).
  • the fourth syringe 32 passes the extracted absolute ethanol through the compound.
  • the enrichment warehouse 39 of compound I is pushed into the second transfer container 41, thereby eluting the pure product of compound I in the enrichment warehouse 39 of compound I to the second transfer container 41, thereby achieving prescription.
  • the fourth negative pressure pipeline N4 is evacuated to offset the pressure increased in the second transfer container 41 due to absolute ethanol and pure compound I;
  • a filter (such as a needle filter) is provided between the second transfer container 41 and the finished product collection container 42, so that the compound I solution flowing out from the second transfer container 41 is filtered and sterilized to obtain The final liquid composition of Compound I (such as injection).
  • This embodiment provides a specific prescription module.
  • the purified compound I is enriched.
  • the mixture was combined and formulated, and further collected to obtain a liquid composition of Compound I.
  • the sixteenth valve 16 to the twenty-first valve 21 are automatically controlled, the above-mentioned automation of prescription and collection can be realized.
  • detection/monitoring equipment is set up to detect the operation of the equipment.
  • a radioactivity detector may be provided at one position or at more than two positions in the pipeline between the 18 F ion enrichment chamber 25, the fourth injector 32, the fourteenth valve 14 and the fifteenth valve 15. Detect radioactivity.
  • a UV detector and a radioactive detector can be provided on the chromatographic column assembly 34 to determine whether to control whether to start collecting the purification mobile phase.
  • This embodiment provides a method for producing a liquid composition of Compound I using the above equipment, including:
  • reaction module uses the reaction module to react the enriched 18 F ions with the compound I precursor to obtain the crude compound I Taste;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请提供了一种生产2-叔丁基-4-氯-5-((3-((4-((2-(2-氟[18F]乙氧基)乙氧基)甲基)-1H-1,2,3-***-1-基)甲基)苄基)氧)哒嗪-3(2H)-酮(以下简称"化合物Ⅰ")液体组合物的设备,包括:预处理模块,用于富集18F离子;反应模块,用于将富集后的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;纯化模块,用于对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;处方化模块,将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物。本申请提供的上述设备制得化合物Ⅰ液体组合物以直接用于临床。本申请同时提供了上述设备制备化合物Ⅰ液体组合物的方法以及上述设备在制备化合物Ⅰ液体组合物方面的用途。

Description

生产液体组合物的设备及其制备方法和用途 技术领域
本申请涉及放射性药物技术领域,具体涉及生产液体组合物的设备及其制备方法和用途。
背景技术
冠心病是威胁人类健康最严重的疾病之一。在我国,冠心病的发病率以及死亡率均呈上升趋势。2007年,***公布的资料显示:我国每年死于心血管疾病的约300万人,已成为我国城乡人群的第一位死亡原因,占我国居民死亡原因的近40%。
心肌灌注(myocardial perfusion imaging,MPI)单光子发射计算机断层(SPECT)显像技术是当前临床上用于冠心病检测和预后评价的无创性灌注显像的主要方法。但是,与SPECT相比,正电子发射计算机断层(PET)显像有更高的空间和时间分辨率,可以有效降低组织衰减,利用标准的组织衰减校正方法可以做到冠状血流的绝对定量。另外,正电子核素的短半衰期可有效减少靶组织周围的辐射剂量,短半衰期也能缩短静息和运动显像间隔。常用的心肌灌注PET显像剂包括:15O-H2O,13N-NH3·H2O和82Rb等。但上述显像剂半衰期均较短,临床应用还受到很大的限制。而18F相对于其他正电子核素,半衰期较长(t1/2=109.8min);具有较低的正电子能量(平均能量249.8keV),对正常组织的辐射损伤较小;其范德华半径(1.35)与氢(1.2)相似,不会影响标记化合物的生物活性,因此,研制新型的氟-18标记的心肌灌注显像剂具有重要的现实意义。
2-叔丁基-4-氯-5-((3-((4-((2-(2-氟[18F]乙氧基)乙氧基)甲基)-1H-1,2,3-***-1-基)甲基)苄基)氧)哒嗪-3(2H)-酮(以下简称“化合物Ⅰ”)是一种放射性核 素18F标记的线粒体内的呼吸链复合体-I(MC-I)抑制剂的类似物,能在心肌中长时间滞留,其在心脏的摄取值与心肌血流量呈正相关。化合物Ⅰ结构如下图所示:
化合物Ⅰ在静脉注射后15分钟,具有高心脏摄取与肝脏摄取,在注射60分钟后有良好的心/肝比值,具有很好的心肌灌注显像潜力和临床效益。
目前,非全自动生产方式,不进行完全的辐射防护,手动标记无法制备大量的化合物Ⅰ液体组合物(如注射液),单次制备仅能满足1~2人使用,临床使用受限。
