WO2023233508A1 - 半導体受光器および半導体素子 - Google Patents

半導体受光器および半導体素子 Download PDF

Info

Publication number
WO2023233508A1
WO2023233508A1 PCT/JP2022/022090 JP2022022090W WO2023233508A1 WO 2023233508 A1 WO2023233508 A1 WO 2023233508A1 JP 2022022090 W JP2022022090 W JP 2022022090W WO 2023233508 A1 WO2023233508 A1 WO 2023233508A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
absorption layer
semiconductor
absorption
type
Prior art date
Application number
PCT/JP2022/022090
Other languages
English (en)
French (fr)
Inventor
達郎 開
圭穂 前田
慎治 松尾
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/022090 priority Critical patent/WO2023233508A1/ja
Publication of WO2023233508A1 publication Critical patent/WO2023233508A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Definitions

  • the present invention relates to a semiconductor light receiver.
  • the technology of integrating III-V semiconductors on Si optical waveguide circuits is a key technology for realizing miniaturization and cost reduction of optical communication transceivers including lasers.
  • lasers have been realized on Si optical waveguide circuits using techniques such as directly bonding III-V group semiconductor materials onto Si substrates.
  • III-V group semiconductors on Si have attracted attention not only as materials for lasers but also as materials for producing high-speed and highly efficient external modulators and photodetectors.
  • a light receiver manufactured using a thin InP-based material bonded onto a Si substrate can be easily increased in speed due to its extremely small element capacitance and strong optical confinement coefficient.
  • a core exhibiting a high absorption coefficient in the communication wavelength band is embedded in an InP thin film, and the InP on both sides of the core is doped with donors and acceptors. A lateral diode is formed.
  • the element capacitance is smaller than that of a conventional III-V semiconductor element in which a pin junction is formed in a direction perpendicular to the substrate, making it easier to realize a high-speed light receiver.
  • Non-Patent Document 1 In order to achieve both high sensitivity and high speed of the waveguide-coupled thin film photodetector disclosed in Non-Patent Document 1, it is necessary to shorten the length of the device while increasing light confinement in the absorption layer. However, in order to increase optical confinement in the absorption layer, a wide core width is required, and as the core width increases, the carrier drift time in the depletion layer becomes longer. Therefore, even for a thin film device with a small RC band, the maximum value of the 3 dB band is limited by the drift time within the depletion layer. On the other hand, if the core width is made thinner in order to shorten the drift time, the light confinement in the absorption layer becomes weaker, and the light-receiving sensitivity becomes smaller. That is, in a waveguide-coupled thin-film photodetector having an embedded core, there is a problem in that it is difficult to achieve both high speed and high sensitivity.
  • the present invention was made to solve the above problems, and an object of the present invention is to provide a semiconductor optical receiver that can achieve both high speed and high sensitivity.
  • the semiconductor photodetector of the present invention includes a first cladding layer formed on a substrate, a III-V compound semiconductor layer formed on the first cladding layer, and a group III-V compound semiconductor layer formed on the semiconductor layer.
  • an absorption layer made of a III-V compound semiconductor embedded in the semiconductor layer and an absorption layer horizontally adjacent to the absorption layer in the semiconductor layer.
  • a p-type layer made of a III-V compound semiconductor formed so as to be in contact with the p-type layer;
  • the absorption layer includes a non-doped absorption layer made of a non-doped III-V compound semiconductor, a p-type absorption layer formed in a region where the absorption layer and the p-type layer are in contact with each other, and a and an n-type absorption layer formed in a region in contact with the type layer, and is characterized in that the absorption edge wavelength of the non-doped absorption layer is shorter than the wavelength of incident light.
  • the absorption layer is composed of a non-doped absorption layer, a p-type absorption layer, and an n-type absorption layer, and by making the absorption edge wavelength of the non-doped absorption layer shorter than the wavelength of incident light, high speed and high sensitivity are achieved. It is possible to realize a semiconductor photodetector that is compatible with both
  • FIG. 1 is a sectional view of a semiconductor photodetector according to a first embodiment of the present invention.
  • FIG. 2 is a sectional view of a semiconductor photodetector according to a second embodiment of the invention.
  • FIG. 3 is a diagram showing the dependence of the optical confinement coefficient on the core width in a conventional semiconductor photodetector.
  • FIG. 4 is a diagram showing the dependence of the optical confinement coefficient on the core width in the semiconductor photodetector according to the second embodiment of the present invention.
  • FIG. 5 is a sectional view of a semiconductor photodetector according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 1 is a sectional view of a semiconductor photodetector according to a first embodiment of the present invention.
  • the semiconductor photodetector includes a Si substrate 1, a cladding layer 2 made of SiO 2 formed on the Si substrate 1, and a III-V compound semiconductor layer 3 made of InP formed on the cladding layer 2.
  • An electrode 6 formed to be connected to the n-type layer 32 in the V group compound semiconductor layer 3 is provided.
  • An absorption layer 30 serving as a core having a width Wc is embedded in the III-V compound semiconductor layer 3. Furthermore, in the III-V compound semiconductor layer 3, there is a horizontal direction (horizontal direction in FIG. 1) perpendicular to the stacking direction (vertical direction in FIG. ), a p-type layer 31 made of p-type InP is formed next to and in contact with the absorption layer 30 along An n-type layer 32 made of n-type InP is formed so as to be in contact with the n-type layer 32 .
  • the absorption layer 30 includes a non-doped absorption layer 30-1 made of a non-doped III-V compound semiconductor having a width Wi (Wc>Wi), and a non-doped absorption layer 30-1 in contact with the non-doped absorption layer 30-1 and the p-type layer 31.
  • a p-type absorption layer 30-2 made of a III-V compound semiconductor into which an acceptor is implanted is formed between the non-doped absorption layer 30-1 and the p-type layer 31, and a non-doped absorption layer 30-2 is formed between the non-doped absorption layer 30-1 and the n-type layer 32.
  • the n-type absorption layer 30-3 is formed between the absorption layer 30-1 and the n-type layer 32, and is made of a III-V group compound semiconductor into which a donor is implanted.
