WO2023236933A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023236933A1
WO2023236933A1 PCT/CN2023/098506 CN2023098506W WO2023236933A1 WO 2023236933 A1 WO2023236933 A1 WO 2023236933A1 CN 2023098506 W CN2023098506 W CN 2023098506W WO 2023236933 A1 WO2023236933 A1 WO 2023236933A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
field
pilot
pilot symbols
pilot symbol
Prior art date
Application number
PCT/CN2023/098506
Other languages
English (en)
French (fr)
Inventor
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210882961.4A external-priority patent/CN117254893A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023236933A1 publication Critical patent/WO2023236933A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • Ultra-wide band (UWB) technology can achieve high-precision positioning or data transmission by sending short pulses in the order of nanoseconds.
  • UWB devices can perform clear channel assessment (CCA) before sending signals. If the channel is determined to be idle, it can be sent, otherwise it cannot be sent.
  • CCA clear channel assessment
  • 6 different CCA modes are defined, which can be mainly divided into two categories, one is CCA based on energy detection, and the other is CCA based on pilot detection.
  • pilot symbols are generated through pilot sequences, and there may be many formats of pilot sequences available in a channel.
  • the existing protocol stipulates that each channel can support 2 sequences with a length of 31 and 4 sequences with a length of 127. sequence, and 8 sequences of length 91. Then when the UWB device performs CCA, it needs to blindly detect pilot symbols of all formats, which has high complexity and power consumption.
  • Embodiments of the present application provide a communication method and device for reducing pilot symbol detection complexity and reducing equipment power consumption.
  • a communication method is provided.
  • the method can be executed by a first device, or by other devices that include the functions of the first device, or by a chip system or other functional modules that can implement the first device.
  • the function of the device, the chip system or the functional module is, for example, provided in the first device.
  • the first device is, for example, a network device or a terminal device.
  • the first device has UWB functionality.
  • the method includes: generating a first UWB frame, a first field of the first UWB frame including a first type of pilot symbol, a second field of the first UWB frame including a second type of pilot symbol, the first
  • the field is a first synchronization field in the synchronization header of the first UWB frame
  • the second type of pilot symbol is used to perform channel access or resource selection
  • the first type of pilot symbol has a first type of format
  • the second type pilot symbols have a second type format; the first UWB frame is sent on a first channel.
  • the first UWB frame generated by the first device may include a second type of pilot symbol.
  • the second type of pilot symbol is used to perform channel access or resource selection, and the second type of pilot symbol has The second type of format.
  • the device detects the second type pilot with the second type format.
  • the symbol can determine whether the channel is busy. It is equivalent to the embodiment of this application providing additional pilot symbols for performing channel access or resource selection.
  • the additional pilot symbols have a specific format. The device can determine whether the channel is busy by detecting the pilot symbols in this format. , without detecting too many formats of pilot symbols, thereby reducing the complexity of pilot symbol detection and reducing the power consumption of the device.
  • the first type of pilot symbols are used for synchronization or ranging or channel estimation, or the first type of pilot symbols and the second type of pilot symbols are used for Perform synchronization or ranging or channel estimation.
  • the receiving device of the first UWB frame it is not necessary to detect the second type of pilot symbols, but only detect the first type of pilot symbols to perform synchronization, ranging or channel estimation, etc., which is beneficial to reducing detection complexity.
  • the receiving device can also detect both the first type of pilot symbols and the second type of pilot symbols to perform synchronization, ranging or channel estimation based on these two types of pilot symbols, which is beneficial to improving the accuracy of the processing results.
  • the first type of pilot symbols is not used to perform channel access or resource selection.
  • the embodiment of the present application uses the second type of pilot symbols to perform channel access or resource selection, and the first type of pilot symbols are not used to perform channel access or resource selection. For devices that perform channel access or resource selection, it can It is not necessary to detect the first type of pilot symbols, thus the detection complexity can be reduced.
  • the second field is a second synchronization field in the synchronization header.
  • the second field may be a second synchronization field in the synchronization header, so that for a device performing channel access or resource selection, the second type of pilot symbol can be detected as early as possible to improve the efficiency of channel access or resource selection.
  • the first UWB frame further includes a physical header and/or a physical payload, and the physical header and/or physical load includes resource reservation information for instructing the first device to reserve resources left. For example, if the service performed by the first device is a periodic service, the first device may need to use periodic resources for transmission. Then the first device can reserve resources within one or more cycles through the resource reservation information, so that it is not necessary to send a separate message for selecting resources for each resource, which is beneficial to saving transmission overhead.
  • the synchronization header further includes an SFD field, and the SFD field includes the second type of pilot symbol.
  • the first UWB frame includes resource reservation information, and a device that performs resource selection can perform resource selection by obtaining the resource reservation information. Then, in addition to detecting the second synchronization field in the synchronization header, the device also needs to detect the SFD field, so that it can continue to detect the physical header and/or physical payload.
  • the SFD field can also include a second type of pilot symbol, and the format of the second type of pilot symbol is known to the device, so that the device can detect the SFD field by detecting the second type of pilot symbol, and It is not necessary to detect the first type of pilot symbols, which is beneficial to reducing the detection complexity of the device.
  • the second field includes multiple segments, and adjacent segments among the multiple segments are used to carry one or more pilot symbols of the second type, wherein the corresponding segments are used to carry one or more pilot symbols of the second type.
  • the number of repetitions of parameters of the second type pilot symbols between adjacent segments is a preset value.
  • the second field includes the physical header and/or physical payload in the first UWB frame.
  • the second field can also be a physical header and/or a physical payload, so there is no need to change the synchronization header of the first UWB frame.
  • the device performing channel access or resource selection can also determine whether the channel is busy or determine unavailable resources by detecting the second type pilot symbols in the physical header and/or physical payload.
  • the method further includes: sending first configuration information, the first configuration information being used to configure parameters of the second type of pilot symbols; or negotiating with other devices to determine the The parameters of the second type of pilot symbols; or, the parameters of the second type of pilot symbols are preset values.
  • the second device is, for example, a receiving device (or a target receiving device) of the first UWB frame.
  • the parameters of the second type of pilot symbol may be predefined, for example, a predefined default value (for example, the preset value may be predefined through a protocol, or may be predefined by the communication system where the first device is located, or may be is predefined by the manufacturer of the first device, etc.), then for multiple devices, the UWB sent
  • the duration of the second synchronization field of the frame is the same, so the receiving device of the UWB frame does not need to detect the second type of pilot symbol, but can determine the duration of the second synchronization field according to the parameters of the second type of pilot symbol to detect Other fields; equipment that performs channel access or resource selection can detect the second type of pilot symbols.
  • the parameters of the second type of pilot symbol may also be configured by the first device, or determined through negotiation between the first device and other devices.
  • the other devices may include, for example, the second device and/or the third device, or may not include the second device. and third devices.
  • the parameters of the second type of pilot symbols include the format of the second type of pilot symbols; or, the parameters of the second type of pilot symbols include the second type of pilot symbols.
  • the format of the pilot symbol and the number of repetitions of the second type of pilot symbol; or, the parameters of the second type of pilot symbol include the format of the second type of pilot symbol, the second type of pilot symbol The number of repetitions and the interval between two adjacent second type pilot symbols.
  • the format of the second type pilot symbol may, for example, indicate the value of each element included in the second type pilot symbol and the arrangement order of the elements. That is, the second type pilot symbol may be determined according to the format of the second type pilot symbol. frequency symbol.
  • the number of repetitions of the second type of pilot symbols is, for example, the number of repetitions of the second type of pilot symbols in the second field, and/or the number of repetitions of the second type of pilot symbols in other fields.
  • the second type pilot symbols may be continuously distributed, or may also be distributed discretely. Therefore, the parameters of the second type pilot symbols may include the parameters between two adjacent second type pilot symbols. An interval, expressed in terms of duration, for example.
  • the format of the second type of pilot symbol can be determined according to the parameters of the second type of pilot symbol, or both the format of the second type of pilot symbol and the arrangement of the second type of pilot symbol can be determined (for example, number of repetitions or intervals).
  • the second type of pilot symbols is applicable to all UWB devices in the system where the first device is located; or, the second type of pilot symbols is applicable to the first type of channel , the first channel belongs to the first type of channel; or, the second type of pilot symbol is configured by a group head device, and the group head device is a management device in the communication group where the first device is located ; Or, the second type of pilot symbol is determined through negotiation between the first device and at least one device.
  • the second type of pilot symbols may be configured in various ways, and there are no specific restrictions.
  • the pilot code used to generate the second type of pilot symbol is a ternary autocorrelation sequence, or an m sequence.
  • the length of the ternary autocorrelation sequence can be 31, 91, or 127, etc.
  • other existing sequences may also be used as pilot codes for generating the second type of pilot symbols, and there is no limitation on this.
  • another communication method is provided, which method can be executed by a third device, or by other devices that include the functions of the third device, or by a chip system or other functional modules that can implement the third device.
  • the chip system or functional module is, for example, provided in the third device.
  • the third device is, for example, a network device or a terminal device.
  • the third device has UWB functionality.
  • the third device is a device that performs channel access or resource selection. The method includes: during the process of performing channel access or resource selection, detecting a first UWB frame from a first device on a first channel, and a first field of the first UWB frame includes a first type of pilot symbol.
  • the second field of the first UWB frame includes a second type of pilot symbol
  • the first field is the first synchronization field in the synchronization header of the first UWB frame
  • the first type of pilot symbol has A first type of format
  • the second type of pilot symbols has a second type of format; according to the detection result of the second type of pilot symbols in the second field, the busy and idle status of the first channel is determined , or determine unavailable resources on the first channel.
  • the method further includes: determining the busy-idle status of the first channel not based on the first type of pilot symbols, and not determining the busy status of the first channel based on the first type of pilot symbols. Unavailable resources on the first channel.
  • determining the busy-idle status of the first channel according to the detection result of the second type of pilot symbol in the second field includes: if the second type of pilot symbol is detected, If the energy of one second-type pilot symbol in the field is greater than the first threshold, the first channel is determined to be busy; or, if multiple second-type pilot symbols in the second field are detected The average energy is greater than the second threshold, the first channel is determined to be busy. able to pass One second type pilot symbol can be detected to determine whether the channel is busy, thereby improving efficiency; alternatively, multiple second type pilot symbols can also be detected to determine whether the channel is busy, so as to improve the accuracy of the determination result. sex.
  • the second field is a second synchronization field in the synchronization header of the first UWB frame.
  • determining the unavailable resources of the first channel based on the detection result of the second type of pilot symbol in the second field includes: based on the detection result of the second type of pilot symbol in the second synchronization field. According to the detection result of the second type pilot symbol, detecting the second type pilot symbol included in the SFD field in the synchronization header; according to the detection result of the SFD field, decoding the first UWB frame includes the physical header and/or physical load; obtain the resource reservation information included in the physical header and/or physical load, the resource reservation information is used to indicate the resources reserved by the first device; determine the first device The resources reserved by the device are the unavailable resources. If the first UWB frame includes the SFD field, this detection decoding method can be used.
  • determining the unavailable resources of the first channel based on the detection result of the second type of pilot symbol in the second field includes: based on the detection result of the second type of pilot symbol in the second synchronization field.
  • the detection result of the second type pilot symbol decoding the physical header and/or physical load included in the first UWB frame; obtaining the resource reservation information included in the physical header and/or physical load, the resource
  • the reservation information is used to indicate resources reserved by the first device; it is determined that the resources reserved by the first device are the unavailable resources. If the first UWB frame does not include the SFD field, this detection decoding method can be used.
  • the synchronization header further includes an SFD field, and the SFD field includes the second type of pilot symbol.
  • the second field includes a physical header and/or a physical payload in the first UWB frame.
  • the method further includes: receiving first configuration information from the first device, the first configuration information being used to configure parameters of the second type of pilot symbols; or , negotiate with the first device to determine the parameters of the second type of pilot symbols; or, the parameters of the second type of pilot symbols are preset values.
  • the parameters of the second type of pilot symbols include the format of the second type of pilot symbols; or, the parameters of the second type of pilot symbols include the second type of pilot symbols.
  • the format of the pilot symbol and the number of repetitions of the second type of pilot symbol; or, the parameters of the second type of pilot symbol include the format of the second type of pilot symbol, the second type of pilot symbol The number of repetitions and the interval between two adjacent second type pilot symbols.
  • the second type of pilot symbols is applicable to all UWB devices in the system where the first device is located; or, the second type of pilot symbols is applicable to the first type of channel , the first channel belongs to the first type of channel; or, the second type of pilot symbol is configured by a group head device, and the group head device is a management device in the communication group where the first device is located ; Or, the second type of pilot symbol is determined through negotiation between the first device and at least one device.
  • another communication method is provided, which method can be executed by a second device, or by other devices that include the functions of the second device, or by a chip system or other functional modules that can implement the first
  • the function of the second device, the chip system or functional module is, for example, provided in the second device.
  • the second device is, for example, a network device or a terminal device.
  • the second device has UWB functionality.
  • the method includes: detecting a first UWB frame from a first device on a first channel, a first field of the first UWB frame including a first type of pilot symbol, the first UWB
  • the second field of the frame includes a second type of pilot symbol, the first field is a first synchronization field in the synchronization header of the first UWB frame, and the second type of pilot symbol is used to perform channel access.
  • the first type of pilot symbols has a first type of format
  • the second type of pilot symbols has a second type of format
  • synchronization or ranging or channel estimation is performed according to the first type of pilot symbols, Or, perform synchronization or ranging or channel estimation according to the first type of pilot symbols and the second type of pilot symbols.
  • the second field is a second synchronization field in the synchronization header.
  • the method further includes: receiving first configuration information from the first device, the first configuration information being used to configure parameters of the second type of pilot symbols; or , negotiate with the first device to determine the parameters of the second type of pilot symbols; or, the parameters of the second type of pilot symbols are preset values.
  • the parameters of the second type of pilot symbols include the format of the second type of pilot symbols; or, the parameters of the second type of pilot symbols include the second type of pilot symbols.
  • the format of the pilot symbol and the number of repetitions of the second type of pilot symbol; or, the parameters of the second type of pilot symbol include the format of the second type of pilot symbol, the second type of pilot symbol The number of repetitions and the interval between two adjacent second type pilot symbols.
  • the method further includes: receiving second configuration information from the first device, the second configuration information being used to configure the SFD field included in the synchronization header to include the Pilot symbols of the first type or pilot symbols of the second type.
  • the second field includes a physical header and/or a physical payload of the first UWB frame.
  • the second type of pilot symbols is applicable to all UWB devices in the system where the first device is located; or, the second type of pilot symbols is applicable to the first type of channel , the first channel belongs to the first type of channel; or, the second type of pilot symbol is configured by a group head device, and the group head device is a management device in the communication group where the first device is located ; Or, the second type of pilot symbol is determined through negotiation between the first device and at least one device.
  • a fourth aspect provides a communication device.
  • the communication device may be the first device described in the first aspect, or a communication device including the first device, or a functional module in the first device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • the transceiver unit can realize the sending function and the receiving function. When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module).
  • the transceiver unit When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a sending module). receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the processing unit is used to generate a first UWB frame, a first field of the first UWB frame includes a first type of pilot symbol, and a second field of the first UWB frame includes a second type of pilot symbol.
  • the first field is the first synchronization field in the synchronization header of the first UWB frame
  • the second type of pilot symbol is used to perform channel access or resource selection; the transceiver unit (or, the A sending unit) configured to send the first UWB frame on the first channel.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or instruction that enables the The communication device performs the functions of the first device described in the above first aspect.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or instruction that enables the The communication device performs the functions of the first device described in the above first aspect.
  • the communication device may be the third device described in the second aspect, or a communication device including the third device, or a functional module in the third device, such as a baseband device or a chip system.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is configured to detect the first UWB frame from the first device on the first channel during the process of performing channel access or resource selection, and the first UWB
  • the first field of the frame includes a first type of pilot symbol
  • the second field of the first UWB frame includes a second type of pilot symbol
  • the first field is the first type of pilot symbol in the synchronization header of the first UWB frame.
  • a synchronization field the processing unit is configured to determine the busy or idle status of the first channel according to the detection result of the second type pilot symbol in the second field, or determine the first channel unavailable resources on.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the third device described in the second aspect.
  • a storage unit sometimes also referred to as a storage module
  • the communication device may be the second device described in the third aspect, or a communication device including the second device, or a functional module in the second device, such as a baseband device or a chip system.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is configured to detect the first UWB frame from the first device on the first channel, and the first field of the first UWB frame includes the first type of pilot symbol, the second field of the first UWB frame includes a second type of pilot symbol, the first field is the first synchronization field in the synchronization header of the first UWB frame, the second type of pilot symbol
  • the symbols are used to perform channel access or resource selection;
  • the processing unit is used to perform synchronization or ranging or channel estimation according to the first type of pilot symbols, or, according to the first type of pilot symbols and the The second type of pilot symbols performs synchronization or ranging or channel estimation.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the functions of the second device described in the third aspect.
  • a storage unit sometimes also referred to as a storage module
  • a seventh aspect provides a communication device.
  • the communication device may be a first device, or a chip or chip system used in a first device; or the communication device may be a second device, or a chip system used in a second device.
