WO2023234137A1 - Method for manufacturing photoelectric conversion element - Google Patents

Method for manufacturing photoelectric conversion element Download PDF

Info

Publication number
WO2023234137A1
WO2023234137A1 PCT/JP2023/019308 JP2023019308W WO2023234137A1 WO 2023234137 A1 WO2023234137 A1 WO 2023234137A1 JP 2023019308 W JP2023019308 W JP 2023019308W WO 2023234137 A1 WO2023234137 A1 WO 2023234137A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
type semiconductor
semiconductor compound
solution
chamber
Prior art date
Application number
PCT/JP2023/019308
Other languages
French (fr)
Japanese (ja)
Inventor
桂也 ▲徳▼田
哲雄 奥山
啓介 松尾
奈織美 瀧本
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023234137A1 publication Critical patent/WO2023234137A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element having an active layer.
  • Patent Document 1 discloses a method of forming an active layer by turning a solution forming the active layer into a mist and spraying it onto a substrate.
  • the layer structure of the active layer As the layer structure of the active layer, a thin film laminated structure in which a p-type semiconductor compound and an n-type semiconductor compound are laminated, and a bulk heterojunction structure in which a p-type semiconductor compound and an n-type semiconductor compound are mixed are known. There is.
  • the active layer it is desirable to be able to form these structures arbitrarily, and it is expected that this will result in a photoelectric conversion element having high photoelectric conversion efficiency. In particular, it is desirable to be able to easily form various bulk heterojunction structures.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a photoelectric conversion element that can easily form an active layer with an arbitrary structure.
  • the present invention includes the following method for manufacturing a photoelectric conversion element.
  • a method for manufacturing a photoelectric conversion element having an active layer comprising: generating a first mist from a first solution containing a p-type semiconductor compound; generating a second mist from a second solution containing an n-type semiconductor compound; A transporting step of introducing the first mist and the second mist into a chamber in which a substrate is placed, and depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate;
  • a method for manufacturing a photoelectric conversion element comprising a heating step of heating the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached to form an active layer.
  • step of generating the first mist in the step of generating the first mist from the cooled first solution, and/or in the step of generating the second mist, the step of generating the first mist from the cooled first solution.
  • the first solution contains a first solvent
  • the second solution contains a second solvent different from the first solvent.
  • Production method [6] The method according to any one of [1] to [5], wherein in the conveying step, the ratio between the amount of the first mist and the amount of the second mist introduced into the chamber is changed over time. Production method.
  • the ratio of the amount of the first mist introduced into the chamber to the amount of the second mist continues to increase or decrease over time [1] to [ 6].
  • the active layer has a ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction is larger than the ratio on the other side.
  • the manufacturing method described in. [9] The first solution contains the p-type semiconductor compound which is a polymer compound, and/or the second solution contains the n-type semiconductor compound which is a polymer compound [1 ] to [8].
  • a first mist generated from a first solution containing a p-type semiconductor compound and a second mist generated from a second solution containing an n-type semiconductor compound are produced.
  • a p-type semiconductor compound and an n-type semiconductor compound can be deposited on the substrate placed in the chamber, and an active layer precursor can be formed on the substrate.
  • An active layer can be formed on the substrate.
  • active layers having not only a thin film stacked structure but also various bulk heterojunction structures can be easily formed.
  • FIG. 1 shows a configuration example of a manufacturing system used in the manufacturing method of the present invention.
  • the present invention relates to a method for manufacturing a photoelectric conversion element having an active layer.
  • a photoelectric conversion element is an element that converts light energy and electrical energy.
  • an organic EL device that emits light by the action of excitons formed by the recombination of electrons and holes, and a device that converts light into electricity.
  • FIG. 1 shows an example of the configuration of an organic thin film solar cell, which is a type of photoelectric conversion element.
  • a photoelectric conversion element (organic thin film solar cell) 1 has a structure in which an active layer 4 is disposed between a cathode 2 and an anode 6. It is preferable that the photoelectric conversion element 1 further includes an electron transport layer 3 and a hole transport layer 5, in which the electron transport layer 3 is arranged between the cathode 2 and the active layer 4, and the hole transport layer 5 is arranged between the anode 6 and the active layer. It is placed between 4. That is, the photoelectric conversion element 1 preferably has a structure in which the cathode 2, the electron transport layer 3, the active layer 4, the hole transport layer 5, and the anode 6 are arranged in this order.
  • the photoelectric conversion element 1 has a base material 7, and the cathode 2 or the anode 6 may be arranged on the base material 7. In FIG. 1, the cathode 2 is placed on the base material 7.
  • the active layer is a layer where photoelectric conversion is performed, and contains a p-type semiconductor compound and an n-type semiconductor compound.
  • the photoelectric conversion element receives light, the light is absorbed by the active layer, electricity is generated at the interface between the p-type semiconductor compound and the n-type semiconductor compound, and the generated electricity is taken out from the cathode and the anode.
  • p-type semiconductor compound can be used as the p-type semiconductor compound and the n-type semiconductor compound.
  • p-type semiconductor compounds include conjugated copolymer semiconductor compounds such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, and polyaniline; copolymer semiconductor compounds such as oligothiophene substituted with an alkyl group or other substituents; etc.
  • a copolymer semiconductor compound obtained by copolymerizing two or more types of monomer units may also be used.
  • n-type semiconductor compounds include fullerene and its derivatives, octaazaporphyrin, and perfluorinated compounds in which the hydrogen atoms of p-type semiconductor compounds are replaced with fluorine atoms (for example, perfluoropentacene and perfluorophthalocyanine).
  • polymer compounds containing aromatic carboxylic anhydrides such as naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic anhydride, perylenetetracarboxylic acid diimide, or imidized products thereof as a skeleton can be used. You can also do it.
  • Examples of the layer structure of the active layer include a thin film laminated structure in which a p-type semiconductor compound and an n-type semiconductor compound are laminated, and a bulk heterojunction structure having a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed.
  • the bulk heterojunction structure has a layer (i-layer) in which a p-type semiconductor compound and an n-type semiconductor compound are mixed.
  • the i-layer has a structure in which a p-type semiconductor compound and an n-type semiconductor compound are phase-separated, carrier separation occurs at the phase interface, and the generated carriers (holes and electrons) are transported to the electrode.
  • the mass ratio of the p-type semiconductor compound to the n-type semiconductor compound (p-type semiconductor compound/n-type semiconductor compound) in the i-layer is set to 0 from the viewpoint of improving photoelectric conversion efficiency by obtaining a good phase separation structure. .5 or more is preferable, more preferably 1 or more, 4 or less is preferable, 3 or less is more preferable, and 2 or less is even more preferable.
  • the active layer may contain additives in addition to the p-type semiconductor compound and the n-type semiconductor compound.
  • the phase separation structure of the p-type semiconductor compound and the n-type semiconductor compound in the bulk heterojunction active layer affects light absorption, exciton generation/diffusion, exciton dissociation (carrier separation), carrier transport, etc. It is expected that good photoelectric conversion efficiency will be achieved by optimizing the phase separation structure.
  • the active layer contains an additive having high affinity with the p-type semiconductor compound or the n-type semiconductor compound, an active layer having a preferable phase separation structure can be obtained, and photoelectric conversion efficiency can be improved.
  • additives include aliphatic hydrocarbon compounds having 8 to 20 carbon atoms and aromatic compounds having 8 to 20 carbon atoms. These aliphatic hydrocarbon compounds and aromatic compounds may have a substituent. Examples of substituents that the aliphatic hydrocarbon compound may have include halogen atoms, hydroxyl groups, mercapto groups, cyano groups, amino groups, carbamoyl groups, carbonyloxy groups, carboxyl groups, carbonyl groups, aromatic groups, etc. It will be done.
  • substituents that aromatic compounds may have include halogen atoms, hydroxyl groups, cyano groups, amino groups, amide groups, carbonyloxy groups, carboxyl groups, carbonyl groups, oxycarbonyl groups, silyl groups, alkenyl groups, and alkynyl groups. group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an aromatic group, and the like.
  • Preferred specific examples of the additive include benzene which may have a substituent, naphthalene which may have a substituent, and octane which may have a substituent.
  • a halogen atom is particularly preferable.
  • the thickness of the active layer is preferably 70 nm or more, more preferably 90 nm or more, even more preferably 100 nm or more, and preferably 1000 nm or less, more preferably 750 nm or less, and even more preferably 500 nm or less.
  • the electron transport layer is a layer that extracts electrons from the active layer to the cathode.
  • the constituent material of the electron transport layer is preferably an electron transport material that improves the efficiency of electron extraction, and may be an organic compound or an inorganic compound, but an inorganic compound is preferable.
  • the inorganic compound constituting the electron transport layer is preferably a metal compound, and examples include salts of alkali metals such as lithium, sodium, potassium, and cesium, and metal oxides.
  • alkali metals such as lithium, sodium, potassium, and cesium
  • fluoride salts such as lithium fluoride, sodium fluoride, potassium fluoride, and cesium fluoride are preferable as alkali metal salts, and as metal oxides, titanium oxide (TiOx) and zinc oxide (ZnOx) are preferable.
  • Metal oxides having n-type semiconductor properties such as ) are preferred.
  • Examples of the organic compound constituting the electron transport layer include conductive organic compounds, such as polyethyleneimine ethoxylate.
  • the thickness of the electron transport layer is preferably 0.1 nm or more, more preferably 0.5 nm or more, even more preferably 1.0 nm or more, and preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 60 nm or less.
  • the hole transport layer is a layer that extracts holes from the active layer to the anode.
  • the constituent material of the hole transport layer is not particularly limited as long as it is a hole transporting material that can improve the efficiency of hole extraction, and examples thereof include conductive organic compounds and metal compounds.
  • Examples of the conductive organic compound constituting the hole transport layer include conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylene diamine, polyaniline, etc. are doped with sulfonic acid and/or iodine, etc., and conductive polymers having sulfonyl groups as substituents. Examples include polythiophene derivatives and arylamines. Examples of the metal compound constituting the hole transport layer include metal oxides having p-type semiconductor characteristics such as molybdenum trioxide, vanadium pentoxide, and nickel oxide, and metals such as gold, indium, silver, and palladium. Alternatively, the hole transport layer may be formed from a p-type semiconductor compound.
  • a conductive polymer doped with sulfonic acid is preferable as a constituent material of the hole transport layer, and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) is a polythiophene derivative doped with polystyrene sulfonic acid.
  • PEDOT:PSS poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) is a polythiophene derivative doped with polystyrene sulfonic acid.
  • metal oxides such as molybdenum oxide and vanadium oxide are preferred.
  • the thickness of the hole transport layer is preferably 0.2 nm or more, more preferably 0.5 nm or more, even more preferably 1.0 nm or more, and preferably 400 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less, and 70 nm or less. The following are even more preferred.
  • the cathode and anode are composed of conductive materials. At least one of the cathode and the anode is preferably translucent, that is, it is preferably a transparent electrode. This allows light to pass through the transparent electrode and reach the active layer.
  • the cathode is composed of a conductive material that has a smaller work function than the anode.
  • the cathode has a function of taking out electrons generated in the active layer.
  • Examples of cathode constituent materials include conductive metal oxides such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, and zinc oxide; gold, platinum, etc. , silver, chromium, cobalt, and their alloys.
  • a conductive metal oxide with translucency such as ITO, zinc oxide, or tin oxide, and it is particularly preferable to use ITO.
  • the anode is composed of a conductive material that has a larger work function than the cathode.
  • the anode has a function of taking out holes generated in the active layer.
  • the constituent materials of the anode include, for example, metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, magnesium, and their alloys; lithium fluoride and inorganic salts such as cesium fluoride; and metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide.
  • a conductive n-type semiconductor compound such as zinc oxide
  • a material having a small work function such as ITO may be used as the anode material.
  • the thickness of the cathode and anode is preferably 10 nm or more, more preferably 20 nm or more, even more preferably 50 nm or more, and preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 500 nm or less.
  • the constituent material of the base material is not particularly limited, and is appropriately set depending on the use of the photoelectric conversion element.
  • the base material include inorganic materials such as quartz, glass, sapphire, and titania; polyester (e.g., polyethylene terephthalate, polyethylene naphthalate), polyether sulfone, polyimide, polyamide (e.g., nylon), polystyrene, and polyvinyl.
  • Organic materials such as alcohol, ethylene vinyl alcohol copolymer, fluororesin, vinyl chloride, polyolefin (e.g.
  • Material Polyethylene, polypropylene), cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, epoxy resin, etc.
  • Material Paper material: Composite materials made of metals such as stainless steel, titanium, and aluminum coated with resin.
  • Examples of the shape of the base material include a plate shape, a film shape, and a sheet shape.
  • the thickness of the base material is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 20 mm or less, and more preferably 10 mm or less.
  • the active layer among the layers constituting the photoelectric conversion element is manufactured by a specific method.
  • the method for manufacturing a photoelectric conversion element of the present invention includes a step of generating a first mist from a first solution containing a p-type semiconductor compound (hereinafter referred to as "first mist generation step"), and a step of generating a first mist from a first solution containing a p-type semiconductor compound.
  • first mist generation step a step of generating a first mist from a first solution containing a p-type semiconductor compound
  • second mist generation step A step of generating a second mist from a second solution containing
  • the method includes a transport step of depositing a p-type semiconductor compound and an n-type semiconductor compound on the substrate, and a heating step of heating the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached to form an active layer.
  • an active layer precursor can be formed on a substrate by depositing a p-type semiconductor compound and an n-type semiconductor compound, and by heating this, an active layer can be formed on the substrate.
  • an active layer can be formed on the substrate.
  • the p-type semiconductor By adjusting the amount of the first mist containing a p-type semiconductor compound and the second mist containing an n-type semiconductor compound introduced into the chamber, the p-type semiconductor It is possible to form a layer containing many compounds, a layer containing many n-type semiconductor compounds, or a layer containing a mixture of p-type semiconductor compounds and n-type semiconductor compounds. Further, it becomes easy to arbitrarily adjust the thickness of each of these regions. Therefore, according to the present invention, active layers having various bulk heterojunction structures can be easily formed. Each step will be explained in detail below.
  • a first mist is generated from a first solution containing a p-type semiconductor compound.
  • a p-type semiconductor compound is dissolved in a solvent, and the solvent contained in the first solution is referred to as a "first solvent.”
  • the first solution may further contain the additives described above.
  • a second mist is generated from a second solution containing an n-type semiconductor compound.
  • an n-type semiconductor compound is dissolved in a solvent, and the solvent contained in the second solution is referred to as a "second solvent.”
  • the second solution may further contain the additives described above.
  • the first solvent is not particularly limited as long as it can dissolve the p-type semiconductor compound.
  • the second solvent is not particularly limited as long as it can dissolve the n-type semiconductor compound.
  • the first solvent and the second solvent are preferably organic solvents, such as aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane, and decane; toluene, xylene, mesitylene, cyclohexylbenzene, and naphthalene.
  • aromatic hydrocarbons such as methylnaphthalene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin, decalin; chloroform, methylene chloride, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, Halogenated hydrocarbons such as orthodichlorobenzene and chloronaphthalene; Alcohols such as methanol, ethanol, propanol, and anisole; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetophenone, and propiophenone; Esters such as ethyl acetate, isopropyl acetate, butyl acetate, methyl lactate; Ethers
  • the first solvent and the second solvent may be the same or different, it is preferable that the first solvent and the second solvent are different from each other.
  • the solvent used when forming an active layer, a solution containing both a p-type semiconductor compound and an n-type semiconductor compound was used, so the solvent used must be one that can dissolve both the p-type semiconductor compound and the n-type semiconductor compound. I had to choose appropriately. Therefore, the solvents that can be used are limited, and halogenated hydrocarbons are usually used as the solvent.
  • the p-type semiconductor compound and the n-type semiconductor compound are handled as separate mist, the first mist containing the n-type semiconductor compound and the second mist containing the n-type semiconductor compound are separated.
  • halogenated hydrocarbons as a solvent, it becomes easy to dissolve the p-type semiconductor compound in the first solvent and increase the concentration of the p-type semiconductor compound in the first solution. It becomes easy to dissolve the n-type semiconductor compound in the solvent and increase the concentration of the n-type semiconductor compound in the second solution.
  • a solvent other than halogenated hydrocarbons it is possible to use an environmentally friendly production method, and by appropriately setting the types of the first solvent and the second solvent, various bulk heterogeneous products can be produced. It also becomes possible to form a bonded structure.
  • the concentration of the p-type semiconductor compound in the first solution is not particularly limited.
  • the concentration of the p-type semiconductor compound in the first solution is set such that the first mist is transported into the chamber in the transport process and is maintained in a mist state until it is deposited on the substrate, and is activated on the substrate.
  • the concentration may be appropriately set so as to obtain a desired film formation rate of the layer precursor.
  • the concentration of the p-type semiconductor compound in the first solution is, for example, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and 20% by mass or less. It is preferably 10% by mass or less, and more preferably 10% by mass or less.
  • the concentration of the p-type semiconductor compound in the first solution may be adjusted depending on the thickness of the active layer to be formed. For example, when the thickness of the active layer is less than 100 nm, the concentration of the p-type semiconductor compound in the first solution The concentration is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass. The following are more preferred. When the thickness of the active layer is 100 nm or more, the p-type semiconductor compound concentration in the first solution is preferably 1% by mass or more, more preferably 1.5% by mass or more, even more preferably 2% by mass or more, and 20% by mass or more. It is preferably at most 10% by mass, more preferably at most 10% by mass. Note that the first solution preferably does not contain an n-type semiconductor compound.
  • the concentration of the n-type semiconductor compound in the second solution is not particularly limited.
  • the concentration of the n-type semiconductor compound in the second solution is set such that the second mist is transported into the chamber in the transport process and is maintained in a mist state until it is deposited on the substrate, and is activated on the substrate.
  • the concentration may be appropriately set so as to obtain a desired film formation rate of the layer precursor.
  • the concentration of the n-type semiconductor compound in the second solution is, for example, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and 20% by mass or less. It is preferably 10% by mass or less, and more preferably 10% by mass or less.
  • the concentration of the n-type semiconductor compound in the second solution may be adjusted depending on the thickness of the active layer to be formed. For example, when the thickness of the active layer is less than 100 nm, the concentration of the n-type semiconductor compound in the second solution The concentration is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass. The following are more preferred. When the thickness of the active layer is 100 nm or more, the n-type semiconductor compound concentration in the second solution is preferably 1% by mass or more, more preferably 1.5% by mass or more, even more preferably 2% by mass or more, and 20% by mass or more. It is preferably at most 10% by mass, more preferably at most 10% by mass. Note that the second solution preferably does not contain a p-type semiconductor compound.
  • the method of turning the first solution into a mist is not particularly limited.
  • Methods of making the first solution into a mist include a method of spraying the first solution from a nozzle to make it a mist, a method of applying ultrasonic waves to the first solution and making it a mist, and a method of bubbling the first solution. Examples include a method of turning it into a mist. Further, other known misting methods may be employed. Among these, it is preferable to apply ultrasonic waves to the first solution to form it into a mist, which makes it easier to generate the first mist more uniformly.
  • the frequency of the ultrasonic waves when applying ultrasonic waves to the first solution to form a mist is not particularly limited.
  • the larger the frequency, the smaller the particle size of the first mist, so the frequency may be set appropriately depending on the thickness and structure of the active layer desired to be formed on the substrate.
  • the frequency of the ultrasonic wave when generating a mist with an average particle size of 10 ⁇ m or more, is preferably 10 kHz or more and less than 0.7 MHz.
  • the frequency of the ultrasonic wave is preferably 0.7 MHz or more and 5 MHz or less, more preferably 1.5 MHz or more and 3.5 MHz or less.
  • the method of turning the second solution into a mist is not particularly limited.
  • the method of making a mist from the second solution refer to the above description of making a mist from the first solution, and preferably, applying ultrasonic waves to the second solution to generate the second mist. This makes it easier to generate the second mist more uniformly.
  • the frequency of the ultrasonic waves when applying ultrasonic waves to the second solution to form a mist is not particularly limited. The larger the frequency, the smaller the particle size of the second mist, so the frequency may be set appropriately depending on the thickness and structure of the active layer desired to be formed on the substrate.
  • the frequency at which ultrasonic waves are applied to the second solution the above description of the frequency at which ultrasonic waves are applied to the first solution is referred to.
  • the first mist is generated from the first solution in a first misting section that has a space inside to generate the first mist. It is preferable that the first misting section has an inlet and an outlet, and is configured such that the carrier gas can be introduced from the inlet and the carrier gas can be discharged from the outlet. Thereby, the first mist generated in the first mist forming section can be transported to the outside of the first misting section together with the carrier gas.
  • a first solution is stored in a first storage tank, and by applying ultrasound to the first solution stored in the first storage tank, mist is generated from the first solution. It is preferable to generate the first mist.
  • the first storage tank is preferably installed in the internal space of the first misting section.
  • the ultrasonic transducer may be installed on the inner surface (wall surface or bottom surface) of the first storage tank in contact with the first solution, or may be installed in the first solution instead of on the inner surface of the first storage tank.
  • the second mist is generated from the second solution in a second misting section that has a space inside to generate the second mist.
  • the second misting section has an inlet and an outlet, and is configured such that the carrier gas can be introduced from the inlet and the carrier gas can be discharged from the outlet. Thereby, the second mist generated in the second mist forming section can be transported to the outside of the second misting section together with the carrier gas.
  • the second solution is stored in a second storage tank, and by applying ultrasound to the second solution stored in the second storage tank, the second mist is removed from the second solution. It is preferable to generate a second mist.
  • the second storage tank is preferably installed in the internal space of the second misting section.
  • the ultrasonic transducer may be installed on the inner surface (wall surface or bottom surface) of the second storage tank in contact with the second solution, or may be installed in the second solution instead of on the inner surface of the second storage tank.
  • the first mist generation step it is preferable to generate the first mist from the cooled first solution. That is, in the first mist generation step, it is preferable to cool the first solution and generate the first mist from the cooled first solution. This suppresses volatilization of the first solvent from the first mist until the first mist is transported into the chamber and attached to the substrate, making it easier to maintain the mist state.
  • the cooling temperature of the first solution may be set, for example, in the range of 5°C to 20°C.
  • the second mist generation step it is preferable to generate the second mist from the cooled second solution. That is, in the second mist generation step, it is preferable to cool the second solution and generate the second mist from the cooled second solution. As a result, volatilization of the second solvent from the second mist is suppressed until the second mist is transported into the chamber and attached to the substrate, and the mist state is easily maintained.