  • the doped region p-type absorption layer 30-2 and n-type absorption layer 30-3
  • the OE optical-to-electrical
  • the absorption edge wavelength of the material constituting the non-doped absorption layer 30-1 is set to the shorter wavelength side than the wavelength of the incident light.
  • photocarriers are not generated in the doped region where no electric field is applied.
  • the absorption coefficient increases, and the incident light is selectively absorbed only within the non-doped absorption layer 30-1.
  • the material of the absorption layer 30-1 is a non-doped III-V compound semiconductor, but it may also be a lightly doped III-V compound semiconductor so that it is depleted by reverse bias.
  • the carrier concentration may be adjusted to a desired absorption layer width Wi by applying a reverse bias voltage.
  • FIG. 2 is a cross-sectional view of the semiconductor light receiver according to this embodiment, and the same components as in FIG. 1 are denoted by the same reference numerals.
  • the semiconductor photodetector includes a Si substrate 1, a cladding layer 2 made of SiO 2 formed on the Si substrate 1, and a III-V compound semiconductor layer 3 made of InP formed on the cladding layer 2.
  • An absorbing layer 30a serving as a core having a width Wc is embedded in the III-V group compound semiconductor layer 3 made of InP and having a thickness of 230 nm.
  • an InGaAlAs-based multiple quantum well (MQW) layer is used as the absorption layer 30a.
  • a p-type layer made of p-type InP is formed adjacent to and in contact with the absorption layer 30a along the horizontal direction (horizontal direction in FIG. 2).
  • an n-type layer 32 made of n-type InP formed on the side opposite to the p-type layer 31 and in contact with the absorption layer 30a with the absorption layer 30a in between.
  • the absorption layer 30a includes a non-doped absorption layer 30a-1 made of a non-doped MQW layer with a width Wi (Wc>Wi), and a non-doped absorption layer 30a-1 and a p-type layer so that the non-doped absorption layer 30a-1 and the p-type layer 31 are in contact with each other.
  • a p-type absorption layer 30a-2 formed between the layers 31 and made of an MQW layer into which acceptors are injected;
  • An n-type absorption layer 30a-3 formed between the layers 32 and made of an MQW layer into which donors are implanted.
  • Cladding layers 2 and 4 made of SiO 2 having a smaller refractive index than InP are formed above and below the III-V compound semiconductor layer 3 made of InP, thereby achieving strong optical confinement.
  • the optical confinement coefficient was defined as the optical confinement coefficient in the well layer included in the absorption layer. According to FIG. 3, it can be seen that optical confinement increases when the core is made thicker, while when the core is made thinner in order to shorten the drift time, the optical confinement coefficient decreases significantly.
  • FIG. 4 shows the dependence of the optical confinement coefficient on the core width in the semiconductor photodetector of this example.
  • the effect of optical confinement enhancement becomes more pronounced as the width Wi of the non-doped absorption layer 30a-1 becomes smaller, so the advantage becomes more pronounced when producing an element with a shorter drift time.
  • the core width Wc at which the optical confinement coefficient is the maximum in any case where the width Wi of the non-doped absorption layer 30a-1 is 100 nm, 200 nm, or 300 nm.
  • the core width Wc may be set to about 400 nm so that the optical confinement coefficient is maximized.
  • the absorption edge wavelength of the non-doped InGaAlAs MQW constituting the non-doped absorption layer 30a-1 is set to the shorter wavelength side than the wavelength of the incident light.
  • the acceptor-injected p-type absorption layer 30a-2 and the donor-injected n-type absorption layer 30a-3 making it possible to suppress the generation of slow carriers in these doped regions. can.
  • the semiconductor photodetector of this example can be manufactured by the following known process. First, an InP substrate on which an InP layer, an absorption layer, and an InP layer have been grown in order is bonded to an Si substrate 1 on which a SiO 2 film serving as a cladding layer 2 has been formed, and the InP substrate is removed. The absorption layer remaining on the SiO 2 film is processed into a core shape, and the InP layer formed under the absorption layer is left on the entire surface of the wafer. A new non-doped InP layer is grown from this InP layer, and the absorption layer 30a processed into a core shape is embedded in the InP layer.
  • a p-type absorption layer 30a-2 and an n-type absorption layer 30a-3 are formed by ion implantation or thermal diffusion process.
  • the diffusion of donors and acceptors into the absorption layer 30a is controlled by controlling the patterning and heat treatment conditions of the p-type absorption layer 30a-2 and the n-type absorption layer 30a-3.
  • electrodes 5 and 6 made of metal are formed so that a horizontal electric field can be applied to the non-doped absorption layer 30a-1 via the p-type absorption layer 30a-2 and the n-type absorption layer 30a-3.
  • the band gap of the entire absorption layer becomes smaller, and light absorption is likely to occur even in the doped region.
  • it is sufficient to increase the difference (detuning amount) between the absorption edge wavelength and the incident light wavelength at room temperature.
  • increasing the amount of detuning increases the voltage required to increase the absorption coefficient of the non-doped absorption layer at room temperature. Therefore, it is promising to increase only the detuning amount of the doped region without increasing the detuning amount of the non-doped absorption layer at room temperature.
  • the absorption layer 30a When an MQW layer is used as the absorption layer 30a as in this embodiment, only the band gap of the doped region (p-type absorption layer 30a-2 and n-type absorption layer 30a-3) is increased by intermixing of the MQW by introducing impurities. It becomes possible to do so. That is, the absorption edge wavelength of at least one of the p-type absorption layer 30a-2 and the n-type absorption layer 30a-3 is shorter than the absorption edge wavelength of the non-doped absorption layer 30a-1. According to this embodiment, it is possible to selectively increase the band gap only in the doped region without increasing the amount of detuning of the non-doped absorption layer 30a-1 at room temperature, thereby suppressing the generation of slow carriers at high temperatures. can.
  • the temperature of the absorption layer increases not only due to the external environmental temperature but also due to self-heating caused by photocurrent.
  • the thin-film photodetector since the thin-film photodetector has a structure surrounded by SiO 2 having low thermal conductivity, the temperature rise due to self-heating when photocurrent is generated tends to be significant.
