WO2023236495A1 - 处理信号的方法及相关装置 - Google Patents

处理信号的方法及相关装置 Download PDF

Info

Publication number
WO2023236495A1
WO2023236495A1 PCT/CN2022/140113 CN2022140113W WO2023236495A1 WO 2023236495 A1 WO2023236495 A1 WO 2023236495A1 CN 2022140113 W CN2022140113 W CN 2022140113W WO 2023236495 A1 WO2023236495 A1 WO 2023236495A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
windowed
windowing
signal amplitude
signal
Prior art date
Application number
PCT/CN2022/140113
Other languages
English (en)
French (fr)
Inventor
范玉静
张丽君
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023236495A1 publication Critical patent/WO2023236495A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • the present application relates to the field of wireless communication technology, and specifically to a method of processing signals and related devices.
  • a cyclic prefix can be set between symbols to suppress inter-symbol interference caused by the multipath effect of the transmission channel, and the symbols can be windowed in the time domain so that the amplitude of the signal when the symbol is transmitted is close to reducing the Out-of-band leakage.
  • This application provides a signal processing method and related devices. Various aspects involved in the embodiments of this application are introduced below.
  • a method for processing a signal including: generating a first symbol and a second symbol, the first symbol being a previous symbol of the second symbol, the first symbol and the second symbol A cyclic prefix is provided in between; a windowing operation is performed on the first symbol and the second symbol respectively within the cyclic prefix to generate a first windowed part of the first symbol and the second symbol a second windowed portion; and based on comparing the transmit power of the first symbol with the transmit power of the second symbol, adjusting the signal amplitude of the first windowed portion and/or the signal amplitude of the second windowed portion. signal amplitude.
  • a device for processing a signal including: a generating module configured to generate a first symbol and a second symbol, the first symbol being a previous symbol of the second symbol, the first symbol A cyclic prefix is provided between the first symbol and the second symbol; a windowing module is configured to perform a windowing operation on the first symbol and the second symbol respectively within the cyclic prefix to generate the first a first windowed portion of the symbol and a second windowed portion of the second symbol; an adjustment module configured to adjust the first windowed portion based on comparing the transmit power of the first symbol with the transmit power of the second symbol.
  • the signal amplitude of a windowed portion and/or the signal amplitude of the second windowed portion are examples of the first windowed portion.
  • a third aspect provides a baseband chip, including: a memory for storing instructions; and a processor for executing instructions stored in the memory, so that the baseband chip implements the method described in the first aspect.
  • a wireless communication device in a fourth aspect, includes: a baseband chip as described in the third aspect, for outputting a baseband signal; and a radio frequency system for frequency conversion of the baseband signal output by the baseband chip, to obtain radio frequency signals.
  • a fifth aspect provides a computer-readable storage medium on which a processor-executable program is stored. When executed by the processor, the program causes the computer to perform the method described in the first aspect.
  • a computer program product including executable code.
  • executable code When the executable code is executed, the method as described in the first aspect can be implemented.
  • the signal processing method and related devices provided by the embodiments of the present application can reduce the signal in the windowed part of the symbol with larger transmission power when adjacent symbols have different transmission powers, so that after passing through different amplitude gains, when the symbols are transmitted, , the amplitudes of the signals in the windowed parts of the two symbols are close. It avoids the problem of signal saturation overflow caused by signal amplification and the problem that the amplitudes are not close when the symbols are transmitted.
  • Figure 1 is a schematic diagram of an OFDM communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a process of adding CP windows to OFDM symbols according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a symbol processing method provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another symbol processing method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of yet another symbol processing method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • FIG. 7 is an implementation manner of the signal processing method shown in step S630 in FIG. 6 .
  • FIG. 8 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a baseband chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a wireless communication device including the baseband chip shown in FIG. 9 provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: fourth generation and fifth generation (5th generation, 5G) systems or new wireless (new radio, NR) and long term evolution (long term evolution, LTE) systems , LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), etc.
  • 5th generation, 5G new wireless
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • future communication systems such as the sixth generation mobile communication system, satellite communication systems, and so on.
  • Orthogonal frequency division multiplexing is a multi-carrier modulation technology.
  • OFDM technology can divide the channel into several orthogonal sub-channels, convert high-speed data signals into parallel low-speed sub-data streams, and convert multiple Substream modulation is transmitted on each subchannel.
  • OFDM technology is widely used in communication systems because of its high spectrum utilization.
  • the OFDM communication system can be a wireless communication system that uses OFDM technology for data transmission.
  • the OFDM system is introduced below with reference to Figure 1.
  • the OFDM communication system shown in Figure 1 may include a transmitter 11 and a receiver 12, where the transmitter 11 may be used to convert an input signal into a transmission signal and transmit the transmission signal to the receiver 12.
  • the receiver 12 can be used to receive the above-mentioned transmitted signal after channel processing and restore the original input signal therefrom.
  • the transmitter 11 may include a coding module, a modulation module, a reference signal generation module, a resource mapping module, an OFDM baseband signal generation module and a transmitter radio frequency module.
  • the encoding module can encode the signal into a bit stream.
  • the modulation module performs quadrature amplitude modulation or quadrature phase shift keying modulation on the bit stream.
  • the OFDM baseband signal generation module can perform inverse fast Fourier transform on the signal. The frequency domain signal is converted into a time domain signal and OFDM symbols are generated.
  • the transmitter radio frequency module can perform interpolation filtering, up-conversion, predistortion and analog-to-digital conversion on the OFDM symbols generated by the baseband signal generation module to convert the OFDM symbols into analog signals. Finally, after amplifying the power through the power amplifier, the amplified The OFDM signal is sent to the antenna, so that the antenna converts the signal into electromagnetic waves and sends them outward.
  • the receiver 12 may include: a receiver radio frequency module, a timing and frequency synchronization module, a reference signal production module, a channel estimation module and equalization module, a demodulation module and a decoding module.
  • the receiver radio frequency module can receive the OFDM signal transmitted by the transmitter 11, and convert the analog signal into a digital baseband signal through digital-to-analog conversion.
  • the digital baseband signal passes through the timing and frequency synchronization module, reference signal production module, channel estimation module and equalization module to obtain the OFDM signal.
  • the OFDM signal is demodulated through fast Fourier transform, and the original bit stream is restored through the decoding module.
  • the OFDM baseband signal generation module at the transmitting end adds a guard time interval to the OFDM symbol when generating OFDM symbols.
  • the guard time interval can suppress the interference caused by time delay.
  • the guard time interval may be, for example, a blank period of time loaded in front of the OFDM symbol, and the guard time interval may be, for example, a cyclic prefix (CP).
  • CP cyclic prefix
  • CP can copy part of the signal behind the OFDM symbol to the front of the symbol to form a guard time interval. This can not only avoid the problem of signal interference caused by the multipath effect, but also ensure the orthogonality of multiple carriers within the OFDM symbol and reduce the number of OFDM symbols. Mutual interference between multiple carriers.
  • the introduction of CP destroys the continuity of amplitude and phase between OFDM symbols, making the signal amplitudes between symbols not close. This causes the signal in the OFDM symbol to leak in the frequency domain, causing out-of-band interference and causing interference to other signals outside the signal bandwidth.
  • time domain window processing can be performed on the signal in the CP between OFDM symbols, so that the signal amplitudes of two adjacent symbols in the CP are close and the phase is continuous to avoid sudden changes in signal amplitude and phase, thereby reducing out-of-band leakage.
  • the OFDM symbol plus CP and time domain windowing process shown in Figure 2 can be performed when the baseband signal is generated.
  • Part (a) of Figure 2 shows two adjacent OFDM symbols, which can be called a first symbol and a second symbol, where the first symbol can be the symbol preceding the second symbol.
  • Part (b) of Figure 2 shows the first symbol and the second symbol after adding CP.
  • part of the signal behind the respective OFDM symbol can be copied to the front of the symbol to form CP1 and CP2.
  • time domain windowing processing can be performed at CP2 between the first symbol and the second symbol.
  • Part (c) in Figure 2 shows the first symbol and the second symbol after time domain windowing processing. In some cases, the starting positions of the first symbol and the second symbol need to be processed.
  • the starting position of the symbol needs to be processed.
  • Adjustment. Part (d) in Figure 2 shows the OFDM symbols after adjustment. It can be seen that the adjustment method shown in part (d) of Figure 2 is to move the junction position of the first symbol and the second symbol to the middle position of CP2, and adjust the starting position of the first symbol and the second symbol The end position has been adjusted. It should be understood that the adjustment method of the symbol starting position in this application is only an example. This application does not limit the adjustment method of the symbol starting position, and the symbol can be adjusted according to different strategies.