  • the cooling temperature of the second solution may be set, for example, in the range of 5°C to 20°C.
  • the first mist and the second mist are introduced into the chamber in which the substrate is placed.
  • the chamber has an interior space, and a base is disposed in the interior space.
  • the first mist and the second mist adhere to the substrate and contain a p-type semiconductor compound and an n-type semiconductor compound on the substrate.
  • An active layer precursor can be formed.
  • the first mist and the second mist are introduced into the chamber while being transported by a carrier gas.
  • the chamber has an inlet for a first mist and a second mist.
  • the chamber may be provided with an outlet.
  • the first mist and the second mist can be circulated within the chamber, and the internal space of the chamber is replaced with the first mist and/or the second mist. be able to.
  • it becomes easy to adjust the concentration of the first mist and the second mist in the internal space of the chamber and it becomes easy to adjust the amounts of the p-type semiconductor compound and the n-type semiconductor compound to be attached to the substrate. .
  • the first mist and the second mist may be introduced into the chamber separately, or the first mist and the second mist may be combined before being introduced into the chamber.
  • a flow path connecting the outlet of the first misting section and the chamber and a flow path connecting the outlet of the second misting section and the chamber are provided separately.
  • the chamber is separately provided with a first mist inlet and a second mist inlet.
  • the flow path extending from the outlet of the second misting section may be connected in the middle of the channel connecting the outlet of the first misting section and the chamber, or the outlet of the second misting section and the chamber may be connected.
  • a flow path extending from the outlet of the first misting section may be connected in the middle of the flow path connecting the two.
  • the chamber is provided with an inlet through which the first mist and the second mist are combined and introduced.
  • the first mist generated in the first mist forming section and the second mist generated in the second mist forming section are transported by different carrier gases.
  • the flow path extending from the outlet of the first mist forming section is connected to the inlet of the second misting section, and the second mist forming section is connected to the inlet of the second mist forming section.
  • a channel extending from the outlet of the second misting section may be connected to the chamber, a channel extending from the outlet of the second misting section may be connected to an inlet of the first misting section, and a channel extending from the outlet of the first misting section may be connected to the chamber. It may also be connected to a chamber. In these cases, the first mist generated in the first mist forming section and the second mist generated in the second mist forming section are transported by a common carrier gas.
  • the type of carrier gas may be any gas that is inert to the p-type semiconductor compound and first solvent contained in the first mist and the n-type semiconductor compound and second solvent contained in the second mist. Not particularly limited.
  • the carrier gas include inert gases such as nitrogen and argon, air, oxygen, and hydrogen.
  • the flow rate of the carrier gas may be appropriately set depending on the amount of first mist generated, the amount of second mist generated, the size of the chamber, the size of the substrate installed in the chamber, and the like.
  • the conveyance step it is preferable to introduce the first mist and the second mist into the chamber after merging the first mist and the second mist.
  • the first mist and the second mist are mixed before being transported to the chamber, and the layer structure of the active layer precursor to be formed on the substrate is formed into the desired layer structure. It becomes easy to adjust.
  • the substrate is placed in the chamber in advance.
  • the substrate is placed in the chamber so that a surface to which a p-type semiconductor compound and an n-type semiconductor compound are attached and a surface to which a p-type semiconductor compound is not attached are formed.
  • the substrate placed in the chamber is appropriately set according to the layer structure of the photoelectric conversion element, and the substrate may be placed in the chamber as follows.
  • the substrate has at least a cathode, and the substrate is placed in the chamber such that the cathode serves as an attachment surface for the p-type semiconductor compound and the n-type semiconductor compound, or the substrate has at least an electron transport layer and a cathode, and the substrate has at least an electron transport layer and A substrate is placed in the chamber such that the layer serves as an attachment surface for a p-type semiconductor compound and an n-type semiconductor compound, or the substrate has at least an anode, and the anode serves as an attachment surface for a p-type semiconductor compound and an n-type semiconductor compound.
  • the substrate is placed in a chamber so that It may be installed in
  • the substrate further has a base material on the side of the cathode opposite to the surface on which the p-type semiconductor compound and the n-type semiconductor compound are attached, or has a base material on the side of the cathode opposite to the surface on which the electron transport layer is disposed. or has a base material on the side of the anode opposite to the surface on which the p-type semiconductor compound and n-type semiconductor compound are attached, or has a base material on the side of the anode opposite to the surface on which the hole transport layer is disposed. It's okay.
  • the base is arranged so as to be in contact with the internal space of the chamber, and the first mist and the second mist are introduced into the internal space of the chamber, so that the first mist and the second mist adhere to the base.
  • a p-type semiconductor compound and an n-type semiconductor compound are deposited on the substrate.
  • the active layer precursor can be formed on the substrate.
  • the temperature of the substrate is preferably maintained at 80°C or lower, more preferably 60°C or lower, and even more preferably 40°C or lower.
  • the amounts of the first mist and the second mist introduced into the chamber are determined as appropriate depending on the amount of p-type semiconductor compound and n-type semiconductor compound to be deposited on the substrate and the film thickness of the active layer precursor. Just set it.
  • the p-type semiconductor compound and the n-type semiconductor compound may be deposited on the substrate by keeping the ratio of the amount of the first mist and the amount of the second mist introduced into the chamber constant. The ratio of the amount of the first mist and the amount of the second mist introduced into the container may be changed over time.
  • the first mist and the second mist are introduced into the chamber as in the former case, it is possible to form an active layer having a layer structure similar to that of an active layer formed by, for example, a spin coating method. Become.
  • a layer containing many p-type semiconductor compounds is formed in the thickness direction of the active layer precursor; It becomes easy to form a layer in which a large amount of a type semiconductor compound exists, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed. It was difficult to adjust the layer structure of the active layer as desired using conventional wet coating methods, but according to the present invention, it is possible to adjust the layer structure of the active layer as desired. Become.
  • the ratio of the amount of the first mist introduced into the chamber to the amount of the second mist may continue to increase or decrease over time.
  • the content ratio of the p-type semiconductor compound and the n-type semiconductor compound can be adjusted toward one side or the other side in the thickness direction of the active layer. It becomes possible to form an active layer in which the gradient changes.
  • the active layer formed in this manner is expected to have advantageous photoelectric conversion efficiency.
  • the ratio of the amount of the first mist to the amount of the second mist changes over time. There may be a fixed time period.
  • the ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction is larger than the ratio on the other side. Therefore, in the conveyance step, the amount of the first mist deposited on the substrate is adjusted such that the ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction of the active layer is larger than the ratio on the other side. It is preferable to change the ratio of the second mist to the amount over time.
  • the chamber may be set at a positive pressure, ie, the pressure within the chamber may be higher than the pressure outside the chamber. This can prevent contamination within the chamber.
  • the first mist and the second mist are deposited on the cooled substrate, and the p-type semiconductor compound and the n-type semiconductor compound are deposited on the substrate.
  • the mounting table of the substrate has a temperature adjustment means, and the substrate can be cooled by placing the substrate on such a mounting table and cooling the mounting table with the temperature adjustment means.
  • the cooling temperature of the substrate is preferably set within a range of 5° C. to 20° C., for example.
  • the temperature adjustment means of the mounting table may include both cooling and heating means.
  • the photoelectric conversion element of the present invention is manufactured from the viewpoint of suppressing the volatilization of the solvent as much as possible between the first mist and the second mist being transported into the chamber and adhering to the substrate, and making it easier to maintain the mist state.
  • the method may include the step of generating a third mist from a third solution containing a solvent, and in the conveying step, the third mist may be conveyed with a carrier gas and introduced into the chamber. good.
  • the third mist may be introduced into the chamber separately from the first mist and the second mist, or may be combined with the first mist or the second mist before being introduced into the chamber. It's okay.
  • For the method of turning the third solution into a mist refer to the explanation of the method of turning the first or second solution into a mist.
  • the solvents exemplified as the first solvent and the second solvent can be used. It is preferable that the third solution basically consists of only a solvent. Therefore, the solute concentration of the third solution is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
  • the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached is heated, that is, the active layer precursor on the substrate is heated to form an active layer on the substrate.
  • the heating temperature in the heating step is within a range that can volatilize the solvent contained in the first mist and the second mist, and is below the boiling point or decomposition point of the p-type semiconductor compound and the n-type semiconductor compound, so as not to adversely affect the substrate. It may be set as appropriate within a range that does not affect.
  • the lower limit of the heating temperature may be, for example, 40°C or higher, 80°C or higher, 100°C or higher, 120°C or higher, or 150°C or higher.
  • the upper limit of the heating temperature may be, for example, 350°C or less, 300°C or less, 250°C or less, or 200°C or less.
  • the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated while being placed in the chamber, and the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached is taken out from the chamber. Alternatively, heating may be performed with the chamber removed. In the former case, in the heating step, it is preferable to heat the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached without introducing the first mist and the second mist into the chamber.
  • the heating means in the heating step is not particularly limited, and for example, heating may be performed using a heater or heating may be performed using hot air.
  • the mounting table for the substrate may include a temperature adjustment means, and by heating the mounting table with the temperature adjustment means, the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated.
  • Heating in the heating step may be performed under atmospheric pressure, under increased pressure, or under reduced pressure. Heating may be performed, for example, under an air atmosphere or an inert gas atmosphere.
  • FIG. 2 shows an example of a system configuration used in the manufacturing method of the present invention. Note that the manufacturing system used in the manufacturing method of the present invention is not limited to the embodiment shown in the drawings.
  • the manufacturing system shown in FIG. 2 includes a first misting section 11, a second misting section 21, and a chamber 31.
  • the first misting section 11 , the second misting section 21 , and the chamber 31 are connected to each other through a first flow path 41 and a second flow path 42 .
  • a mounting table 32 is installed in the chamber 31, and a base 33 is placed on the mounting table 32.
  • the first misting section 11 has an internal space, a first storage tank 12 is installed in the internal space, and an ultrasonic vibrator 13 is installed on the inner surface (bottom surface) of the first storage tank 12.
  • a first solution 14 containing a p-type semiconductor compound is stored in a first storage tank 12, and by applying ultrasonic waves to the first solution 14 with an ultrasonic transducer 13, the first solution 14 is A mist 15 is generated.
  • the first solution 14 stored in the first storage tank 12 is preferably cooled by any cooling means.
  • the second misting section 21 has an internal space, a second storage tank 22 is installed in the internal space, and an ultrasonic vibrator 23 is installed on the inner surface (bottom surface) of the second storage tank 22.
  • a second solution 24 containing an n-type semiconductor compound is stored in a second storage tank 22, and by applying ultrasonic waves to the second solution 24 with an ultrasonic transducer 23, a second solution 24 is extracted from the second solution 24.
  • a mist 25 is generated.
  • a carrier gas introduction path 16 is connected to the first misting section 11 . It is preferable that the introduction path 16 is provided with a valve 17 and a flow meter 18 .
  • a first flow path 41 is further connected to the first mist forming section 11, and the first flow path 41 is provided so as to connect the first mist forming section 11 and the chamber 31.
  • the carrier gas is supplied from the introduction path 16 to the internal space of the first misting section 11 , and flows from the internal space of the first misting section 11 into the chamber 31 through the first flow path 41 .
  • the first mist 15 generated in the first mist-forming section 11 is transported by the carrier gas and introduced into the chamber 31 through the first flow path 41 .
  • a carrier gas introduction path 26 is connected to the second misting section 21 . It is preferable that the introduction path 26 is provided with a valve 27 and a flow meter 28 .
  • a second flow path 42 is further connected to the second mist forming section 21, and the second flow path 42 is provided so as to connect the second mist forming section 21 and the first flow path 41.
  • the carrier gas is supplied from the introduction path 26 to the internal space of the second misting section 21, and flows from the internal space of the second misting section 21 into the chamber 31 through the second flow path 42 and the first flow path 41. do.
  • the second mist 25 generated in the second mist forming section 21 is transported by the carrier gas and introduced into the chamber 31 through the second flow path 42 and the first flow path 41.
  • the manufacturing system shown in FIG. 2 is operated, for example, as follows. First, the internal space of the first misting section 11, the second misting section 21, the first flow path 41, the second flow path 42, and the chamber 31 are replaced with carrier gas in advance. The first mist 15 is generated in the first mist forming section 11, the second mist 25 is generated in the second mist forming section 21, and then the valve 17 of the introduction path 16 and the valve 27 of the introduction path 26 are opened, The first mist 15 and the second mist 25 are transported by carrier gas and introduced into the chamber 31 . When a predetermined amount of the p-type semiconductor compound and the n-type semiconductor compound are deposited on the substrate 33, the valve 17 of the introduction path 16 and the valve 27 of the introduction path 26 are closed.
  • the substrate 33 is taken out from the chamber 31, and the substrate 33 to which the p-type semiconductor compound and the n-type semiconductor compound are attached is heated to form an active layer.
  • the substrate 33 to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated in the chamber 31 to form an active layer.
  • the active layer of a photoelectric conversion element can be manufactured as described above.
  • the photoelectric conversion element further has an electron transport layer or a hole transport layer
  • the electron transport layer and the hole transport layer can be coated by a known method, for example, a wet coating method such as a spin coating method, an inkjet method, a gravure coating, or a sublimation method.
  • a wet coating method such as a spin coating method, an inkjet method, a gravure coating, or a sublimation method.
  • it can be formed by a vacuum evaporation method or the like.
  • the electron transport layer or hole transport layer may be formed by generating a mist from a liquid containing the components forming the electron transport layer or hole transport layer and a solvent, and depositing the mist on the substrate as described above. good.
  • the method for manufacturing a photoelectric conversion element of the present invention can be suitably applied to manufacturing an organic thin film solar cell. Therefore, it is preferable that the photoelectric conversion element is an organic thin film solar cell. It is preferable that the organic thin film solar cell has a layer structure as shown in FIG.
  • the active layer may contain a p-type semiconductor compound of a polymer compound and/or an n-type semiconductor compound of a polymer compound.
  • the first solution contains a p-type semiconductor compound that is a high-molecular compound
  • the second solution contains an n-type semiconductor compound that is a high-molecular compound.
  • Examples of the polymer compound that functions as a p-type semiconductor compound include the following compounds.
  • Examples of the polymer compound that functions as an n-type semiconductor compound include the following compounds.
  • the active layer contains a polymer compound having a benzobisthiazole structural unit, and specifically, a polymer having a benzobisthiazole structural unit represented by the following formula (1). It is preferable to contain a compound (hereinafter referred to as "polymer compound P").
  • T 1 and T 2 are each independently a thiophene ring, a hydrocarbon group, or an organosilyl group which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group.
  • B 1 and B 2 represent a thiophene ring which may be substituted with a hydrocarbon group, a thiazole ring which may be substituted with a hydrocarbon group, or an ethynylene group.
  • an organosilyl group means a monovalent group in which an Si atom is substituted with one or more hydrocarbon groups, and the number of hydrocarbon groups substituted with an Si atom may be 2 or more and 3 or less. The number is preferably three, and more preferably three.
  • the polymer compound P is a type of p-type semiconductor compound, and by having the benzobistiazole structural unit represented by formula (1), it can deepen the HOMO level and narrow the band gap, resulting in photoelectric conversion efficiency. can be increased.
  • T 1 and T 2 may be the same or different from each other, but are preferably the same from the viewpoint of easy production.
  • B 1 and B 2 may be the same or different, but are preferably the same for ease of manufacture.
  • T 1 and T 2 are preferably groups represented by the following formulas (t1) to (t5), respectively.
  • the alkoxy group of T 1 and T 2 is preferably a group represented by the following formula (t1)
  • the thioalkoxy group is preferably a group represented by the following formula (t2)
  • the hydrocarbon is preferably a group represented by the following formula (t3)
  • the thiazole ring which may be substituted with a hydrocarbon group or an organosilyl group is preferably a group represented by the following formula (t3).
  • the group represented by t4) is preferable, and the phenyl group optionally substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group is the following formula (t5)
  • a group represented by is preferred.
  • T 1 and T 2 are groups represented by the following formulas (t1) to (t5), it is possible to absorb short wavelength light and have high planarity, so that efficient ⁇ - ⁇ stacking can be achieved. is formed, so the photoelectric conversion efficiency can be increased.
  • the groups represented by formulas (t1) to (t3) exhibit electron-donating properties
  • the groups represented by formulas (t4) to (t5) exhibit electron-withdrawing properties.
  • R 13 to R 14 each independently represent a hydrocarbon group having 6 to 30 carbon atoms.
  • R 15 to R 16 each independently represent a hydrocarbon group having 6 to 30 carbon atoms or a group represented by *-Si(R 18 ) 3 .
  • R 15' represents a hydrogen atom, a hydrocarbon group having 6 to 30 carbon atoms, or a group represented by *-Si(R 18 ) 3 .
  • R 17 represents a halogen atom, a hydrocarbon group having 6 to 30 carbon atoms, *-O-R 19 , *-SR 20 , *-Si(R 18 ) 3 or *-CF 3 .
  • R 18 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and a plurality of R 18s may be the same or different.
  • R 19 to R 20 represent a hydrocarbon group having 6 to 30 carbon atoms. * represents a bond bonded to the thiazole ring of benzobistiazole.
  • the hydrocarbon group having 6 to 30 carbon atoms in R 13 to R 17 , R 19 to R 20 , and R 15' is preferably a hydrocarbon group having a branch. , more preferably a branched saturated hydrocarbon group.
  • the hydrocarbon groups of R 13 to R 17 , R 19 to R 20 , and R 15' can increase solubility in organic solvents by having branches.
  • the number of carbon atoms in the hydrocarbon group of R 13 to R 17 , R 19 to R 20 , and R 15' is preferably 8 to 25, more preferably 8 to 20, and still more preferably 8 to 16.
  • the number of carbon atoms of the aliphatic hydrocarbon group of R 18 is preferably is from 1 to 18, more preferably from 1 to 8.
  • the number of carbon atoms in the aromatic hydrocarbon group of R 18 is preferably 6 to 8, more preferably 6 to 7, and still more preferably 6.
  • Examples of the aromatic hydrocarbon group for R 18 include a phenyl group.
  • R 18 is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and even more preferably an isopropyl group.
  • R18's may be the same or different, but are preferably the same.
  • R 15 to R 17 and R 15' are groups represented by *-Si(R 18 ) 3
  • the group represented by *-Si(R 18 ) 3 is preferably an alkylsilyl group, more preferably a trimethylsilyl group or a triisopropylsilyl group.
  • R 17 when R 17 is a halogen atom, any of fluorine, chlorine, bromine, and iodine can be used.
  • R 17 is preferably a halogen atom or *-CF 3 .
  • R 15' is a hydrogen atom, a hydrocarbon group having 6 to 30 carbon atoms exemplified as R 15 , or a group similar to the group represented by *-Si(R 18 ) 3 , and is a hydrogen atom. It is preferable.
  • T 1 and T 2 groups represented by formulas (t1), (t3), and (t5) are more preferable because the structural unit represented by formula (1) has excellent planarity as a whole; A group represented by (t3) is more preferred.
  • B 1 and B 2 are preferably groups each represented by one of the following formulas (b1) to (b3).
  • the polymer compound P has good planarity and can enhance photoelectric conversion efficiency.
  • R 21 , R 22 , and R 21' represent a hydrogen atom or a hydrocarbon group having 6 to 30 carbon atoms.
  • * represents a bond, particularly the left * represents a bond bonded to the benzene ring of the benzobistiazole compound.
  • hydrocarbon groups having 6 to 30 carbon atoms for R 21 , R 22 , and R 21' include the hydrocarbon groups having 6 to 30 carbon atoms for R 13 to R 17 , R 19 to R 20 , and R 15' . groups can be preferably used. It is preferable that R 21 , R 22 , and R 21' be hydrocarbon groups having 6 to 30 carbon atoms, since this may further increase the photoelectric conversion efficiency. On the other hand, when R 21 , R 22 , and R 21' are hydrogen atoms, it becomes easy to form a donor-acceptor type semiconductor polymer.
  • B 1 and B 2 groups represented by formulas (b1) and (b2) are more preferable.
  • B 1 and B 2 are groups represented by formulas (b1) and (b2), interaction between S atoms and N atoms occurs in the benzobistiazole structural unit, and the planarity is further improved. As a result, the planarity of the resulting polymer compound P can be improved.
  • the polymer compound P is preferably a donor-acceptor type semiconductor polymer. Therefore, the polymer compound P has a benzobistiazole structural unit represented by formula (1) and also has a donor unit or an acceptor unit. It is preferable to have the specific structural unit given below.
  • the donor unit means an electron-donating structural unit
  • the acceptor unit means an electron-accepting structural unit.
  • the donor-acceptor type semiconductor polymer preferably has donor units and acceptor units arranged alternately. Therefore, the donor-acceptor type semiconductor polymer has benzobisthiazole structural units represented by formula (1) and , and specific structural units are preferably arranged alternately.
  • the polymer compound P having such a structure can be suitably used as a p-type semiconductor compound.
  • specific structural units a conventionally known structural unit that provides a donor unit or an acceptor unit can be used.
  • specific structural units include the following structural units, among which formulas (c1), (c3) to (c5), (c7), (c9), (c12), and (c21) , (c27), (c37), and (c42) are preferable, and structures represented by formulas (c1), (c5), (c9), (c21), (c37), and (c42) are preferable. Units are more preferred.
  • R 30 to R 73 and R 75 to R 76 each independently represent a hydrogen atom or a hydrocarbon group having 4 to 30 carbon atoms
  • R 74 represents a hydrogen atom or Represents a hydrocarbon group having 4 to 30 carbon atoms.
  • a 30 and A 31 each independently represent the same groups as T 1 and T 2
  • j represents an integer of 1 to 4. * represents a bond bonded to B 1 or B 2 of the structural unit represented by formula (1).
  • the groups represented by formulas (c1) to (c30) above are groups that act as acceptor units, and the groups represented by formulas (c32) to (c43) are groups that act as donor units. .
  • the group represented by formula (c31) may act as an acceptor unit or a donor unit depending on the types of A 30 and A 31 .
  • the repeating ratio of the benzobistiazole structural unit represented by formula (1) in the polymer compound P is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, and even more preferably 30 mol%. % or more, and usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
  • the repeating ratio of specific structural units in the polymer compound P is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, even more preferably 30 mol% or more, and usually 99 mol% or less. , preferably 95 mol% or less, more preferably 85 mol% or less, even more preferably 70 mol% or less.
  • the arrangement of the benzobisthiazole structural unit represented by formula (1) and the specific structural unit may be alternate, block, or random. That is, the polymer compound P may be any of an alternating copolymer, a block copolymer, and a random copolymer. Preferably, the benzobistiazole structural units represented by formula (1) and the specific structural units are arranged alternately.
  • the weight average molecular weight and number average molecular weight of the polymer compound P are preferably 2,000 or more and 500,000 or less, more preferably 3,000 or more and 200,000 or less.
  • the weight average molecular weight and number average molecular weight of the polymer compound P can be calculated using gel permeation chromatography based on a calibration curve prepared using polystyrene as a standard sample.
  • Photoelectric conversion element organic thin film solar cell
  • Cathode 3 Electron transport layer 4: Active layer 5: Hole transport layer 6: Anode 7: Base material 11: First misting section 12: First storage tank 13: Ultrasonic vibrator 14: First solution 15 : First mist 21: Second mist forming section 22: Second storage tank 23: Ultrasonic vibrator 24: Second solution 25: Second mist 31: Chamber 32: Mounting table 33: Base