  • the communication device includes a communication interface and a processor, and optionally, a memory. Wherein, the memory is used to store computer programs, and the processor is coupled to the memory and the communication interface. When the processor reads the computer program or instructions, the communication device causes the communication device to execute the first device or the second device or the third device in the above aspects. Three methods performed by the device.
  • An eighth aspect provides a communication system, including a first device and a second device, wherein the first device is used to perform the communication method as described in the first aspect, and the second device is used to perform the communication method as described in the third aspect. the communication method described above.
  • the communication system further includes a third device, where the third device is used to perform the communication method described in the second aspect.
  • a ninth aspect provides a computer-readable storage medium, the computer-readable storage medium being used to store a computer program or instructions that, when executed, enable the first device, the second device, or the third device in the above aspects. The executed method is implemented.
  • a computer program product containing instructions which when run on a computer enables the methods described in the above aspects to be implemented.
  • a chip system including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
  • Figure 1 is a schematic diagram of the pulse waveform sent by the UWB device
  • Figures 2A to 2D are schematic structural diagrams of UWB frames
  • Figure 3 is a schematic diagram of how pilot symbols are generated
  • Figure 4 is another structural diagram of a UWB frame
  • Figure 5 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 6 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figures 7A and 7B are two schematic diagrams of the location of the second synchronization field in the embodiment of the present application.
  • Figure 8A is a schematic diagram of the second field in the embodiment of the present application.
  • Figure 8B is another schematic diagram of the second field in the embodiment of the present application.
  • Figure 9 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of yet another device provided by an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • the ordinal words such as “first” and “second” mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first cycle and the second cycle can be the same cycle or different cycles, and this name does not indicate the duration, application scenarios, priority or importance of the two cycles. different.
  • the numbering of steps in the various embodiments introduced in this application is only to distinguish different steps and is not used to limit the order between steps. For example, S601 may occur before S602, or may occur after S602, or may occur simultaneously with S602.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (such as Such as communication module, modem, or chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart cities, drones, robots and other scenarios.
  • scenarios including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality
  • the terminal equipment may sometimes be referred to as a UE, a terminal, an access station, a UE station, a remote station, a wireless communication device, a user device, or the like.
  • the terminal device is described by taking a UE as an example.
  • the network equipment in the embodiment of the present application includes, for example, access network equipment and/or core network equipment.
  • the access network device is a device with a wireless transceiver function and is used to communicate with the terminal device.
  • the access network equipment includes but is not limited to base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transceiver point (transmission reception point, TRP), third generation Base stations for the subsequent evolution of the 3rd generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc. Multiple base stations can support networks with the same access technology or networks with different access technologies.
  • a base station may contain one or more co-located or non-co-located transmission and reception points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server or the like.
  • the network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • the access network equipment is described below using a base station as an example.
  • the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
  • Terminal devices can communicate with multiple base stations in different access technologies.
  • the core network equipment is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • the names of devices that implement core network functions in systems with different access technologies may be different, and the embodiments of this application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or User plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • UPF User plane function
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • the sending device can carry the information that needs to be transmitted on the pulse waveform and send it. For example, for a pulse p(t) with a duration of T, in the modulation method based on binary phase shift keying (BPSK), if the information bit is "1", then p(t) can be sent; If the information bit is "0", then -p(t) can be sent. By detecting whether the amplitude of the received waveform is 1 or -1, the receiving device can determine whether the corresponding information bit is "1" or "0". Assuming that the information bit stream that the sending device needs to transmit is "11010", the sent pulse waveform can be as shown in Figure 1.
  • BPSK binary phase shift keying
  • the UWB physical layer frame structure can contain such as The next item or items: synchronization header (SHR), physical header (PHY header, PHR), physical payload (PHY payload), or scrambled timestamp sequence (scrambled timestamp sequence, STS), etc.
  • the physical load can also be called a physical load or a physical layer service data unit (PHY service data unit, PSDU);
  • the SHR can also include a synchronization (SYNC) field and/or a start-of-frame delimiter (SFD). ) fields, etc.
  • SHR is mainly used for synchronization, channel estimation, or ranging.
  • the PHR mainly carries information used to decode the data carried by the physical payload.
  • STS is mainly used for ranging, where ranging can also be described as positioning or sensing, etc.
  • the embodiment of this application takes ranging as an example for description.
  • the SYNC field may include N psym repeated pilot symbols, for example, the pilot symbols are represented by Si .
  • a pilot symbol Si can be generated by a pilot code (preamble code) C i .
  • the pilot code is, for example, a sequence, which may also be called a pilot code sequence or a pilot sequence.
  • the length of the pilot code C i is K. It can also be understood that the pilot code C i contains K elements. By inserting L-1 zeros between two adjacent elements of the pilot code C i , a pilot code C i can be generated.
  • the pilot symbol S i that is, the length of the pilot symbol S i is L ⁇ K and occupies a total of L ⁇ K chips.
  • L is an integer greater than or equal to 1.
  • L can be determined based on factors such as the multipath delay spread of the channel.
  • the SFD field can be passed through the spreading code of length N SFD
  • the pilot symbols Si are spread and generated.
  • the receiving device can achieve synchronization or channel estimation by detecting the pilot symbol Si in the SYNC field from the sending device.
  • the receiving device can detect the pilot symbols by performing correlation operations on the local pilot symbols Si and the received signals, using the good autocorrelation properties of the pilot sequences and the good cross-correlation properties between different pilot sequences. , which can ensure the reliability of detection.
  • the receiving device can determine the starting position of the PHR or physical payload or STS by detecting the SFD field from the sending device. That is, if the receiving device correctly detects the SFD field, it can be considered that the SFD field is followed by the PHR or physical payload or STS. Then after the SFD field ends, you can start decoding the data carried by the PHR and/or the physical payload, or start detecting the STS. Under different parameter configurations, the length of SHR may be different, and the length of UWB frame may also be different.
  • different sending devices in order to reduce interference between devices, different sending devices generally use different pilot codes. If the cross-correlation between the pilot code used by the target sending device and the pilot code used by the interfering sending device is small, the target receiving device can suppress the interference by correlating the received signal with the pilot code used by the target sending device. . Generally speaking, the longer the sequence, the better the cross-correlation properties between different sequences, that is, the easier it is to find a set of sequences with smaller cross-correlation. Therefore, the format of pilot symbols used by the transmitting device can be adjusted according to channel conditions or interference conditions.
  • the length of the pilot code used to generate the pilot symbols can be shorter (for example, a sequence with a length of 31 is used as the pilot code) to save the number of pilot symbols. overhead; or, when the channel conditions are poor or when the interference is large, the length of the pilot code used to generate the pilot symbol can be longer (for example, a sequence with a length of 127 is used as the pilot code), so as to pass the longer Long sequences are used to improve cross-correlation properties and thus better suppress interference.
  • the target receiving device only needs to further decode the PHR and/or physical payload when detecting the pilot symbol format used by the target sending device, without the need to PHR and/or physical payloads from all sending devices are decoded to reduce decoding complexity for receiving devices.
  • UWB devices can perform clear channel assessment (CCA) before sending. If the channel is found to be idle, it can send, otherwise it cannot send.
  • CCA clear channel assessment
  • the IEEE 802.15.4/4z protocol defines 6 different CCA modes (mode), as follows:
  • CA mode 1 Energy detection. If the energy of the signal received by the receiving device is greater than the energy detection threshold, the channel is considered busy, otherwise the channel is considered idle.
  • (2)CCA mode 2 Carrier sensing. If the receiving device detects a signal using the same physical layer modulation and spreading characteristics as the receiving device, the channel is considered busy, otherwise the channel is considered idle.
  • (3)CCA mode 3 Carrier sensing and/or energy detection. If the receiving device detects a signal using the same physical layer modulation and spreading characteristics as the receiving device, and/or the received energy of the signal is greater than the energy detection threshold, the channel is considered busy, otherwise the channel is considered idle.
  • (4)CCA mode 4 ALOHA.
  • the channel is always considered free.
  • (5)CCA mode 5 SHR-based pilot detection. If a pilot symbol is detected, the channel is considered busy, while if no pilot symbol is detected within time T, the channel is considered idle. Wherein, T is greater than or equal to the sum of the duration of the maximum UWB frame and the feedback duration of the response message (acknowledgment, ACK).
  • (6)CCA mode 6 Pilot detection based on PHR or physical load. If a pilot symbol is detected, the channel is considered busy.
  • the physical layer frame structure for mode 6 is shown in Figure 4. It can be seen that both the PHR and the physical load are divided into multiple segments. For example, the segments included in the PHR are called PHR segments, and the segments included in the physical load are called physical load segments.
  • a pilot symbol can be inserted between two adjacent segments included in the PHR and the physical payload, and the inserted pilot symbol is the same as the pilot symbol in the SHR, for example, both are Si .
  • the duration of each segment included in the PHR and physical payload is predefined.
  • CCA based on energy detection the device performing CCA needs to detect pilot symbols.
  • pilot symbols are generated based on pilot sequences, and there may be many pilot sequence formats available in a channel.
  • the existing protocol stipulates that each channel can support 2 sequences with a length of 31, 4 sequences of length 127, and 8 sequences of length 91.
  • the UWB device performs CCA, it needs to blindly detect pilot symbols of all formats, which has high complexity and power consumption.
  • the length of the sequence is a, which can indicate that the sequence includes a elements. For example, if the length of a sequence is 31, it means that the sequence contains 31 elements.
  • the first UWB frame generated by the first device may additionally include a second type of pilot symbol in a specific format.
  • the device can determine whether the channel is busy by detecting the second type of pilot symbols. It is equivalent to the embodiment of this application stipulating the format of pilot symbols used to perform channel access or resource selection. The device can determine whether the channel is busy by detecting the pilot symbols of this format without detecting too many formats of pilot symbols. , which can reduce the detection complexity of pilot symbols and also reduce the power consumption of the device.
  • Figure 5 is an application scenario of an embodiment of the present application.
  • Figure 5 includes a first device, a second device, a third device and a fourth device.
  • these four devices are all UWB devices.
  • a device has UWB function (for example, the device is equipped with a UWB chip)
  • the device can be called a UWB device.
  • the device may also have other functions.
  • a mobile phone may have the UWB function, but the mobile phone may also have a call function, etc., which are not limited by the embodiments of this application.
  • the first device is the sending end of the UWB signal 1, that is, the first device can send the UWB signal 1, such as a UWB frame, and the UWB frame can be used for ranging, for example, or can also be used Regarding other communication functions, the embodiments of this application do not limit this.
  • the first device sends the UWB signal 1 on the first channel
  • the receiving end of the UWB signal 1 is the second device, so the second device can receive the UWB signal 1 .
  • the third device is a device that performs detection, and can also be called a detection device.
  • the third device is about to send a UWB signal, and the busy and idle status of the channel can be determined through detection.
  • the third device can also receive the UWB signal 1 to Detection is performed based on the UWB signal. If the third device determines that the first channel is idle according to the detection result, or determines that there are available resources on the first channel, it may send the UWB signal 2 on the first channel; or if the third device determines that the first channel is busy, or determines that there are available resources on the first channel If there are no available resources on the first channel, UWB signal 2 will not be sent temporarily.
  • the first device is a network device or a terminal device; the second device is a network device or a terminal device; and the third device is a network device or a terminal device.
  • the technical solutions provided by the embodiments of the present application will be introduced below with reference to the accompanying drawings.
  • all optional steps are represented by dotted lines in the corresponding drawings.
  • the methods provided by various embodiments of the present application are applied to the network architecture shown in Figure 5.
  • the first device described in various embodiments of this application is, for example, the first device in the network architecture shown in Figure 5
  • the second device described in various embodiments of this application is, for example, the network architecture shown in Figure 5.
  • the second device in , the third device described in various embodiments of this application is, for example, the third device in the network architecture shown in Figure 5 .
  • channel access includes, for example, CCA, listen before talk (LBT), or carrier sense multiple access (CSMA) processes.
  • CCA is mainly used as an example.
  • Figure 6 is a flow chart of a communication method provided by an embodiment of the present application.
  • the first device generates the first UWB frame.
  • the first UWB frame may include a first field and a second field, the first field includes a first type of pilot symbol, and the second field includes a second type of pilot symbol.
  • the first field is, for example, a synchronization field in the SHR of the first UWB frame, and the synchronization field is, for example, called the first synchronization field.
  • the second type of pilot symbols can be used to perform channel access or resource selection.
  • the first type of pilot symbols can be used for one or more of synchronization, ranging, or channel estimation.
  • the second type of pilot symbols can also be used to perform one or more of synchronization, ranging, or channel estimation. That is, the first type of pilot symbols and the second type of pilot symbols can be used to perform synchronization. , ranging, or channel estimation, etc. one or more.
  • the first type of pilot symbols are not used to perform channel access, nor are they used to perform resource selection, etc. That is, the device that performs detection (such as a third device) does not perform channel access based on the first type of pilot symbols, nor is it used to perform channel access based on the first type of pilot symbols.
  • the first type of pilot symbols performs resource selection, etc.
  • the first type of pilot symbol is, for example, the pilot symbol S i introduced above.
  • the first type of pilot symbols may have a first type of format
  • the second type of pilot symbols may have a second type of format.
  • the first type format and the second type format may be the same or different.
  • the second type of format may be a relatively fixed format.
  • the second type of UWB signals sent multiple times by the first device or other sending devices may all have the same format; while the first type of format may be a variable format.
  • the first type of pilot symbol is the pilot symbol S i introduced above. According to the above introduction, it can be seen that the format of the first type of pilot symbol used by the transmitting device can be adjusted according to channel conditions or interference conditions.
  • the first type format used between the first device and the second device this time may be the same or different from the first type format used next time, or the UWB signal sent by the first device to the second device uses the first type format.
  • the class format and the first class format used by the UWB signal sent by the first device to other target receiving devices may be the same or different.
  • the format of the second type pilot symbol (ie, the second type format) is, for example, predefined, or determined by negotiation between the first device and at least one device.
  • At least one device may include a second device and/or a third device, or may not include the second device and the third device; or it may be configured by a group head device, which is used within the communication group where the first device is located. Yu Guan Manage the management equipment of other nodes.
  • the second type of pilot symbols may be applicable to all UWB devices in the communication system where the first device is located, that is, the second type of pilot symbols are set for the communication system.
  • the second type of pilot symbols may be applicable to the first type of channels, which may include one or more channels.
  • different types of channels may correspond to their own pilot symbols for performing channel access or resource selection, and the formats of the pilot symbols corresponding to different types of channels may be the same or different; or, the second type of pilot symbols may be applicable
  • different channels may respectively correspond to their own pilot symbols for performing channel access or resource selection, and the pilot symbols corresponding to different channels may be the same or different.
  • the format of a pilot symbol may indicate the pilot symbol, or in other words, the pilot symbol can be determined based on the format of the pilot symbol.
  • the format of the pilot symbol may indicate the value of each element included in the pilot symbol and the arrangement of the respective elements included in the pilot symbol.
  • the format of the pilot symbol may also indicate the number of elements included in the pilot symbol, or the length of the pilot symbol. The number of elements included in the pilot symbol is equal to the length of the pilot symbol.
  • the second type of pilot symbol is a sequence, and the format of the second type of pilot symbol may indicate the value of each element included in the sequence and the arrangement of the elements included in the sequence.
  • the pilot code used to generate the second type of pilot symbol can be any sequence in the existing protocol.
  • the pilot code may be a ternary sequence, such as a sequence with a length of 31, a sequence with a length of 91, or a sequence with a length of 127, etc. These ternary sequences have, for example, perfect periodic autocorrelation characteristics.
  • the pilot code may also be other sequences, such as m-sequences, which have good autocorrelation properties.
  • the second field has many different implementation methods, as shown in the following examples.
  • the second field is another synchronization field in the SHR of the first UWB frame (referring to another synchronization field except the first synchronization field).
  • the other synchronization field is, for example, called the second synchronization field.
  • the third device performs channel access through CCA mode 5 introduced earlier, such as performing CCA by detecting pilot symbols in the SHR from other devices, this implementation method can be used; or if the third device This implementation can be performed by detecting the second type of pilot symbols to perform resource selection.
  • the third device performs channel access through CCA mode 5 introduced previously.
  • Figure 7A and Figure 7B are two schematic diagrams of the second synchronization field, in which S 0 represents the second type of pilot symbol, Si represents the first type of pilot symbol, SYNC1 represents the first synchronization field, and SYNC2 represents the second type of pilot symbol.
  • Sync fields In Figure 7A, the second synchronization field is located before the first synchronization field in the SHR; in Figure 7B, the second synchronization field is located after the first synchronization field in the SHR. That is, the embodiment of the present application does not limit the position of the second synchronization field.
  • the SFD field also includes pilot symbols.
  • the SFD field may include the first type of pilot symbols. , or may also include a second type of pilot symbol.
  • which type of pilot symbol the SFD field includes can be predefined, or determined through negotiation between the first device and the second device, or configured by the first device.
  • the first device can send a second pilot symbol to the second device.
  • the second configuration information may also indicate the number of repetitions of the second type of pilot symbol in the SFD field, and/or indicate two adjacent second type pilot symbols in the SFD field. The spacing between pilot-like symbols.