因此,开发一种生产化合物Ⅰ液体组合物(如注射液)的设备尤为重要。
发明内容
为解决现有技术中的问题,本申请提供生产化合物Ⅰ液体组合物(如注射液)的设备及其制备方法。本申请技术方案如下:
1、生产化合物Ⅰ液体组合物的设备,包括:
预处理模块,用于富集18F离子;
反应模块,用于将富集后的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;
纯化模块,用于对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
处方化模块,将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物;
2、如项1所述的设备,所述预处理模块包括:
第一阀、第二阀、第三阀、第四阀、第五阀、第六阀,所述第一阀至所述第六阀分别至少包括第一接口、第二接口、第三接口,且所述第一阀至所述第六阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第一阀的第一接口与第一正压管路相连,所述第一阀的第二接口与所述第二阀的第一接口相连,所述第二阀的第二接口与所述第三阀的第一接口相连,所述第三阀的第二接口与所述第四阀的第一接口相连,所述第四阀的第二接口与所述第五阀的第一接口相连,所述第五阀的第二接口与所述第六阀的第一接口相连;
第一回收容器,分别与第一负压管路和所述第一阀的第三接口相连;
第一试剂容器,与所述第二阀的第三接口相连;
第一注射器,与所述第三阀的第三接口相连;
18F离子富集仓,连接在所述第四阀的第三接口和所述第五阀的第三接口之间;
第二注射器,与所述第六阀的第三接口相连。
优选地,第一阀、第二阀、第三阀、第四阀、第五阀、第六阀均为电动控制阀。
3、如项2所述的设备,预处理模块还包括:
第一直线驱动装置,所述第一直线驱动装置能够带动所述第一注射器的活塞在空筒内运动;
第二直线驱动装置,所述第二直线驱动装置能够带动所述第二注射器的活塞在空筒内运动。
优选地,所述第一直线驱动装置、所述第二直线驱动装置选自气压杆、液压杆、丝杠中的一种;
进一步优选地,所述第一直线驱动装置和所述第二直线驱动装置均为丝杠,所述丝杠由步进电机驱动。
4、如项2所述的设备,所述预处理模块还包括正压负压管路和加液管 路,分别穿过第二注射器的活塞伸入至第二注射器内。
优选地,所述加液管路上设置有流量计。
5、如项2所述的设备,所述反应模块包括:
第七阀、第八阀、第九阀、第十阀、第十一阀、第十二阀,所述第七阀至所述第十二阀分别至少包括第一接口、第二接口、第三接口,且所述第七阀至所述第十二阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第七阀的第一接口与所述预处理模块相连,所述第七阀的第二接口与所述第八阀的第一接口相连,所述第八阀的第二接口与所述第九阀的第一接口相连,所述第九阀的第二接口与所述第十阀的第一接口相连,所述第十阀的第二接口与所述第十一阀的第一接口相连,所述第十一阀的第二接口与所述第十二阀的第一接口相连,所述第十二阀的第三接口与所述纯化模块相连;
反应容器,分别与第二负压管路和所述第七阀的第三接口相连;
温控组件,用于对所述反应容器加热和/或冷却;
第三注射器,与所述第八阀的第三接口相连;
第二试剂容器,与所述第九阀的第三接口相连;
第四注射器,与所述第十阀的第三接口相连;
第三试剂容器,与所述第十一阀的第三接口相连。
优选地,所述第七阀、第八阀、第九阀、第十阀、第十一阀、第十二阀均为电动控制阀。
6、如项5所述的设备,所述反应模块还包括:
第三直线驱动装置,所述第三直线驱动装置能够带动所述第三注射器的活塞在空筒内运动;
第四直线驱动装置,所述第四直线驱动装置能够带动所述第四注射器的活塞在空筒内运动。
优选地,所述第三直线驱动装置、所述第四直线驱动装置选自气压 杆、液压杆、丝杠中的一种;
进一步优选地,所述第三直线驱动装置和所述第四直线驱动装置均为丝杠,所述丝杠由步进电机驱动。
7、如项5所述的设备,所述纯化模块包括:
第十三阀、第十四阀,所述第十三阀和所述第十四阀均至少包括第一接口、第二接口、第三接口、第四接口、第五接口、第六接口,所述第十三阀、所述第十四阀均能够在第一模式和第二模式之间切换,所述第一模式为第一接口与第二接口导通、第三接口与第四接口导通、第五接口与第六接口导通;所述第二模式为第二接口与第三接口导通、第四接口与第五接口导通、第六接口与第一接口导通;其中,所述第十三阀的第四接口与反应模块连接;所述第十三阀的第二接口与所述第十四阀的第一接口连接;所述第十四阀的第二接口与所述第十四阀的第三接口通过外部管路连接;
色谱柱组件,所述色谱柱组件连接在所述第十四阀的第五接口与所述第十四阀的第六接口之间;
定量环,所述定量环连接在所述第十三阀的第三接口与所述第十三阀的第六接口之间;
液体输送泵,与所述第十三阀的第一接口连接;
第二回收容器,与所述第十三阀的第五接口连接;
第十五阀,所述第十五阀至少包括第一接口、第二接口、第三接口,所述第十五阀能够实现第一接口与第二接口导通或第一接口与第三接口导通;所述第十五阀的第一接口与第十四阀的第四接口相连,所述第十五阀的第二接口与所述处方化模块相连,所述第十五阀的第三接口与所述第二回收容器相连。
优选地,所述第十三阀、所述第十四阀、所述第十五阀均为电动控制阀。
8、如项7所述的设备,所述处方化模块包括:
第十六阀、第十七阀、第十八阀、第十九阀、第二十阀、第二十一阀,所述第十六阀至所述第二十一阀分别至少包括第一接口、第二接口、第三接口,且所述第十六阀至所述第二十一阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;其中,所述第十六阀的第一接口与所述第十二阀的第二接口连接,所述第十六阀的第二接口与所述第十七阀的第一接口连接,所述第十七阀的第二接口与所述第十八阀的第一接口连接,所述第十八阀的第二接口与所述第十九阀的第一接口连接,所述第十九阀的第二接口与所述第二十阀的第一接口连接,所述第二十阀的第二接口与所述第二十一阀的第一接口连接,所述第十六阀的第三接口与所述纯化模块连接,所述第二十一阀的第二接口与第三负压管路连接;
第四试剂容器,与所述第十七阀的第三接口连接;
化合物Ⅰ富集仓,连接在所述第十八阀的第三接口和所述第十九阀的第三接口之间;
第一中转容器,与所述第二十阀的第三接口连接;
成品收集容器;
第二中转容器,分别与所述第二十一阀的第三接口、所述成品收集容器、第四负压管路连接。
9、生产化合物Ⅰ液体组合物的方法,使用项1~8中任一项所述的设备,包括:
使用预处理模块来富集18F离子;
使用反应模块来使富集的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;
使用纯化模块对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
使用处方化模块将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物。
10、项1~8中任一项所述的设备在生产化合物Ⅰ液体组合物中的用途。
本申请提供的生产化合物Ⅰ液体组合物的设备,其可以制备得到化合物Ⅰ粗品,并且对化合物Ⅰ粗品进行了纯化、富集、处方化而制得化合物Ⅰ液体组合物以直接用于临床。并且,可以通过微处理器控制***(如PLC等)控制各阀等实现设备的自动化。同时,本申请提供了使用上述设备的方法。
上述说明仅是本申请技术方案的概述,为了能够使得本申请的技术手段更加清楚明白,达到本领域技术人员可依照说明书的内容予以实施的程度,并且为了能够让本申请的上述和其它目的、特征和优点能够更明显易懂,下面以本申请的具体实施方式进行举例说明。
附图说明
图1:生产化合物Ⅰ的设备的预处理模块、反应模块、处方化模块组装示意图;