  • CP2 includes a first windowed part and a second windowed part, where the first windowed part belongs to the first symbol, the second windowed part belongs to the second symbol, and the first windowed part belongs to the second symbol.
  • the signal amplitudes of the windowed part and the second windowed part are close to phase continuity.
  • the transmit power of different symbols is different.
  • the transmit power of the first symbol and the second symbol in Figure 2 may be different.
  • the symbols can be amplified to different degrees.
  • a power amplifier can be used to amplify the symbols on demand, or for example, the symbols can be amplified layer by layer in multiple stages until the power of the symbol when it is transmitted reaches the preset emission level. power. After the symbol is amplified, the amplitude of the symbol will also be amplified. If the transmit power of different symbols is different, the gain of the amplified amplitude of the symbol will also be different.
  • the first symbol and the second symbol can be amplified before the symbols are transmitted to achieve the required transmission power. If the transmit power of the first symbol is greater than the transmit power of the second symbol, the amplitude gain of the first symbol will be greater than the amplitude gain of the second symbol; if the transmit power of the first symbol is less than the transmit power of the second symbol, the amplitude gain of the first symbol The gain will be less than the amplitude gain of the second symbol. Adjacent symbols are amplified to different degrees, so that two adjacent symbols that have been processed by time domain windowing and have close to continuous amplitudes will again have amplitudes that are not close, thus causing out-of-band interference. For example, in Figure 2, the amplitude of the first symbol and the second symbol that were originally continuous in CP2 will be disconnected after varying degrees of amplification, causing out-of-band interference.
  • a feasible way is to preprocess two adjacent symbols during the time domain windowing process of the baseband signal.
  • the signal can be reduced or amplified at the baseband in advance to achieve the effect that the symbol amplitude is close to phase continuity after subsequent amplification.
  • the following is an exemplary description of the two symbol processing methods provided by the embodiment of the present application with reference to FIG. 3 and FIG. 4 .
  • the transmit power of the first symbol and the second symbol shown therein are different. Specifically, the transmit power of the first symbol is greater than the transmit power of the second symbol.
  • the amplitude gain of the first symbol is gain1 is greater than the amplitude gain gain2 of the second symbol, that is, gain1/gain2>1.
  • the processing method shown in Figure 3 is to pre-scale down the signal in the first windowed part of the first symbol.
  • the AO in the first windowed part is compressed into AO′ in the first part. In this way, after the first symbol and the second symbol are amplified by different amplitude gains, the amplitudes are close to phase continuity.
  • the AO′C in the first windowed part is continuous with the BOD in the second windowed part.
  • the transmit power of the first symbol shown in Figure 4 is less than the second transmit power.
  • the amplitude gain gain1 of the first symbol is less than the amplitude gain gain2 of the second symbol, that is, gain1/gain2 is less than 1.
  • the processing method shown in Figure 4 is to pre-amplify the signal in the first windowed part of the first symbol.
  • the AO in the first windowed part is amplified to AO′′ in the first part.
  • the amplitudes are close to phase continuity.
  • AO′′C in the first windowed part and the second windowed part The BODs in are continuous.
  • the baseband signal processing method shown in Figure 3 and Figure 4 fixes one symbol of two adjacent symbols as a reference symbol, and pre-reduces or pre-amplifies the signal of the other symbol when the baseband signal is generated. For example, using the following second symbol as a reference symbol, the signal of the preceding first symbol is pre-reduced or pre-amplified.
  • baseband conventionally uses fixed-point calculation. Before adding CP and time domain windowing, the baseband signal has been quantized to the appropriate bit width accuracy. If the baseband signal is further amplified, especially when the power difference between adjacent symbols is large, there is a high probability that part of the signal will saturate and overflow.
  • AO in the first windowed part of the first symbol needs to be amplified to AO′ to achieve close amplitudes of the first windowed part and the second windowed part after subsequent stage amplification.
  • Amplifying AO to AO′ will cause signal saturation overflow, and since the signal is already saturated, AO can only be amplified to AO′′.
  • the first windowed part AO′′C and the second windowed part BO′D Discontinuous, as shown in Figure 5(b).
  • FIG. 6 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • step S610 a first symbol and a second symbol are generated, the first symbol is the previous symbol of the second symbol, and a cyclic prefix is set between the first symbol and the second symbol.
  • the first symbol may be a first OFDM symbol and the second symbol may be a second OFDM symbol.
  • the first symbol and the second symbol may be two adjacent symbols, wherein the first symbol may be the previous symbol of the second symbol.
  • a CP is provided between the first symbol and the second symbol.
  • adjacent and continuous first symbols and second symbols may be generated.
  • first symbols and second symbols with close amplitudes may be generated. In this way, the quantization noise of different symbols can be made the same.
  • step S620 a windowing operation is performed on the first symbol and the second symbol respectively within the cyclic prefix to generate a first windowed part of the first symbol and a second windowed part of the second symbol.
  • the CP may include a first windowed part and a second windowed part.
  • the first windowed part belongs to the first symbol
  • the second windowed part belongs to the second symbol.
  • step S630 the signal amplitude of the first windowed part and/or the signal amplitude of the second windowed part is adjusted based on comparing the transmit power of the first symbol and the transmit power of the second symbol.
  • the transmit power of the first symbol and the second symbol are different.
  • the transmit power of the first symbol may be greater than the transmit power of the second symbol, and the transmit power of the first symbol may be less than the second symbol.
  • the transmit power of the first symbol and the second symbol may be determined according to the power control information carried in the physical downlink control channel.
  • the transmit power of the first symbol is greater than the transmit power of the second symbol, the signal amplitude in the first windowed part is reduced, so that after the power adjustment of the first windowed part and the second windowed part, the first symbol and the second windowed part are When the symbol is being transmitted, the signal amplitudes of the first windowed part and the second windowed part are close to each other.
  • the different transmit power between symbols causes the amplitude gain of the first symbol and the second symbol to be different during transmission. If the transmit power of the first symbol is greater than the transmit power of the second symbol, the amplitude gain of the first symbol during transmission is greater than that of the second symbol. The amplitude gain of a symbol when it is transmitted. In other words, after two symbols undergo different degrees of power amplification, when the symbol is transmitted, the amplitude gain of the first symbol is greater than the amplitude gain of the second symbol.
  • the first symbol with high transmission power can be processed. Specifically, the signal amplitude of the first windowed part of the first symbol can be reduced. Since the amplitude gain of the first symbol is greater than the second amplitude gain, the signal that has been pre-reduced in amplitude in the first windowed part and then amplified with a larger amplitude gain can be compared with the signal that has been reduced in amplitude in the second windowed part.
  • the gain-amplified signals are close to each other so that the signal amplitudes of the first windowed part and the second windowed part are similar during transmission.
  • the entire signal amplitude in the first windowed part may be reduced, or part of the signal amplitude in the first windowed part may be reduced.
  • the signal amplitude of all sampling points in the first windowed part can be reduced.
  • the signal amplitude of some sampling points in the first windowed part can be reduced.
  • only the last sampling point in the first windowed part can be reduced. signal amplitude.
  • the second symbol may be used as a reference symbol when reducing the signal amplitude in the first windowed portion of the first symbol.
  • the signal amplitude in the second windowed portion of the second symbol may remain unchanged.
  • the signal amplitude in the second windowed part of the second symbol when reducing the signal amplitude in the first windowed part of the first symbol, the signal amplitude in the second windowed part of the second symbol may also be reduced. As an example, the signal amplitude in the second windowed part of the second symbol may be reduced.
  • the transmit power reduces the signal amplitude in the second windowed portion.
  • the transmit power of the first symbol is less than the transmit power of the second symbol, reduce the signal amplitude of the second windowed part, so that after the power adjustment of the first windowed part and the second windowed part, the first symbol and the second windowed part When the symbol is being transmitted, the signal amplitudes of the first windowed part and the second windowed part are close to each other.
  • the amplitude gain of the first symbol when transmitted is less than the amplitude gain of the second symbol when transmitted. In other words, the two symbols undergo different levels of power. After amplification, the amplitude gain of the first symbol is less than the amplitude gain of the second symbol.
  • the second symbol with high transmit power can be processed. Specifically, the signal amplitude in the second windowed part of the second symbol can be reduced. Since the amplitude gain of the second symbol is greater than the first amplitude gain, , the signal in the second windowed part that has been preliminarily reduced in amplitude and then amplified by a larger amplitude gain can be close to the signal amplified by a smaller amplitude gain in the first windowed part, so as to achieve the first amplification during transmission. The signal amplitudes of the window part and the second windowed part are close.
  • the entire signal amplitude in the second windowed part may be reduced, or part of the signal amplitude in the second windowed part may be reduced.
  • the signal amplitude of all sampling points in the second windowed part can be reduced.
  • the signal amplitude of some sampling points in the second windowed part can also be reduced.
  • only the last sampling point in the second windowed part can be reduced. signal amplitude.