  • the quaternary material constituting the absorption layer since the quaternary material constituting the absorption layer has low thermal conductivity, the temperature tends to rise significantly. Therefore, it is desirable to embed the absorption layers 30, 30a in an InP material with high heat dissipation as in the first embodiment and the present embodiment.
  • the absorption layer 30a-1 is a non-doped MQW layer, but it may also be a lightly doped MQW layer so as to be depleted by reverse bias.
  • the carrier concentration may be adjusted to a desired absorption layer width Wi by applying a reverse bias voltage.
  • this embodiment has shown a structure in which the MQW layer is the absorbing layer, it is not necessarily limited to MQW, and a bulk layer may be used as the absorbing layer.
  • a bulk layer the cross-sectional area of the absorption layer is larger than that of MQW, so it is promising for improving electric field shielding resistance when high-intensity light is input.
  • an absorption layer having a quantum wire structure or a quantum dot structure formed by processing MQW into a thin wire pattern it is also possible to use an absorption layer having a quantum wire structure or a quantum dot structure formed by processing MQW into a thin wire pattern.
  • InGaAlAs was used as the material for the absorption layer 30a in this embodiment, it is not necessarily limited to InGaAlAs, and an appropriate material may be selected depending on the wavelength of the incident light.
  • an MQW layer having a well layer or barrier layer made of InAs, InGaAs, or InGaAsP may be used, or InAlAs, which forms a high barrier to the well layer in the conduction band, may be used as the MQW barrier layer material.
  • the bulk layer when used as an absorption layer, it may be made of the same material as the well layer of the MQW described above.
  • the thickness of the III-V compound semiconductor layer 3 made of InP is 230 nm, but the thickness is not necessarily limited to this.
  • the thickness of the III-V compound semiconductor layer 3 is determined by the thermal expansion of the InP and Si substrate. It is desirable that the critical film thickness ( ⁇ 430 nm) or less is determined by the difference in coefficients.
  • a structure in which a Si core 8 optically coupled to the absorption layer 30a or 30 of the semiconductor light receiver is formed in the cladding layer 2 is also possible.
  • the absorption layer 30a or 30 with the low-loss Si core 8
  • free carrier absorption in the doped regions (p-type absorption layer and n-type absorption layer) is suppressed, and integration with a Si optical waveguide circuit is facilitated.
  • the core material optically coupled to the photoreceiver does not necessarily need to be Si, and may be other low-loss waveguide materials such as SiN or lithium niobate.
  • FIG. 6 it is also possible to integrate a semiconductor laser having an active layer made of the same material as the absorption layer 30a or 30 in the first and second embodiments with the semiconductor photodetector.
  • the structure of the semiconductor photodetector 10 is as described in the first and second embodiments.
  • the semiconductor laser 11 includes a Si substrate 1, a cladding layer 2 made of SiO 2 formed on the Si substrate 1, a III-V compound semiconductor layer 3 made of InP formed on the cladding layer 2, A cladding layer 4 made of SiO 2 formed on the III-V compound semiconductor layer 3, an electrode 5b formed so as to be connected to the p-type layer 31b in the III-V compound semiconductor layer 3, - An electrode 6b formed to be connected to the n-type layer 32b in the V group compound semiconductor layer 3 is provided. As shown in FIG. 6, a forward bias is applied to the semiconductor laser 11 by connecting the power source 9 to the electrodes 5b and 6b.
  • An active layer 30b made of a non-doped III-V compound semiconductor is embedded in the III-V compound semiconductor layer 3.
  • the semiconductor laser 11 has an active layer 30b having the same thickness and the same material as the absorption layer 30a or 30 of the semiconductor photodetector 10, and a III-V compound semiconductor layer 3 having the same thickness as the semiconductor photodetector 10. , since it has a horizontal pin diode structure in common with the semiconductor photodetector 10, it can be integrated in the same manufacturing process as the semiconductor photodetector 10.
  • the core width and carrier profile are designed differently.
  • the semiconductor photodetector 10 is designed as described above, and the absorption layers 30a and 30 are partially doped, and the core width Wc is such that light is confined in the depletion layer (non-doped absorption layers 30a-1 and 30-1) with the width Wia. Designed to be maximum.
  • the core has a depletion layer width Wib (Wib>Wia) wider than that in the semiconductor photodetector 10.
  • Wib depletion layer width
  • the semiconductor laser 11 becomes a DFB (distributed feedback) laser by forming a diffraction grating on the surface of the InP layer (III-V group compound semiconductor layer 3) shown in FIG.
  • the semiconductor laser 11 also has a structure in which a low-loss core such as Si that is optically coupled to the active layer 30b is formed in the cladding layer 2, thereby achieving a low-loss laser. It becomes possible to realize the structure.
  • a low-loss core such as Si that is optically coupled to the active layer 30b is formed in the cladding layer 2, thereby achieving a low-loss laser. It becomes possible to realize the structure.
  • a Si waveguide it is also possible to form a laser resonator using the Si waveguide layer.
  • the oscillation wavelength of the semiconductor laser 11 may be designed to be longer than the band edge wavelength of the active layer 30b at room temperature.
  • the reason for this is that thin film lasers have a large thermal resistance, and the temperature of the active layer increases significantly due to current injection.
  • the wavelength of light incident on the semiconductor photodetector 10 having the absorption layer 30a or 30 made of the same material as the active layer 30b is shorter than the absorption edge wavelength of the absorption layer 30a or 30.
  • the length of the doped region also increases, and as described above, the effect of suppressing light absorption in the doped region can be obtained.
  • this embodiment has described a semiconductor element in which a semiconductor laser and a semiconductor photodetector are integrated, it is possible to integrate not only a semiconductor laser but also a semiconductor optical amplifier and a semiconductor photodetector.
  • the present invention can be applied to semiconductor devices.
  • SYMBOLS 1... Si substrate, 2, 4... Clad layer, 3... III-V group compound semiconductor layer, 5, 5b, 6, 6b... Electrode, 8... Si core, 10... Semiconductor photodetector, 11... Semiconductor laser, 30, 30a... Absorption layer, 30b... Active layer, 31, 31b... P type layer, 32, 32b... N type layer, 30-1, 30a-1... Non-doped absorption layer, 30-2, 30a-2... P type absorption layer , 30-3, 30a-3...n-type absorption layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