图2(a)~图2(b):生产化合物Ⅰ的设备的纯化模块示意图(纯化模块通过图2(a)模式与图2(b)模式之间切换进行纯化);
图3(a)~图3(h):三通阀结构示意图(图3(a)为三通阀中三个接口均连通的示意图;图3(b)~图3(d)分别为三通阀中两个接口连通的示意图;图3(e)~图3(h)分别为三通阀中三个接口互不连通的示意图);
图4(a)~图4(d):为图3(a)~图3(h)中三通阀的简图(图4(a)是对应图3(b)三通阀的简图;图4(b)是对应图3(c)三通阀的简图;图4(c)是对应图3(d)三通阀的简图;图4(d)是对应图3(e)~图3(h)三通阀的简图);
图5(a)~图5(b):六通阀结构示意图(图5(a)、图5(b)分别为六通阀阀芯在不同工作位置时的示意图)。
图6(a)~图6(c):预处理模块工作原理示意图(预处理模块按照图 6(a)~图6(c)顺序实现18F离子富集并送入反应模块);
图7(a)~图7(g):反应模块工作原理示意图(反应模块按照图7(a)、7(b)、7(c)、7(d)、7(e)、7(f)、7(g)顺序进行反应);
图8(a)~图8(g):处方化模块工作原理示意图(处方化模块按照图8(a)、8(b)、8(c)、8(d)、8(b)、8(d)、8(e)、8(f)、8(g)顺序进行处方化并收集最终产品);
图9:总负压管路连接示意图。
附图标记说明:
1~21、第一阀~第二十一阀;V1、三通阀阀体;V2、三通阀阀芯;V3、六通阀阀体;V4、六通阀阀芯;
22、第一回收容器;23、第一试剂容器;24、第一注射器;25、18F离子富集仓;26、第二注射器;27、正压负压管路;28、加液管路;
29、反应容器;30、第三注射器;31、第二试剂容器;32、第四注射器;33、第三试剂容器;
34、色谱柱组件;35、定量环;36、液体输送泵;37、第二回收容器;
38、第四试剂容器;39、化合物Ⅰ富集仓;40、第一中转容器;41、第二中转容器;42、成品收集容器;
43、第三回收容器;
P0、正压负压管路的正压管路;P1、第一正压管路;
N、总负压管路;N0、正压负压管路的负压管路;N1、第一负压管路;N2、第二负压管路;N3、第三负压管路;N4、第四负压管路。
具体实施方式
本申请的以下实施方式仅用来说明实现本申请的具体实施方式,这些实施方式不能理解为是对本申请的限制。其他的任何在未背离本申请的精神实质与原理下所作的改变、修饰、替代、组合、简化,均视为等效的置换方 式,落在本申请的保护范围之内。
本实施例提供了一种生产2-叔丁基-4-氯-5-((3-((4-((2-(2-氟[18F]乙氧基)乙氧基)甲基)-1H-1,2,3-***-1-基)甲基)苄基)氧)哒嗪-3(2H)-酮(以下简称“化合物Ⅰ”)液体组合物(如注射液)的设备,包括:
预处理模块,用于富集18F离子;
反应模块,用于富集后的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;
纯化模块,用于对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
处方化模块,将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物。
如下图所示,化合物Ⅰ以化合物Ⅰ前体与放射性氟[18F]离子为起始原料,经一步反应制得。氟[18F]离子亲核取代化合物Ⅰ前体中的甲苯磺酰氧基(-OTs),得到化合物Ⅰ粗品。化合物Ⅰ粗品的合成路线下图所示。
图中,K222为4,7,13,16,21,24-六氧-1,10-二氮杂二环[8.8.8]廿六烷,简称氨基聚醚。
本实施例给出了一种生产化合物Ⅰ液体组合物(如注射液)的设备,其先通过预处理模块来富集18F离子;富集后的18F离子进入反应模块,进而在反应模块与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;化合物Ⅰ粗品进入纯化模块进行纯化,从而得到化合物Ⅰ纯品;进一步地,化合物Ⅰ纯品进入处方化模块,将化合物Ⅰ纯品进行富集并处方化为化合物Ⅰ液体组合物。
通过本实施例的技术方案,可以得到化合物Ⅰ粗品,并且对化合物Ⅰ粗品 进行了纯化、富集、处方化以直接用于临床。
另外,需要说明的是,本申请中的“粗品”、“纯品”分别是指纯化前后的产品;本实施例中的“处方化”具体是指将化合物Ⅰ纯品与辅料配制成化合物Ⅰ液体组合物。
在一个实施例中,如图1、图3(a)~图3(h)、图4(a)~图4(d)、图6(a)~图6(c)所示,所述预处理模块包括:
第一阀1、第二阀2、第三阀3、第四阀4、第五阀5、第六阀6,所述第一阀1至第六阀6分别至少包括第一接口、第二接口、第三接口,且所述第一阀1至第六阀6均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第一阀1的第一接口与第一正压管路P1相连,所述第一阀1的第二接口与所述第二阀2的第一接口相连,所述第二阀2的第二接口与所述第三阀3的第一接口相连,所述第三阀3的第二接口与所述第四阀4的第一接口相连,所述第四阀4的第二接口与所述第五阀5的第一接口相连,所述第五阀5的第二接口与所述第六阀6的第一接口相连;
第一回收容器22,分别与第一负压管路N1和所述第一阀1的第三接口相连;
第一试剂容器23,与所述第二阀的第三接口相连,所述第一试剂容器23用于盛放18F淋洗液(如:乙腈+水+K222+K2CO3等);
第一注射器24,与所述第三阀3的第三接口相连;
18F离子富集仓25,连接在所述第四阀4的第三接口和所述第五阀5的第三接口之间,所述18F离子富集仓25内填充有阴离子交换树脂;
第二注射器26,与所述第六阀6的第三接口相连;
优选地,第一阀1、第二阀2、第三阀3、第四阀4、第五阀5、第六阀6均为电动控制阀(如电磁阀)。
首先,如图3(a)~图3(h)所示,其给出了一种三通阀,可以实现上 述第一阀1~第六阀6的功能,当然也可以实现下文中第七阀7~第十二阀12和第十六阀16至第二十一阀21的功能,在下文中不再赘述。
具体如图3(a)~图3(h)所示,该三通阀包括截面为圆形的三通阀阀芯V2、以及三通阀阀芯V2外部的三通阀阀体V1,三通阀阀体V1在其左侧设置有第一接口①、右侧设置有第二接口②、上侧设置有第三接口③,三通阀阀芯V2内设置有T形的流道。通过旋转阀芯V2,可以实现第一接口①与第三接口③连通(图3(b)所示)、第一接口①与第二接口②连通(如图3(c)所示)、第二接口②与第三接口③连通(如图3(d)所示)、三个接口均不连通(如图3(e)~图3(h)所示)。另外,在给出上述三通阀结构的基础上,本领域技术人员根据现有技术知晓如何控制三通阀阀芯V2相对三通阀阀体V1旋转固定角度而实现该三通阀的电动(电磁)控制(如,设置步进电机控制三通阀阀芯V2转动)。另外,为了下文中能够简单表述该三通阀的状态,图4(a)~图4(d)给出了图3(a)~图3(h)中三通阀的简图,其中,图4(a)是对应图3(b)三通阀的简图;图4(b)是对应图3(c)三通阀的简图;图4(c)是对应图3(d)三通阀的简图;图4(d)是对应图3(e)~图3(h)三通阀的简图。
另外,第一负压管路N1具体为通过抽真空来提供负压,下文中的正压负压管路的负压管路N0、第二负压管路N2、第三负压管路N3、第四负压管路N4也均可以通过抽真空来提供负压,在下文中不再赘述。且,正压负压管路的负压管路N0、第一负压管路N1、第二负压管路N2、第三负压管路N3、第四负压管路N4可以单独连接一个抽真空设备,也可以其中的两个以上连接在一个抽真空设备/管路上。具体地,如图9所示,第三回收容器43与总负压管路N连接,其他的负压管路(正压负压管路的负压管路N0、第一负压管路N1、第二负压管路N2、第三负压管路N3、第四负压管路N4中的一个以上)也与第三回收容器43连接(具体如图9中第三回收容器43左侧的管路连接),从而可以通过一个抽真空设备带动一个以上的负压管路工 作,且第三回收容器43中可以存放从负压管路中流入的液体。