  • the first symbol may be used as a reference symbol when reducing the signal amplitude in the second windowed portion of the second symbol.
  • the signal amplitude in the first windowed portion of the first symbol may remain unchanged.
  • the signal amplitude in the first windowed part of the first symbol may also be reduced. As an example, the signal amplitude in the first windowed part may be reduced according to the transmit power of the first symbol.
  • the signal processing method provided by the embodiment of the present application can always reduce the signal amplitude in the windowed part of the symbol with higher transmit power when adjacent symbols have different transmit powers, so that after passing through different amplitude gains , when the symbol is transmitted, the signal amplitudes of the first windowed part and the second windowed part within the CP between the two symbols are close to each other.
  • signal processing there is no need to amplify the signal amplitude of the windowed part of the symbol, which avoids signal saturation overflow caused by signal amplitude amplification and the problem that the amplitudes are not close when the symbol is transmitted.
  • the signal amplitude may be the amplitude of the signal
  • the signal amplitude of the first windowed part of the first symbol may be the amplitude of the signal in the first windowed part
  • the signal amplitude of the second windowed part of the second symbol may be the amplitude of the signal.
  • the signal amplitude may be the amplitude of the signal in the second windowed portion.
  • “Close” mentioned in the implementation of this application can be understood as the amplitude change between the signal in the first windowed part of the first symbol and the signal in the second windowed part of the second symbol is within a smaller range, That is, within a smaller range of amplitude changes, the amplitude is continuous. If there is a jump in amplitude between the signal in the first windowed part and the signal in the second windowed part, it is called amplitude dissimilarity, that is, the signal amplitude is discontinuous.
  • the signal amplitude of the first windowed part and/or the second windowed part may be reduced by reducing the windowing coefficient.
  • the windowing coefficient of the first windowing part may be reduced; if the transmit power of the first symbol is less than the transmit power of the second symbol, the windowing coefficient may be reduced The windowing coefficient of the second windowed part.
  • the windowing coefficient of the first windowing part when reducing the signal amplitude in the first windowing part, the windowing coefficient of the first windowing part can be reduced, and when reducing the signal amplitude in the second windowing part, the windowing coefficient of the second windowing part can be directly reduced. The signal amplitude in the window section.
  • the windowing coefficient of the second windowing part when reducing the signal amplitude in the second windowing part, the windowing coefficient of the second windowing part may be reduced, and when reducing the signal amplitude in the first windowing part, the first windowing coefficient may be directly reduced.
  • the signal amplitude in the window section when reducing the signal amplitude in the second windowing part, the windowing coefficient of the second windowing part may be reduced, and when reducing the signal amplitude in the first windowing part, the first windowing coefficient may be directly reduced. The signal amplitude in the window section.
  • the windowing coefficients of all signal sampling points in the first and/or second windowing part may be reduced, or part of the signal samples in the first and/or second windowing part may be reduced.
  • the windowing coefficient of the point may be reduced.
  • the reduction ratio of the windowing coefficient of the windowing part may be determined based on the difference in transmission power of two adjacent symbols.
  • the transmission power of the first symbol may be P1
  • the transmission power of the second symbol may be P2. If the transmit power P1 of the first symbol is greater than the transmit power P2 of the second symbol, the difference P1-P2 between the transmit power P1 of the first symbol and the transmit power P2 of the second symbol can be calculated using the exponential power to calculate the first symbol The ratio of the amplitude gain when transmitting to the amplitude gain when transmitting the second symbol.
  • the ratio of the amplitude gain when the first symbol is transmitted to the amplitude gain when the second symbol is transmitted The windowing coefficient of the first windowing part of the first symbol can be reduced based on the ratio of the amplitude gain.
  • the windowing coefficient of the first windowing part the original windowing coefficient of the first windowing part/amplitude Gain ratio. If the transmit power P1 of the first symbol is greater than the transmit power P2 of the second symbol, the difference P1-P2 between the transmit power P1 of the first symbol and the transmit power P2 of the second symbol can be calculated using the exponential power to calculate the first symbol The ratio of the amplitude gain when transmitting to the amplitude gain when transmitting the second symbol.
  • the ratio of the amplitude gain when the first symbol is transmitted to the amplitude gain when the second symbol is transmitted The windowing coefficient of the second windowing part of the second number can be reduced based on the ratio of the amplitude gain.
  • the windowing coefficient of the second windowing part the original windowing coefficient of the second windowing part * amplitude Gain ratio.
  • the transmit power of a symbol can be represented by the amplitude gain when the symbol is transmitted.
  • the transmit power of the symbol can be represented by the amplitude gain after the symbol passes through the power amplifier.
  • the transmit power of the first symbol can be represented by the amplitude gain of the first symbol after the power passes through the power amplifier, and the transmit power of the second symbol can be represented by the amplitude gain of the second symbol after the power passes through the power amplifier.
  • Figure 7 is a signal processing method provided by the present application.
  • Figure 7 can be an implementation manner of step S630 in Figure 6.
  • the signal processing method provided by the present application will be introduced below with reference to Figure 7.
  • the transmit power of the first symbol shown in Figure 7 is smaller than the transmit power of the second symbol.
  • these two symbols are adjacent symbols with close amplitudes, that is, continuous amplitudes.
  • the power difference between symbols is fed back on the amplitude gain of multiple stages in the subsequent stage.
  • the amplitude gain when the first symbol is transmitted is gain1
  • the amplitude gain when the second symbol is transmitted is gain2, gain1 is greater than gain2.
  • the windowing coefficient of the signal in the second windowed portion of the second symbol may be reduced to reduce the signal amplitude in the second windowed portion.
  • OB and OD in the second symbol can be reduced to O'B and O'D according to the gain ratio gain1/gain2 of the two symbols.
  • the goal of window coefficient reduction is to make the amplitudes of adjacent sampling points of two symbols close to each other after different gains.
  • the windowed signal is discontinuous when viewed from the baseband side.
  • the amplitudes of the two symbols are close to each other.
  • the phase is continuous, so the time domain signal becomes continuous.
  • the first windowed part AOC of the first symbol is continuous with the second windowed part BO'D of the second symbol.
  • a window function may be used to perform a windowing operation on the first symbol and the second symbol respectively within the CP between symbols to form a first windowed part of the first symbol and a second windowed part of the second symbol. window part.
  • the window function can be any designed window function that can work.
  • the window function can be one of a triangular window, a Hamming window, and a Hanning window.
  • the signal processing method provided by the embodiment of the present application selects symbols with large transmission power or large amplitude gain in the subsequent stage, and pre-amplitudes of high-power signals are reduced according to the power difference when adding CP windows to the baseband. It solves the problem of baseband signal saturation after time domain windowing in the pre-distortion processing scheme.
  • FIG. 8 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • the signal processing device 800 shown in FIG. 8 may include a generation module 810 , a windowing module 820 and an adjustment module 830 .
  • the generation module 810 is configured to generate a first symbol and a second symbol, the first symbol being the previous symbol of the second symbol, and a cyclic prefix being set between the first symbol and the second symbol;
  • the windowing module 820 is configured to perform a windowing operation on the first symbol and the second symbol respectively within the cyclic prefix to generate a first windowed portion of the first symbol and the second symbol. the second windowed part;
  • Adjustment module 830 configured to adjust the signal amplitude of the first windowed portion and/or the signal of the second windowed portion based on comparing the transmit power of the first symbol with the transmit power of the second symbol. amplitude.
  • the adjustment module 830 is further configured to: reduce the signal amplitude in the first windowed part; and/or reduce the signal amplitude in the second windowed part.
  • the adjustment module 830 is further configured to adjust the signal amplitude of the first windowed part and/or the signal amplitude of the second windowed part, so that the first windowed part and The second windowed portion is close in signal amplitude after power adjustment.
  • the adjustment module 830 is further configured to: reduce the windowing coefficient of the first windowing part; and/or reduce the windowing coefficient of the second windowing part.
  • the adjustment module 830 is further configured to: determine the reduction ratio of the windowing coefficient of the first windowing part based on the difference between the transmission power of the first symbol and the transmission power of the second symbol; and /Or, determine the reduction ratio of the windowing coefficient of the second windowing part based on the difference between the transmission power of the first symbol and the transmission power of the second symbol.
  • FIG 9 is a schematic structural diagram of a baseband chip provided by an embodiment of the present application.
  • the baseband chip 900 shown in Figure 9 can include a memory 910 for storing instructions, and a processor 920 for executing instructions stored in the memory 910 to execute The steps in each of the methods described above.
  • FIG. 10 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication device 1000 shown in FIG. 10 may include a baseband chip 900 as shown in FIG. 9, and a radio frequency system 1010 for controlling the baseband chip 900.
  • the output baseband signal is frequency converted to obtain a radio frequency signal.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)

