WO2023234118A1 - Photoelectric conversion element and method for producing same - Google Patents

Photoelectric conversion element and method for producing same Download PDF

Info

Publication number
WO2023234118A1
WO2023234118A1 PCT/JP2023/019144 JP2023019144W WO2023234118A1 WO 2023234118 A1 WO2023234118 A1 WO 2023234118A1 JP 2023019144 W JP2023019144 W JP 2023019144W WO 2023234118 A1 WO2023234118 A1 WO 2023234118A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
upper electrode
thickness
photoelectric conversion
Prior art date
Application number
PCT/JP2023/019144
Other languages
French (fr)
Japanese (ja)
Inventor
奈織美 瀧本
哲雄 奥山
啓介 松尾
桂也 ▲徳▼田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2023234118A1 publication Critical patent/WO2023234118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • H10K39/12Electrical configurations of PV cells, e.g. series connections or parallel connections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present invention relates to a photoelectric conversion element and a method for manufacturing the same.
  • a photoelectric conversion element is generally laminated in this order: a substrate, a lower electrode layer, a functional layer, and an upper electrode layer.
  • a substrate As methods for forming the upper electrode layer, bar coating methods, spin coating methods, and the like are conventionally known.
  • Patent Document 1 An example of a manufacturing method that suppresses the surface roughness of the upper electrode layer is disclosed in Patent Document 1.
  • a method for manufacturing a back electrode layer (upper electrode layer) a dispersion liquid containing metal nanoparticles and a dispersion medium is sprayed onto an organic semiconductor layer (functional layer) as droplets, and the dispersion medium is also applied.
  • a method of dry removal is disclosed.
  • the upper electrode layer is laminated not only on the upper surface of the functional layer but also on the side surface formed at the end of the functional layer.
  • the upper electrode layer since the coating is sprayed using an air gun spray, the upper electrode layer is not laminated on the side surface.
  • the thickness of the upper electrode layer is considerably thinner than the thickness of the upper electrode layer laminated on the upper surface of the functional layer.
  • the upper electrode layer stacked on the side surface can serve as a current path. In such a current path, if the thickness of the upper electrode layer laminated on the side surface is considerably thinner than the thickness of the upper electrode layer laminated on the top surface of the functional layer, the resistance will increase, and the photoelectric conversion element of Patent Document 1 Conversion efficiency was insufficient.
  • An object of the present invention is to provide a photoelectric conversion element in which the thickness of the upper electrode layer laminated on the end (side surface) of the functional layer is approximately the same as that of the upper electrode layer laminated on the upper surface of the functional layer.
  • the present inventors generated a mist containing metal particles from a solution containing metal particles, and attached the mist to the surface of the functional layer to form an upper electrode layer. It has been found that by forming the upper electrode layer, the thickness of the upper electrode layer laminated on the end (side surface) of the functional layer becomes approximately the same as the thickness of the upper electrode layer laminated on the upper surface of the functional layer.
  • a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer.
  • the electrode layers are laminated in this order, and the functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer.
  • the upper electrode layer is provided on at least a part of the upper surface and at least a part of the side surface, and when the thickness of the laminated part of the lower electrode layer and the functional layer is H, the thickness of the laminated part on the substrate side is At a height of H/2 from the surface to the upper surface side, the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
  • a photoelectric conversion element characterized by: [2] A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer.
  • the electrode layers are laminated in this order, and the functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer.
  • the upper electrode layer is provided on at least a portion of the upper surface and at least a portion of the side surface, and when the thickness of the active layer is H', the upper electrode layer has a thickness H' from the substrate-side surface of the active layer to the upper surface side. /2 height position, the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface. element.
  • a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer.
  • the electrode layers are laminated in this order, and the functional layer includes an active layer and has an upper surface and a side surface formed at an end of the functional layer, and the upper electrode layer covers at least one part of the upper surface. and at least a part of the side surface, and when the thickness of the active layer is H', at a position at a height of H'/2 from the substrate side surface of the active layer to the upper surface side.
  • a photoelectric conversion element characterized in that the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
  • the photoelectric conversion element according to any one of [1] to [3] above, wherein the upper electrode layer contains silver, gold, copper, or platinum.
  • a method for manufacturing a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, comprising the steps of generating a mist containing metal particles from a solution containing metal particles, and generating the mist. forming the upper electrode layer by adhering it to the surface of the functional layer, the functional layer including an active layer.
  • step of generating the mist includes a step of applying ultrasonic waves to the solution.
  • the metal particles contain silver, gold, copper, or platinum.
  • step of forming the functional layer using a mist containing a functional layer forming material further comprising the step of forming the functional layer using a mist containing a functional layer forming material.
  • a method for manufacturing a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, the method comprising: generating a mist containing metal particles from a solution containing metal particles; forming the upper electrode layer by adhering it to the surface of the functional layer, the functional layer comprising an electron transport layer, an active layer, and a hole transport layer.
  • the thickness of the upper electrode layer laminated on the edge (side surface) of the functional layer is approximately the same as the thickness of the upper electrode layer laminated on the upper surface of the functional layer parallel to the surface of the substrate, resulting in a photoelectric converter with excellent conversion efficiency. A conversion element can be obtained.
  • FIG. 1 is a cross-sectional view of a plane perpendicular to a substrate in an example of a photoelectric conversion element of the present invention.
  • FIG. 3 is a cross-sectional view of the active layer in a plane parallel to the substrate in another example of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element of the present invention includes a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, and in at least a part of the photoelectric conversion element of the present invention, the substrate, the lower electrode layer, the functional layer, The upper electrode layers are laminated in this order.
  • upper (part) and lower (part) do not mean top and bottom; for example, with respect to an upper electrode layer and a lower electrode layer, it refers to one of a pair of electrode layers provided with a functional layer in between.
  • the electrode layer disposed on the substrate side is defined as a lower electrode layer
  • the electrode layer provided on the opposite side to the substrate is defined as an upper electrode layer, thereby simply defining an upper (part) and a lower (part).
  • the term "surface” refers to the surface closer to the upper electrode layer unless otherwise specified.
  • the substrate, the lower electrode layer, the functional layer, and the upper electrode layer will be explained in this order.
  • the substrate is not particularly limited, and examples thereof include a glass substrate, a plastic substrate, a polymer film, and the like. When light is taken in from the substrate side, it is preferable to use a substrate with high light transmittance.
  • the lower electrode layer is not particularly limited as long as it contains a known lower electrode layer forming material.
  • the materials for forming the lower electrode layer include aluminum (Al), gold (Au), platinum (Pt), iridium (Ir), ruthenium (Ru), titanium (Ti), molybdenum (Mo), tantalum (Ta), and copper ( Cu), silver (Ag), and other metals; metal oxides such as indium tin oxide (ITO), iridium oxide (IrO 2 ), ruthenium oxide (RuO 2 ), LaNiO 3 , and SrRuO 3 ; .
  • the lower electrode layer forming material may be used alone or in combination of two or more selected materials. Moreover, the lower electrode layer may be an anode and the upper electrode layer may be a cathode, or the lower electrode layer may be a cathode and the upper electrode layer may be an anode. When light is taken in from the substrate side, the lower electrode layer is preferably transparent.
  • the thickness of the lower electrode layer is not particularly limited, and is, for example, 30 nm or more, preferably 50 nm or more, and, for example, 200 nm or less, preferably 150 nm or less.
  • the method for manufacturing the lower electrode layer is not particularly limited, and the lower electrode layer is formed by generating a mist from a solution containing the lower electrode layer forming material, and depositing the misted raw material on the surface of the substrate to form a film. can do.
  • the method for manufacturing the lower electrode layer is preferably the above-mentioned misting method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • vapor deposition methods such as vacuum evaporation and sputtering
  • spray methods spin coating methods
  • dip coating methods dip coating methods
  • slot die coating methods It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • the functional layer includes an active layer, and preferably includes an electron transport layer, an active layer, and a hole transport layer.
  • an inverted structure may be used, in which an electron transport layer, an active layer, and a hole transport layer are laminated in this order on a lower electrode layer (cathode), or a hole transport layer, an active layer, and an electron transport layer are laminated on a lower electrode layer (anode).
  • a regular structure in which the layers are stacked in order may be used, and the stacking order within the functional layer differs depending on whether the lower electrode layer plays the role of a cathode or an anode.
  • the functional layer has an upper surface and a side surface formed at the end of the functional layer.
  • an upper electrode layer is provided on at least a portion of the upper surface of the functional layer, and an upper electrode layer is also provided on at least a portion of the side surface of the functional layer.
  • the upper surface of the functional layer may be a flat surface or a curved surface, but is preferably a flat surface, and preferably a flat surface parallel to the surface of the substrate. Note that in this specification, "parallel” refers to a plane that is inclined at 0 to 10 degrees with respect to the surface of the substrate.
  • the side surfaces of the functional layer may be flat or curved, but are preferably flat.
  • the electron transport layer is not particularly limited, and may contain a known electron transport material.
  • electron-transporting materials include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped zinc oxide), and ATO (antimony).
  • Examples include doped tin oxide), AZO (aluminum doped zinc oxide), PEIE (polyethyleneimine ethoxylate), and PEI (polyethyleneimine).
  • the electron transport layer contain an electron transport material, we can increase the efficiency of electron injection into the cathode, prevent the injection of holes from the active layer, increase the electron transport ability, and suppress the deterioration of the active layer. You can do it.
  • an electron transport layer between the active layer and the electrode layer which becomes the cathode.
  • the electron transport layer is more preferably in contact with at least one of the active layer and the electrode layer that serves as the cathode, and even more preferably in contact with the active layer and the electrode layer that serves as the cathode.
  • the thickness of the electron transport layer is not particularly limited, and is, for example, 20 nm or more, preferably 40 nm or more, and, for example, 100 nm or less, preferably 70 nm or less.
  • the method for manufacturing the electron transport layer is not particularly limited, and the electron transport layer may be formed by generating a mist from a solution containing an electron transport material and depositing the mist-formed raw material on the outermost surface to form a film. I can do it.
  • the outermost surface refers to the surface of the laminate immediately before forming the corresponding layer.
  • the electron transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the lower electrode layer to form a film. Even in the case of a normal structure, the electron transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the active layer to form a film.
  • the method for manufacturing the electron transport layer is preferably the above-mentioned misting method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • vapor deposition methods such as vacuum evaporation and sputtering
  • spray methods spin coating methods
  • dip coating methods dip coating methods
  • slot die coating methods It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • the active layer is not particularly limited and may contain a known active layer forming material.
  • the active layer forming material includes at least a p-type semiconductor material (electron-donating compound) and an n-type semiconductor material (electron-accepting compound).
  • p-type semiconductor materials include, for example, polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, polybenzobisthiazole and its derivatives, and the like.
  • the n-type semiconductor material may be a low-molecular compound or a high-molecular compound.
  • n-type semiconductor materials that are low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives.
  • n-type semiconductor materials that are polymeric compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives.
  • polypyrrole and its derivatives polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, and the like.