半導体受光器は、クラッド層(2,4)と、III-V族化合物半導体層(3)と、III-V族化合物半導体からなる吸収層(30)と、III-V族化合物半導体からなるp型層(31)、n型層(32)と、電極(5,6)を備える。吸収層(30)は、ノンドープIII-V族化合物半導体からなるノンドープ吸収層(30-1)と、吸収層(30)とp型層(31)が接する領域に形成されるp型吸収層(30-2)と、吸収層(30)とn型層(32)が接する領域に形成されるn型吸収層(30-3)とから構成される。ノンドープ吸収層(30-1)の吸収端波長は入射光波長よりも短い。

Description

半導体受光器および半導体素子
 本発明は、半導体受光器に関するものである。
 III-V族半導体をSi光導波路回路上に集積する技術は、レーザを含む光通信用送受信器の小型化、低コスト化を実現する鍵となる技術である。これまでIII-V族半導体材料をSi基板上に直接接合する技術などを用いてSi光導波路回路上にレーザが実現されてきた。
 近年、Si上のIII-V族半導体は、レーザだけではなく高速・高効率な外部変調器や受光器を作製するための材料としても注目されている。特にSi基板上に接合された薄膜InP系材料を用いて作製される受光器は、極めて小さな素子容量と強い光閉じ込め係数により高速化が容易である。非特許文献1に開示された薄膜InP系受光器では、通信波長帯において高い吸収係数を示すコアがInP薄膜中に埋め込まれており、コア両脇のInPにドナー、アクセプタがドープされることにより横型ダイオードが形成される。これにより、基板に対して垂直方向にp-i-n接合が形成される従来のIII-V族半導体素子よりも小さな素子容量となり、高速な受光器の実現が容易となる。
 非特許文献1に開示された導波路結合型薄膜受光器の高感度化と高速化を両立するためには、吸収層への光閉じ込めを大きくしつつ素子を短尺化する必要がある。しかしながら、吸収層への光閉じ込めを大きくするためには広いコア幅が必要となり、コア幅の増大に伴い空乏層内のキャリアドリフト時間が長くなる。したがって、例え小さなRC帯域を有する薄膜素子であっても、3dB帯域の最大値は空乏層内のドリフト時間により制限される。一方、ドリフト時間を短縮するためにコア幅を細くすると、吸収層への光閉じ込めが弱くなり、受光感度が小さくなる。すなわち、埋め込みコアを有する導波路結合型薄膜受光器では、高速化と高感度化の両立が難しいという課題があった。
YANNICK BAUMGARTNER,et al.,"High-speed CMOS-compatible III-V on Si membrane photodetectors",Optics Express,Vol.29,No.1,pp.509-516,2021
 本発明は、上記課題を解決するためになされたもので、高速化と高感度化の両立が可能な半導体受光器を提供することを目的とする。
 本発明の半導体受光器は、基板の上に形成された第1のクラッド層と、前記第1のクラッド層の上に形成されたIII-V族化合物半導体層と、前記半導体層の上に形成された第2のクラッド層と、前記半導体層の中に埋め込まれたIII-V族化合物半導体からなる吸収層と、前記半導体層の中に水平方向に沿って前記吸収層の隣に前記吸収層と接するように形成されたIII-V族化合物半導体からなるp型層と、前記半導体層の中に、前記吸収層を間に挟んで前記p型層と反対側に前記吸収層と接するように形成されたIII-V族化合物半導体からなるn型層と、前記p型層と接続するように形成された第1の電極と、前記n型層と接続するように形成された第2の電極とを備え、前記吸収層は、ノンドープIII-V族化合物半導体からなるノンドープ吸収層と、前記吸収層と前記p型層が接する領域に形成されるp型吸収層と、前記吸収層と前記n型層が接する領域に形成されるn型吸収層とから構成され、前記ノンドープ吸収層の吸収端波長が入射光波長よりも短いことを特徴とするものである。
 本発明によれば、吸収層をノンドープ吸収層とp型吸収層とn型吸収層とから構成し、ノンドープ吸収層の吸収端波長を入射光波長よりも短くすることにより、高速化と高感度化の両立が可能な半導体受光器を実現することができる。
図1は、本発明の第1の実施例に係る半導体受光器の断面図である。 図2は、本発明の第2の実施例に係る半導体受光器の断面図である。 図3は、従来の半導体受光器における光閉じ込め係数のコア幅依存性を示す図である。 図4は、本発明の第2の実施例に係る半導体受光器における光閉じ込め係数のコア幅依存性を示す図である。 図5は、本発明の第3の実施例に係る半導体受光器の断面図である。 図6は、本発明の第4の実施例に係る半導体素子の断面図である。
[第1の実施例]
 前述の課題を解決するためには、空乏層幅の低減と高い光閉じ込めを両立することが必要となる。本発明では、薄膜コアの一部にドナー及びアクセプターを注入することで、空乏層幅の低減と高い光閉じ込めの両立という要求を満たす。
 図1は本発明の第1の実施例に係る半導体受光器の断面図である。半導体受光器は、Si基板1と、Si基板1の上に形成されたSiOからなるクラッド層2と、クラッド層2の上に形成されたInPからなるIII-V族化合物半導体層3と、III-V族化合物半導体層3の上に形成されたSiOからなるクラッド層4と、III-V族化合物半導体層3中のp型層31と接続するように形成された電極5と、III-V族化合物半導体層3中のn型層32と接続するように形成された電極6とを備えている。
