WO2023236765A1 - 微针滚轮和容器 - Google Patents

微针滚轮和容器 Download PDF

Info

Publication number
WO2023236765A1
WO2023236765A1 PCT/CN2023/095537 CN2023095537W WO2023236765A1 WO 2023236765 A1 WO2023236765 A1 WO 2023236765A1 CN 2023095537 W CN2023095537 W CN 2023095537W WO 2023236765 A1 WO2023236765 A1 WO 2023236765A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle
roller
unit
main
disk
Prior art date
Application number
PCT/CN2023/095537
Other languages
English (en)
French (fr)
Inventor
徐百
Original Assignee
苏州纳生微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州纳生微电子有限公司 filed Critical 苏州纳生微电子有限公司
Publication of WO2023236765A1 publication Critical patent/WO2023236765A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control

Definitions

  • the present invention relates to the technical field of microneedle transdermal drug delivery, and in particular, to a microneedle roller and a container equipped with the microneedle roller.
  • the condition of the skin is an obvious sign of a person's age. As age increases, wrinkles, spots and other problems begin to appear on the skin. In order to delay aging and look younger, more and more people begin to pay attention to skin care.
  • the traditional maintenance method is to apply skin care products on the surface of the skin, allowing nutrients to penetrate from the epidermis to the dermis, supplementing the skin with nutrients to delay aging.
  • the epidermal layer is relatively tough and has poor permeability, resulting in poor absorption of skin care products.
  • the microneedle roller is a skin care tool with outstanding effects.
  • the microneedles are used to open channels in the epidermis, allowing nutrients to penetrate into the dermis, thereby significantly improving the skin care effect.
  • the traditional microneedle roller is made by inserting microneedles one by one on the roller. The manufacturing process is complex and the production cost is high. During long-term use, the microneedles may loosen or fall off.
  • the present invention provides a microneedle roller.
  • the microneedle roller includes a roller unit, a first assembly part and a second assembly part.
  • the roller unit includes a main disk and a spacer arranged at intervals; wherein the main disk has a disk body, and the outer periphery of the disk body is arranged with
  • the outwardly extending microneedle unit is provided with a main disk fixing hole on the disk body; the gasket is coaxial with the main disk, and is provided with a main disk fixing hole on the gasket that faces the main disk.
  • the first assembly part has a first limiting part and a first locking part;
  • the second assembly part has a second limiting part and a third part that can cooperate with the first locking part.
  • Two locking parts; the first locking part and/or the second locking part pass through the main disk fixing hole and the gasket fixing hole on the roller unit and lock and fit, so that the third locking part A limiting part and the second limiting part respectively abut against both ends of the roller unit.
  • the roller in the above technical solution is a cylindrical structure that can rotate around its own axis.
  • the diameter of the cylindrical structure can be uniform, and accordingly, the roller has a straight-cylindrical shape; it is easy to understand that the diameter of the cylindrical structure can also be non-uniform, and accordingly, the peripheral surface of the roller has a concave or convex arc.
  • the microneedle roller in the above technical solution is a roller with micro-protrusions arranged on the peripheral surface of the roller.
  • the micro-protrusions are distributed on the peripheral surface of the roller in a specific manner; the micro-protrusions can be sharp and shaped. Needle-shaped, may also have rounded ends.
  • the roller unit in the above technical solution includes a main disk and a gasket.
  • the main disk and the gasket are spaced apart to form a cylindrical structure.
  • Gasket fixing hole directly opposite the main disk fixing hole In the above technical solution, when the main disk and the gasket are coaxially spaced, the gasket fixing hole can be in position with the main disk fixing hole on the adjacent main disk. Right on top. It should be noted that the shape of the gasket fixing hole and the main disk fixing hole in the above technical solution may be different or the same.
  • First assembly part, second assembly part The first assembly part and the second assembly part in the above technical solution both include a limiting part and a locking part.
  • First and “Second” are only for convenience of explanation of the technical solution. Note that it should be broadly understood as two assembly parts that can be locked together.
  • the microneedle unit extends outward from the outer periphery of the disk as part of the disk.
  • the microneedle unit is integrated on the disk and integrally formed with the disk.
  • the main disk structure formed by this design is more stable and reliable, and can effectively This prevents the microneedle unit from loosening or falling off; in addition, the integrated microneedle unit and disk body facilitate production and processing, which can effectively reduce production costs and improve production efficiency.
  • the gasket is arranged between two adjacent main disks. The thickness of the gasket can effectively adjust the distance between the main disks. The diameter of the gasket can effectively adjust the height of the microneedle unit.
  • the spacer can form a microneedle roller suitable for different skin types; in addition, the spacer has a simple structure and is easy to produce and process.
  • the main plate and the gasket are arranged at intervals, and they are locked and assembled from both ends through the first assembly part and the second assembly part.
  • This structure is simple to assemble and easy to operate, can significantly improve the assembly efficiency, and further reduce production. cost.
  • the first locking part and/or the second locking part pass through the main disk fixing holes on each main disk and the gasket fixing holes on each gasket.
  • This structure can ensure that The relative position of the main disk and the gasket in the radial direction prevents misalignment of the main disk and the gasket, and ensures that during the rotation of the microneedle roller, each main disk and the gasket rotate synchronously.
  • the outstanding effect of this structure is that even if the squeezing force on the main disk and the gasket is not large when the first assembly part and the second assembly part are locked, it can still ensure that the main disks maintain synchronous rotation, effectively avoiding the occurrence of problems between the main disks.
  • the rotation speed is different, thus effectively ensuring the skin care effect.
  • a plurality of the main disks and a plurality of the gaskets are arranged at intervals to form the roller unit, and the outer diameter of each main disk is the same, and the roller The unit is straight-cylindrical.
  • the main disk has a disk body and a microneedle unit arranged around the disk body and extending outward.
  • the outer diameter size refers to the size from the central axis to the outer edge of the rotation when the main disk rotates around a central axis.
  • the outer diameter size is from the center of the main disk to the tip of the microneedle unit. size.
  • each main disk since the outer diameters of each main disk are the same, when the roller unit rotates around a rotation axis, the rotating outer edge of each main disk forms a straight cylinder shape. Therefore, in this preferred technical solution, the multiple main disks have the same outer diameter.
  • the disc and gasket form a straight-cylindrical microneedle roller.
  • the straight-cylindrical microneedle roller is easy to produce and assemble, can effectively save costs and improve production efficiency; and the straight-cylindrical microneedle roller has a wide range of applicable scenarios and can be widely used on most skins of the human body, such as the face, head, etc. Head, arms, etc.
  • a plurality of main disks and a plurality of gaskets are spaced apart to form the roller unit, and the outer diameter of each main disk on the roller unit is It gradually decreases from the middle to both ends of the roller unit, and the roller unit is spindle-shaped.
  • the outer diameter of the main disk located in the middle of the roller unit is larger, and the outer diameter of the main disk closer to both ends of the roller unit is smaller; accordingly, the outer diameter of the gasket is also as described above.
  • the middle part of the roller unit is arranged in a gradually decreasing manner toward both ends. This assembly structure makes the roller unit spindle-shaped in appearance.
  • the spindle-shaped roller unit is suitable for use on locally depressed skin surfaces, such as the T-zone of the face, joints of the human body, or armpits. When applied to the above areas, the spindle-shaped roller unit can better fit the skin and evenly dredge the skin, thereby making the care effect more uniform and efficient.
  • a plurality of main disks and a plurality of gaskets are spaced apart to form the roller unit, and the outer diameter of each main disk on the roller unit is It gradually decreases from both ends of the roller unit toward the middle, and the roller unit is hourglass-shaped.
  • the outer diameter of the main disk located in the middle of the roller unit is smaller, and the outer diameter of the main disk closer to both ends of the roller unit is larger; accordingly, the outer diameter of the gasket is also as described above.
  • the two ends of the roller unit are arranged in a gradually decreasing manner toward the middle. This assembly structure gives the roller unit an hourglass shape in appearance.
  • the hourglass-shaped roller unit is suitable for use on local raised skin surfaces, such as the jaw line of the face, neck skin, wrists, elbows and ankles. When applied to the above areas, the hourglass-shaped roller unit can better fit the skin and evenly dredge the skin, thereby making the care effect more uniform and efficient.
  • the outer diameter of the gasket is larger than the outer diameter of the disk body and smaller than the outer diameter of the main disk.
  • the thickness of the disk body ranges from 0.05mm to 0.15mm. This thickness range makes the microneedle unit a flat sheet, which facilitates opening of the skin's barrier layer.
  • the microneedle unit has an opposite bottom end and a tip, the bottom end is connected to the disk body, the tip is away from the disk body, and the microneedle unit has an opposite bottom end and a tip.
  • the microneedle height of the needle unit from the bottom end to the tip ranges from 0.1 mm to 5 mm. This height range can meet the various needs of some users, and a variety of care effects can be achieved by adjusting the height of the microneedle unit.
  • the tip angle range of the tip is between 5° and 120°.
  • the microneedle unit formed is sharper, which can easily break through the skin barrier and facilitate the transdermal absorption of effective and beneficial ingredients;
  • the tip angle of the tip is large, (such as 120°)
  • the formed microneedle unit is relatively flat, which can easily massage and care the skin, achieving a soothing and massaging effect.
  • the tip of the microneedle unit is rounded.
  • the material for making the main plate includes at least one of metal, ceramic, single crystal silicon or polymer material.
  • the material type of the main plate such as 316 stainless steel, 304 stainless steel and other metal materials, single crystal silicon or ceramic materials, or materials containing hyaluronic acid, insulin and other nursing and therapeutic ingredients. Polymer Materials.
  • the polymer material includes hyaluronic acid.
  • the microneedle unit and the disc body are made of the same material, and the microneedle unit and the disc body are integrally formed.
  • the plate body and microneedle unit are made of polymer materials containing hyaluronic acid, the hyaluronic acid component will dissolve in the skin while breaking through the skin barrier layer in the microneedle unit, thereby achieving rapid and efficient deep repair. protective effect.
  • the microneedle roller has the function of dissolving microneedles.
  • the microneedle unit and the disc body are made of different materials, and the material for making the microneedle unit includes a polymer material.
  • the microneedle unit is made of polymer materials containing hyaluronic acid, the microneedle unit has the effect of dissolving microneedles.
  • the hyaluronic acid component contained in the microneedle unit will break through the skin barrier layer when the microneedle unit breaks through. At the same time, it dissolves in the skin to achieve fast and efficient deep repair effect.
  • the center of the main disk fixing hole does not coincide with the central axis of the main disk, and the main disk fixing hole is eccentrically arranged on the disk body.
  • the thickness of the gasket ranges from 0.5mm to 5mm.
  • a prefixed glue layer is provided between the adjacent main disk and the gasket, and/or a magnetic attraction layer is provided between the adjacent gaskets.
  • Pre-fixed unit In the above configuration, in the process of arranging and stacking the main disks and gaskets at intervals to form a roller unit, the pre-fixed glue layer can enable more accurate alignment and assembly of adjacent main disks and gaskets, facilitating subsequent assembly.
  • a magnetic pre-fixing unit can also be set between the main disk and the gasket, and the relative positions between the two are pre-fixed through magnetic attraction; further, since the production cost of the main disk is relatively high,
  • the magnetic pre-fixing unit is preferably arranged on a lower-cost gasket. Adjacent gaskets can magnetically attract each other to firmly clamp and position the main disk, and can also achieve a pre-fixing effect. It is easy to imagine that other suitable common means can be used for pre-fixing between the main plate and the gasket.
  • the end of the first locking part forms a first locking end, and a locking groove is provided on the first locking end;
  • the ends of the two locking parts form a second locking end, and a locking protrusion paired with the locking groove is provided on the second locking end;
  • the first locking part and the third locking part are The two locking parts are locked and matched in a plug-in manner through the matching locking grooves and locking protrusions.
  • the locking parts are locked together through a mechanical structure. This connection method has the characteristics of high reliability and low processing cost. It is easy to imagine that the locking parts can also be locked and matched through other suitable mechanical structures, such as hooks, thread locking, etc.
  • the first locking part and the second locking part are locked and matched in a connection and contact manner through a magnetic unit or a glue layer.
  • the locking parts are connected and fixed through strong magnetic attraction or a strong glue layer. This connection method can better simplify the assembly process and improve production efficiency.
  • the present invention also provides a method for manufacturing the above-mentioned microneedle roller.
  • the manufacturing method of the microneedle roller specifically includes the following steps:
  • a main disk base material is provided, and a main disk is made from the main disk base material through a stamping process or a cutting process.
  • the main disk has a disk body, and an outwardly extending microneedle unit is arranged on the outer periphery of the disk body.
  • the disk body has a main disk fixing hole;
  • a first assembly part and a second assembly part are provided; wherein the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and can be connected with the third A second locking part matched with the locking part; the first assembly part and the second assembly part are arranged at both ends of the roller unit;
  • the first locking part and the second locking part are matched and locked to form the microneedle roller.
  • the main disk can be produced from the main disk substrate at one time through the stamping process or the cutting process.
  • Multiple microneedle units can be formed in the circumferential direction of the disk body in one processing.
  • the processing technology is mature and efficient, and the operation steps are simple and convenient, forming
  • the main plate is formed in one piece, and the structure is stable and reliable; after arranging the main plate and the gasket at intervals, the roller unit is locked and limited from both ends through the first and second assemblies, and the production of the microneedle roller can be completed and assembly.
  • This production method improves the traditional method of implanting microneedles on the roller, and can effectively simplify the production process, reduce production costs, and improve assembly efficiency.
  • the present invention also provides another method for manufacturing the above-mentioned microneedle roller.
  • the manufacturing method of the microneedle roller specifically includes the following steps:
  • a mold is provided, the mold has a connected disk groove and a microneedle unit groove, and a protruding shaping column is provided on the disk groove;
  • a main tray material is provided, and the main tray material is in a fluid state.
  • the main tray material is cast in the tray body groove and the microneedle unit groove, and the liquid level of the main tray material is lower than the The top of the shaped column;
  • the main disk has a disk body, an outwardly extending microneedle unit is formed on the outer periphery of the disk body, and the main disk body has a main disk fixing hole;
  • a first assembly part and a second assembly part are provided; wherein the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and can be connected with the third A second locking part matched with the locking part; the first assembly part and the second assembly part are arranged at both ends of the roller unit;