  • the thickness of the active layer is not particularly limited, and is, for example, 80 nm or more, preferably 100 nm or more, and, for example, 400 nm or less, preferably 300 nm or less.
  • the method for producing the active layer is not particularly limited, and the active layer can be formed by generating a mist from a solution containing the active layer forming material and depositing the mist-formed raw material on the outermost surface to form a film. .
  • the active layer can be formed by depositing a misted raw material on the outermost surface including the surface of the electron transport layer to form a film.
  • the active layer can be formed by depositing a misted raw material on the outermost surface including the surface of the hole transport layer to form a film.
  • the active layer is preferably provided between an electron transport layer and a hole transport layer, and is preferably in contact with at least one of the electron transport layer or the hole transport layer. More preferably, it is in contact with the electron transport layer and the hole transport layer.
  • the method for manufacturing the active layer is preferably the above-mentioned mist method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, and doctor coating methods. It may be formed by a coating method such as a blade method, bar coating method, inkjet method, screen printing method, or gravure printing method.
  • the material contained in the hole transport layer is not particularly limited, and may include known hole transport materials.
  • hole-transporting materials include conductive polymers such as polyvinylcarbazole, polysilane, polythiophene, polyethylenedioxythiophene, and polystyrene sulfonate, and metal oxides such as molybdenum trioxide and tungsten trioxide.
  • the hole transport layer contains a hole transporting material, it is possible to increase the efficiency of hole injection into the anode, prevent the injection of electrons from the active layer, increase the hole transport ability, and suppress the deterioration of the active layer. You can do it.
  • a hole transport layer between the active layer and the electrode layer that becomes the anode it is possible to prevent the anode from peeling off and to remove the anode from the active layer. Hole extraction efficiency can be increased.
  • the hole transport layer is more preferably in contact with at least one of the active layer or the electrode layer that will become the anode, and even more preferably the hole transport layer is in contact with the active layer and the electrode layer that will be the anode. By providing such a hole transport layer, a photoelectric conversion element with high reliability and higher photoelectric conversion efficiency can be obtained.
  • the thickness of the hole transport layer is not particularly limited, and is, for example, 5 nm or more, preferably 10 nm or more, and, for example, 200 nm or less, preferably 100 nm or less.
  • the method for manufacturing the hole transport layer is not particularly limited, and the hole transport layer may be formed by generating a mist from a solution containing a hole transporting material and depositing the mist-formed raw material on the outermost surface to form a film. I can do it.
  • the hole transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the active layer to form a film.
  • the hole transport layer can be formed by depositing a misted raw material on the surface of the lower electrode layer to form a film.
  • the method for manufacturing the hole transport layer is preferably the above-mentioned mist method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • vapor deposition methods such as vacuum evaporation and sputtering
  • spray methods spin coating methods
  • dip coating methods dip coating methods
  • slot die coating methods It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
  • the substrate, lower electrode layer, and functional layers have been described above, the composition, thickness, and manufacturing method of these layers are not limited to the above description. Further, the lower electrode layer, electron transport layer, active layer, and hole transport layer may be formed continuously on the outermost surface when forming each layer, or may be formed discontinuously (for example, in the lower electrode layer). (The lower electrode layer, electron transport layer, active layer, and holes may be formed on a part of the surface of the substrate. It is sufficient if the transport layers are laminated. Furthermore, as mentioned above, it is preferable that the lower electrode layer and the functional layers (electron transport layer, active layer, hole transport layer) are formed by depositing mist-formed raw materials on the outermost surface.
  • the functional layer using a mist containing.
  • only one layer among the lower electrode layer, electron transport layer, active layer, and hole transport layer may be formed by attaching a mist-formed raw material, or two or more layers may be formed by attaching a mist-formed raw material.
  • the film may be formed by
  • the functional layer includes an electron transport layer, an active layer, and a hole transport layer.
  • the upper electrode layer is not particularly limited as long as it contains a known upper electrode layer forming material.
  • the material for forming the upper electrode layer the same material as the above-mentioned material for forming the lower electrode layer may be used, and the upper electrode layer contains metal, preferably silver, gold, copper, or platinum. It is more preferable to include.
  • the upper electrode layer forming material may be a single type of material, or a combination of two or more selected types of materials.
  • the thickness of the upper electrode layer provided on the upper surface of the functional layer is not particularly limited, and is, for example, 50 nm or more, preferably 80 nm or more, and, for example, 300 nm or less, preferably 200 nm or less.
  • the upper electrode layer is provided on at least a portion of the upper surface of the functional layer and at least a portion of the side surface of the functional layer, and the thickness of the upper electrode layer provided on the side surface of the functional layer (hereinafter referred to as the thickness in the lateral direction) is The thickness of the upper electrode layer provided on the upper surface of the functional layer (hereinafter sometimes referred to as the thickness in the upper surface direction) is approximately the same as the thickness of the upper electrode layer provided on the upper surface of the functional layer. Specifically, the following (1) or (2) is satisfied, and it is preferable that the following (1) and (2) are satisfied.
  • the thickness of the upper electrode layer in the side direction is approximately the same as the thickness of the upper electrode layer in the upper surface direction.
  • the upper limit of the thickness for both (1) and (2) below is preferably 100%.
  • the upper electrode layer is provided on the side surface of the functional layer at a height of H'/2 from the substrate side surface of the active layer to the upper surface side of the functional layer.
  • the thickness is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface of the functional layer.
  • the thickness of the laminated portion of the lower electrode layer and the functional layer refers to the thickness of the layer farthest from the substrate among the electron transport layer, active layer, and hole transport layer from the substrate side surface of the lower electrode layer. This refers to the thickness of the layer to the surface on the side opposite to the substrate (top side of the functional layer).
  • the thickness of the thinnest upper electrode layer in a cross section parallel to the surface of the substrate at "a height of H/2 from the substrate side surface of the laminated part to the upper surface side of the functional layer” is defined as "the side surface of the functional layer”.
  • the active layer is thicker than other layers provided in the functional layer, so the layer located at a height of H/2 from the substrate side surface of the laminated part to the upper surface of the functional layer is usually an active layer. be.
  • the position at a height of H'/2 from the substrate side surface of the active layer to the upper surface side of the functional layer is the intermediate height between both surfaces of the active layer, that is, from the substrate side surface of the active layer to the opposite substrate side. (on the side opposite to the substrate) means a point that is higher by H'/2, and the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H'/2 is also H'/2.
  • the measurement is performed in the same manner as the method for measuring the thickness of the upper electrode layer provided on the side surface of the functional layer at a height of /2.
  • the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H/2 is referred to as “thickness of the upper electrode layer at the height of H/2”
  • the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H'/2 is referred to as “thickness of the upper electrode layer at the height of H/2”.
  • the thickness of the upper electrode layer provided on the side surface of the functional layer at the height is referred to as "thickness of the upper electrode layer at the height of H'/2”.
  • FIG. 1 is a cross-sectional view of a plane perpendicular to a substrate showing an example of the photoelectric conversion element of the present invention.
  • the upper electrode layer is laminated only on one side of the functional layer.
  • two stacked bodies are connected in series, and the upper electrode layer is electrically connected to the adjacent lower electrode layer. Note that H, H', and H'/2 are illustrated in FIG.
  • FIG. 2 shows an example of a photoelectric conversion element in which upper electrode layers are laminated on all sides of the functional layer.
  • FIG. 2 shows a cross-sectional view parallel to the surface of the substrate at a height of H/2.
  • L1 ⁇ L2 ⁇ L3 ⁇ L4 as shown in FIG. 2 the thickness of the upper electrode layer at the height of H/2 is L1.
  • the thickness in the side direction is preferably 80% to 120% of the thickness in the top surface direction at a height of H''/2 from the substrate side surface of the layer to the top surface side of the functional layer, and preferably 80 to 100%. % is more preferable.
  • the layer farthest from the substrate is the hole transport layer in the inverted structure, and the electron transport layer in the forward structure.
  • the “thickness of the upper electrode layer provided on the side surface of the functional layer” at the height of H''/2 above is also Measurement is carried out in the same manner as for "thickness”. Note that hereinafter, the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H''/2 will be referred to as “thickness of the upper electrode layer at the height of H''/2.
  • the thickness of the upper electrode layer provided on the side surface of the functional layer is such that the thickness of the upper electrode layer at a height of H/2 is 70 to 120% of the thickness of the upper electrode layer at a height of H''/2. It is preferably 90% to 110%, more preferably 90% to 110%.
  • the thickness of the upper electrode layer provided on the side surface of the functional layer is such that the thickness of the upper electrode layer at a height of H'/2 is 70 to 120% of the thickness of the upper electrode layer at a height of H''/2. It is preferably 90% to 110%, more preferably 90% to 110%.
  • the method for measuring the thickness of the upper electrode layer at four locations in terms of height is as follows. A cross-sectional view perpendicular to the substrate as shown in Fig. 1 is prepared using a focused ion beam processing and observation device (FIB), and a cross-sectional view perpendicular to the substrate is prepared using a field emission scanning electron microscope (FE-SEM) or a transmission electron microscope (TEM). The thickness of the upper electrode layer at the four locations is measured. Note that portions with a thickness of approximately 80 nm or more are measured using SEM, and portions with a thickness of less than 80 nm are measured using TEM.
  • FIB focused ion beam processing and observation device
  • FE-SEM field emission scanning electron microscope
  • TEM transmission electron microscope
  • the thickness of the upper electrode layer at the four locations mentioned above should be measured using only FE-SEM or TEM without using FIB. Good too.
  • an FIB is used to measure the thickness of the upper electrode layer perpendicular to the substrate. A cross section is prepared and the thickness of the upper electrode layer is measured.
  • the method for manufacturing the upper electrode layer includes a step of generating a mist containing metal particles from a solution containing metal particles, and adhering the mist to the surface (upper surface and side surface) of the functional layer to form the upper electrode layer. and a step of doing so.
  • the misting method for generating mist is not particularly limited, but examples include a method of applying ultrasonic waves to a solution containing metal particles using an ultrasonic atomizer or the like to atomize the solution, and a method of atomizing the solution.
  • a method of atomizing a solution containing metal particles by applying pressure to a solution containing metal particles and ejecting it from a small hole using a device equipped with a liquid pressurizing means that pressurizes the liquid and a method that uses a discharge electrode and a high voltage application means.
  • Examples of methods include electrostatic atomization by applying high voltage to a solution containing metal particles using a device equipped with the device, and a method of atomizing the solution by applying ultrasonic waves to a solution containing metal particles. preferable.
  • the upper electrode layer is provided not only on the top surface of the functional layer but also on the side surfaces of the functional layer, and the thickness in the side direction is approximately the same as the thickness in the top surface direction, resulting in photoelectric conversion with excellent conversion efficiency. It can be an element.
  • the upper electrode layer By forming the upper electrode layer using the above manufacturing method, it is possible to form the upper electrode layer in a short time and at atmospheric pressure. Furthermore, even if the upper electrode layer has to be formed over a wide area, it is possible to form the upper electrode layer with a uniform thickness. When all layers other than the upper electrode layer are formed using mist as described above, it is possible to manufacture a photoelectric conversion element with less equipment.
  • the photoelectric conversion element of the present invention can be used as a solar cell. Moreover, the photoelectric conversion element of the present invention can also be used as a photodetector by providing an output detection means for detecting an output signal output from the photoelectric conversion element.