 III-V族化合物半導体層3の中には、幅Wcのコアとなる吸収層30が埋め込まれている。さらに、III-V族化合物半導体層3の中には、クラッド層2とIII-V族化合物半導体層3とクラッド層4の積層方向(図1上下方向)と垂直な水平方向(図1左右方向)に沿って吸収層30の隣に吸収層30と接するように形成されたp型InPからなるp型層31と、吸収層30を間に挟んでp型層31と反対側に吸収層30と接するように形成されたn型InPからなるn型層32とが形成されている。
 吸収層30は、幅Wi(Wc>Wi)のノンドープIII-V族化合物半導体からなるノンドープ吸収層30-1と、ノンドープ吸収層30-1とp型層31と接するようにノンドープ吸収層30-1とp型層31の間に形成され、アクセプタが注入されたIII-V族化合物半導体からなるp型吸収層30-2と、ノンドープ吸収層30-1とn型層32と接するようにノンドープ吸収層30-1とn型層32の間に形成され、ドナーが注入されたIII-V族化合物半導体からなるn型吸収層30-3とから構成される。
 図1に示すように電極5,6に電源7を接続して半導体受光器に逆バイアスを印加することにより、キャリアがドリフトする距離は図1中のWiとなる。したがって、逆バイアス電圧を制御してキャリアプロファイルを制御することにより、コア幅Wcによらずドリフト時間の低減が可能となる。
 本実施例の構造(Wc>Wi)では、同じノンドープ吸収層幅に対する光閉じ込め係数が従来構造(Wc=Wi)よりも大きくなる。これにより、本実施例では、キャリアドリフト時間が短いノンドープ吸収層幅を有する構造においても光閉じ込めを大きくすることが可能であり、高感度化と高速化の両立が可能となる。
 なお、通信波長帯で広く用いられているInGaAsコアのようなバンドギャップが小さな材料で吸収層30の構造を形成すると、ドープ領域(p型吸収層30-2とn型吸収層30-3)でも光が吸収されるため、ドープ領域内に遅いキャリアが発生する。これにより、O-E(optical-to-electrical)帯域が制限される。
 そこで、本実施例では、ノンドープ吸収層30-1を構成する材料の吸収端波長を入射光波長よりも短波長側に設定する。これにより、電界が印加されないドープ領域ではフォトキャリアは発生しない。一方、ノンドープ吸収層30-1内では水平方向電界が印加されることにより、吸収係数が増大し、ノンドープ吸収層30-1内のみによって選択的に入射光が吸収される。このような構造により、本実施例では、ドープ領域における遅いキャリアの発生を抑制しつつ、半導体受光器の高速化と高感度化が両立可能となる。
 なお、本実施例では、吸収層30-1の材料をノンドープIII-V族化合物半導体としているが、逆バイアスで空乏化するように、低濃度にドープされたIII-V族化合物半導体としてもよい。この場合、逆バイアス電圧によって所望の吸収層幅Wiとなるようなキャリア濃度とすればよい。
[第2の実施例]
 次に、本発明の第2の実施例について説明する。本実施例は、第1の実施例の具体例である。図2は本実施例に係る半導体受光器の断面図であり、図1と同一の構成には同一の符号を付してある。半導体受光器は、Si基板1と、Si基板1の上に形成されたSiOからなるクラッド層2と、クラッド層2の上に形成されたInPからなるIII-V族化合物半導体層3と、III-V族化合物半導体層3の上に形成されたSiOからなるクラッド層4と、III-V族化合物半導体層3中のp型層31と接続するように形成された電極5と、III-V族化合物半導体層3中のn型層32と接続するように形成された電極6とを備えている。
 厚さ230nmのInPからなるIII-V族化合物半導体層3の中には、幅Wcのコアとなる吸収層30aが埋め込まれている。本実施例では、InGaAlAs系多重量子井戸(MQW:Multiple Quantum Well)層を吸収層30aとしている。さらに、III-V族化合物半導体層3の中には、水平方向(図2左右方向)に沿って吸収層30aの隣に吸収層30aと接するように形成されたp型InPからなるp型層31と、吸収層30aを間に挟んでp型層31と反対側に吸収層30aと接するように形成されたn型InPからなるn型層32とが形成されている。
 吸収層30aは、幅Wi(Wc>Wi)のノンドープMQW層からなるノンドープ吸収層30a-1と、ノンドープ吸収層30a-1とp型層31と接するようにノンドープ吸収層30a-1とp型層31の間に形成され、アクセプタが注入されたMQW層からなるp型吸収層30a-2と、ノンドープ吸収層30a-1とn型層32と接するようにノンドープ吸収層30a-1とn型層32の間に形成され、ドナーが注入されたMQW層からなるn型吸収層30a-3とから構成される。
 InPからなるIII-V族化合物半導体層3の上下にはInPよりも屈折率が小さなSiOからなるクラッド層2,4が形成されており、強い光閉じ込めが実現される。
 一般的なWc=Wi、すなわちコアがドープされていない従来構造の半導体受光器における光閉じ込め係数のコア幅依存性を図3に示す。ここで、光閉じ込め係数は、吸収層中に含まれる井戸層への光閉じ込め係数とした。図3によれば、コアを太くすることで光閉じ込めが増大する一方、ドリフト時間を短くするためにコアを細くすると光閉じ込め係数の減少が顕著となることが分かる。