Abstract

本申请提供一种处理信号的方法及相关装置。该方法包括:生成第一符号和第二符号,第一符号为第二符号的前一符号且这两个符号之间设置有循环前缀;在循环前缀内分别对第一符号和第二符号执行加窗操作,以生成第一符号的第一加窗部分和第二符号的第二加窗部分;基于比较第一符号的发射功率与第二符号的发射功率,调节第一加窗部分的信号幅度和/或第二加窗部分的信号幅度。本申请通过基于比较第一符号的发射功率与第二符号的发射功率,调节第一加窗部分和/或第二加窗部分的信号幅度,使得第一符号与第二符号在经功率调整之后进行发射时第一加窗部分和第二加窗部分的信号幅度接近,以避免符号在发射时幅度不接近而产生带外干扰。

Description

处理信号的方法及相关装置
本申请要求于2022年06月09日提交中国专利局、申请号为202210648757.6、申请名称为“处理信号的方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,具体涉及一种处理信号的方法及相关装置。
背景技术
无线通信***中,可以在符号间设置循环前缀,以抑制传输信道的多径效应引起的符号间的干扰,并对符号进行时域加窗处理,使得符号在发射时信号的幅度接近,以降低带外泄露。
现有技术在对符号进行时域加窗处理时,存在符号信号饱和,导致符号在发射时信号幅度不接近进而出现带外干扰。
发明内容
本申请提供一种处理信号的方法及相关装置。下面对本申请实施例涉及的各个方面进行介绍。
第一方面,提供一种处理信号的方法,包括:生成第一符号和第二符号,所述第一符号为所述第二符号的前一符号,所述第一符号和所述第二符号之间设置有循环前缀;在所述循环前缀内分别对所述第一符号和所述第二符号执行加窗操作,以生成所述第一符号的第一加窗部分和所述第二符号的第二加窗部分;以及基于比较所述第一符号的发射功率与所述第二符号的发射功率,调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度。
第二方面,提供一种处理信号的装置,包括:生成模块,被配置为生成第一符号和第二符号,所述第一符号为所述第二符号的前一符号,所述第一符号和所述第二符号之间设置有循环前缀;加窗模块,被配置为在所述循环前缀内分别对所述第一符号和所述第二符号执行加窗操作,以生成所述第一符号的第一加窗部分和所述第二符号的第二加窗部分; 调节模块,被配置为基于比较所述第一符号的发射功率与所述第二符号的发射功率,调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度。
第三方面,提供一种基带芯片,包括:存储器,用于存储指令;处理器,用于执行所述存储器中存储的指令,使得所述基带芯片实现如第一方面所述的方法。
第四方面,提供一种无线通信装置,所述装置包括:如第三方面所述的基带芯片,用于输出基带信号;以及射频***,用于对所述基带芯片输出的基带信号进行变频,以得到射频信号。
第五方面,提供一种计算机可读存储介质,其上存储有处理器可执行程序,所述程序在被处理器执行时,使得计算机执行如第一方面所述的方法。
第六方面,提供一种计算机程序产品,包括可执行代码,当所述可执行代码被执行时,能够实现如第一方面所述的方法。
本申请实施例提供的处理信号的方法及相关装置能够在相邻符号发射功率不同时,缩小发射功率较大的符号的加窗部分中的信号,使得通过不同的幅度增益之后,在符号发射时,两个符号的加窗部分中信号的幅度接近。避免了信号放大引起的信号饱和溢出,及符号发射时幅度不接近的问题。
附图说明
图1为本申请实施例提供的一种OFDM通信***示意图。
图2为本申请实施例提供的一种OFDM符号加CP加窗的过程示意图。
图3为本申请实施例提供的一种符号处理方式的示意图。
图4为本申请实施例提供的另一种符号处理方式的示意图。
图5为本申请实施例提供的又一种符号处理方式的示意图。
图6为本申请实施例提供的一种处理信号的方法的流程示意图。
图7为图6中步骤S630所示的处理信号的方法的一种实现方式。
图8为本申请实施例提供的一种处理信号的装置的结构示意图。
图9为本申请实施例提供的一种基带芯片的结构示意图。
图10为本申请实施例提供的一种包括图9所示的基带芯片的无线通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
本申请实施例的技术方案可以应用于各种通信***,例如:***第五代(5th generation,5G)***或新无线(new radio,NR)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信***,如第六代移动通信***,又如卫星通信***,等等。
正交频分复用(orthogonal frequency division multiplexing,OFDM)是一种多载波调制技术,OFDM技术可以将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,并将多个子数据流调制在每个子信道上进行传输。OFDM技术因其具有频谱利用率高等特点,广泛应用于通信***中。
OFDM通信***可以是利用OFDM技术进行数据传输的无线通信***,下面结合图1,对OFDM***进行介绍。图1所示的OFDM通信***可以包括发射机11及接收机12,其中,发射机11可以用于将输入信号转化为发射信号,并将发射信号发射给接收机12。接收机12可用于接收经过信道处理后的上述发射信号,并从中还原出原始的输入信号。
发射机11可以包括编码模块、调制模块、参考信号产生模块、资源映射模块、OFDM基带信号生成模块及发射机射频模块。具体的,编码模块可以将信号编码成比特流。调制模块将比特流进行正交振幅调制或正交相移键控调制,并在经过参考信号产生模块及资源映射模块处理之后,OFDM基带信号生成模块可以对信号进行快速傅里叶逆变换,将频域信号转换成时域信号,并生成OFDM符号。发射机射频模块可以将基带信号生成模块生成的OFDM符号进行插值滤波、上变频、预失真和模数转换等处理,以将OFDM符号转化为模拟信号,最后在通过功率放大器放大功率后,将放大的OFDM信号发送给天线,以使天线将该信号转化为电磁波向外发送。
接收机12可以包括:接收机射频模块、定时与频率同步模块、参考信号生产模块、信道估计模块与均衡模块、解调模块及解码模块。具体的,接收机射频模块可以接收发射机11发射的OFDM信号,并经过数模转换将模拟信号转换为数字基带信号。数字基带信号经过定时与频率同步模块、参考信号生产模块及信道估计模块与均衡模块,得到OFDM信号,通过快速傅里叶变换对OFDM信号进行解调,通过解码模块,还原得到原始比特流。
为了抑制传输通道的多径效应引起的OFDM符号间信号干扰的问题,在发射端OFDM基带信号生成模块在生成的OFDM符号时,会对OFDM符号加保护时间间隔, 保护时间间隔可以抑制时延引起的符号间信号干扰的问题。保护时间间隔例如可以是将一段空白的时间加载在OFDM符号的前面,保护时间间隔例如还可以是循环前缀(Cyclic Prefix,CP)。现有OFDM通信***如4G LTE和5G NR都采用了CP-OFDM的调制方式。
CP可以将OFDM符号后面的部分信号复制到该符号的前面形成保护时间间隔,这样既可以避免多径效应引起的信号干扰的问题,还可以保证OFDM符号内多载波的正交性,减少OFDM符号内多载波之间的相互干扰。然而,CP的引入破坏了OFDM符号间幅度和相位的连续性,使得符号间信号幅度不接近。导致OFDM符号中的信号发生频域的泄露,产生带外干扰,对信号带宽之外的其他信号造成干扰。