第一正压管路P1为通过吹出惰性气体(如氮气、氩气等)来提供正压,另外,第一正压管路P1中可以安装滤膜,以保证进入设备的惰性气体的洁净。下文中的正压负压管路的正压管路P0也可以通过该种方式来提供正压,在下文中不再赘述。
且,本领域技术人员知晓,一般地,可以在正压负压管路的负压管路N0、第一负压管路N1、第二负压管路N2、第三负压管路N3、第三负压管路N4、正压负压管路的正压管路P0、第一正压管路P1上设置控制阀(如电动控制阀,具体如电磁阀)来控制管路的通断,和/或设置流量阀/流量计来控制正压/负压的大小等,在本文中不再赘述。
本领域技术人员知晓,空筒、空筒内的活塞是注射器的必要组成结构。活塞可以为长条形结构,可以通过推动活塞位于空筒外的部分而使活塞与空筒相对运动;活塞也可以仅仅是一个起密闭作用且位于空筒内的胶头,此时,活塞上会安装有芯杆,可以通过推动芯杆来带动活塞与空筒相对运动。如图1中所示,其给出的注射器的结构由空筒、活塞和芯杆组成。
预处理模块富集18F离子的具体过程可以如图6(a)~图6(c)所示,
开始,第一阀1~第六阀6的状态如图6(a)所示,此时,第一负压管路N1进行抽真空。则第二注射器26将含18F离子的氧[18O]十八水推出,含18F离子的氧[18O]十八水流经18F离子富集仓25时,18F离子在18F离子富集仓25内进行富集,其余的液体流入第一回收容器22;
之后,第二阀2~第三阀3的状态如图6(b)所示,第一注射器24抽入第一试剂容器23中的18F淋洗液;
最后,第三阀3~第六阀6的状态如图6(c)所示,第一注射器24将18F淋洗液推出,则18F淋洗液将富集在18F离子富集仓内的18F离子送入反应模块。
本实施例给出了一种具体的预处理模块,可以简单、方便地对18F离子进行富集并将富集后的18F离子淋洗而送入到后续的反应模块。尤其是当各阀、正压管路、负压管路、注射器为自动控制时,可以实现18F离子富集、淋洗及送入反应模块的自动化处理。
在一个实施例中,预处理模块还包括:
第一直线驱动装置(附图中未示出),所述第一直线驱动装置能够带动所述第一注射器24的活塞在空筒内运动;
第二直线驱动装置(附图中未示出),所述第二直线驱动装置能够带动所述第二注射器26的活塞在空筒内运动;
优选地,所述第一直线驱动装置和所述第二直线驱动装置选自气压杆、液压杆、丝杠中的一种;
进一步优选地,所述第一直线驱动装置和所述第二直线驱动装置均为丝杠,所述丝杠由步进电机驱动。
本实施例通过设置第一直线驱动装置、第二直线驱动装置来对第一注射器24、第二注射器26的控制。
使用气压杆、液压杆实现配合PLC等控制器时,方便实现第一注射器24、第二注射器26的自动控制。
使用丝杠,可以准确控制第一注射器24、第二注射器26中活塞的行程,尤其是当丝杠由步进电机驱动时,方便配合微处理器控制***(PLC等)实现第一注射器24、第二注射器26的自动且精准的控制。由步进电机驱动的丝杠,可以自己组装,也可以直接购买电推杆(一种丝杠***)成品。
在一个实施例中,如图1所示,所述预处理模块还包括正压负压管路27和加液管路28,正压负压管路27和加液管路28分别穿过第二注射器26的活塞伸入至第二注射器26的活塞与空筒形成的封闭空间内;
优选地,所述加液管路28上设置有流量计,从而可以控制加液量,和/或所述加液管路28上设置有控制阀(如电动控制阀,具体如电磁阀),该控制阀可以控制管路的通断,从而可以控制是否进行加液。
本申请中,所述正压负压管路27为正压负压管路的正压管路P0、正压负压管路的负压管路N0接于一个管路,由该一个管路穿过活塞(如图1所示);或,正压负压管路的正压管路P0、正压负压管路的负压管路N0分别穿过活塞。
则,本申请提供了一种向第二注射器26中加液(含18F离子的氧[18O]十八水)的方案,具体地,通过加液管路28加液,同时为了防止第二注射器26中压力过大,而通过正压负压管路的负压管路N0进行抽真空,从而实现加液。加液之后,可以通过推动活塞下移/通过正压负压管路的正压管路P0推出惰性气体(加压)来将第二注射器26中的液体排出进行后续处理。
本实施例给出了一种向第二注射器26中加液的方案。从而可以提供更多的含18F离子的氧[18O]十八水来进行18F离子富集,为后续反应更多地、不断地提供18F离子。且可以通过正压负压管路的正压管路P0提供正压来为后续流程加液,或通过推动活塞来更为精确地为后续流程加液。
在一个实施例中,如图1所示,所述反应模块包括:
第七阀7、第八阀8、第九阀9、第十阀10、第十一阀11、第十二阀12,所述第七阀7至所述第十二阀12分别至少包括第一接口、第二接口、第三接口,且所述第七阀7至所述第十二阀12均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第七阀7的第一接口与所述预处理模块(所述第六阀6的第二接口)相连,所述第七阀7的第二接口与所述第八阀8的第一接口相连,所述第八阀8的第二接口与所述第九阀9的第一接口相连,所述第九阀9的第二接口与所述第十阀10的第一接口相 连,所述第十阀10的第二接口与所述第十一阀11的第一接口相连,所述第十一阀11的第二接口与所述第十二阀12的第一接口相连,所述第十二阀12的第三接口与所述纯化模块(所述第十三阀13的第四接口)相连;
反应容器29,分别与第二负压管路N2和所述第七阀7的第三接口相连,其中,优选地,所述第二负压管路N2、反应容器29与所述第七阀7的第三接口之间的管路上均设置有控制阀(如电动控制阀,具体如电磁阀),该控制阀可以控制管路的通断,从而可以保证反应在反应容器29中进行;
温控组件(附图中未示出),用于对所述反应容器29加热和/或冷却,加热可以通过电加热方式进行,冷却可以通过风冷方式进行,具体可以参照现有技术进行,在此不再赘述;
第三注射器30,与所述第八阀8的第三接口相连,所述第三注射器30中盛放有化合物Ⅰ前体;
第二试剂容器31,与所述第九阀9的第三接口相连,所述第二试剂容器31中盛放有乙腈溶液;
第四注射器32,与所述第十阀10的第三接口相连;
第三试剂容器33,与所述第十一阀11的第三接口相连,所述第三试剂容器33中盛放有氯化钠溶液。
优选地,所述第七阀7、第八阀8、第九阀9、第十阀10、第十一阀11、第十二阀12均为电动控制阀(如电磁阀)。
本实施例中的所述第七阀7至所述第十二阀12、第三注射器30、第四注射器32等的结构在上文已经介绍,在此不再赘述。
反应模块进行反应的具体过程如图7(a)~图7(g)所示,
开始,第七阀7的状态如图7(a)所示,此时,由预处理模块将富集的18F离子等经过第七阀7进入反应容器29(反应瓶)。
之后,第一阀1至第七阀7的状态如图7(b)所示,此时,第一正压 管路P1向反应容器29中输出正压(输入惰性气体)、第二负压管路N2进行抽真空,温控组件对反应容器29加热,从而去除溶剂,此时的加热温度为80~130℃,从而能够得到活化后的18F离子。
之后,第八阀8~第九阀9的状态如图7(c)所示,第三注射器30抽取第二试剂容器31中的乙腈溶液,从而在第三注射器30中形成化合物Ⅰ前体乙腈溶液;
之后,第七阀7~第八阀8的状态如图7(d)所示,所述第三注射器30将化合物Ⅰ前体乙腈溶液(含化合物Ⅰ前体0.8~20mg的乙腈溶液0.2~5ml)推入反应容器29中;温控组件进行加热,密闭条件下加热至90~140℃反应5~60min,化合物Ⅰ前体与K18F/K222进行亲核取代反应生成化合物Ⅰ;
之后,第十阀10~第十一阀11的状态如图7(e)所示,第四注射器32抽取第三试剂容器33中盛放的氯化钠溶液;
之后,第七阀7~第十阀10的状态如图7(f)所示,所述第四注射器32将抽取的氯化钠溶液推入反应容器29中形成化合物Ⅰ粗品溶液;之后,所述第四注射器32抽取反应容器29中的化合物Ⅰ粗品溶液;
