WO2023232017A1 - 一种车辆热管理***的控制方法、装置、设备及介质 - Google Patents

一种车辆热管理***的控制方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023232017A1
WO2023232017A1 PCT/CN2023/097069 CN2023097069W WO2023232017A1 WO 2023232017 A1 WO2023232017 A1 WO 2023232017A1 CN 2023097069 W CN2023097069 W CN 2023097069W WO 2023232017 A1 WO2023232017 A1 WO 2023232017A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
thermal management
temperature data
management system
model
Prior art date
Application number
PCT/CN2023/097069
Other languages
English (en)
French (fr)
Inventor
姜鸿
王国强
刘元治
李想
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023232017A1 publication Critical patent/WO2023232017A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present application relate to the field of vehicle technology, for example, to a control method, device, equipment and medium for a vehicle thermal management system.
  • the thermal management system of automobiles such as hybrid vehicles or electric vehicles, connects multiple powertrains through pipelines, and uses cooling media to exchange heat between the multiple powertrains and the external environment, so that the powertrains work at their optimal within the temperature range.
  • the vehicle controller collects the temperatures of multiple powertrains through temperature sensors and controls the operation of the water pump or fan of the thermal management system to achieve heat exchange and achieve thermal balance among multiple powertrains.
  • the collection of multiple powertrain temperatures and cooling medium temperatures is a key factor in achieving power system thermal management.
  • Temperature information of multiple powertrains can be collected through temperature sensors.
  • different temperature sensors have different accuracies.
  • the control effect of the thermal management system will be unsatisfactory. For example, when using a temperature sensor with low accuracy, if the temperature judgment threshold is not lowered, the powertrain will work at an inappropriate temperature for a long time, resulting in a reduction in service life; lowering the temperature judgment threshold will cause the vehicle energy consumption to increase, reducing the Driving range.
  • Embodiments of the present application provide a control method, device, equipment and medium for a vehicle thermal management system, which can improve the accuracy of temperature collection without using high-precision temperature sensors, thereby reducing Lower vehicle costs and improve vehicle thermal management system performance.
  • a control method for a vehicle thermal management system including:
  • the thermal management system to be controlled is controlled according to the sensor temperature data and the model calculated temperature data.
  • a control device for a vehicle thermal management system including:
  • a data acquisition module configured to acquire the electrical power data of the target power device in the thermal management system to be controlled and the sensor temperature data corresponding to the target power device during vehicle driving;
  • a control signal data determination module configured to determine the control signal data corresponding to the target power device when it is determined that the sensor temperature data reaches a preset temperature threshold
  • the model calculation temperature data determination module is configured to input the electrical power data and the control signal data into the system simulation model of the thermal management system to be controlled, so as to obtain the model calculation temperature data through the system simulation model;
  • a system control module is configured to calculate temperature data based on the sensor temperature data and the model, and control the thermal management system to be controlled.
  • an electronic device including:
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the method described in any embodiment of the present application. Control method of vehicle thermal management system.
  • a computer-readable storage medium which stores computer instructions.
  • the computer instructions are configured to enable the processor to implement the control of the vehicle thermal management system described in any embodiment of the present application when executed by the processor. method.
  • Figure 1 is a flow chart of a control method for a vehicle thermal management system provided in Embodiment 1 of the present application;
  • Figure 2 is a flow chart of a control method for a vehicle thermal management system provided in Embodiment 2 of the present application;
  • Figure 3 is an example flow chart of a control method for a vehicle thermal management system provided in Embodiment 3 of the present application;
  • Figure 4 is a schematic structural diagram of an example of a system simulation model provided in Embodiment 3 of the present application.
  • FIG. 5 is a schematic diagram of a control device of a vehicle thermal management system provided in Embodiment 4 of the present application;
  • FIG. 6 is a schematic structural diagram of an electronic device that implements the control method of the vehicle thermal management system according to the embodiment of the present application.
  • FIG. 1 is a flow chart of a control method for a vehicle thermal management system provided in Embodiment 1 of the present application.
  • This embodiment can be applied to improve the accuracy of temperature collection without using a high-precision temperature sensor.
  • This method can be executed by the control device of the vehicle thermal management system, and the device can use at least one of software and hardware. It can be implemented in one way, and can generally be directly integrated into the electronic device that executes the method.
  • the electronic device can be a terminal device or a server device.
  • the embodiments of this application do not apply to the electronic device that executes the control method of the vehicle thermal management system. type is limited.
  • the control method of the vehicle thermal management system may include the following steps:
  • the thermal management system to be controlled can be any system that requires thermal management control. It will be appreciated that at least one power device may be included in the thermal management system. By controlling the thermal management system, the vehicle's power unit can be operated within a suitable temperature range, thereby improving vehicle performance.
  • the target power plant can be any device capable of providing power to the vehicle. It can be understood that the target power device can be any power device in the thermal management system.
  • the target power device may include at least one of a power motor device, a DC converter device, a vehicle charging device, a power battery device and an engine device.
  • the electric power data may be the power data per unit time when current flows through the target power device while the vehicle is driving.
  • the sensor temperature data may be the temperature data of the target power unit collected by a temperature sensor corresponding to the target power unit while the vehicle is driving.
  • the electric power data of the target power device in the thermal management system to be controlled is obtained, and the sensor temperature data corresponding to the target power device is obtained.
  • the vehicle may be a hybrid vehicle or an electric vehicle, which is not limited in the embodiments of the present application. It can be understood that when the vehicle is driving, the current flowing through the power unit will generate electrical power data, and as the power unit operates, the temperature of the power unit will increase. In order to ensure vehicle performance, the temperature of the power unit needs to be controlled within an appropriate range.
  • the preset temperature threshold may be a preset temperature threshold that matches the target power device. It can be understood that the preset temperature thresholds corresponding to different power devices may be different.
  • the control signal data may be signal data for controlling the temperature control device. It can be understood that by controlling the temperature control device, the temperature of the target power device corresponding to the temperature control device can be reduced.
  • the temperature control device may include a water pump, a fan, an electric heating device or an electric cooling device.
  • the control signal data may include at least one of a water pump control signal, a fan control signal, an electric heating device control signal and an electric cooling device control signal. It should be noted that different target power devices can correspond to different temperature control devices, and one target power device can correspond to multiple temperature control devices.
  • the temperature control device corresponding to the target power device needs to be controlled to reduce the sensor temperature data so that the target power device operates within a normal temperature range. It can be understood that when the sensor temperature data does not reach the preset temperature threshold, it means that the target power device is operating within a normal temperature range, and there is no need to control the temperature control device corresponding to the target power device.
  • the system simulation model may be a model obtained by simulating the power device and the temperature control device in the vehicle thermal management system.
  • the model calculated temperature data may be the temperature data corresponding to the target power device calculated through the system simulation model.