对于上述问题,一种可行的方式是对OFDM符号进行时域加窗处理,以避免符号加CP后引入的带外干扰。具体的,可以对OFDM符号间CP中的信号进行时域加窗处理,使相邻的两个符号在CP内信号的幅度接近且相位连续避免信号幅度和相位的突变,从而降低带外泄露。
下面结合图2对OFDM符号加CP及时域加窗的过程进行示例性的介绍。在一些实施例中,图2所示的OFDM符号加CP及时域加窗过程可以在基带信号生成时进行。
图2中的(a)部分示出了两个相邻的OFDM符号,可称为第一符号及第二符号,其中,第一符号可以为第二符号前一符号。图2中的(b)部分示出的为添加CP之后的第一符号及第二符号。如前文提到,可以将各自OFDM符号后面的部分信号复制到该符号的前面形成CP1及CP2。为了避免加CP后第一符号及第二符号幅度不接近和相位不连续,可以在第一符号与第二符号之间的CP2处进行时域加窗处理。图2中的(c)部分为时域加窗处理后的第一符号及第二符号。在一些情况下,需要对第一符号及第二符号的起始位置进行处理,例如,为了使信号接收端有更好的误差向量幅度(error vector magnitude,EVM)需要对符号的起始位置进行调整。图2中的(d)部分示出调整之后的OFDM符号。可以看出,图2中的(d)部分所示的调整方式是将第一符号及第二符号的交界位置移到CP2的中间位置中,并对第一符号的起始位置及第二符号的终止位置进行了调整。应当理解,本申请中符号起始位置的调整方式仅为一种示例,本申请不限制符号起始位置的调整方式,可以根据不同的策略进行符号的调整。如图2中的(d)部分所示,CP2中包括第一加窗部分及第二加窗部分,其中第一加窗部分属于第一符号,第二加窗部分属于第二符号,第一加窗部分及第二加窗部分的信号幅度接近相位连续。
在一些情况下,不同符号的发射功率不同,例如图2中的第一符号及第二符号的发射功率可以不同。为了满足不同的发射功率,可以对符号进行不同程度的放大,例如可以采用功率放大器对符号进行按需放大,又例如可以多阶段对符号进行层层放大,直至符号发射时的功率达到预设发射功率。符号经放大之后,符号的幅度也会发生放大,如果不同符号的发射功率不同,符号经放大后幅度的增益也不同。以图2所示的第一符号及第二符号为例,在符号发送前可以将第一符号及第二符号进行放大,以达到所需的发射功率。如果第一符号的发射功率大于第二符号的发射功率,第一符号的幅度增益会大于第二符号的幅度增益;如果第一符号的发射功率小于第二符号的发射功率,第一符号的幅度增益会小于第二符号的幅度增益。相邻符号不同程度的放大,使得原本已经通过时域加窗处理之后幅度接近相位连续的两个相邻符号会再次出现幅度不接近,进而产生带外干扰。例如图2中,原本在CP2中已经连续的第一符号及第二符号,经过不同程度的放大后幅度会断开,产生带外干扰。
为了解决上述问题,一种可行的方式是,在基带信号时域加窗过程中对相邻的两个符号进行预处理。例如,可以在相邻两符号功率不同的场景下提前在基带对信号进行缩小或者放大,以达到经过后级放大之后符号幅度接近相位连续的效果。下面结合图3及图4对本申请实施例提供的两种符号处理方法进行示例性说明。
参见图3,其内示出的第一符号及第二符号的发射功率不同,具体的,第一符号的发射功率大于第二符号的发射功率,在经过后级放大之后,第一符号的幅度增益gain1大于第二符号的幅度增益gain2,即gain1/gain2>1。图3所示的处理方法是对第一符号的第一加窗部分中的信号进行预先缩小。如图3(a)中,将第一加窗部分的AO压缩为第一部分中的AO′。这样,第一符号及第二符号经过不同的幅度增益放大后,幅度接近相位连续。如图3(b)中,经放大后,第一加窗部分中的AO′C与第二加窗部分中的BOD连续。
图4示出的第一符号的发射功率小于第二发射功率,在经过后级放大之后,第一符号的幅度增益gain1小于第二符号的幅度增益gain2,即gain1/gain2小于1。图4所示的处理方法是对第一符号的第一加窗部分中的信号进行预先放大,如图4(a)中,将第一加窗部分的AO放大为第一部分中的AO″。这样,第一符号及第二符号经过不同的幅度增益放大后,幅度接近相位连续。如图4(b)中,经放大后,第一加窗部分中的AO″C与第二加窗部分中的BOD连续。
可以看出图3及图4所示的基带信号处理方法,是固定以两个相邻符号中一个符号为参考符号,对另一个符号在基带信号生成时进行信号的预缩小或预放大。例如, 以后面的第二符号为参考符号,对前面的第一符号的信号进行预缩小或预放大。然而,在实际工程实现中,基带常规使用定点化计算,在加CP和时域加窗之前,基带信号已经量化到合适的位宽精度。如果再对基带信号放大,尤其是在相邻符号功率相差较大的情况下,很大概率会出现部分信号饱和溢出的情况,导致经过后级放大后无法达到幅度接近的目的,从而产生基带外信号的干扰。以图5示出符号处理方法为例,第一符号的第一加窗部分中AO需要放大到AO′才能实现经后级放大后第一加窗部分与第二加窗部分幅度接近,然而,将AO放大至AO′会导致信号饱和溢出,并且由于信号已经饱和,AO只能放大至AO″。导致经过后级放大后,第一加窗部分AO″C与第二加窗部分BO′D不连续,如图5(b)所示。
为了解决上述问题,本申请提供一种处理信号的方法及相关装置。图6为本申请实施例提供的一种处理信号的方法的流程性示意图。
在步骤S610,生成第一符号及第二符号,第一符号为第二符号的前一符号,第一符号和第二符号之间设置有循环前缀。
第一符号可以是第一OFDM符号,第二符号可以是第二OFDM符号。
第一符号及第二符号可以是相邻的两个符号,其中,第一符号可以是第二符号的前一符号。第一符号及第二符号之间设置有CP。
在一些实施例中,可以生成相邻且连续的第一符号及第二符号,换句话说,可以生成幅度接近的第一符号及第二符号。这样,可以使不同符号的量化噪声相同。
在步骤S620,在循环前缀内分别对第一符号和第二符号执行加窗操作,以生成第一符号的第一加窗部分和第二符号的第二加窗部分。
在CP内分别对第一符号及第二符号执行加窗操作。CP内可以包括第一加窗部分及第二加窗部分,第一加窗部分属于第一符号,第二加窗部分属于第二符号。
在步骤S630,基于比较第一符号的发射功率与第二符号的发射功率,调节第一加窗部分的信号幅度和/或第二加窗部分的信号幅度。
第一符号及第二符号的发射功率不同,第一符号的发射功率可以大于第二符号的发射功率,第一符号的发射功率可以小于第二符号。在一些实施例中,可以根据物理下行控制信道中承载的功率控制信息确定第一符号及第二符号的发射功率。
如果第一符号的发射功率大于第二符号的发射功率,缩小第一加窗部分中的信号幅度,使得第一加窗部分和第二加窗部分在经功率调整之后,第一符号及第二符号在发射时,第一加窗部分及第二加窗部分的信号幅度接近。
符号间不同的发射功率使得第一符号及第二符号在发射时的幅度增益不同,如果 第一符号的发射功率大于第二符号的发射功率,则第一符号在发射时的幅度增益大于第二符号在发射时的幅度增益,换句话说,两个符号在经过不同程度的功率放大后,在符号发射时,第一符号的幅度增益大于第二符号的幅度增益。