  • channel access or resource selection can be performed by detecting the second type of pilot symbols. It can be considered that the third device has no detection requirements for the first type of pilot symbols. For example, the third device does not need to detect the first type of pilot symbols; for the second device, synchronization can be performed by detecting the first type of pilot symbols. , one or more of ranging or channel estimation. For the second type of pilot symbol, the second device may or may not detect it. The following introduces several detection methods of the second device.
  • the second device may not detect the second type of pilot symbol.
  • the second device can detect the first synchronization field and determine the position of the SFD field by detecting the first type of pilot symbols. By detecting the first type of pilot symbols included in the SFD field, the position of the PHR or physical load or STS field can be determined, thereby completing processing such as decoding the data.
  • This format of the first UWB frame can reduce the detection complexity of the second device, and this format is also more conducive to compatibility with existing formats.
  • the second device can also detect the second type of pilot symbol, for example, detect the second type of pilot symbol in the second synchronization field according to the parameters of the second type of pilot symbol, To complete one or more processes of synchronization, ranging, or channel estimation based on the first type of pilot symbols and the second type of pilot symbols. One or more of the processes of synchronization, ranging, or channel estimation are completed based on the first type of pilot symbols and the second type of pilot symbols. Since the number of reference pilot symbols is larger, the processing results can be made more precise. precise.
  • the second device may detect the second type of pilot symbol according to the parameters of the second type of pilot symbol. Class pilot symbols. For example, the second device may first detect the first type of pilot symbols, perform synchronization based on the first type of pilot symbols, determine the starting positions of the first type of pilot symbols and/or the second type of pilot symbols, and then perform synchronization based on the first type of pilot symbols. By detecting the second type of pilot symbols included in the SFD field, the position of the PHR or physical load or STS field can be determined, thereby completing processing such as decoding the data.
  • the second device can also detect the second type of pilot symbols from the beginning.
  • the second type of pilot symbols detected can be the second type of pilot symbols in the second synchronization field, so that the second device can detect the second type of pilot symbols according to the format of the first UWB frame.
  • the first type of pilot symbols and the second type of pilot symbols complete one or more processes such as synchronization, ranging, or channel estimation.
  • the second device may not detect the second type of pilot symbol.
  • the second device may first detect the first type of pilot symbols.
  • the detected pilot symbols may be the first type of pilot symbols in the first synchronization field, and the position of the second synchronization field may be determined based on the detection.
  • the second device can determine the end position of the second synchronization field according to the parameters of the second type of pilot symbol, and thus can determine the position of the SFD field accordingly.
  • the second device can determine the location of the PHR or physical payload or STS field, thereby completing processing such as decoding the data.
  • the second device can also detect the second type of pilot symbols. For example, after detecting the first type of pilot symbols in the first synchronization field, the second device can also detect the second type of pilot symbols according to the second type of pilot symbols. Detect the second type of pilot symbol in the second synchronization field based on the parameters of the frequency symbol to complete one or more of synchronization, ranging, or channel estimation based on the first type of pilot symbol and the second type of pilot symbol. .
  • the second synchronization field is located after the first synchronization field, and the first UWB frame includes an SFD field, and the SFD field includes a second type of pilot symbol, then the second device can detect the second type of pilot symbol according to the parameters of the second type of pilot symbol. Pilot symbols.
  • the second device may first detect the first type of pilot symbols.
  • the detected pilot symbols may be the first type of pilot symbols in the first synchronization field, and the position of the second synchronization field may be determined based on the detection.
  • the second device can determine the end position of the second synchronization field according to the parameters of the second type of pilot symbol, so that the position of the SFD field can be determined accordingly; or the second device can detect the second type of pilot within the second synchronization field.
  • the second device can determine the PHR or physical load or STS. The position of the field to complete processing such as decoding the data.
  • the second device may complete synchronization, ranging, or One or more of the processes such as channel estimation; or, if the second device performs detection on the second type of pilot symbols in the second synchronization field, the second device can complete synchronization based on the first type of pilot symbols, One or more of the processes such as ranging or channel estimation, or the second device can complete one or more of the processes of synchronization, ranging, or channel estimation based on the first type of pilot symbols and the second type of pilot symbols, or Multiple items.
  • the parameters of the second type of pilot symbols involved in the above various detection methods include (or indicate) the format of the second type of pilot symbols; or include (or indicate) the second type of pilot symbols.
  • the number of repetitions of the second type of pilot symbols for example, includes the number of repetitions of the second type of pilot symbols in the second field (for example, the second synchronization field), and/or includes the number of repetitions of the second type of pilot symbols in other fields.
  • the number of repetitions within e.g. SFD field
  • the number of repetitions of the second type pilot symbol in other fields may not be indicated by parameters of the second type pilot symbol, but may be configured by other information, for example, by the second configuration information sent by the first device.
  • the second type of pilot symbols may be continuously distributed, or may also be distributed discretely. Therefore, the parameters of the second type pilot symbols may include the interval between two adjacent second type pilot symbols. This interval can be expressed as a duration. If the second type pilot symbols are continuously distributed, the interval between two adjacent second type pilot symbols is 0; or if the second type pilot symbols are discretely distributed, then the interval between two adjacent second type pilot symbols is 0. The space between symbols is greater than 0. In different fields, the intervals between two adjacent second-type pilot symbols may be equal or unequal. If they are not equal, they may be configured separately through the parameters of the second-type pilot symbols.
  • the parameters of the second type pilot symbol include the format of the second type pilot symbol, for example, the index of the second type pilot symbol.
  • multiple formats of second-type pilot symbols can be preset, and each format of second-type pilot symbols corresponds to an index. Then, by indicating one of the indexes, the second-type pilot symbol can be uniquely indicated.
  • the second device can determine the format of the second type of pilot symbol based on the index.
  • the parameters of the second type pilot symbol include the format of the second type pilot symbol, for example, the value of each element included in the second type pilot symbol, and the arrangement information of the elements.
  • the second type of pilot symbol is a sequence c
  • the sequence c is, for example, c 1 , c 2 ,..., c n , that is, the sequence c includes n elements, and c 1 to c n are these n elements.
  • value, n is a positive integer.
  • the format of the second type of pilot symbol may include the values of the n elements, and may include the arrangement information of the n elements.
  • the arrangement information may indicate that c 1 is ranked before c 2 , and c 2 is ranked before c 3 . etc.
  • the parameters of the second type pilot symbol include the format of the second type pilot symbol, for example, the information of the pilot code used to generate the second type pilot symbol, and two adjacent elements of the pilot code.
  • the information of the pilot code used to generate the second type of pilot symbol is, for example, the index of the pilot code, and one pilot code can be uniquely determined according to the index. If the pilot code is determined, the values of the elements included in the pilot code and the arrangement of these elements are also determined. Further combined with the number of "0"s to be inserted between two adjacent elements of the pilot code, the value of each element included in the second type of pilot symbol and the arrangement of these elements can be determined.
  • the format of the second type pilot symbol may also include other contents, or the format of the second type pilot symbol may also be indicated in other ways.
  • the first UWB frame including the SFD field is used as an example. If the first UWB frame does not include the SFD field, the second device may not detect the SFD field (the third device may not detect the SFD field as well). For example, the second device can determine the PHR or physical load based on the end position of the second synchronization field. or the location of the STS field, This completes the decoding and other processing of the data.
  • the number of repetitions of the second type pilot symbols in the second synchronization field and/or the index of the second type pilot symbols may be the same or different.
  • the second device can detect the second type of pilot symbol according to the parameters of the second type of pilot symbol, and then the second device can predetermine the parameters of the second type of pilot symbol.
  • the first device may send first configuration information, and the first configuration information may be used to configure parameters of the second type of pilot symbols.
  • the receiving end of the first configuration information includes, for example, the second device and/or a third device. If the first device receives the first configuration information, the second device can determine the parameters of the second type of pilot symbol based on the first configuration information.
  • the parameters of the second type of pilot symbol may be determined through negotiation between the first device and other devices, and the other devices may include the second device and/or the third device.
  • the second device can learn the negotiation result; if the other devices do not include the second device, the first device can send the second type of pilot symbols determined through negotiation to the second device.
  • the parameters of the second type of pilot symbol may also be preset values.
  • the preset value may be predefined through a protocol.
  • the third device wants to detect the second type of pilot symbols, it can also perform detection based on the parameters of the second type of pilot symbols.
  • the method by which the third device obtains the parameters of the second type pilot symbol is similar to the method by which the second device obtains the parameters. Please refer to the previous introduction.
  • the content of the parameters of the second type pilot symbol can also be referred to the previous section and will not be described in detail.
  • the parameters of the first type of pilot symbols can be configured by the first device to the second device, and the second device can detect the first type of pilot symbols accordingly.
  • the first device may configure the parameters of the first type of pilot symbols through the first configuration information, or the first device may also send other configuration information to configure the parameters of the first type of pilot symbols.
  • the reception of the other configuration information The terminal may include a second device, or a second device and a third device.
  • the parameters of the first type of pilot symbol may also be determined by the first device through negotiation with other devices.
  • the other devices may include, for example, the second device and/or the third device, or may not include the second device and the third device. .
  • the parameters of the first type of pilot symbol include, for example, (or indicate) the format of the first type of pilot symbol; or include (or indicate) the format of the first type of pilot symbol and the number of repetitions of the first type of pilot symbol; Or it includes (or indicates) the format of the first type pilot symbol, the number of repetitions of the first type pilot symbol, and the interval between two adjacent first type pilot symbols.
  • the number of repetitions of the first type of pilot symbols is, for example, the number of repetitions of the first type of pilot symbols in the first synchronization field.
  • the second device since the format of the first type of pilot symbols is not fixed, that is, the format of the first type of pilot symbols sent by each sending device may be the same or different, and the second device may detect signals from multiple Type 1 pilot symbols of a transmitting device. Therefore, the second device can determine the first type of pilot symbol from the first device through blind detection. For example, the second device may perform blind detection based on parameters of the first type of pilot symbols to determine the first type of pilot symbols from the first device.
  • the third device selects resources by detecting the second type of pilot symbols.
  • the first UWB frame may include resource reservation information.
  • the resource reservation information may be included in the PHR of the first UWB frame or included in the physical payload of the first UWB frame.
  • the resource reservation information may be included in the PHR of the first UWB frame.
  • the media access control (MAC) header of a UWB frame the MAC header is carried in the physical payload.
  • the resource reservation information may indicate a time offset between the resources reserved by the first device and the current UWB frame (eg, the first UWB frame), and indicate a duration of the resources reserved by the first device.
  • the resource reservation information may indicate a resource reservation period, that is, the first device may reserve resources for one or more periods, where the location of the resources reserved by the first device within one period is, for example, the same as the location of the resource reservation period.
  • the position of a UWB frame in the current cycle is the same.
  • the duration of the resources reserved by the first device is, for example, predefined, or may be the same as the duration of the first UWB frame. Same between.
  • Resource selection may also be called resource exclusion, etc. It can be understood that if the third device detects the second type of pilot symbol, it can further detect the PHR or physical load to obtain resource reservation information. The third device can determine the resources reserved by the first device based on the resource reservation information, so that the third device can determine that the resources reserved by the first device are unavailable resources. Optionally, the third device may determine that the resources reserved by the first device are unavailable resources based on the power or energy of the received signal from the first device. For example, if the power or energy of the pilot symbol received by the third device from the first device is greater than the first preset value, the third device determines that the resources reserved by the first device are unavailable resources.
  • the second synchronization field may be located after the first synchronization field, for which reference may be made to FIG. 7B.
  • the third device needs to detect the first synchronization field after detecting the second synchronization field. That is, in addition to detecting the second synchronization field, the third device needs to detect the second synchronization field.
  • the second synchronization field can be placed after the first synchronization field.
  • the third device can learn the start of the PHR and/or physical load by detecting the second type of pilot symbols in the second synchronization field. position, and then start to detect the PHR and/or physical load, there is no need to blindly detect the first type of pilot symbols in the first synchronization field.
  • the SFD field may include a second type of pilot symbol.
  • the third device also needs to detect the SFD field to determine the location of the PHR and/or physical load. If the SFD field includes the first type of pilot symbols, the third device needs to blindly detect the first type of pilot symbols. In order to reduce the detection complexity, the SFD field can be made to include a second type of pilot symbol, and then the third device can detect the PHR and/or physical load by detecting the second type of pilot symbol.
  • the third device can detect the second type of pilot symbol according to the parameters of the second type of pilot symbol. Please refer to the above and will not go into details.
  • the second field includes the PHR and/or physical payload in the first UWB frame.
  • the second field includes a field in the PHR and/or physical payload in the first UWB frame, or in other words, the second field is included in the PHR and/or physical payload in the first UWB frame.
  • This implementation can be used, for example, if a third device performs channel access through CCA mode 6 introduced earlier, such as by detecting pilot symbols in the PHR or physical payload from other devices.
  • Multiple fragments are included within the PHR and/or physical payload.
  • the fragments included in the PHR can also be called PHR fragments
  • the fragments included in the physical payload can also be called physical payload fragments.
  • Adjacent segments within the PHR and/or physical payload may include a field for carrying pilot symbols.
  • the field between adjacent segments for carrying pilot symbols is called a pilot field
  • the PHR and/or Or the physical payload may include multiple pilot fields, where each pilot field may carry one or more second-type pilot symbols.
  • the second field may include all or part of the pilot field within the PHR and/or physical payload.
  • the number of second type pilot symbols carried by different pilot fields may be equal or unequal.
  • the second device When detecting the first UWB frame, the second device can determine the interval between adjacent segments based on the parameters of the second type of pilot symbol in the pilot field, thereby being able to decode the content included in the segments. In this way, the third device only needs to detect the second field according to the parameters of the second type pilot symbol without decoding the PHR.
  • the parameters of the second type of pilot symbol please refer to the previous article.
  • the parameters of the second type of pilot symbol include the first
  • the number of repetitions of the second type pilot symbol is, for example, the number of repetitions of the second type pilot symbol in one of the pilot fields. Within different pilot fields, the number of repetitions of the second type pilot symbols can be equal.
  • FIG. 8A is a schematic diagram of the second field, in which S 0 represents the second type of pilot symbol, and Si represents the first type of pilot symbol.
  • S 0 represents the second type of pilot symbol
  • Si represents the first type of pilot symbol.
  • Both the PHR and the physical payload include segments, and pilot fields are included between adjacent segments.
  • One pilot field may include one or more S 0 .
  • channel access is achieved by detecting the second type of pilot symbols in the pilot field in the PHR and/or the physical payload, for example, the busy and idle status of the channel can be determined.
  • the second device since the parameters of the second type of pilot symbols in the pilot field are known, the intervals between adjacent segments can be determined, thereby being able to decode content included in the PHR and/or physical payload segments.
  • the second device can complete one or more of the processing of synchronization, ranging, or channel estimation by detecting the first type of pilot symbols included in the synchronization field in the SHR.
  • the configuration method of the parameters of the first type pilot symbol please refer to the previous introduction.
  • the duration of CCA performed by the device performing channel access is It can be greater than or equal to T1+T2+T3 to ensure that the device can detect at least one pilot field.
  • the second field includes the first synchronization field and/or SFD field in the SHR of the first UWB frame; in addition, the second field also includes the PHR and/or physical load in the first UWB frame, or the second field includes A field in the PHR and/or physical payload within the first UWB frame, or a part of the second field is included in the PHR and/or physical payload within the first UWB frame.
  • the second field includes one or more of the first subfield, the second subfield, the third subfield or the fourth subfield.
  • the first subfield is the first synchronization field in the SHR of the first UWB frame;
  • the second subfield is the SFD field;
  • the third subfield is the PHR in the first UWB frame;
  • the fourth subfield is the first UWB frame.
  • Each subfield may include multiple segments.
  • the segments included in the first synchronization field may also be called first synchronization segments
  • the segments included in the SFD may also be called SFD segments
  • the segments included in the PHR may also be called It is called a PHR fragment
  • the fragments included in the physical payload can also be called physical payload fragments.
  • a field used to carry pilot symbols may be included between adjacent segments in each subfield.
  • the field used to carry pilot symbols between adjacent segments is called a pilot field, and each subfield may include multiple fields.
  • the number of second type pilot symbols carried by different pilot fields may be equal or unequal.
  • the detection method of the second type pilot symbols and/or the first type pilot symbols by various devices please refer to the previous introduction. .
  • the time interval between adjacent pilot fields in the same subfield can be the first An integer multiple of the duration of a type of pilot symbol (for example, represented as S i ), for example, the time interval between adjacent pilot fields in the first synchronization field (or the duration of a first synchronization segment) may be S An integer multiple of the duration of i , or the time interval between adjacent pilot fields within the SFD field (or the duration of an SFD segment) may be an integer multiple of the duration of Si , or the time interval between adjacent pilot fields within the PHR.
  • the time interval between frequency fields can be an integer multiple of the duration of Si , or the time interval between adjacent pilot fields within the physical load (or the duration of a physical load segment). Duration) can be an integer multiple of the duration of Si to reduce the probability of synchronization/ranging/channel estimation performance degradation due to discontinuous transmission of a certain Si .