  • the first locking part and the second locking part are matched and locked to form the microneedle roller.
  • Main disc material is a polymer material, such as hyaluronic acid.
  • a fluid can be a melt in a molten state or a solution of a mixture of solute and solvent.
  • the main plate material is shaped from fluid to solid: When the main plate material is a melt, it can be solidified and shaped into a solid by cooling or other suitable methods; when the main plate material is a solution, the solution can be shaped into a solid by evaporating the solvent. solid.
  • the liquid level of the main tray material is lower than the top of the shaping column, which can ensure that after the main tray material is shaped into a solid, a main tray fixing hole is formed on the main tray body.
  • This manufacturing method can produce the main disk at one time through the mold casting process, and form multiple microneedle units in the circumferential direction of the disk body.
  • the microneedle units are integrated with the disk body, which can effectively simplify the production and processing steps of the main disk.
  • the microneedle unit forms a dissolvable microneedle structure.
  • the dissolvable microneedle unit opens.
  • the skin channel simultaneously dissolves part of the main disk material into the skin, thereby directly and efficiently providing activators to the skin; and after the microneedle roller rolls away, the skin barrier can be quickly repaired.
  • the present invention also provides another method for manufacturing the above-mentioned microneedle roller.
  • the manufacturing method of the microneedle roller specifically includes the following steps:
  • a mold is provided, the mold having connected disk grooves and microneedle unit grooves;
  • main tray material the main tray material is in a fluid state
  • the disk body has a main disk fixing hole, and the disk body is placed in the groove of the disk body;
  • a first assembly part and a second assembly part are provided; wherein the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and can be connected with the third A second locking part matched with the locking part; the first assembly part and the second assembly part are arranged at both ends of the roller unit;
  • the first locking part and the second locking part are matched and locked to form the microneedle roller.
  • Main disc material is a polymer material, such as hyaluronic acid.
  • a fluid can be a melt in a molten state or a solution of a mixture of solute and solvent.
  • the main plate material is shaped from fluid to solid: When the main plate material is a melt, it can be solidified and shaped into a solid by cooling or other suitable methods; when the main plate material is a solution, the solution can be shaped into a solid by evaporating the solvent. solid.
  • This manufacturing method can generate microneedle units in the circumferential direction of the disk body through a mold casting process.
  • the disk body and the microneedle unit can be made of different materials. What stands out is that when the main disk is made of water-soluble polymer material, the microneedle unit forms a dissolvable microneedle structure. When the main disk is made into a microneedle roller rolling on the skin surface, the dissolvable microneedle unit opens. The skin channel simultaneously dissolves part of the main disk material into the skin, thereby directly and efficiently providing activators to the skin; and after the microneedle roller rolls away, the skin barrier can be quickly repaired.
  • the present invention also provides a container, which includes an accommodation cavity, an active substance is installed in the accommodation cavity, and an outlet is provided on the accommodation cavity; according to the microneedle roller described in any of the above technical solutions,
  • the microneedle roller is arranged at the outlet and can roll around its own axis; and a smear brush, the smear brush can guide the active matter flowing out from the outlet, and can contact the microneedle roller when it rolls.
  • the active substances can be cosmetics with nursing or decorative effects, drugs with therapeutic effects, or vaccines with preventive and preventive effects.
  • the active substance can be in liquid form, such as water, lotion, care solution, etc.; it can also be in "flowable" solid form, such as powder or fine granular form, which is solid and has liquid-like flow characteristics; It can also be a solid-liquid mixed state. For example, the liquid is mixed with solid particles, and the solid particles can flow out simultaneously with the liquid.
  • the active substance in the above technical solution is stored in the accommodation cavity and can flow out from the outlet or be squeezed out.
  • This container can integrate storage, care, and promotion of penetration and absorption. What is outstanding is that when using the container, the active substance flowing out from the outlet can be drained by the applicator brush and evenly applied on the microneedle roller, thereby facilitating the even coating of the active substance on the skin surface, allowing the skin to absorb the active substance More balanced.
  • Figure 1 is a schematic structural diagram of an embodiment of the microneedle roller of the present invention.
  • Figure 2 is a perspective structural diagram of an embodiment of the microneedle roller of the present invention.
  • Figure 3 is a schematic structural diagram of the main disk form 1 in the embodiment of the microneedle roller of the present invention.
  • Figure 4 is a schematic structural diagram of the main disk form 2 in the embodiment of the microneedle roller of the present invention.
  • Figure 5 is a schematic structural diagram of the main plate form 3 in the embodiment of the microneedle roller of the present invention.
  • Figure 6 is a schematic structural diagram of the main disk form 4 in the embodiment of the microneedle roller of the present invention.
  • Figure 7 is a schematic structural diagram of the fifth main disk in the embodiment of the microneedle roller of the present invention.
  • Figure 8 is a schematic structural diagram of the gasket form 1 in the embodiment of the microneedle roller of the present invention.
  • Figure 9 is a schematic structural diagram of the second gasket form in the embodiment of the microneedle roller of the present invention.
  • Figure 10 is a schematic end view of the roller unit in the embodiment of the microneedle roller of the present invention.
  • Figure 11 is a schematic structural diagram of the first assembly part in the embodiment of the microneedle roller of the present invention.
  • Figure 12 is a schematic side view of the first assembly in the embodiment of the microneedle roller of the present invention.
  • Figure 13 is a schematic structural diagram of the second assembly in the embodiment of the microneedle roller of the present invention.
  • Figure 14 is a schematic flow chart of a manufacturing method of the microneedle roller of the present invention.
  • Figure 15 is a schematic flow chart of another manufacturing method of the microneedle roller of the present invention.
  • Figure 16 is a schematic flow chart of yet another manufacturing method of the microneedle roller of the present invention.
  • Figure 17 is a schematic structural diagram of the container of the present invention.
  • Figure 18 is a schematic structural diagram of another embodiment of the microneedle roller of the present invention.
  • connection can also be a detachable connection or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • connection can also be a detachable connection or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two components.
  • the present invention provides a microneedle roller A.
  • the microneedle roller A includes a roller unit a, a first assembly b1 and a second assembly b2.
  • the roller unit a includes a main disk a1 and a spacer a2 arranged at intervals; wherein the main disk a1 has a disk body a11, and the disk body a11 There is an outwardly extending microneedle unit a12 arranged on the outer periphery of the disk body a11, and a main disk fixing hole a13 is provided on the disk body a11; the gasket a2 is coaxial with the main disk a1, and the gasket a2 is provided with a main disk fixing hole a13 in the same direction as the main disk a13.
  • Pair of gasket fixing holes a22; the first assembly part b1 has a first limiting part b12 and a first locking part b11; the second assembly part b2 has a second limiting part b21 and can cooperate with the first locking part b11
  • the second locking part b22; the first locking part b11 and/or the second locking part b22 pass through the main plate fixing hole a13 and the gasket fixing hole a22 on the roller unit a and lock and fit, so that the A limiting portion b12 and a second limiting portion b21 respectively abut against both ends of the roller unit a.
  • FIG. 1 is a schematic structural diagram of an embodiment of the microneedle roller of the present invention
  • Figure 2 is a perspective structural schematic diagram of an embodiment of the microneedle roller of the present invention.
  • the microneedle roller A includes a microneedle unit a and a first assembly part b1 and a second assembly part b2 arranged at both ends thereof.
  • the microneedle unit a includes a main disk a1 and a gasket a2 arranged coaxially and spaced apart.
  • the first assembly part b1 and the second assembly part b2 are respectively arranged at one end of the microneedle unit a and locked and matched, so that the main disk a1 and the gasket a2 are close or pressed together to form a microneedle roller A with a stable and reliable structure.
  • Figure 3 is a schematic structural diagram of the main disk form 1 in the embodiment of the microneedle roller of the present invention.
  • Figure 4 is a schematic structural diagram of the main disk form 2 in the embodiment of the microneedle roller of the present invention.
  • Figure 5 is a schematic structural diagram of the main disk in the embodiment of the microneedle roller of the present invention. Structural diagram of disk form three. As shown in Figures 3 to 5, the plate body a11 of the main plate a1 is in the shape of a disc or a pancake. Alternatively, the disk body a11 may also be in the shape of an elliptical sheet or a polygon with rounded corner transitions.
  • the plate body a11 has a flat surface, and can also be designed to have a concave arc surface, such as a bowl shape, as needed.
  • the plate body a11 is made of stainless steel. It is easy to understand that the disk body a11 can also be made of polymer materials, single crystal silicon or ceramic materials, such as hyaluronic acid or single crystal silicon.
  • the thickness of the plate body a11 is 0.05mm-0.15mm. Optionally, the thickness of the disk body a11 is 0.05mm, 0.08mm, 0.1mm, 0.12mm or 0.15mm. It is easy to understand that the thickness of the disk body a11 can also be designed to other suitable sizes as needed.
  • microneedle units a12 are arranged in the circumferential direction of the disk body a11.
  • the microneedle units a12 are equidistantly arranged in the circumferential direction of the disk body a11.
  • the microneedle unit a12 can be integrally formed with the disk body a11.
  • the microneedle unit a12 and the disk body a11 are made of the same material, such as 316 stainless steel, hyaluronic acid polymer material, single crystal silicon or ceramic material.
  • the microneedle unit a12 can be formed in the circumferential direction of the disk body a11 through casting, solidification shaping, volatilization shaping or other suitable processes.
  • the microneedle unit a12 and the disk body a11 can be made of the same material, or Can be of different materials.
  • the disk body a11 is made of stainless steel material
  • the microneedle unit a12 is made of hyaluronic acid polymer material. It is worth emphasizing that when the microneedle unit a12 is made of hyaluronic acid polymer material, since hyaluronic acid has the characteristics of being soluble in water and absorbed by the skin, when the microneedle unit a12 comes into contact with the skin, part of the hyaluronic acid will be directly absorbed by the skin. , thereby directly providing nutrition to the skin; and when the microneedle unit a12 leaves the skin, the skin surface can repair the barrier in time.
  • the microneedle unit a12 in the embodiment of the present invention can effectively shorten the skin barrier repair time and reduce the risk of skin damage and infection.
  • the use cycle of the microneedle unit a12 can be adjusted by controlling the concentration or content of hyaluronic acid.
  • the use cycle of the microneedle unit a12 is controlled to be 10s-30min.
  • the microneedle roller A is a consumable. .
  • the microneedle unit a12 has a bottom end a121 connected to the disk body a11 and an outwardly extending tip a122.
  • the height of the microneedle unit a12 from the bottom end a121 to the tip a122 is 0.1 mm-5mm, microneedle units of different heights have different maximum penetration depths, thus corresponding to different usage scenarios.
  • the tip a122 of the microneedle unit has a sharp angle in a certain range, and optionally, the angle range is 5-120°. When the angle value is small, a sharp tip a122 can be formed to facilitate opening of the skin channel.
  • the main disk form 1 is equipped with a microneedle unit a12 with a sharp angle of 10°; the angle value of the sharp corner is larger.
  • the main disk form 2 is equipped with a sharp angle. It is a 90° microneedle unit a12; as shown in Figure 5, the main disk form three is equipped with a microneedle unit a12 with a sharp angle of 60°. It is easy to understand that the tip of the microneedle unit a12 can be rounded to further weaken the sharpness of the tip and increase the contact area between the tip and the skin, thereby improving the massage experience.
  • FIG. 6 is a schematic structural diagram of the main disk form 4 in the embodiment of the microneedle roller of the present invention.
  • FIG. 7 is a schematic structural diagram of the main disk form 5 in the microneedle roller embodiment of the present invention.
  • a main disk fixing hole a13 is provided on the disk body a11 of the main disk a1.
  • the shape of the main disk fixing hole a13 can be circular, rectangular, trapezoidal, regular polygon or other suitable shapes, and the center of the main disk fixing hole a13 does not coincide with the central axis of the main disk a1.
  • the number of the main disk fixing holes a13 is at least one. When the number of the main disk fixing holes a13 is multiple, as shown in Figures 3 to 7, optionally, the main disk fixing holes a13 are rotationally symmetrically distributed on the disk body a11.
  • FIG. 8 is a schematic structural diagram of the gasket form 1 in the embodiment of the microneedle roller of the present invention
  • FIG. 9 is a schematic structural diagram of the gasket form 2 in the microneedle roller embodiment of the present invention.
  • the gasket a2 has a gasket body a21, and the gasket body a21 is in the shape of a disc or a pancake. Alternatively, the gasket body a21 may also be a regular polygon. The surface of the gasket body a21 fits and matches the surface of the disk body a11.
  • the surface of the gasket body a21 When the surface of the disk body a11 is flat, the surface of the gasket body a21 also remains straight; when the surface of the disk body a11 has depressions or bulges, the gasket body a11 has a surface that is flat.
  • the surface of the sheet body a21 also has corresponding depressions or protrusions at corresponding positions, which also keeps the gasket body a21 in close contact with the disk body a11.
  • the gasket body a21 can be made of rubber material. Alternatively, the gasket body a21 may be made of silicone, resin or other suitable materials.
  • the thickness of the gasket body a21 ranges from 0.5 to 5 mm, such as 1 mm, 1.5 mm or 2 mm. It is easy to understand that the thickness of the gasket body a21 can also be designed to other suitable sizes as needed.
  • a gasket fixing hole a22 is provided on the gasket body a21.
  • the shape of the gasket fixing hole a22 may be circular, rectangular, trapezoidal, polygonal or other suitable shapes.
  • the position of the gasket fixing hole a22 on the gasket body a21 corresponds to the position of the main disk fixing hole a13 on the disk body a11. That is, when the gasket a2 and the main disk a1 are coaxially arranged, the gasket fixing hole a22 It can be directly opposite to the main plate fixing hole a13.
  • FIG 10 is a schematic end view of the roller unit in the embodiment of the microneedle roller of the present invention.
  • the main plate a1 and the gasket a2 are coaxially spaced and arranged to form the roller unit a.
  • Roller units of different lengths can be formed by assembling different numbers of main plates a1 and spacers a2. When the roller unit a has only two main disks a1, the length of the formed roller unit a is smaller; when the roller unit a has multiple main disks a1, the length of the formed roller unit a is larger. It is easily understood that multiple types of roller units a can be formed by assembling main disks a1 and spacers a2 of different diameters.
  • the outer peripheral surface of the roller unit a is straight-cylindrical; when the outer diameter of the main disk a1 near both ends of the roller unit a is small, the outer diameter of the main disk a1 near the middle is smaller.
  • the outer peripheral surface of the roller unit a is hourglass-shaped. It is easy to imagine that main disks a1 with different outer diameters can be flexibly assembled according to design needs, and various styles of outer peripheral surfaces can be defined for the roller unit a to adapt to different skin positions.
  • the outer diameter of the main disk a1 includes the radius of the disk body a11 and the height of the microneedle unit a12.