  • the electric power rate data and the control signal data can be input into the system simulation model of the thermal management system to be controlled, so as to obtain the model calculation through the system simulation model temperature data.
  • the The thermal management system to be controlled is controlled based on the temperature data calculated from the sensor temperature data and the model. It can be understood that when the collection accuracy of the temperature sensor corresponding to the target power device is low, the temperature control device corresponding to the target power device cannot be accurately controlled.
  • the technical solution of this embodiment is to obtain the electrical power data of the target power device in the thermal management system to be controlled during vehicle driving, as well as the sensor temperature data corresponding to the target power device, and determine that the sensor temperature data reaches the preset temperature threshold. , determine the control signal data corresponding to the target power device, input the electric power data and control signal data into the system simulation model of the thermal management system to be controlled, so as to obtain the model calculated temperature data through the system simulation model, so as to calculate the temperature data according to the sensor temperature data and model Calculate the temperature data to control the thermal management system to be controlled, solving the problem that the control of the vehicle thermal management system in related technologies cannot ensure the performance of the thermal management system while reducing vehicle costs. It can improve the performance of the thermal management system without using high-precision temperature sensors. The accuracy of temperature acquisition can reduce vehicle costs and improve the performance of vehicle thermal management systems.
  • FIG. 2 is a flow chart of a control method for a vehicle thermal management system provided in Embodiment 2 of the present application.
  • This embodiment is a refinement of the above technical solution and provides a method for obtaining the electric power of the target power device in the thermal management system to be controlled.
  • Data, during the driving process of the vehicle, the sensor temperature data corresponding to the target power unit, the electric power data and the control signal data are input into the system simulation model of the thermal management system to be controlled, and the temperature data to be controlled is calculated based on the sensor temperature data and model.
  • Various optional implementations of thermal management system control The technical solution in this embodiment can be combined with the optional solution in at least one of the above embodiments. As shown in Figure 2, the method may include the following steps:
  • the thermal management system may include: determining the current thermal state of the target power device based on the sensor temperature data. ;Determine the current thermal The preset temperature threshold corresponding to the state.
  • the current thermal state may be the state of the target power device at the current temperature, for example, it may be the state in which the target power device needs to be cooled at the current higher temperature, or it may be the state in which the target power device needs to be cooled at the current lower temperature.
  • the embodiment of the present application does not limit the state of heating. For example, the power battery device needs to be cooled at a higher temperature and heated at a lower temperature.
  • the current thermal state of the target power device can be determined based on the sensor temperature data, and A preset temperature threshold corresponding to the current thermal state is determined based on the current thermal state. It can be understood that different sensor temperature data can correspond to different thermal states, and different thermal states can correspond to different preset temperature thresholds.
  • the thermal management system to be controlled before inputting the electric power data and the control signal data into the system simulation model of the thermal management system to be controlled, it may include: establishing the thermal management system to be controlled according to the thermal management system to be controlled. Control the system simulation model corresponding to the thermal management system; obtain the system performance test data of the thermal management system to be controlled under different thermal management conditions; optimize the model parameters of the system simulation model according to the system performance test data .
  • the thermal management operating conditions may be operating conditions corresponding to the power device in the thermal management system.
  • the thermal management working conditions may include cooling working conditions of the power motor device, cooling working conditions of the DC converter device, cooling working conditions of the on-board charging device, cooling working conditions of the power battery device, heating working conditions of the power battery device, and self-heating conditions of the power battery device. Cycling conditions or engine unit cooling conditions.
  • the system performance test data may be data obtained by performing performance tests on the vehicle's thermal management system.
  • Model parameters can be parameters corresponding to any device in the system simulation model.
  • the model parameters may include water delivery volume parameters, specific heat value parameters, weight Parameters or heat dissipation rate parameters, etc., are not limited in the embodiments of this application.
  • a system simulation model can be established based on the thermal management system to be controlled, and the thermal management system to be controlled under different thermal management conditions can be obtained.
  • System performance test data under the system performance test data to optimize the model parameters of the system simulation model based on the system performance test data. It can be understood that the more times performance tests are performed on the thermal management system, the more system performance test data is obtained, and thus the higher the accuracy of the model parameters of the system simulation model. It should be noted that the embodiments of the present application do not limit the implementation method of optimizing the model parameters of the system simulation model based on the system performance test data, as long as the optimization of the model parameters of the system simulation model can be achieved.
  • the sensor accuracy may be the accuracy of temperature data collected by the temperature sensor.
  • the first weighting factor may be a weighting factor corresponding to the sensor temperature data in the weighted average algorithm.
  • the sensor accuracy corresponding to the sensor temperature data can be determined, and the sensor accuracy can be used as the first weighting factor corresponding to the sensor temperature data.
  • the model accuracy may be the accuracy of temperature data calculated by the system simulation model calculation model.
  • the second weighting factor may be a weighting factor corresponding to the temperature data calculated by the model in the weighted average algorithm.
  • the model accuracy corresponding to the system simulation model can be determined, and the model accuracy is used as the second weighting factor corresponding to the model calculation temperature data.
  • the sensor temperature number The current device temperature corresponding to the target power device is determined based on the corresponding first weighting factor, the model calculated temperature data and the second weighting factor corresponding to the model calculated temperature data.
  • the current device temperature may be the temperature of the current target power device.
  • a weighted average algorithm can be used to calculate the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the model calculated temperature data.
  • the corresponding second weighting factor determines the current device temperature corresponding to the target power device. It can be understood that the current device temperature may be the sum of the product of the sensor temperature data and the first weighting factor, and the product of the model calculated temperature data and the second weighting factor.
  • the current device temperature corresponding to the target power device is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • it may also include: determining the temperature change rate of the sensor temperature data; when the temperature change rate exceeds the change rate threshold, increasing the first weighting factor corresponding to the sensor temperature data to the first target weighting value, and reducing the model to calculate the temperature data.
  • the corresponding second weighting factor to the second target weighting value.
  • the temperature change rate may be the change rate of temperature data collected by a temperature sensor corresponding to the target power device.
  • the change rate threshold may be a threshold corresponding to a preset temperature data change rate.
  • the first target weighting value may be a target value of the weighting factor.
  • the second target weighting value may be another target value of the weighting factor.
  • the current device temperature corresponding to the target power device is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • the rate of temperature change of the sensor temperature data is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • the rate of temperature change of the sensor temperature data is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • the thermal The management system is a dynamic system, but the system simulation model is a static model, so the model accuracy of the system simulation model will be reduced.
  • the weighting value corresponding to the first weighting factor is less than the first target weighting value, and the weighting value corresponding to the second weighting factor is greater than the second target weighting value.
  • the current device temperature corresponding to the target power device is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • it may also include: determining the startup time of the vehicle control device corresponding to the thermal management system to be controlled; if the startup time does not reach the time threshold, increasing the first weighting factor corresponding to the sensor temperature data to the first target weighting value, and Reduce the second weighting factor corresponding to the temperature data calculated by the model to the second target weighting value.