 本実施例の半導体受光器における光閉じ込め係数のコア幅依存性を図4に示す。図4の40はノンドープ吸収層30a-1の幅をWi=100nmとしたときのノンドープ吸収層30a-1中の光閉じ込め係数のコア幅依存性を示し、41はWi=200nmとしたときの光閉じ込め係数のコア幅依存性を示し、42はWi=300nmとしたときの光閉じ込め係数のコア幅依存性を示している。
 ノンドープ吸収層30a-1の幅Wi=100nm、200nm、300nmのいずれの場合においても、本実施例のようにWc>Wiとした方がWc=Wiの場合よりも光閉じ込め係数が大きくなり得ることが分かる。この光閉じ込め増強の効果は、ノンドープ吸収層30a-1の幅Wiが小さいほど顕著になるため、よりドリフト時間が短い素子を作るときほどメリットが顕著となる。
 また、図4によれば、ノンドープ吸収層30a-1の幅Wi=100nm、200nm、300nmのいずれの場合においても光閉じ込め係数が最大となるコア幅Wcが存在することが分かる。ノンドープ吸収層30a-1の幅Wiを特定の値、例えば100nmに設定するときには、光閉じ込め係数が最大となるように、コア幅Wcを400nm程度にすればよい。コア幅Wcとノンドープ吸収層30a-1の幅Wiの適切な設計を行うことにより、ドリフト帯域の向上と高い光閉じ込めの両立が可能となる。
 第1の実施例と同様に、ノンドープ吸収層30a-1を構成するノンドープInGaAlAs系MQWの吸収端波長を入射光波長よりも短波長側に設定する。これにより、アクセプタが注入されたp型吸収層30a-2とドナーが注入されたn型吸収層30a-3では光がほとんど吸収されないため、これらドープ領域での遅いキャリアの発生を抑制することができる。一方、電源7によって半導体受光器に逆バイアスを印加することで、ノンドープ吸収層30a-1には水平方向電界が印加されるため、フランツケルディッシュ効果によりノンドープ吸収層30a-1内の吸収係数のみが選択的に増大する。吸収層としてMQW層を用いる場合、水平方向電界の印加により吸収端付近の波長で顕著な吸収係数変化が生じることが知られており、比較的低いバイアス電圧で吸収係数を増大させることが可能となる。
 本実施例の半導体受光器は以下のような公知の工程で作製可能である。まず、クラッド層2となるSiO膜が成膜されたSi基板1上に、InP層と吸収層とInP層が順番に成長されたInP基板を接合し、InP基板を除去する。SiO膜上に残った吸収層をコアの形状に加工し、吸収層の下に形成されているInP層をウエハ全面に残す。このInP層から新たにノンドープInP層を成長させ、コアの形状に加工した吸収層30aをInP層中に埋め込む。
 続いて、p型吸収層30a-2とn型吸収層30a-3をイオン注入や熱拡散工程により形成する。この際、p型吸収層30a-2とn型吸収層30a-3のパターニング及び熱処理条件を制御することで、ドナーとアクセプタの吸収層30aへの拡散を制御する。最後に、金属からなる電極5,6を形成し、p型吸収層30a-2とn型吸収層30a-3を介してノンドープ吸収層30a-1に水平方向電界を印加できるようにする。
 本発明では、温度が上昇すると吸収層全体のバンドギャップが小さくなり、ドープ領域でも光吸収が生じ易い状態となる。高温でもドープ領域で光吸収されないようにするためには、室温での吸収端波長と入射光波長との差(デチューニング量)を大きくしておけばよい。しかしながら、デチューニング量を大きくすると、室温下でノンドープ吸収層の吸収係数を増大させるために必要な電圧が大きくなる。そのため、室温においてノンドープ吸収層のデチューニング量を大きくすることなくドープ領域のデチューニング量のみを大きくすることが有望となる。
 本実施例のようにMQW層を吸収層30aとして用いる場合、不純物導入によるMQWのインターミキシングにより、ドープ領域(p型吸収層30a-2とn型吸収層30a-3)のバンドギャップのみを増大させることが可能となる。すなわち、p型吸収層30a-2とn型吸収層30a-3のうち少なくとも一方の吸収端波長は、ノンドープ吸収層30a-1の吸収端波長よりも短くなる。本実施例によれば、室温におけるノンドープ吸収層30a-1のデチューニング量を大きくすることなく、ドープ領域のみ選択的にバンドギャップを大きくして、高温下における遅いキャリアの発生を抑制することができる。
 吸収層の温度は外部環境温度のみならず、フォトカレントによる自己発熱によっても上昇する。特に薄膜受光器は熱伝導率が小さいSiOによって囲まれた構造となっているため、フォトカレントが発生したときの自己発熱による温度上昇が顕著となり易い。また、吸収層を構成する4元系材料は熱伝導率が低いため、温度上昇が顕著になりやすい。そのため、第1の実施例および本実施例のように吸収層30,30aを放熱性が高いInP材料中に埋め込むことが望ましい。
 本実施例では、吸収層30a-1をノンドープMQW層としているが、逆バイアスで空乏化するように、低濃度にドープされたMQW層としてもよい。この場合、逆バイアス電圧によって所望の吸収層幅Wiとなるようなキャリア濃度とすればよい。