  • the height of the microneedle unit a12 represents the maximum depth that the microneedle unit a12 can enter the skin. In actual use, the surface For different usage requirements, the microneedle unit a12 needs to enter the skin at different depths.
  • the main disk a1 of the microneedle unit a12 with a suitable height, and assemble these main disks a1 and gaskets a2 to form a suitable roller unit a; you can also use the following method: select the appropriate outer diameter
  • the gasket a2 is assembled with the main disk a1 to form the roller unit a.
  • the outer diameter of the gasket a2 is smaller than the outer diameter of the adjacent main disk a1 (the outer diameter of the disk body a11 + the height of the microneedle unit a12) and is larger than that of the disk body a11. outer diameter.
  • the depth of the microneedle unit a12 entering the skin is the height of the part of the microneedle unit a12 that exceeds the gasket a2.
  • the size and model of the main disk a1 can be unified.
  • the actual depth of the microneedle unit a12 on the main disk a1 that can enter the skin can be adjusted by assembling gaskets a2 with different outer diameters. Since the production process of the gasket a2 is simple , mature and low cost, therefore, this assembly method can effectively save costs and improve production efficiency.
  • the gasket fixing hole a22 can be directly opposite to the main disk fixing hole a13. It is easy to understand that in order to facilitate the arrangement of the main plate a1 and the gasket a2, glue can be applied between the main plate a1 and the gasket a2 for preliminary fixation. Alternatively, the main disk a1 and the spacer a2 are adsorbed and fixed to each other through magnetic force.
  • FIG. 11 is a schematic structural diagram of the first assembly part in the embodiment of the microneedle roller of the present invention
  • FIG. 12 is a schematic side view of the first assembly part in the embodiment of the microneedle roller of the present invention.
  • the first assembly b1 has a first locking portion b11
  • the first locking portion b11 has a shaft that can pass through the main plate fixing hole a13 and the gasket fixing hole a22.
  • the end face shape of the shaft body is the same as the shape of the main disk fixing hole a13.
  • the shape of the main plate fixing hole a13 can circumscribe the end face shape of the sleeve shaft body.
  • one end of the first locking portion b11 forms a first locking end b110, and the first locking end b110 has a locking groove.
  • the first limiting portion b12 is provided at the other end of the first locking portion b11.
  • the end surface size of the first limiting portion b12 is larger than the size of the main plate fixing hole a13 and the gasket fixing hole a22 to form a limit on the end of the roller unit a.
  • the end surface of the first limiting portion b12 is circular, rectangular, polygonal or other suitable shapes.
  • FIG 13 is a schematic structural diagram of the second assembly in the embodiment of the microneedle roller of the present invention.
  • the second assembly part b2 has a second limiting part b21.
  • the end surface size of the second limiting part b21 is larger than the size of the main disk fixing hole a13 and the gasket fixing hole a22, so as to adjust the end surface of the roller unit a.
  • the upper part forms a limit.
  • the end surface of the second limiting part b21 is circular, rectangular, polygonal or other suitable shapes.
  • a second locking part b22 is provided on the second limiting part b21, and a second locking end is provided on the second locking part b22. The second locking end can be inserted into the locking groove to realize the first locking part.
  • a magnetic unit may be provided between the first locking part b11 and the second locking part b22.
  • the first locking part b11 and the second locking part b22 are integrated to form a locking shaft b3.
  • the locking shaft b3 passes through each main plate fixing hole a13 and the gasket fixing hole a22. It is easy to understand that, on the premise that the total length of the locking shaft b3 remains unchanged, the length of the first locking part b11 can be appropriately shortened and the length of the second locking part b22 can be increased to meet different design requirements.
  • the first locking portion b11 and the second locking portion b22 can also form a locking fit in various other ways, as long as they can It is sufficient to realize that the first locking part b11 and the second locking part b22 are integrated to form the locking shaft b3.
  • the two locking ends are locked and matched through a hook-hanging ring method.
  • strong magnetic units are provided at two opposite locking ends of the first locking portion b11 and the second locking portion b22, so that the two are directly locked and matched through a strong magnetic field.
  • two opposite locking ends of the first locking part b11 and the second locking part b22 are bonded and locked by glue.
  • the locking shaft b3 can ensure that the main disks a1 and the gaskets a2 rotate synchronously to avoid rotational speed differences or misalignment between the main disks a1 and the gaskets a2. It is easy to understand that when the main disk a1 and the gasket a2 are coaxially spaced, only at least two locking shafts b3 can determine the relative position of each main disk a1 and the gasket a2. Therefore, in the present invention In the embodiment, the number of the first locking portion b11 and the second locking portion b22 does not need to be consistent with the number of the main disk fixing holes a13.
  • the microneedle roller in the embodiment of the present invention has a unique structural design, which can effectively improve the reliability of the microneedle roller and improve the user experience.
  • the use of unique manufacturing methods can further improve production efficiency, reduce production costs, and bring greater convenience to users.
  • embodiments of the present invention provide a variety of manufacturing methods.
  • FIG 14 is a schematic flow chart of a manufacturing method of the microneedle roller of the present invention. As shown in Figure 14, a manufacturing method of the microneedle roller includes the following steps:
  • a main disk base material is provided, and a main disk is produced from the main disk base material through a stamping process or a cutting process.
  • the main disk has a disk body, and an outwardly extending microneedle unit is arranged on the outer periphery of the disk body.
  • the main disk is fixed on the disk body. hole (step S1);
  • step S2 Provide a gasket with a gasket fixing hole directly opposite the main disk fixing hole (step S2);
  • step S3 Arrange the main disk and the gasket at intervals, and make the main disk fixing hole on each main disk directly opposite the gasket fixing hole on each gasket to form a roller unit (step S3);
  • a first assembly part and a second assembly part are provided; wherein, the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and a first locking part that can cooperate with the second locking part; arrange the first assembly part and the second assembly part at both ends of the roller unit (step S4);
  • the first locking part and the second locking part are matched and locked to form a microneedle roller (step S6).
  • the main disk substrate can be a metal material, such as 304 stainless steel, 316 stainless steel, etc.; it can also be a polymer material, such as hyaluronic acid, resin, etc.; it can also be single crystal silicon, ceramics, etc.
  • the thickness of the main disk base material according to design needs, for example, the thickness is 0.05mm-0.15mm, optionally, the thickness is 0.1mm.
  • the main disk base material is punched at one time to produce a main disk with microneedle units distributed in the circumferential direction and a main disk fixing hole opened in the disk body.
  • a main disk with microneedle units distributed in the circumference and a main disk fixing hole opened in the disk body is cut from the main disk base material through a laser cutting process.
  • the main disk produced in step S1 has the following advantages: the microneedle unit and the disk body are integrally formed, with high structural strength; the main disk can be formed by one-time stamping or laser cutting, with mature processing technology, simple steps, and relatively high structural strength. High production efficiency and low production cost.
  • a gasket base material is provided.
  • the gasket base material may be rubber, silicone, resin or other suitable materials.
  • the thickness of the gasket base material is 0.5-5mm, optionally, the thickness is 1mm, 1.5mm or 2mm.
  • the gasket is produced from the gasket base material by a stamping process or a cutting process. It is easy to imagine that the gasket substrate can also be obtained by other suitable means.
  • step S3 the main disk and the gasket are arranged at intervals.
  • the main plate and the gasket can also be initially positioned through other suitable methods.
  • the first locking part and the second locking part have multiple matching locking modes.
  • the two are locked together through matched locking grooves and locking protrusions; the two are locked together through matched hooks and hanging rings; and the two are locked together through strong magnetic units.
  • step S5 the first locking part and the second locking part cooperate to form a locking shaft. It is only necessary to ensure that at least two locking shafts pass through the corresponding main plate fixing holes and gasket fixing holes respectively. This can realize the limit fixation of the roller unit.
  • step S6 after the first locking part and the second locking part are cooperatively locked, the first limiting part and the second limiting part respectively abut against both ends of the roller unit, and the two cooperate to lock the roller unit. Clamp limit.
  • step S1, step S2 and step S4 does not need to be particularly limited.
  • the three steps can be performed simultaneously or flexibly adjusted according to production needs.
  • the main disk formed by this manufacturing method is integrally formed.
  • the microneedle units on the main disk form hyaluronic acid microneedles.
  • the microneedle unit enters the skin, it can be directly dissolved and absorbed by the skin, thereby effectively improving the absorption of skin nutrients; after the microneedle unit leaves the skin, the skin barrier can be quickly repaired, thereby reducing the chance of skin damage or infection.
  • the use time of hyaluronic acid microneedles can be adjusted.
  • the use time is controlled between 10s and 30min.
  • FIG. 15 is a schematic flow chart of another manufacturing method of the microneedle roller of the present invention. As shown in Figure 15, another manufacturing method of the microneedle roller includes the following steps:
  • a mold which has a connected disk groove and a microneedle unit groove, and is provided with a raised shaping column on the disk groove (step L1);
  • main tray material which is in fluid form. Cast the main tray material in the tray body groove and the microneedle unit groove. The liquid level of the main tray material is lower than the top of the shaping column (step L2);
  • a main disk which has a disk body, an outwardly extending microneedle unit is formed on the outer periphery of the disk body, and a main disk fixing hole is formed on the disk body (step L4);
  • step L5 Provide a gasket with a gasket fixing hole directly opposite the main disk fixing hole (step L5);
  • step L6 Arrange the main disk and the gasket at intervals, and make the main disk fixing hole on each main disk directly opposite the gasket fixing hole on each gasket to form a roller unit (step L6);
  • a first assembly part and a second assembly part are provided; wherein, the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and a first locking part that can cooperate with the second locking part; arrange the first assembly part and the second assembly part at both ends of the roller unit (step L7);
  • the first locking part and the second locking part are matched and locked to form a microneedle roller (step L9).
  • the main disk material is a polymer material, such as hyaluronic acid, resin, etc.
  • the fluid main disk material can be a melt in a molten state, a solution of mixed solute and solvent, or other suitable fluids that are easy to solidify and shape.
  • the liquid level of the main tray material is lower than the top of the shaping column, which can ensure that when the main tray material is shaped from fluid to solid, the main tray fixing hole can be formed on the main tray body at one time.
  • the main plate material is shaped from fluid to solid.
  • the melt can be solidified and shaped into a solid by cooling or other suitable methods;
  • the material in the main tray is a solution, the solution can be shaped into a solid by volatilizing the solvent.
  • steps L1 to L9 is not particularly limited and can be flexibly adjusted according to production needs. By controlling the height of the liquid level according to design needs, main plates of different thicknesses can be obtained.
  • the main disk produced in steps L1 to L4 has the following advantages: when the material of the main disk is water-soluble hyaluronic acid material, the microneedle unit forms hyaluronic acid microneedles. The microneedle unit can directly dissolve and be absorbed by the skin while entering the skin and opening the absorption channel.
  • FIG 16 is a schematic flow chart of yet another manufacturing method of the microneedle roller of the present invention. As shown in Figure 16, yet another manufacturing method of the microneedle roller includes the following steps:
  • step V1 Provide a mold with connected disk grooves and microneedle unit grooves (step V1);
  • step V2 Provide the main tray material, which is in fluid form (step V2);
  • step V3 Provide a plate body with a main plate fixing hole, and place the plate body in the groove of the plate body (step V3);
  • step V7 Provide a gasket with a gasket fixing hole directly opposite the main disk fixing hole (step V7);
  • step V8 Arrange the main disk and the gasket at intervals, and make the main disk fixing hole on each main disk directly opposite the gasket fixing hole on each gasket to form a roller unit (step V8);
  • a first assembly part and a second assembly part are provided; wherein, the first assembly part has a first limiting part and a first locking part; the second assembly part has a second limiting part and a first locking part that can cooperate with the second locking part; arrange the first assembly part and the second assembly part at both ends of the roller unit (step V9);
  • the first locking part and the second locking part are matched and locked to form a microneedle roller (step V11).
  • the main disk material is a polymer material, such as hyaluronic acid, resin, etc.
  • the fluid main disk material can be a melt in a molten state, a solution of mixed solute and solvent, or other suitable fluids that are easy to solidify and shape.
  • the main plate material is shaped from fluid to solid.
  • the melt can be solidified and shaped into a solid by cooling or other suitable methods;
  • the material in the main tray is a solution, the solution can be shaped into a solid by volatilizing the solvent.
  • the execution order of steps V1 to V11 is not particularly limited and can be flexibly adjusted according to production needs. By controlling the height of the liquid level according to design needs, main plates of different thicknesses can be obtained.
  • the main disk produced in steps V1 to V6 has the following advantages: the disk body and the microneedle unit can be made of different materials. When the main disc material uses water-soluble hyaluronic acid material, the microneedle unit forms hyaluronic acid microneedles. The microneedle unit can directly dissolve and be absorbed by the skin while entering the skin and opening the absorption channel.
  • FIG 17 is a schematic structural diagram of the container of the present invention.
  • the container T includes an accommodation cavity T1, the accommodation cavity T1 is filled with active matter, and an outlet T11 is provided on the accommodation cavity T1;
  • the microneedle roller A in any of the above embodiments, the microneedle roller A is arranged at the outlet T11 and capable of rolling around its own axis; and a smear brush T2 that can guide the active material flowing out from the outlet T11 and can contact the microneedle unit a12 and apply the active material when the microneedle roller A rolls On the microneedle unit a12.
  • the storage cavity T1 of the container T is arranged below, and a clamping portion T3 is provided above the storage cavity T1.
  • the clamping portion T3 and the top of the storage cavity T1 form an assembly space for the microneedle roller A.
  • the holding portion T3 is provided with a rolling support shaft, and both ends of the microneedle roller A are provided with rolling support grooves that can cooperate with the rolling support shaft.
  • the rolling support shaft on the clamping part T3 is inserted into the rolling support groove to realize the clamping and support of the microneedle roller A by the clamping part T3.
  • the microneedle roller A can be supported by rolling The shaft rotates freely as a central axis.
  • the outlet T11 of the storage cavity T1 is provided at the top of the storage cavity T1.
  • An applicator brush T2 is provided at the outlet T11. The brush end of the applicator brush T2 can contact the peripheral surface of the microneedle roller A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种微针滚轮(A)以及容器(T),其中微针滚轮(A)包括滚轮单元(a)、第一装配件(b1)和第二装配件(b2),滚轮单元(a)包括间隔布置的主盘(a1)和垫片(a2);主盘(a1)具有盘体(a11),盘体(a11)的外周布置有向外延伸的微针单元(a12),在盘体(a11)上设有主盘固定孔(a13);垫片(a2)与主盘(a1)同轴,在垫片(a2)上设有与主盘固定孔(a13)正对的垫片固定孔(a22);第一装配件(b1)具有第一限位部(b12)和第一锁紧部(b11);第二装配件(b2)具有第二限位部(b21)和能够与第一锁紧部(b11)配合的第二锁紧部(b22);第一锁紧部(b11)和/或第二锁紧部(b22)从滚轮单元(a)上的主盘固定孔(a13)和垫片固定孔(a22)中穿过并锁紧配合,使第一限位部(b12)和第二限位部(b21)分别抵靠在滚轮单元(a)的两端。该微针滚轮(A)结构简单、可靠,加工成本低且便于装配。