Abstract

Provided is a photoelectric conversion element via which the thickness of an upper electrode layer (6) laminated on an end (side surface) of a functional layer (7) comes to be approximately the same as the thickness of the upper electrode layer (6) laminated on the upper surface of the functional layer (7). This photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer (7), and an upper electrode layer (6), and is characterized in that in at least part of the photoelectric conversion element, the substrate, the lower electrode layer, the functional layer (7), and the upper electrode layer (6) are laminated in the order listed, the functional layer (7) includes an electron transport layer, an active layer, and a hole transport layer and has an upper surface and a side surface that is formed at an end of the functional layer (7), the upper electrode layer (6) is provided on at least part of the upper surface and at least part of the side surface, and at a predetermined height, the thickness of the upper electrode layer (6) provided on the side surface is 80–120% of the thickness of the upper electrode layer (6) provided on the upper surface.

Description

光電変換素子及びその製造方法Photoelectric conversion element and its manufacturing method
 本発明は光電変換素子及びその製造方法に関する。 The present invention relates to a photoelectric conversion element and a method for manufacturing the same.
 光電変換素子は、一般的に基板、下部電極層、機能層、上部電極層の順に積層されている。上部電極層を形成する方法としては、バーコート法やスピンコート法などが従来より知られている。 A photoelectric conversion element is generally laminated in this order: a substrate, a lower electrode layer, a functional layer, and an upper electrode layer. As methods for forming the upper electrode layer, bar coating methods, spin coating methods, and the like are conventionally known.
 バーコート法やスピンコート法のような上部電極層形成材料を含む溶液を塗布する方法で上部電極層を作製すると上部電極層の表面が粗くなってしまうという問題があった。上部電極層の表面の粗さを抑制した製法として、例えば、特許文献1が挙げられる。特許文献1では、裏面電極層(上部電極層)の製造方法として、有機半導体層(機能層)上に、金属ナノ粒子と分散媒を含む分散液を液滴として噴霧塗布するとともに前記分散媒を乾燥除去する方法が開示されている。 When the upper electrode layer is produced by a method of applying a solution containing the upper electrode layer forming material, such as a bar coating method or a spin coating method, there is a problem that the surface of the upper electrode layer becomes rough. An example of a manufacturing method that suppresses the surface roughness of the upper electrode layer is disclosed in Patent Document 1. In Patent Document 1, as a method for manufacturing a back electrode layer (upper electrode layer), a dispersion liquid containing metal nanoparticles and a dispersion medium is sprayed onto an organic semiconductor layer (functional layer) as droplets, and the dispersion medium is also applied. A method of dry removal is disclosed.
特開2014-236064号公報Japanese Patent Application Publication No. 2014-236064
 上部電極層は機能層の上面のみならず、機能層の端部に形成される側面にも積層されるが、特許文献1ではエアガンスプレーを用いて噴霧塗布しているため、前記側面に積層される上部電極層の厚みは機能層の上面に積層される上部電極層の厚みと比べるとかなり薄くなる。前記側面に積層される上部電極層は電流経路となり得る。このような電流経路では、側面に積層される上部電極層の厚みが機能層の上面に積層される上部電極層の厚みよりかなり薄いと抵抗が大きくなってしまい、特許文献1の光電変換素子では変換効率が不十分であった。 The upper electrode layer is laminated not only on the upper surface of the functional layer but also on the side surface formed at the end of the functional layer. However, in Patent Document 1, since the coating is sprayed using an air gun spray, the upper electrode layer is not laminated on the side surface. The thickness of the upper electrode layer is considerably thinner than the thickness of the upper electrode layer laminated on the upper surface of the functional layer. The upper electrode layer stacked on the side surface can serve as a current path. In such a current path, if the thickness of the upper electrode layer laminated on the side surface is considerably thinner than the thickness of the upper electrode layer laminated on the top surface of the functional layer, the resistance will increase, and the photoelectric conversion element of Patent Document 1 Conversion efficiency was insufficient.
 本発明の課題は、機能層の端部(側面)に積層された上部電極層の厚みが機能層の上面に積層された上部電極層と同程度となる光電変換素子を提供することにある。 An object of the present invention is to provide a photoelectric conversion element in which the thickness of the upper electrode layer laminated on the end (side surface) of the functional layer is approximately the same as that of the upper electrode layer laminated on the upper surface of the functional layer.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、金属粒子を含む溶液から金属粒子を含むミストを発生させ、前記ミストを機能層の表面に付着させて上部電極層を形成することによって、機能層の端部(側面)に積層される上部電極層の厚みが機能層の上面に積層される上部電極層の厚みと同程度となることを見出した。 As a result of intensive research to solve the above problem, the present inventors generated a mist containing metal particles from a solution containing metal particles, and attached the mist to the surface of the functional layer to form an upper electrode layer. It has been found that by forming the upper electrode layer, the thickness of the upper electrode layer laminated on the end (side surface) of the functional layer becomes approximately the same as the thickness of the upper electrode layer laminated on the upper surface of the functional layer.
 すなわち、本発明は、以下の発明を含む。
 [1]基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、前記機能層は、電子輸送層、活性層、及びホール輸送層を含み、上面と、前記機能層の端部に形成される側面とを有しており、前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、前記下部電極層と前記機能層との積層部分における厚みをHとした場合、前記積層部分の基板側の表面から前記上面側にH/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
 [2]基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、前記機能層は、電子輸送層、活性層、及びホール輸送層を含み、上面と、前記機能層の端部に形成される側面とを有しており、前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、前記活性層の厚みをH’とした場合、前記活性層の基板側の表面から前記上面側にH’/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
 [3]基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、前記機能層は活性層を含み、上面と、前記機能層の端部に形成される側面とを有しており、前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、前記活性層の厚みをH’とした場合、前記活性層の基板側の表面から前記上面側にH’/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
 [4]前記上部電極層は、銀、金、銅、又は白金を含む上記[1]~[3]のいずれかに記載の光電変換素子。
 [5]基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子の製造方法であって、金属粒子を含む溶液から前記金属粒子を含むミストを発生させる工程と、前記ミストを前記機能層の表面に付着させて前記上部電極層を形成する工程とを有し、前記機能層は活性層を含むことを特徴とする光電変換素子の製造方法。
 [6]前記ミストを発生させる前記工程において、前記溶液に超音波を印加する工程を含む上記[5]に記載の製造方法。
 [7]前記金属粒子は、銀、金、銅、又は白金を含む上記[5]又は[6]に記載の製造方法。
 [8]機能層形成材料を含むミストを用いて前記機能層を形成する工程をさらに含む上記[5]~[7]のいずれかに記載の製造方法。
 [9]基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子の製造方法であって、金属粒子を含む溶液から前記金属粒子を含むミストを発生させる工程と、前記ミストを前記機能層の表面に付着させて前記上部電極層を形成する工程とを有し、前記機能層は、電子輸送層、活性層、及びホール輸送層を含むことを特徴とする光電変換素子の製造方法。
That is, the present invention includes the following inventions.
[1] A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer. The electrode layers are laminated in this order, and the functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer. The upper electrode layer is provided on at least a part of the upper surface and at least a part of the side surface, and when the thickness of the laminated part of the lower electrode layer and the functional layer is H, the thickness of the laminated part on the substrate side is At a height of H/2 from the surface to the upper surface side, the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface. A photoelectric conversion element characterized by:
[2] A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer. The electrode layers are laminated in this order, and the functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer. The upper electrode layer is provided on at least a portion of the upper surface and at least a portion of the side surface, and when the thickness of the active layer is H', the upper electrode layer has a thickness H' from the substrate-side surface of the active layer to the upper surface side. /2 height position, the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface. element.
[3] A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, in which at least a portion of the photoelectric conversion element includes the substrate, the lower electrode layer, the functional layer, and the upper electrode layer. The electrode layers are laminated in this order, and the functional layer includes an active layer and has an upper surface and a side surface formed at an end of the functional layer, and the upper electrode layer covers at least one part of the upper surface. and at least a part of the side surface, and when the thickness of the active layer is H', at a position at a height of H'/2 from the substrate side surface of the active layer to the upper surface side. A photoelectric conversion element characterized in that the thickness of the upper electrode layer provided on the side surface is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
[4] The photoelectric conversion element according to any one of [1] to [3] above, wherein the upper electrode layer contains silver, gold, copper, or platinum.
[5] A method for manufacturing a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, comprising the steps of generating a mist containing metal particles from a solution containing metal particles, and generating the mist. forming the upper electrode layer by adhering it to the surface of the functional layer, the functional layer including an active layer.
[6] The manufacturing method according to [5] above, wherein the step of generating the mist includes a step of applying ultrasonic waves to the solution.
[7] The manufacturing method according to [5] or [6] above, wherein the metal particles contain silver, gold, copper, or platinum.
[8] The manufacturing method according to any one of [5] to [7] above, further comprising the step of forming the functional layer using a mist containing a functional layer forming material.