 また、本実施例では、MQW層を吸収層とする構造を示してきたが、必ずしもMQWに限るものではなく、吸収層としてバルク層を用いてもよい。バルク層の場合は、吸収層断面積がMQWよりも大きくなるため、高強度の光入力時における電界遮蔽耐性の向上にとって有望である。また、MQWを細線パターンに加工して形成される量子細線構造や量子ドット構造の吸収層を用いることも可能である。
 また、本実施例では、吸収層30aの材料としてInGaAlAsを用いたが、必ずしもInGaAlAsに限るものではなく、入射光波長に応じて適切な材料を選定すればよい。例えばInAs、InGaAs、InGaAsPを井戸層またはバリア層とするMQW層を用いてもよいし、伝導帯において井戸層に対して高いバリアを形成するInAlAsをMQWのバリア層材料としてもよい。また、バルク層を吸収層とする場合は、上記のMQWの井戸層と同様の材料とすればよい。
 本実施例では、InPからなるIII-V族化合物半導体層3の厚さを230nmとしたが、必ずしもそれに限るものではない。ただし、上記のように吸収層の下に形成されているInP層から新たにノンドープInP層をエピタキシャル成長させる場合には、III-V族化合物半導体層3の厚さを、InPとSi基板の熱膨張係数差に起因する臨界膜厚(~430nm)以下とすることが望ましい。
[第3の実施例]
 第1、第2の実施例において、図5に示すように、半導体受光器の吸収層30aまたは30と光学的に結合するSiコア8をクラッド層2に形成した構造も可能である。吸収層30aまたは30を低損失なSiコア8と結合させることで、ドープ領域(p型吸収層とn型吸収層)におけるフリーキャリア吸収を抑制すると共に、Si光導波路回路との集積が容易となる。また、受光器と光学的に結合するコア材料は必ずしもSiである必要はなく、SiNやリチウムナイオベートなど他の低損失な導波路材料でもよい。
[第4の実施例]
 図6に示すように、第1、第2の実施例における吸収層30aまたは30と同じ材料の活性層を有する半導体レーザを半導体受光器と一体集積することも可能である。半導体受光器10の構造は第1、第2の実施例で説明したとおりである。
 半導体レーザ11は、Si基板1と、Si基板1の上に形成されたSiOからなるクラッド層2と、クラッド層2の上に形成されたInPからなるIII-V族化合物半導体層3と、III-V族化合物半導体層3の上に形成されたSiOからなるクラッド層4と、III-V族化合物半導体層3中のp型層31bと接続するように形成された電極5bと、III-V族化合物半導体層3中のn型層32bと接続するように形成された電極6bとを備えている。図6に示すように電極5b,6bに電源9を接続することにより、半導体レーザ11に順バイアスが印加される。
 III-V族化合物半導体層3の中には、ノンドープIII-V族化合物半導体からなる活性層30bが埋め込まれている。半導体レーザ11は、半導体受光器10の吸収層30aまたは30と同じ厚さで同じ材料の活性層30bと、半導体受光器10と同じ厚さのIII-V族化合物半導体層3を有しており、横型のp-i-nダイオード構造となる点が半導体受光器10と共通しているため、半導体受光器10と同一の作製プロセスで一体集積可能である。
 ただし、コア幅とキャリアプロファイルはそれぞれ異なる設計となる。半導体受光器10は前述のとおりの設計となり、吸収層30a,30の一部がドープされ、コア幅Wcは幅Wiaの空乏層(ノンドープ吸収層30a-1,30-1)への光閉じ込めが最大となるように設計される。
 一方、半導体レーザ11では、キャリアドリフト時間が性能に寄与しないため、コアは半導体受光器10の場合よりも広い空乏層幅Wib(Wib>Wia)を有する。このように、本実施例では、例えば光閉じ込めが強い高速、低消費電力な直接変調レーザなどと半導体受光器との一体集積が可能となる。
 なお、半導体レーザ11は、図6のInP層(III-V族化合物半導体層3)の表面に回折格子が形成されることでDFB(distributed feedback)レーザとなる。
 また、第3の実施例と同様に、半導体レーザ11においても、活性層30bと光学的に結合するSiなどの低損失なコアをクラッド層2に形成した構造とすることで、低損失なレーザ構造の実現が可能となる。Si導波路を形成する場合、レーザの共振器をSi導波路層によって形成することも可能となる。
 半導体レーザ11の発振波長は、室温において活性層30bのバンド端波長よりも長波長側に設計すればよい。その理由は、薄膜レーザは熱抵抗が大きく、電流注入による活性層温度上昇が顕著なためである。このような半導体レーザ11を送信器の光源とすることで、活性層30bと同じ材料の吸収層30aまたは30を有する半導体受光器10への入射光波長は吸収層30aまたは30の吸収端波長よりも長くなり、前述のとおりドープ領域での光吸収が抑制される効果が得られる。
 なお、本実施例では、半導体レーザと半導体受光器の集積した半導体素子について述べたが、半導体レーザに限らず半導体光増幅器と半導体受光器の一体集積も可能である。
 本発明は、半導体素子に適用することができる。
 1…Si基板、2,4…クラッド層、3…III-V族化合物半導体層、5,5b,6,6b…電極、8…Siコア、10…半導体受光器、11…半導体レーザ、30,30a…吸収層、30b…活性層、31,31b…p型層、32,32b…n型層、30-1,30a-1…ノンドープ吸収層、30-2,30a-2…p型吸収層、30-3,30a-3…n型吸収層。