Abstract

Provided is a method for manufacturing a photoelectric conversion element having an active layer, the method comprising: a step for generating a first mist (15) from a first solution (14) containing a p-type semiconductor compound; a step for generating a second mist (25) from a second solution (24) containing an n-type semiconductor compound; a transport step for introducing the first mist (15) and the second mist (25) into a chamber (31) in which a substrate (33) is placed and depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate (33); and a heating step for forming an active layer by heating the substrate (33) having the p-type semiconductor compound and the n-type semiconductor compound deposited thereon.

Description

光電変換素子の製造方法Manufacturing method of photoelectric conversion element
 本発明は、活性層を有する光電変換素子の製造方法に関するものである。 The present invention relates to a method for manufacturing a photoelectric conversion element having an active layer.
 従来、光電変換素子の活性層の製造方法として、スピンコート法やインクジェット法の湿式塗布法を用いた方法が知られている(例えば、特許文献1)。特許文献2には、活性層を形成する溶液をミスト化して基盤上に噴射することにより活性層を形成する方法が開示されている。 Conventionally, as a method for manufacturing an active layer of a photoelectric conversion element, a method using a wet coating method such as a spin coating method or an inkjet method is known (for example, Patent Document 1). Patent Document 2 discloses a method of forming an active layer by turning a solution forming the active layer into a mist and spraying it onto a substrate.
特開2016-051805号公報Japanese Patent Application Publication No. 2016-051805 特表2011-519179号公報Special Publication No. 2011-519179
 活性層の層構造としては、p型半導体化合物とn型半導体化合物とが積層された薄膜積層構造や、p型半導体化合物とn型半導体化合物とが混合した層を有するバルクヘテロ接合構造が知られている。活性層を形成する際には、これらの構造を任意に形成できることが望ましく、これにより、高い光電変換効率を有する光電変換素子を得られることが期待される。特に様々なバルクへテロ接合構造を容易に形成できることが望ましい。本発明は、前記事情に鑑みてなされたものであり、その目的は、任意の構造の活性層を容易に形成することができる光電変換素子の製造方法を提供することにある。 As the layer structure of the active layer, a thin film laminated structure in which a p-type semiconductor compound and an n-type semiconductor compound are laminated, and a bulk heterojunction structure in which a p-type semiconductor compound and an n-type semiconductor compound are mixed are known. There is. When forming the active layer, it is desirable to be able to form these structures arbitrarily, and it is expected that this will result in a photoelectric conversion element having high photoelectric conversion efficiency. In particular, it is desirable to be able to easily form various bulk heterojunction structures. The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a photoelectric conversion element that can easily form an active layer with an arbitrary structure.
 本発明は、以下の光電変換素子の製造方法を含む。
[1] 活性層を有する光電変換素子の製造方法であって、
 p型半導体化合物を含有する第1の溶液から第1のミストを発生させる工程と、
 n型半導体化合物を含有する第2の溶液から第2のミストを発生させる工程と、
 前記第1のミストと前記第2のミストを基盤が配置されたチャンバー内に導入し、前記基盤上に前記p型半導体化合物と前記n型半導体化合物を付着させる搬送工程と、
 前記p型半導体化合物と前記n型半導体化合物が付着した前記基盤を加熱して活性層を形成する加熱工程と
を有することを特徴とする光電変換素子の製造方法。
[2] 前記搬送工程において、前記第1のミストと前記第2のミストを合流させた後、前記第1のミストと前記第2のミストを前記チャンバー内に導入する[1]に記載の製造方法。
[3] 前記第1のミストを発生させる工程において、前記第1の溶液に超音波を印加して、前記第1の溶液から前記第1のミストを発生させる、および/または、前記第2のミストを発生させる工程において、前記第2の溶液に超音波を印加して、前記第2の溶液から前記第2のミストを発生させる[1]または[2]に記載の製造方法。
[4] 前記第1のミストを発生させる工程において、冷却した前記第1の溶液から前記第1のミストを発生させる、および/または、前記第2のミストを発生させる工程において、冷却した前記第2の溶液から前記第2のミストを発生させる[1]~[3]のいずれかに記載の製造方法。
[5] 前記第1の溶液が第1の溶媒を含有し、前記第2の溶液が前記第1の溶媒と異なる第2の溶媒を含有する[1]~[4]のいずれかに記載の製造方法。
[6] 前記搬送工程において、前記チャンバー内に導入する前記第1のミストの量と前記第2のミストの量の比率を経時的に変化させる[1]~[5]のいずれかに記載の製造方法。
[7] 前記搬送工程において、前記チャンバー内に導入する前記第1のミストの量の前記第2のミストの量に対する比率を、経時的に増加させ続ける、または、減少させ続ける[1]~[6]のいずれかに記載の製造方法。
[8] 前記活性層は、厚み方向の一方側における前記p型半導体化合物に対する前記n型半導体化合物の比率が、他方側における前記比率よりも大きいものである[1]~[7]のいずれかに記載の製造方法。
[9] 前記第1の溶液が、高分子化合物である前記p型半導体化合物を含有する、および/または、前記第2の溶液が、高分子化合物である前記n型半導体化合物を含有する[1]~[8]のいずれかに記載の製造方法。
[10] 前記光電変換素子が有機薄膜太陽電池である[1]~[9]のいずれかに記載の製造方法。
The present invention includes the following method for manufacturing a photoelectric conversion element.
[1] A method for manufacturing a photoelectric conversion element having an active layer, comprising:
generating a first mist from a first solution containing a p-type semiconductor compound;
generating a second mist from a second solution containing an n-type semiconductor compound;
A transporting step of introducing the first mist and the second mist into a chamber in which a substrate is placed, and depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate;
A method for manufacturing a photoelectric conversion element, comprising a heating step of heating the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached to form an active layer.
[2] The production according to [1], wherein in the conveying step, the first mist and the second mist are introduced into the chamber after the first mist and the second mist are combined. Method.
[3] In the step of generating the first mist, applying ultrasonic waves to the first solution to generate the first mist from the first solution, and/or generating the first mist from the first solution, and/or generating the first mist from the first solution. The manufacturing method according to [1] or [2], wherein in the step of generating a mist, the second mist is generated from the second solution by applying ultrasonic waves to the second solution.
[4] In the step of generating the first mist, in the step of generating the first mist from the cooled first solution, and/or in the step of generating the second mist, the step of generating the first mist from the cooled first solution. The manufacturing method according to any one of [1] to [3], wherein the second mist is generated from the solution of No. 2.
[5] The method according to any one of [1] to [4], wherein the first solution contains a first solvent, and the second solution contains a second solvent different from the first solvent. Production method.
[6] The method according to any one of [1] to [5], wherein in the conveying step, the ratio between the amount of the first mist and the amount of the second mist introduced into the chamber is changed over time. Production method.
[7] In the conveying step, the ratio of the amount of the first mist introduced into the chamber to the amount of the second mist continues to increase or decrease over time [1] to [ 6].
[8] Any one of [1] to [7], wherein the active layer has a ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction is larger than the ratio on the other side. The manufacturing method described in.
[9] The first solution contains the p-type semiconductor compound which is a polymer compound, and/or the second solution contains the n-type semiconductor compound which is a polymer compound [1 ] to [8].
[10] The manufacturing method according to any one of [1] to [9], wherein the photoelectric conversion element is an organic thin film solar cell.
 本発明の製造方法によれば、p型半導体化合物を含有する第1の溶液から発生させた第1のミストと、n型半導体化合物を含有する第2の溶液から発生させた第2のミストをチャンバー内に導入することにより、チャンバー内に配置した基盤上にp型半導体化合物とn型半導体化合物を付着させ、活性層前駆体を基盤上に成膜することができ、これを加熱することで基盤上に活性層を形成することができる。この際、p型半導体化合物とn型半導体化合物をそれぞれ別々のミストとして基盤上に付着させることで、得られる活性層の構造を任意に調整することが容易になる。本発明の製造方法によれば、薄膜積層構造のみならず、様々なバルクヘテロ接合構造を有する活性層を容易に形成することができる。 According to the manufacturing method of the present invention, a first mist generated from a first solution containing a p-type semiconductor compound and a second mist generated from a second solution containing an n-type semiconductor compound are produced. By introducing the active layer precursor into the chamber, a p-type semiconductor compound and an n-type semiconductor compound can be deposited on the substrate placed in the chamber, and an active layer precursor can be formed on the substrate. An active layer can be formed on the substrate. At this time, by depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate as separate mist, it becomes easy to arbitrarily adjust the structure of the resulting active layer. According to the manufacturing method of the present invention, active layers having not only a thin film stacked structure but also various bulk heterojunction structures can be easily formed.
光電変換素子の層構造の構成例を表す。An example of the layered structure of a photoelectric conversion element is shown. 本発明の製造方法で用いられる製造システムの構成例を表す。1 shows a configuration example of a manufacturing system used in the manufacturing method of the present invention.
 本発明は、活性層を有する光電変換素子の製造方法に関するものである。光電変換素子は、光のエネルギーと電気エネルギーとを変換する素子であり、例えば、電子と正孔の再結合により形成される励起子(エキシトン)の作用により発光する有機ELデバイス、光を電力に変換する有機薄膜太陽電池、電流量や電圧量を制御する有機薄膜トランジスタ等が含まれる。 The present invention relates to a method for manufacturing a photoelectric conversion element having an active layer. A photoelectric conversion element is an element that converts light energy and electrical energy.For example, an organic EL device that emits light by the action of excitons formed by the recombination of electrons and holes, and a device that converts light into electricity. This includes organic thin film solar cells that convert, organic thin film transistors that control the amount of current and voltage, etc.
 図1には、光電変換素子の一種である有機薄膜太陽電池の構成例を示した。光電変換素子(有機薄膜太陽電池)1は、カソード2とアノード6の間に活性層4が配置された構造を有する。光電変換素子1はさらに、電子輸送層3とホール輸送層5とを有することが好ましく、電子輸送層3はカソード2と活性層4の間に配置され、ホール輸送層5はアノード6と活性層4の間に配置される。すなわち、光電変換素子1は、カソード2と電子輸送層3と活性層4とホール輸送層5とアノード6をこの順で配置された構造を有することが好ましい。光電変換素子1は基材7を有し、基材7上にカソード2またはアノード6が配置されていてもよい。図1では、基材7上にカソード2が配置されている。 FIG. 1 shows an example of the configuration of an organic thin film solar cell, which is a type of photoelectric conversion element. A photoelectric conversion element (organic thin film solar cell) 1 has a structure in which an active layer 4 is disposed between a cathode 2 and an anode 6. It is preferable that the photoelectric conversion element 1 further includes an electron transport layer 3 and a hole transport layer 5, in which the electron transport layer 3 is arranged between the cathode 2 and the active layer 4, and the hole transport layer 5 is arranged between the anode 6 and the active layer. It is placed between 4. That is, the photoelectric conversion element 1 preferably has a structure in which the cathode 2, the electron transport layer 3, the active layer 4, the hole transport layer 5, and the anode 6 are arranged in this order. The photoelectric conversion element 1 has a base material 7, and the cathode 2 or the anode 6 may be arranged on the base material 7. In FIG. 1, the cathode 2 is placed on the base material 7.
 活性層は光電変換が行われる層であり、p型半導体化合物とn型半導体化合物を含有する。光電変換素子が光を受けると、光が活性層に吸収され、p型半導体化合物とn型半導体化合物との界面で電気が発生し、発生した電気がカソードとアノードから取り出される。 The active layer is a layer where photoelectric conversion is performed, and contains a p-type semiconductor compound and an n-type semiconductor compound. When the photoelectric conversion element receives light, the light is absorbed by the active layer, electricity is generated at the interface between the p-type semiconductor compound and the n-type semiconductor compound, and the generated electricity is taken out from the cathode and the anode.
 p型半導体化合物とn型半導体化合物は公知の化合物を用いることができる。p型半導体化合物としては、例えば、ポリチオフェン、ポリフルオレン、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役コポリマー半導体化合物;アルキル基やその他の置換基が置換されたオリゴチオフェン等のコポリマー半導体化合物等が挙げられる。また、2種以上のモノマー単位を共重合させたコポリマー半導体化合物を用いてもよい。 Known compounds can be used as the p-type semiconductor compound and the n-type semiconductor compound. Examples of p-type semiconductor compounds include conjugated copolymer semiconductor compounds such as polythiophene, polyfluorene, polyphenylene vinylene, polythienylene vinylene, polyacetylene, and polyaniline; copolymer semiconductor compounds such as oligothiophene substituted with an alkyl group or other substituents; etc. Further, a copolymer semiconductor compound obtained by copolymerizing two or more types of monomer units may also be used.
 n型半導体化合物としては、例えば、フラーレンやその誘導体、オクタアザポルフィリン、p型半導体化合物の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン)等が挙げられる。また、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を用いることもできる。 Examples of n-type semiconductor compounds include fullerene and its derivatives, octaazaporphyrin, and perfluorinated compounds in which the hydrogen atoms of p-type semiconductor compounds are replaced with fluorine atoms (for example, perfluoropentacene and perfluorophthalocyanine). Furthermore, polymer compounds containing aromatic carboxylic anhydrides such as naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic anhydride, perylenetetracarboxylic acid diimide, or imidized products thereof as a skeleton can be used. You can also do it.
 活性層の層構造としては、p型半導体化合物とn型半導体化合物とが積層された薄膜積層構造や、p型半導体化合物とn型半導体化合物とが混合した層を有するバルクヘテロ接合構造等が挙げられる。バルクヘテロ接合構造は、p型半導体化合物とn型半導体化合物とが混合された層(i層)を有する。i層はp型半導体化合物とn型半導体化合物とが相分離した構造を有し、相界面でキャリア分離が起こり、生じたキャリア(正孔および電子)が電極まで輸送される。i層中でのp型半導体化合物とn型半導体化合物との質量比(p型半導体化合物/n型半導体化合物)は、良好な相分離構造を得ることにより光電変換効率を向上させる観点から、0.5以上が好ましく、より好ましくは1以上であり、また、4以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。 Examples of the layer structure of the active layer include a thin film laminated structure in which a p-type semiconductor compound and an n-type semiconductor compound are laminated, and a bulk heterojunction structure having a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed. . The bulk heterojunction structure has a layer (i-layer) in which a p-type semiconductor compound and an n-type semiconductor compound are mixed. The i-layer has a structure in which a p-type semiconductor compound and an n-type semiconductor compound are phase-separated, carrier separation occurs at the phase interface, and the generated carriers (holes and electrons) are transported to the electrode. The mass ratio of the p-type semiconductor compound to the n-type semiconductor compound (p-type semiconductor compound/n-type semiconductor compound) in the i-layer is set to 0 from the viewpoint of improving photoelectric conversion efficiency by obtaining a good phase separation structure. .5 or more is preferable, more preferably 1 or more, 4 or less is preferable, 3 or less is more preferable, and 2 or less is even more preferable.
 活性層は、p型半導体化合物とn型半導体化合物に加え、添加剤を含有してもよい。バルクヘテロ接合型の活性層におけるp型半導体化合物とn型半導体化合物との相分離構造は、光吸収、励起子の生成・拡散、励起子の乖離(キャリア分離)、キャリア輸送等に影響を及ぼすため、相分離構造を最適化することにより、良好な光電変換効率を実現することが期待される。活性層に、p型半導体化合物またはn型半導体化合物と親和性の高い添加剤が含まれることにより、好ましい相分離構造を有する活性層が得られ、光電変換効率が向上しうる。 The active layer may contain additives in addition to the p-type semiconductor compound and the n-type semiconductor compound. The phase separation structure of the p-type semiconductor compound and the n-type semiconductor compound in the bulk heterojunction active layer affects light absorption, exciton generation/diffusion, exciton dissociation (carrier separation), carrier transport, etc. It is expected that good photoelectric conversion efficiency will be achieved by optimizing the phase separation structure. When the active layer contains an additive having high affinity with the p-type semiconductor compound or the n-type semiconductor compound, an active layer having a preferable phase separation structure can be obtained, and photoelectric conversion efficiency can be improved.
 添加剤としては、炭素数8~20の脂肪族炭化水素化合物および炭素数8~20の芳香族化合物が挙げられる。これらの脂肪族炭化水素化合物および芳香族化合物は置換基を有していてもよい。脂肪族炭化水素化合物が有していてもよい置換基としては、ハロゲン原子、水酸基、メルカプト基、シアノ基、アミノ基、カルバモイル基、カルボニルオキシ基、カルボキシル基、カルボニル基、芳香族基等が挙げられる。芳香族化合物が有していてもよい置換基としては、ハロゲン原子、水酸基、シアノ基、アミノ基、アミド基、カルボニルオキシ基、カルボキシ基、カルボニル基、オキシカルボニル基、シリル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、芳香族基等が挙げられる。添加剤の好ましい具体例としては、置換基を有していてもよいベンゼン、置換基を有していてもよいナフタレン、置換基を有していてもよいオクタン等が挙げられる。また、置換基としては、ハロゲン原子が特に好ましい。 Examples of additives include aliphatic hydrocarbon compounds having 8 to 20 carbon atoms and aromatic compounds having 8 to 20 carbon atoms. These aliphatic hydrocarbon compounds and aromatic compounds may have a substituent. Examples of substituents that the aliphatic hydrocarbon compound may have include halogen atoms, hydroxyl groups, mercapto groups, cyano groups, amino groups, carbamoyl groups, carbonyloxy groups, carboxyl groups, carbonyl groups, aromatic groups, etc. It will be done. Examples of substituents that aromatic compounds may have include halogen atoms, hydroxyl groups, cyano groups, amino groups, amide groups, carbonyloxy groups, carboxyl groups, carbonyl groups, oxycarbonyl groups, silyl groups, alkenyl groups, and alkynyl groups. group, an alkoxy group, an aryloxy group, an alkylthio group, an arylthio group, an aromatic group, and the like. Preferred specific examples of the additive include benzene which may have a substituent, naphthalene which may have a substituent, and octane which may have a substituent. Moreover, as a substituent, a halogen atom is particularly preferable.
 活性層の厚さは、70nm以上が好ましく、90nm以上がより好ましく、100nm以上がさらに好ましく、また1000nm以下が好ましく、750nm以下がより好ましく、500nm以下がさらに好ましい。 The thickness of the active layer is preferably 70 nm or more, more preferably 90 nm or more, even more preferably 100 nm or more, and preferably 1000 nm or less, more preferably 750 nm or less, and even more preferably 500 nm or less.
 電子輸送層は、活性層からカソードへ電子の取り出しを行う層である。電子輸送層の構成材料は、電子取り出しの効率を向上させる電子輸送性の材料であることが好ましく、有機化合物でも無機化合物でもよいが、無機化合物が好ましい。 The electron transport layer is a layer that extracts electrons from the active layer to the cathode. The constituent material of the electron transport layer is preferably an electron transport material that improves the efficiency of electron extraction, and may be an organic compound or an inorganic compound, but an inorganic compound is preferable.
 電子輸送層を構成する無機化合物としては金属化合物が好ましく、例えばリチウム、ナトリウム、カリウム、セシウム等のアルカリ金属の塩や、金属酸化物等が挙げられる。なかでも、アルカリ金属の塩としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウムのようなフッ化物塩が好ましく、金属酸化物としては、酸化チタン(TiOx)や酸化亜鉛(ZnO)のようなn型半導体特性を有する金属酸化物が好ましい。電子輸送層を構成する有機化合物としては導電性有機化合物が挙げられ、例えばポリエチレンイミンエトキシレート等が挙げられる。 The inorganic compound constituting the electron transport layer is preferably a metal compound, and examples include salts of alkali metals such as lithium, sodium, potassium, and cesium, and metal oxides. Among them, fluoride salts such as lithium fluoride, sodium fluoride, potassium fluoride, and cesium fluoride are preferable as alkali metal salts, and as metal oxides, titanium oxide (TiOx) and zinc oxide (ZnOx) are preferable. Metal oxides having n-type semiconductor properties such as ) are preferred. Examples of the organic compound constituting the electron transport layer include conductive organic compounds, such as polyethyleneimine ethoxylate.
 電子輸送層の厚さは、0.1nm以上が好ましく、0.5nm以上がより好ましく、1.0nm以上がさらに好ましく、また100nm以下が好ましく、80nm以下がより好ましく、60nm以下がさらに好ましい。 The thickness of the electron transport layer is preferably 0.1 nm or more, more preferably 0.5 nm or more, even more preferably 1.0 nm or more, and preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 60 nm or less.
 ホール輸送層は、活性層からアノードへ正孔の取り出しを行う層である。ホール輸送層の構成材料は、正孔取り出しの効率を向上させることが可能な正孔輸送性の材料であれば特に限定されず、導電性有機化合物や金属化合物が挙げられる。 The hole transport layer is a layer that extracts holes from the active layer to the anode. The constituent material of the hole transport layer is not particularly limited as long as it is a hole transporting material that can improve the efficiency of hole extraction, and examples thereof include conductive organic compounds and metal compounds.
 ホール輸送層を構成する導電性有機化合物としては、例えば、ポリチオフェン、ポリピロール、ポリアセチレン、トリフェニレンジアミン、ポリアニリン等に、スルホン酸および/またはヨウ素等がドーピングされた導電性ポリマー、スルホニル基を置換基として有するポリチオフェン誘導体、アリールアミン等が挙げられる。ホール輸送層を構成する金属化合物としては、三酸化モリブデン、五酸化バナジウム、酸化ニッケル等のp型半導体特性を有する金属酸化物や、金、インジウム、銀、パラジウム等の金属が挙げられる。また、p型半導体化合物からホール輸送層を形成してもよい。これらの中でも、ホール輸送層の構成材料としては、スルホン酸をドーピングした導電性ポリマーが好ましく、ポリチオフェン誘導体にポリスチレンスルホン酸をドーピングしたポリ(3,4-エチレンジオキシチオフェン)ポリ(スチレンスルホン酸)(PEDOT:PSS)がより好ましく、また、酸化モリブデンや酸化バナジウムなどの金属酸化物が好ましい。 Examples of the conductive organic compound constituting the hole transport layer include conductive polymers in which polythiophene, polypyrrole, polyacetylene, triphenylene diamine, polyaniline, etc. are doped with sulfonic acid and/or iodine, etc., and conductive polymers having sulfonyl groups as substituents. Examples include polythiophene derivatives and arylamines. Examples of the metal compound constituting the hole transport layer include metal oxides having p-type semiconductor characteristics such as molybdenum trioxide, vanadium pentoxide, and nickel oxide, and metals such as gold, indium, silver, and palladium. Alternatively, the hole transport layer may be formed from a p-type semiconductor compound. Among these, a conductive polymer doped with sulfonic acid is preferable as a constituent material of the hole transport layer, and poly(3,4-ethylenedioxythiophene) poly(styrene sulfonic acid) is a polythiophene derivative doped with polystyrene sulfonic acid. (PEDOT:PSS) is more preferred, and metal oxides such as molybdenum oxide and vanadium oxide are preferred.
 ホール輸送層の厚さは、0.2nm以上が好ましく、0.5nm以上がより好ましく、1.0nm以上がさらに好ましく、また400nm以下が好ましく、200nm以下がより好ましく、100nm以下がさらに好ましく、70nm以下がさらにより好ましい。 The thickness of the hole transport layer is preferably 0.2 nm or more, more preferably 0.5 nm or more, even more preferably 1.0 nm or more, and preferably 400 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less, and 70 nm or less. The following are even more preferred.
 カソードとアノードは導電性材料から構成される。カソードとアノードのうち少なくとも一方は透光性であることが好ましく、すなわち透明電極であることが好ましい。これにより、光が透明電極を透過して活性層まで到達することができる。 The cathode and anode are composed of conductive materials. At least one of the cathode and the anode is preferably translucent, that is, it is preferably a transparent electrode. This allows light to pass through the transparent electrode and reach the active layer.
 カソードは、アノードよりも小さい仕事関数を有する導電性材料から構成されることが好ましい。カソードは、活性層で発生した電子を取り出す機能を有する。カソードの構成材料としては、例えば、酸化ニッケル、酸化スズ、酸化インジウム、酸化インジウムスズ(ITO)、インジウム-ジルコニウム酸化物(IZO)、酸化チタン、酸化亜鉛等の導電性金属酸化物;金、白金、銀、クロム、コバルト等の金属およびその合金等が挙げられる。カソードが透明電極である場合には、ITO、酸化亜鉛または酸化スズ等の透光性がある導電性金属酸化物を用いることが好ましく、特にITOを用いることが好ましい。 Preferably, the cathode is composed of a conductive material that has a smaller work function than the anode. The cathode has a function of taking out electrons generated in the active layer. Examples of cathode constituent materials include conductive metal oxides such as nickel oxide, tin oxide, indium oxide, indium tin oxide (ITO), indium-zirconium oxide (IZO), titanium oxide, and zinc oxide; gold, platinum, etc. , silver, chromium, cobalt, and their alloys. When the cathode is a transparent electrode, it is preferable to use a conductive metal oxide with translucency such as ITO, zinc oxide, or tin oxide, and it is particularly preferable to use ITO.
 アノードは、カソードよりも大きい仕事関数を有する導電性材料から構成されることが好ましい。アノードは、活性層で発生した正孔を取り出す機能を有する。アノードの構成材料としては、例えば、白金、金、銀、銅、鉄、スズ、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム等の金属およびその合金;フッ化リチウムやフッ化セシウム等の無機塩;酸化ニッケル、酸化アルミニウム、酸化リチウム、酸化セシウム等の金属酸化物が挙げられる。また、ホール輸送層の構成材料として酸化亜鉛のようなn型半導体化合物で導電性を有するものを用いる場合は、ITOのように小さい仕事関数を有する材料をアノードの材料として用いてもよい。 Preferably, the anode is composed of a conductive material that has a larger work function than the cathode. The anode has a function of taking out holes generated in the active layer. The constituent materials of the anode include, for example, metals such as platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, cesium, calcium, magnesium, and their alloys; lithium fluoride and inorganic salts such as cesium fluoride; and metal oxides such as nickel oxide, aluminum oxide, lithium oxide, and cesium oxide. Furthermore, when a conductive n-type semiconductor compound such as zinc oxide is used as the constituent material of the hole transport layer, a material having a small work function such as ITO may be used as the anode material.