[9] A method for manufacturing a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, the method comprising: generating a mist containing metal particles from a solution containing metal particles; forming the upper electrode layer by adhering it to the surface of the functional layer, the functional layer comprising an electron transport layer, an active layer, and a hole transport layer. Method.
 機能層の端部(側面)に積層される上部電極層の厚みが基板の表面に平行である機能層の上面に積層される上部電極層の厚みと同程度になり、変換効率に優れた光電変換素子を得ることができる。 The thickness of the upper electrode layer laminated on the edge (side surface) of the functional layer is approximately the same as the thickness of the upper electrode layer laminated on the upper surface of the functional layer parallel to the surface of the substrate, resulting in a photoelectric converter with excellent conversion efficiency. A conversion element can be obtained.
本発明の光電変換素子の一例における基板に垂直な面の断面図である。1 is a cross-sectional view of a plane perpendicular to a substrate in an example of a photoelectric conversion element of the present invention. 本発明の光電変換素子の別の一例での基板に平行な面の活性層の断面図である。FIG. 3 is a cross-sectional view of the active layer in a plane parallel to the substrate in another example of the photoelectric conversion element of the present invention.
 本発明の光電変換素子は、基板、下部電極層、機能層、及び上部電極層を備えており、本発明の光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されている。なお、本明細書において、上(部)、下(部)は天地を意味するものではなく、例えば、上部電極層及び下部電極層については、機能層を挟んで設けられる一対の電極層のうち、基板側に配置される電極層を下部電極層とし、基板と反対側に設けられる電極層を上部電極層として、上(部)と下(部)を規定しているに過ぎない。また、本明細書では「表面」は特に言及がない限り、上部電極層に近い側の表面のことを指す。以下、基板、下部電極層、機能層、上部電極層の順に説明する。 The photoelectric conversion element of the present invention includes a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, and in at least a part of the photoelectric conversion element of the present invention, the substrate, the lower electrode layer, the functional layer, The upper electrode layers are laminated in this order. Note that in this specification, upper (part) and lower (part) do not mean top and bottom; for example, with respect to an upper electrode layer and a lower electrode layer, it refers to one of a pair of electrode layers provided with a functional layer in between. , the electrode layer disposed on the substrate side is defined as a lower electrode layer, and the electrode layer provided on the opposite side to the substrate is defined as an upper electrode layer, thereby simply defining an upper (part) and a lower (part). Furthermore, in this specification, the term "surface" refers to the surface closer to the upper electrode layer unless otherwise specified. Hereinafter, the substrate, the lower electrode layer, the functional layer, and the upper electrode layer will be explained in this order.
[基板]
 基板は、特に限定されず、例えば、ガラス基板、プラスチック基板、高分子フィルム等が挙げられる。基板側から光を取り込む場合には、基板には光透過性の高い基板を用いることが好ましい。
[substrate]
The substrate is not particularly limited, and examples thereof include a glass substrate, a plastic substrate, a polymer film, and the like. When light is taken in from the substrate side, it is preferable to use a substrate with high light transmittance.
[下部電極層]
 下部電極層は、特に限定されず、公知の下部電極層形成材料を含むものであればよい。下部電極層形成材料としては、アルミニウム(Al)、金(Au)、白金(Pt)、イリジウム(Ir)、ルテニウム(Ru)、チタン(Ti)、モリブデン(Mo)、タンタル(Ta)、銅(Cu)、銀(Ag)等の金属;酸化インジウムスズ(ITO:Indium Tin Oxide)、酸化イリジウム(IrO)、酸化ルテニウム(RuO)、LaNiO、SrRuO等の金属酸化物;が挙げられる。
[Lower electrode layer]
The lower electrode layer is not particularly limited as long as it contains a known lower electrode layer forming material. The materials for forming the lower electrode layer include aluminum (Al), gold (Au), platinum (Pt), iridium (Ir), ruthenium (Ru), titanium (Ti), molybdenum (Mo), tantalum (Ta), and copper ( Cu), silver (Ag), and other metals; metal oxides such as indium tin oxide (ITO), iridium oxide (IrO 2 ), ruthenium oxide (RuO 2 ), LaNiO 3 , and SrRuO 3 ; .
 下部電極層形成材料は1種のみの材料でもよく、選択された2種以上の材料を組み合わせて用いてもよい。また、下部電極層が陽極であり、上部電極層が陰極であってもよく、下部電極層が陰極であり、上部電極層が陽極であってもよい。基板側から光を取り込む場合には、下部電極層は透明であることが好ましい。 The lower electrode layer forming material may be used alone or in combination of two or more selected materials. Moreover, the lower electrode layer may be an anode and the upper electrode layer may be a cathode, or the lower electrode layer may be a cathode and the upper electrode layer may be an anode. When light is taken in from the substrate side, the lower electrode layer is preferably transparent.
 下部電極層の厚みは、特に限定されず、例えば30nm以上であり、50nm以上であることが好ましく、例えば200nm以下であり、150nm以下であることが好ましい。 The thickness of the lower electrode layer is not particularly limited, and is, for example, 30 nm or more, preferably 50 nm or more, and, for example, 200 nm or less, preferably 150 nm or less.
 下部電極層の製造方法は、特に限定されず、下部電極層形成材料を含む溶液からミストを発生させ、ミスト化された原料を基板の表面に付着させて製膜することによって下部電極層を形成することができる。 The method for manufacturing the lower electrode layer is not particularly limited, and the lower electrode layer is formed by generating a mist from a solution containing the lower electrode layer forming material, and depositing the misted raw material on the surface of the substrate to form a film. can do.
 下部電極層の製造方法は、上記のミスト化する方法であることが好ましいが、それ以外にも、真空蒸着、スパッタリングなどの蒸着方法やスプレー法、スピンコーティング法、ディップコーティング法、スロットダイコート法、ドクターブレード法、バーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法といった塗布方法により形成してもよい。 The method for manufacturing the lower electrode layer is preferably the above-mentioned misting method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
[機能層]
 機能層は、活性層を含み、電子輸送層、活性層、及びホール輸送層を含むことが好ましい。以下、機能層が電子輸送層、活性層、及びホール輸送層を含む場合について説明する。下部電極層(陰極)の上に電子輸送層、活性層、ホール輸送層の順に積層された逆型構造でもよく、下部電極層(陽極)の上にホール輸送層、活性層、電子輸送層の順に積層された順型構造でもよく、下部電極層が陰極の役割を果たすか陽極の役割を果たすかによって機能層内での積層順は異なる。
[Functional layer]
The functional layer includes an active layer, and preferably includes an electron transport layer, an active layer, and a hole transport layer. Hereinafter, a case where the functional layer includes an electron transport layer, an active layer, and a hole transport layer will be described. An inverted structure may be used, in which an electron transport layer, an active layer, and a hole transport layer are laminated in this order on a lower electrode layer (cathode), or a hole transport layer, an active layer, and an electron transport layer are laminated on a lower electrode layer (anode). A regular structure in which the layers are stacked in order may be used, and the stacking order within the functional layer differs depending on whether the lower electrode layer plays the role of a cathode or an anode.
 順型構造の場合、基板側から太陽の光が当たると、活性層において励起子が発生しドナー/アクセプター界面で電子とホール(正孔)に分離され、電子は電子輸送層へ、ホールはホール輸送層へ引き寄せられる。これにより、下部電極層側を陽極、上部電極層側を陰極として接続することで、下部電極層側と上部電極層側との間で電気が流れるようになっている。逆型構造の場合も原理としては順型構造と同じである。 In the case of a normal structure, when sunlight hits the substrate side, excitons are generated in the active layer and separated into electrons and holes at the donor/acceptor interface. Attracted to the transport layer. Thereby, by connecting the lower electrode layer side as an anode and the upper electrode layer side as a cathode, electricity can flow between the lower electrode layer side and the upper electrode layer side. In the case of an inverted structure, the principle is the same as that of a forward structure.
 機能層は、上面と、機能層の端部に形成される側面とを有している。後述するとおり、機能層の上面の少なくとも一部に上部電極層が設けられている一方で機能層の側面の少なくとも一部にも上部電極層は設けられている。機能層の上面は平面であっても曲面であってもよいが、平面であることが好ましく、基板の表面に平行な平面であることが好ましい。なお、本明細書では「平行」とは基板の表面に対して0~10°の傾きである面のことを指す。また、機能層の側面は平面であっても曲面であってもよいが、平面であることが好ましい。 The functional layer has an upper surface and a side surface formed at the end of the functional layer. As described later, an upper electrode layer is provided on at least a portion of the upper surface of the functional layer, and an upper electrode layer is also provided on at least a portion of the side surface of the functional layer. The upper surface of the functional layer may be a flat surface or a curved surface, but is preferably a flat surface, and preferably a flat surface parallel to the surface of the substrate. Note that in this specification, "parallel" refers to a plane that is inclined at 0 to 10 degrees with respect to the surface of the substrate. Furthermore, the side surfaces of the functional layer may be flat or curved, but are preferably flat.
 以下、電子輸送層、活性層、ホール輸送層について説明する。 Hereinafter, the electron transport layer, active layer, and hole transport layer will be explained.
<電子輸送層>
 電子輸送層は、特に限定されず、公知の電子輸送性材料を含むものであってよい。電子輸送性材料としては、例えば、酸化亜鉛、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジウム、ITO(酸化インジウムスズ)、FTO(フッ素ドープ酸化スズ)、GZO(ガリウムドープ酸化亜鉛)、ATO(アンチモンドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)、PEIE(ポリエチレンイミンエトキシレイティド)、PEI(ポリエチレンイミン)等が挙げられる。
<Electron transport layer>
The electron transport layer is not particularly limited, and may contain a known electron transport material. Examples of electron-transporting materials include zinc oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, ITO (indium tin oxide), FTO (fluorine-doped tin oxide), GZO (gallium-doped zinc oxide), and ATO (antimony). Examples include doped tin oxide), AZO (aluminum doped zinc oxide), PEIE (polyethyleneimine ethoxylate), and PEI (polyethyleneimine).
 電子輸送性材料を含む電子輸送層とすることによって、陰極への電子の注入効率を高めたり、活性層からのホールの注入を防いだり、電子の輸送能を高めたり、活性層の劣化を抑制したりすることができる。 By making the electron transport layer contain an electron transport material, we can increase the efficiency of electron injection into the cathode, prevent the injection of holes from the active layer, increase the electron transport ability, and suppress the deterioration of the active layer. You can do it.