Description

微针滚轮和容器 技术领域
本发明涉及一种微针透皮给药技术领域,特别地,涉及一种微针滚轮以及装配有这种微针滚轮的容器。
背景技术
皮肤的状态是体现一个人年龄的明显标志。随着年龄的增长,皮肤开始出现皱纹、色斑等问题,为了延缓衰老、显得更年轻,越来越多的人开始注重皮肤的保养。传统的保养方法是在皮肤表面涂抹护肤品,使得营养成分从皮肤的表皮层渗透到真皮层,为皮肤补充营养以延缓衰老。但是表皮层较为坚韧且渗透性较差,导致护肤品的吸收效果很差。
于是,各种各样的辅助护肤工具应运而生。其中,微针滚轮是一种效果突出的护肤工具。通过将微针滚轮在皮肤表面滚动,利用微针在表皮层上打开通道,方便营养物质渗透入真皮层中,从而显著提高护肤效果。传统的微针滚轮是通过在滚筒上***一根根微针制作而成,其制作工艺复杂,生产成本高昂,长期使用过程中,可能出现微针松动、脱落等情况。
因此,现有技术中的微针滚轮存在改进之处。
技术问题
为了解决现有技术中微针滚轮的制作工艺复杂、生产成本高昂、结构不可靠等技术问题,本发明提供了一种微针滚轮。
技术解决方案
该微针滚轮包括滚轮单元、第一装配件和第二装配件,所述滚轮单元包括间隔布置的主盘和垫片;其中,所述主盘具有盘体,所述盘体的外周布置有向外延伸的微针单元,在所述盘体上设有主盘固定孔;所述垫片与所述主盘同轴,在所述垫片上设有与所述主盘固定孔正对的垫片固定孔;所述第一装配件具有第一限位部和第一锁紧部;所述第二装配件具有第二限位部和能够与所述第一锁紧部配合的第二锁紧部;所述第一锁紧部和/或所述第二锁紧部从所述滚轮单元上的主盘固定孔和垫片固定孔中穿过并锁紧配合,使所述第一限位部和所述第二限位部分别抵靠在所述滚轮单元的两端。
上述技术方案中的有关内容进一步说明如下:
滚轮:上述技术方案中的滚轮是一种能够绕自身轴线转动的柱形结构。柱形结构的直径可以是均一的,相应地,滚轮呈直筒型;容易理解的是,柱形结构的直径也可以是不均一的,相应地,滚轮的周面具有凹陷或凸起的弧度,比如沙漏型、纺锤型。
微针滚轮:上述技术方案中的微针滚轮是一种在滚轮的周面上布置有微型凸起的滚轮,微型凸起按特定方式分布在滚轮的周面上;该微型凸起可以尖锐呈针状,也可以具有圆润的端部。
滚轮单元:上述技术方案中的滚轮单元包括主盘和垫片,主盘和垫片间隔布置形成柱形结构。
与主盘固定孔正对的垫片固定孔:在上述技术方案中,当主盘和垫片同轴地间隔布置时,垫片固定孔能够与相邻的主盘上的主盘固定孔在位置上正对。需要说明地是,上述技术方案中的垫片固定孔与主盘固定孔的形状可以不同或相同。
第一装配件、第二装配件:上述技术方案中的第一装配件及第二装配件均包括限位部和锁紧部,“第一”及“第二”仅为了方便技术方案的解释说明,应做广义理解为两个能够锁紧配合的装配部件。
在本发明中,微针单元作为盘体的一部分从盘体的外周向外延伸,微针单元集成在盘体上与盘体一体成型,这种设计形成的主盘结构更稳定可靠,能够有效避免微针单元的松动或脱落;此外,一体成型的微针单元及盘体便于生产加工,能够有效降低生产成本、提高生产效率。在本发明中,垫片布置在相邻两个主盘之间,垫片的厚度能够有效调节主盘之间的间距,垫片的直径能够有效调节微针单元的高度,通过配置不同尺寸的垫片能够形成适合不同肤质的微针滚轮;此外,垫片的结构简单,便于生产加工。在本发明中,主盘及垫片间隔布置,通过第一装配件和第二装配件从两端将其锁紧装配,这种结构装配简单、操作方便,能够显著提高装配效率,进一步降低生产成本。更突出的是,在本发明中,第一锁紧部和/或第二锁紧部穿过各主盘上的主盘固定孔及各垫片上的垫片固定孔,该结构既能够保证主盘与垫片在径向的相对位置、避免主盘与垫片错位,又能够保证在微针滚轮的转动过程中,各主盘及垫片同步转动。该结构的突出效果在于,即使第一装配件和第二装配件锁紧时对主盘及垫片的挤压力不大,也能够确保各主盘维持同步转动,有效避免主盘之间出现转速差,从而有效保证护肤效果。
在本申请微针滚轮的一种优选技术方案中,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且各所述主盘的外径尺寸相同,所述滚轮单元呈直筒型。
上述技术方案中的有关内容进一步说明如下:
外径尺寸:主盘具有盘体以及布置在盘体外周、向外延伸的微针单元。该外径尺寸是指主盘绕一中心轴线转动时,从该中心轴线至旋转外边缘的尺寸,比如主盘为圆形时,该外径尺寸是从主盘的圆心至微针单元的尖端的尺寸。
在该优选技术方案中,由于各主盘的外径尺寸相同,当滚轮单元绕一转动轴线转动时,各主盘的旋转外边缘形成直筒状,因此,在该优选技术方案中,多个主盘及垫片形成直筒型的微针滚轮。该直筒型的微针滚轮的生产装配难度小,能够有效节约成本、提高生产效率;并且直筒型的微针滚轮具有广泛的适用场景,可以广泛地用于人体大部分皮肤,比如脸部、头部、手臂等位置。
在本申请微针滚轮的一种优选技术方案中,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且所述滚轮单元上各所述主盘的外径尺寸从所述滚轮单元的中部向两端逐渐减小,所述滚轮单元呈纺锤型。在该优选技术方案中,位于滚轮单元中部的主盘的外径尺寸较大,越靠近滚轮单元两端的主盘的外径尺寸越小;相应地,垫片的外径尺寸也按照从所述滚轮单元的中部向两端逐渐减小的方式排列。这种装配结构使得滚轮单元在外形上呈纺锤型。呈纺锤型的滚轮单元适合用于局部凹陷的皮肤表面,比如脸部的T区,人体关节处或腋下等区域。应用于上述区域时,纺锤型的滚轮单元能够与皮肤更好的贴合,对皮肤进行均衡的疏通,从而使护理效果更均匀、高效。
在本申请微针滚轮的一种优选技术方案中,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且所述滚轮单元上各所述主盘的外径尺寸从所述滚轮单元的两端向中部逐渐减小,所述滚轮单元呈沙漏型。在该优选技术方案中,位于滚轮单元中部的主盘的外径尺寸较小,越靠近滚轮单元两端的主盘的外径尺寸越大;相应地,垫片的外径尺寸也按照从所述滚轮单元的两端向中部逐渐减小的方式排列。这种装配结构使得滚轮单元在外形上呈沙漏型。呈沙漏型的滚轮单元适合用于局部凸起的皮肤表面,比如脸部的下颌线位置、脖颈皮肤、手腕、手肘及脚踝等部位。应用于上述区域时,沙漏型的滚轮单元能够与皮肤更好的贴合,对皮肤进行均衡的疏通,从而使护理效果更均匀、高效。
在本申请微针滚轮的一种优选技术方案中,所述垫片的外径大于所述盘体的外径且小于所述主盘的外径。通过上述的配置,当垫片与主盘间隔布置形成滚轮单元时,微针单元与盘体相连的底端会被相邻的垫片部分遮挡,此时微针单元仅有部分露出。该优选技术方案的突出优势在于,可以通过调整垫片的外径尺寸实现微针单元作用深度的调节,进而满足用户对微针滚轮穿刺皮肤不同深度的需求。由于主盘的生产加工成本高昂,而垫片的成本相对较低,在该技术方案中,生产厂家可以大批量生产统一规格的主盘,以降低加工成本,通过搭配不同尺寸的垫片组合形成具有多种穿刺深度的微针滚轮,从而有效简化生产线,降低生产成本,同时能够更灵活、方便的满足用户需求。因此,该技术方案具有突出的商业价值。
在本申请微针滚轮的一种优选技术方案中,所述盘体的厚度范围在0.05mm-0.15mm之间。该厚度范围使得微针单元呈扁平的片状,便于打开皮肤的屏障层。
在本申请微针滚轮的一种优选技术方案中,所述微针单元具有相对的底端和尖端,所述底端与所述盘体相连,所述尖端远离所述盘体,所述微针单元从所述底端至所述尖端的微针高度范围在0.1mm-5mm之间。该高度范围能够满足部分用户的多种需求,通过调整微针单元的高度可以实现多种护理效果。
在本申请微针滚轮的一种优选技术方案中,所述尖端的针尖角度范围在5°-120°之间。在该优选技术方案中,尖端的针尖角度较小时(比如10°),形成的微针单元较为尖锐,能够轻松地突破皮肤屏障,方便有效有益成分的透皮吸收;尖端的针尖角度较大时(比如120°),形成的微针单元较为扁平,能够方便地对皮肤进行按摩护理,起到舒缓、按摩的效果。
在本申请微针滚轮的一种优选技术方案中,所述微针单元的尖端做倒圆角处理。
在本申请微针滚轮的一种优选技术方案中,制作所述主盘的材料包括金属、陶瓷、单晶硅或高分子材料中的至少一种。在该优选技术方案中,主盘的材料类型具有多种选择,比如选择316不锈钢、304不锈钢等金属材料,也可以选择单晶硅或陶瓷材料,也可以选择包含玻尿酸、胰岛素等护理治疗成分的高分子材料。
在本申请微针滚轮的一种优选技术方案中,所述高分子材料中包括玻尿酸。
在本申请微针滚轮的一种优选技术方案中,所述微针单元与所述盘体的材质相同,所述微针单元与所述盘体一体成型制作形成。需要说明的是,当盘体及微针单元采用含有玻尿酸成分的高分子材料制作时,玻尿酸成分会在微针单元在突破皮肤屏障层的同时溶解在皮肤中,从而达到快速、高效的深度修护效果。相应地,微针滚轮具有可溶解微针的功能。
在本申请微针滚轮的一种优选技术方案中,所述微针单元与所述盘体的材质不同,并且制作所述微针单元的材料包括高分子材料。需要说明的是,当微针单元采用含有玻尿酸成分的高分子材料制作时,微针单元具有可溶解微针的效果,微针单元中含有的玻尿酸成分会在微针单元在突破皮肤屏障层的同时溶解在皮肤中,从而达到快速、高效的深度修护效果。
在本申请微针滚轮的一种优选技术方案中,所述主盘固定孔的中心不与所述主盘的中心轴重合,所述主盘固定孔在所述盘体上偏心设置。通过上述的配置,当微针滚轮绕中心轴线转动时,穿过主盘固定孔的锁紧部能够保证保证各垫片及各主盘同步转动,有效避免主盘打滑等情况发生,进而保证微针滚轮对皮肤的按摩、护理效果。
在本申请微针滚轮的一种优选技术方案中,所述垫片的厚度范围在0.5mm-5mm之间。通过调整垫片的厚度,可以调整相邻主盘之间的间距,从而达到实现对微针单元密度的调节。
在本申请微针滚轮的一种优选技术方案中,相邻所述主盘与所述垫片之间设置有预固定胶层,和/或,相邻所述垫片之间设置有磁吸预固定单元。通过上述的配置,在将主盘及垫片间隔布置、叠放形成滚轮单元的过程中,预固定胶层能够使得相邻主盘及垫片更准确的对位、组装,方便后续的装配。容易理解的是,主盘及垫片之间还可以设置磁吸预固定单元,两者之间通过磁吸力实现相对位置的预固定;更进一步地,由于主盘的生产成本相对较高,因此磁吸预固定单元优选设置在成本较低的垫片上,相邻的垫片能够彼此磁吸,将主盘牢固的夹持、定位,同样能够起到预固定的效果。容易想到的是,主盘及垫片之间的预固定还可以采用其他合适的常见手段。
在本申请微针滚轮的一种优选技术方案中,所述第一锁紧部的端部形成第一锁紧端,在所述第一锁紧端上设有锁紧凹槽;所述第二锁紧部的端部形成第二锁紧端,在所述第二锁紧端上设有与所述锁紧凹槽配对的锁紧凸起;所述第一锁紧部与所述第二锁紧部通过配对的所述锁紧凹槽及所述锁紧凸起以插接方式锁紧配合。在该优选技术方案中,锁紧部之间通过机械结构实现锁紧配合,这种连接方式具有可靠性高、加工成本低的特点。容易想到的是,锁紧部之间还可以通过其他合适的机械结构锁紧配合,比如挂钩、螺纹锁紧等。
在本申请微针滚轮的一种优选技术方案中,所述第一锁紧部与所述第二锁紧部通过磁吸单元或胶层以连接接触方式锁紧配合。在该优选技术方案中,锁紧部之间通过强磁吸作用或强力胶层连接固定,这种连接方式能够更好地简化装配工序,提高生产效率。
本发明还提供了上述微针滚轮的制造方法,该微针滚轮的制造方法具体包括以下步骤:
提供主盘基材,通过冲压工艺或切割工艺从所述主盘基材上制作出主盘,所述主盘具有盘体,所述盘体的外周布置有向外延伸的微针单元,所述盘体上具有主盘固定孔;
提供垫片,所述垫片上具有与所述主盘固定孔正对的垫片固定孔;
将所述主盘与所述垫片间隔布置,并且使各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔位置正对,以形成滚轮单元;
提供第一装配件和第二装配件;其中,所述第一装配件具有第一限位部和第一锁紧部;所述第二装配件具有第二限位部和能够与所述第一锁紧部配合的第二锁紧部;将所述第一装配件和所述第二装配件布置在所述滚轮单元的两端;
将所述第一锁紧部和/或所述第二锁紧部从所述滚轮单元的端部***并穿过各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔;
将第一锁紧部与第二锁紧部配合锁紧以形成所述微针滚轮。
通过冲压工艺或切割工艺能够从主盘基材上一次性制作出主盘,一次加工即可使盘体周向形成多个微针单元,其加工工艺成熟、高效,操作步骤简单、便捷,形成的主盘一体成型,结构稳定、可靠;将主盘及垫片间隔布置后,通过第一装配件和第二装配件从两端将滚轮单元锁紧限位,即可完成微针滚轮的制作及装配。该制作方法改进了传统工艺中在滚筒上植入微针的方式,能够有效简化生产工艺、降低生产成本、提高装配效率。
本发明还提供了上述微针滚轮的另一种制造方法,该微针滚轮的制造方法具体包括以下步骤:
提供一模具,所述模具具有连通的盘体凹槽和微针单元凹槽,在所述盘体凹槽上设有凸起的定型柱;
提供主盘物料,所述主盘物料呈流体状,将所述主盘物料浇铸在所述盘体凹槽和所述微针单元凹槽中,所述主盘物料的液面低于所述定型柱的顶部;
使主盘物料由流体定型为固体;
脱模,获得主盘,所述主盘具有盘体,所述盘体的外周形成有向外延伸的微针单元,所述盘体上具有主盘固定孔;
提供垫片,所述垫片上具有与所述主盘固定孔正对的垫片固定孔;
将所述主盘与所述垫片间隔布置,并且使各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔位置正对,以形成滚轮单元;