 カソードとアノードの厚さは各々、10nm以上が好ましく、20nm以上がより好ましく、50nm以上がさらに好ましく、また10μm以下が好ましく、1μm以下がより好ましく、500nm以下がさらに好ましい。 The thickness of the cathode and anode is preferably 10 nm or more, more preferably 20 nm or more, even more preferably 50 nm or more, and preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 500 nm or less.
 基材の構成材料は特に限定されず、光電変換素子の用途に応じて適宜設定される。基材の構成材料としては、例えば、石英、ガラス、サファイア、チタニア等の無機材料;ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリエーテルスルホン、ポリイミド、ポリアミド(例えば、ナイロン)、ポリスチレン、ポリビニルアルコール、エチレンビニルアルコール共重合体、フッ素樹脂、塩化ビニル、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン)、セルロース、ポリ塩化ビニリデン、アラミド、ポリフェニレンスルフィド、ポリウレタン、ポリカーボネート、ポリアリレート、ポリノルボルネン、エポキシ樹脂等の有機材料;紙材料;ステンレス、チタン、アルミニウム等の金属に樹脂をコートした複合材料等が挙げられる。 The constituent material of the base material is not particularly limited, and is appropriately set depending on the use of the photoelectric conversion element. Examples of the base material include inorganic materials such as quartz, glass, sapphire, and titania; polyester (e.g., polyethylene terephthalate, polyethylene naphthalate), polyether sulfone, polyimide, polyamide (e.g., nylon), polystyrene, and polyvinyl. Organic materials such as alcohol, ethylene vinyl alcohol copolymer, fluororesin, vinyl chloride, polyolefin (e.g. polyethylene, polypropylene), cellulose, polyvinylidene chloride, aramid, polyphenylene sulfide, polyurethane, polycarbonate, polyarylate, polynorbornene, epoxy resin, etc. Material: Paper material: Composite materials made of metals such as stainless steel, titanium, and aluminum coated with resin.
 基材の形状としては、例えば、板状、フィルム状、シート状等が挙げられる。基材の厚さは、5μm以上が好ましく、20μm以上がより好ましく、また20mm以下が好ましく、10mm以下がより好ましい。 Examples of the shape of the base material include a plate shape, a film shape, and a sheet shape. The thickness of the base material is preferably 5 μm or more, more preferably 20 μm or more, and preferably 20 mm or less, and more preferably 10 mm or less.
 本発明では、光電変換素子を構成する層のうち活性層を特定の方法により製造する。本発明の光電変換素子の製造方法は、p型半導体化合物を含有する第1の溶液から第1のミストを発生させる工程(以下、「第1ミスト発生工程」と称する)と、n型半導体化合物を含有する第2の溶液から第2のミストを発生させる工程(以下、「第2ミスト発生工程」と称する)と、第1のミストと第2のミストを基盤が配置されたチャンバー内に導入し、基盤上にp型半導体化合物とn型半導体化合物を付着させる搬送工程と、p型半導体化合物とn型半導体化合物が付着した基盤を加熱して活性層を形成する加熱工程とを有する。 In the present invention, the active layer among the layers constituting the photoelectric conversion element is manufactured by a specific method. The method for manufacturing a photoelectric conversion element of the present invention includes a step of generating a first mist from a first solution containing a p-type semiconductor compound (hereinafter referred to as "first mist generation step"), and a step of generating a first mist from a first solution containing a p-type semiconductor compound. A step of generating a second mist from a second solution containing (hereinafter referred to as "second mist generation step"), and introducing the first mist and the second mist into a chamber in which the substrate is placed. The method includes a transport step of depositing a p-type semiconductor compound and an n-type semiconductor compound on the substrate, and a heating step of heating the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached to form an active layer.
 本発明の製造方法によれば、p型半導体化合物を含有する第1のミストと、n型半導体化合物を含有する第2のミストをチャンバー内に導入することにより、チャンバー内に配置した基盤上にp型半導体化合物とn型半導体化合物を付着させ、活性層前駆体を基盤上に成膜することができ、これを加熱することで基盤上に活性層を形成することができる。この際、p型半導体化合物とn型半導体化合物をそれぞれ別々のミストとして基盤上に付着させることで、得られる活性層の構造を任意に調整することが容易になる。例えば、p型半導体化合物を含有する第1のミストとn型半導体化合物を含有する第2のミストのチャンバー内への導入量を調整することにより、活性層の厚み方向に対して、p型半導体化合物が多く存在する層を形成したり、n型半導体化合物が多く存在する層を形成したり、p型半導体化合物とn型半導体化合物が混在した層を形成することができる。また、これらの各領域の厚さを任意に調整することが容易になる。そのため、本発明によれば、様々なバルクヘテロ接合構造を有する活性層を容易に形成することができる。以下、各工程について詳しく説明する。 According to the manufacturing method of the present invention, by introducing a first mist containing a p-type semiconductor compound and a second mist containing an n-type semiconductor compound into a chamber, An active layer precursor can be formed on a substrate by depositing a p-type semiconductor compound and an n-type semiconductor compound, and by heating this, an active layer can be formed on the substrate. At this time, by depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate as separate mist, it becomes easy to arbitrarily adjust the structure of the resulting active layer. For example, by adjusting the amount of the first mist containing a p-type semiconductor compound and the second mist containing an n-type semiconductor compound introduced into the chamber, the p-type semiconductor It is possible to form a layer containing many compounds, a layer containing many n-type semiconductor compounds, or a layer containing a mixture of p-type semiconductor compounds and n-type semiconductor compounds. Further, it becomes easy to arbitrarily adjust the thickness of each of these regions. Therefore, according to the present invention, active layers having various bulk heterojunction structures can be easily formed. Each step will be explained in detail below.
 第1ミスト発生工程では、p型半導体化合物を含有する第1の溶液から第1のミストを発生させる。第1の溶液はp型半導体化合物が溶媒に溶解しており、第1の溶液に含まれる溶媒を「第1の溶媒」と称する。第1の溶液に含まれるp型半導体化合物の詳細は上記の説明が参照され、公知のp型半導体化合物を使用することができる。第1の溶液は、p型半導体化合物に加え、さらに上記に説明した添加剤を含有していてもよい。 In the first mist generation step, a first mist is generated from a first solution containing a p-type semiconductor compound. In the first solution, a p-type semiconductor compound is dissolved in a solvent, and the solvent contained in the first solution is referred to as a "first solvent." For details of the p-type semiconductor compound contained in the first solution, refer to the above description, and any known p-type semiconductor compound can be used. In addition to the p-type semiconductor compound, the first solution may further contain the additives described above.
 第2ミスト発生工程では、n型半導体化合物を含有する第2の溶液から第2のミストを発生させる。第2の溶液はn型半導体化合物が溶媒に溶解しており、第2の溶液に含まれる溶媒を「第2の溶媒」と称する。第2の溶液に含まれるn型半導体化合物の詳細は上記の説明が参照され、公知のn型半導体化合物を使用することができる。第2の溶液は、n型半導体化合物に加え、さらに上記に説明した添加剤を含有していてもよい。 In the second mist generation step, a second mist is generated from a second solution containing an n-type semiconductor compound. In the second solution, an n-type semiconductor compound is dissolved in a solvent, and the solvent contained in the second solution is referred to as a "second solvent." For details of the n-type semiconductor compound contained in the second solution, refer to the above description, and any known n-type semiconductor compound can be used. In addition to the n-type semiconductor compound, the second solution may further contain the additives described above.
 第1の溶媒は、p型半導体化合物を溶解できるものであれば特に限定されない。第2の溶媒は、n型半導体化合物を溶解できるものであれば特に限定されない。第1の溶媒と第2の溶媒としては有機溶媒であることが好ましく、例えば、ヘキサン、ヘプタン、オクタン、イソオクタン、ノナン、デカン等の脂肪族炭化水素類;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、ナフタレン、メチルナフタレン等の芳香族炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロヘプタン、シクロオクタン、テトラリン、デカリン等の脂環式炭化水素類;クロロホルム、塩化メチレン、ジクロロエタン、トリクロロエタン、トリクロロエチレン、クロロベンゼン、オルトジクロロベンゼン、クロロナフタレン等のハロゲン化炭化水素類;メタノール、エタノール、プロパノール、アニソール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、アセトフェノン、プロピオフェノン等のケトン類;酢酸エチル、酢酸イソプロピル、酢酸ブチル、乳酸メチル等のエステル類;エチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテル、ジブチルエーテル、ジフェニルエーテル、ジオキサン等のエーテル類;ジメチルホルムアミド、N-メチルピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、ジメチルアセトアミド等のアミド類等が挙げられる。これらの溶媒は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 The first solvent is not particularly limited as long as it can dissolve the p-type semiconductor compound. The second solvent is not particularly limited as long as it can dissolve the n-type semiconductor compound. The first solvent and the second solvent are preferably organic solvents, such as aliphatic hydrocarbons such as hexane, heptane, octane, isooctane, nonane, and decane; toluene, xylene, mesitylene, cyclohexylbenzene, and naphthalene. , aromatic hydrocarbons such as methylnaphthalene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, cycloheptane, cyclooctane, tetralin, decalin; chloroform, methylene chloride, dichloroethane, trichloroethane, trichloroethylene, chlorobenzene, Halogenated hydrocarbons such as orthodichlorobenzene and chloronaphthalene; Alcohols such as methanol, ethanol, propanol, and anisole; Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetophenone, and propiophenone; Esters such as ethyl acetate, isopropyl acetate, butyl acetate, methyl lactate; Ethers such as ethyl ether, tetrahydrofuran, cyclopentyl methyl ether, dibutyl ether, diphenyl ether, dioxane; dimethylformamide, N-methylpyrrolidone (NMP), 1,3 -Dimethyl-2-imidazolidinone (DMI), amides such as dimethylacetamide, and the like. These solvents may be used alone or in combination of two or more.
 第1の溶媒と第2の溶媒は互いに同じであっても異なるものであってもよいが、第1の溶媒と第2の溶媒は互いに異なるものであることが好ましい。従来は、活性層を形成する際に、p型半導体化合物とn型半導体化合物の両方を含有する溶液を用いていたため、用いる溶媒はp型半導体化合物とn型半導体化合物の両方を溶解できるものを適切に選ぶ必要があった。そのため、使用できる溶媒が制限され、通常ハロゲン化炭化水素類が溶媒として用いられていた。しかし、本発明の製造方法では、p型半導体化合物とn型半導体化合物が別個のミストとして取り扱われるため、n型半導体化合物を含有する第1のミストとn型半導体化合物を含有する第2のミストを互いに異なる溶媒に溶解させて調整することができる。そのため、ハロゲン化炭化水素類を溶媒として用いなくても、第1の溶媒にp型半導体化合物を溶解させたり、第1の溶液のp型半導体化合物濃度を高めることが容易になり、第2の溶媒にn型半導体化合物を溶解させたり、第2の溶液のn型半導体化合物濃度を高めることが容易になる。また、ハロゲン化炭化水素類以外の溶媒を用いた場合は、環境に優しい製造方法とすることができる、また、第1の溶媒と第2の溶媒の種類を適宜設定することにより、様々なバルクヘテロ接合構造を形成することも可能となる。 Although the first solvent and the second solvent may be the same or different, it is preferable that the first solvent and the second solvent are different from each other. Conventionally, when forming an active layer, a solution containing both a p-type semiconductor compound and an n-type semiconductor compound was used, so the solvent used must be one that can dissolve both the p-type semiconductor compound and the n-type semiconductor compound. I had to choose appropriately. Therefore, the solvents that can be used are limited, and halogenated hydrocarbons are usually used as the solvent. However, in the manufacturing method of the present invention, since the p-type semiconductor compound and the n-type semiconductor compound are handled as separate mist, the first mist containing the n-type semiconductor compound and the second mist containing the n-type semiconductor compound are separated. can be adjusted by dissolving them in different solvents. Therefore, without using halogenated hydrocarbons as a solvent, it becomes easy to dissolve the p-type semiconductor compound in the first solvent and increase the concentration of the p-type semiconductor compound in the first solution. It becomes easy to dissolve the n-type semiconductor compound in the solvent and increase the concentration of the n-type semiconductor compound in the second solution. In addition, when a solvent other than halogenated hydrocarbons is used, it is possible to use an environmentally friendly production method, and by appropriately setting the types of the first solvent and the second solvent, various bulk heterogeneous products can be produced. It also becomes possible to form a bonded structure.
 第1の溶液のp型半導体化合物の濃度は特に限定されない。第1の溶液のp型半導体化合物の濃度は、第1のミストが搬送工程でチャンバー内に搬送され基盤上に付着するまでの間にミスト状態が維持されるようにするとともに、基盤上で活性層前駆体の所望の成膜速度が得られるように、適宜濃度を設定すればよい。第1の溶液のp型半導体化合物の濃度は、例えば、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また20質量%以下が好ましく、10質量%以下がより好ましい。第1の溶液のp型半導体化合物の濃度は形成する活性層の厚さに応じて調整してもよく、例えば活性層の厚さが100nm未満の場合は、第1の溶液のp型半導体化合物濃度は0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。活性層の厚さが100nm以上の場合は、第1の溶液のp型半導体化合物濃度は1質量%以上が好ましく、1.5質量%以上がより好ましく、2質量%以上がさらに好ましく、また20質量%以下が好ましく、10質量%以下がより好ましい。なお、第1の溶液はn型半導体化合物を含有しないことが好ましい。 The concentration of the p-type semiconductor compound in the first solution is not particularly limited. The concentration of the p-type semiconductor compound in the first solution is set such that the first mist is transported into the chamber in the transport process and is maintained in a mist state until it is deposited on the substrate, and is activated on the substrate. The concentration may be appropriately set so as to obtain a desired film formation rate of the layer precursor. The concentration of the p-type semiconductor compound in the first solution is, for example, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and 20% by mass or less. It is preferably 10% by mass or less, and more preferably 10% by mass or less. The concentration of the p-type semiconductor compound in the first solution may be adjusted depending on the thickness of the active layer to be formed. For example, when the thickness of the active layer is less than 100 nm, the concentration of the p-type semiconductor compound in the first solution The concentration is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass. The following are more preferred. When the thickness of the active layer is 100 nm or more, the p-type semiconductor compound concentration in the first solution is preferably 1% by mass or more, more preferably 1.5% by mass or more, even more preferably 2% by mass or more, and 20% by mass or more. It is preferably at most 10% by mass, more preferably at most 10% by mass. Note that the first solution preferably does not contain an n-type semiconductor compound.
 第2の溶液のn型半導体化合物の濃度は特に限定されない。第2の溶液のn型半導体化合物の濃度は、第2のミストが搬送工程でチャンバー内に搬送され基盤上に付着するまでの間にミスト状態が維持されるようにするとともに、基盤上で活性層前駆体の所望の成膜速度が得られるように、適宜濃度を設定すればよい。第2の溶液のn型半導体化合物の濃度は、例えば、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また20質量%以下が好ましく、10質量%以下がより好ましい。第2の溶液のn型半導体化合物の濃度は形成する活性層の厚さに応じて調整してもよく、例えば活性層の厚さが100nm未満の場合は、第2の溶液のn型半導体化合物濃度は0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。活性層の厚さが100nm以上の場合は、第2の溶液のn型半導体化合物濃度は1質量%以上が好ましく、1.5質量%以上がより好ましく、2質量%以上がさらに好ましく、また20質量%以下が好ましく、10質量%以下がより好ましい。なお、第2の溶液はp型半導体化合物を含有しないことが好ましい。 The concentration of the n-type semiconductor compound in the second solution is not particularly limited. The concentration of the n-type semiconductor compound in the second solution is set such that the second mist is transported into the chamber in the transport process and is maintained in a mist state until it is deposited on the substrate, and is activated on the substrate. The concentration may be appropriately set so as to obtain a desired film formation rate of the layer precursor. The concentration of the n-type semiconductor compound in the second solution is, for example, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and 20% by mass or less. It is preferably 10% by mass or less, and more preferably 10% by mass or less. The concentration of the n-type semiconductor compound in the second solution may be adjusted depending on the thickness of the active layer to be formed. For example, when the thickness of the active layer is less than 100 nm, the concentration of the n-type semiconductor compound in the second solution The concentration is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass or less, and 3% by mass. The following are more preferred. When the thickness of the active layer is 100 nm or more, the n-type semiconductor compound concentration in the second solution is preferably 1% by mass or more, more preferably 1.5% by mass or more, even more preferably 2% by mass or more, and 20% by mass or more. It is preferably at most 10% by mass, more preferably at most 10% by mass. Note that the second solution preferably does not contain a p-type semiconductor compound.
 第1の溶液をミスト化する方法は特に限定されない。第1の溶液をミスト化する方法としては、第1の溶液をノズルから噴霧してミスト化する方法、第1の溶液に超音波を印加してミスト化する方法、第1の溶液をバブリングしてミスト化する方法等が挙げられる。また、これ以外の公知のミスト化方法を採用してもよい。これらの中でも、第1の溶液に超音波を印加してミスト化することが好ましく、これにより、より均一に第1のミストを発生させることが容易になる。 The method of turning the first solution into a mist is not particularly limited. Methods of making the first solution into a mist include a method of spraying the first solution from a nozzle to make it a mist, a method of applying ultrasonic waves to the first solution and making it a mist, and a method of bubbling the first solution. Examples include a method of turning it into a mist. Further, other known misting methods may be employed. Among these, it is preferable to apply ultrasonic waves to the first solution to form it into a mist, which makes it easier to generate the first mist more uniformly.
 第1の溶液に超音波を印加してミスト化する場合の超音波の周波数は特に限定されない。周波数が大きいほど第1のミストの粒径が小さくなるため、基盤上に形成したい活性層の厚さや構造に応じて適宜周波数を設定すればよい。例えば、10μm以上の平均粒径のミストを発生させる場合は、超音波の周波数は10kHz以上0.7MHz未満とすることが好ましい。10μm未満の平均粒径のミストを発生させる場合は、超音波の周波数は0.7MHz以上5MHz以下とすることが好ましく、1.5MHz以上3.5MHz以下がより好ましい。 The frequency of the ultrasonic waves when applying ultrasonic waves to the first solution to form a mist is not particularly limited. The larger the frequency, the smaller the particle size of the first mist, so the frequency may be set appropriately depending on the thickness and structure of the active layer desired to be formed on the substrate. For example, when generating a mist with an average particle size of 10 μm or more, the frequency of the ultrasonic wave is preferably 10 kHz or more and less than 0.7 MHz. When generating a mist with an average particle size of less than 10 μm, the frequency of the ultrasonic wave is preferably 0.7 MHz or more and 5 MHz or less, more preferably 1.5 MHz or more and 3.5 MHz or less.
 第2の溶液をミスト化する方法は特に限定されない。第2の溶液のミスト化の方法は上記の第1の溶液のミスト化の説明が参照され、好ましくは、第2の溶液に超音波を印加して第2のミストを発生させる。これにより、より均一に第2のミストを発生させることが容易になる。第2の溶液に超音波を印加してミスト化する場合の超音波の周波数は特に限定されない。周波数が大きいほど第2のミストの粒径が小さくなるため、基盤上に形成したい活性層の厚さや構造に応じて適宜周波数を設定すればよい。第2の溶液に超音波を印加する際の周波数についても、上記の第1の溶液に超音波を印加する際の周波数の説明が参照される。 The method of turning the second solution into a mist is not particularly limited. For the method of making a mist from the second solution, refer to the above description of making a mist from the first solution, and preferably, applying ultrasonic waves to the second solution to generate the second mist. This makes it easier to generate the second mist more uniformly. The frequency of the ultrasonic waves when applying ultrasonic waves to the second solution to form a mist is not particularly limited. The larger the frequency, the smaller the particle size of the second mist, so the frequency may be set appropriately depending on the thickness and structure of the active layer desired to be formed on the substrate. Regarding the frequency at which ultrasonic waves are applied to the second solution, the above description of the frequency at which ultrasonic waves are applied to the first solution is referred to.
 第1のミストは、内部に第1のミストを発生させる空間を有する第1ミスト化部にて、第1の溶液から発生させることが好ましい。第1ミスト化部は入口と出口を有し、入口からキャリアガスを導入し、出口からキャリアガスを排出することができるように構成されていることが好ましい。これにより、第1ミスト化部で発生した第1のミストをキャリアガスとともに第1ミスト化部の外に搬送することができる。 It is preferable that the first mist is generated from the first solution in a first misting section that has a space inside to generate the first mist. It is preferable that the first misting section has an inlet and an outlet, and is configured such that the carrier gas can be introduced from the inlet and the carrier gas can be discharged from the outlet. Thereby, the first mist generated in the first mist forming section can be transported to the outside of the first misting section together with the carrier gas.
 超音波により第1のミストを発生させる場合、第1の溶液を第1貯留槽に貯め、第1貯留槽に貯められた第1の溶液に超音波を印加することにより、第1の溶液から第1のミストを発生させることが好ましい。この場合、第1貯留槽は、第1ミスト化部の内部空間に設置されることが好ましい。超音波振動子は、第1の溶液に接する第1貯留槽の内面(壁面や底面)に設置されてもよく、第1貯留槽の内面ではなく第1の溶液中に設置されてもよい。 When generating a first mist using ultrasound, a first solution is stored in a first storage tank, and by applying ultrasound to the first solution stored in the first storage tank, mist is generated from the first solution. It is preferable to generate the first mist. In this case, the first storage tank is preferably installed in the internal space of the first misting section. The ultrasonic transducer may be installed on the inner surface (wall surface or bottom surface) of the first storage tank in contact with the first solution, or may be installed in the first solution instead of on the inner surface of the first storage tank.
 第2のミストは、内部に第2のミストを発生させる空間を有する第2ミスト化部にて、第2の溶液から発生させることが好ましい。第2ミスト化部は入口と出口を有し、入口からキャリアガスを導入し、出口からキャリアガスを排出することができるように構成されていることが好ましい。これにより、第2ミスト化部で発生した第2のミストをキャリアガスとともに第2ミスト化部の外に搬送することができる。 It is preferable that the second mist is generated from the second solution in a second misting section that has a space inside to generate the second mist. It is preferable that the second misting section has an inlet and an outlet, and is configured such that the carrier gas can be introduced from the inlet and the carrier gas can be discharged from the outlet. Thereby, the second mist generated in the second mist forming section can be transported to the outside of the second misting section together with the carrier gas.
 超音波により第2のミストを発生させる場合、第2の溶液を第2貯留槽に貯め、第2貯留槽に貯められた第2の溶液に超音波を印加することにより、第2の溶液から第2のミストを発生させることが好ましい。この場合、第2貯留槽は、第2ミスト化部の内部空間に設置されることが好ましい。超音波振動子は、第2の溶液に接する第2貯留槽の内面(壁面や底面)に設置されてもよく、第2貯留槽の内面ではなく第2の溶液中に設置されてもよい。 When generating a second mist using ultrasound, the second solution is stored in a second storage tank, and by applying ultrasound to the second solution stored in the second storage tank, the second mist is removed from the second solution. It is preferable to generate a second mist. In this case, the second storage tank is preferably installed in the internal space of the second misting section. The ultrasonic transducer may be installed on the inner surface (wall surface or bottom surface) of the second storage tank in contact with the second solution, or may be installed in the second solution instead of on the inner surface of the second storage tank.
 第1ミスト発生工程では、冷却した第1の溶液から第1のミストを発生させることが好ましい。すなわち、第1ミスト発生工程では、第1の溶液を冷却し、冷却した第1の溶液から第1のミストを発生させることが好ましい。これにより、第1のミストがチャンバー内に搬送され基盤上に付着するまでの間に、第1のミストからの第1の溶媒の揮発が抑えられ、ミスト状態が維持されやすくなる。第1の溶液の冷却温度は、例えば5℃~20℃の範囲に設定すればよい。 In the first mist generation step, it is preferable to generate the first mist from the cooled first solution. That is, in the first mist generation step, it is preferable to cool the first solution and generate the first mist from the cooled first solution. This suppresses volatilization of the first solvent from the first mist until the first mist is transported into the chamber and attached to the substrate, making it easier to maintain the mist state. The cooling temperature of the first solution may be set, for example, in the range of 5°C to 20°C.
 第2ミスト発生工程では、冷却した第2の溶液から第2のミストを発生させることが好ましい。すなわち、第2ミスト発生工程では、第2の溶液を冷却し、冷却した第2の溶液から第2のミストを発生させることが好ましい。これにより、第2のミストがチャンバー内に搬送され基盤上に付着するまでの間に、第2のミストからの第2の溶媒の揮発が抑えられ、ミスト状態が維持されやすくなる。第2の溶液の冷却温度は、例えば5℃~20℃の範囲に設定すればよい。 In the second mist generation step, it is preferable to generate the second mist from the cooled second solution. That is, in the second mist generation step, it is preferable to cool the second solution and generate the second mist from the cooled second solution. As a result, volatilization of the second solvent from the second mist is suppressed until the second mist is transported into the chamber and attached to the substrate, and the mist state is easily maintained. The cooling temperature of the second solution may be set, for example, in the range of 5°C to 20°C.