  • FIG. 8B is a schematic diagram of the second field, in which S 0 represents the second type of pilot symbol, and Si represents the first type of pilot symbol.
  • Figure 8B takes the example that the first synchronization field (field shown as SYNC in Figure 8B), SFD field, PHR, and physical load all include segments. Adjacent segments include pilot fields, and one pilot field may include one or more S 0 . Within the same subfield, the interval between adjacent pilot fields is an integer multiple of the duration of Si .
  • Figure 8B shows the interval between adjacent pilot fields within the SFD field.
  • the interval between adjacent pilot fields can also be an integer multiple of the duration of Si .
  • mode C assuming that the maximum time interval between adjacent pilot fields in the same subfield (or the maximum duration of a segment) is T1, and the maximum duration of a pilot field is T2, channel access is performed.
  • the duration of CCA performed by the device can be greater than or equal to T1+T2 to ensure that the device can detect at least one pilot field.
  • the first device sends the first UWB frame on the first channel.
  • the second device receives the first UWB frame on the first channel.
  • the third device may perform channel access or resource selection on the first channel.
  • the third device may also detect the first UWB frame (for example, the third device may detect the second type of pilot symbols in the first UWB frame, or may detect the second type of pilot symbols in the first UWB frame and The first type of pilot symbol), therefore it can also be considered that the third device has received the first UWB frame in S602.
  • the first device may also perform channel access or resource selection.
  • the first device may detect second type pilots from other devices on the first channel. symbols to perform channel access or resource selection.
  • the specific process please refer to the execution process of the third device, which will not be described again.
  • the second device performs one or more of synchronization, ranging, or channel estimation based on the first type of pilot symbols.
  • the second device performs one or more of synchronization, ranging, or channel estimation based on the first type of pilot symbols and the second type of pilot symbols.
  • the second device can detect the first type of pilot symbols and not detect the second type of pilot symbols, thereby reducing the detection complexity and power consumption of the second device.
  • the second device can also detect the second type of pilot symbols and the first type of pilot symbols.
  • the second device uses the first type of pilot symbols and the second type of pilot symbols to perform synchronization, ranging, or channel estimation. One or more of them to improve the accuracy of processing results.
  • the third device determines the busy or idle status of the first channel or determines unavailable resources on the first channel based on the detection result of the second type of pilot symbol in the second field. In other words, the third device determines the busy or idle status of the first channel or determines the unavailable resources on the first channel based on the second type of pilot symbols.
  • S603 can occur before S604, or after S604, or at the same time as S604.
  • the third device can detect the energy of the second type of pilot symbols to determine whether the first channel is busy or determine unavailable resources on the first channel; or, the third device can also detect the second type of pilot symbols.
  • power for example, detecting the received power of the third device for the second type of pilot symbol
  • detecting the energy of the second type of pilot symbol is taken as an example. If power is detected, determining whether the channel is busy or determining unavailable resources on the channel is similar.
  • the third device if it performs channel access on the first channel, it can determine whether the first channel is busy based on the detection result of the second type of pilot symbol. If a second type pilot symbol is detected in the second field (for example, including one or more of the following: second synchronization field, SFD, or PHR and/or physical load), and the second type pilot symbol is determined If the energy of the symbol is greater than the first threshold, it can be determined that the first channel is busy; or, if the third device does not detect the second type of pilot symbol, or although the second type of pilot symbol in the second field is detected, the second type of pilot symbol is detected.
  • a second type pilot symbol is detected in the second field (for example, including one or more of the following: second synchronization field, SFD, or PHR and/or physical load), and the second type pilot symbol is determined If the energy of the symbol is greater than the first threshold, it can be determined that the first channel is busy; or, if the third device does not detect the second type of pilot symbol, or although the second type of pilot
  • the third device may determine that the first channel is idle. In this case, the third device can determine whether the first channel is busy by detecting a second type pilot symbol without having to detect too many The second type of pilot symbols is beneficial to reducing detection complexity.
  • the third device may determine that the first channel is busy; or if the third device does not detect the second type pilot symbols, or although multiple second type pilot symbols in the second field are detected, the average energy of the multiple second type pilot symbols is less than or equal to the second threshold, then the third device may determine the third One channel is free.
  • the plurality of second-type pilot symbols may be continuously detected second-type pilot symbols, or may also be discrete second-type pilot symbols.
  • the first threshold and the second threshold may be equal or unequal.
  • the average energy of multiple second-type pilot symbols is a relatively stable value and can better reflect the current real state of the first channel. By detecting multiple second-type pilot symbols to determine whether the first channel is busy, it can improve Determine the accuracy of the results.
  • the third device may determine that the first channel is busy; or, if the third device The third device does not detect the second type pilot symbol within the first duration, or although one or more second type pilot symbols in the second field are detected within the first duration, the one or more second type pilot symbols are not detected within the first duration. If the average energy of the pilot-like symbol is less than or equal to the third threshold, the third device may determine that the first channel is idle.
  • the plurality of second-type pilot symbols may be second-type pilot symbols detected continuously within the first time period, or may be discrete second-type pilot symbols.
  • the one or more second-type pilot symbols may be all or part of the second-type pilot symbols detected within the first time period.
  • the first duration may be preset, for example, predefined through a protocol; or the duration may also be determined by a third device.
  • the first duration is the duration of M pilot symbols.
  • the first duration is the sum of the duration of M pilot symbols and the duration of one segment.
  • the M pilot symbols are, for example, M first-type pilot symbols or M second-type pilot symbols, and M is a positive integer.
  • the first threshold, the second threshold and the third threshold may be equal, or all three may be unequal, or any two of them may be equal and the other may be unequal to the two.
  • the energy of the second type of pilot symbol refers to the energy received by the third device for the second type of pilot symbol.
  • the third device can detect the received power of the second type of pilot symbol, and according to the received power and reception time and other factors can determine the received energy for the second type of pilot symbol.
  • the third device can detect parameters such as reference signal received power (RSRP) or reference signal receiving quality (RSRQ) of the second type pilot symbol to detect the second type pilot symbol. Detection of received power of frequency symbols.
  • RSRP reference signal received power
  • RSRQ reference signal receiving quality
  • the third device may also perform resource selection on the first channel.
  • the format of the first UWB frame may refer to the introduction of mode b in mode A in S601.
  • the third device can detect the second type of pilot symbol in the SFD field through the detection result of the second type of pilot symbol in the second synchronization field. According to the detection result of the SFD field, the third device can decode the PHR of the first UWB frame, thereby obtaining the resource reservation information included in the PHR.
  • the third device can obtain the resource reservation information included in the physical payload by decoding the physical payload.
  • the resource reservation information indicates the resources reserved by the first device.
  • the third device can determine that the resources reserved by the first device are unavailable. resources, and the remaining resources except the unavailable resources are, for example, available resources, and the third device can use the available resources to send UWB signals.
  • the third device wants to perform channel access, it only needs to detect the second type of pilot symbols to determine the busy and idle status of the channel; and if it wants to perform resource selection, in addition to detecting the second type of pilot symbols, it also needs to Detect PHR or physical loads.
  • the third device may not determine whether the first channel is busy based on the second type of pilot symbol, but may continue to detect the PHR or physical load to determine the resource reservation.
  • the resources indicated by the leaving information are unavailable resources, and the remaining resources are available resources.
  • the third device can also determine whether the first channel is busy based on the second type of pilot symbols.
  • the third device also continues to detect the PHR or physical load to obtain resource reservation information. If the third device successfully decodes the resource reservation information and determines that the first channel is busy based on the detection result of the second type of pilot symbol, the third device determines that the resource indicated by the resource reservation information is unavailable.
  • the third device determines that the first channel is busy based on the detection result of the second type of pilot symbol, Then the third device determines that the first channel is busy and cannot continue to select resources on the first channel; or if the third device fails to decode the resource reservation information, and the third device determines based on the detection result of the second type pilot symbol
  • the third device considers that the first channel is idle, and at this time the first channel as a whole is an available resource; or, if the third device successfully decodes the resource reservation information, and the third device determines that the first channel is idle according to the second category If the detection result of the pilot symbol determines that the first channel is idle, the third device determines that the resources indicated by the resource reservation information are unavailable resources, and the remaining resources are available resources, or the third device also determines that the resources indicated by the resource reservation information are unavailable resources.
  • the first channel can be considered idle.
  • the duration for the third device to perform channel access or resource selection may be preset, for example, predefined through a protocol; or the duration may also be determined by the third device.
  • the duration is called a second duration, and the second duration is, for example, the duration of N pilot symbols, and the pilot symbols are, for example, first type pilot symbols or second type pilot symbols.
  • the third device may not send the UWB signal on the first channel, for example, the third device may reselect another channel.
  • the third device can also perform channel access or resource selection on the first channel again after randomly backing off for a period of time.
  • the third device may continue to detect on the first channel, or perform channel access or resource selection, until it is determined that the first channel is idle or that there are available resources on the first channel, or until the number of attempts reaches up to the maximum times threshold.
  • the first UWB frame generated by the first device may include a second type of pilot symbol, and the second type of pilot symbol is used to perform channel access or resource selection.
  • the device can determine the busy and idle status of the channel or determine the available resources by detecting the second type of pilot symbols. It is equivalent to the embodiment of this application stipulating the format of pilot symbols used to perform channel access or resource selection. The device that performs detection can determine whether the channel is busy by detecting the pilot symbols of this format without detecting too many formats. Pilot symbols, thereby reducing the detection complexity of pilot symbols and reducing the power consumption of the device.
  • the receiving device for example, the second device of the first UWB frame
  • the second device can also detect both the first type of pilot symbols and the second type of pilot symbols, so that synchronization, ranging or channel estimation can be performed based on the first type of pilot symbols and the second type of pilot symbols. or multiple items to improve the accuracy of processing results.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be the first device or the circuit system of the first device in the embodiment shown in FIG. 6, and is used to implement the method corresponding to the first device in the above method embodiment.
  • the communication device 900 may be the second device or the circuit system of the second device in the embodiment shown in FIG. 6, used to implement the method corresponding to the second device in the above method embodiment.
  • the communication device 900 may be the third device or the circuit system of the third device in the embodiment shown in FIG. 6, used to implement the method corresponding to the third device in the above method embodiment.
  • one circuit system is a chip system.
  • the communication device 900 includes at least one processor 901 .
  • the processor 901 can be used for internal processing of the device to implement A certain control and processing function is now available.
  • processor 901 includes instructions.
  • processor 901 can store data.
  • different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
  • communication device 900 includes one or more memories 903 for storing instructions.
  • the memory 903 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 900 includes a communication line 902 and at least one communication interface 904.
  • the memory 903, the communication line 902, and the communication interface 904 are all optional, they are all represented by dotted lines in FIG. 9 .
  • the communication device 900 may also include a transceiver and/or an antenna.
  • the transceiver may be used to send information to or receive information from other devices.
  • the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 900 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter can be used to generate a radio frequency signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 901 may include a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 902 may include a path that carries information between the above-mentioned components.
  • Communication interface 904 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Cable access network etc.
  • the memory 903 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory 903 may exist independently and be connected to the processor 901 through a communication line 902. Alternatively, the memory 903 can also be integrated with the processor 901.
  • the memory 903 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 901 for execution.
  • the processor 901 is configured to execute computer execution instructions stored in the memory 903, thereby implementing the steps performed by the first device described in the embodiment shown in Figure 6, or to implement the second step described in the embodiment shown in Figure 6
  • the steps performed by the device, or the steps performed by the third device described in the embodiment shown in Figure 6 are implemented.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the communication device 900 may include multiple processors, such as the processor 901 and the processor 905 in FIG. 9 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and /or a processing core for processing data (such as computer program instructions).
  • the chip When the device shown in Figure 9 is a chip, such as a chip of a first device, a chip of a second device, or a chip of a third device, the chip includes a processor 901 (which may also include a processor 905), a communication Line 902, memory 903 and communication interface 904.
  • the communication interface 904 may be an input interface, a pin or a circuit, etc.
  • Memory 903 may be a register, cache, etc.
  • the processor 901 and the processor 905 may be a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the communication method of any of the above embodiments.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • FIG. 10 shows a schematic diagram of a device.
  • the device 1000 may be the first device, the second device, or the third device involved in the above method embodiments. , or it is a chip in the first device or a chip in the second device or a chip in the third device.
  • the device 1000 includes a sending unit 1001, a processing unit 1002 and a receiving unit 1003.
  • the device 1000 can be used to implement the steps performed by the first device, the second device, or the third device in the communication method of the embodiment of the present application.
  • the device 1000 can be used to implement the steps performed by the first device, the second device, or the third device in the communication method of the embodiment of the present application.
  • relevant features refer to the embodiment shown in Figure 6 above, which is not shown here. Again.
  • the functions/implementation processes of the sending unit 1001, the receiving unit 1003 and the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling computer execution instructions stored in the memory 903.
  • the function/implementation process of the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the functions/implementation of the sending unit 1001 and the receiving unit 1003 in Figure 10 The process can be implemented through the communication interface 904 in Figure 9.
  • the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 can also be implemented through pins or circuits.
  • This application also provides a computer-readable storage medium that stores a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run, the first device or the second device or the computer program in the foregoing method embodiment is implemented. The method executed by the third device.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions.
  • Storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the foregoing method embodiments by the first device or the second device. Or a method executed by a third device.