提供第一装配件和第二装配件;其中,所述第一装配件具有第一限位部和第一锁紧部;所述第二装配件具有第二限位部和能够与所述第一锁紧部配合的第二锁紧部;将所述第一装配件和所述第二装配件布置在所述滚轮单元的两端;
将所述第一锁紧部和/或所述第二锁紧部从所述滚轮单元的端部***并穿过各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔;
将第一锁紧部与第二锁紧部配合锁紧以形成所述微针滚轮。
上述技术方案中的有关内容进一步说明如下:
主盘物料:主盘物料是一种高分子材料,比如玻尿酸。
流体:流体可以为熔融状态的熔体,也可以是溶质、溶剂混合后的溶液。
主盘物料由流体定型为固体:当主盘物料为熔体时,可以通过静置冷却或其他合适的方式固化定型成固体;当主盘物料为溶液时,可以通过将溶剂挥发的方式使溶液定型为固体。
主盘物料的液面低于所述定型柱的顶部,能够保证主盘物料定型成固体后,其盘体上形成主盘固定孔。
这种制造方法通过模具浇铸成型工艺能够一次性制作出主盘,并且在盘体的周向形成多个微针单元,微针单元与盘体一体成型,能够有效简化主盘的生产加工步骤。突出地是,当主盘物料采用可溶于水的高分子材料时,微针单元形成可溶解微针结构,该主盘制作成微针滚轮在皮肤表面滚动时,可溶解的微针单元在打开皮肤通道的同时将部分主盘物料溶解至皮肤中,从而直接、高效地为皮肤提供活化物;并且在微针滚轮滚动离开后,皮肤屏障能够快速的修复。
本发明还提供了上述微针滚轮的再一种制造方法,该微针滚轮的制造方法具体包括以下步骤:
提供一模具,所述模具具有连通的盘体凹槽和微针单元凹槽;
提供主盘物料,所述主盘物料呈流体状;
提供一盘体,所述盘体上具有主盘固定孔,在所述盘体凹槽内放置所述盘体;
将所述主盘物料浇铸在所述微针单元凹槽内;
使主盘物料由流体定型为固体;
脱模,获得主盘,所述主盘具有盘体,所述盘体的外周形成有向外延伸的微针单元;
提供垫片,所述垫片上具有与所述主盘固定孔正对的垫片固定孔;
将所述主盘与所述垫片间隔布置,并且使各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔位置正对,以形成滚轮单元;
提供第一装配件和第二装配件;其中,所述第一装配件具有第一限位部和第一锁紧部;所述第二装配件具有第二限位部和能够与所述第一锁紧部配合的第二锁紧部;将所述第一装配件和所述第二装配件布置在所述滚轮单元的两端;
将所述第一锁紧部和/或所述第二锁紧部从所述滚轮单元的端部***并穿过各所述主盘上的主盘固定孔与各所述垫片上的垫片固定孔;
将第一锁紧部与第二锁紧部配合锁紧以形成所述微针滚轮。
上述技术方案中的有关内容进一步说明如下:
主盘物料:主盘物料是一种高分子材料,比如玻尿酸。
流体:流体可以为熔融状态的熔体,也可以是溶质、溶剂混合后的溶液。
主盘物料由流体定型为固体:当主盘物料为熔体时,可以通过静置冷却或其他合适的方式固化定型成固体;当主盘物料为溶液时,可以通过将溶剂挥发的方式使溶液定型为固体。
这种制造方法通过模具浇铸成型工艺能够在盘体的周向上生成微针单元,盘体与微针单元可以是不同材料。突出地是,当主盘物料采用可溶于水的高分子材料时,微针单元形成可溶解微针结构,该主盘制作成微针滚轮在皮肤表面滚动时,可溶解的微针单元在打开皮肤通道的同时将部分主盘物料溶解至皮肤中,从而直接、高效地为皮肤提供活化物;并且在微针滚轮滚动离开后,皮肤屏障能够快速的修复。
本发明还提供了一种容器,该容器包括容纳腔,所述容纳腔中装有活性物,在所述容纳腔上设有出口;根据上述任一技术方案中所述的微针滚轮,所述微针滚轮布置在所述出口处并且能够绕自身轴线滚动;和涂抹刷,所述涂抹刷能够引导从所述出口处流出的活性物,并且能够在所述微针滚轮滚动时接触所述微针单元并将所述活性物涂覆在所述微针单元上。
上述技术方案中的有关内容进一步说明如下:
从出口处流出的活性物:在上述技术方案中,活性物可以是具有护理或装饰作用的化妆品,也可以是具有治疗作用的药物,也可以是具有预防防治作用的疫苗。活性物可以为液体形态,比如水、乳液、护理液等液体形态;也可以是“可流动”的固体形态,比如粉末状、细颗粒状,其呈固体状,且具有类似液体的流动特性;也可以是固液混合态,比如液体中混合有固体颗粒,固体颗粒能够随液体同步流出。上述技术方案中的活性物存放在容纳腔中,能够从出口处流出或被挤出。
该容器能够集存储、护理、促渗吸收于一体。突出的是,在使用该容器时,从出口流出的活性物能够被涂抹刷引流并均匀地涂抹在微针滚轮上,从而便于活性物均匀的涂覆在皮肤表面,使得皮肤对活性物的吸收更均衡。
附图说明
图1是本发明微针滚轮实施例的结构示意图。
图2是本发明微针滚轮实施例的透视结构示意图。
图3是本发明微针滚轮实施例中主盘形式一的结构示意图。
图4是本发明微针滚轮实施例中主盘形式二的结构示意图。
图5是本发明微针滚轮实施例中主盘形式三的结构示意图。
图6是本发明微针滚轮实施例中主盘形式四的结构示意图。
图7是本发明微针滚轮实施例中主盘形式五的结构示意图。
图8是本发明微针滚轮实施例中垫片形式一的结构示意图。
图9是本发明微针滚轮实施例中垫片形式二的结构示意图。
图10是本发明微针滚轮实施例中滚轮单元的端面示意图。
图11是本发明微针滚轮实施例中第一装配件的结构示意图。
图12是本发明微针滚轮实施例中第一装配件的侧视示意图。
图13是本发明微针滚轮实施例中第二装配件的结构示意图。
图14是本发明微针滚轮的一种制造方法的流程示意图。
图15是本发明微针滚轮的另一种制造方法的流程示意图。
图16是本发明微针滚轮的再一种制造方法的流程示意图。
图17是本发明容器的结构示意图。
图18是本发明微针滚轮另一实施例的结构示意图。
附图标记列表:
A、微针滚轮;a、滚轮单元;a1、主盘;a11、盘体;a12、微针单元;a121、微针单元的底端;a122、微针单元的尖端;a13、主盘固定孔;a2、垫片;a21、垫片本体;a22、垫片固定孔;b1、第一装配件;b11、第一锁紧部;b110、第一锁紧端;b12、第一限位部;b2、第二装配件;b21、第二限位部;b22、第二锁紧部;b3、锁紧轴;T、容器;T1、容纳腔;T11、出口;T2、涂抹刷;T3、夹持部。
本发明的实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“配合”、“装配”、“设置”、“布置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了解决现有技术中微针滚轮的制作工艺复杂、生产成本高昂、结构不可靠等技术问题,本发明提供了一种微针滚轮A。该微针滚轮A包括滚轮单元a、第一装配件b1和第二装配件b2,滚轮单元a包括间隔布置的主盘a1和垫片a2;其中,主盘a1具有盘体a11,盘体a11的外周布置有向外延伸的微针单元a12,在盘体a11上设有主盘固定孔a13;垫片a2与主盘a1同轴,在垫片a2上设有与主盘固定孔a13正对的垫片固定孔a22;第一装配件b1具有第一限位部b12和第一锁紧部b11;第二装配件b2具有第二限位部b21和能够与第一锁紧部b11配合的第二锁紧部b22;第一锁紧部b11和/或第二锁紧部b22从滚轮单元a上的主盘固定孔a13和垫片固定孔a22中穿过并锁紧配合,使第一限位部b12和第二限位部b21分别抵靠在滚轮单元a的两端。
图1是本发明微针滚轮实施例的结构示意图,图2是本发明微针滚轮实施例的透视结构示意图。如图1所示,微针滚轮A包括微针单元a以及布置在其两端的第一装配件b1和第二装配件b2。微针单元a包括同轴间隔布置的主盘a1及垫片a2,第一装配件b1及第二装配件b2分别布置在微针单元a的一端并锁紧配合,使得主盘a1及垫片a2相互贴近或压紧,从而形成结构稳固、可靠的微针滚轮A。
图3是本发明微针滚轮实施例中主盘形式一的结构示意图,图4是本发明微针滚轮实施例中主盘形式二的结构示意图,图5是本发明微针滚轮实施例中主盘形式三的结构示意图。如图3-图5所示,主盘a1的盘体a11呈圆片状或圆饼状。替代地,盘体a11也可以是椭圆片状或具有圆角过渡的多边形。盘体a11具有平直表面,也可以根据需要设计成具有凹陷的弧面,如碗状。盘体a11采用不锈钢材料做成。容易理解地是,盘体a11还可以采用高分子材料、单晶硅或陶瓷材料做成,比如玻尿酸或单晶硅。盘体a11的厚度为0.05mm-0.15mm。可选地,盘体a11的厚度为0.05mm、0.08mm、0.1mm、0.12mm或0.15mm。容易理解地是,盘体a11的厚度还可以根据需要设计成其他合适的尺寸。
如图3-图5所示,在盘体a11的周向布置有微针单元a12。可选地,微针单元a12在盘体a11的周向等距排布。微针单元a12可以与盘体a11一体成型制作形成,相应地,微针单元a12与盘体a11为同种材料,比如为316不锈钢材料、玻尿酸高分子材料、单晶硅或陶瓷材料。替代地,微针单元a12可以通过浇铸、固化定型、挥发定型或其他合适的工艺形成在盘体a11的周向,相应地,微针单元a12与盘体a11之间可以为同种材料,也可以是不同种材料。可选地,盘体a11采用不锈钢材料制成,微针单元a12采用玻尿酸高分子材料制成。值得强调地是,当微针单元a12采用玻尿酸高分子材料时,由于玻尿酸具有能够溶解于水、能够被皮肤吸收的特性,因此当微针单元a12与皮肤接触时,部分玻尿酸将直接被皮肤吸收,从而直接地为皮肤提供营养;并且当微针单元a12离开皮肤后,皮肤表面能够及时修复屏障。
相较于传统的贴片式玻尿酸微针会持续堵塞通道,造成皮肤屏障受损、恢复周期长,本发明实施例中的微针单元a12能够有效缩短皮肤屏障修复时间,降低皮肤损伤及感染风险。容易理解地是,随着微针单元a12中玻尿酸的逐渐溶解,微针单元a12的使用周期将快速缩短。容易理解地是,通过控制玻尿酸的浓度或含量可以调节微针单元a12的使用周期,可选地,控制微针单元a12的使用周期在10s-30min,相应地,微针滚轮A属于一种耗材。
如图3-图5所示,微针单元a12具有与盘体a11相连的底端a121以及向外延伸的尖端a122,可选地,微针单元a12从底端a121至尖端a122的高度为0.1mm-5mm,不同高度的微针单元具有不同的最大刺入深度,从而对应不同的使用场景。如图3-图5所示,微针单元的尖端a122的尖角具有一定范围,可选地,该角度范围为5-120°。角度值较小时能够形成尖锐的尖端a122,便于打开皮肤通道,如图3所示,主盘形式一中搭配了一种尖角角度为10°的微针单元a12;尖角的角度值较大时,微针单元a12的尖端的尖锐程度降低,并且尖端与皮肤表面具有较大的接触面积,因此便于对皮肤进行按摩,如图4所示,主盘形式二中搭配了一种尖角角度为90°的微针单元a12;如图5所示,主盘形式三中搭配了一种尖角角度为60°的微针单元a12。容易理解地是,可以对微针单元a12的尖端做倒圆角处理,以进一步减弱尖端的尖锐程度,并且增大尖端与皮肤的接触面积,从而提升按摩体验。
图6是本发明微针滚轮实施例中主盘形式四的结构示意图,图7是本发明微针滚轮实施例中主盘形式五的结构示意图。如图3-图7所示,在主盘a1的盘体a11上设有主盘固定孔a13。主盘固定孔a13的形状可以为圆形、矩形、梯形、正多边形或其他合适的形状,主盘固定孔a13的中心不与主盘a1的中心轴重合。主盘固定孔a13的数量至少为一个,当主盘固定孔a13的数量为多个时,如图3-图7所示,可选地,主盘固定孔a13在盘体a11上旋转对称分布。
图8是本发明微针滚轮实施例中垫片形式一的结构示意图,图9是本发明微针滚轮实施例中垫片形式二的结构示意图。如图8和图9所示,垫片a2具有垫片本体a21,垫片本体a21呈圆片状或圆饼状。替代地,垫片本体a21还可以为正多边形。垫片本体a21的表面与盘体a11的表面贴合匹配,当盘体a11表面平直时,垫片本体a21的表面也保持平直;当盘体a11的表面具有凹陷或凸起时,垫片本体a21的表面在对应位置处也有相应的凹陷或凸起,也使得垫片本体a21与盘体a11保持贴合接触。垫片本体a21可由橡胶材料做成。替代地,垫片本体a21可以由硅胶、树脂或其他合适的材料做成。可选地,垫片本体a21的厚度范围为0.5-5mm,比如1mm、1.5mm或2mm。容易理解地是,垫片本体a21的厚度也可以根据需要设计成其他合适的尺寸。
如图8和图9所示,在垫片本体a21上设有垫片固定孔a22。垫片固定孔a22的形状可以为圆形、矩形、梯形、多边形或其他合适的形状。垫片固定孔a22设置在垫片本体a21上的位置与主盘固定孔a13设置在盘体a11上的位置相对应,即当垫片a2与主盘a1同轴设置时,垫片固定孔a22能够与主盘固定孔a13位置正对。
图10是本发明微针滚轮实施例中滚轮单元的端面示意图。如图1、图2和图10所示,主盘a1和垫片a2同轴间隔布置形成滚轮单元a。通过装配不同数量的主盘a1和垫片a2能够形成不同长度的滚轮单元。当滚轮单元a仅具有两个主盘a1时,形成的滚轮单元a的长度较小;当滚轮单元a具有多个主盘a1时,形成的滚轮单元a的长度较大。容易理解地是,通过将不同直径的主盘a1和垫片a2组合装配,能够形成多种类型的滚轮单元a。当滚轮单元a的各个主盘a1的外径相同时,滚轮单元a的外周面呈直筒型;当滚轮单元a上靠近两端的主盘a1的外径小、靠近中部的主盘a1的外径大时,滚轮单元a的外周面呈纺锤型;当滚轮单元a上靠近两端的主盘a1的外径大、靠近中部的主盘a1的外径小时,滚轮单元a的外周面呈沙漏型。容易想到地是,可以根据设计需要灵活的装配不同外径的主盘a1,为滚轮单元a定义出多种样式的外周面,以适应不同的皮肤位置。