这种情况下,可以对发射功率大的第一符号进行处理,具体的,可以缩小第一符号的第一加窗部分的信号幅度。由于第一符号的幅度增益大于第二幅度增益,因此,第一加窗部分中经过预先缩小幅度的信号再进行较大的幅度增益放大后,可以与第二加窗部分中经过较小的幅度增益放大后的信号接近,以实现发射时第一加窗部分及第二加窗部分的信号幅度接近。
在缩小第一符号的第一加窗部分中的信号幅度时,可以缩小第一加窗部分中的全部信号幅度,也可以缩小第一加窗部分中的部分信号幅度。例如可以缩小第一加窗部分中全部采样点的信号幅度,例如也可以缩小第一加窗部分中部分采样点的信号幅度,作为一个示例,可以只缩小第一加窗部分中最后一个采样点的信号幅度。
在缩小第一符号的第一加窗部分中的信号幅度时,可以将第二符号作为参考符号。第二符号的第二加窗部分中的信号幅度可以保持不变。在一些实施例中,在缩小第一符号的第一加窗部分中的信号幅度时,也可以缩小第二符号的第二加窗部分中的信号幅度,作为一个示例,可以根据第二符号的发射功率缩小第二加窗部分中的信号幅度。
如果第一符号的发射功率小于第二符号的发射功率,缩小第二加窗部分的信号幅度,以使第一加窗部分和第二加窗部分在经过功率调整之后,第一符号及第二符号在发射时,第一加窗部分及第二加窗部分的信号幅度接近。
如果第一符号的发射功率小于第二符号的发射功率,则第一符号在发射时的幅度的增益小于第二符号在发射时的幅度增益,换句话说,两个符号在经过不同程度的功率放大后,第一符号的幅度增益小于第二符号的幅度增益。
这种情况下,可以对发射功率大的第二符号进行处理,具体的,可以缩小第二符号的第二加窗部分中的信号幅度,由于第二符号的幅度增益大于第一幅度增益,因此,第二加窗部分中经过预先缩小幅度的信号再进行较大的幅度增益放大后,可以与第一加窗部分中进行较小的幅度增益放大后的信号接近,以实现发射时第一加窗部分及第二加窗部分的信号幅度接近。
同样,在缩小第二符号的第二加窗部分中的信号幅度时,可以缩小第二加窗部分中的全部信号幅度,也可以缩小第二加窗部分中的部分信号幅度。例如可以缩小第二加窗部分中全部采样点的信号幅度,例如也可以缩小第二加窗部分中部分采样点的信号幅度,作为一个示例,可以只缩小第二加窗部分中最后一个采样点的信号幅度。
在缩小第二符号的第二加窗部分中的信号幅度时,可以将第一符号作为参考符号。第一符号的第一加窗部分中的信号幅度可以保持不变。第一符号的第一加窗部分中的信号幅度也可以缩小,作为一个示例,可以根据第一符号的发射功率缩小第一加窗部分的信号幅度。
由此可见,本申请实施例提供的处理信号的方法能够在相邻符号发射功率不同时,始终对发射功率较大的符号的加窗部分中的信号幅度进行缩小,使得通过不同的幅度增益之后,在符号发射时,两个符号间CP内的第一加窗部分与第二加窗部分的信号幅度接近。在信号处理时,可以不用对符号加窗部分的信号幅度进行放大,避免了信号幅度放大引起的信号饱和溢出,及符号发射时幅度不接近的问题。
在一些实施例中,信号幅度可以为信号的幅值,第一符号的第一加窗部分的信号幅度可以为第一加窗部分中信号的幅值,第二符号的第二加窗部分的信号幅度可以为第二加窗部分中信号的幅值。
本申请实施中提到的“接近”可以理解为第一符号的第一加窗部分中的信号与第二符号的第二加窗部分中的信号之间的幅度变化在较小的范围内,即在较小的幅度变化范围内,幅值是连续的。如果第一加窗部分的信号与第二加窗部分的信号之间幅度出现跳跃,则称为幅度不接近,即信号幅值不连续。
在一些实施例中,可以通过缩小加窗系数的方法缩小第一加窗部分和/或第二加窗部分的信号幅度。在一些实施例中,如果第一符号的发射功率大于第二符号的发射功率,可以缩小第一加窗部分的加窗系数;如果第一符号的发射功率小于第二符号的发射功率,可以缩小第二加窗部分的加窗系数。在另一些实施例中,在对第一加窗部分中的信号幅度缩小时可以缩小第一加窗部分的加窗系数,在对第二加窗部分中信号幅度缩小时可以直接缩小第二加窗部分中的信号幅度。在另一些实施例中,在对第二加窗部分中的信号幅度缩小时可以缩小第二加窗部分的加窗系数,在对第一加窗部分中信号幅度缩小时可以直接缩小第一加窗部分中的信号幅度。
在缩小加窗部分的加窗系数时,可以缩小第一和/或第二加窗部分中全部信号采样点的加窗系数,也可以缩小第一和/或第二加窗部分中部分信号采样点的加窗系数。
在一些实施例中,可以基于两个相邻符号的发射功率之差确定加窗部分的加窗系数缩小的比例。作为一个可能的实现方式,第一符号的发射功率可以是P1,第二符号的发射功率可以是P2。如果第一符号的发射功率P1大于第二符号的发射功率P2,可以对第一符号的发射功率P1与第二符号的发射功率P2的差值P1-P2做指数幂计算,计算出第一符号发射时的幅度增益与第二符号发射时的幅度增益的比值。作为一个示 例,第一符号发射时幅度增益与第二符号发射时幅度增益的比值
Figure PCTCN2022140113-appb-000001
可以基于该幅度增益的比值对第一符号的第一加窗部分的加窗系数进行缩小,作为一个示例,第一加窗部分的加窗系数=第一加窗部分原始的加窗系数/幅度增益比值。如果第一符号的发射功率P1大于第二符号的发射功率P2,可以对第一符号的发射功率P1与第二符号的发射功率P2的差值P1-P2做指数幂计算,计算出第一符号发射时幅度增益与第二符号发射时幅度增益的比值。作为一个示例,第一符号发射时幅度增益与第二符号发射时幅度增益的比值
Figure PCTCN2022140113-appb-000002
可以基于该幅度增益的比值对第二号的第二加窗部分的加窗系数进行缩小,作为一个示例,第二加窗部分的加窗系数=第二加窗部分原始的加窗系数*幅度增益比值。
在一些实施例中,符号的发射功率可以通过符号发射时的幅度增益表示,具体的,符号的发射功率可以通过该符号经过功率放大器之后的幅度增益表示。第一符号的发射功率可以通过第一符号经过功率经过功率放大器后的幅度增益表示,第二符号的发射功率可以通过第二符号经过功率经过功率放大器后的幅度增益表示。
图7为本申请实施提供的一种处理信号的方法,图7可以是图6中步骤S630的一种实现方式,下面结合图7对本申请提供的处理信号的方法进行介绍。
图7示出的第一符号的发射功率小于第二符号的发射功率,这两个符号在生成时是幅度接近即幅值连续的相邻符号。符号间的功率差反馈在后级多个阶段的幅度增益上。第一符号的发射时的幅度增益为gain1,第二符号发射时的幅度增益为gain2,gain1大于gain2。可以缩小第二符号的第二加窗部分中的信号的加窗系数,以将第二加窗部分中的信号幅度缩小。如图7(a)所示,可以根据两个符号的增益比值gain1/gain2,将第二符号中的OB及OD缩小为O′B及O′D。窗系数缩小的目标是在经过不同的增益后,两个符号相邻采样点幅度接近。对第二加窗部分的窗系数进行缩小之后,在基带侧看加窗后的信号不连续,最终经过后级放大之后,当两个符号都各自达到其期望功率时,两个符号的幅度接近相位连续,这样,时域信号就变得连续了。如图7(b)所示,经过后级放大之后,第一符号的第一加窗部分AOC与第二符号的第二加窗部分BO′D连续。
在一些实施例中,可以使用窗函数,在符号间的CP内分别对第一符号及第二符号执行加窗操作,以形成第一符号的第一加窗部分以及第二符号的第二加窗部分。应当理解,本申请不限制窗函数的类型,窗函数可以是任意设计的能够工作的窗函数,作为一个示例,窗函数可以是三角窗、汉明窗及汉宁窗中的一种。
可以看出,本申请实施例提供的处理信号的方法,通过选择发射功率大或后级幅度增益大的符号,预先在基带加CP加窗时对功率大的信号根据功率差预先进行幅度缩小,解决了预失真处理方案中存在的时域加窗后基带信号饱和问题。