  • the vehicle control device may be a device that controls the entire vehicle.
  • the vehicle control device may include a device for controlling the startup of the vehicle, a device for controlling a temperature control device of the vehicle, a device for controlling a power device of the vehicle, etc., which are not limited in the embodiments of the present application.
  • the activation time may be the time at which the vehicle controls are activated.
  • the time threshold may be a preset time threshold for activating the vehicle control device.
  • the current device temperature corresponding to the target power device is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data, and the second weighting factor corresponding to the model calculated temperature data.
  • the startup time of the vehicle control device corresponding to the thermal management system to be controlled can be determined, and whether the startup time reaches the time threshold can be determined.
  • the first weighting factor corresponding to the sensor temperature data is increased to the first target weighting value
  • the second weighting factor corresponding to the model calculated temperature data is reduced to the second target weighting value.
  • the thermal management system to be controlled after determining the current device temperature corresponding to the target power device, the thermal management system to be controlled can be controlled based on the current device temperature. It can be understood that controlling the thermal management system to be controlled based on the current device temperature may include controlling the temperature control device in the thermal management system to reduce the temperature of the target power device when the current device temperature of the target power device exceeds the normal operating temperature threshold. temperature, so that the target power device operates within the normal operating temperature threshold range.
  • the technical solution of this embodiment is to obtain the electric power data of the target power device in the thermal management system to be controlled during vehicle driving, as well as the sensor temperature data corresponding to the target power device, and determine that the sensor temperature data reaches the preset temperature threshold. Next, determine the control signal data corresponding to the target power device, then input the electric power data and control signal data into the system simulation model of the thermal management system to be controlled, obtain the model-calculated temperature data through the system simulation model, and then determine the sensor corresponding to the sensor temperature data.
  • the temperature data, the first weighting factor corresponding to the sensor temperature data, the model calculated temperature data and the second weighting factor corresponding to the model calculated temperature data determine the current device temperature corresponding to the target power device, so that the thermal management system to be controlled is performed according to the current device temperature.
  • Control solves the problem that the control of the vehicle thermal management system of related technologies cannot ensure the performance of the thermal management system while reducing vehicle costs. It can improve the accuracy of temperature collection without using high-precision temperature sensors, thereby reducing vehicle costs. cost and improve the performance of vehicle thermal management systems.
  • FIG. 3 is an example flowchart of a control method for a vehicle thermal management system provided in Embodiment 3 of the present application. As shown in Figure 3, it may include, for example, the following content:
  • the first step is to establish a system simulation model of the thermal management system.
  • FIG 4 is a schematic structural diagram of an example of a system simulation model provided in Embodiment 3 of the present application.
  • the system simulation model may include multiple powertrain heating models, a heat exchanger model 41, and water pump models 21 and 22. , 23. Fan model 31, cooling medium pipeline model 42, electric heating device model 32 and electric cooling device model 33.
  • the powertrain heating model may include a power motor model 11, a DC converter model 12, a vehicle charger model 13, a power battery model 14 and an engine model 15.
  • the power motor model 11, the DC converter model 12, the on-board charger model 13, the water pump model 21, the cooling medium pipeline model 42 and the heat exchanger model 41 form a first cooling circuit.
  • the power battery model 14, the electric heating device model 32, the electric cooling device model 33, the water pump model 22 and the cooling medium pipeline model 42 form a second cooling circuit.
  • the engine model 15, the water pump model 23, the cooling medium pipeline model 42, the heat exchanger model 41 and the fan model 31 form a third cooling circuit.
  • Each powertrain heating model has its own heating characteristics, that is, different powertrain heating models generate different heating powers when working at different electrical powers.
  • the heat exchanger model 41 may be a device for exchanging heat between the thermal management system and the outside atmosphere.
  • the cooling medium can release heat to the atmosphere when flowing through the heat exchanger model 41 .
  • the water pump models 21, 22, and 23 can be devices that drive the cooling medium to flow in the cooling pipeline, and can control the flow rate of the cooling medium, thereby changing the amount of heat exchange between the cooling medium and the multiple powertrain heating models and heat exchanger models 41 .
  • the fan model 31 may be a device that accelerates heat exchange between the heat exchanger and the atmosphere.
  • the cooling medium pipeline model 42 can be a device that connects multiple powertrain heating models and heat exchanger models 41; the electric heating device model 32 and the electric cooling device model 33 can provide electric heat sources and electric cooling sources for the power battery 14. device.
  • the second step is to obtain test data by conducting performance tests under thermal management conditions.
  • the thermal management working conditions can include power motor cooling working conditions, DC converter cooling working conditions, vehicle charger cooling working conditions, power battery self-circulation working conditions, power battery cooling working conditions, power battery heating working conditions and engine cooling working conditions. condition.
  • determine the model parameters of the system simulation model of the thermal management system determine the model parameters of the system simulation model of the thermal management system, optimize the system simulation model of the thermal management system, and calculate the simulation accuracy (that is, model accuracy) of the system simulation model.
  • the vehicle controller controls the operation of the thermal management system.
  • the vehicle controller controls the driving of the vehicle and collects the electric power of the powertrain (i.e., the power unit), and at the same time collects the temperature data of the temperature sensor corresponding to the powertrain (i.e., the sensor temperature data), and determines whether the powertrain According to the current thermal state, and based on the preset temperature threshold, it controls the operation of temperature control devices such as fans, water pumps, electric heating devices or electric cooling devices.
  • the powertrain i.e., the power unit
  • the temperature data of the temperature sensor corresponding to the powertrain i.e., the sensor temperature data
  • the fourth step is temperature simulation of the powertrain.
  • the vehicle controller inputs the collected electric power data of the powertrain and the control signal data of the temperature control device into the system simulation model of the thermal management system, and calculates the simulated temperature of the powertrain through the system simulation model ( That is, the model calculates temperature data).
  • the fifth step is optimal estimation of powertrain temperature.
  • the optimal powertrain temperature is calculated through a weighted average algorithm Estimate (i.e. current device temperature).
  • the acquisition accuracy of the temperature sensor and the simulation accuracy of the system simulation model of the thermal management system are weighting factors.
  • the weighting factor will be adjusted according to different working conditions.
  • the temperature simulation data of the thermal management system will be initialized and deviate from the real assembly temperature.
  • the simulation accuracy of the system simulation model will be reduced under this working condition. Therefore, the weighting factor corresponding to the sensor temperature data can be increased to reduce the The weighting factor corresponding to the temperature data of the simulation model.
  • the temperature change rate exceeds the threshold, it belongs to the dynamic characteristics of the thermal management system.
  • the system simulation model is a static model, and the test data is also static data. Under this working condition, the simulation accuracy of the system simulation model will be reduced, so the accuracy of the sensor temperature data can be improved.