 また、電子輸送層を活性層と陰極となる電極層との間に設けることが好ましく、電子輸送層を陰極と活性層との間に設けることによって、陰極の剥離を防ぐとともに、活性層から陰極への電子取出し効率を高めることができる。電子輸送層は、活性層又は陰極となる電極層の少なくとも一方に接していることがより好ましく、活性層及び陰極となる電極層に接していることがさらに好ましい。このような電子輸送層を設けることによって、信頼性が高く、光電変換効率のより高い光電変換素子とすることができる。 Further, it is preferable to provide an electron transport layer between the active layer and the electrode layer which becomes the cathode. By providing the electron transport layer between the cathode and the active layer, it is possible to prevent the cathode from peeling off and to prevent the cathode from separating from the active layer. It is possible to increase the efficiency of electron extraction. The electron transport layer is more preferably in contact with at least one of the active layer and the electrode layer that serves as the cathode, and even more preferably in contact with the active layer and the electrode layer that serves as the cathode. By providing such an electron transport layer, a photoelectric conversion element with high reliability and higher photoelectric conversion efficiency can be obtained.
 電子輸送層の厚みは、特に限定されず、例えば20nm以上であり、40nm以上であることが好ましく、例えば100nm以下であり、70nm以下であることが好ましい。 The thickness of the electron transport layer is not particularly limited, and is, for example, 20 nm or more, preferably 40 nm or more, and, for example, 100 nm or less, preferably 70 nm or less.
 電子輸送層の製造方法は、特に限定されず、電子輸送性材料を含む溶液からミストを発生させ、ミスト化された原料を最表面に付着させて製膜することによって電子輸送層を形成することができる。なお、本明細書では、最表面とは該当する層を製膜する直前における積層体の表面のことをいう。逆型構造の場合は下部電極層の表面を含む最表面にミスト化された原料を付着させて製膜することによって電子輸送層を形成することができる。順型構造の場合も活性層の表面を含む最表面にミスト化された原料を付着させて製膜することによって電子輸送層を形成することができる。 The method for manufacturing the electron transport layer is not particularly limited, and the electron transport layer may be formed by generating a mist from a solution containing an electron transport material and depositing the mist-formed raw material on the outermost surface to form a film. I can do it. Note that in this specification, the outermost surface refers to the surface of the laminate immediately before forming the corresponding layer. In the case of the reverse type structure, the electron transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the lower electrode layer to form a film. Even in the case of a normal structure, the electron transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the active layer to form a film.
 電子輸送層の製造方法は、上記のミスト化する方法であることが好ましいが、それ以外にも、真空蒸着、スパッタリングなどの蒸着方法やスプレー法、スピンコーティング法、ディップコーティング法、スロットダイコート法、ドクターブレード法、バーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法といった塗布方法により形成してもよい。 The method for manufacturing the electron transport layer is preferably the above-mentioned misting method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
<活性層>
 活性層は、特に限定されず、公知の活性層形成材料を含むものであってよい。活性層形成材料には、少なくともp型半導体材料(電子供与性化合物)とn型半導体材料(電子受容性化合物)とを含む。
<Active layer>
The active layer is not particularly limited and may contain a known active layer forming material. The active layer forming material includes at least a p-type semiconductor material (electron-donating compound) and an n-type semiconductor material (electron-accepting compound).
 p型半導体材料としては、具体的には、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を含むポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体、ポリベンゾビスチアゾール及びその誘導体等が挙げられる。 Specifically, p-type semiconductor materials include, for example, polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives containing an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyfluorene and its derivatives, polybenzobisthiazole and its derivatives, and the like.
 n型半導体材料は低分子化合物であっても高分子化合物であってもよい。低分子化合物であるn型半導体材料としては、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、バソクプロインのようなフェナントレン誘導体、フラーレン誘導体、ナフタレンテトラカルボン酸イミド誘導体、ペリレンテトラカルボン酸誘導体、ペリレンジイミド誘導体等が挙げられる。高分子化合物であるn型半導体材料としては、例えば、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミン構造を有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。 The n-type semiconductor material may be a low-molecular compound or a high-molecular compound. Examples of n-type semiconductor materials that are low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives. Derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and its derivatives, phenanthrene derivatives such as bathocuproine, fullerene derivatives, naphthalenetetracarboxylic acid imide derivatives, perylenetetracarboxylic acid derivatives, perylene Examples include diimide derivatives. Examples of n-type semiconductor materials that are polymeric compounds include polyvinylcarbazole and its derivatives, polysilane and its derivatives, polysiloxane derivatives having an aromatic amine structure in the side chain or main chain, polyaniline and its derivatives, polythiophene and its derivatives. , polypyrrole and its derivatives, polyphenylene vinylene and its derivatives, polythienylene vinylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, polyfluorene and its derivatives, and the like.
 活性層の厚みは、特に限定されず、例えば80nm以上であり、100nm以上であることが好ましく、例えば400nm以下であり、300nm以下であることが好ましい。 The thickness of the active layer is not particularly limited, and is, for example, 80 nm or more, preferably 100 nm or more, and, for example, 400 nm or less, preferably 300 nm or less.
 活性層の製造方法は、特に限定されず、活性層形成材料を含む溶液からミストを発生させ、ミスト化された原料を最表面に付着させて製膜することによって活性層を形成することができる。逆型構造の場合は電子輸送層の表面を含む最表面にミスト化された原料を付着させて製膜することによって活性層を形成することができる。順型構造の場合はホール輸送層の表面を含む最表面にミスト化された原料を付着させて製膜することによって活性層を形成することができる。光電変換効率のより高い光電変換素子とする観点からは、活性層は電子輸送層とホール輸送層との間に設けることが好ましく、電子輸送層又はホール輸送層の少なくとも一方に接していることがより好ましく、電子輸送層及びホール輸送層に接していることがさらに好ましい。 The method for producing the active layer is not particularly limited, and the active layer can be formed by generating a mist from a solution containing the active layer forming material and depositing the mist-formed raw material on the outermost surface to form a film. . In the case of an inverted structure, the active layer can be formed by depositing a misted raw material on the outermost surface including the surface of the electron transport layer to form a film. In the case of a regular structure, the active layer can be formed by depositing a misted raw material on the outermost surface including the surface of the hole transport layer to form a film. From the viewpoint of providing a photoelectric conversion element with higher photoelectric conversion efficiency, the active layer is preferably provided between an electron transport layer and a hole transport layer, and is preferably in contact with at least one of the electron transport layer or the hole transport layer. More preferably, it is in contact with the electron transport layer and the hole transport layer.
 活性層の製造方法は、上記のミスト化する方法であることが好ましいが、それ以外にも、真空蒸着、スパッタリングなどの蒸着方法やスプレー法、スピンコーティング法、ディップコーティング法、スロットダイコート法、ドクターブレード法、バーコート法、インクジェット法、スクリーン印刷法、グラビア印刷法といった塗布方法により形成してもよい。 The method for manufacturing the active layer is preferably the above-mentioned mist method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, and doctor coating methods. It may be formed by a coating method such as a blade method, bar coating method, inkjet method, screen printing method, or gravure printing method.
<ホール輸送層>
 ホール輸送層に含まれる材料は、特に限定されず、公知のホール輸送性材料を含むものであってもよい。ホール輸送性材料としては、例えば、ポリビニルカルバゾール、ポリシラン、ポリチオフェン、ポリエチレンジオキシチオフェン、ポリスチレンスルフォネート等の導電性高分子や、三酸化モリブデン、三酸化タングステン等の金属酸化物が挙げられる。
<Hole transport layer>
The material contained in the hole transport layer is not particularly limited, and may include known hole transport materials. Examples of hole-transporting materials include conductive polymers such as polyvinylcarbazole, polysilane, polythiophene, polyethylenedioxythiophene, and polystyrene sulfonate, and metal oxides such as molybdenum trioxide and tungsten trioxide.
 ホール輸送性材料を含むホール輸送層とすることによって、陽極へのホールの注入効率を高めたり、活性層からの電子の注入を防いだり、ホールの輸送能を高めたり、活性層の劣化を抑制したりすることができる。 By making the hole transport layer contain a hole transporting material, it is possible to increase the efficiency of hole injection into the anode, prevent the injection of electrons from the active layer, increase the hole transport ability, and suppress the deterioration of the active layer. You can do it.
 また、ホール輸送層を活性層と陽極となる電極層との間に設けることが好ましく、ホール輸送層を陽極と活性層との間に設けることによって、陽極の剥離を防ぐとともに、活性層から陽極へのホール取出し効率を高めることができる。ホール輸送層は、活性層又は陽極となる電極層の少なくとも一方に接していることがより好ましく、活性層及び陽極となる電極層に接していることがさらに好ましい。このようなホール輸送層を設けることによって、信頼性が高く、光電変換効率のより高い光電変換素子とすることができる。 In addition, it is preferable to provide a hole transport layer between the active layer and the electrode layer that becomes the anode.By providing the hole transport layer between the anode and the active layer, it is possible to prevent the anode from peeling off and to remove the anode from the active layer. Hole extraction efficiency can be increased. The hole transport layer is more preferably in contact with at least one of the active layer or the electrode layer that will become the anode, and even more preferably the hole transport layer is in contact with the active layer and the electrode layer that will be the anode. By providing such a hole transport layer, a photoelectric conversion element with high reliability and higher photoelectric conversion efficiency can be obtained.
 ホール輸送層の厚みは、特に限定されず、例えば5nm以上であり、10nm以上であることが好ましく、例えば200nm以下であり、100nm以下であることが好ましい。 The thickness of the hole transport layer is not particularly limited, and is, for example, 5 nm or more, preferably 10 nm or more, and, for example, 200 nm or less, preferably 100 nm or less.
 ホール輸送層の製造方法は、特に限定されず、ホール輸送性材料を含む溶液からミストを発生させ、ミスト化された原料を最表面に付着させて製膜することによってホール輸送層を形成することができる。逆型構造の場合は活性層の表面を含む最表面にミスト化された原料を付着させて製膜することによってホール輸送層を形成することができる。順型構造の場合は下部電極層の表面にミスト化された原料を付着させて製膜することによってホール輸送層を形成することができる。 The method for manufacturing the hole transport layer is not particularly limited, and the hole transport layer may be formed by generating a mist from a solution containing a hole transporting material and depositing the mist-formed raw material on the outermost surface to form a film. I can do it. In the case of an inverted structure, the hole transport layer can be formed by depositing a misted raw material on the outermost surface including the surface of the active layer to form a film. In the case of a normal structure, the hole transport layer can be formed by depositing a misted raw material on the surface of the lower electrode layer to form a film.