上文结合图1至图7,详细描述了本申请的方法实施例,下面结合图8和图10,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图8为本申请实施例提供的一种处理信号的装置的结构性示意图,图8所示的处理信号的装置800可以包括生成模块810,加窗模块820及调节模块830。
生成模块810,被配置为生成第一符号和第二符号,所述第一符号为所述第二符号的前一符号,所述第一符号和所述第二符号之间设置有循环前缀;
加窗模块820被配置为在所述循环前缀内分别对所述第一符号和所述第二符号执行加窗操作,以生成所述第一符号的第一加窗部分和所述第二符号的第二加窗部分;
调节模块830,被配置为基于比较所述第一符号的发射功率与所述第二符号的发射功率,调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度。
可选地,所述调节模块830进一步配置成:缩小所述第一加窗部分中的信号幅度;和/或,缩小所述第二加窗部分中的信号幅度。
可选地,所述调节模块830进一步配置成:对所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度进行调节,以使得所述第一加窗部分和所述第二加窗部分在经功率调整之后在信号幅度上接近。
可选地,所述调节模块830进一步配置成:缩小所述第一加窗部分的加窗系数;和/或,缩小所述第二加窗部分的加窗系数。
可选地,所述调节模块830进一步配置成:基于所述第一符号的发射功率与所述第二符号的发射功率之差确定所述第一加窗部分的加窗系数的缩小比例;和/或,基于所述第一符号的发射功率与所述第二符号的发射功率之差确定所述第二加窗部分的加窗系数的缩小比例。
图9为本申请实施例提供的一种基带芯片的结构示意图,图9所示的基带芯片900可以包括存储器910,用于存储指令,处理器920,用于执行存储器910存储的指令,以执行前文描述的各个方法中的步骤。
图10为本申请实施例提供的一种无线通信装置的结构示意图,图10所示的无线通信装置1000可以包括如图9所示的基带芯片900,及射频***1010,用于对基带芯片900输出的基带信号进行变频,以得到射频信号。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种处理信号的方法,其特征在于,包括:
    生成第一符号和第二符号,所述第一符号为所述第二符号的前一符号,所述第一符号和所述第二符号之间设置有循环前缀;
    在所述循环前缀内分别对所述第一符号和所述第二符号执行加窗操作,以生成所述第一符号的第一加窗部分和所述第二符号的第二加窗部分;以及
    基于比较所述第一符号的发射功率与所述第二符号的发射功率,调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度。
  2. 根据权利要求1所述的方法,其特征在于,所述调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度包括:
    缩小所述第一加窗部分中的信号幅度;和/或
    缩小所述第二加窗部分中的信号幅度。
  3. 根据权利要求1所述的方法,其特征在于,所述调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度包括:
    对所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度进行调节,以使得所述第一加窗部分和所述第二加窗部分在经功率调整之后在信号幅度上接近。
  4. 根据权利要求2所述的方法,其特征在于,所述缩小所述第一加窗部分中的信号幅度,包括:缩小所述第一加窗部分的加窗系数;和/或,所述缩小所述第二加窗部分中的信号幅度,包括:缩小所述第二加窗部分的加窗系数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一加窗部分的加窗系数的缩小比例基于所述第一符号的发射功率与所述第二符号的发射功率之差确定;和/或,所述第二加窗部分的加窗系数的缩小比例基于所述第一符号的发射功率与所述第二符号的发射功率之差确定。
  6. 根据权利要求1所述的方法,其特征在于,所述第一符号的发射功率通过所述第一符号经过功率放大器放大后的幅度增益表示;和/或,所述第二符号的发射功率通过所述第二符号经过功率放大器放大后的幅度增益表示。
  7. 根据权利要求1所述的方法,其特征在于,所述第一符号和所述第二符号均为OFDM符号。
  8. 一种处理信号的装置,其特征在于,包括:
    生成模块,被配置为生成第一符号和第二符号,所述第一符号为所述第二符号的前一符号,所述第一符号和所述第二符号之间设置有循环前缀;
    加窗模块,被配置为在所述循环前缀内分别对所述第一符号和所述第二符号执行加窗操作,以生成所述第一符号的第一加窗部分和所述第二符号的第二加窗部分;
    调节模块,被配置为基于比较所述第一符号的发射功率与所述第二符号的发射功率,调节所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度。
  9. 根据权利要求8所述的装置,其特征在于,所述调节模块进一步配置成:
    缩小所述第一加窗部分中的信号幅度;和/或
    缩小所述第二加窗部分中的信号幅度。
  10. 根据权利要求8所述的装置,其特征在于,所述调节模块进一步配置成:
    对所述第一加窗部分的信号幅度和/或所述第二加窗部分的信号幅度进行调节,以使得所述第一加窗部分和所述第二加窗部分在经功率调整之后在信号幅度上接近。
  11. 根据权利要求9所述的装置,其特征在于,所述调节模块进一步配置成:
    缩小所述第一加窗部分的加窗系数;和/或,
    缩小所述第二加窗部分的加窗系数。
  12. 根据权利要求11所述的装置,其特征在于,所述调节模块进一步配置成:
    基于所述第一符号的发射功率与所述第二符号的发射功率之差确定所述第一加窗部分的加窗系数的缩小比例;和/或,
    基于所述第一符号的发射功率与所述第二符号的发射功率之差确定所述第二加窗部分的加窗系数的缩小比例。
  13. 一种基带芯片,其特征在于,包括:
    存储器,用于存储指令;
    处理器,用于执行所述存储器中存储的指令,使得所述基带芯片实现如权利要求1-7任一项所述的方法。
  14. 一种无线通信装置,其特征在于,所述装置包括:
    如权利要求13所述的基带芯片,用于输出基带信号;以及
    射频***,用于对所述基带芯片输出的基带信号进行变频,以得到射频信号。
  15. 一种计算机可读存储介质,其特征在于,其上存储有处理器可执行程序,所述程序在被处理器执行时,使得计算机执行如权利要求1-7中任一项所述的方法。
PCT/CN2022/140113 2022-06-09 2022-12-19 处理信号的方法及相关装置 WO2023236495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210648757.6A CN115102820A (zh) 2022-06-09 2022-06-09 处理信号的方法及相关装置
CN202210648757.6 2022-06-09