最后,第十阀10~第十二阀12的状态如图7(g)所示,第四注射器32将化合物Ⅰ粗品溶液推入纯化模块。
本实施例给出了一种具体的反应模块,经过变换第七阀7至第十二阀12在不同工作状态的变化,以及第一正压管路P1、第二负压管路N2和反应容器29及温控组件的配合工作,通过简单的设备巧妙地实现了化合物Ⅰ前体与K18F/K222进行亲核取代反应生成化合物Ⅰ粗品。尤其是当各阀、正压管路、负压管路、注射器为自动控制时,可以实现上述两步反应的自动化。
在一个实施例中,反应模块还包括:
第三直线驱动装置(附图中未示出),所述第三直线驱动装置能够带动所述第三注射器30的活塞在空筒内运动;
第四直线驱动装置,所述第四直线驱动装置能够带动所述第四注射器32的活塞在空筒内运动。
优选地,所述第三直线驱动装置、第四直线驱动装置选自气压杆、液压杆、丝杠中的一种;
进一步优选地,所述第三直线驱动装置、第四直线驱动装置为丝杠,所述丝杠由步进电机驱动。
本实施例通过设置第三直线驱动装置、第四直线驱动装置分别对第三注射器30、第四注射器32进行控制。
使用气压杆、液压杆配合PLC等控制器使用时,方便实现第三注射器30、第四注射器32的自动控制。
使用丝杠,可以准确控制第三注射器30、第四注射器32中活塞的行程,尤其是当丝杠由步进电机驱动时,方便配合微处理器控制***(PLC等)实现第三注射器30、第四注射器32的自动且精准的控制。由步进电机驱动的丝杠,可以自己组装,也可以直接购买电推杆(一种丝杠***)成品。
在一个实施例中,如图2(a)~图2(b)所示,所述纯化模块包括:
第十三阀13、第十四阀14,所述第十三阀13、所述第十四阀14至少包括第一接口、第二接口、第三接口、第四接口、第五接口、第六接口(分别对应图5(a)~图5(b)中的①~⑥),所述第十三阀13、所述第十四阀14均能够在第一模式和第二模式之间切换,所述第一模式为第一接口与第二接口导通、第三接口与第四接口导通、第五接口与第六接口导通;所述第二模式为第二接口与第三接口导通、第四接口与第五接口导通、第六接口与第一接口导通;其中,所述第十三阀13的第四接口与所述反应模 块(第十二阀12的第三接口)连接(管路A与管路A’相连通);所述第十三阀13的第二接口与所述第十四阀14的第一接口连接;所述第十四阀14的第二接口与所述第十四阀14的第三接口通过外部管路连接;
色谱柱组件34,所述色谱柱组件34连接在所述第十四阀14的第五接口与所述第十四阀14的第六接口之间;
定量环35(也叫进样环),定量环35连接在所述第十三阀13的第三接口与所述第十三阀13的第六接口之间;
液体输送泵36,与所述第十三阀13的第一接口连接,用于输送流体(乙腈和水的溶液,比例为:乙腈/水=0.2/1~2/1);
第二回收容器37,与所述第十三阀13的第五接口连接;
第十五阀15,所述第十五阀15至少包括第一接口、第二接口、第三接口,所述第十五阀15能够实现第一接口与第二接口导通或第一接口与第三接口导通;所述第十五阀15的第一接口与第十四阀的第四接口相连,所述第十五阀15的第二接口与所述处方化模块(第十六阀16的第三接口)相连,所述第十五阀15的第三接口与所述第二回收容器37相连;
优选地,所述第十三阀13、所述第十四阀14、所述第十五阀15均为电动控制阀。
首先,如图5(a)~图5(b)所示,其给出了一种六通阀,可以实现上述第十三阀13、第十四阀14的功能。
具体如图5(a)~图5(b)所示,该六通阀包括截面为圆形的六通阀阀芯V4、以及六通阀阀芯V4外部的六通阀阀体V3,六通阀阀体V3沿逆时针方向分别设置有第一接口①、第二接口②、第三接口③、第四接口④、第五接口⑤、第六接口⑥。通过旋转阀芯V4,第一接口①与第二接口②连通、第三接口③与第四接口④连通、第五接口⑤与第六接口⑥连通(如图5(a)所示),或实现第二接口②与第三接口③连通、第四接口④与第五接口⑤连通、第六接口⑥与第一接口①连通(如图5(b)所示)。另外,在给出上述 六通阀结构的基础上,本领域技术人员根据现有技术知晓如何控制六通阀阀芯V4相对六通阀阀体V3旋转固定角度而实现该六通阀的电动(电磁)控制(如,设置步进电机控制阀芯V4转动)。
另外,如图2(a)、图2(b)所示,第十五阀15为一个三通阀,该三通阀可以实现第一接口①与第二接口②导通或第一接口①与第三接口③导通,其为现有技术,可以在市场上直接购买到相应的电动控制阀(如电磁阀)。
色谱柱为现有技术,在此不在赘述。本申请的色谱柱组件34为现有的一个色谱柱或多个色谱柱的组合使用(如多个色谱柱的串联和/或并联)。
纯化模块进行纯化的具体过程可以如图2(a)、图2(b)所示。
开始,第十三阀13、第十四阀14的状态如图2(a)所示,此时,从反应模块流入的溶解化合物Ⅰ粗品的溶液经过第十三阀13第四接口④、第三接口③进入定量环35,且少量多余的溶液经过第十三阀13第六接口⑥、第五接口⑤流入第二回收容器37,此时,溶解化合物Ⅰ粗品的溶液会存留在定量环35中。
之后,第十三阀13、第十四阀14的状态如图2(b)所示,第十五阀15导通第一接口①与第三接口③,此时,液体输送泵36开始工作。液体输送泵36将流体(乙腈和水)推出,则流体流经第十三阀13第一接口①、第六接口⑥后,将定量环35内的溶解化合物Ⅰ粗品的溶液带出,经过第十三阀13第三接口③、第二接口②、第十四阀14第一接口①、第六接口⑥、色谱柱组件34、第十四阀14第五接口⑤、第四接口④,从而进行纯化。最后,第十五阀15导通第一接口①与第二接口②,液体输送泵36推出的流体将纯化后的化合物Ⅰ产品溶液进入处方化模块。
另外,当所述液体输送泵36的入口端分别连接两根以上管路时,尤其是分别通过管路连接用于纯化的流体(乙腈和水)和冲洗用流体(如水)时,则当设备使用完毕(生产液体组合物完毕),则将纯化模块设置为图2 (b)形式,液体输送泵36将冲洗用流体推出,则可以对纯化模块以及与纯化模块连接的其他模块进行冲洗。
本实施例给出了一种具体的纯化模块,经过变换第十三阀13、第十四阀14、第十五阀15在不同工作状态的变化,以及与液体输送泵36配合工作,实现了化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品。尤其是当各阀、液体输送泵36为自动控制时,可以实现上述纯化的自动化。
在一个实施例中,所述处方化模块包括:
第十六阀16、第十七阀17、第十八阀18、第十九阀19、第二十阀20、第二十一阀21,所述第十六阀16至所述第二十一阀21分别至少包括第一接口、第二接口、第三接口,且所述第十六阀16至所述第二十一阀21均能够实现三个接口中任意两个接口导通或使三个接口均不导通;其中,所述第十六阀16的第一接口与所述第十二阀12的第二接口连接,所述第十六阀16的第二接口与所述第十七阀17的第一接口连接,所述第十七阀17的第二接口与所述第十八阀18的第一接口连接,所述第十八阀18的第二接口与所述第十九阀19的第一接口连接,所述第十九阀19的第二接口与所述第二十阀20的第一接口连接,所述第二十阀20的第二接口与所述第二十一阀21的第一接口连接,所述第十六阀16的第三接口与所述纯化模块(第十五阀15的第二接口)连接(管路B与管路B’相连通),所述第二十一阀21的第二接口与第三负压管路N3连接;
第四试剂容器38,与所述第十七阀17的第三接口连接,所述第四试剂容器38用于盛放无水乙醇;
化合物Ⅰ富集仓39,连接在所述第十八阀18的第三接口和所述第十九阀19的第三接口之间,所述化合物Ⅰ富集仓39内填充有十八烷基键合硅胶;
第一中转容器40,与所述第二十阀20的第三接口连接;
成品收集容器42,与所述第二中转容器41相连;
第二中转容器41,分别与所述第二十一阀21的第三接口、所述成品收集容器42、第四负压管路N4连接,其中,所述第二中转容器41中盛放有聚乙二醇400,氯化钠溶液(如氯化钠注射液),用于处方化。
本实施例中的所述第十六阀16至所述第二十一阀21等的结构在上文已经介绍,在此不再赘述。