 ホール輸送層の製造方法は、上記のミスト化する方法であることが好ましいが、それ以外にも、真空蒸着、スパッタリングなどの蒸着方法やスプレー法、スピンコーティング法、ディップコーティング法、スロットダイコート法、ドクターブレード法、バーコート法、インクジェット法、スクリーン印刷法 、グラビア印刷法といった塗布方法により形成してもよい。 The method for manufacturing the hole transport layer is preferably the above-mentioned mist method, but other methods include vapor deposition methods such as vacuum evaporation and sputtering, spray methods, spin coating methods, dip coating methods, slot die coating methods, It may be formed by a coating method such as a doctor blade method, a bar coating method, an inkjet method, a screen printing method, or a gravure printing method.
 以上、基板、下部電極層、機能層(電子輸送層、活性層、ホール輸送層)について記載したが、これらの層の組成、厚み、製造方法は上記の記載に限定されるものではない。また、下部電極層、電子輸送層、活性層、ホール輸送層は各層形成時の最表面に連続して形成されていてもよく、不連続に形成されていてもよい(例えば、下部電極層であれば基板の表面全面に形成されていてもよく、基板の表面の一部のみに形成されていてもよい)ため、基板における一部の表面において下部電極層、電子輸送層、活性層、ホール輸送層が積層されていればよい。また、上述のとおり、下部電極層、機能層(電子輸送層、活性層、ホール輸送層)は最表面にミスト化された原料を付着させて製膜することが好ましく、特に機能層形成材料を含むミストを用いて機能層を形成することが好ましい。なお、下部電極層、電子輸送層、活性層、ホール輸送層の中の1層のみをミスト化された原料を付着させて製膜してもよく、2層以上をミスト化された原料を付着させて製膜してもよい。 Although the substrate, lower electrode layer, and functional layers (electron transport layer, active layer, and hole transport layer) have been described above, the composition, thickness, and manufacturing method of these layers are not limited to the above description. Further, the lower electrode layer, electron transport layer, active layer, and hole transport layer may be formed continuously on the outermost surface when forming each layer, or may be formed discontinuously (for example, in the lower electrode layer). (The lower electrode layer, electron transport layer, active layer, and holes may be formed on a part of the surface of the substrate. It is sufficient if the transport layers are laminated. Furthermore, as mentioned above, it is preferable that the lower electrode layer and the functional layers (electron transport layer, active layer, hole transport layer) are formed by depositing mist-formed raw materials on the outermost surface. It is preferable to form the functional layer using a mist containing. Incidentally, only one layer among the lower electrode layer, electron transport layer, active layer, and hole transport layer may be formed by attaching a mist-formed raw material, or two or more layers may be formed by attaching a mist-formed raw material. The film may be formed by
 以上、機能層に電子輸送層、活性層、ホール輸送層が含まれる場合について記載したが、機能層に電子輸送層やホール輸送層は含まれていなくてもよい。 Although the case where the functional layer includes an electron transport layer, an active layer, and a hole transport layer has been described above, the functional layer does not need to contain an electron transport layer or a hole transport layer.
[上部電極層]
 上部電極層は、特に限定されず、公知の上部電極層形成材料を含むものであればよい。上部電極層形成材料としては、上述の下部電極層形成材料と同様の材料を用いればよく、上部電極層は金属を含んでおり、銀、金、銅、又は白金を含むことが好ましく、銀を含むことがより好ましい。上部電極層形成材料は1種のみの材料でもよく、選択された2種以上の材料を組み合わせて用いてもよい。
[Top electrode layer]
The upper electrode layer is not particularly limited as long as it contains a known upper electrode layer forming material. As the material for forming the upper electrode layer, the same material as the above-mentioned material for forming the lower electrode layer may be used, and the upper electrode layer contains metal, preferably silver, gold, copper, or platinum. It is more preferable to include. The upper electrode layer forming material may be a single type of material, or a combination of two or more selected types of materials.
 機能層の上面に設けられた上部電極層の厚みは、特に限定されず、例えば50nm以上であり、80nm以上であることが好ましく、例えば300nm以下であり、200nm以下であることが好ましい。 The thickness of the upper electrode layer provided on the upper surface of the functional layer is not particularly limited, and is, for example, 50 nm or more, preferably 80 nm or more, and, for example, 300 nm or less, preferably 200 nm or less.
 上部電極層は、機能層の上面の少なくとも一部と機能層の側面の少なくとも一部とに設けられており、機能層の側面に設けられた上部電極層の厚み(以下、側面方向の厚みということがある)が機能層の上面に設けられた上部電極層の厚み(以下、上面方向の厚みということがある)と同程度である。具体的には下記(1)又は(2)を満たし、下記(1)及び(2)を満たすことが好ましい。下記(1)又は(2)の少なくとも一方を満たすことにより、側面方向における上部電極層の厚みが上面方向における上部電極層の厚みと同程度となることを意味する。下記(1)、(2)共に厚みの上限は100%であることが好ましい。
(1)下部電極層と機能層との積層部分における厚みをHとした場合、前記積層部分の基板側の表面から機能層の上面側にH/2の高さの位置において、機能層の側面に設けられた上部電極層の厚みは、機能層の上面に設けられた上部電極層の厚みの80%~120%
(2)活性層の厚みをH’とした場合、活性層の基板側の表面から機能層の上面側にH’/2の高さの位置において、機能層の側面に設けられた上部電極層の厚みは、機能層の上面に設けられた上部電極層の厚みの80%~120%
The upper electrode layer is provided on at least a portion of the upper surface of the functional layer and at least a portion of the side surface of the functional layer, and the thickness of the upper electrode layer provided on the side surface of the functional layer (hereinafter referred to as the thickness in the lateral direction) is The thickness of the upper electrode layer provided on the upper surface of the functional layer (hereinafter sometimes referred to as the thickness in the upper surface direction) is approximately the same as the thickness of the upper electrode layer provided on the upper surface of the functional layer. Specifically, the following (1) or (2) is satisfied, and it is preferable that the following (1) and (2) are satisfied. By satisfying at least one of the following (1) or (2), it means that the thickness of the upper electrode layer in the side direction is approximately the same as the thickness of the upper electrode layer in the upper surface direction. The upper limit of the thickness for both (1) and (2) below is preferably 100%.
(1) When the thickness of the laminated portion of the lower electrode layer and the functional layer is H, the side surface of the functional layer is placed at a height of H/2 from the substrate-side surface of the laminated portion to the upper surface of the functional layer. The thickness of the upper electrode layer provided on the upper surface of the functional layer is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface of the functional layer.
(2) When the thickness of the active layer is H', the upper electrode layer is provided on the side surface of the functional layer at a height of H'/2 from the substrate side surface of the active layer to the upper surface side of the functional layer. The thickness is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface of the functional layer.
 「下部電極層と機能層との積層部分における厚み」とは、具体的には、下部電極層における基板側の表面から電子輸送層、活性層、ホール輸送層の中で基板から最も離れている層における基板とは反対側(機能層の上面側)の表面までの厚みのことを指す。なお、「積層部分の基板側の表面から機能層の上面側にH/2の高さの位置」において基板の表面と平行となる断面での最も薄い上部電極層の厚みを「機能層の側面に設けられた上部電極層の厚み」とする。製法等の事情により機能層の外縁部分のみが突起している場合や各層の端部近傍において段差となっている場合があるため、上部電極層以外の全ての層が極力平坦である(段差や突起が少ない)部分において5点程度の厚みを測定し、その平均値をHとする。なお、活性層は機能層に設ける他の層と比べて厚い層であるため、積層部分の基板側の表面から機能層の上面側にH/2の高さに位置する層は通常活性層である。 Specifically, "the thickness of the laminated portion of the lower electrode layer and the functional layer" refers to the thickness of the layer farthest from the substrate among the electron transport layer, active layer, and hole transport layer from the substrate side surface of the lower electrode layer. This refers to the thickness of the layer to the surface on the side opposite to the substrate (top side of the functional layer). In addition, the thickness of the thinnest upper electrode layer in a cross section parallel to the surface of the substrate at "a height of H/2 from the substrate side surface of the laminated part to the upper surface side of the functional layer" is defined as "the side surface of the functional layer". The thickness of the upper electrode layer provided on the Due to circumstances such as the manufacturing method, only the outer edge of the functional layer may protrude or there may be a step near the edge of each layer, so all layers other than the upper electrode layer should be as flat as possible (no steps or The thickness is measured at about 5 points in the area (with few protrusions), and the average value is defined as H. Note that the active layer is thicker than other layers provided in the functional layer, so the layer located at a height of H/2 from the substrate side surface of the laminated part to the upper surface of the functional layer is usually an active layer. be.
 「活性層の基板側の表面から機能層の上面側にH’/2の高さの位置」は活性層の両表面の中間の高さ、すなわち、活性層における基板側の表面から反基板側(基板とは反対側)にH’/2だけ高い箇所のことを意味しており、上記H’/2の高さでの機能層の側面に設けられた上部電極層の厚みについても上記H/2の高さでの機能層の側面に設けられた上部電極層の厚みの測定方法と同様の方法で測定を行う。なお、以下では、上記H/2の高さでの機能層の側面に設けられた上部電極層の厚みを「H/2の高さでの上部電極層の厚み」、上記H’/2の高さでの機能層の側面に設けられた上部電極層の厚みを「H’/2の高さでの上部電極層の厚み」という。 "The position at a height of H'/2 from the substrate side surface of the active layer to the upper surface side of the functional layer" is the intermediate height between both surfaces of the active layer, that is, from the substrate side surface of the active layer to the opposite substrate side. (on the side opposite to the substrate) means a point that is higher by H'/2, and the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H'/2 is also H'/2. The measurement is performed in the same manner as the method for measuring the thickness of the upper electrode layer provided on the side surface of the functional layer at a height of /2. In addition, below, the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H/2 is referred to as "thickness of the upper electrode layer at the height of H/2", and the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H'/2 is referred to as "thickness of the upper electrode layer at the height of H/2". The thickness of the upper electrode layer provided on the side surface of the functional layer at the height is referred to as "thickness of the upper electrode layer at the height of H'/2".