  • Weighting factor reduce the weighting factor corresponding to the temperature data of the simulation model.
  • the weighting factor of the sensor temperature signal is increased to 1, and the weighting factor of the simulation model temperature data is decreased to 0.
  • the temperature change rate exceeds 1°C per second, increase the weighting factor of the sensor temperature signal to 1 and reduce the weighting factor of the simulation model temperature data to 0.
  • the optimal estimated value of the powertrain temperature is fed back to the vehicle controller as an input signal to control the thermal management system to control the temperature control device in the thermal management system to reduce the operating temperature of the powertrain.
  • the control method of the vehicle thermal management system may include: (1) establishing a simulation model of the motor cooling circuit.
  • the motor cooling circuit simulation model may include a power motor model, a DC converter model, a vehicle charger model, a heat exchanger model, a water pump model, a fan model, and a cooling medium pipeline model.
  • the thermal management conditions can include motor cooling conditions, DC converter cooling conditions and vehicle charger cooling conditions.
  • the vehicle controller controls the driving of the vehicle and collects the electric power of the power motor, DC converter and on-board charger.
  • the vehicle controller inputs the collected electrical power signals of the power motor, DC converter and on-board charger, as well as the control signals of the water pump and fan, into the motor cooling circuit simulation model of the thermal management system, and calculates the power motor, DC Simulated temperatures of converter and on-board charger.
  • the vehicle controller will use the temperature and sensor accuracy of the power motor, DC converter and on-board charger collected by the sensor, as well as the temperature and calculation accuracy of the power motor, DC converter and on-board charger calculated by the simulation model ( That is, model accuracy), weighted calculations are made to calculate the optimal estimated temperatures of the power motor, DC converter and on-board charger.
  • the vehicle controller uses the optimal estimated temperatures of the power motor, DC converter and on-board charger as inputs to control the motor cooling circuit to cool the power motor.
  • the control method of the vehicle thermal management system may include: (1) establishing a battery cooling circuit simulation model.
  • the battery cooling circuit simulation model may include a power battery model, an electric heating device model, an electric cooling device model, a water pump model and a cooling medium pipeline model.
  • the thermal management conditions may include power battery cooling conditions and power battery heating conditions.
  • the vehicle controller controls the driving of the vehicle and uses the electric power of the power battery.
  • the vehicle controller collects the temperature signal of the power battery temperature sensor, determines the thermal status of the power battery, and controls the water pump, electric heating device and electric cooling according to the preset temperature threshold. Pack Setup work.
  • the vehicle controller inputs the collected electric power signal of the power battery and the control signals of the water pump, electric heating device and electric cooling device to the battery cooling circuit simulation model of the thermal management system to calculate the simulation temperature of the power battery.
  • the vehicle controller will calculate the optimal estimated temperature of the power battery based on the temperature and sensor accuracy of the power battery collected by the sensor, as well as the temperature and calculation accuracy of the power battery calculated by the simulation model.
  • the vehicle controller uses the optimal estimated temperature of the power battery as an input to control the battery cooling circuit to cool the power battery.
  • the control method of the vehicle thermal management system may include: (1) establishing a simulation model of the engine cooling circuit.
  • the engine cooling circuit simulation model may include an engine model, a heat exchanger model, a water pump model, a fan model and a cooling medium pipeline model.
  • the thermal management conditions may include engine cooling conditions.
  • the vehicle controller controls the driving of the vehicle, collects the power of the engine, and collects the temperature signal of the engine temperature sensor to determine the thermal status of the engine, and controls the operation of the fan and water pump according to the preset temperature threshold.
  • the vehicle controller inputs the collected engine power signals and control signals to the water pump and fan to the engine cooling circuit simulation model of the thermal management system to calculate the simulated engine temperature.
  • the vehicle controller will calculate the optimal estimated engine temperature based on the engine temperature and sensor accuracy collected by the sensor, as well as the engine temperature and calculation accuracy calculated by the simulation model.
  • the vehicle controller uses the optimal estimated temperature of the engine as an input to control the engine cooling circuit to cool the engine.
  • the above technical solution can obtain high-precision temperature signals by using low-cost and low-precision temperature sensors, thereby achieving optimal performance of the vehicle thermal management system on the basis of reducing vehicle costs.
  • FIG. 5 is a schematic diagram of a control device of a vehicle thermal management system provided in Embodiment 4 of the present application. As shown in Figure 5, the device includes: a data acquisition module 510, a control signal data determination module 520, and a model calculation temperature data determination module. module 530 and system control module 540, where:
  • the data acquisition module 510 is configured to acquire the electric power data of the target power device in the thermal management system to be controlled and the sensor temperature data corresponding to the target power device during the driving of the vehicle;
  • the control signal data determination module 520 is configured to determine the control signal data corresponding to the target power device when it is determined that the sensor temperature data reaches a preset temperature threshold;
  • the model calculated temperature data determination module 530 is configured to input the electrical power data and the control signal data into the system simulation model of the thermal management system to be controlled, so as to obtain the model calculated temperature data through the system simulation model;
  • the system control module 540 is configured to control the thermal management system to be controlled based on the sensor temperature data and the model calculated temperature data.
  • the technical solution of this embodiment is to obtain the electrical power data of the target power device in the thermal management system to be controlled during vehicle driving, as well as the sensor temperature data corresponding to the target power device, and determine that the sensor temperature data reaches the preset temperature threshold. , determine the control signal data corresponding to the target power device, input the electric power data and control signal data into the system simulation model of the thermal management system to be controlled, so as to obtain the model calculated temperature data through the system simulation model, so as to calculate the temperature data according to the sensor temperature data and model Calculate the temperature data to control the thermal management system to be controlled, solving the problem that the control of the vehicle thermal management system in related technologies cannot ensure the performance of the thermal management system while reducing vehicle costs. It can improve the performance of the thermal management system without using high-precision temperature sensors. The accuracy of temperature acquisition can reduce vehicle costs and improve the performance of vehicle thermal management systems.
  • the target power device may include at least one of a power motor device, a DC converter device, a vehicle charging device, a power battery device, and an engine device;
  • the control signal data may include at least a water pump control signal, a fan control signal, and an electric heating device.
  • One of the control signal and the electric cooling device control signal may include at least one of a power motor device, a DC converter device, a vehicle charging device, a power battery device, and an engine device;
  • the control signal data may include at least a water pump control signal, a fan control signal, and an electric heating device.
  • One of the control signal and the electric cooling device control signal may include at least one of a power motor device, a DC converter device, a vehicle charging device, a power battery device, and an engine device;
  • the data acquisition module 510 may be configured to: determine the current thermal state of the target power device based on the sensor temperature data; determine the preset temperature threshold corresponding to the current thermal state based on the current thermal state.