 搬送工程では、第1のミストと第2のミストを基盤が配置されたチャンバー内に導入する。チャンバーは内部空間を有し、当該内部空間に基盤が配置されている。チャンバーの内部空間に第1のミストと第2のミストを導入することにより、第1のミストと第2のミストが基盤上に付着し、基盤上にp型半導体化合物とn型半導体化合物を含有する活性層前駆体を成膜することができる。好ましくは、第1のミストと第2のミストはキャリアガスで搬送してチャンバー内に導入する。 In the conveyance step, the first mist and the second mist are introduced into the chamber in which the substrate is placed. The chamber has an interior space, and a base is disposed in the interior space. By introducing the first mist and the second mist into the internal space of the chamber, the first mist and the second mist adhere to the substrate and contain a p-type semiconductor compound and an n-type semiconductor compound on the substrate. An active layer precursor can be formed. Preferably, the first mist and the second mist are introduced into the chamber while being transported by a carrier gas.
 チャンバーは、第1のミストと第2のミストの流入口を有する。チャンバーには排出口が設けられてもよい。流入口に加え排出口が設けられることにより、チャンバー内に第1のミストと第2のミストを流通させることができ、チャンバーの内部空間を第1のミストおよび/または第2のミストで置換することができる。また、チャンバーの内部空間における第1のミストと第2のミストの濃度を調整することが容易になり、基盤に付着させるp型半導体化合物とn型半導体化合物の量を調整することが容易になる。 The chamber has an inlet for a first mist and a second mist. The chamber may be provided with an outlet. By providing an outlet in addition to an inlet, the first mist and the second mist can be circulated within the chamber, and the internal space of the chamber is replaced with the first mist and/or the second mist. be able to. Moreover, it becomes easy to adjust the concentration of the first mist and the second mist in the internal space of the chamber, and it becomes easy to adjust the amounts of the p-type semiconductor compound and the n-type semiconductor compound to be attached to the substrate. .
 第1のミストと第2のミストは別々にチャンバー内に導入してもよく、チャンバー内に導入する前に第1のミストと第2のミストを合流させてもよい。前者の場合、第1ミスト化部の出口とチャンバーとを繋ぐ流路と、第2ミスト化部の出口とチャンバーとを繋ぐ流路とが、別々に設けられる。また、チャンバーには、第1のミストの流入口と第2のミストの流入口が別々に設けられる。後者の場合、第1ミスト化部の出口とチャンバーとを繋ぐ流路の途中に、第2ミスト化部の出口から延びる流路が接続したり、あるいは、第2ミスト化部の出口とチャンバーとを繋ぐ流路の途中に、第1ミスト化部の出口から延びる流路が接続してもよい。また、チャンバーには、第1のミストと第2のミストが合流して導入される流入口が設けられる。これらの場合、第1ミスト化部で発生した第1のミストと、第2ミスト化部で発生した第2のミストは、それぞれ別のキャリアガスで搬送されることとなる。 The first mist and the second mist may be introduced into the chamber separately, or the first mist and the second mist may be combined before being introduced into the chamber. In the former case, a flow path connecting the outlet of the first misting section and the chamber and a flow path connecting the outlet of the second misting section and the chamber are provided separately. Further, the chamber is separately provided with a first mist inlet and a second mist inlet. In the latter case, the flow path extending from the outlet of the second misting section may be connected in the middle of the channel connecting the outlet of the first misting section and the chamber, or the outlet of the second misting section and the chamber may be connected. A flow path extending from the outlet of the first misting section may be connected in the middle of the flow path connecting the two. Further, the chamber is provided with an inlet through which the first mist and the second mist are combined and introduced. In these cases, the first mist generated in the first mist forming section and the second mist generated in the second mist forming section are transported by different carrier gases.
 チャンバー内に導入する前に第1のミストと第2のミストを合流させる場合は、第1ミスト化部の出口から延びる流路が第2ミスト化部の入口に接続し、第2ミスト化部の出口から延びる流路がチャンバーに接続してもよく、第2ミスト化部の出口から延びる流路が第1ミスト化部の入口に接続し、第1ミスト化部の出口から延びる流路がチャンバーに接続してもよい。これらの場合、第1ミスト化部で発生した第1のミストと、第2ミスト化部で発生した第2のミストは、共通のキャリアガスで搬送されることとなる。 When the first mist and the second mist are combined before being introduced into the chamber, the flow path extending from the outlet of the first mist forming section is connected to the inlet of the second misting section, and the second mist forming section is connected to the inlet of the second mist forming section. A channel extending from the outlet of the second misting section may be connected to the chamber, a channel extending from the outlet of the second misting section may be connected to an inlet of the first misting section, and a channel extending from the outlet of the first misting section may be connected to the chamber. It may also be connected to a chamber. In these cases, the first mist generated in the first mist forming section and the second mist generated in the second mist forming section are transported by a common carrier gas.
 キャリアガスの種類は、第1のミストに含まれるp型半導体化合物や第1の溶媒および第2のミストに含まれるn型半導体化合物や第2の溶媒に対して不活性なガスであれば、特に限定されない。キャリアガスとしては、窒素やアルゴン等の不活性ガス、空気、酸素、水素等が挙げられる。キャリアガスの流量は、第1のミストの発生量、第2のミストの発生量、チャンバーの大きさ、チャンバー内に設置する基盤の大きさ等に応じて、適宜設定すればよい。 The type of carrier gas may be any gas that is inert to the p-type semiconductor compound and first solvent contained in the first mist and the n-type semiconductor compound and second solvent contained in the second mist. Not particularly limited. Examples of the carrier gas include inert gases such as nitrogen and argon, air, oxygen, and hydrogen. The flow rate of the carrier gas may be appropriately set depending on the amount of first mist generated, the amount of second mist generated, the size of the chamber, the size of the substrate installed in the chamber, and the like.
 搬送工程では、第1のミストと第2のミストを合流させた後、第1のミストと第2のミストをチャンバー内に導入することが好ましい。これにより、第1のミストと第2のミストがチャンバーまで搬送されるまでの間に第1のミストと第2のミストが混合され、基盤上に形成する活性層前駆体の層構造を所望のように調整することが容易になる。 In the conveyance step, it is preferable to introduce the first mist and the second mist into the chamber after merging the first mist and the second mist. As a result, the first mist and the second mist are mixed before being transported to the chamber, and the layer structure of the active layer precursor to be formed on the substrate is formed into the desired layer structure. It becomes easy to adjust.
 搬送工程では、予めチャンバー内に基盤を配置しておく。基盤は、p型半導体化合物とn型半導体化合物が付着する面と付着しない面が形成されるように、チャンバー内に配置される。チャンバー内に配置される基盤は、光電変換素子の層構造に応じて適宜設定され、次のように基盤をチャンバー内に配置すればよい。基盤は少なくともカソードを有し、カソードがp型半導体化合物とn型半導体化合物の付着面となるように基盤をチャンバー内に設置する、あるいは、基盤は少なくとも電子輸送層とカソードを有し、電子輸送層がp型半導体化合物とn型半導体化合物の付着面となるように基盤をチャンバー内に設置する、あるいは、基盤は少なくともアノードを有し、アノードがp型半導体化合物とn型半導体化合物の付着面となるように基盤をチャンバー内に設置する、あるいは、基盤は少なくともホール輸送層とアノードを有し、ホール輸送層がp型半導体化合物とn型半導体化合物の付着面となるように基盤をチャンバー内に設置してもよい。基盤はさらに、カソードの、p型半導体化合物とn型半導体化合物の付着面の反対側に基材を有していたり、カソードの、電子輸送層の配置面の反対側に基材を有していたり、アノードの、p型半導体化合物とn型半導体化合物の付着面の反対側に基材を有していたり、または、アノードの、ホール輸送層の配置面の反対側に基材を有していてもよい。 In the transport process, the substrate is placed in the chamber in advance. The substrate is placed in the chamber so that a surface to which a p-type semiconductor compound and an n-type semiconductor compound are attached and a surface to which a p-type semiconductor compound is not attached are formed. The substrate placed in the chamber is appropriately set according to the layer structure of the photoelectric conversion element, and the substrate may be placed in the chamber as follows. The substrate has at least a cathode, and the substrate is placed in the chamber such that the cathode serves as an attachment surface for the p-type semiconductor compound and the n-type semiconductor compound, or the substrate has at least an electron transport layer and a cathode, and the substrate has at least an electron transport layer and A substrate is placed in the chamber such that the layer serves as an attachment surface for a p-type semiconductor compound and an n-type semiconductor compound, or the substrate has at least an anode, and the anode serves as an attachment surface for a p-type semiconductor compound and an n-type semiconductor compound. The substrate is placed in a chamber so that It may be installed in The substrate further has a base material on the side of the cathode opposite to the surface on which the p-type semiconductor compound and the n-type semiconductor compound are attached, or has a base material on the side of the cathode opposite to the surface on which the electron transport layer is disposed. or has a base material on the side of the anode opposite to the surface on which the p-type semiconductor compound and n-type semiconductor compound are attached, or has a base material on the side of the anode opposite to the surface on which the hole transport layer is disposed. It's okay.
 基盤は、チャンバーの内部空間に接するように配置され、チャンバーの内部空間に第1のミストと第2のミストが導入されることにより、基盤上に第1のミストと第2のミストが付着し、基盤上にp型半導体化合物とn型半導体化合物が堆積する。これにより、基盤上に活性層前駆体を成膜することができる。例えば、チャンバー内に基盤の載置台を設置し、この載置台の上に基盤を配置することができる。基盤上に第1のミストと第2のミストを付着させる間、基盤の温度は80℃以下に保持されることが好ましく、60℃以下がより好ましく、40℃以下がさらに好ましい。 The base is arranged so as to be in contact with the internal space of the chamber, and the first mist and the second mist are introduced into the internal space of the chamber, so that the first mist and the second mist adhere to the base. , a p-type semiconductor compound and an n-type semiconductor compound are deposited on the substrate. Thereby, the active layer precursor can be formed on the substrate. For example, it is possible to install a platform for the substrate in the chamber and place the substrate on the platform. While depositing the first mist and the second mist on the substrate, the temperature of the substrate is preferably maintained at 80°C or lower, more preferably 60°C or lower, and even more preferably 40°C or lower.
 搬送工程において、チャンバー内への第1のミストと第2のミストの導入量は、基盤上に付着させるp型半導体化合物とn型半導体化合物の量や活性層前駆体の膜厚に応じて適宜設定すればよい。搬送工程では、チャンバー内に導入する第1のミストの量と第2のミストの量の比率を一定に保って、p型半導体化合物とn型半導体化合物を基盤上に付着させてもよく、チャンバー内に導入する第1のミストの量と第2のミストの量の比率を経時的に変化させてもよい。前者のように第1のミストと第2のミストをチャンバー内に導入した場合は、例えば、スピンコート法により形成された活性層と同じような層構造を有する活性層を形成することが可能となる。一方、後者のように第1のミストと第2のミストをチャンバー内に導入した場合は、活性層前駆体の厚み方向に対して、p型半導体化合物が多く存在する層を形成したり、n型半導体化合物が多く存在する層を形成したり、p型半導体化合物とn型半導体化合物が混在した層を形成することが容易になる。このように活性層の層構造を任意に調整することは、従来の湿式塗布法では実現することが難しかったが、本発明によれば、活性層の層構造を任意に調整することが可能となる。 In the transport process, the amounts of the first mist and the second mist introduced into the chamber are determined as appropriate depending on the amount of p-type semiconductor compound and n-type semiconductor compound to be deposited on the substrate and the film thickness of the active layer precursor. Just set it. In the conveyance step, the p-type semiconductor compound and the n-type semiconductor compound may be deposited on the substrate by keeping the ratio of the amount of the first mist and the amount of the second mist introduced into the chamber constant. The ratio of the amount of the first mist and the amount of the second mist introduced into the container may be changed over time. When the first mist and the second mist are introduced into the chamber as in the former case, it is possible to form an active layer having a layer structure similar to that of an active layer formed by, for example, a spin coating method. Become. On the other hand, when the first mist and the second mist are introduced into the chamber as in the latter case, a layer containing many p-type semiconductor compounds is formed in the thickness direction of the active layer precursor; It becomes easy to form a layer in which a large amount of a type semiconductor compound exists, or a layer in which a p-type semiconductor compound and an n-type semiconductor compound are mixed. It was difficult to adjust the layer structure of the active layer as desired using conventional wet coating methods, but according to the present invention, it is possible to adjust the layer structure of the active layer as desired. Become.
 搬送工程では、チャンバー内に導入する第1のミストの量の第2のミストの量に対する比率を経時的に増加させ続けてもまたは減少させ続けてもよい。このように第1のミストと第2のミストをチャンバー内に導入することにより、例えば、活性層の厚み方向の一方側あるいは他方側に向かって、p型半導体化合物とn型半導体化合物の含有比率が傾斜的に変化するような活性層を形成することが可能となる。このように形成される活性層では、光電変換の効率が有利となることが期待される。なお、第1のミストの量の第2のミストの量に対する比率を経時的に増加させ続ける場合または減少させ続ける場合において、第1のミストの量と第2のミストの量に対する比率が経時的に一定となる時間帯があってもよい。 In the conveyance step, the ratio of the amount of the first mist introduced into the chamber to the amount of the second mist may continue to increase or decrease over time. By introducing the first mist and the second mist into the chamber, for example, the content ratio of the p-type semiconductor compound and the n-type semiconductor compound can be adjusted toward one side or the other side in the thickness direction of the active layer. It becomes possible to form an active layer in which the gradient changes. The active layer formed in this manner is expected to have advantageous photoelectric conversion efficiency. In addition, when the ratio of the amount of the first mist to the amount of the second mist continues to increase or decrease over time, the ratio of the amount of the first mist to the amount of the second mist changes over time. There may be a fixed time period.
 上記の場合において、得られる活性層は、厚み方向の一方側におけるp型半導体化合物に対するn型半導体化合物の比率が、他方側における比率よりも大きいものとなることが好ましい。従って、搬送工程では、活性層の厚み方向の一方側におけるp型半導体化合物に対するn型半導体化合物の比率が他方側における比率よりも大きくなるように、基盤上に付着させる第1のミストの量と第2のミストの量に対する比率を経時的に変化させることが好ましい。 In the above case, it is preferable that in the active layer obtained, the ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction is larger than the ratio on the other side. Therefore, in the conveyance step, the amount of the first mist deposited on the substrate is adjusted such that the ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction of the active layer is larger than the ratio on the other side. It is preferable to change the ratio of the second mist to the amount over time.
 搬送工程では、チャンバー内を加熱したり、減圧したりしないことが好ましい。これにより、チャンバー内で第1の溶媒と第2の溶媒が速やかに揮発することを防ぐことができる。チャンバー内は陽圧に設定してもよく、すなわち、チャンバー内の圧力がチャンバーの外の圧力よりも高くなるように設定してもよい。これにより、チャンバー内の汚染を防ぐことができる。 In the transport process, it is preferable not to heat or reduce the pressure inside the chamber. This can prevent the first solvent and the second solvent from quickly volatilizing within the chamber. The chamber may be set at a positive pressure, ie, the pressure within the chamber may be higher than the pressure outside the chamber. This can prevent contamination within the chamber.
 搬送工程では、冷却した基盤上に第1のミストと第2のミストを付着させ、p型半導体化合物とn型半導体化合物を基盤上に付着させることが好ましい。例えば、基盤の載置台が温度調整手段を有し、このような載置台の上に基盤を配置し、載置台を温度調整手段により冷却することにより、基盤を冷却することができる。冷却した基盤上にp型半導体化合物とn型半導体化合物を付着させることにより、基盤上に付着した第1のミストと第2のミストに含まれる溶媒の揮発速度が抑えられ、基盤上に活性層前駆体を成膜することが容易になる。また、チャンバー内に導入した第1のミストと第2のミストを基盤上に効率的に付着させやすくなる。この場合、基盤の冷却温度は、例えば5℃~20℃の範囲に設定することが好ましい。なお、載置台の温度調整手段は、冷却と加熱の両方の手段を備えるものであってもよい。 In the transport step, it is preferable that the first mist and the second mist are deposited on the cooled substrate, and the p-type semiconductor compound and the n-type semiconductor compound are deposited on the substrate. For example, the mounting table of the substrate has a temperature adjustment means, and the substrate can be cooled by placing the substrate on such a mounting table and cooling the mounting table with the temperature adjustment means. By depositing the p-type semiconductor compound and the n-type semiconductor compound on the cooled substrate, the volatilization rate of the solvent contained in the first mist and the second mist deposited on the substrate is suppressed, and an active layer is formed on the substrate. It becomes easy to form a precursor into a film. Moreover, it becomes easier to efficiently adhere the first mist and second mist introduced into the chamber onto the substrate. In this case, the cooling temperature of the substrate is preferably set within a range of 5° C. to 20° C., for example. Note that the temperature adjustment means of the mounting table may include both cooling and heating means.
 第1のミストと第2のミストがチャンバー内に搬送され基盤上に付着するまでの間に溶媒の揮発ができるだけ抑えられ、ミスト状態が維持されやすくする観点から、本発明の光電変換素子の製造方法は、溶媒を含有する第3の溶液から第3のミストを発生させる工程を有していてもよく、搬送工程において、第3のミストをキャリアガスで搬送してチャンバー内に導入してもよい。第3のミストは、第1のミストと第2のミストと別々にチャンバー内に導入してもよく、チャンバー内に導入する前に第1のミストと合流させたり、第2のミストと合流させてもよい。第3の溶液をミスト化する方法としては、上記の第1または第2の溶液をミスト化する方法の説明が参照される。 The photoelectric conversion element of the present invention is manufactured from the viewpoint of suppressing the volatilization of the solvent as much as possible between the first mist and the second mist being transported into the chamber and adhering to the substrate, and making it easier to maintain the mist state. The method may include the step of generating a third mist from a third solution containing a solvent, and in the conveying step, the third mist may be conveyed with a carrier gas and introduced into the chamber. good. The third mist may be introduced into the chamber separately from the first mist and the second mist, or may be combined with the first mist or the second mist before being introduced into the chamber. It's okay. For the method of turning the third solution into a mist, refer to the explanation of the method of turning the first or second solution into a mist.
 第3の溶液に含まれる溶媒としては、第1の溶媒と第2の溶媒として例示した溶媒を用いることができる。第3の溶液は基本的に溶媒のみから構成されることが好ましい。従って、第3の溶液の溶質濃度は1質量%以下であることが好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。 As the solvent contained in the third solution, the solvents exemplified as the first solvent and the second solvent can be used. It is preferable that the third solution basically consists of only a solvent. Therefore, the solute concentration of the third solution is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
 加熱工程では、p型半導体化合物とn型半導体化合物が付着した基盤を加熱して、すなわち基盤上の活性層前駆体を加熱して、基盤上に活性層を形成する。加熱工程における加熱温度は、第1のミストと第2のミストに含まれる溶媒を揮発させることができ、かつp型半導体化合物とn型半導体化合物の沸点または分解点未満の範囲で、基盤に悪影響を及ぼさない範囲で適宜設定すればよい。加熱温度の下限は、例えば、40℃以上、80℃以上、100℃以上、120℃以上または150℃以上であってもよい。加熱温度の上限は、例えば、350℃以下、300℃以下、250℃以下または200℃以下であってもよい。 In the heating step, the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached is heated, that is, the active layer precursor on the substrate is heated to form an active layer on the substrate. The heating temperature in the heating step is within a range that can volatilize the solvent contained in the first mist and the second mist, and is below the boiling point or decomposition point of the p-type semiconductor compound and the n-type semiconductor compound, so as not to adversely affect the substrate. It may be set as appropriate within a range that does not affect. The lower limit of the heating temperature may be, for example, 40°C or higher, 80°C or higher, 100°C or higher, 120°C or higher, or 150°C or higher. The upper limit of the heating temperature may be, for example, 350°C or less, 300°C or less, 250°C or less, or 200°C or less.
 加熱工程では、p型半導体化合物とn型半導体化合物が付着した基盤をチャンバー内に配置した状態で加熱してもよく、p型半導体化合物とn型半導体化合物が付着した基盤をチャンバーから取り出して、あるいはチャンバーを取り外した状態で加熱してもよい。前者の場合、加熱工程では、チャンバー内には第1のミストと第2のミストを導入しない状態で、p型半導体化合物とn型半導体化合物が付着した基盤を加熱することが好ましい。 In the heating step, the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated while being placed in the chamber, and the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached is taken out from the chamber. Alternatively, heating may be performed with the chamber removed. In the former case, in the heating step, it is preferable to heat the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached without introducing the first mist and the second mist into the chamber.
 加熱工程における加熱手段は特に限定されず、例えば、ヒーターにより加熱をしてもよく、熱風により加熱をしてもよい。また、基盤の載置台が温度調整手段を有し、載置台を温度調整手段により加熱することにより、p型半導体化合物とn型半導体化合物が付着した基盤を加熱してもよい。 The heating means in the heating step is not particularly limited, and for example, heating may be performed using a heater or heating may be performed using hot air. Further, the mounting table for the substrate may include a temperature adjustment means, and by heating the mounting table with the temperature adjustment means, the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated.
 加熱工程での加熱は、大気圧下で行ってもよく、加圧下または減圧下で行ってもよい。加熱は、例えば、空気雰囲気下で行ってもよく、不活性ガス雰囲気下で行ってもよい。 Heating in the heating step may be performed under atmospheric pressure, under increased pressure, or under reduced pressure. Heating may be performed, for example, under an air atmosphere or an inert gas atmosphere.
 本発明の製造方法で用いられる製造システムの構成例について、図2を参照して説明する。図2には、本発明の製造方法で用いるシステム構成例を示した。なお、本発明の製造方法で用いられる製造システムは、図面に示した態様に限定されない。 An example of the configuration of a manufacturing system used in the manufacturing method of the present invention will be described with reference to FIG. 2. FIG. 2 shows an example of a system configuration used in the manufacturing method of the present invention. Note that the manufacturing system used in the manufacturing method of the present invention is not limited to the embodiment shown in the drawings.
 図2に示した製造システムは、第1ミスト化部11と第2ミスト化部21とチャンバー31を有する。第1ミスト化部11と第2ミスト化部21とチャンバー31は第1流路41と第2流路42で互いに繋がっている。チャンバー31内には載置台32が設置され、載置台32の上に基盤33が配置されている。 The manufacturing system shown in FIG. 2 includes a first misting section 11, a second misting section 21, and a chamber 31. The first misting section 11 , the second misting section 21 , and the chamber 31 are connected to each other through a first flow path 41 and a second flow path 42 . A mounting table 32 is installed in the chamber 31, and a base 33 is placed on the mounting table 32.
 第1ミスト化部11は内部空間を有し、当該内部空間に第1貯留槽12が設置され、第1貯留槽12の内面(底面)に超音波振動子13が設置されている。第1貯留槽12にp型半導体化合物を含有する第1の溶液14が貯められ、超音波振動子13により第1の溶液14に超音波を印加することにより、第1の溶液14から第1のミスト15が発生する。第1貯留槽12に貯められた第1の溶液14は、好ましくは、任意の冷却手段により冷却されている。 The first misting section 11 has an internal space, a first storage tank 12 is installed in the internal space, and an ultrasonic vibrator 13 is installed on the inner surface (bottom surface) of the first storage tank 12. A first solution 14 containing a p-type semiconductor compound is stored in a first storage tank 12, and by applying ultrasonic waves to the first solution 14 with an ultrasonic transducer 13, the first solution 14 is A mist 15 is generated. The first solution 14 stored in the first storage tank 12 is preferably cooled by any cooling means.
 第2ミスト化部21は内部空間を有し、当該内部空間に第2貯留槽22が設置され、第2貯留槽22の内面(底面)に超音波振動子23が設置されている。第2貯留槽22にn型半導体化合物を含有する第2の溶液24が貯められ、超音波振動子23により第2の溶液24に超音波を印加することにより、第2の溶液24から第2のミスト25が発生する。 The second misting section 21 has an internal space, a second storage tank 22 is installed in the internal space, and an ultrasonic vibrator 23 is installed on the inner surface (bottom surface) of the second storage tank 22. A second solution 24 containing an n-type semiconductor compound is stored in a second storage tank 22, and by applying ultrasonic waves to the second solution 24 with an ultrasonic transducer 23, a second solution 24 is extracted from the second solution 24. A mist 25 is generated.
 第1ミスト化部11にはキャリアガスの導入路16が接続している。導入路16には、バルブ17および流量計18が設けられることが好ましい。第1ミスト化部11にはさらに第1流路41が接続しており、第1流路41は第1ミスト化部11とチャンバー31とを繋ぐように設けられている。キャリアガスは、導入路16から第1ミスト化部11の内部空間に供給され、第1ミスト化部11の内部空間から第1流路41を通ってチャンバー31内に流入する。これにより、第1ミスト化部11で発生した第1のミスト15がキャリアガスで搬送され、第1流路41を通ってチャンバー31内に導入される。 A carrier gas introduction path 16 is connected to the first misting section 11 . It is preferable that the introduction path 16 is provided with a valve 17 and a flow meter 18 . A first flow path 41 is further connected to the first mist forming section 11, and the first flow path 41 is provided so as to connect the first mist forming section 11 and the chamber 31. The carrier gas is supplied from the introduction path 16 to the internal space of the first misting section 11 , and flows from the internal space of the first misting section 11 into the chamber 31 through the first flow path 41 . As a result, the first mist 15 generated in the first mist-forming section 11 is transported by the carrier gas and introduced into the chamber 31 through the first flow path 41 .