Publications (1)

Publication Number Publication Date
WO2023236495A1 true WO2023236495A1 (zh) 2023-12-14

Family

ID=83288421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140113 WO2023236495A1 (zh) 2022-06-09 2022-12-19 处理信号的方法及相关装置

Country Status (2)

Country Link
CN (1) CN115102820A (zh)
WO (1) WO2023236495A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102820A (zh) * 2022-06-09 2022-09-23 Oppo广东移动通信有限公司 处理信号的方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069646A1 (en) * 2018-10-03 2020-04-09 Huawei Technologies Co., Ltd. Computing cyclic prefix length and receiver windowing length using ingress conditions in an ofdm system
CN112565150A (zh) * 2020-12-11 2021-03-26 中南民族大学 正交加窗正交频分复用***、主动干扰抵消方法及应用
CN112804177A (zh) * 2019-11-14 2021-05-14 深圳市中兴微电子技术有限公司 Ofdm时域加窗方法及装置
WO2022020993A1 (zh) * 2020-07-27 2022-02-03 哲库科技(北京)有限公司 时域加窗方法及相关产品
CN115102820A (zh) * 2022-06-09 2022-09-23 Oppo广东移动通信有限公司 处理信号的方法及相关装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020069646A1 (en) * 2018-10-03 2020-04-09 Huawei Technologies Co., Ltd. Computing cyclic prefix length and receiver windowing length using ingress conditions in an ofdm system
CN112804177A (zh) * 2019-11-14 2021-05-14 深圳市中兴微电子技术有限公司 Ofdm时域加窗方法及装置
WO2022020993A1 (zh) * 2020-07-27 2022-02-03 哲库科技(北京)有限公司 时域加窗方法及相关产品
CN112565150A (zh) * 2020-12-11 2021-03-26 中南民族大学 正交加窗正交频分复用***、主动干扰抵消方法及应用
CN115102820A (zh) * 2022-06-09 2022-09-23 Oppo广东移动通信有限公司 处理信号的方法及相关装置

Also Published As

Publication number Publication date
CN115102820A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Tellado et al. Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding
Jeon et al. An adaptive data predistorter for compensation of nonlinear distortion in OFDM systems
US6952394B1 (en) Method for transmitting and receiving orthogonal frequency division multiplexing signal and apparatus therefor
US20060126748A1 (en) Method for reducing peak-to-average power ratio of multi-carrier modulation
WO2007068077A1 (en) System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
CN101340417A (zh) Ofdm***中改进型降低峰均比的迭代pts方法
WO2023236495A1 (zh) 处理信号的方法及相关装置
Ramadan et al. Virtual quadrature phase shift keying with low-complexity equalization for performance enhancement of OFDM systems
US20070058743A1 (en) OFDM communications system employing crest factor reduction with ISI control
WO2022020993A1 (zh) 时域加窗方法及相关产品
JP2017188874A (ja) 信号処理回路
CN101510866B (zh) 一种抑制信号峰均功率比的方法、装置及发射机
CN112600783A (zh) 一种基于Golay分组编码的OTFS***峰均比抑制方法
US20060215537A1 (en) Apparatus and method for estimating a clipping parameter of an ofdm system
Madhavi et al. Implementation of non linear companding technique for reducing PAPR of OFDM
TW200525920A (en) Method and apparatus for peak to average power ratio reduction
WO2013113282A1 (en) Methods and systems for peak-to-average power reduction without reducing data rate
CN113630353B (zh) 一种基于扩展加权分数傅里叶变换的信号时频能量完全平均化传输方法
Nageswaran et al. A Hybrid Transform for Reduction of Peak to Average Power Ratio in OFDM System
US10904060B2 (en) Peak suppression circuit, peak suppression method, and transmitter
WO2020061833A1 (zh) 一种改进压扩变换接收端的降低多载波水声通信***峰均比方法
Yoshimi et al. An OFDM system with modified predistorter and MLS
US6961386B2 (en) Device and method for increasing the bandwidth in a line-connected multicarrier system
Riahi Performance optimization of a wireless multimedia transmission system based on the reduction of PAPR
KR100528969B1 (ko) 나눗셈이 없는 주파수 영역 채널 보상회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945623

Country of ref document: EP

Kind code of ref document: A1