  • the model calculation temperature data determination module 530 can be set to: based on the heat pipe to be controlled Management system, establish a system simulation model corresponding to the thermal management system to be controlled; obtain system performance test data of the thermal management system to be controlled under different thermal management conditions; optimize the model parameters of the system simulation model based on the system performance test data.
  • the system control module 540 can be configured to: determine the sensor accuracy corresponding to the sensor temperature data, and use the sensor accuracy as the first weighting factor corresponding to the sensor temperature data; determine the model accuracy corresponding to the system simulation model, and use the model accuracy As the second weighting factor corresponding to the model-calculated temperature data; through the weighted average algorithm, the target is determined based on the sensor temperature data, the first weighting factor corresponding to the sensor temperature data, the model-calculated temperature data, and the second weighting factor corresponding to the model-calculated temperature data.
  • the current device temperature corresponding to the power device based on the current device temperature, the thermal management system to be controlled is controlled.
  • system control module 540 may be configured to: determine the temperature change rate of the sensor temperature data; when the temperature change rate exceeds the change rate threshold, increase the first weighting factor corresponding to the sensor temperature data to the first target weighting value. , and reduce the second weighting factor corresponding to the model calculated temperature data to the second target weighting value.
  • system control module 540 may also be configured to: determine the startup time of the vehicle control device corresponding to the thermal management system to be controlled; if the startup time does not reach the time threshold, increase the first weighting factor corresponding to the sensor temperature data. to the first target weighting value, and reduce the second weighting factor corresponding to the model calculated temperature data to the second target weighting value.
  • the control device of the vehicle thermal management system provided by the embodiments of the present application can execute the control method of the vehicle thermal management system provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • FIG. 6 shows a schematic structural diagram of an electronic device 10 that can be used to implement embodiments of the present application.
  • Electronic devices are intended to refer to various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Electronic devices may also represent various forms of mobile devices, such as personal digital processing, cellular Cell phones, smart phones, wearable devices (such as helmets, glasses, watches, etc.) and other similar computing devices.
  • the components shown herein, their connection relationships, and their functions are merely examples and are not intended to limit the scope of protection of the present application.
  • the electronic device 60 includes at least one processor 61, and a memory communicatively connected to the at least one processor 61, such as a read-only memory (Read-Only Memory, ROM) 62, a random access memory (Random Access Memory, RAM) 63, etc., wherein the memory stores a computer program that can be executed by at least one processor, and the processor 61 can be loaded into the random access memory (RAM) according to the computer program stored in the read-only memory (ROM) 62 or from the storage unit 68.
  • Computer program in RAM) 63 to perform various appropriate actions and processes.
  • various programs and data required for the operation of the electronic device 60 can also be stored.
  • the processor 61, ROM 62 and RAM 63 are connected to each other via a bus 64.
  • An input/output (I/O) interface 65 is also connected to the bus 64 .
  • the I/O interface 65 includes: an input unit 66, such as a keyboard, a mouse, etc.; an output unit 67, such as various types of displays, speakers, etc.; a storage unit 68, such as a magnetic disk, an optical disk, etc. etc.; and a communication unit 69, such as a network card, modem, wireless communication transceiver, etc.
  • the communication unit 69 allows the electronic device 60 to exchange information/data with other devices through computer networks such as the Internet and various telecommunications networks.
  • Processor 61 may be a variety of general or special purpose processing components having processing and computing capabilities. Examples of the processor 61 include, but are not limited to, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU), various dedicated artificial intelligence (Artificial Intelligence, AI) computing chips, and various running machines. Processor of learning model algorithm, digital signal processor (Digital Signal Processing, DSP), and any appropriate processor, controller, microcontroller, etc. The processor 61 performs the methods and processes described above, such as the control method of the vehicle thermal management system.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • AI Artificial Intelligence
  • DSP Digital Signal Processing
  • the processor 61 performs the methods and processes described above, such as the control method of the vehicle thermal management system.
  • control method of the vehicle thermal management system may be implemented as a computer program, which is tangibly embodied in a computer-readable storage medium, such as the storage unit 68 .
  • part or all of the computer program may be loaded via at least one of ROM 62 and communication unit 69 Or installed on the electronic device 60.
  • the computer program is loaded into the RAM 63 and executed by the processor 61, at least one step of the control method of the vehicle thermal management system described above may be performed.
  • the processor 61 may be configured to perform the control method of the vehicle thermal management system in any other suitable manner (eg, by means of firmware).
  • Various implementations of the systems and techniques described above may be implemented in digital electronic circuit systems, integrated circuit systems, Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Implemented in Application Specific Standard Parts (ASSP), System on Chip (SOC), Complex Programmable Logic Device (CPLD), computer hardware, firmware, software, and their combinations .
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Parts
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • computer hardware firmware, software, and their combinations .
  • Computer programs for implementing the methods of the present application may be written in any combination of at least one programming language. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that when executed by the processor, the computer program causes the functions or operations specified in the flowcharts and block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • Computer-readable storage media may include electrical connections based on at least one wire, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable Programmable Read Only Memory (Erasable Programmable Read -Only Memory (EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM Erasable Programmable Read Only Memory
  • flash memory optical fiber
  • portable compact disk read-only memory Compact Disc Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory
  • magnetic storage device or any suitable combination of the above.
  • the systems and techniques described herein may be implemented on an electronic device having a display device (e.g., a cathode ray tube (CRT) or liquid crystal) for displaying information to the user.
  • a display device e.g., a cathode ray tube (CRT) or liquid crystal
  • a display Liquid Crystal Display, LCD monitor
  • a keyboard and pointing device e.g., a mouse or a trackball
  • Other kinds of devices may also be configured to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and may be provided in any form, including Acoustic input, voice input or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN), blockchain network, and the Internet.
  • Computing systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.
  • the server can be a cloud server, also known as cloud computing server or cloud host. It is a host product in the cloud computing service system to solve the problems that exist between traditional physical host and virtual private server (VPS) services. It has the disadvantages of difficult management and weak business scalability.