需要说明地是,主盘a1的外径包括盘体a11的半径及微针单元a12的高度,微针单元a12的高度代表微针单元a12能够进入皮肤的最大深度,在实际使用过程中,面对不同的使用需求,微针单元a12需要进入皮肤的深度不同。为了满足多样化的使用需求,可以选择具有合适高度的微针单元a12的主盘a1,将这些主盘a1与垫片a2装配形成合适的滚轮单元a;也可以采用如下方式:选择合适外径的垫片a2与主盘a1装配形成滚轮单元a,垫片a2的外径小于相邻主盘a1的外径(盘体a11的外径+微针单元a12的高度)并且大于盘体a11的外径。如图10所示,当垫片a2的外径大于盘体a11的外径时,微针单元a12进入皮肤的深度为微针单元a12超出垫片a2部分的高度。在实际生产过程中,主盘a1的尺寸及型号可以统一,通过装配不同外径的垫片a2以调节主盘a1上微针单元a12实际可进入皮肤的深度,由于垫片a2的生产工艺简单、成熟,成本低廉,因此,这种装配方式能够有效节约成本且提高生产效率。
值得强调的是,滚轮单元a的外周面呈纺锤型、沙漏型或其他形状的曲面时,滚轮单元a上各主盘a1的外径尺寸并不一致。在一些实施例中,通过装配相应的、不同尺寸的垫片a2,可以使得各主盘单元a1上微针单元a12超出垫片a2部分的高度保持一致,进而保证滚轮单元a的曲面各处对皮肤的穿刺深度一致。如图18中本发明微针滚轮另一实施例的结构示意图所示。
如图10所示,主盘a1与垫片a2同轴间隔布置后,垫片固定孔a22能够与主盘固定孔a13位置正对。容易理解地是,为了方便主盘a1及垫片a2的布置,可以在主盘a1及垫片a2之间涂抹胶体进行初步固定。替代地,主盘a1与垫片a2之间通过磁力彼此吸附固定。
如图1和图2所示,主盘a1及垫片a2同轴间隔布置形成的滚轮单元a通过第一装配件b1和第二装配件b2配合锁紧。图11是本发明微针滚轮实施例中第一装配件的结构示意图,图12是本发明微针滚轮实施例中第一装配件的侧视示意图。如图11和图12所示,第一装配件b1具有第一锁紧部b11,第一锁紧部b11具有能穿过主盘固定孔a13和垫片固定孔a22的轴体,可选地,该轴体的端面形状与主盘固定孔a13的形状相同。替代地,主盘固定孔a13的形状能够外切套设轴体的端面形状。如图11和图12所示,第一锁紧部b11的一端形成第一锁紧端b110,该第一锁紧端b110具有锁紧凹槽。如图11和图12所示,第一限位部b12设置在第一锁紧部b11的另一端。第一限位部b12的端面尺寸大于主盘固定孔a13及垫片固定孔a22的尺寸,以对滚轮单元a的端部形成限位。可选地,第一限位部b12的端面呈圆形、矩形、多边形或其他合适的形状。
图13是本发明微针滚轮实施例中第二装配件的结构示意图。如图13所示,第二装配件b2具有第二限位部b21,第二限位部b21的端面尺寸大于主盘固定孔a13及垫片固定孔a22的尺寸,以对滚轮单元a的端部形成限位。可选地,第二限位部b21的端面呈圆形、矩形、多边形或其他合适的形状。在第二限位部b21上设有第二锁紧部b22,第二锁紧部b22上具有第二锁紧端,该第二锁紧端能够***锁紧凹槽以实现第一锁紧部b11与第二锁紧部b22的锁紧配合。为了增强第一锁紧部b11与第二锁紧部b22的锁紧力度,可以在第一锁紧部b11与第二锁紧部b22之间设置磁吸单元。
如图1和图2所示,第一锁紧件b1和第二锁紧件b2配合锁紧时,第一锁紧部b11与第二锁紧部b22连成一体形成锁紧轴b3,该锁紧轴b3穿过各主盘固定孔a13及垫片固定孔a22。容易理解地是,在锁紧轴b3总长度不变的前提下,可以适当缩短第一锁紧部b11的长度,同时增长第二锁紧部b22的长度,以满足不同的设计需求。需要说明地是,除了采用第二锁紧端***锁紧凹槽的锁紧方式外,第一锁紧部b11与第二锁紧部b22还可以通过其他多种方式形成锁紧配合,只要能够实现第一锁紧部b11与第二锁紧部b22连成一体形成锁紧轴b3即可。比如两个锁紧端通过卡勾-挂环的方式锁紧配合。替代地,在第一锁紧部b11与第二锁紧部b22相对的两个锁紧端设置强磁单元,通过强磁场使两者直接锁紧配合。替代地,第一锁紧部b11与第二锁紧部b22相对的两个锁紧端通过胶水粘结锁紧。
当滚轮单元a绕轴线转动时,锁紧轴b3能够确保各主盘a1及垫片a2同步转动,避免各主盘a1及垫片a2之间出现转速差或错位。容易理解地是,在主盘a1及垫片a2同轴间隔布置的情况下,只需至少两条锁紧轴b3即可确定各主盘a1及垫片a2的相对位置,因此,在本发明的实施例中,第一锁紧部b11及第二锁紧部b22的数量无需与主盘固定孔a13的数量保持一致,只需保证至少两条锁紧轴b3穿过各主盘固定孔a13及垫片固定孔a22即可。同理,垫片固定孔a22的数量无需与主盘固定孔a13的数量保持一致,只需保证至少同一垫片a2上至少有两个垫片固定孔a22分别被一条锁紧轴b3穿过即可。
本发明实施例中的微针滚轮具有独特的结构设计,能够有效提升微针滚轮的可靠性,提升用户使用体验。采用独特的制造方法能够进一步提高生产效率、降低生产成本,为用户带来更大的便利。为此本发明实施例提供了多种制造方法。
图14是本发明微针滚轮的一种制造方法的流程示意图。如图14所示,该微针滚轮的一种制造方法包括以下步骤:
提供主盘基材,通过冲压工艺或切割工艺从主盘基材上制作出主盘,主盘具有盘体,盘体的外周布置有向外延伸的微针单元,盘体上具有主盘固定孔(步骤S1);
提供垫片,垫片上具有与主盘固定孔正对的垫片固定孔(步骤S2);
将主盘与垫片间隔布置,并且使各主盘上的主盘固定孔与各垫片上的垫片固定孔位置正对,以形成滚轮单元(步骤S3);
提供第一装配件和第二装配件;其中,第一装配件具有第一限位部和第一锁紧部;第二装配件具有第二限位部和能够与第一锁紧部配合的第二锁紧部;将第一装配件和第二装配件布置在滚轮单元的两端(步骤S4);
将第一锁紧部和/或第二锁紧部从滚轮单元的端部***并穿过各主盘上的主盘固定孔与各垫片上的垫片固定孔(步骤S5);
将第一锁紧部与第二锁紧部配合锁紧以形成微针滚轮(步骤S6)。
其中,在步骤S1中,主盘基材可以为金属材料,比如304不锈钢、316不锈钢等;还可以为高分子材料,比如玻尿酸、树脂等;还可以为单晶硅、陶瓷等。根据设计需要选择主盘基材的厚度,比如厚度为0.05mm-0.15mm,可选地,厚度为0.1mm。在步骤S1中,对主盘基材进行一次性冲压,制作出周向分布有微针单元、盘体开设有主盘固定孔的主盘。或者,通过激光切割工艺从主盘基材上切割出周向分布有微针单元、盘体开设有主盘固定孔的主盘。该步骤S1中制作出的主盘具有如下优势:微针单元与盘体一体成型,具有较高的结构强度;主盘通过一次冲压或激光切割即可成型,加工工艺成熟、步骤简单,具有较高的生产效率及较低的生产成本。
其中,在步骤S2中,提供一种垫片基材,垫片基材可以是橡胶、硅胶、树脂或其他合适的材料。该垫片基材的厚度为0.5-5mm,可选地,厚度为1mm、1.5mm或2mm。通过冲压工艺或切割工艺从垫片基材上制作出垫片。容易想到地是,还可以通过其他合适方式获得垫片基材。
其中,在步骤S3中,主盘与垫片间隔布置。可选地,在主盘及垫片之间涂抹胶体进行初步定位,以保证主盘固定孔与垫片固定孔位置正对,同时确保各主盘及垫片彼此贴合成结构稳定的滚轮单元。可以理解地是,还可以通过其他合适的方式使主盘及垫片初步定位。
其中,在步骤S4中,第一锁紧部及第二锁紧部有多种配合锁紧方式。比如,两者通过配对的锁紧凹槽-锁紧凸起配合锁紧;两者通过配对的卡勾-挂环配合锁紧;两者通过强磁单元吸合锁紧。
其中,在步骤S5中,第一锁紧部和第二锁紧部配合将形成锁紧轴,只需保证至少有两条锁紧轴分别穿过对应的主盘固定孔及垫片固定孔,即可实现滚轮单元的限位固定。
其中,在步骤S6中,第一锁紧部与第二锁紧部配合锁紧后,第一限位部与第二限位部分别抵靠在滚轮单元的两端,两者配合将滚轮单元夹紧限位。
需要说明地是,在上述制造方法中,步骤S1、步骤S2及步骤S4的执行顺序无需特别限定,三个步骤可以分别同时进行或根据生产需要灵活调整。特别强调地是,该制造方法重形成的主盘一体成型,当主盘基材采用玻尿酸材料时,主盘上的微针单元形成玻尿酸微针。当微针单元进入皮肤时,能够直接溶解并被皮肤吸收,从而有效提高皮肤营养成分的吸收;在微针单元离开皮肤后,皮肤屏障能够快速修复,从而降低皮肤损伤或感染几率。通过控制微针单元的尺寸及玻尿酸的浓度或含量,能够调整玻尿酸微针的使用时长,可选的,使用时长控制在10s-30min。
图15是本发明微针滚轮的另一种制造方法的流程示意图。如图15所示,该微针滚轮的另一种制造方法包括以下步骤:
提供一模具,模具具有连通的盘体凹槽和微针单元凹槽,在盘体凹槽上设有凸起的定型柱(步骤L1);
提供主盘物料,主盘物料呈流体状,将主盘物料浇铸在盘体凹槽和微针单元凹槽中,主盘物料的液面低于定型柱的顶部(步骤L2);
使主盘物料由流体定型为固体(步骤L3);
脱模,获得主盘,主盘具有盘体,盘体的外周形成有向外延伸的微针单元,盘体上具有主盘固定孔(步骤L4);
提供垫片,垫片上具有与主盘固定孔正对的垫片固定孔(步骤L5);
将主盘与垫片间隔布置,并且使各主盘上的主盘固定孔与各垫片上的垫片固定孔位置正对,以形成滚轮单元(步骤L6);
提供第一装配件和第二装配件;其中,第一装配件具有第一限位部和第一锁紧部;第二装配件具有第二限位部和能够与第一锁紧部配合的第二锁紧部;将第一装配件和第二装配件布置在滚轮单元的两端(步骤L7);
将第一锁紧部和/或第二锁紧部从滚轮单元的端部***并穿过各主盘上的主盘固定孔与各垫片上的垫片固定孔(步骤L8);
将第一锁紧部与第二锁紧部配合锁紧以形成微针滚轮(步骤L9)。
其中,在步骤L2中,主盘物料为高分子材料,比如玻尿酸、树脂等。流体状的主盘物料可以是熔融状态的熔体,也可以是溶质、溶剂混合后的溶液,或者是其他合适的、易于固化定型的流体。主盘物料的液面低于定型柱的顶部,能够保证当主盘物料由流体定型成固体时,其盘体上能够一次性形成主盘固定孔。
其中,在步骤L3中,主盘物料由流体定型为固体。当主盘物料为熔体时,可以通过静置冷却或其他合适的方式使熔体固化定型成固体;当主盘物料为溶液时,可以通过将溶剂挥发的方式使溶液定型为固体。
需要说明地是,在上述制造方法中,步骤L1至步骤L9的执行顺序并非特别限定,可根据生产需要灵活调整。根据设计需要控制液面的高度,即可获得不同厚度的主盘。步骤L1至步骤L4中制作出的主盘具有如下优势:当主盘物料采用可溶于水的玻尿酸材料时,微针单元形成玻尿酸微针。微针单元在进入皮肤并打开吸收通道的同时,能够直接溶解并被皮肤吸收。
图16是本发明微针滚轮的再一种制造方法的流程示意图。如图16所示,该微针滚轮的再一种制造方法包括以下步骤:
提供一模具,模具具有连通的盘体凹槽和微针单元凹槽(步骤V1);
提供主盘物料,主盘物料呈流体状(步骤V2);
提供一盘体,盘体上具有主盘固定孔,在盘体凹槽内放置盘体(步骤V3);
将主盘物料浇铸在微针单元凹槽内(步骤V4);
使主盘物料由流体定型为固体(步骤V5);
脱模,获得主盘,主盘具有盘体,盘体的外周形成有向外延伸的微针单元(步骤V6);
提供垫片,垫片上具有与主盘固定孔正对的垫片固定孔(步骤V7);
将主盘与垫片间隔布置,并且使各主盘上的主盘固定孔与各垫片上的垫片固定孔位置正对,以形成滚轮单元(步骤V8);
提供第一装配件和第二装配件;其中,第一装配件具有第一限位部和第一锁紧部;第二装配件具有第二限位部和能够与第一锁紧部配合的第二锁紧部;将第一装配件和第二装配件布置在滚轮单元的两端(步骤V9);
将第一锁紧部和/或第二锁紧部从滚轮单元的端部***并穿过各主盘上的主盘固定孔与各垫片上的垫片固定孔(步骤V10);
将第一锁紧部与第二锁紧部配合锁紧以形成微针滚轮(步骤V11)。
其中,在步骤V2中,主盘物料为高分子材料,比如玻尿酸、树脂等。流体状的主盘物料可以是熔融状态的熔体,也可以是溶质、溶剂混合后的溶液,或者是其他合适的、易于固化定型的流体。
其中,在步骤V5中,主盘物料由流体定型为固体。当主盘物料为熔体时,可以通过静置冷却或其他合适的方式使熔体固化定型成固体;当主盘物料为溶液时,可以通过将溶剂挥发的方式使溶液定型为固体。
需要说明地是,在上述制造方法中,步骤V1至步骤V11的执行顺序并非特别限定,可根据生产需要灵活调整。根据设计需要控制液面的高度,即可获得不同厚度的主盘。步骤V1至步骤V6中制作出的主盘具有如下优势:盘体与微针单元可以由不同的材料做成。当主盘物料采用可溶于水的玻尿酸材料时,微针单元形成玻尿酸微针。微针单元在进入皮肤并打开吸收通道的同时,能够直接溶解并被皮肤吸收。
本发明实施例中的微针滚轮具有广泛的应用场景,比如装配在容器上。图17是本发明容器的结构示意图。如图17所示,该容器T包括容纳腔T1,容纳腔T1中装有活性物,在容纳腔T1上设有出口T11;上述任一实施例中的微针滚轮A,微针滚轮A布置在出口T11处并且能够绕自身轴线滚动;和涂抹刷T2,涂抹刷T2能够引导从出口T11处流出的活性物,并且能够在微针滚轮A滚动时接触微针单元a12并将活性物涂覆在微针单元a12上。
如图17所示,容器T的收纳腔T1布置在下方,在收纳腔T1的上方设有夹持部T3,夹持部T3及收纳腔T1的顶部形成微针滚轮A的装配空间,在夹持部T3上设有滚动支撑轴,在微针滚轮A的两端设有能够与滚动支撑轴配合的滚动支撑槽。当微针滚轮A放置在装配空间时,夹持部T3上的滚动支撑轴***滚动支撑槽中,实现夹持部T3对微针滚轮A的夹持及支撑,微针滚轮A能够以滚动支撑轴为中心轴自由转动。如图17所示,收纳腔T1的出口T11设置在收纳腔T1的顶部,在出口T11处设置有涂抹刷T2,涂抹刷T2的毛刷端能够接触微针滚轮A的周面。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (20)