Claims (5)

  1.  基板の上に形成された第1のクラッド層と、
     前記第1のクラッド層の上に形成されたIII-V族化合物半導体層と、
     前記半導体層の上に形成された第2のクラッド層と、
     前記半導体層の中に埋め込まれたIII-V族化合物半導体からなる吸収層と、
     前記半導体層の中に水平方向に沿って前記吸収層の隣に前記吸収層と接するように形成されたIII-V族化合物半導体からなるp型層と、
     前記半導体層の中に、前記吸収層を間に挟んで前記p型層と反対側に前記吸収層と接するように形成されたIII-V族化合物半導体からなるn型層と、
     前記p型層と接続するように形成された第1の電極と、
     前記n型層と接続するように形成された第2の電極とを備え、
     前記吸収層は、
     ノンドープIII-V族化合物半導体からなるノンドープ吸収層と、
     前記吸収層と前記p型層が接する領域に形成されるp型吸収層と、
     前記吸収層と前記n型層が接する領域に形成されるn型吸収層とから構成され、
     前記ノンドープ吸収層の吸収端波長が入射光波長よりも短いことを特徴とする半導体受光器。
  2.  請求項1記載の半導体受光器において、
     前記吸収層は、多重量子井戸層からなることを特徴とする半導体受光器。
  3.  請求項2記載の半導体受光器において、
     前記n型吸収層と前記p型吸収層のうち少なくとも一方の吸収端波長が、前記ノンドープ吸収層の吸収端波長よりも短いことを特徴とする半導体受光器。
  4.  請求項1記載の半導体受光器において、
     前記ノンドープ吸収層の光閉じ込め係数は、前記吸収層の全幅に依存して変動する特性を有し、
     前記ノンドープ吸収層の幅が特定の値に設定された条件下で前記光閉じ込め係数が最大となるように、前記吸収層の全幅が設定されていることを特徴とする半導体受光器。
  5.  請求項1乃至4のいずれか1項に記載の半導体受光器と、
     前記半導体受光器の吸収層と同一組成の材料を活性層とする半導体レーザとを備え、
     前記半導体レーザの前記活性層内の空乏層幅は、前記半導体受光器の前記吸収層内の空乏層幅よりも広く、
     前記半導体レーザの発振波長は、前記活性層のバンド端波長より長いことを特徴とする半導体素子。
PCT/JP2022/022090 2022-05-31 2022-05-31 半導体受光器および半導体素子 WO2023233508A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022090 WO2023233508A1 (ja) 2022-05-31 2022-05-31 半導体受光器および半導体素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022090 WO2023233508A1 (ja) 2022-05-31 2022-05-31 半導体受光器および半導体素子

Publications (1)

Publication Number Publication Date
WO2023233508A1 true WO2023233508A1 (ja) 2023-12-07

Family

ID=89025948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022090 WO2023233508A1 (ja) 2022-05-31 2022-05-31 半導体受光器および半導体素子

Country Status (1)

Country Link
WO (1) WO2023233508A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209483A (ja) * 1997-01-17 1998-08-07 Hitachi Cable Ltd 受光素子
JP2000004033A (ja) * 1998-06-16 2000-01-07 Furukawa Electric Co Ltd:The 半導体導波路型受光素子
JP2001148502A (ja) * 1999-11-22 2001-05-29 Natl Inst Of Advanced Industrial Science & Technology Meti 電界効果テラヘルツ電磁波発生素子
US20210020796A1 (en) * 2019-07-18 2021-01-21 International Business Machines Corporation Compact electro-optical devices with laterally grown contact layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209483A (ja) * 1997-01-17 1998-08-07 Hitachi Cable Ltd 受光素子
JP2000004033A (ja) * 1998-06-16 2000-01-07 Furukawa Electric Co Ltd:The 半導体導波路型受光素子
JP2001148502A (ja) * 1999-11-22 2001-05-29 Natl Inst Of Advanced Industrial Science & Technology Meti 電界効果テラヘルツ電磁波発生素子
US20210020796A1 (en) * 2019-07-18 2021-01-21 International Business Machines Corporation Compact electro-optical devices with laterally grown contact layers

Similar Documents

Publication Publication Date Title
JP5428987B2 (ja) マッハツェンダー型光変調素子
US8031984B2 (en) Semiconductor optical modulator
JP5170236B2 (ja) 導波路型半導体光変調器及びその製造方法
JP2606079B2 (ja) 光半導体素子
Akie et al. GeSn/SiGeSn multiple-quantum-well electroabsorption modulator with taper coupler for mid-infrared Ge-on-Si platform
JP3839710B2 (ja) 半導体光変調器、マッハツェンダ型光変調器、及び光変調器一体型半導体レーザ
JPH02272785A (ja) 半導体デバイス
KR20080068281A (ko) 반도체 광소자 및 그 제조 방법
JP2019008179A (ja) 半導体光素子
KR20120123123A (ko) 광전자 소자
JP6939411B2 (ja) 半導体光素子
WO2021124441A1 (ja) 受光デバイス
US20020088992A1 (en) High power photodiode
WO2023233508A1 (ja) 半導体受光器および半導体素子
JP2005116644A (ja) 半導体光電子導波路
JP2012227330A (ja) フォトダイオード
JP3708758B2 (ja) 半導体受光素子
JP7444290B2 (ja) 半導体光素子
WO2023238184A1 (ja) 光変調器
JP7435786B2 (ja) 受光器
JP4961732B2 (ja) 光変調器集積光源
JP2018189780A (ja) 化合物半導体系光変調素子
JP4280316B2 (ja) 導波路型半導体光機能素子
WO2005033784A1 (ja) 半導体光電子導波路
Guo et al. Simulation research of nonlinear behavior induced by the charge-carrier effect in resonant-cavity-enhanced photodetectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944796

Country of ref document: EP

Kind code of ref document: A1