  • Embodiments of the present application also provide a processing device, including a processor and an interface; the processor is configured to execute the method executed by the first device, the second device, or the third device involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer machine, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed by general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (ASICs), and field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form in the field in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the first device and/or the second device and/or the third device may perform some or all of the steps in the embodiments of the present application. These steps or operations are only examples. The embodiments of the present application may , you can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。第一设备生成第一UWB帧,并在第一信道上发送第一UWB帧。第一UWB帧的第一字段包括第一类导频符号,第一UWB帧的第二字段包括第二类导频符号,第一字段为第一UWB帧的同步头内的第一同步字段,第二类导频符号用于执行信道接入或资源选择。第一类导频符号具有第一类格式,第二类导频符号具有特定的第二类格式。本申请实施例额外提供了用于执行信道接入或资源选择的导频符号,该额外提供的导频符号具有特定的格式,设备通过检测该格式的导频符号即可确定信道是否繁忙,而无需检测过多格式的导频符号,由此可以降低导频符号的检测复杂度,也能减小设备的功耗。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年06月09日提交中国国家知识产权局、申请号为202210653486.3、申请名称为“一种UWB信道接入方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年07月26日提交中国国家知识产权局、申请号为202210882961.4、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
超宽带(ultra-wide band,UWB)技术可通过发送纳秒量级的短脉冲来实现高精度定位或者数据传输。为了降低不同设备之间的干扰,UWB设备可以在发送信号之前进行空闲信道评估(clear channel assessment,CCA),如果确定信道空闲,则可以进行发送,否则不能进行发送。目前定义了6种不同的CCA模式,主要可以分为两大类,一类是基于能量检测的CCA,另一类是基于导频检测的CCA。
在基于导频检测的CCA中,执行CCA的设备如果检测到来自其他UWB设备的导频符号(preamble symbol),则认为信道繁忙,不能接入信道。导频符号是通过导频序列生成,而一个信道内可用的导频序列的格式可能较多,例如现有协议规定,每个信道可支持2个长度为31的序列、4个长度为127的序列、以及8个长度为91的序列。那么UWB设备在执行CCA时,需要对所有格式的导频符号进行盲检,复杂度和功耗都较高。
发明内容
本申请实施例提供一种通信方法及装置,用于减小导频符号的检测复杂度,以及减小设备功耗。
第一方面,提供一种通信方法,该方法可由第一设备执行,或由包括第一设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现第一设备的功能,该芯片***或功能模块例如设置在第一设备中。第一设备例如为网络设备或终端设备。例如,第一设备具有UWB功能。该方法包括:生成第一UWB帧,所述第一UWB帧的第一字段包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;在第一信道上发送所述第一UWB帧。
本申请实施例中,第一设备所生成的第一UWB帧可包括第二类导频符号,第二类导频符号就用于执行信道接入或资源选择,且第二类导频符号具有第二类格式。例如有其他设备要执行信道接入,例如执行CCA,那么该设备通过检测具有第二类格式的第二类导频 符号就能确定信道是否繁忙。相当于本申请实施例额外提供了用于执行信道接入或资源选择的导频符号,该额外提供的导频符号具有特定的格式,设备通过检测该格式的导频符号即可确定信道是否繁忙,而无需检测过多格式的导频符号,由此可以降低导频符号的检测复杂度,也能减小设备的功耗。
在一种可选的实施方式中,所述第一类导频符号用于进行同步或测距或信道估计,或,所述第一类导频符号和所述第二类导频符号用于进行同步或测距或信道估计。对于第一UWB帧的接收设备来说,可以不检测第二类导频符号,而只是通过检测第一类导频符号来进行同步、测距或信道估计等,有利于降低检测复杂度。或者,接收设备也可以既检测第一类导频符号也检测第二类导频符号,以根据这两类导频符号进行同步、测距或信道估计等,有利于提高处理结果的准确性。
在一种可选的实施方式中,所述第一类导频符号不用于执行信道接入或资源选择。本申请实施例是通过第二类导频符号执行信道接入或资源选择,而第一类导频符号不用于执行信道接入或资源选择,对于执行信道接入或资源选择的设备来说可以不必检测第一类导频符号,由此能够降低检测复杂度。
在一种可选的实施方式中,所述第二字段为所述同步头内的第二同步字段。第二字段可以是同步头内的第二同步字段,则对于执行信道接入或资源选择的设备来说,可以尽早检测到第二类导频符号,以提高信道接入或资源选择的效率。
在一种可选的实施方式中,所述第一UWB帧还包括物理头和/或物理负载,所述物理头和/或物理负载包括资源预留信息,用于指示所述第一设备预留的资源。例如第一设备执行的业务是周期性业务,则第一设备可能需要利用周期性的资源来传输。那么第一设备可以通过资源预留信息来预留一个或多个周期内的资源,从而不必为每个资源单独发送用于选择资源的消息,有利于节省传输开销。
在一种可选的实施方式中,所述同步头还包括SFD字段,所述SFD字段包括所述第二类导频符号。第一UWB帧包括资源预留信息,执行资源选择的设备可以通过获得该资源预留信息来进行资源选择。那么该设备除了检测同步头内的第二同步字段外,还要检测SFD字段,这样才能继续检测物理头和/或物理载荷。为此,可以令SFD字段也包括第二类导频符号,而第二类导频符号的格式是该设备所知晓的,从而该设备通过检测第二类导频符号就能检测SFD字段,而不必检测第一类导频符号,有利于降低该设备的检测复杂度。
在一种可选的实施方式中,所述第二字段包括多个片段,所述多个片段中相邻的片段之间用于承载一个或多个所述第二类导频符号,其中相邻片段之间所述第二类导频符号的参数的重复次数为预设值。可选的,第二字段包括第一UWB帧内的物理头和/或物理载荷。例如,第二字段也可以是物理头和/或物理载荷,则不必改变第一UWB帧的同步头。执行信道接入或资源选择的设备通过检测物理头和/或物理载荷内的第二类导频符号,也能确定信道是否繁忙,或确定不可用资源。
在一种可选的实施方式中,所述方法还包括:发送第一配置信息,所述第一配置信息用于配置所述第二类导频符号的参数;或,与其他设备协商确定所述第二类导频符号的参数;或,所述第二类导频符号的参数为预设值。可选的,第二设备例如为第一UWB帧的接收设备(或者说,目标接收设备)。第二类导频符号的参数,可以预定义,例如是预定义的预设值(例如该预设值可通过协议预定义,或者也可以是第一设备所在的通信***预定义,或者也可以是第一设备的生产商预定义等),则对于多个设备来说,所发送的UWB 帧的第二同步字段的时长都是一致的,则UWB帧的接收设备不必检测第二类导频符号,而是根据第二类导频符号的参数可以确定第二同步字段的时长,以检测其他字段;执行信道接入或资源选择的设备则能够对第二类导频符号进行检测。或者,第二类导频符号的参数也可由第一设备配置,或者第一设备与其他设备协商确定等,所述其他设备例如包括第二设备和/或第三设备,或者不包括第二设备和第三设备。
在一种可选的实施方式中,所述第二类导频符号的参数包括所述第二类导频符号的格式;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式和所述第二类导频符号的重复次数;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式、所述第二类导频符号的重复次数和相邻两个第二类导频符号的间隔。其中,第二类导频符号的格式例如可指示第二类导频符号包括的每个元素的值,以及元素的排列顺序,即,根据第二类导频符号的格式可以确定第二类导频符号。第二类导频符号的重复次数,例如为第二类导频符号在第二字段内的重复次数,和/或为第二类导频符号在其他字段内的重复次数。在第二字段或其他字段内,第二类导频符号可以连续分布,或者也可以离散分布,因此第二类导频符号的参数可以包括相邻的两个第二类导频符号之间的间隔,该间隔例如用时长表示。总之,根据第二类导频符号的参数可以确定第二类导频符号的格式,或者,既可以确定第二类导频符号的格式,也可以确定第二类导频符号的排布(例如重复次数或间隔)。
在一种可选的实施方式中,所述第二类导频符号适用于所述第一设备所在的***内的所有UWB设备;或,所述第二类导频符号适用于第一类信道,所述第一信道属于所述第一类信道;或,所述第二类导频符号是组头设备配置的,所述组头设备是所述第一设备所在的通信组内的管理设备;或,所述第二类导频符号是所述第一设备与至少一个设备协商确定的。第二类导频符号的配置方式可能有多种,具体不做限制。
在一种可选的实施方式中,用于生成所述第二类导频符号的导频码为三元自相关序列,或为m序列。例如,该三元自相关序列的长度可以是31、91或127等。或者,还可利用其他的已有序列来作为生成第二类导频符号的导频码,对此不做限制。
第二方面,提供另一种通信方法,该方法可由第三设备执行,或由包括第三设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现第三设备的功能,该芯片***或功能模块例如设置在第三设备中。第三设备例如为网络设备或终端设备。例如,第三设备具有UWB功能。可选的,第三设备为执行信道接入或资源选择的设备。该方法包括:在执行信道接入或资源选择的过程中,在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;根据对所述第二字段内的所述第二类导频符号的检测结果,确定所述第一信道的忙闲状态,或确定所述第一信道上的不可用资源。
在一种可选的实施方式中,所述方法还包括:不根据所述第一类导频符号确定所述第一信道的忙闲状态,以及不根据所述第一类导频符号确定所述第一信道上的不可用资源。
在一种可选的实施方式中,根据对所述第二字段内的所述第二类导频符号的检测结果确定所述第一信道的忙闲状态,包括:如果检测到所述第二字段内的一个所述第二类导频符号的能量大于第一阈值,确定所述第一信道为繁忙;或,如果检测到所述第二字段内的多个所述第二类导频符号的平均能量大于第二阈值,确定所述第一信道为繁忙。可以通过 对一个第二类导频符号的检测来确定信道是否繁忙,由此能够提高效率;或者,也可以通过对多个第二类导频符号的检测来确定信道是否繁忙,以提高确定结果的准确性。
在一种可选的实施方式中,所述第二字段为所述第一UWB帧的同步头内的第二同步字段。
在一种可选的实施方式中,根据所述第二字段内的所述第二类导频符号的检测结果确定所述第一信道的不可用资源,包括:根据所述第二同步字段内的所述第二类导频符号的检测结果,检测所述同步头中的SFD字段包括的所述第二类导频符号;根据所述SFD字段的检测结果,解码所述第一UWB帧包括的物理头和/或物理负载;获取所述物理头和/或物理负载包括的资源预留信息,所述资源预留信息用于指示所述第一设备预留的资源;确定所述第一设备预留的资源为所述不可用资源。如果第一UWB帧包括SFD字段,则可以采用这种检测解码的方式。
在一种可选的实施方式中,根据所述第二字段内的所述第二类导频符号的检测结果确定所述第一信道的不可用资源,包括:根据所述第二同步字段内的所述第二类导频符号的检测结果,解码所述第一UWB帧包括的物理头和/或物理负载;获取所述物理头和/或物理负载包括的资源预留信息,所述资源预留信息用于指示所述第一设备预留的资源;确定所述第一设备预留的资源为所述不可用资源。如果第一UWB帧不包括SFD字段,则可以采用这种检测解码的方式。
在一种可选的实施方式中,所述同步头还包括SFD字段,所述SFD字段包括所述第二类导频符号。
在一种可选的实施方式中,所述第二字段包括所述第一UWB帧内的物理头和/或物理载荷。
在一种可选的实施方式中,所述方法还包括:接收来自所述第一设备的第一配置信息,所述第一配置信息用于配置所述第二类导频符号的参数;或,与所述第一设备协商确定所述第二类导频符号的参数;或,所述第二类导频符号的参数为预设值。
在一种可选的实施方式中,所述第二类导频符号的参数包括所述第二类导频符号的格式;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式和所述第二类导频符号的重复次数;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式、所述第二类导频符号的重复次数和相邻两个第二类导频符号的间隔。
在一种可选的实施方式中,所述第二类导频符号适用于所述第一设备所在的***内的所有UWB设备;或,所述第二类导频符号适用于第一类信道,所述第一信道属于所述第一类信道;或,所述第二类导频符号是组头设备配置的,所述组头设备是所述第一设备所在的通信组内的管理设备;或,所述第二类导频符号是所述第一设备与至少一个设备协商确定的。
关于第二方面或一些可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第三方面,提供又一种通信方法,该方法可由第二设备执行,或由包括第二设备功能的其他设备执行,或由芯片***或其他功能模块执行,该芯片***或功能模块能够实现第二设备的功能,该芯片***或功能模块例如设置在第二设备中。第二设备例如为网络设备或终端设备。例如,第二设备具有UWB功能。该方法包括:在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB 帧的第二字段内包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;根据所述第一类导频符号进行同步或测距或信道估计,或,根据所述第一类导频符号和所述第二类导频符号进行同步或测距或信道估计。
在一种可选的实施方式中,所述第二字段为所述同步头内的第二同步字段。
在一种可选的实施方式中,所述方法还包括:接收来自所述第一设备的第一配置信息,所述第一配置信息用于配置所述第二类导频符号的参数;或,与所述第一设备协商确定所述第二类导频符号的参数;或,所述第二类导频符号的参数为预设值。
在一种可选的实施方式中,所述第二类导频符号的参数包括所述第二类导频符号的格式;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式和所述第二类导频符号的重复次数;或者,所述第二类导频符号的参数包括所述第二类导频符号的格式、所述第二类导频符号的重复次数和相邻两个第二类导频符号的间隔。
在一种可选的实施方式中,所述方法还包括:接收来自所述第一设备的第二配置信息,所述第二配置信息用于配置所述同步头包括的SFD字段内包括所述第一类导频符号或所述第二类导频符号。
在一种可选的实施方式中,所述第二字段包括所述第一UWB帧的物理头和/或物理载荷。
在一种可选的实施方式中,所述第二类导频符号适用于所述第一设备所在的***内的所有UWB设备;或,所述第二类导频符号适用于第一类信道,所述第一信道属于所述第一类信道;或,所述第二类导频符号是组头设备配置的,所述组头设备是所述第一设备所在的通信组内的管理设备;或,所述第二类导频符号是所述第一设备与至少一个设备协商确定的。
关于第三方面或各种可选的实施方式所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第四方面,提供一种通信装置。所述通信装置可以为上述第一方面所述的第一设备,或为包括该第一设备的通信设备,或为该第一设备中的功能模块,例如基带装置或芯片***等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
其中,所述处理单元,用于生成第一UWB帧,所述第一UWB帧的第一字段包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择;所述收发单元(或,所述发送单元),用于在第一信道上发送所述第一UWB帧。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述 通信装置执行上述第一方面所述的第一设备的功能。
第五方面,提供另一种通信装置。所述通信装置可以为上述第二方面所述的第三设备,或为包括该第三设备的通信设备,或为该第三设备中的功能模块,例如基带装置或芯片***等。所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块),关于收发单元的介绍可参考第四方面。
其中,所述收发单元(或,所述接收单元),用于在执行信道接入或资源选择的过程中,在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段;所述处理单元,用于根据对所述第二字段内的所述第二类导频符号的检测结果,确定所述第一信道的忙闲状态,或确定所述第一信道上的不可用资源。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第二方面所述的第三设备的功能。
第六方面,提供又一种通信装置。所述通信装置可以为上述第三方面所述的第二设备,或为包括该第二设备的通信设备,或为该第二设备中的功能模块,例如基带装置或芯片***等。所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块),关于收发单元的介绍可参考第四方面。
其中,所述收发单元(或,所述接收单元),用于在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB帧的第二字段内包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择;所述处理单元,用于根据所述第一类导频符号进行同步或测距或信道估计,或,根据所述第一类导频符号和所述第二类导频符号进行同步或测距或信道估计。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第三方面所述的第二设备的功能。
第七方面,提供一种通信装置,该通信装置可以为第一设备,或者为用于第一设备中的芯片或芯片***;或者,该通信装置可以为第二设备,或者为用于第二设备中的芯片或芯片***;或者,该通信装置可以为第三设备,或者为用于第三设备中的芯片或芯片***。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由第一设备或第二设备或第三设备所执行的方法。
第八方面,提供一种通信***,包括第一设备以及第二设备,其中,第一设备用于执行如第一方面所述的通信方法,且,第二设备用于执行如第三方面所述的通信方法。
可选的,该通信***还包括第三设备,其中,第三设备用于执行如第二方面所述的通信方法。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一设备或第二设备或第三设备所执行的方法被实现。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十一方面,提供一种芯片***,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片***实现上述各方面的方法。