  1. 一种微针滚轮,其特征在于,所述微针滚轮包括滚轮单元、第一装配件和第二装配件,所述滚轮单元包括间隔布置的主盘和垫片;其中,
    所述主盘具有盘体,所述盘体的外周布置有向外延伸的微针单元,在所述盘体上设有主盘固定孔;
    所述垫片与所述主盘同轴,在所述垫片上设有与所述主盘固定孔正对的垫片固定孔;
    所述第一装配件具有第一限位部和第一锁紧部;
    所述第二装配件具有第二限位部和能够与所述第一锁紧部配合的第二锁紧部;
    所述第一锁紧部和/或所述第二锁紧部从所述滚轮单元上的主盘固定孔和垫片固定孔中穿过并锁紧配合,使所述第一限位部和所述第二限位部分别抵靠在所述滚轮单元的两端。
  2. 根据权利要求1所述的微针滚轮,其特征在于,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且各所述主盘的外径尺寸相同,所述滚轮单元呈直筒型。
  3. 根据权利要求1所述的微针滚轮,其特征在于,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且所述滚轮单元上各所述主盘的外径尺寸从所述滚轮单元的中部向两端逐渐减小,所述滚轮单元呈纺锤型。
  4. 根据权利要求1所述的微针滚轮,其特征在于,多个所述主盘和多个所述垫片间隔布置形成所述滚轮单元,并且所述滚轮单元上各所述主盘的外径尺寸从所述滚轮单元的两端向中部逐渐减小,所述滚轮单元呈沙漏型。
  5. 根据权利要求1所述的微针滚轮,其特征在于,所述垫片的外径大于所述盘体的外径且小于所述主盘的外径。
  6. 根据权利要求2-4中任一项所述的微针滚轮,其特征在于,所述垫片的外径大于所述盘体的外径且小于所述主盘的外径。
  7. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,所述盘体的厚度范围在0.05mm-0.15mm之间。
  8. 根据权利要求7所述的微针滚轮,其特征在于,所述微针单元具有相对的底端和尖端,所述底端与所述盘体相连,所述尖端远离所述盘体,所述微针单元从所述底端至所述尖端的微针高度范围在0.1mm-5mm之间。
  9. 根据权利要求8所述的微针滚轮,其特征在于,所述尖端的针尖角度范围在5°-120°之间。
  10. 根据权利要求9所述的微针滚轮,其特征在于,所述微针单元的尖端做倒圆角处理。
  11. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,制作所述主盘的材料包括金属、陶瓷、单晶 或高分子材料中的至少一种。
  12. 根据权利要求11所述的微针滚轮,其特征在于,所述高分子材料中包括玻尿酸。
  13. 根据权利要求12所述的微针滚轮,其特征在于,所述微针单元与所述盘体的材质相同,所述微针单元与所述盘体一体成型制作形成。
  14. 根据权利要求12所述的微针滚轮,其特征在于,所述微针单元与所述盘体的材质不同,并且制作所述微针单元的材料包括高分子材料。
  15. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,所述主盘固定孔的中心不与所述主盘的中心轴重合,所述主盘固定孔在所述盘体上偏心设置。
  16. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,所述垫片的厚度范围在0.5mm-5mm之间。
  17. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,相邻所述主盘与所述垫片之间设置有预固定胶层,和/或,相邻所述垫片之间设置有磁吸预固定单元。
  18. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,所述第一锁紧部的端部形成第一锁紧端,在所述第一锁紧端上设有锁紧凹槽;所述第二锁紧部的端部形成第二锁紧端,在所述第二锁紧端上设有与所述锁紧凹槽配对的锁紧凸起;所述第一锁紧部与所述第二锁紧部通过配对的所述锁紧凹槽及所述锁紧凸起以插接方式锁紧配合。
  19. 根据权利要求1-5中任一项所述的微针滚轮,其特征在于,所述第一锁紧部与所述第二锁紧部通过磁吸单元或胶层以连接接触方式锁紧配合。
  20. 一种容器,其特征在于,所述容器包括:
    容纳腔,所述容纳腔中装有活性物,在所述容纳腔上设有出口;
    根据权利要求1-19中任一项所述的微针滚轮,所述微针滚轮布置在所述出口处并且能够绕自身轴线滚动;和
    涂抹刷,所述涂抹刷能够引导从所述出口处流出的活性物,并且能够在所述微针滚轮滚动时接触所述微针单元并将所述活性物涂覆在所述微针单元上。
PCT/CN2023/095537 2022-06-08 2023-05-22 微针滚轮和容器 WO2023236765A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210638100 2022-06-08
CN202210638100.1 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023236765A1 true WO2023236765A1 (zh) 2023-12-14