处方化模块进行富集和处方化的具体过程如图8(a)~图8(g)所示,
开始,第十六阀16至第二十阀20的状态如图8(a)所示,此时,由纯化模块流出的化合物Ⅰ纯品进入第一中转容器40(中转瓶);
之后,第十阀10、第十一阀11的状态如图8(b)所示,所述第四注射器32抽取第三试剂容器33中的氯化钠溶液;
之后,第十阀10至第十二阀12、第十六阀16至第二十阀20的状态如图8(c)所示,所述第四注射器32将抽取的氯化钠溶液推入第一中转容器40;稀释第一中转容器40中的化合物Ⅰ纯品后,再将稀释后的化合物Ⅰ溶液抽入所述第四注射器32;
之后,第十阀10至第十二阀12、第十六阀16至第二十一阀21的状态如图8(d)所示,所述第四注射器32将抽取的化合物Ⅰ溶液经化合物Ⅰ富集仓39、第三负压管路N3推出,化合物Ⅰ在化合物Ⅰ富集仓39中进行富集;
之后,第十阀10、第十一阀11的状态如图8(b)所示,所述第四注射器32抽取第三试剂容器33中的氯化钠溶液;
之后,第十阀10至第二十一阀21的状态如图8(d)所示,所述第四注射器将抽取的氯化钠溶液经化合物Ⅰ富集仓39、第三负压管路N3推出,从而进一步富集化合物Ⅰ;
之后,第十阀10至第十二阀12、第十六阀16至第十七阀17的状态如图8(e)所示,所述第四注射器32抽取第四试剂容器38中的无水乙醇;
之后,第十阀10至第十二阀12、第十六阀16至第二十一阀21的状态如图8(f)所示,所述第四注射器32将抽取的无水乙醇经化合物Ⅰ富集仓39推入第二中转容器41,从而将化合物Ⅰ富集仓39中的化合物Ⅰ纯品淋洗至第二中转容器41,从而实现处方化。同时第四负压管路N4进行抽真空,以抵消因无水乙醇、化合物Ⅰ纯品使第二中转容器41中增加的压力;
最后,第一阀1~第十二阀12、第十六阀16至第二十一阀21的状态如图8(g)所示,第一正压管路P1通入正压,将处方化后的化合物Ⅰ溶液推入成品收集容器42,从而收集得到化合物Ⅰ液体组合物(注射液)。
优选地,所述第二中转容器41与所述成品收集容器42之间设置有过滤器(如针式过滤器),从而对从第二中转容器41流出的化合物Ⅰ溶液过滤除菌,以得到最终的化合物Ⅰ的液体组合物(如注射液)。
本实施例给出了一种具体的处方化模块,通过控制第十六阀16至所述第二十一阀21,与纯化模块、反应模块配合工作,实现了将纯化后的化合物Ⅰ进行富集并处方化,并进一步收集得到化合物Ⅰ液体组合物。尤其是当第十六阀16至所述第二十一阀21等为自动控制时,可以实现上述处方化及收集的自动化。
另外,在上述技术方案中,设置检测/监测设备来检测设备的运行。具体地,可以在对18F离子富集仓25、第四注射器32、第十四阀14和第十五阀15之间的管路中的一个位置或两个以上位置处设置放射性检测器来检测放射性。可以在色谱柱组件34上设置紫外检测器和放射性检测器,来判断控制是否开始收集纯化流动相。
本实施例提供了一种使用上述的设备来生产化合物Ⅰ液体组合物的方法,包括:
使用预处理模块来富集18F离子;
使用反应模块来使富集的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗 品;
使用纯化模块对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
使用处方化模块将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物。
更具体的操作步骤在上文已经介绍,不再赘述。
尽管以上对本申请的实施方案进行了描述,但本申请并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请要求保护之列。

Claims (10)

  1. 生产化合物Ⅰ液体组合物的设备,包括:
    预处理模块,用于富集18F离子;
    反应模块,用于将富集后的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;
    纯化模块,用于对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
    处方化模块,将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物;
  2. 如权利要求1所述的设备,其中,
    所述预处理模块包括:
    第一阀、第二阀、第三阀、第四阀、第五阀、第六阀,所述第一阀至所述第六阀分别至少包括第一接口、第二接口、第三接口,且所述第一阀至所述第六阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第一阀的第一接口与第一正压管路相连,所述第一阀的第二接口与所述第二阀的第一接口相连,所述第二阀的第二接口与所述第三阀的第一接口相连,所述第三阀的第二接口与所述第四阀的第一接口相连,所述第四阀的第二接口与所述第五阀的第一接口相连,所述第五阀的第二接口与所述第六阀的第一接口相连;
    第一回收容器,分别与第一负压管路和所述第一阀的第三接口相连;
    第一试剂容器,与所述第二阀的第三接口相连;
    第一注射器,与所述第三阀的第三接口相连;
    18F离子富集仓,连接在所述第四阀的第三接口和所述第五阀的第三接口之间;
    第二注射器,与所述第六阀的第三接口相连。
  3. 如权利要求2所述的设备,其中,
    预处理模块还包括:
    第一直线驱动装置,所述第一直线驱动装置能够带动所述第一注射器的活塞在空筒内运动;
    第二直线驱动装置,所述第二直线驱动装置能够带动所述第二注射器的活塞在空筒内运动。
  4. 如权利要求2所述的设备,其中,
    所述预处理模块还包括正压负压管路和加液管路,正压负压管路和加液管路分别穿过第二注射器的活塞伸入至第二注射器内。
  5. 如权利要求2所述的设备,其中,
    所述反应模块包括:
    第七阀、第八阀、第九阀、第十阀、第十一阀、第十二阀,所述第七阀至所述第十二阀分别至少包括第一接口、第二接口、第三接口,且所述第七阀至所述第十二阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;所述第七阀的第一接口与所述预处理模块相连,所述第七阀的第二接口与所述第八阀的第一接口相连,所述第八阀的第二接口与所述第九阀的第一接口相连,所述第九阀的第二接口与所述第十阀的第一接口相连,所述第十阀的第二接口与所述第十一阀的第一接口相连,所述第十一阀的第二接口与所述第十二阀的第一接口相连,所述第十二阀的第三接口与所述纯化模块相连;
    反应容器,分别与第二负压管路和所述第七阀的第三接口相连;
    温控组件,用于对所述反应容器加热和/或冷却;
    第三注射器,与所述第八阀的第三接口相连;
    第二试剂容器,与所述第九阀的第三接口相连;
    第四注射器,与所述第十阀的第三接口相连;
    第三试剂容器,与所述第十一阀的第三接口相连。
  6. 如权利要求5所述的设备,其中,
    所述反应模块还包括:
    第三直线驱动装置,所述第三直线驱动装置能够带动所述第三注射器的活塞在空筒内运动;
    第四直线驱动装置,所述第四直线驱动装置能够带动所述第四注射器的活塞在空筒内运动。
  7. 如权利要求5所述的设备,其中,
    所述纯化模块包括:
    第十三阀、第十四阀,所述第十三阀和所述第十四阀均至少包括第一接口、第二接口、第三接口、第四接口、第五接口、第六接口,所述第十三阀、所述第十四阀均能够在第一模式和第二模式之间切换,所述第一模式为第一接口与第二接口导通、第三接口与第四接口导通、第五接口与第六接口导通;所述第二模式为第二接口与第三接口导通、第四接口与第五接口导通、第六接口与第一接口导通;其中,所述第十三阀的第四接口与所述反应模块连接;所述第十三阀的第二接口与所述第十四阀的第一接口连接;所述第十四阀的第二接口与所述第十四阀的第三接口通过外部管路连接;