附图说明
图1为UWB设备发送的脉冲波形示意图;
图2A~图2D为UWB帧的几种结构示意图;
图3为导频符号的生成方式示意图;
图4为UWB帧的另一种结构示意图;
图5为本申请实施例的一种应用场景示意图;
图6为本申请实施例提供的一种通信方法的流程图;
图7A和图7B为本申请实施例中第二同步字段的位置的两种示意图;
图8A为本申请实施例中第二字段的一种示意图;
图8B为本申请实施例中第二字段的另一种示意图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一周期和第二周期,可以是同一个周期,也可以是不同的周期,且,这种名称也并不是表示这两个周期的持续时长、应用场景、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S601可以发生在S602之前,或者可能发生在S602之后,或者也可能与S602同时发生。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例 如,通信模块,调制解调器,或芯片***等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)***中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的***中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以5G***为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片***,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
如下介绍本申请实施例涉及的技术特征。
UWB技术可通过发送纳秒量级的短脉冲实现高精度定位或数据传输。在UWB通信***中,发送设备可以将需要传输的信息携带在脉冲波形上进行发送。例如对于一个持续时间为T的脉冲p(t),在基于二进制相移键控(binary phase shift keying,BPSK)的调制方式中,如果信息比特为“1”,则可以发送p(t);如果信息比特为“0”,则可以发送-p(t)。接收设备通过检测接收波形的幅度是1还是-1,就可以判决对应的信息比特是“1”还是“0”。假设发送设备需要传输的信息比特流为“11010”,则所发送的脉冲波形可以如图1所示。
参见图2A~图2D,为UWB帧的几种结构示意图。UWB物理层帧结构中可以包含如 下一项或多项:同步头(synchronization header,SHR),物理头(PHY header,PHR),物理载荷(PHY payload),或,加扰时间戳序列(scrambled timestamp sequence,STS)等。其中,物理载荷也可以称为物理负载或物理层业务数据单元(PHY service data unit,PSDU);SHR又可包括同步(SYNC)字段和/或帧开始分界符(start-of-frame delimiter,SFD)字段等。其中SHR主要用于同步、信道估计、或测距等。PHR主要携带用于解码物理载荷所承载的数据的信息。STS主要用于测距,其中测距也可以描述为定位或感知等,本申请实施例以测距为例进行描述。
如图2A~图2D中的任一个附图所示,SYNC字段可包括Npsym个重复的导频符号,例如该导频符号用Si表示。另外可再参考图3,为生成导频符号的一种示意图。从图3可见,一个导频符号Si可通过一个导频码(preamble code)Ci生成,导频码例如为序列,也可称为导频码序列或导频序列。其中导频码Ci的长度为K,也可以理解为导频码Ci包含K个元素,通过在导频码Ci的相邻两个元素之间***L-1个零,可生成导频符号Si,即,导频符号Si的长度为L×K,共占据L×K个码片(chip)。L为大于或等于1的整数,例如L可根据信道的多径时延扩展等因素确定。其中每个码片的长度为Tc,可用于发送一个短脉冲。例如,当信道带宽为500MHz时,Tc=2ns。SFD字段可通过长度为NSFD的扩频码对导频符号Si进行扩频而生成。接收设备通过检测来自发送设备的SYNC字段内的导频符号Si,可实现同步或信道估计等。例如,接收设备可用本地的导频符号Si与接收的信号进行相关运算来实现对导频符号的检测,利用导频序列良好的自相关特性和不同的导频序列之间良好的互相关特性,可保证检测的可靠性。接收设备通过检测来自发送设备的SFD字段,可确定PHR或物理载荷或STS的起始位置,即,如果接收设备正确检测到SFD字段,则可认为SFD字段之后即为PHR或物理载荷或STS,则在SFD字段结束后可以开始对PHR和/或物理载荷所承载的数据进行解码,或者开始检测STS。在不同的参数配置下,SHR的长度可能不同,UWB帧的长度也可能不同。
一方面,为了降低设备之间的干扰,不同的发送设备一般采用不同的导频码。如果目标发送设备采用的导频码与干扰发送设备采用的导频码之间的互相关较小,则目标接收设备可以通过将接收信号与目标发送设备采用的导频码进行相关运算来抑制干扰。一般来说,序列越长,则不同序列之间的互相关性质越好,即,越容易找到互相关较小的序列集合。因此,发送设备采用的导频符号的格式可以根据信道条件或干扰情况进行调整。例如,在信道条件较好时或者在干扰较小时,用于生成导频符号的导频码的长度可以较短(例如采用长度为31的序列作为该导频码),以节省导频符号的开销;或者,在信道条件较差时或者在干扰较大时,用于生成导频符号的导频码的长度可以较长(例如采用长度为127的序列作为该导频码),以通过较长的序列来提高互相关性质,从而更好地抑制干扰。
另一方面,如果不同的发送设备采用不同的导频符号格式,则目标接收设备只有在检测到目标发送设备采用的导频符号格式时才需要进一步解码PHR和/或物理载荷,而不需要对来自所有发送设备的PHR和/或物理载荷进行解码,以降低接收设备的解码复杂度。
为了降低不同设备之间的干扰,UWB设备可以在发送之前进行空闲信道评估(clear channel assessment,CCA),如果发现信道空闲则可以进行发送,否则不能进行发送。IEEE 802.15.4/4z协议定义了6种不同的CCA模式(mode),具体如下:
(1)CCA mode 1:能量检测。如果接收设备所接收的信号的能量大于能量检测阈值,则认为信道繁忙,否则认为信道空闲。
(2)CCA mode 2:载波侦听。如果接收设备检测到与该接收设备使用相同的物理层调制和扩频特征的信号,则认为信道繁忙,否则认为信道空闲。
(3)CCA mode 3:载波侦听和/或能量检测。如果接收设备检测到与该接收设备使用相同的物理层调制和扩频特征的信号,和/或该信号的接收能量大于能量检测阈值,则认为信道繁忙,否则认为信道空闲。
(4)CCA mode 4:ALOHA。总是认为信道空闲。
(5)CCA mode 5:基于SHR的导频检测。如果检测到一个导频符号,则认为信道繁忙,而如果在时间T内没有检测到导频符号,则认为信道空闲。其中,T大于或等于最大UWB帧的持续时长与应答消息(acknowledgment,ACK)反馈时长之和。
(6)CCA mode 6:基于PHR或物理载荷的导频检测。如果检测到一个导频符号,则认为信道繁忙。其中,针对该mode 6的物理层帧结构如图4所示。可以看到,PHR和物理载荷均被划分为多个片段(segment),例如PHR包括的片段称为PHR片段,物理载荷包括的片段称为物理载荷片段。在PHR和物理载荷所包括的相邻的两个片段间可***一个导频符号,且***的导频符号与SHR中的导频符号相同,例如均为Si。PHR和物理载荷所包括的每个片段的时长是预定义的。
如上的六种CCA大概分为两类检测方式,一类是基于能量检测的CCA,另一类是基于导频检测的CCA。其中在基于导频检测的CCA中,执行CCA的设备需要检测导频符号。根据如上介绍可知,导频符号是根据导频序列生成,而一个信道内可用的导频序列的格式可能较多,例如现有协议规定,每个信道可支持2个长度为31的序列、4个长度为127的序列、以及8个长度为91的序列。那么UWB设备在执行CCA时,需要对所有格式的导频符号进行盲检,复杂度和功耗都较高。其中,序列的长度为a,可表明该序列包括a个元素。例如,一个序列的长度为31,则表明该序列包括31个元素。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,第一设备所生成的第一UWB帧可额外包括特定格式的第二类导频符号,其它设备在执行信道接入或资源选择时,只需要对该特定格式的第二类导频符号进行检测即可,而无需盲检其它格式的导频符号。例如有其他设备要执行信道接入,那么该设备通过检测第二类导频符号就能确定信道是否繁忙。相当于本申请实施例规定了用于执行信道接入或资源选择的导频符号的格式,设备通过检测该格式的导频符号即可确定信道是否繁忙,而无需检测过多格式的导频符号,由此可以降低导频符号的检测复杂度,也能减小设备的功耗。
请参见图5,为本申请实施例的一种应用场景。图5包括第一设备、第二设备、第三设备和第四设备,例如这四个设备均为UWB设备。其中,如果一个设备具有UWB功能(例如该设备内设置有UWB芯片),则该设备就可以称为UWB设备。当然,该设备除了具有UWB功能外还可以具有其他功能,例如一个手机可以具有UWB功能,但该手机也还可以具有通话功能等,本申请实施例不做限制。第一设备为UWB信号1的发送端,即,第一设备可以发送UWB信号1,例如UWB帧,该UWB帧例如可用于测距,或者还可用 于其他通信功能,本申请实施例对此不做限制。例如第一设备在第一信道发送该UWB信号1,该UWB信号1的接收端为第二设备,因此第二设备可接收该UWB信号1。另外,第三设备为执行检测的设备,也可称为检测设备,例如第三设备即将发送UWB信号,通过检测可确定信道的忙闲状态,那么第三设备也可以接收该UWB信号1,以根据该UWB信号进行检测。如果第三设备根据检测结果确定第一信道空闲,或者确定第一信道上有可用的资源,则可以在第一信道上发送UWB信号2;或者,如果第三设备确定第一信道繁忙,或者确定第一信道上没有可用资源,则暂时不发送UWB信号2。例如,第一设备为网络设备或终端设备;第二设备为网络设备或终端设备;第三设备为网络设备或终端设备。
下面结合附图介绍本申请实施例提供的技术方案。本申请的各个实施例中,凡是可选的步骤均在对应附图中以虚线表示。在下文的介绍过程中,以本申请的各个实施例提供的方法均应用于图5所示的网络架构为例。例如,本申请的各个实施例所述的第一设备例如为图5所示的网络架构中的第一设备,本申请的各个实施例所述的第二设备例如为图5所示的网络架构中的第二设备,本申请的各个实施例所述的第三设备例如为图5所示的网络架构中的第三设备。
本申请的各个实施例中,信道接入例如包括CCA、先听后说(listen before talk,LBT)、或载波检测多址(carrier sense multiple access,CSMA)等过程。在后文中,主要以CCA为例。
请参考图6,为本申请实施例提供的一种通信方法的流程图。
S601、第一设备生成第一UWB帧。
其中,第一UWB帧可包括第一字段和第二字段,第一字段包括第一类导频符号,第二字段包括第二类导频符号。其中,第一字段例如为第一UWB帧的SHR内的同步字段,该同步字段例如称为第一同步字段。
可选的,第二类导频符号可用于执行信道接入或资源选择。第一类导频符号可用于进行同步、测距、或信道估计等一项或多项。在一些实施方式中,第二类导频符号还可用于进行同步、测距、或信道估计等一项或多项,即,第一类导频符号和第二类导频符号可用于进行同步、测距、或信道估计等一项或多项。而第一类导频符号不用于执行信道接入,也不用于执行资源选择等,即,执行检测的设备(例如第三设备)不根据第一类导频符号执行信道接入,也不根据第一类导频符号进行资源选择等。可选的,第一类导频符号例如为前文所介绍的导频符号Si
其中,第一类导频符号可以具有第一类格式,第二类导频符号可以具有第二类格式。第一类格式与第二类格式可以相同,或者也可以不同。第二类格式可以是相对固定的格式,例如第一设备或其他发送设备多次发送的UWB信号中的第二类格式可能都是相同的格式;而第一类格式可能是可变的格式,例如第一类导频符号例如为前文所介绍的导频符号Si,根据前文的介绍可知,发送设备采用的第一类导频符号的格式可以根据信道条件或干扰情况进行调整。例如,第一设备与第二设备之间本次使用的第一类格式与下一次使用的第一类格式可以相同或不同,或者,第一设备向第二设备发送的UWB信号使用的第一类格式和第一设备向其他目标接收设备发送的UWB信号使用的第一类格式可以相同或不同。
第二类导频符号的格式(即,第二类格式)例如为预定义,或者由第一设备与至少一个设备协商确定。至少一个设备可包括第二设备和/或第三设备,或者也可以不包括第二设备和第三设备;或者也可由组头设备配置,该组头设备为第一设备所在的通信组内用于管 理其他节点的管理设备。例如,第二类导频符号可以适用于第一设备所在的通信***内的所有UWB设备,即,第二类导频符号是为该通信***设置的。或者,第二类导频符号可以适用于第一类信道,第一类信道可包括一个或多个信道。例如不同类型的信道可以分别对应各自的用于执行信道接入或资源选择的导频符号,不同类型的信道对应的导频符号的格式可以相同或不同;或者,第二类导频符号可以适用于第一信道,例如不同信道可以分别对应各自的用于执行信道接入或资源选择的导频符号,不同信道对应的导频符号可以相同或不同。
一个导频符号的格式可指示该导频符号,或者说,根据导频符号的格式就能确定该导频符号。例如,导频符号的格式可以指示该导频符号包括的每个元素的值以及指示该导频符号包括的各个元素的排列方式。可选的,导频符号的格式还可指示该导频符号包括的元素的数量,或指示该导频符号的长度。其中,导频符号包括的元素的数量与该导频符号的长度相等。例如第二类导频符号为序列,第二类导频符号的格式可指示该序列包括的每个元素的值以及该序列包括的元素的排列方式。
可选的,用于生成第二类导频符号的导频码可以是现有协议中的任意一个序列。例如该导频码可以是三元序列,例如长度为31的序列、或长度为91的序列、或长度为127的序列等,这些三元序列例如具有完美周期自相关特性。或者,该导频码也可以是其他序列,例如m序列等具有良好的自相关特性的序列。
本申请实施例中,第二字段有多种不同的实现方式,如下举例介绍。
A、第二字段为第一UWB帧的SHR内的另一个同步字段(是指除了第一同步字段外的另一个同步字段),所述另一个同步字段例如称为第二同步字段。
例如,如果第三设备通过前文介绍的CCA mode 5来执行信道接入,例如通过检测来自其他设备的SHR中的导频符号来执行CCA,则可采用这种实现方式;或者,如果第三设备通过检测第二类导频符号执行资源选择,则可采用这种实现方式。
a、第三设备通过前文介绍的CCA mode 5来执行信道接入。
请参考图7A和图7B,为第二同步字段的两种示意图,其中S0表示第二类导频符号,Si表示第一类导频符号,SYNC1表示第一同步字段,SYNC2表示第二同步字段。图7A中,在SHR中第二同步字段位于第一同步字段之前;图7B中,在SHR中第二同步字段位于第一同步字段之后。即,本申请实施例对于第二同步字段的位置是不限制的。另外,如果第一UWB帧还包含SFD字段,SFD字段也包括导频符号,本申请实施例中,如果第二字段为SHR内的第二同步字段,那么SFD字段可以包括第一类导频符号,或者也可以包括第二类导频符号。可选的,SFD字段究竟包括哪一类导频符号,可预定义,或者由第一设备与第二设备协商确定,或者由第一设备配置,例如第一设备可向第二设备发送第二配置信息,以指示SFD字段包括第一类导频符号或第二类导频符号。可选的,如果SFD字段包括第二类导频符号,第二配置信息还可指示第二类导频符号在SFD字段内的重复次数,和/或指示SFD字段内相邻的两个第二类导频符号之间的间隔。
对于第三设备来说,可通过检测第二类导频符号可执行信道接入或资源选择等。可以认为,第三设备对于第一类导频符号没有检测需求,例如第三设备可以不必检测第一类导频符号;对于第二设备来说,可通过检测第一类导频符号来执行同步、测距或信道估计中的一项或多项,对于第二类导频符号,第二设备可检测也可不检测。下面介绍第二设备的几种检测方式。
(1)第二设备的第一种检测方式。
例如,如果第二同步字段位于第一同步字段之前,且第一UWB帧包括SFD字段,SFD字段包括第一类导频符号,那么第二设备可以不检测第二类导频符号。例如,第二设备通过检测第一类导频符号就可以实现对第一同步字段的检测,确定SFD字段的位置。通过对SFD字段包括的第一类导频符号的检测,就能确定PHR或物理载荷或STS字段的位置,从而完成对数据的解码等处理。第一UWB帧的这种格式可以减小第二设备的检测复杂度,而且这种格式也更有利于与已有的格式兼容。或者,在第一UWB帧的这种格式下,第二设备也可以检测第二类导频符号,例如根据第二类导频符号的参数检测第二同步字段内的第二类导频符号,以根据第一类导频符号和第二类导频符号完成同步、测距或信道估计等处理中的一项或多项。根据第一类导频符号和第二类导频符号完成同步、测距或信道估计等处理中的一项或多项,由于参考的导频符号的数量更多,因此可以使得处理结果更为准确。
(2)第二设备的第二种检测方式。
例如,如果第二同步字段位于第一同步字段之前,且第一UWB帧包括SFD字段,SFD字段包括第二类导频符号,那么第二设备可以根据第二类导频符号的参数检测第二类导频符号。例如,第二设备可以先检测第一类导频符号,根据第一类导频符号可以进行同步,确定第一类导频符号和/或第二类导频符号的起始位置,再通过对SFD字段包括的第二类导频符号进行检测,可以确定PHR或物理载荷或STS字段的位置,从而完成对数据的解码等处理。或者在第一UWB帧的这种格式下,第二设备也可以一开始就检测第二类导频符号,此时检测的可以是第二同步字段内的第二类导频符号,从而可以根据第一类导频符号和第二类导频符号完成同步、测距或信道估计等处理中的一项或多项。
(3)第二设备的第三种检测方式。
例如,第二同步字段位于第一同步字段之后,且第一UWB帧包括SFD字段,SFD字段包括第一类导频符号,那么第二设备可以不检测第二类导频符号。例如第二设备可以先检测第一类导频符号,此时检测的可以是第一同步字段内的第一类导频符号,根据检测可以确定第二同步字段的位置。第二设备根据第二类导频符号的参数,可以确定第二同步字段的结束位置,从而可以相应确定SFD字段的位置。而通过对SFD字段包括的第一类导频符号的检测,第二设备就能确定PHR或物理载荷或STS字段的位置,从而完成对数据的解码等处理。或者,在第一UWB帧的这种格式下,第二设备也可以检测第二类导频符号,例如在检测第一同步字段内的第一类导频符号后,还可以根据第二类导频符号的参数检测第二同步字段内的第二类导频符号,以根据第一类导频符号和第二类导频符号完成同步、测距或信道估计等处理中的一项或多项。
(4)第二设备的第四种检测方式。
例如,第二同步字段位于第一同步字段之后,且第一UWB帧包括SFD字段,SFD字段包括第二类导频符号,那么第二设备可以根据第二类导频符号的参数检测第二类导频符号。例如第二设备可以先检测第一类导频符号,此时检测的可以是第一同步字段内的第一类导频符号,根据检测可以确定第二同步字段的位置。第二设备根据第二类导频符号的参数,可以确定第二同步字段的结束位置,从而可以相应确定SFD字段的位置;或者,第二设备可以检测第二同步字段内的第二类导频符号,从而可以确定SFD字段的位置。而再通过对SFD字段包括的第二类导频符号的检测,第二设备就能确定PHR或物理载荷或STS 字段的位置,从而完成对数据的解码等处理。在第一UWB帧的这种格式下,如果第二设备未对第二同步字段内的第二类导频符号执行检测,则第二设备可以根据第一类导频符号完成同步、测距或信道估计等处理中的一项或多项;或者,如果第二设备对第二同步字段内的第二类导频符号执行了检测,则第二设备可以根据第一类导频符号完成同步、测距或信道估计等处理中的一项或多项,或者,第二设备可以根据第一类导频符号和第二类导频符号完成同步、测距或信道估计等处理中的一项或多项。
可选的,在如上的各种检测方式中涉及的第二类导频符号的参数,例如包括(或,指示)第二类导频符号的格式;或者包括(或,指示)第二类导频符号的格式和第二类导频符号的重复次数;或者包括(或,指示)第二类导频符号的格式、第二类导频符号的重复次数以及相邻的两个第二类导频符号的间隔。其中,第二类导频符号的重复次数,例如包括第二类导频符号在第二字段(例如,第二同步字段)内的重复次数,和/或包括第二类导频符号在其他字段(例如SFD字段)内的重复次数。或者,第二类导频符号在其他字段内的重复次数,也可以不通过第二类导频符号的参数指示,而是通过其他信息配置,例如通过第一设备发送的第二配置信息配置。