 図1は本発明の光電変換素子の一例を示す基板に垂直な面の断面図である。図1では、機能層の一方の側面のみに上部電極層が積層されている。また、図1では2つの積層体が直列接続となっており、上部電極層が隣の下部電極層に電気的に接続された状態である。なお、図1にはH、H’及びH’/2を図示した。 FIG. 1 is a cross-sectional view of a plane perpendicular to a substrate showing an example of the photoelectric conversion element of the present invention. In FIG. 1, the upper electrode layer is laminated only on one side of the functional layer. Further, in FIG. 1, two stacked bodies are connected in series, and the upper electrode layer is electrically connected to the adjacent lower electrode layer. Note that H, H', and H'/2 are illustrated in FIG.
 また、図1とは異なり、機能層の全ての側面に上部電極層が積層されている光電変換素子の一例を図2に示している。図2では、上記H/2の高さでの基板の表面に平行となる断面図を示している。図2のようにL1<L2<L3<L4となっている場合、H/2の高さでの上部電極層の厚みはL1となる。 Also, unlike FIG. 1, FIG. 2 shows an example of a photoelectric conversion element in which upper electrode layers are laminated on all sides of the functional layer. FIG. 2 shows a cross-sectional view parallel to the surface of the substrate at a height of H/2. When L1<L2<L3<L4 as shown in FIG. 2, the thickness of the upper electrode layer at the height of H/2 is L1.
 本発明の光電変換素子は、電子輸送層、活性層、ホール輸送層の中で基板から最も離れている層において、前記最も離れている層の厚みをH’’とした場合、前記最も離れている層の基板側の表面から機能層の上面側にH’’/2の高さの位置において、側面方向の厚みが上面方向の厚みの80%~120%であることが好ましく、80~100%であることがより好ましい。電子輸送層、活性層、ホール輸送層の中で基板から最も離れている層は、逆型構造ではホール輸送層であり、順型構造では電子輸送層である。上記H’’/2の高さでの「機能層の側面に設けられた上部電極層の厚み」についても上記H/2の高さでの「機能層の側面に設けられた上部電極層の厚み」の測定方法と同様の方法で測定を行う。なお、以下では、上記H’’/2の高さでの機能層の側面に設けられた上部電極層の厚みを「H’’/2の高さでの上部電極層の厚み」という。 In the photoelectric conversion element of the present invention, in the layer farthest from the substrate among the electron transport layer, the active layer, and the hole transport layer, when the thickness of the farthest layer is H'', The thickness in the side direction is preferably 80% to 120% of the thickness in the top surface direction at a height of H''/2 from the substrate side surface of the layer to the top surface side of the functional layer, and preferably 80 to 100%. % is more preferable. Among the electron transport layer, active layer, and hole transport layer, the layer farthest from the substrate is the hole transport layer in the inverted structure, and the electron transport layer in the forward structure. Regarding the "thickness of the upper electrode layer provided on the side surface of the functional layer" at the height of H''/2 above, the "thickness of the upper electrode layer provided on the side surface of the functional layer" at the height of H/2 above is also Measurement is carried out in the same manner as for "thickness". Note that hereinafter, the thickness of the upper electrode layer provided on the side surface of the functional layer at the height of H''/2 will be referred to as "thickness of the upper electrode layer at the height of H''/2.
 機能層の側面に設けられた上部電極層の厚みは、H/2の高さでの上部電極層の厚みがH’’/2の高さでの上部電極層の厚みの70~120%であることが好ましく、90~110%であることがより好ましい。 The thickness of the upper electrode layer provided on the side surface of the functional layer is such that the thickness of the upper electrode layer at a height of H/2 is 70 to 120% of the thickness of the upper electrode layer at a height of H''/2. It is preferably 90% to 110%, more preferably 90% to 110%.
 機能層の側面に設けられた上部電極層の厚みは、H’/2の高さでの上部電極層の厚みがH’’/2の高さでの上部電極層の厚みの70~120%であることが好ましく、90~110%であることがより好ましい。 The thickness of the upper electrode layer provided on the side surface of the functional layer is such that the thickness of the upper electrode layer at a height of H'/2 is 70 to 120% of the thickness of the upper electrode layer at a height of H''/2. It is preferably 90% to 110%, more preferably 90% to 110%.
 機能層の上面に設けられた上部電極層の厚み、H/2の高さでの上部電極層の厚み、H’/2の高さでの上部電極層の厚み、及びH’’/2の高さでの上部電極層の厚みの4箇所の上部電極層の厚みの測定方法は以下のとおりである。
 イオン収束ビーム加工観察装置(FIB)を用いて、図1に示すような基板に垂直な断面図を作製し、電界放出型走査電子顕微鏡(FE-SEM)又は透過型電子顕微鏡(TEM)を用いて上記4箇所の上部電極層の厚みを測定する。なお、80nm程度以上の厚みの箇所についてはSEMで測定し、80nmより薄い場合はTEMで測定する。
The thickness of the upper electrode layer provided on the upper surface of the functional layer, the thickness of the upper electrode layer at the height of H/2, the thickness of the upper electrode layer at the height of H'/2, and the thickness of the upper electrode layer at the height of H''/2. The method for measuring the thickness of the upper electrode layer at four locations in terms of height is as follows.
A cross-sectional view perpendicular to the substrate as shown in Fig. 1 is prepared using a focused ion beam processing and observation device (FIB), and a cross-sectional view perpendicular to the substrate is prepared using a field emission scanning electron microscope (FE-SEM) or a transmission electron microscope (TEM). The thickness of the upper electrode layer at the four locations is measured. Note that portions with a thickness of approximately 80 nm or more are measured using SEM, and portions with a thickness of less than 80 nm are measured using TEM.
 なお、図1のように機能層の一方の側面のみに上部電極層が積層されている場合はFIBを用いずにFE-SEM又はTEMのみで上記4箇所の上部電極層の厚みを測定してもよい。また、図2のように機能層の複数の側面に上部電極層が積層されている場合には、上部電極層の厚みが一番小さい箇所が計測できるように、FIBを用いて基板に垂直な断面を作製して、上部電極層の厚みを計測する。 Note that if the upper electrode layer is laminated on only one side of the functional layer as shown in Figure 1, the thickness of the upper electrode layer at the four locations mentioned above should be measured using only FE-SEM or TEM without using FIB. Good too. In addition, when the upper electrode layer is laminated on multiple sides of the functional layer as shown in Figure 2, in order to measure the point where the thickness of the upper electrode layer is the smallest, an FIB is used to measure the thickness of the upper electrode layer perpendicular to the substrate. A cross section is prepared and the thickness of the upper electrode layer is measured.
 上部電極層の製造方法としては、金属粒子を含む溶液から前記金属粒子を含むミストを発生させる工程と、前記ミストを前記機能層の表面(上面及び側面)に付着させて前記上部電極層を形成する工程とを含む。 The method for manufacturing the upper electrode layer includes a step of generating a mist containing metal particles from a solution containing metal particles, and adhering the mist to the surface (upper surface and side surface) of the functional layer to form the upper electrode layer. and a step of doing so.
 ミストを発生させるミスト化の方法は、特に限定されるものではないが、例えば、超音波霧化装置等を用いて金属粒子を含む溶液に超音波を印加して溶液を霧化する方法、溶液を加圧する液体加圧手段を備えた装置を用いて金属粒子を含む溶液に圧力を加えて小孔より噴出することで金属粒子を含む溶液を霧化する方法、放電電極と高電圧印加手段を備えた装置を用いて金属粒子を含む溶液に高電圧を印加することで静電霧化する方法などが挙げられるが、金属粒子を含む溶液に超音波を印加して溶液を霧化する方法が好ましい。 The misting method for generating mist is not particularly limited, but examples include a method of applying ultrasonic waves to a solution containing metal particles using an ultrasonic atomizer or the like to atomize the solution, and a method of atomizing the solution. A method of atomizing a solution containing metal particles by applying pressure to a solution containing metal particles and ejecting it from a small hole using a device equipped with a liquid pressurizing means that pressurizes the liquid, and a method that uses a discharge electrode and a high voltage application means. Examples of methods include electrostatic atomization by applying high voltage to a solution containing metal particles using a device equipped with the device, and a method of atomizing the solution by applying ultrasonic waves to a solution containing metal particles. preferable.
 上記製造方法とすることによって、機能層の上面のみならず機能層の側面にも上部電極層を設けており、側面方向の厚みが上面方向の厚みと同程度となり、変換効率に優れた光電変換素子とすることができる。上記の製造方法で上部電極層を形成することにより、短時間かつ大気圧で上部電極層を形成可能である。また、広範囲において上部電極層を形成しなければならない場合であっても均一な厚みの上部電極層を形成できる。そして、上部電極層以外の全ての層を上記のようにミストを用いて形成する工程とする場合は少ない設備で光電変換素子を作製することが可能である。 By using the above manufacturing method, the upper electrode layer is provided not only on the top surface of the functional layer but also on the side surfaces of the functional layer, and the thickness in the side direction is approximately the same as the thickness in the top surface direction, resulting in photoelectric conversion with excellent conversion efficiency. It can be an element. By forming the upper electrode layer using the above manufacturing method, it is possible to form the upper electrode layer in a short time and at atmospheric pressure. Furthermore, even if the upper electrode layer has to be formed over a wide area, it is possible to form the upper electrode layer with a uniform thickness. When all layers other than the upper electrode layer are formed using mist as described above, it is possible to manufacture a photoelectric conversion element with less equipment.
[その他の層]
 下部電極層、電子輸送層、活性層、ホール輸送層、上部電極層の他に、帯電防止層、ガスバリア層、易滑層、ハードコート層、保護層、電磁波シールド層、紫外線吸収層、赤外線吸収層、光反射層等を必要に応じて設けてもよい。
[Other layers]
In addition to the lower electrode layer, electron transport layer, active layer, hole transport layer, and upper electrode layer, antistatic layer, gas barrier layer, slip layer, hard coat layer, protective layer, electromagnetic shield layer, ultraviolet absorption layer, and infrared absorption layer. A layer, a light reflecting layer, etc. may be provided as necessary.
[用途]
 本発明の光電変換素子は、太陽電池として用いることができる。また、本発明の光電変換素子は、光電変換素子から出力される出力信号を検知する出力検知手段を備えることにより、光検出器として用いることもできる。
[Application]
The photoelectric conversion element of the present invention can be used as a solar cell. Moreover, the photoelectric conversion element of the present invention can also be used as a photodetector by providing an output detection means for detecting an output signal output from the photoelectric conversion element.
 本願は、2022年6月3日に出願された日本国特許出願第2022-091108号に基づく優先権の利益を主張するものである。2022年6月3日に出願された日本国特許出願第2022-091108号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-091108 filed on June 3, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-091108 filed on June 3, 2022 are incorporated by reference into this application.
 1  基板
 2  下部電極層
 3  電子輸送層
 4  活性層
 5  ホール輸送層
 6  上部電極層
 7  機能層
 A  光電変換素子
 H  積層部分の厚み
 H’ 活性層の厚み
 