    色谱柱组件,所述色谱柱组件连接在所述第十四阀的第五接口与所述第十四阀的第六接口之间;
    定量环,所述定量环连接在所述第十三阀的第三接口与所述第十三阀 的第六接口之间;
    液体输送泵,与所述第十三阀的第一接口连接;
    第二回收容器,与所述第十三阀的第五接口连接;
    第十五阀,所述第十五阀至少包括第一接口、第二接口、第三接口,所述第十五阀能够实现第一接口与第二接口导通或第一接口与第三接口导通;所述第十五阀的第一接口与第十四阀的第四接口相连,所述第十五阀的第二接口与所述处方化模块相连,所述第十五阀的第三接口与所述第二回收容器相连。
  8. 如权利要求7所述的设备,其中,
    所述处方化模块包括:
    第十六阀、第十七阀、第十八阀、第十九阀、第二十阀、第二十一阀,所述第十六阀至所述第二十一阀分别至少包括第一接口、第二接口、第三接口,且所述第十六阀至所述第二十一阀均能够实现三个接口中任意两个接口导通或使三个接口均不导通;其中,所述第十六阀的第一接口与所述第十二阀的第二接口连接,所述第十六阀的第二接口与所述第十七阀的第一接口连接,所述第十七阀的第二接口与所述第十八阀的第一接口连接,所述第十八阀的第二接口与所述第十九阀的第一接口连接,所述第十九阀的第二接口与所述第二十阀的第一接口连接,所述第二十阀的第二接口与所述第二十一阀的第一接口连接,所述第十六阀的第三接口与所述纯化模块连接,所述第二十一阀的第二接口与第三负压管路连接;
    第四试剂容器,与所述第十七阀的第三接口连接;
    化合物Ⅰ富集仓,连接在所述第十八阀的第三接口和所述第十九阀的第三接口之间;
    第一中转容器,与所述第二十阀的第三接口连接;
    成品收集容器;
    第二中转容器,分别与所述第二十一阀的第三接口、所述成品收集容器、第四负压管路连接。
  9. 生产化合物Ⅰ液体组合物的方法,使用权利要求1~8中任一项所述的设备,包括:
    使用预处理模块来富集18F离子;
    使用反应模块来使富集的18F离子与化合物Ⅰ前体反应,得到化合物Ⅰ粗品;
    使用纯化模块对化合物Ⅰ粗品进行纯化得到化合物Ⅰ纯品;
    使用处方化模块将纯化得到的化合物Ⅰ纯品富集并处方化为化合物Ⅰ液体组合物。
  10. 权利要求1~8中任一项所述的设备在生产化合物Ⅰ液体组合物中的用途。
PCT/CN2023/099327 2022-06-09 2023-06-09 生产液体组合物的设备及其制备方法和用途 WO2023237091A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210647010.9A CN114716415B (zh) 2022-06-09 2022-06-09 生产液体组合物的设备及其制备方法和用途
CN202210647010.9 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023237091A1 true WO2023237091A1 (zh) 2023-12-14

Family

ID=82233071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099327 WO2023237091A1 (zh) 2022-06-09 2023-06-09 生产液体组合物的设备及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN114716415B (zh)
WO (1) WO2023237091A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117964499A (zh) * 2024-03-26 2024-05-03 泽升科技(广州)有限公司 一种胺类化合物的制备及纯化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700006B (zh) * 2022-06-07 2023-03-24 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN114716415B (zh) * 2022-06-09 2022-09-02 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114732918B (zh) * 2022-06-10 2022-09-13 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN115785075A (zh) * 2023-02-06 2023-03-14 北京先通国际医药科技股份有限公司 药物结晶方法、药物晶体及其用途

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438660A (zh) * 2009-03-23 2012-05-02 美国西门子医疗解决公司 用于检测神经障碍的显像剂
CN102608342A (zh) * 2012-02-29 2012-07-25 北京工业大学 用于酶注射式葡萄糖生物传感在线分析仪的取样装置
CN102858752A (zh) * 2010-02-08 2013-01-02 兰休斯医疗成像公司 用于合成显像剂和其中间体的方法和装置
CN104011802A (zh) * 2011-09-30 2014-08-27 通用电气健康护理有限公司 合成器诊断盒模拟器
CN104220401A (zh) * 2011-12-20 2014-12-17 通用电气健康护理有限公司 放射性氟化方法
CN104230613A (zh) * 2014-09-30 2014-12-24 北京善为正子医药技术有限公司 小型模块式多功能自动化11c标记pet药物合成仪
CN104718193A (zh) * 2012-08-10 2015-06-17 蓝瑟斯医学影像公司 用于合成和使用造影剂的组合物、方法以及***
CN107970458A (zh) * 2018-01-03 2018-05-01 山东省肿瘤防治研究院(山东省肿瘤医院) 一种基于18f-bf3标记的正电子放射性药物自动化合成模块
CN108218651A (zh) * 2018-02-27 2018-06-29 首都医科大学宣武医院 用于制备放射性药物的一次性辅助装置及方法
CN110862343A (zh) * 2019-10-29 2020-03-06 北京宾派生物技术有限公司 一种[18f]d3fsp的自动化制备方法及其装置
CN112807276A (zh) * 2021-01-26 2021-05-18 北京先通国际医药科技股份有限公司 一种哒嗪酮类心肌灌注pet放射性药物的制备方法及应用
CN114700006A (zh) * 2022-06-07 2022-07-05 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN114713157A (zh) * 2022-06-09 2022-07-08 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114716415A (zh) * 2022-06-09 2022-07-08 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114732918A (zh) * 2022-06-10 2022-07-12 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN115651009A (zh) * 2022-11-14 2023-01-31 中山大学附属第一医院 一种[18F]F-LuFL的自动化合成方法