在第二字段或其他字段内,第二类导频符号可以连续分布,或者也可以离散分布。因此,第二类导频符号的参数可以包括相邻的两个第二类导频符号的间隔。该间隔可以表示为时长。如果第二类导频符号连续分布,则相邻的两个第二类导频符号的间隔为0;或者,如果第二类导频符号离散分布,则相邻的两个第二类导频符号的间隔大于0。在不同的字段内,相邻的两个第二类导频符号之间的间隔可以相等,或者也可以不相等,如果不相等,则可以通过第二类导频符号的参数分别配置。
第二类导频符号的参数包括的第二类导频符号的格式,例如为第二类导频符号的索引。例如可以预设多种格式的第二类导频符号,其中每种格式的第二类导频符号对应一个索引,那么通过指示其中一个索引,就可以唯一指示第二类导频符号。第二设备根据该索引就能确定第二类导频符号的格式。
或者,第二类导频符号的参数包括的第二类导频符号的格式,例如为第二类导频符号所包括的每个元素的值,以及元素的排列信息。举例来说,第二类导频符号为序列c,序列c例如为c1,c2,……,cn,即序列c包括了n个元素,c1~cn就是这n个元素的值,n为正整数。则第二类导频符号的格式可包括这n个元素的值,以及可包括n个元素的排列信息,例如该排列信息可指示c1排在c2之前,c2排在c3之前,等等。
或者,第二类导频符号的参数包括的第二类导频符号的格式,例如为用于生成第二类导频符号的导频码的信息,以及该导频码的相邻两个元素之间待***的“0”的数量。其中,用于生成第二类导频符号的导频码的信息,例如为该导频码的索引,根据索引可以唯一确定一个导频码。如果确定了导频码,也就确定了该导频码所包括的元素的值以及这些元素的排列方式。再进一步结合在该导频码的相邻两个元素之间待***的“0”的数量,就可以确定第二类导频符号包括的每个元素的值以及这些元素的排列方式。
如上只是举例,除此之外,第二类导频符号的格式还可以包括其他内容,或者说,还可以通过其他方式来指示第二类导频符号的格式。
如上的几种检测方式中,均是以第一UWB帧包括SFD字段为例。如果第一UWB帧不包括SFD字段,则第二设备可以不检测SFD字段(第三设备也可以不检测SFD字段),例如第二设备根据第二同步字段的结束位置就能确定PHR或物理载荷或STS字段的位置, 从而完成对数据的解码等处理。
可选的,不同的设备所发送的UWB帧中,第二类导频符号在第二同步字段内的重复次数和/或第二类导频符号的索引,可以相同,或者也可以不同。
在如上的几种检测方式中,第二设备可以根据第二类导频符号的参数检测第二类导频符号,那么第二设备可以预先确定第二类导频符号的参数。可选的,第一设备可以发送第一配置信息,第一配置信息可用于配置第二类导频符号的参数,第一配置信息的接收端例如包括第二设备和/或第三设备。如果第一设备接收了第一配置信息,则第二设备根据第一配置信息就可以确定第二类导频符号的参数。或者,第二类导频符号的参数可以是第一设备与其他设备协商确定的,所述其他设备可包括第二设备和/或第三设备。如果所述其他设备包括第二设备,则第二设备可以获知协商结果;如果所述其他设备不包括第二设备,则第一设备可以向第二设备发送协商确定的第二类导频符号的参数。或者,第二类导频符号的参数也可以是预设值,例如该预设值可通过协议预定义。
其中,第一设备向第二设备发送第一配置信息的步骤,或者第一设备与其他设备协商确定第二类导频符号的参数的步骤,例如发生在S601之前,或发生在S601之后。
第三设备要检测第二类导频符号,也可以根据第二类导频符号的参数进行检测。第三设备获得第二类导频符号的参数的方式与第二设备的获取方式类似,可参考前文介绍,另外关于第二类导频符号的参数的内容也可参考前文,不多赘述。
另外,第一类导频符号的参数可由第一设备配置给第二设备,第二设备可以据此检测第一类导频符号。例如第一设备可通过第一配置信息一并配置第一类导频符号的参数,或者第一设备也可以发送其他配置信息以配置第一类导频符号的参数,所述其他配置信息的接收端可包括第二设备,或包括第二设备和第三设备。或者,第一类导频符号的参数也可由第一设备与其他设备协商确定等,所述其他设备例如包括第二设备和/或第三设备,或者也可以不包括第二设备和第三设备。第一类导频符号的参数例如包括(或,指示)第一类导频符号的格式;或者包括(或,指示)第一类导频符号的格式和第一类导频符号的重复次数;或者包括(或,指示)第一类导频符号的格式、第一类导频符号的重复次数以及相邻的两个第一类导频符号的间隔。其中,第一类导频符号的重复次数,例如为第一类导频符号在第一同步字段内的重复次数。需要注意的是,由于第一类导频符号的格式并不固定,即,各个发送设备所发送的第一类导频符号的格式可能相同也可能不同,而第二设备可能会检测到来自多个发送设备的第一类导频符号。因此第二设备可以通过盲检的方式从中确定来自第一设备的第一类导频符号。例如第二设备可根据第一类导频符号的参数进行盲检,以确定来自第一设备的第一类导频符号。
b、第三设备通过检测第二类导频符号进行资源选择。
本申请实施例中,第一UWB帧可以包括资源预留信息,例如该资源预留信息包括在第一UWB帧的PHR中,或包括在第一UWB帧的物理载荷中,例如可以包括在第一UWB帧的媒体接入控制(media access control,MAC)头中,其中MAC头承载在物理载荷中。例如,该资源预留信息可以指示第一设备预留的资源与当前的UWB帧(例如第一UWB帧)之间的时间偏移,以及指示第一设备预留的资源的持续时间。又例如,该资源预留信息可以指示资源预留周期,即,第一设备可以预留一个或多个周期的资源,其中第一设备在一个周期内所预留的资源所在的位置例如与第一UWB帧在当前的周期内所在的位置相同,第一设备预留的资源的持续时间例如是预定义的,或者可以与第一UWB帧的持续时 间相同。
资源选择也可以称为资源排除等,对此可以理解为,第三设备如果检测到第二类导频符号,则可以进一步检测PHR或物理载荷以获取资源预留信息。第三设备根据该资源预留信息可以确定第一设备所预留的资源,从而第三设备可以确定第一设备预留的资源为不可用的资源。可选的,第三设备可以根据接收到的来自第一设备的信号的功率或能量确定第一设备预留的资源为不可用的资源。例如,如果第三设备接收到的来自第一设备的导频符号的功率或能量大于第一预设值,则第三设备确定第一设备预留的资源为不可用的资源。
可选的,第二同步字段可以位于第一同步字段之后,对此可继续参考图7B。如果第二同步字段位于第一同步字段之前,则第三设备为了检测PHR和/或物理负载,在检测第二同步字段后还需要检测第一同步字段,即,第三设备除了要检测第二类导频符号外还要盲检第一类导频符号,实现复杂度较高。因此为了减小复杂度,可以令第二同步字段位于第一同步字段之后,则第三设备通过检测第二同步字段内的第二类导频符号即可获知PHR和/或物理负载的起始位置,然后开始对PHR和/或物理负载进行检测,就不必对第一同步字段内的第一类导频符号进行盲检。
另外可选的,SFD字段可包括第二类导频符号。同理,第三设备为了检测PHR,还需要检测SFD字段才能确定PHR和/或物理负载的位置。如果SFD字段包括第一类导频符号,则第三设备又需要盲检第一类导频符号。为了降低检测复杂度,可以令SFD字段包括第二类导频符号,则第三设备通过检测第二类导频符号就可以实现对PHR和/或物理负载的检测。
同理,第三设备可以根据第二类导频符号的参数检测第二类导频符号,可参考前文,不多赘述。
B、第二字段包括第一UWB帧内的PHR和/或物理载荷。或者,第二字段包括第一UWB帧内的PHR和/或物理载荷中的字段,或者说,第二字段包括在第一UWB帧内的PHR和/或物理载荷中。
例如,如果第三设备通过前文介绍的CCA mode 6来执行信道接入,例如通过检测来自其他设备的PHR或物理载荷中的导频符号来执行CCA,则可采用这种实现方式。
PHR和/或物理载荷内包括多个片段。例如PHR内包括的片段又可称为PHR片段,物理载荷内包括的片段又可称为物理载荷片段。PHR和/或物理载荷内的相邻的片段之间可包括用于承载导频符号的字段,例如将相邻片段之间用于承载导频符号的字段称为导频字段,则PHR和/或物理载荷内可包括多个导频字段,其中每个导频字段可承载一个或多个第二类导频符号。例如,如果认为第二字段包括在第一UWB帧内的PHR和/或物理载荷中,则第二字段可以包括PHR和/或物理载荷内的全部或部分导频字段。另外,不同的导频字段所承载的第二类导频符号的数量可以相等,也可以不相等。
第二设备在检测第一UWB帧时,根据导频字段内第二类导频符号的参数,就可以确定相邻片段之间的间隔,从而能够解码片段内所包括的内容。在这种方式下,第三设备根据第二类导频符号的参数检测第二字段即可,不必解码PHR。关于第二类导频符号的参数的介绍可参考前文。其中,如果第二字段包括PHR和/或物理载荷(或者,第二字段可以包括PHR和/或物理载荷内的全部或部分导频字段),那么第二类导频符号的参数所包括的第二类导频符号的重复次数,例如为第二类导频符号在其中一个导频字段内的重复次数。在不同的导频字段内,第二类导频符号的重复次数可以相等。
可参考图8A,为第二字段的一种示意图,其中S0表示第二类导频符号,Si表示第一类导频符号。PHR和物理载荷内都包括片段,相邻片段之间包括导频字段,一个导频字段内可包括一个或多个S0
对于第三设备来说,通过检测PHR和/或物理载荷内导频字段里的第二类导频符号实现信道接入,例如可以确定信道的忙闲状态。对于第二设备来说,由于已知导频字段内第二类导频符号的参数,因此可以确定相邻片段之间的间隔,从而能够解码PHR和/或物理载荷片段内所包括的内容。
另外在这种方式下,第二设备可以通过检测SHR内的同步字段所包括的第一类导频符号来完成同步、测距或信道估计等处理中的一项或多项。关于第一类导频符号的参数的配置方式可参考前文的介绍。
在方式B下,假设一个PHR片段或物理载荷片段的最大持续时长为T1,一个导频字段的最大持续时长为T2,SHR的最大持续时长为T3,则执行信道接入的设备执行CCA的时长可以大于或等于T1+T2+T3,以保证该设备至少能够检测到一个导频字段。
C、第二字段包括第一UWB帧的SHR内的第一同步字段和/或SFD字段;另外,第二字段还包括第一UWB帧内的PHR和/或物理载荷,或者,第二字段包括第一UWB帧内的PHR和/或物理载荷中的字段,或者,第二字段的一部分包括在第一UWB帧内的PHR和/或物理载荷中。
或者理解为,第二字段包括第一子字段、第二子字段、第三子字段或第四子字段中的一项或多项。其中,第一子字段为第一UWB帧的SHR内的第一同步字段;第二子字段为SFD字段;第三子字段为第一UWB帧内的PHR;第四子字段为第一UWB帧内的物理载荷。其中,每个子字段内可包括多个片段,例如,第一同步字段内包括的片段又可称为第一同步片段,SFD内包括的片段又可称为SFD片段,PHR内包括的片段又可称为PHR片段,物理载荷内包括的片段又可称为物理载荷片段。每个子字段内的相邻片段之间可包括用于承载导频符号的字段,例如将相邻片段之间用于承载导频符号的字段称为导频字段,则每个子字段内可包括多个导频字段,其中每个导频字段可承载一个或多个第二类导频符号。另外,不同的导频字段所承载的第二类导频符号的数量可以相等,也可以不相等。
第二类导频符号在各个子字段中的分布方式,各种设备对于第二类导频符号和/或第一类导频符号的检测方式,以及其他的实施细节等,可参考前文的介绍。
可选的,在方式C中,同一个子字段内的相邻导频字段之间的时间间隔(该间隔不包括导频字段的持续时长,而是可以理解为一个片段的持续时长)可以是第一类导频符号(例如表示为Si)的持续时长的整数倍,例如第一同步字段内相邻的导频字段之间的时间间隔(或一个第一同步片段的持续时长)可以是Si的持续时长的整数倍,或SFD字段内相邻的导频字段之间的时间间隔(或一个SFD片段的持续时长)可以是Si的持续时长的整数倍,或PHR内相邻的导频字段之间的时间间隔(或一个PHR片段的持续时长)可以是Si的持续时长的整数倍,或物理载荷内相邻的导频字段之间的时间间隔(或一个物理载荷片段的持续时长)可以是Si的持续时长的整数倍,以减小因某个Si不连续发送而导致同步/测距/信道估计性能下降的情况出现的概率。
可参考图8B,为第二字段的一种示意图,其中S0表示第二类导频符号,Si表示第一类导频符号。图8B以第一同步字段(图8B中的SYNC所示的字段)、SFD字段、PHR、物理载荷内都包括片段为例,相邻片段之间包括导频字段,一个导频字段内可包括一个或多 个S0。同一个子字段内,相邻导频字段之间的间隔为Si的持续时长的整数倍,图8B示出了SFD字段内相邻导频字段之间的间隔,对于图8B未示出的第一同步字段、PHR以及物理载荷等,其相邻导频字段之间的间隔也可以是Si的持续时长的整数倍。
在方式C下,假设同一个子字段内相邻的导频字段之间的最大时间间隔(或一个片段的最大持续时长)为T1,一个导频字段的最大持续时长为T2,则执行信道接入的设备执行CCA时长可以大于或等于T1+T2,以保证该设备至少能够检测到一个导频字段。
S602、第一设备在第一信道上发送第一UWB帧。相应的,第二设备在第一信道上接收第一UWB帧。
另外,第三设备例如期望在第一信道上发送UWB信号,那么第三设备可以在第一信道上执行信道接入或资源选择。例如第三设备也可检测到第一UWB帧(例如第三设备可以检测到第一UWB帧内的第二类导频符号,或可以检测到第一UWB帧内的第二类导频符号和第一类导频符号),因此也可以认为第三设备接收了S602中的第一UWB帧。
可选的,第一设备在第一信道上发送第一UWB帧之前,也可以执行信道接入或资源选择,例如第一设备可以通过在第一信道上检测来自其他设备的第二类导频符号来执行信道接入或资源选择,具体过程可参考第三设备的执行过程,不多赘述。
S603、第二设备根据第一类导频符号进行同步、测距或信道估计中的一项或多项。或者,第二设备根据第一类导频符号和第二类导频符号进行同步、测距或信道估计中的一项或多项。
关于第二设备的检测方式可参考S601的介绍。根据前文可知,第二设备可以检测第一类导频符号且不检测第二类导频符号,由此能够降低第二设备的检测复杂度以及功耗。或者,第二设备也可以检测第二类导频符号和第一类导频符号,例如第二设备利用第一类导频符号和第二类导频符号进行同步、测距或信道估计等处理中的一项或多项,以提高处理结果的准确性。
S604、第三设备根据对第二字段内的第二类导频符号的检测结果,确定第一信道的忙闲状态,或确定第一信道上的不可用资源。或者说,第三设备根据第二类导频符号,确定第一信道的忙闲状态,或确定第一信道上的不可用资源。
关于第三设备的检测方式可参考S601的介绍。其中,S603可以发生在S604之前,或者发生在S604之后,或者与S604同时发生。
可选的,第三设备可以检测第二类导频符号的能量,以确定第一信道是否繁忙或确定第一信道上的不可用资源;或者,第三设备也可以检测第二类导频符号的功率(例如,检测第三设备对于第二类导频符号的接收功率),以确定第一信道是否繁忙或确定第一信道上的不可用资源。本申请实施例中,以检测第二类导频符号的能量为例。如果检测功率,则确定信道是否繁忙或确定信道上的不可用资源的方式也是类似的。
本申请实施例中,第三设备如果在第一信道上执行信道接入,那么可以根据第二类导频符号的检测结果来确定第一信道是否繁忙。如果检测到第二字段(例如包括如下一项或多项:第二同步字段,SFD,或,PHR和/或物理载荷)内的一个第二类导频符号,且确定该第二类导频符号的能量大于第一阈值,则可以确定第一信道繁忙;或者,如果第三设备未检测到第二类导频符号,或者虽然检测到了第二字段内的第二类导频符号,但该第二类导频符号的能量小于或等于第一阈值,则第三设备可以确定第一信道空闲。在这种情况下,第三设备通过对一个第二类导频符号的检测就能确定第一信道是否繁忙,不必检测过多的 第二类导频符号,有利于降低检测复杂度。
或者,第三设备如果确定检测到的第二字段内的多个第二类导频符号的平均能量大于第二阈值,则可以确定第一信道繁忙;或者,如果第三设备未检测到第二类导频符号,或者虽然检测到了第二字段内的多个第二类导频符号,但该多个第二类导频符号的平均能量小于或等于第二阈值,则第三设备可以确定第一信道空闲。这多个第二类导频符号可以是连续检测到的第二类导频符号,或者也可以是离散的第二类导频符号。第一阈值与第二阈值可以相等,也可以不相等。多个第二类导频符号的平均能量是相对稳定的值,更能够体现第一信道当前的真实状态,通过对多个第二类导频符号的检测来确定第一信道是否繁忙,可以提高确定结果的准确性。
或者,第三设备如果确定在第一时长内检测到的第二字段内的一个或多个第二类导频符号的平均能量大于第三阈值,则可以确定第一信道繁忙;或者,如果第三设备在第一时长内未检测到第二类导频符号,或者虽然在第一时长内检测到了第二字段内的一个或多个第二类导频符号,但该一个或多个第二类导频符号的平均能量小于或等于第三阈值,则第三设备可以确定第一信道空闲。多个第二类导频符号可以是第一时长内连续检测到的第二类导频符号,或者也可以是离散的第二类导频符号。这一个或多个第二类导频符号可以是第一时长内检测到的全部或部分第二类导频符号。第一时长可以是预设的,例如通过协议预定义;或者,该时长也可由第三设备确定。例如,第一时长为M个导频符号的持续时长。又例如,第一时长为M个导频符号的持续时长与1个片段的持续时长之和。该M个导频符号例如为M个第一类导频符号或M个第二类导频符号,M为正整数。第一阈值、第二阈值与第三阈值,这三者可以相等,或者三者均不相等,或者其中任意两者相等,而另一个与该两者不相等。
其中,第二类导频符号的能量是指第三设备对于第二类导频符号的接收能量,例如,第三设备可以检测第二类导频符号的接收功率,根据该接收功率以及接收时间等因素就可以确定对于第二类导频符号的接收能量。例如,第三设备通过检测第二类导频符号的参考信号接收功率(reference signal received power,RSRP)或参考信号接收质量(reference signal receiving quality,RSRQ)等参数,就可以实现对于第二类导频符号的接收功率的检测。
本申请实施例中,第三设备也可能是在第一信道上执行资源选择,此时第一UWB帧的格式可参考S601中A方式下的b方式的介绍。那么,第三设备通过对第二同步字段内的第二类导频符号的检测结果,可以检测SFD字段内的第二类导频符号。根据对SFD字段的检测结果,第三设备可以解码第一UWB帧的PHR,从而可以获得PHR包括的资源预留信息。或者,如果资源预留信息包括在物理载荷中,则第三设备通过解码物理载荷就可以获得物理载荷包括的资源预留信息。该资源预留信息指示的是第一设备所预留的资源,例如该资源预留信息指示的资源也位于第一信道上,那么第三设备可以确定第一设备预留的资源为不可用的资源,而除了不可用的资源外的剩余资源例如为可用的资源,第三设备可以利用可用的资源发送UWB信号。
可见,第三设备如果要执行信道接入,则检测第二类导频符号以确定信道的忙闲状态即可;而如果要执行资源选择,则除了检测第二类导频符号外,还需要检测PHR或物理载荷。其中,在执行资源选择时,在检测到第二类导频符号后,第三设备可以不根据第二类导频符号确定第一信道是否繁忙,而是继续检测PHR或物理载荷,确定资源预留信息指示的资源为不可用的资源,而除此之外剩余的资源为可用的资源。或者,在检测到第二类导 频符号后,第三设备也可以根据第二类导频符号确定第一信道是否繁忙,另外第三设备也继续检测PHR或物理载荷,以获得资源预留信息。如果第三设备对该资源预留信息解码成功,且第三设备根据第二类导频符号的检测结果确定第一信道繁忙,则第三设备确定该资源预留信息指示的资源为不可用的资源,而除此之外剩余的资源为可用的资源;或者,如果第三设备对该资源预留信息解码失败,且第三设备根据第二类导频符号的检测结果确定第一信道繁忙,则第三设备确定第一信道繁忙,无法在第一信道上继续进行资源选择;或者,如果第三设备对该资源预留信息解码失败,且第三设备根据第二类导频符号的检测结果确定第一信道空闲,则第三设备认为第一信道空闲,此时第一信道整体为可用的资源;或者,如果第三设备对该资源预留信息解码成功,且第三设备根据第二类导频符号的检测结果确定第一信道空闲,则第三设备确定该资源预留信息指示的资源为不可用的资源,而除此之外剩余的资源为可用的资源,或者,第三设备也可以认为第一信道空闲。
其中,第三设备执行信道接入或资源选择的时长可以是预设的,例如通过协议预定义;或者,该时长也可由第三设备确定。例如将该时长称为第二时长,第二时长例如为N个导频符号的持续时长,该导频符号例如为第一类导频符号或第二类导频符号。N为正整数,例如N=8。
可选的,如果第三设备根据信道接入结果确定第一信道繁忙,或者根据资源选择结果确定第一信道上没有可用的资源(或者说,第一信道上均为不可用的资源),则第三设备可以不在第一信道上发送UWB信号,例如第三设备可以重新选择其他信道。或者,第三设备也可以随机退避一段时长之后,再次在第一信道上执行信道接入或资源选择。或者,第三设备也可以持续在第一信道上进行检测,或者说,进行信道接入或资源选择,直到确定第一信道空闲或确定第一信道上有可用资源为止,或者,直到尝试次数达到最大次数阈值为止。