 第2ミスト化部21にはキャリアガスの導入路26が接続している。導入路26には、バルブ27および流量計28が設けられることが好ましい。第2ミスト化部21にはさらに第2流路42が接続しており、第2流路42は第2ミスト化部21と第1流路41とを繋ぐように設けられている。キャリアガスは、導入路26から第2ミスト化部21の内部空間に供給され、第2ミスト化部21の内部空間から第2流路42と第1流路41を通ってチャンバー31内に流入する。これにより、第2ミスト化部21で発生した第2のミスト25がキャリアガスで搬送され、第2流路42と第1流路41を通ってチャンバー31内に導入される。 A carrier gas introduction path 26 is connected to the second misting section 21 . It is preferable that the introduction path 26 is provided with a valve 27 and a flow meter 28 . A second flow path 42 is further connected to the second mist forming section 21, and the second flow path 42 is provided so as to connect the second mist forming section 21 and the first flow path 41. The carrier gas is supplied from the introduction path 26 to the internal space of the second misting section 21, and flows from the internal space of the second misting section 21 into the chamber 31 through the second flow path 42 and the first flow path 41. do. As a result, the second mist 25 generated in the second mist forming section 21 is transported by the carrier gas and introduced into the chamber 31 through the second flow path 42 and the first flow path 41.
 図2に示した製造システムは、例えば次のように操作される。まず、予め第1ミスト化部11の内部空間、第2ミスト化部21の内部空間、第1流路41、第2流路42、チャンバー31の内部空間をキャリアガスで置換しておく。第1ミスト化部11で第1のミスト15を発生させ、第2ミスト化部21で第2のミスト25を発生させ、その後、導入路16のバルブ17と導入路26のバルブ27を開け、第1のミスト15と第2のミスト25をキャリアガスで搬送し、チャンバー31内に導入する。基盤33上にp型半導体化合物とn型半導体化合物が所定量付着したら、導入路16のバルブ17と導入路26のバルブ27を閉じる。基盤33をチャンバー31から取り出し、p型半導体化合物とn型半導体化合物が付着した基盤33を加熱して活性層を形成する。p型半導体化合物とn型半導体化合物が付着した基盤33は、チャンバー31内で加熱することにより活性層を形成してもよい。 The manufacturing system shown in FIG. 2 is operated, for example, as follows. First, the internal space of the first misting section 11, the second misting section 21, the first flow path 41, the second flow path 42, and the chamber 31 are replaced with carrier gas in advance. The first mist 15 is generated in the first mist forming section 11, the second mist 25 is generated in the second mist forming section 21, and then the valve 17 of the introduction path 16 and the valve 27 of the introduction path 26 are opened, The first mist 15 and the second mist 25 are transported by carrier gas and introduced into the chamber 31 . When a predetermined amount of the p-type semiconductor compound and the n-type semiconductor compound are deposited on the substrate 33, the valve 17 of the introduction path 16 and the valve 27 of the introduction path 26 are closed. The substrate 33 is taken out from the chamber 31, and the substrate 33 to which the p-type semiconductor compound and the n-type semiconductor compound are attached is heated to form an active layer. The substrate 33 to which the p-type semiconductor compound and the n-type semiconductor compound are attached may be heated in the chamber 31 to form an active layer.
 本発明では、上記のようにして、光電変換素子の活性層を製造することができる。なお、光電変換素子がさらに電子輸送層やホール輸送層を有する場合は、電子輸送層とホール輸送層は公知の方法、例えば、スピンコート法やインクジェット法やグラビアコート等の湿式塗布法や、昇華性を有する材料を用いる場合は真空蒸着法等により、形成することができる。あるいは、電子輸送層またはホール輸送層を形成する成分と溶媒とを含有する液体からミストを発生させ、上記のように基盤上に付着させることにより、電子輸送層またはホール輸送層を形成してもよい。 In the present invention, the active layer of a photoelectric conversion element can be manufactured as described above. In addition, when the photoelectric conversion element further has an electron transport layer or a hole transport layer, the electron transport layer and the hole transport layer can be coated by a known method, for example, a wet coating method such as a spin coating method, an inkjet method, a gravure coating, or a sublimation method. When using a material having properties, it can be formed by a vacuum evaporation method or the like. Alternatively, the electron transport layer or hole transport layer may be formed by generating a mist from a liquid containing the components forming the electron transport layer or hole transport layer and a solvent, and depositing the mist on the substrate as described above. good.
 本発明の光電変換素子の製造方法は、有機薄膜太陽電池の製造に好適に適用することができる。従って、光電変換素子は有機薄膜太陽電池であることが好ましい。有機薄膜太陽電池は、図1に示すような層構造を有することが好ましい。 The method for manufacturing a photoelectric conversion element of the present invention can be suitably applied to manufacturing an organic thin film solar cell. Therefore, it is preferable that the photoelectric conversion element is an organic thin film solar cell. It is preferable that the organic thin film solar cell has a layer structure as shown in FIG.
 本発明では、高い変換効率を発現する光電変換素子または有機薄膜太陽電池を得る点から、活性層が高分子化合物のp型半導体化合物および/または高分子化合物のn型半導体化合物を含有することが好ましい。従って、第1の溶液が、高分子化合物であるp型半導体化合物を含有する、および/または、第2の溶液が、高分子化合物であるn型半導体化合物を含有することが好ましい。 In the present invention, in order to obtain a photoelectric conversion element or an organic thin film solar cell that exhibits high conversion efficiency, the active layer may contain a p-type semiconductor compound of a polymer compound and/or an n-type semiconductor compound of a polymer compound. preferable. Therefore, it is preferable that the first solution contains a p-type semiconductor compound that is a high-molecular compound, and/or that the second solution contains an n-type semiconductor compound that is a high-molecular compound.
 p型半導体化合物として機能する高分子化合物としては、例えば下記の化合物が示される。 Examples of the polymer compound that functions as a p-type semiconductor compound include the following compounds.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 n型半導体化合物として機能する高分子化合物としては、例えば下記の化合物が示される。 Examples of the polymer compound that functions as an n-type semiconductor compound include the following compounds.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 なかでも、本発明では、活性層がベンゾビスチアゾール構造単位を有する高分子化合物を含有することが好ましく、具体的には、下記式(1)で表されるベンゾビスチアゾール構造単位を有する高分子化合物(以下、「高分子化合物P」と称する)を含有することが好ましい。 In particular, in the present invention, it is preferable that the active layer contains a polymer compound having a benzobisthiazole structural unit, and specifically, a polymer having a benzobisthiazole structural unit represented by the following formula (1). It is preferable to contain a compound (hereinafter referred to as "polymer compound P").
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、T、Tは、それぞれ独立に、アルコキシ基、チオアルコキシ基、炭化水素基もしくはオルガノシリル基で置換されていてもよいチオフェン環、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環、または、炭化水素基、アルコキシ基、チオアルコキシ基、オルガノシリル基、ハロゲン原子、もしくは、トリフルオロメチル基で置換されていてもよいフェニル基を表す。また、B、Bは、炭化水素基で置換されていてもよいチオフェン環、炭化水素基で置換されていてもよいチアゾール環、または、エチニレン基を表す。なお、オルガノシリル基は、Si原子に1個以上の炭化水素基が置換した1価の基を意味し、Si原子に置換する炭化水素基の数は、2個以上3個以下であることが好ましく、3個であることがより好ましい。 In the above formula (1), T 1 and T 2 are each independently a thiophene ring, a hydrocarbon group, or an organosilyl group which may be substituted with an alkoxy group, a thioalkoxy group, a hydrocarbon group, or an organosilyl group. Represents a thiazole ring which may be substituted, or a phenyl group which may be substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group. Moreover, B 1 and B 2 represent a thiophene ring which may be substituted with a hydrocarbon group, a thiazole ring which may be substituted with a hydrocarbon group, or an ethynylene group. In addition, an organosilyl group means a monovalent group in which an Si atom is substituted with one or more hydrocarbon groups, and the number of hydrocarbon groups substituted with an Si atom may be 2 or more and 3 or less. The number is preferably three, and more preferably three.
 高分子化合物Pはp型半導体化合物の一種であり、式(1)で表されるベンゾビスチアゾール構造単位を有することにより、HOMO準位を深くしながらバンドギャップを狭めることができ、光電変換効率を高めることができる。 The polymer compound P is a type of p-type semiconductor compound, and by having the benzobistiazole structural unit represented by formula (1), it can deepen the HOMO level and narrow the band gap, resulting in photoelectric conversion efficiency. can be increased.
 式(1)で表されるベンゾビスチアゾール構造単位では、T、Tは互いに同一であっても異なっていてもよいが、製造が容易である点から、同一であることが好ましい。同様に、B、Bは互いに同一であっても異なっていてもよいが、製造が容易である点から、同一であることが好ましい。 In the benzobisthiazole structural unit represented by formula (1), T 1 and T 2 may be the same or different from each other, but are preferably the same from the viewpoint of easy production. Similarly, B 1 and B 2 may be the same or different, but are preferably the same for ease of manufacture.
 式(1)で表されるベンゾビスチアゾール構造単位において、T、Tは、それぞれ、下記式(t1)~(t5)で表される基であることが好ましい。具体的には、T、Tのアルコキシ基としては、下記式(t1)で表される基が好ましく、チオアルコキシ基としては、下記式(t2)で表される基が好ましく、炭化水素基もしくはオルガノシリル基で置換されていてもよいチオフェン環としては下記式(t3)で表される基が好ましく、炭化水素基もしくはオルガノシリル基で置換されていてもよいチアゾール環としては下記式(t4)で表される基が好ましく、炭化水素基、アルコキシ基、チオアルコキシ基オルガノシリル基、ハロゲン原子、または、トリフルオロメチル基で置換されていてもよいフェニル基としては、下記式(t5)で表される基が好ましい。T、Tが下記式(t1)~(t5)で表される基であると、短波長の光を吸収することができるとともに、高い平面性を有することから効率的にπ-πスタッキングが形成されるため、光電変換効率を高めることができる。なお、式(t1)~(t3)で表される基は電子供与性を示し、式(t4)~(t5)で表される基は電子求引性を示す。 In the benzobisthiazole structural unit represented by formula (1), T 1 and T 2 are preferably groups represented by the following formulas (t1) to (t5), respectively. Specifically, the alkoxy group of T 1 and T 2 is preferably a group represented by the following formula (t1), and the thioalkoxy group is preferably a group represented by the following formula (t2), and the hydrocarbon The thiophene ring which may be substituted with a group or an organosilyl group is preferably a group represented by the following formula (t3), and the thiazole ring which may be substituted with a hydrocarbon group or an organosilyl group is preferably a group represented by the following formula (t3). The group represented by t4) is preferable, and the phenyl group optionally substituted with a hydrocarbon group, an alkoxy group, a thioalkoxy group, an organosilyl group, a halogen atom, or a trifluoromethyl group is the following formula (t5) A group represented by is preferred. When T 1 and T 2 are groups represented by the following formulas (t1) to (t5), it is possible to absorb short wavelength light and have high planarity, so that efficient π-π stacking can be achieved. is formed, so the photoelectric conversion efficiency can be increased. Note that the groups represented by formulas (t1) to (t3) exhibit electron-donating properties, and the groups represented by formulas (t4) to (t5) exhibit electron-withdrawing properties.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(t1)~(t5)中、R13~R14は、それぞれ独立に、炭素数6~30の炭化水素基を表す。R15~R16は、それぞれ独立に、炭素数6~30の炭化水素基、または、*-Si(R18で表される基を表す。R15’は、水素原子、炭素数6~30の炭化水素基、*-Si(R18で表される基を表す。R17は、ハロゲン原子、炭素数6~30の炭化水素基、*-O-R19、*-S-R20、*-Si(R18、または、*-CFを表す。R18は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、または、炭素数6~10の芳香族炭化水素基を表し、複数のR18は、同一でも異なっていてもよい。R19~R20は、炭素数6~30の炭化水素基を表す。*はベンゾビスチアゾールのチアゾール環に結合する結合手を表す。 In the above formulas (t1) to (t5), R 13 to R 14 each independently represent a hydrocarbon group having 6 to 30 carbon atoms. R 15 to R 16 each independently represent a hydrocarbon group having 6 to 30 carbon atoms or a group represented by *-Si(R 18 ) 3 . R 15' represents a hydrogen atom, a hydrocarbon group having 6 to 30 carbon atoms, or a group represented by *-Si(R 18 ) 3 . R 17 represents a halogen atom, a hydrocarbon group having 6 to 30 carbon atoms, *-O-R 19 , *-SR 20 , *-Si(R 18 ) 3 or *-CF 3 . R 18 each independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms, and a plurality of R 18s may be the same or different. R 19 to R 20 represent a hydrocarbon group having 6 to 30 carbon atoms. * represents a bond bonded to the thiazole ring of benzobistiazole.
 上記式(t1)~(t5)において、R13~R17、R19~R20、R15’の炭素数6~30の炭化水素基としては、分岐を有する炭化水素基であることが好ましく、より好ましくは分岐鎖状飽和炭化水素基である。R13~R17、R19~R20、R15’の炭化水素基は、分岐を有することにより、有機溶媒への溶解度を上げることができる。R13~R17、R19~R20、R15’の炭化水素基の炭素数は、好ましくは8~25であり、より好ましくは8~20であり、さらに好ましくは8~16である。 In the above formulas (t1) to (t5), the hydrocarbon group having 6 to 30 carbon atoms in R 13 to R 17 , R 19 to R 20 , and R 15' is preferably a hydrocarbon group having a branch. , more preferably a branched saturated hydrocarbon group. The hydrocarbon groups of R 13 to R 17 , R 19 to R 20 , and R 15' can increase solubility in organic solvents by having branches. The number of carbon atoms in the hydrocarbon group of R 13 to R 17 , R 19 to R 20 , and R 15' is preferably 8 to 25, more preferably 8 to 20, and still more preferably 8 to 16.
 上記式(t1)~(t5)中、R15~R17、R15’の*-Si(R18で表される基において、R18の脂肪族炭化水素基の炭素数は、好ましくは1~18であり、より好ましくは1~8である。R18の芳香族炭化水素基の炭素数は、好ましくは6~8であり、より好ましくは6~7であり、さらに好ましくは6である。R18の芳香族炭化水素基としては、例えば、フェニル基が挙げられる。なかでも、R18としては、脂肪族炭化水素基が好ましく、分岐を有する脂肪族炭化水素基がより好ましく、イソプロピル基がさらに好ましい。複数のR18は、同一でも異なっていてもよいが、同一であることが好ましい。R15~R17、R15’が*-Si(R18で表される基であると、高分子化合物Pの有機溶媒への溶解度が向上する。*-Si(R18で表される基は、なかでも、アルキルシリル基が好ましく、トリメチルシリル基、トリイソプロピルシリル基がより好ましい。 In the above formulas (t1) to (t5), in the group represented by *-Si(R 18 ) 3 of R 15 to R 17 and R 15' , the number of carbon atoms of the aliphatic hydrocarbon group of R 18 is preferably is from 1 to 18, more preferably from 1 to 8. The number of carbon atoms in the aromatic hydrocarbon group of R 18 is preferably 6 to 8, more preferably 6 to 7, and still more preferably 6. Examples of the aromatic hydrocarbon group for R 18 include a phenyl group. Among these, R 18 is preferably an aliphatic hydrocarbon group, more preferably a branched aliphatic hydrocarbon group, and even more preferably an isopropyl group. A plurality of R18's may be the same or different, but are preferably the same. When R 15 to R 17 and R 15' are groups represented by *-Si(R 18 ) 3 , the solubility of the polymer compound P in an organic solvent is improved. The group represented by *-Si(R 18 ) 3 is preferably an alkylsilyl group, more preferably a trimethylsilyl group or a triisopropylsilyl group.
 上記式(t5)中、R17がハロゲン原子である場合、フッ素、塩素、臭素、ヨウ素のいずれも用いることができる。R17としては、ハロゲン原子、または*-CFが好ましい。 In the above formula (t5), when R 17 is a halogen atom, any of fluorine, chlorine, bromine, and iodine can be used. R 17 is preferably a halogen atom or *-CF 3 .
 R15’は、水素原子、または、R15として例示した炭素数6~30の炭化水素基、もしくは*-Si(R18で表される基と同様の基であり、水素原子であることが好ましい。 R 15' is a hydrogen atom, a hydrocarbon group having 6 to 30 carbon atoms exemplified as R 15 , or a group similar to the group represented by *-Si(R 18 ) 3 , and is a hydrogen atom. It is preferable.
 T、Tとしては、式(1)で表される構造単位全体としての平面性に優れる点から、式(t1)、(t3)、(t5)で表される基がより好ましく、式(t3)で表される基がさらに好ましい。 As T 1 and T 2 , groups represented by formulas (t1), (t3), and (t5) are more preferable because the structural unit represented by formula (1) has excellent planarity as a whole; A group represented by (t3) is more preferred.
 式(1)で表されるベンゾビスチアゾール構造単位においては、B、Bが、それぞれ、下記式(b1)~(b3)のいずれかで表される基であることが好ましい。B、Bが下記式(b1)~(b3)で表される基であると、高分子化合物Pの平面性が良好であり、光電変換効率を高めることができる。 In the benzobisthiazole structural unit represented by formula (1), B 1 and B 2 are preferably groups each represented by one of the following formulas (b1) to (b3). When B 1 and B 2 are groups represented by the following formulas (b1) to (b3), the polymer compound P has good planarity and can enhance photoelectric conversion efficiency.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(b1)~(b3)中、R21、R22、R21’は、水素原子または炭素数6~30の炭化水素基を表す。*は結合手を表し、特に左側の*は、ベンゾビスチアゾール化合物のベンゼン環に結合する結合手を表す。 In the above formulas (b1) to (b3), R 21 , R 22 , and R 21' represent a hydrogen atom or a hydrocarbon group having 6 to 30 carbon atoms. * represents a bond, particularly the left * represents a bond bonded to the benzene ring of the benzobistiazole compound.
 R21、R22、R21’の炭素数6~30の炭化水素基としては、R13~R17、R19~R20、R15’の炭素数6~30の炭化水素基として例示した基を好ましく用いることができる。R21、R22、R21’が炭素数6~30の炭化水素基であると、より一層光電変換効率を高められる可能性があるため好ましい。一方、R21、R22、R21’が水素原子であると、ドナー-アクセプター型半導体ポリマーの形成が容易となる。 Examples of hydrocarbon groups having 6 to 30 carbon atoms for R 21 , R 22 , and R 21' include the hydrocarbon groups having 6 to 30 carbon atoms for R 13 to R 17 , R 19 to R 20 , and R 15' . groups can be preferably used. It is preferable that R 21 , R 22 , and R 21' be hydrocarbon groups having 6 to 30 carbon atoms, since this may further increase the photoelectric conversion efficiency. On the other hand, when R 21 , R 22 , and R 21' are hydrogen atoms, it becomes easy to form a donor-acceptor type semiconductor polymer.
 B、Bとしては、式(b1)、(b2)で表される基がより好ましい。B、Bが式(b1)、(b2)で表される基であると、ベンゾビスチアゾール構造単位中でS原子とN原子の相互作用が生じ、平面性がさらに向上する。その結果、得られる高分子化合物Pの平面性を高めることができる。 As B 1 and B 2 , groups represented by formulas (b1) and (b2) are more preferable. When B 1 and B 2 are groups represented by formulas (b1) and (b2), interaction between S atoms and N atoms occurs in the benzobistiazole structural unit, and the planarity is further improved. As a result, the planarity of the resulting polymer compound P can be improved.
 高分子化合物Pは、好ましくはドナー-アクセプター型半導体ポリマーであり、従って、高分子化合物Pは、式(1)で表されるベンゾビスチアゾール構造単位を有するとともに、ドナー性ユニットまたはアクセプター性ユニットを与える特定構造単位を有することが好ましい。ドナー性ユニットは、電子供与性の構造単位を意味し、アクセプター性ユニットは、電子受容性の構造単位を意味する。ドナー-アクセプター型半導体ポリマーは、ドナー性ユニットとアクセプター性ユニットが交互に配置していることが好ましく、従って、ドナー-アクセプター型半導体ポリマーは、式(1)で表されるベンゾビスチアゾール構造単位と、特定構造単位とが交互に配置した高分子化合物であることが好ましい。高分子化合物Pは、このような構造とすることで、p型半導体化合物として好適に用いることができる。 The polymer compound P is preferably a donor-acceptor type semiconductor polymer. Therefore, the polymer compound P has a benzobistiazole structural unit represented by formula (1) and also has a donor unit or an acceptor unit. It is preferable to have the specific structural unit given below. The donor unit means an electron-donating structural unit, and the acceptor unit means an electron-accepting structural unit. The donor-acceptor type semiconductor polymer preferably has donor units and acceptor units arranged alternately. Therefore, the donor-acceptor type semiconductor polymer has benzobisthiazole structural units represented by formula (1) and , and specific structural units are preferably arranged alternately. The polymer compound P having such a structure can be suitably used as a p-type semiconductor compound.
 特定構造単位としては、ドナー性ユニットまたはアクセプター性ユニットを与える従来公知の構造単位を用いることができる。具体的には、特定構造単位として、下記の構造単位を挙げることができ、なかでも式(c1)、(c3)~(c5)、(c7)、(c9)、(c12)、(c21)、(c27)、(c37)、(c42)で表される構造単位が好ましく、式(c1)、(c5)、(c9)、(c21)、(c37)、(c42)で表される構造単位がより好ましい。 As the specific structural unit, a conventionally known structural unit that provides a donor unit or an acceptor unit can be used. Specifically, specific structural units include the following structural units, among which formulas (c1), (c3) to (c5), (c7), (c9), (c12), and (c21) , (c27), (c37), and (c42) are preferable, and structures represented by formulas (c1), (c5), (c9), (c21), (c37), and (c42) are preferable. Units are more preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(c1)~(c43)中、R30~R73、R75~R76は、それぞれ独立に、水素原子または炭素数4~30の炭化水素基を表し、R74は、水素原子または炭素数4~30の炭化水素基を表す。A30、A31は、それぞれ独立に、T、Tと同様の基を表し、jは1~4の整数を表す。・は、式(1)で表される構造単位のBまたはBに結合する結合手を表すものとする。 In the above formulas (c1) to (c43), R 30 to R 73 and R 75 to R 76 each independently represent a hydrogen atom or a hydrocarbon group having 4 to 30 carbon atoms, and R 74 represents a hydrogen atom or Represents a hydrocarbon group having 4 to 30 carbon atoms. A 30 and A 31 each independently represent the same groups as T 1 and T 2 , and j represents an integer of 1 to 4. * represents a bond bonded to B 1 or B 2 of the structural unit represented by formula (1).
 上記式(c1)~(c30)で表される基は、アクセプター性ユニットとして作用する基であり、式(c32)~(c43)で表される基は、ドナー性ユニットとして作用する基である。式(c31)で表される基は、A30、A31の種類により、アクセプター性ユニットとして作用することもあれば、ドナー性ユニットとして作用することもある。 The groups represented by formulas (c1) to (c30) above are groups that act as acceptor units, and the groups represented by formulas (c32) to (c43) are groups that act as donor units. . The group represented by formula (c31) may act as an acceptor unit or a donor unit depending on the types of A 30 and A 31 .
 高分子化合物P中の式(1)で表されるベンゾビスチアゾール構造単位の繰り返し比率は、通常1モル%以上、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上であり、通常99モル%以下、好ましくは95モル%以下、より好ましくは85モル%以下、さらに好ましくは70モル%以下である。 The repeating ratio of the benzobistiazole structural unit represented by formula (1) in the polymer compound P is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, and even more preferably 30 mol%. % or more, and usually 99 mol% or less, preferably 95 mol% or less, more preferably 85 mol% or less, and still more preferably 70 mol% or less.
 高分子化合物P中の特定構造単位の繰り返し比率は、通常1モル%以上、好ましくは5モル%以上、より好ましくは15モル%以上、さらに好ましくは30モル%以上であり、通常99モル%以下、好ましくは95モル%以下、より好ましくは85モル%以下、さらに好ましくは70モル%以下である。 The repeating ratio of specific structural units in the polymer compound P is usually 1 mol% or more, preferably 5 mol% or more, more preferably 15 mol% or more, even more preferably 30 mol% or more, and usually 99 mol% or less. , preferably 95 mol% or less, more preferably 85 mol% or less, even more preferably 70 mol% or less.
 高分子化合物Pにおける、式(1)で表されるベンゾビスチアゾール構造単位と特定構造単位の配列は、交互、ブロック、ランダムのいずれでもよい。すなわち、高分子化合物Pは、交互コポリマー、ブロックコポリマー、ランダムコポリマーのいずれでもよい。好ましくは、式(1)で表されるベンゾビスチアゾール構造単位と特定構造単位は交互に配列している。 In the polymer compound P, the arrangement of the benzobisthiazole structural unit represented by formula (1) and the specific structural unit may be alternate, block, or random. That is, the polymer compound P may be any of an alternating copolymer, a block copolymer, and a random copolymer. Preferably, the benzobistiazole structural units represented by formula (1) and the specific structural units are arranged alternately.
 高分子化合物Pの重量平均分子量および数平均分子量は、2,000以上、500,000以下であることが好ましく、3,000以上、200,000以下がより好ましい。高分子化合物Pの重量平均分子量と数平均分子量は、ゲル浸透クロマトグラフィーを用い、ポリスチレンを標準試料として作成した較正曲線に基づいて算出することができる。 The weight average molecular weight and number average molecular weight of the polymer compound P are preferably 2,000 or more and 500,000 or less, more preferably 3,000 or more and 200,000 or less. The weight average molecular weight and number average molecular weight of the polymer compound P can be calculated using gel permeation chromatography based on a calibration curve prepared using polystyrene as a standard sample.
 本願は、2022年6月3日に出願された日本国特許出願第2022-091025号に基づく優先権の利益を主張するものである。2022年6月3日に出願された日本国特許出願第2022-091025号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-091025 filed on June 3, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-091025 filed on June 3, 2022 are incorporated by reference into this application.
 1: 光電変換素子(有機薄膜太陽電池)
 2: カソード
 3: 電子輸送層
 4: 活性層
 5: ホール輸送層
 6: アノード
 7: 基材
 11: 第1ミスト化部
 12: 第1貯留槽
 13: 超音波振動子
 14: 第1の溶液
 15: 第1のミスト
 21: 第2ミスト化部
 22: 第2貯留槽
 23: 超音波振動子
 24: 第2の溶液
 25: 第2のミスト
 31: チャンバー
 32: 載置台
 33: 基盤
1: Photoelectric conversion element (organic thin film solar cell)
2: Cathode 3: Electron transport layer 4: Active layer 5: Hole transport layer 6: Anode 7: Base material 11: First misting section 12: First storage tank 13: Ultrasonic vibrator 14: First solution 15 : First mist 21: Second mist forming section 22: Second storage tank 23: Ultrasonic vibrator 24: Second solution 25: Second mist 31: Chamber 32: Mounting table 33: Base