  • VPN virtual private server

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Temperature (AREA)

Abstract

本申请实施例公开了一种车辆热管理***的控制方法、装置、设备及介质。该方法包括:获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据;在确定传感器温度数据达到预设温度阈值的情况下,确定目标动力装置对应的控制信号数据;将电功率数据和控制信号数据,输入至待控制热管理***的***仿真模型中,以通过***仿真模型得到模型计算温度数据;根据传感器温度数据和模型计算温度数据,对待控制热管理***进行控制。

Description

一种车辆热管理***的控制方法、装置、设备及介质
本申请要求在2022年5月31日提交中国专利局、申请号为202210614043.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及车辆技术领域,例如涉及一种车辆热管理***的控制方法、装置、设备及介质。
背景技术
汽车,如混合动力汽车或电动汽车的热管理***是通过管路将多个动力总成连接起来,通过冷却介质对多个动力总成和外界环境进行热交换,使动力总成工作在最佳温度范围内。车辆控制器通过温度传感器采集多个动力总成的温度,控制热管理***的水泵或风扇工作,实现热量交换,使多个动力总成达到热平衡。对多个动力总成温度和冷却介质温度的采集,是实现动力***热管理的关键因素。
通过温度传感器可以采集多个动力总成的温度信息,然而不同的温度传感器的精度不同。为了降低成本,如果采用精度较低的温度传感器,则会导致热管理***的控制效果不理想。例如,采用精度较低的温度传感器时,如果不降低温度判断阈值,会使动力总成长期工作在不合适的温度,导致使用寿命降低;降低温度判断阈值,会导致车辆能耗升高,降低续驶里程。
发明内容
本申请实施例提供一种车辆热管理***的控制方法、装置、设备及介质,能够在不使用高精度的温度传感器的条件下,提高温度采集的精确性,从而降 低车辆成本,提高车辆热管理***的性能。
根据本申请的一方面,提供了一种车辆热管理***的控制方法,包括:
获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据;
在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据;
将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据;
根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
根据本申请的另一方面,提供了一种车辆热管理***的控制装置,包括:
数据获取模块,设置为在车辆行驶过程中,获取待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据;
控制信号数据确定模块,设置为在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据;
模型计算温度数据确定模块,设置为将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据;
***控制模块,设置为根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
根据本申请的另一方面,提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请任一实施例所述的车辆热管理***的控制方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,存储有计算机指令,所述计算机指令设置为使处理器执行时实现本申请任一实施例所述的车辆热管理***的控制方法。
附图说明
图1是本申请实施例一提供的一种车辆热管理***的控制方法的流程图;
图2是本申请实施例二提供的一种车辆热管理***的控制方法的流程图;
图3是本申请实施例三提供的一种车辆热管理***的控制方法的示例流程图;
图4是本申请实施例三提供的一种***仿真模型的示例结构示意图;
图5是本申请实施例四提供的一种车辆热管理***的控制装置的示意图;
图6是实现本申请实施例的车辆热管理***的控制方法的电子设备的结构示意图。
具体实施方式
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1是本申请实施例一提供的一种车辆热管理***的控制方法的流程图, 本实施例可适用于在不使用高精度的温度传感器的条件下,提高温度采集的精确性的情况,该方法可以由车辆热管理***的控制装置执行,该装置可以通过软件和硬件中至少之一的方式实现,并一般可以直接集成在执行本方法的电子设备中,该电子设备可以是终端设备,也可以是服务器设备,本申请实施例并不对执行车辆热管理***的控制方法的电子设备的类型进行限定。示例性的,如图1所示,该车辆热管理***的控制方法可以包括如下步骤:
S110、获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据。
其中,待控制热管理***可以是任意需要进行热管理控制的***。可以理解的是,热管理***中可以包括至少一个动力装置。通过对热管理***进行控制,可以使车辆的动力装置工作在合适的温度范围内,从而提高车辆性能。目标动力装置可以是任意能够为车辆提供动力的装置。可以理解的是,目标动力装置可以是热管理***中的任意一个动力装置。可选的,目标动力装置可以至少包括动力电机装置,直流变换器装置,车载充电装置,动力电池装置和发动机装置中的一个。电功率数据可以是车辆在行驶过程中,电流流过目标动力装置时在单位时间内的功率数据。传感器温度数据可以是车辆在行驶过程中,目标动力装置对应的温度传感器采集到的目标动力装置的温度数据。
在本申请实施例中,在车辆行驶过程中,获取待控制热管理***中目标动力装置的电功率数据,并获取目标动力装置对应的传感器温度数据。需要说明的是,车辆可以是混合动力汽车,也可以是电动汽车,本申请实施例对此并不进行限制。可以理解的是,车辆在行驶过程中,电流流过动力装置会产生电功率数据,而且随着动力装置的运行,动力装置的温度会随之升高。为了保障车辆性能,需要将动力装置的温度控制在合适的范围。
S120、在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据。
其中,预设温度阈值可以是预先设定的与目标动力装置匹配的温度阈值。 可以理解的是,不同的动力装置对应的预设温度阈值可以不同。控制信号数据可以是对温度控制装置进行控制的信号数据。可以理解的是,通过对温度控制装置进行控制,可以降低温度控制装置对应的目标动力装置的温度。可选的,温度控制装置可以包括水泵、风扇、电加热装置或电冷却装置。相应的,控制信号数据可以至少包括水泵控制信号,风扇控制信号,电加热装置控制信号和电冷却装置控制信号中的一个。需要说明的是,不同的目标动力装置可以对应不同的温度控制装置,一个目标动力装置可以对应多个温度控制装置。
在本申请实施例中,在获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据之后,可以判断传感器温度数据是否达到预设温度阈值,并在确定传感器温度数据达到预设温度阈值时,确定目标动力装置对应的控制信号数据。可以理解的是,在传感器温度数据达到预设温度阈值时,需要对目标动力装置对应的温度控制装置进行控制,以降低传感器温度数据,使目标动力装置工作在正常的温度范围内。可以理解的是,在传感器温度数据未达到预设温度阈值时,说明目标动力装置工作在正常的温度范围内,不需要控制目标动力装置对应的温度控制装置。
S130、将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据。