本申请实施例中,第一设备所生成的第一UWB帧可包括第二类导频符号,第二类导频符号就用于执行信道接入或资源选择。例如第三设备要执行信道接入或资源选择,那么该设备通过检测第二类导频符号就能确定信道的忙闲状态或确定可用的资源。相当于本申请实施例规定了用于执行信道接入或资源选择的导频符号的格式,执行检测的设备通过检测该格式的导频符号即可确定信道是否繁忙,而无需检测过多格式的导频符号,由此可以降低导频符号的检测复杂度,也能减小设备的功耗。对于第一UWB帧的接收设备(例如第二设备)来说,可以不检测第二类导频符号,只是检测第一类导频符号即可,能够降低检测复杂度和功耗;或者,第二设备也可以既检测第一类导频符号也检测第二类导频符号,从而可以根据第一类导频符号和第二类导频符号进行同步、测距或信道估计等处理的一项或多项,以提高处理结果的准确性。
图9给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置900可以是图6所示的实施例中的第一设备或该第一设备的电路***,用于实现上述方法实施例中对应于第一设备的方法。或者,所述通信装置900可以是图6所示的实施例中的第二设备或该第二设备的电路***,用于实现上述方法实施例中对应于第二设备的方法。或者,所述通信装置900可以是图6所示的实施例中的第三设备或该第三设备的电路***,用于实现上述方法实施例中对应于第三设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路***为芯片***。
该通信装置900包括至少一个处理器901。处理器901可以用于装置的内部处理,实 现一定的控制处理功能。可选地,处理器901包括指令。可选地,处理器901可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置900包括一个或多个存储器903,用以存储指令。可选地,所述存储器903中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置900包括通信线路902,以及至少一个通信接口904。其中,因为存储器903、通信线路902以及通信接口904均为可选项,因此在图9中均以虚线表示。
可选地,通信装置900还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置900的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器901可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路902可包括一通路,在上述组件之间传送信息。
通信接口904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是独立存在,通过通信线路902与处理器901相连接。或者,存储器903也可以和处理器901集成在一起。
其中,存储器903用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器903中存储的计算机执行指令,从而实现图6所示的实施例所述的第一设备所执行的步骤,或,实现图6所示的实施例所述的第二设备所执行的步骤,或,实现图6所示的实施例所述的第三设备所执行的步骤。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置900可以包括多个处理器,例如图9中的处理器901和处理器905。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和 /或用于处理数据(例如计算机程序指令)的处理核。
当图9所示的装置为芯片时,例如是第一设备的芯片,或第二设备的芯片,或第三设备的芯片,则该芯片包括处理器901(还可以包括处理器905)、通信线路902、存储器903和通信接口904。具体地,通信接口904可以是输入接口、管脚或电路等。存储器903可以是寄存器、缓存等。处理器901和处理器905可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了一种装置示意图,该装置1000可以是上述各个方法实施例中所涉及的第一设备或第二设备或第三设备,或者为第一设备中的芯片或第二设备中的芯片或第三设备中的芯片。该装置1000包括发送单元1001、处理单元1002和接收单元1003。
应理解,该装置1000可以用于实现本申请实施例的通信方法中由第一设备或第二设备或第三设备执行的步骤,相关特征可以参照上文图6所示实施例,此处不再赘述。
可选的,图10中的发送单元1001、接收单元1003以及处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现。或者,图10中的处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现,图10中的发送单元1001和接收单元1003的功能/实现过程可以通过图9中的通信接口904来实现。
可选的,当该装置1000是芯片或电路时,则发送单元1001和接收单元1003的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一设备或第二设备或第三设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一设备或第二设备或第三设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一设备或第二设备或第三设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算 机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,第一设备和/或第二设备和/或第三设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (29)

  1. 一种通信方法,其特征在于,应用于第一设备,所述方法包括:
    生成第一超宽带UWB帧,所述第一UWB帧的第一字段包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;
    在第一信道上发送所述第一UWB帧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一类导频符号用于进行同步或测距或信道估计,或,所述第一类导频符号和所述第二类导频符号用于进行同步或测距或信道估计。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一类导频符号不用于执行信道接入和资源选择。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述第二字段为所述同步头内的第二同步字段。
  5. 根据权利要求4所述的方法,其特征在于,所述第一UWB帧还包括物理头和/或物理载荷,所述物理头和/或物理负载包括资源预留信息,用于指示所述第一设备预留的资源。
  6. 根据权利要求5所述的方法,其特征在于,所述同步头还包括帧开始分界符SFD字段,所述SFD字段包括所述第二类导频符号。
  7. 根据权利要求1~3任一项所述的方法,其特征在于,所述第二字段包括多个片段,所述多个片段中相邻的片段之间用于承载一个或多个所述第二类导频符号。
  8. 根据权利要求7所述的方法,其特征在于,所述第二字段包括所述第一UWB帧内的物理头和/或物理载荷。
  9. 根据权利要求8所述的方法,其特征在于,所述第二字段还包括如下一项或多项:所述同步头内的第一同步字段,或,所述同步头内的SFD字段。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述方法还包括:
    发送第一配置信息,所述第一配置信息用于配置所述第二类导频符号的参数;或,
    与其他设备协商确定所述第二类导频符号的参数;或,
    所述第二类导频符号的参数为预设值。
  11. 根据权利要求10所述的方法,其特征在于,所述第二设备为所述第一UWB帧的目标接收设备。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第二类导频符号的参数包括所述第二类导频符号的格式;或者,
    所述第二类导频符号的参数包括所述第二类导频符号的格式和所述第二类导频符号的重复次数;或者,
    所述第二类导频符号的参数包括所述第二类导频符号的格式、所述第二类导频符号的重复次数和相邻两个第二类导频符号的间隔。
  13. 根据权利要求1~12任一项所述的方法,其特征在于,
    所述第二类导频符号适用于所述第一设备所在的***内的所有UWB设备;或,
    所述第二类导频符号适用于第一类信道,所述第一信道属于所述第一类信道;或,
    所述第二类导频符号是组头设备配置的,所述组头设备是所述第一设备所在的通信组内的管理设备;或,
    所述第二类导频符号是所述第一设备与至少一个设备协商确定的。
  14. 一种通信方法,其特征在于,应用于第三设备,所述方法包括:
    在执行信道接入或资源选择的过程中,在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB帧的第二字段包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;
    根据对所述第二字段内的所述第二类导频符号的检测结果,确定所述第一信道的忙闲状态,或确定所述第一信道上的不可用资源。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    不根据所述第一类导频符号确定所述第一信道的忙闲状态,以及不根据所述第一类导频符号确定所述第一信道上的不可用资源。
  16. 根据权利要求14或15所述的方法,其特征在于,根据对所述第二字段内的所述第二类导频符号的检测结果确定所述第一信道的忙闲状态,包括:
    如果检测到所述第二字段内的一个所述第二类导频符号的能量大于第一阈值,确定所述第一信道为繁忙;或,
    如果检测到所述第二字段内的多个所述第二类导频符号的平均能量大于第二阈值,确定所述第一信道为繁忙。
  17. 根据权利要求14~16任一项所述的方法,其特征在于,所述第二字段为所述第一UWB帧的同步头内的第二同步字段。
  18. 根据权利要求17所述的方法,其特征在于,根据所述第二字段内的所述第二类导频符号的检测结果确定所述第一信道的不可用资源,包括:
    根据所述第二同步字段内的所述第二类导频符号的检测结果,解码所述第一UWB帧包括的物理头和/或物理负载;
    获取所述物理头和/或物理负载包括的资源预留信息,所述资源预留信息用于指示所述第一设备预留的资源;
    确定所述第一设备预留的资源为所述不可用资源。
  19. 根据权利要求18所述的方法,其特征在于,所述同步头还包括SFD字段,所述SFD字段包括所述第二类导频符号。
  20. 根据权利要求14~16任一项所述的方法,其特征在于,所述第二字段包括所述第一UWB帧内的物理头和/或物理载荷。
  21. 根据权利要求20所述的方法,其特征在于,所述第二字段还包括如下一项或多项:所述同步头内的第一同步字段,或,所述同步头内的SFD字段。
  22. 根据权利要求14~21任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一设备的第一配置信息,所述第一配置信息用于配置所述第二类导频符号的参数;或,
    与所述第一设备协商确定所述第二类导频符号的参数;或,
    所述第二类导频符号的参数为预设值。
  23. 根据权利要求22所述的方法,其特征在于,
    所述第二类导频符号的参数包括所述第二类导频符号的格式;或者,
    所述第二类导频符号的参数包括所述第二类导频符号的格式和所述第二类导频符号的重复次数;或者,
    所述第二类导频符号的参数包括所述第二类导频符号的格式、所述第二类导频符号的重复次数和相邻两个第二类导频符号的间隔。
  24. 根据权利要求14~23任一项所述的方法,其特征在于,
    所述第二类导频符号适用于所述第一设备所在的***内的所有UWB设备;或,
    所述第二类导频符号适用于第一类信道,所述第一信道属于所述第一类信道;或,
    所述第二类导频符号是组头设备配置的,所述组头设备是所述第一设备所在的通信组内的管理设备;或,
    所述第二类导频符号是所述第一设备与至少一个设备协商确定的。
  25. 一种通信方法,其特征在于,应用于第二设备,所述方法包括:
    在第一信道检测到来自第一设备的第一UWB帧,所述第一UWB帧的第一字段内包括第一类导频符号,所述第一UWB帧的第二字段内包括第二类导频符号,所述第一字段为所述第一UWB帧的同步头内的第一同步字段,所述第二类导频符号用于执行信道接入或资源选择,所述第一类导频符号具有第一类格式,所述第二类导频符号具有第二类格式;
    根据所述第一类导频符号进行同步或测距或信道估计,或,根据所述第一类导频符号和所述第二类导频符号进行同步或测距或信道估计。
  26. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~13任一项所述的方法,或用于执行如权利要求14~24任一项所述的方法,或用于执行如权利要求25所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~13任一项所述的方法,或使得所述计算机执行如权利要求14~24任一项所述的方法,或使得所述计算机执行如权利要求25所述的方法。
  28. 一种芯片***,其特征在于,所述芯片***包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~13任一项所述的方法,或实现如权利要求14~24任一项所述的方法,或实现如权利要求25所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~13任一项所述的方法,或使得所述计算机执行如权利要求14~24任一项所述的方法,或使得所述计算机执行如权利要求25所述的方法。
PCT/CN2023/098506 2022-06-09 2023-06-06 一种通信方法及装置 WO2023236933A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210653486.3 2022-06-09
CN202210653486 2022-06-09
CN202210882961.4 2022-07-26
CN202210882961.4A CN117254893A (zh) 2022-06-09 2022-07-26 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023236933A1 true WO2023236933A1 (zh) 2023-12-14

Family

ID=89117665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098506 WO2023236933A1 (zh) 2022-06-09 2023-06-06 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2023236933A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294582A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 信道状态信息反馈的获取方法、相关设备及***
WO2020027802A1 (en) * 2018-07-31 2020-02-06 Intel Corporation Methods and apparatus to facilitate next generation wireless operations
CN110933769A (zh) * 2019-12-11 2020-03-27 哈尔滨工业大学(深圳) 多时隙随机导频接入***和方法
CN114051748A (zh) * 2019-07-08 2022-02-15 谷歌有限责任公司 使用机器学习优化蜂窝网络

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294582A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 信道状态信息反馈的获取方法、相关设备及***
WO2020027802A1 (en) * 2018-07-31 2020-02-06 Intel Corporation Methods and apparatus to facilitate next generation wireless operations
CN114051748A (zh) * 2019-07-08 2022-02-15 谷歌有限责任公司 使用机器学习优化蜂窝网络
CN110933769A (zh) * 2019-12-11 2020-03-27 哈尔滨工业大学(深圳) 多时隙随机导频接入***和方法

Similar Documents

Publication Publication Date Title
EP3308529B1 (en) Methods and apparatus for wireless discovery location and ranging within a neighborhood aware network
JP6527965B2 (ja) チャネル効率の高い分散方式のピアステーション間のデータ伝送の方法及びシステム
CA2767413C (en) Power management method for station in wireless lan system and station that supports same
JP6411641B2 (ja) 伝送方法及び通信機器
KR102536582B1 (ko) 상향 다중 사용자 전송을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말
TW201735688A (zh) 動態廣播時間以喚醒服務時段分配
WO2020221318A1 (zh) 一种上行波束管理方法及装置
US20180014165A1 (en) Triggered wireless access protocol with grouped multi-user transmissions
CN110832945B (zh) 信道接入和介质预留机制
US11290955B2 (en) Low latency wireless protocol
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2012169751A2 (ko) 무선랜 시스템에서의 다중 물리계층을 이용한 프레임 전송방법 및 장치
US10524286B2 (en) Power saving using integrated CF-End indication
TWI778962B (zh) 設備對設備(d2d)通信的方法和d2d設備
JP2018519717A (ja) 省電力トリガ
WO2023236933A1 (zh) 一种通信方法及装置
WO2021087886A1 (zh) 定时器设置方法及相关设备
JP2018519704A (ja) 省電力トリガ
CN117254893A (zh) 一种通信方法及装置
WO2024027628A1 (zh) 一种通信方法及装置
WO2023185637A1 (zh) 安全测距的方法和通信装置
WO2023236887A1 (zh) 一种通信方法及装置
WO2024051660A1 (zh) 通信方法和通信装置
WO2024099142A1 (zh) 一种通信方法及装置
WO2023179585A1 (zh) 时钟同步的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819098

Country of ref document: EP

Kind code of ref document: A1