Claims (10)

  1.  活性層を有する光電変換素子の製造方法であって、
     p型半導体化合物を含有する第1の溶液から第1のミストを発生させる工程と、
     n型半導体化合物を含有する第2の溶液から第2のミストを発生させる工程と、
     前記第1のミストと前記第2のミストを基盤が配置されたチャンバー内に導入し、前記基盤上に前記p型半導体化合物と前記n型半導体化合物を付着させる搬送工程と、
     前記p型半導体化合物と前記n型半導体化合物が付着した前記基盤を加熱して活性層を形成する加熱工程と
    を有することを特徴とする光電変換素子の製造方法。
    A method for manufacturing a photoelectric conversion element having an active layer, the method comprising:
    generating a first mist from a first solution containing a p-type semiconductor compound;
    generating a second mist from a second solution containing an n-type semiconductor compound;
    A transporting step of introducing the first mist and the second mist into a chamber in which a substrate is placed, and depositing the p-type semiconductor compound and the n-type semiconductor compound on the substrate;
    A method for manufacturing a photoelectric conversion element, comprising a heating step of heating the substrate to which the p-type semiconductor compound and the n-type semiconductor compound are attached to form an active layer.
  2.  前記搬送工程において、前記第1のミストと前記第2のミストを合流させた後、前記第1のミストと前記第2のミストを前記チャンバー内に導入する請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the conveying step, the first mist and the second mist are introduced into the chamber after the first mist and the second mist are combined.
  3.  前記第1のミストを発生させる工程において、前記第1の溶液に超音波を印加して、前記第1の溶液から前記第1のミストを発生させる、および/または、
     前記第2のミストを発生させる工程において、前記第2の溶液に超音波を印加して、前記第2の溶液から前記第2のミストを発生させる請求項1に記載の製造方法。
    In the step of generating the first mist, applying ultrasonic waves to the first solution to generate the first mist from the first solution, and/or
    The manufacturing method according to claim 1, wherein in the step of generating the second mist, ultrasonic waves are applied to the second solution to generate the second mist from the second solution.
  4.  前記第1のミストを発生させる工程において、冷却した前記第1の溶液から前記第1のミストを発生させる、および/または、
     前記第2のミストを発生させる工程において、冷却した前記第2の溶液から前記第2のミストを発生させる請求項1に記載の製造方法。
    In the step of generating the first mist, the first mist is generated from the cooled first solution, and/or
    The manufacturing method according to claim 1, wherein in the step of generating the second mist, the second mist is generated from the cooled second solution.
  5.  前記第1の溶液が第1の溶媒を含有し、
     前記第2の溶液が前記第1の溶媒と異なる第2の溶媒を含有する請求項1に記載の製造方法。
    the first solution contains a first solvent,
    The manufacturing method according to claim 1, wherein the second solution contains a second solvent different from the first solvent.
  6.  前記搬送工程において、前記チャンバー内に導入する前記第1のミストの量と前記第2のミストの量の比率を経時的に変化させる請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the conveying step, a ratio of the amount of the first mist and the amount of the second mist introduced into the chamber is changed over time.
  7.  前記搬送工程において、前記チャンバー内に導入する前記第1のミストの量の前記第2のミストの量に対する比率を、経時的に増加させ続ける、または、減少させ続ける請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein in the conveying step, the ratio of the amount of the first mist introduced into the chamber to the amount of the second mist continues to increase or decrease over time. .
  8.  前記活性層は、厚み方向の一方側における前記p型半導体化合物に対する前記n型半導体化合物の比率が、他方側における前記比率よりも大きいものである請求項7に記載の製造方法。 8. The manufacturing method according to claim 7, wherein the ratio of the n-type semiconductor compound to the p-type semiconductor compound on one side in the thickness direction of the active layer is larger than the ratio on the other side.
  9.  前記第1の溶液が、高分子化合物である前記p型半導体化合物を含有する、および/または、
     前記第2の溶液が、高分子化合物である前記n型半導体化合物を含有する請求項1に記載の製造方法。
    the first solution contains the p-type semiconductor compound that is a polymer compound, and/or
    The manufacturing method according to claim 1, wherein the second solution contains the n-type semiconductor compound that is a polymer compound.
  10.  前記光電変換素子が有機薄膜太陽電池である請求項1~9のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 9, wherein the photoelectric conversion element is an organic thin film solar cell.
PCT/JP2023/019308 2022-06-03 2023-05-24 Method for manufacturing photoelectric conversion element WO2023234137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091025 2022-06-03
JP2022091025 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234137A1 true WO2023234137A1 (en) 2023-12-07