CN115784250A (zh) * 2022-11-14 2023-03-14 中山大学附属第一医院 一种18f-tfb的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029734A1 (fr) * 2006-09-06 2008-03-13 Nihon Medi-Physics Co., Ltd. Procédé de fabrication d'un composé organique marqué au fluor radioactif, et appareil et programme de synthèse correspondants

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438660A (zh) * 2009-03-23 2012-05-02 美国西门子医疗解决公司 用于检测神经障碍的显像剂
CN102858752A (zh) * 2010-02-08 2013-01-02 兰休斯医疗成像公司 用于合成显像剂和其中间体的方法和装置
CN104011802A (zh) * 2011-09-30 2014-08-27 通用电气健康护理有限公司 合成器诊断盒模拟器
CN104220401A (zh) * 2011-12-20 2014-12-17 通用电气健康护理有限公司 放射性氟化方法
CN102608342A (zh) * 2012-02-29 2012-07-25 北京工业大学 用于酶注射式葡萄糖生物传感在线分析仪的取样装置
CN104718193A (zh) * 2012-08-10 2015-06-17 蓝瑟斯医学影像公司 用于合成和使用造影剂的组合物、方法以及***
CN104230613A (zh) * 2014-09-30 2014-12-24 北京善为正子医药技术有限公司 小型模块式多功能自动化11c标记pet药物合成仪
CN107970458A (zh) * 2018-01-03 2018-05-01 山东省肿瘤防治研究院(山东省肿瘤医院) 一种基于18f-bf3标记的正电子放射性药物自动化合成模块
CN108218651A (zh) * 2018-02-27 2018-06-29 首都医科大学宣武医院 用于制备放射性药物的一次性辅助装置及方法
CN110862343A (zh) * 2019-10-29 2020-03-06 北京宾派生物技术有限公司 一种[18f]d3fsp的自动化制备方法及其装置
CN112807276A (zh) * 2021-01-26 2021-05-18 北京先通国际医药科技股份有限公司 一种哒嗪酮类心肌灌注pet放射性药物的制备方法及应用
CN114700006A (zh) * 2022-06-07 2022-07-05 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN114713157A (zh) * 2022-06-09 2022-07-08 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114716415A (zh) * 2022-06-09 2022-07-08 北京先通国际医药科技股份有限公司 生产液体组合物的设备及其制备方法和用途
CN114732918A (zh) * 2022-06-10 2022-07-12 北京先通国际医药科技股份有限公司 一种液体组合物的生产设备及其制备方法和用途
CN115651009A (zh) * 2022-11-14 2023-01-31 中山大学附属第一医院 一种[18F]F-LuFL的自动化合成方法
CN115784250A (zh) * 2022-11-14 2023-03-14 中山大学附属第一医院 一种18f-tfb的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117964499A (zh) * 2024-03-26 2024-05-03 泽升科技(广州)有限公司 一种胺类化合物的制备及纯化方法

Also Published As

Publication number Publication date
CN114716415A (zh) 2022-07-08
CN114716415B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023237091A1 (zh) 生产液体组合物的设备及其制备方法和用途
WO2023236978A1 (zh) 一种液体组合物的生产设备及其制备方法和用途
WO2023237092A1 (zh) 一种液体组合物的生产设备及其制备方法和用途
CN112807276B (zh) 一种哒嗪酮类心肌灌注pet放射性药物的制备方法及应用
CN114713157A (zh) 生产液体组合物的设备及其制备方法和用途
Crouzel et al. Radiochemistry automation for PET
CN108218651B (zh) 用于制备放射性药物的一次性辅助装置及方法
CN105750538A (zh) 用于锝-99m的回旋加速器生产的方法、***和装置
WO2006133732A1 (en) Process for synthesizing labelled compounds
CN114835690B (zh) 含化合物i的液体组合物的制备方法、及在心肌灌注pet显像中的用途
TW201201844A (en) Gallium-68 radioisotope generator and generating method thereof
CN208414286U (zh) 用于制备放射性药物的一次性辅助装置
Luo et al. Automated production of a sphingosine-1 phosphate receptor 1 (S1P1) PET radiopharmaceutical [11C] CS1P1 for human use
CN108409595A (zh) 18f-(2s,4r)-4-氟-l-谷氨酰胺的自动化生产设备及生产方法
WO2024008073A1 (zh) 化合物i液体组合物、制备方法及其用途
CN208604046U (zh) 18f-(2s,4r)-4-氟-l-谷氨酰胺的自动化生产设备
Hao et al. Synthesis, separation and biodistribution of 99mTc‐CO‐MIBI complex
CN205796077U (zh) 一种具有回收重氧水功能的18F‑NaF自动合成模块
CN105152960B (zh) 一种18f ‑(2s,4r)‑4‑氟‑l‑谷胺酰胺的自动化制备方法及其装置
CN205223067U (zh) 一种18f-(2s,4r)-4-氟-l-谷胺酰胺的自动化制备装置
CN110862343A (zh) 一种[18f]d3fsp的自动化制备方法及其装置
CN115784250A (zh) 一种18f-tfb的制备方法
CN211999536U (zh) 一种[18f]d3fsp的自动化制备装置
Berridge et al. Preparation of oxygen-15 butanol for positron tomography
CN105985385B (zh) 一种集成流路板合成18f-fdg的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819254

Country of ref document: EP

Kind code of ref document: A1