1 Substrate 2 Lower electrode layer 3 Electron transport layer 4 Active layer 5 Hole transport layer 6 Upper electrode layer 7 Functional layer A Photoelectric conversion element H Thickness of laminated portion H' Thickness of active layer

Claims (8)

  1.  基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、
     前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、
     前記機能層は、電子輸送層、活性層、及びホール輸送層を含み、上面と、前記機能層の端部に形成される側面とを有しており、
     前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、
     前記下部電極層と前記機能層との積層部分における厚みをHとした場合、前記積層部分の基板側の表面から前記上面側にH/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
    A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer,
    In at least a part of the photoelectric conversion element, the substrate, the lower electrode layer, the functional layer, and the upper electrode layer are laminated in this order,
    The functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer,
    The upper electrode layer is provided on at least a portion of the upper surface and at least a portion of the side surface,
    When the thickness of the laminated portion of the lower electrode layer and the functional layer is H, the layer provided on the side surface is located at a height of H/2 from the substrate side surface of the laminated portion to the upper surface side. A photoelectric conversion element characterized in that the thickness of the upper electrode layer is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
  2.  基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、
     前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、
     前記機能層は、電子輸送層、活性層、及びホール輸送層を含み、上面と、前記機能層の端部に形成される側面とを有しており、
     前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、
     前記活性層の厚みをH’とした場合、前記活性層の基板側の表面から前記上面側にH’/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
    A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer,
    In at least a part of the photoelectric conversion element, the substrate, the lower electrode layer, the functional layer, and the upper electrode layer are laminated in this order,
    The functional layer includes an electron transport layer, an active layer, and a hole transport layer, and has an upper surface and a side surface formed at an end of the functional layer,
    The upper electrode layer is provided on at least a portion of the upper surface and at least a portion of the side surface,
    When the thickness of the active layer is H', the thickness of the upper electrode layer provided on the side surface at a height of H'/2 from the substrate side surface of the active layer to the upper surface side is: A photoelectric conversion element characterized in that the thickness is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
  3.  基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子であって、
     前記光電変換素子の少なくとも一部において、前記基板、前記下部電極層、前記機能層、前記上部電極層の順に積層されており、
     前記機能層は活性層を含み、上面と、前記機能層の端部に形成される側面とを有しており、
     前記上部電極層は、前記上面の少なくとも一部と前記側面の少なくとも一部とに設けられ、
     前記活性層の厚みをH’とした場合、前記活性層の基板側の表面から前記上面側にH’/2の高さの位置において、前記側面に設けられた前記上部電極層の厚みは、前記上面に設けられた前記上部電極層の厚みの80%~120%であることを特徴とする光電変換素子。
    A photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer,
    In at least a part of the photoelectric conversion element, the substrate, the lower electrode layer, the functional layer, and the upper electrode layer are laminated in this order,
    The functional layer includes an active layer and has an upper surface and a side surface formed at an end of the functional layer,
    The upper electrode layer is provided on at least a portion of the upper surface and at least a portion of the side surface,
    When the thickness of the active layer is H', the thickness of the upper electrode layer provided on the side surface at a height of H'/2 from the substrate side surface of the active layer to the upper surface side is: A photoelectric conversion element characterized in that the thickness is 80% to 120% of the thickness of the upper electrode layer provided on the upper surface.
  4.  前記上部電極層は、銀、金、銅、又は白金を含む請求項1~3のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 3, wherein the upper electrode layer contains silver, gold, copper, or platinum.
  5.  基板、下部電極層、機能層、及び上部電極層を備えた光電変換素子の製造方法であって、
     金属粒子を含む溶液から前記金属粒子を含むミストを発生させる工程と、
     前記ミストを前記機能層の表面に付着させて前記上部電極層を形成する工程とを有し、
     前記機能層は活性層を含むことを特徴とする光電変換素子の製造方法。
    A method for manufacturing a photoelectric conversion element comprising a substrate, a lower electrode layer, a functional layer, and an upper electrode layer, the method comprising:
    generating a mist containing the metal particles from a solution containing the metal particles;
    a step of attaching the mist to the surface of the functional layer to form the upper electrode layer,
    A method for manufacturing a photoelectric conversion element, wherein the functional layer includes an active layer.
  6.  前記ミストを発生させる前記工程において、前記溶液に超音波を印加する工程を含む請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the step of generating the mist includes a step of applying ultrasonic waves to the solution.
  7.  前記金属粒子は、銀、金、銅、又は白金を含む請求項5又は6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the metal particles contain silver, gold, copper, or platinum.
  8.  機能層形成材料を含むミストを用いて前記機能層を形成する工程をさらに含む請求項5又は6に記載の製造方法。
     
    The manufacturing method according to claim 5 or 6, further comprising the step of forming the functional layer using a mist containing a functional layer forming material.
PCT/JP2023/019144 2022-06-03 2023-05-23 Photoelectric conversion element and method for producing same WO2023234118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-091108 2022-06-03
JP2022091108 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023234118A1 true WO2023234118A1 (en) 2023-12-07

Family

ID=89024820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019144 WO2023234118A1 (en) 2022-06-03 2023-05-23 Photoelectric conversion element and method for producing same

Country Status (1)

Country Link
WO (1) WO2023234118A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211280A (en) * 1981-06-22 1982-12-25 Mitsubishi Electric Corp Assembling structure of solar cell
JP2009289817A (en) * 2008-05-27 2009-12-10 Mitsubishi Electric Corp Photoelectric conversion device and method of manufacturing the same
JP2012114424A (en) * 2010-11-02 2012-06-14 Susumu Yoshikawa Solar cell and method of manufacturing the same
WO2013176222A1 (en) * 2012-05-24 2013-11-28 株式会社ニコン Substrate processing apparatus and device manufacturing method
US20150171229A1 (en) * 2012-07-31 2015-06-18 Lg Innotek Co., Ltd. Solar cell apparatus and method of fabricating the same
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element
JP2017119907A (en) * 2015-12-24 2017-07-06 株式会社Flosfia Production method of perovskite film
WO2017154937A1 (en) * 2016-03-11 2017-09-14 株式会社ニコン Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
JP2020114943A (en) * 2015-02-18 2020-07-30 株式会社ニコン Thin film manufacturing device and thin film manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211280A (en) * 1981-06-22 1982-12-25 Mitsubishi Electric Corp Assembling structure of solar cell
JP2009289817A (en) * 2008-05-27 2009-12-10 Mitsubishi Electric Corp Photoelectric conversion device and method of manufacturing the same
JP2012114424A (en) * 2010-11-02 2012-06-14 Susumu Yoshikawa Solar cell and method of manufacturing the same
WO2013176222A1 (en) * 2012-05-24 2013-11-28 株式会社ニコン Substrate processing apparatus and device manufacturing method
US20150171229A1 (en) * 2012-07-31 2015-06-18 Lg Innotek Co., Ltd. Solar cell apparatus and method of fabricating the same
JP2020114943A (en) * 2015-02-18 2020-07-30 株式会社ニコン Thin film manufacturing device and thin film manufacturing method
JP2016181625A (en) * 2015-03-24 2016-10-13 株式会社東芝 Photoelectric conversion element and manufacturing method of photoelectric conversion element
JP2017119907A (en) * 2015-12-24 2017-07-06 株式会社Flosfia Production method of perovskite film
WO2017154937A1 (en) * 2016-03-11 2017-09-14 株式会社ニコン Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method

Similar Documents

Publication Publication Date Title
US8728848B2 (en) Solution processing method for forming electrical contacts of organic devices
US8440496B2 (en) Solar cell with conductive material embedded substrate
US6933436B2 (en) Photovoltaic cell
KR101557587B1 (en) Organic solar cell and manufacturing the same
US8642375B2 (en) Preparation method of organic photovoltaic cell&#39;s photoactive layer using aerosol jet printing
US20110049504A1 (en) Photoelectric conversion element
US20150179965A1 (en) Inverted organic electronic device and method for manufacturing the same
US8975112B2 (en) Device for spraying, method therefor, and organic electronic construction element
US11264581B2 (en) Flexible substrate material and method of fabricating an electronic thin film device
US20090155459A1 (en) Method of forming active layer of organic solar cell using spray coating method
KR102014850B1 (en) Perovskite solar cell including hybrid hole transport layer and manufacturing method for the same
US20130069050A1 (en) Optoelectronic device having an embedded electrode
CN103403906A (en) Photovoltaic cells
WO2023234118A1 (en) Photoelectric conversion element and method for producing same
US7741140B2 (en) Methods, apparatus, and rollers for cross-web forming of optoelectronic devices
US20090183769A1 (en) Solar Cell Having Nanostructure and Method for Preparing the Same
DE102008030845B4 (en) Organic electronic component and method for producing an organic electronic component
WO2012154045A1 (en) Method for forming an electrode layer with a low work function, and electrode layer
KR102135101B1 (en) Semi-transparent/flexible solar cell and method for manufacturing thereof
KR101425192B1 (en) Solar cell and method for menufaturing the same
Singh et al. Organic Photovoltaic Cells: Opportunities and Challenges
KR20130107036A (en) Organic sollar cell having flexible transparent electrode and manufacturing method for the same
US20090186550A1 (en) Methods, apparatus, and rollers for forming optoelectronic devices
KR20170113233A (en) Organic solar cell and method for manufacturing the same
JP2014116390A (en) Light-emitting element, manufacturing method therefor, and laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023573610

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815877

Country of ref document: EP

Kind code of ref document: A1