Family

ID=89024799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019308 WO2023234137A1 (en) 2022-06-03 2023-05-24 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2023234137A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165474A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Photoelectric conversion device and its manufacturing method
JP2008078113A (en) * 2006-08-25 2008-04-03 Fujikura Ltd Device for manufacturing transparent conductive substrate
US20120060924A1 (en) * 2010-09-09 2012-03-15 Alion, Inc. Methods and systems for forming functionally graded films by spray pyrolysis
JP2012114424A (en) * 2010-11-02 2012-06-14 Susumu Yoshikawa Solar cell and method of manufacturing the same
JP2013129867A (en) * 2011-12-20 2013-07-04 Sharp Corp Device and method for forming thin film, and method for manufacturing thin-film solar cell
WO2016203594A1 (en) * 2015-06-18 2016-12-22 東芝三菱電機産業システム株式会社 Metal oxide film formation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165474A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Photoelectric conversion device and its manufacturing method
JP2008078113A (en) * 2006-08-25 2008-04-03 Fujikura Ltd Device for manufacturing transparent conductive substrate
US20120060924A1 (en) * 2010-09-09 2012-03-15 Alion, Inc. Methods and systems for forming functionally graded films by spray pyrolysis
JP2012114424A (en) * 2010-11-02 2012-06-14 Susumu Yoshikawa Solar cell and method of manufacturing the same
JP2013129867A (en) * 2011-12-20 2013-07-04 Sharp Corp Device and method for forming thin film, and method for manufacturing thin-film solar cell
WO2016203594A1 (en) * 2015-06-18 2016-12-22 東芝三菱電機産業システム株式会社 Metal oxide film formation method

Similar Documents

Publication Publication Date Title
US9331282B2 (en) Conjugated polymer, and electron donating organic material, material for photovoltaic device and photovoltaic device using the conjugated polymer
KR101587895B1 (en) Inverted organic electronic device and method for manufacturing the same
JP6015672B2 (en) Organic photoelectric conversion element
KR101687491B1 (en) Ultrafast formation and transfer of organic and inorganic thin-films utilizing spontaneous spreading effect
JP5743301B2 (en) Polymer, organic semiconductor material, organic electronic device, photoelectric conversion element and solar cell module using the same
JP5845937B2 (en) Organic photoelectric conversion element
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
Yuan et al. Efficient and air-stable n-type doping in organic semiconductors
JP5839033B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
JP6115885B2 (en) Photoelectric conversion element, solar cell, and solar cell module
KR20180059011A (en) Printing photoactive ink for containing additive and method for manufacturing photoactive layer the same
WO2023234137A1 (en) Method for manufacturing photoelectric conversion element
JPWO2013084835A1 (en) Organic semiconductor materials and organic electronic devices
JP2012039097A (en) Photovoltaic device
WO2023234136A1 (en) Method for producing functional layer of photoelectric conversion element and method for producing photoelectric conversion element
JP2014189666A (en) Composition for forming semiconductor layer and solar cell element using the composition
JP5298961B2 (en) Manufacturing method of organic photoelectric conversion element
KR20180000544A (en) Composition for forming photoactive layer and organic photovoltaics comprising the same
No et al. Fabrication and characteristics of organic thin-film solar cells with active layer of interpenetrated hetero-junction structure
WO2011101993A1 (en) Solar cell and method for manufacturing same
KR20180035057A (en) Organic photovoltaics and method for manufacturing the same
JP2016149505A (en) Composition, photoelectric conversion element, solar cell, and solar cell module
JP2015191965A (en) Photoelectric conversion element, method of manufacturing the same, solar cell, and solar cell module
JP2014027175A (en) Method for manufacturing photoelectric conversion element, photoelectric conversion element, solar cell, and solar cell module
JP2014027174A (en) Photoelectric conversion element, solar cell module, and method of manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023570130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815896

Country of ref document: EP

Kind code of ref document: A1