其中,***仿真模型可以是根据车辆热管理***中的动力装置和温度控制装置进行仿真得到的模型。模型计算温度数据可以是通过***仿真模型计算得到的目标动力装置对应的温度数据。
在本申请实施例中,在确定目标动力装置对应的控制信号数据之后,可以将电动率数据和控制信号数据,输入至待控制热管理***的***仿真模型中,以通过***仿真模型得到模型计算温度数据。
S140、根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
在本申请实施例中,在通过***仿真模型得到模型计算温度数据之后,可 以根据传感器温度数据和模型计算温度数据对待控制热管理***进行控制。可以理解的是,目标动力装置对应的温度传感器的采集精度较低时,无法精确的对目标动力装置对应的温度控制装置进行控制。
本实施例的技术方案,通过获取车辆行驶过程中待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据,并在确定传感器温度数据达到预设温度阈值的情况下,确定目标动力装置对应的控制信号数据,将电功率数据和控制信号数据,输入至待控制热管理***的***仿真模型中,以通过***仿真模型得到模型计算温度数据,从而根据传感器温度数据和模型计算温度数据对待控制热管理***进行控制,解决相关技术的车辆热管理***的控制无法在降低车辆成本的同时确保热管理***性能的问题,能够在不使用高精度的温度传感器的条件下,提高温度采集的精确性,从而降低车辆成本,提高车辆热管理***的性能。
实施例二
图2是本申请实施例二提供的一种车辆热管理***的控制方法的流程图,本实施例是对上述技术方案的细化,给出了获取待控制热管理***中目标动力装置的电功率数据,在车辆行驶过程中,目标动力装置对应的传感器温度数据,将电功率数据和控制信号数据,输入至待控制热管理***的***仿真模型,以及根据传感器温度数据和模型计算温度数据,对待控制热管理***进行控制的多种可选的实现方式。本实施例中的技术方案可以与上述至少一个实施例中的可选方案结合。如图2所示,该方法可以包括如下步骤:
S210、获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据。
可选的,在获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据之后,可以包括:根据传感器温度数据确定目标动力装置的当前热状态;根据当前热状态确定与当前热 状态对应的预设温度阈值。
其中,当前热状态可以是目标动力装置在当前温度下的状态,例如可以是目标动力装置在当前较高的温度下需要进行冷却的状态,也可以是目标动力装置在当前较低的温度下需要进行加热的状态等,本申请实施例对此并不进行限制。示例性的,动力电池装置在较高的温度下需要进行冷却,在较低的温度下需要进行加热。
示例性的,在获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据之后,可以根据传感器温度数据确定目标动力装置的当前热状态,并根据当前热状态确定与当前热状态对应的预设温度阈值。可以理解的是,不同的传感器温度数据可以对应不同的热状态,不同的热状态可以对应不同的预设温度阈值。
S220、在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据。
S230、将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据。
可选的,在所述将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型之前,可以包括:根据所述待控制热管理***,建立所述待控制热管理***对应的***仿真模型;获取所述待控制热管理***,在不同热管理工况下的***性能试验数据;根据所述***性能试验数据对所述***仿真模型的模型参数进行优化。
其中,热管理工况可以是热管理***中动力装置对应的工况。示例性的,热管理工况可以包括动力电机装置冷却工况、直流变换器装置冷却工况、车载充电装置冷却工况、动力电池装置冷却工况、动力电池装置加热工况、动力电池装置自循环工况或发动机装置冷却工况。***性能试验数据可以是对车辆的热管理***进行性能试验得到的数据。模型参数可以是***仿真模型中任意装置对应的参数。示例性的,模型参数可以包括输水量参数、比热值参数、重量 参数或散热率参数等,本申请实施例对此并不进行限制。
示例性的,在将电功率数据和控制信号数据输入至待控制热管理***的***仿真模型之前,可以根据待控制热管理***建立***仿真模型,并获取待控制热管理***在不同热管理工况下的***性能试验数据,以根据***性能试验数据对***仿真模型的模型参数进行优化。可以理解的是,对热管理***进行性能试验的次数越多,得到的***性能试验数据越多,从而***仿真模型的模型参数精确度越高。需要说明的是,本申请实施例对根据***性能试验数据对***仿真模型的模型参数进行优化的实现方式并不进行限制,只要能够实现***仿真模型的模型参数的优化即可。
S240、确定所述传感器温度数据对应的传感器精度,并将所述传感器精度作为所述传感器温度数据对应的第一加权因子。
其中,传感器精度可以是温度传感器采集温度数据的精度。第一加权因子可以是加权平均算法中传感器温度数据对应的加权因子。
在本申请实施例中,在通过***仿真模型得到模型计算温度数据之后,可以确定传感器温度数据对应的传感器精度,并将传感器精度作为传感器温度数据对应的第一加权因子。
S250、确定所述***仿真模型对应的模型精度,并将所述模型精度作为所述模型计算温度数据对应的第二加权因子。
其中,模型精度可以是***仿真模型计算模型计算温度数据的精度。第二加权因子可以是加权平均算法中模型计算温度数据对应的加权因子。
在本申请实施例中,在通过***仿真模型得到模型计算温度数据之后,可以确定***仿真模型对应的模型精度,并将模型精度作为模型计算温度数据对应的第二加权因子。
需要说明的是,本申请实施例并不对S240和S250的顺序进行限定,也即,S240和S250可以并行实施或择一实施。
S260、通过加权平均算法,根据所述传感器温度数据、所述传感器温度数 据对应的第一加权因子、所述模型计算温度数据和所述模型计算温度数据对应的第二加权因子,确定所述目标动力装置对应的当前装置温度。
其中,当前装置温度可以是当前目标动力装置的温度。
在本申请实施例中,在确定第一加权因子和第二加权因子之后,可以通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度。可以理解的是,当前装置温度可以为传感器温度数据与第一加权因子的乘积,与,模型计算温度数据与第二加权因子的乘积,的和值。
可选的,在通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度之前,还可以包括:确定传感器温度数据的温度变化率;在温度变化率超过变化率阈值的情况下,提高传感器温度数据对应的第一加权因子至第一目标加权值,并降低模型计算温度数据对应的第二加权因子至第二目标加权值。
其中,温度变化率可以是目标动力装置对应的温度传感器采集到的温度数据的变化率。变化率阈值可以是预先设定的温度数据变化率对应的阈值。第一目标加权值可以是加权因子的一个目标数值。第二目标加权值可以是加权因子的其他目标数值。
示例性的,在通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度之前,可以确定传感器温度数据的温度变化率,并判断温度变化率是否超过变化率阈值。当温度变化率超过变化率阈值时,将传感器温度数据对应的第一加权因子提高至第一目标加权值,并将模型计算温度数据对应的第二加权因子降低至第二目标加权值。可以理解的是,温度变化率超过变化率阈值时,目标动力装置的温度变化过快,此时热 管理***为动态***,但是***仿真模型是静态模型,因此***仿真模型的模型精度会降低。
可以理解的是,如果温度变化率未超过变化率阈值,则不需要调整第一加权因子和第二加权因子。在不调整第一加权因子和第二加权因子的情况下,第一加权因子对应的加权值小于第一目标加权值,第二加权因子对应的加权值大于第二目标加权值。