Family

ID=87184509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095537 WO2023236765A1 (zh) 2022-06-08 2023-05-22 微针滚轮和容器

Country Status (2)

Country Link
CN (1) CN116460545A (zh)
WO (1) WO2023236765A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161735A1 (en) * 2006-12-20 2008-07-03 Justin Lee Microneedle roller
KR20090060116A (ko) * 2007-12-07 2009-06-11 이명인 디스크 니들 롤러
CN203001681U (zh) * 2012-11-15 2013-06-19 中国人民解放军北京军区总医院 滚轮微针装置
KR20140044098A (ko) * 2012-10-04 2014-04-14 공광열 마이크로니들 롤러
CN108778397A (zh) * 2016-09-12 2018-11-09 李昌雨 微针滚轮装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161735A1 (en) * 2006-12-20 2008-07-03 Justin Lee Microneedle roller
KR20090060116A (ko) * 2007-12-07 2009-06-11 이명인 디스크 니들 롤러
KR20140044098A (ko) * 2012-10-04 2014-04-14 공광열 마이크로니들 롤러
CN203001681U (zh) * 2012-11-15 2013-06-19 中国人民解放军北京军区总医院 滚轮微针装置
CN108778397A (zh) * 2016-09-12 2018-11-09 李昌雨 微针滚轮装置

Also Published As

Publication number Publication date
CN116460545A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US10918845B2 (en) Transdermal administration device
EP3021930B1 (en) Hollow microneedle with beveled tip
JP7253838B2 (ja) 水溶性シート状製剤のアプリケータ
KR101774803B1 (ko) 마이크로 니들을 이용한 롤러형 피부 미용기기 및 이를 위한 롤러의 제작방법
JP6369026B2 (ja) マイクロニードル、および、マイクロニードルの製造方法
CN101507857A (zh) 微针阵列芯片、经皮给药装置、经皮给药贴剂及制备方法
Gao et al. How physical techniques improve the transdermal permeation of therapeutics: A review
JP2018513121A5 (zh)
JP6323975B2 (ja) 針状体の製造方法
EP3021931A1 (en) Hollow microneedle array article
EP2990072A1 (en) Production method for acicular body
WO2023236765A1 (zh) 微针滚轮和容器
EP3434314B1 (en) Transdermal delivery device
JP6717207B2 (ja) 経皮投与デバイス
KR100792382B1 (ko) 마이크로 니들 롤러와 그 성형 금형
Agrawal et al. Microneedles: An advancement to transdermal drug delivery system approach
JP6003338B2 (ja) 針状体パッケージ
JP6255759B2 (ja) マイクロニードル
EP3363491A1 (en) Administration instrument
WO2021109006A1 (zh) 药液导入头及促渗仪
CN210205599U (zh) 一种一次性自毁式振动头组件以及应用该组件的促渗仪
CN205084201U (zh) 一种皮肤外用药物涂搽器
Fafal et al. Newly Developed Microneedles Can Dissolve in The Skin to Deliver Drugs
CN215084208U (zh) 一种微针贴片推入装置
JP2017121315A (ja) 針状体の製造方法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23818930

Country of ref document: EP

Kind code of ref document: A1