可选的,在通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度之前,还可以包括:确定待控制热管理***对应的车辆控制装置的启动时间;在启动时间未达到时间阈值的情况下,提高传感器温度数据对应的第一加权因子至第一目标加权值,并降低模型计算温度数据对应的第二加权因子至第二目标加权值。
其中,车辆控制装置可以是控制整个车辆的装置。示例性的,车辆控制装置可以包括控制车辆启动的装置、控制车辆的温度控制装置的装置或控制车辆的动力装置的装置等,本申请实施例对此并不进行限制。启动时间可以是启动车辆控制装置的时间。时间阈值可以是预先设定的启动车辆控制装置的时间阈值。
示例性的,在通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度之前,可以确定待控制热管理***对应的车辆控制装置的启动时间,并判断启动时间是否达到时间阈值。当启动时间未达到时间阈值时,将传感器温度数据对应的第一加权因子提高至第一目标加权值,并将模型计算温度数据对应的第二加权因子降低至第二目标加权值。可以理解的是,启动时间未达到时间阈值时,***仿真模型计算得到的模型计算温度数据偏离目标动力装置的真实温度数据,因此***仿真模型的模型精度会降低。
S270、根据所述当前装置温度,对所述待控制热管理***进行控制。
在本申请实施例中,在确定目标动力装置对应的当前装置温度之后,可以根据当前装置温度对待控制热管理***进行控制。可以理解的是,根据当前装置温度对待控制热管理***进行控制,可以是在目标动力装置的当前装置温度超过正常工作温度阈值时,控制热管理***中的温度控制装置,以降低目标动力装置的温度,使目标动力装置工作在正常工作温度阈值范围内。
本实施例的技术方案,通过获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据,并在确定传感器温度数据达到预设温度阈值的情况下确定目标动力装置对应的控制信号数据,再将电功率数据和控制信号数据输入至待控制热管理***的***仿真模型中,通过***仿真模型得到模型计算温度数据,再确定传感器温度数据对应的传感器精度,并将传感器精度作为传感器温度数据对应的第一加权因子,确定***仿真模型对应的模型精度,并将模型精度作为模型计算温度数据对应的第二加权因子,以通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度,从而根据当前装置温度对待控制热管理***进行控制,解决相关技术的车辆热管理***的控制无法在降低车辆成本的同时确保热管理***性能的问题,能够在不使用高精度的温度传感器的条件下,提高温度采集的精确性,从而降低车辆成本,提高车辆热管理***的性能。
实施例三
本申请实施例以控制混合动力汽车的热管理***的应用场景为例进行说明。图3是本申请实施例三提供的一种车辆热管理***的控制方法的示例流程图,如图3所示,例如可以包括以下内容:
第一步,建立热管理***的***仿真模型。
图4是本申请实施例三提供的一种***仿真模型的示例结构示意图,如图4所示,***仿真模型可以包括多个动力总成发热模型,热交换器模型41,水泵模型21、22、23,风扇模型31,冷却介质管路模型42,电加热装置模型32和电冷却装置模型33。其中,动力总成发热模型可以包括动力电机模型11,直流变换器模型12,车载充电机模型13,动力电池模型14和发动机模型15。示例性的,动力电机模型11、直流变换器模型12、车载充电器模型13、水泵模型21、冷却介质管路模型42和热交换器模型41组成第一冷却回路。动力电池模型14、电加热装置模型32、电冷却装置模型33、水泵模型22和冷却介质管路模型42组成第二冷却回路。发动机模型15、水泵模型23、冷却介质管路模型42、热交换器模型41和风扇模型31组成第三冷却回路。每个动力总成发热模型都有自己的发热特性,即不同的动力总成发热模型在不同的电功率下工作时,发热功率不同。
热交换器模型41可以是热管理***与外界大气交换热量的装置,冷却介质在热交换器模型41中流过时能够将热量释放到大气中。水泵模型21、22、23可以是驱动冷却介质在冷却管路中流动的装置,可以控制冷却介质的流速,从而改变冷却介质与多个动力总成发热模型及热交换器模型41的热交换量。风扇模型31可以是加速热交换器与大气热量交换的装置。冷却介质管路模型42可以是连接多个动力总成发热模型及热交换器模型41的装置;电加热装置模型32和电冷却装置模型33可以是为动力电池14提供电热源和电冷却源的装置。
第二步,通过进行热管理工况的性能试验,获得试验数据。
其中,热管理工况可以包括动力电机冷却工况,直流变换器冷却工况,车载充电器冷却工况,动力电池自循环工况,动力电池冷却工况,动力电池加热工况以及发动机冷却工况。根据热管理工况的试验数据,确定热管理***的***仿真模型的模型参数,优化热管理***的***仿真模型,并计算***仿真模型的仿真精度(也即模型精度)。
第三步,整车控制器(也即整车控制装置)控制热管理***工作。
示例性的,整车控制器控制车辆行驶,并且采集动力总成(也即动力装置)的电功率,同时采集动力总成对应的温度传感器的温度数据(也即传感器温度数据),判断动力总成的当前热状态,并根据预设温度阈值,控制风扇、水泵、电加热装置或电冷却装置等温度控制装置工作。
第四步,动力总成的温度仿真。
示例性的,整车控制器将采集到的动力总成的电功率数据和对温度控制装置的控制信号数据输入至热管理***的***仿真模型,并通过***仿真模型计算动力总成的仿真温度(也即模型计算温度数据)。
第五步,动力总成温度最优估计。
示例性的,根据动力总成对应的温度传感器的采集温度数据及传感器精度,和热管理***的***仿真模型计算得到的仿真温度及仿真精度,通过加权平均算法,计算出动力总成温度最优估计(也即当前装置温度)。其中,温度传感器的采集精度和热管理***的***仿真模型的仿真精度是加权因子。
需要说明的是,加权因子会根据工况的不同而进行调节。在整车控制器重启时,热管理***的温度仿真数据会初始化,偏离真实的总成温度,该工况下***仿真模型的仿真精度会降低,因此可以提高传感器温度数据对应的加权因子,降低仿真模型温度数据对应的加权因子。温度变化率超过阈值时,属于热管理***的动态特性,而***仿真模型是静态模型,试验数据也是静态数据,该工况下***仿真模型的仿真精度会降低,因此可以提高传感器温度数据对应的加权因子,降低仿真模型温度数据对应的加权因子。示例性的,在整车控制器重启时,提高传感器温度信号的加权因子到1,降低仿真模型温度数据的加权因子到0。温度变化率超过每秒1℃时,提高传感器温度信号的加权因子到1,降低仿真模型温度数据的加权因子到0。
第六步,将动力总成温度最优估计值反馈给整车控制器,作为控制热管理***的输入信号,控制热管理***中的温度控制装置,以降低动力总成的工作温度。
在本申请实施例的一个示例中,以第一冷却回路中的电机冷却为例,该车辆热管理***的控制方法可以包括:(1)建立电机冷却回路仿真模型。示例性的,电机冷却回路仿真模型可以包括动力电机模型,直流变换器模型,车载充电机模型,热交换器模型,水泵模型,风扇模型和冷却介质管路模型。(2)在试验台架上进行热管理工况的性能试验,采集试验数据,完善热管理***的仿真模型。其中,热管理工况可以包括电机冷却工况,直流变换器冷却工况和车载充电器冷却工况。(3)整车控制器控制车辆行驶,并且采集动力电机、直流变换器和车载充电机的电功率,同时采集动力电机、直流变换器和车载充电机分别对应的温度传感器的温度信号,判断动力电机、直流变换器和车载充电机热状态,根据预设的温度阈值,控制风扇和水泵工作。(4)整车控制器将采集到的动力电机、直流变换器和车载充电机的电功率信号,以及对水泵和风扇的控制信号输入至热管理***电机冷却回路仿真模型,计算出动力电机、直流变换器和车载充电机的仿真温度。(5)整车控制器将根据传感器采集到的动力电机、直流变换器和车载充电机的温度以及传感器精度,以及仿真模型计算的动力电机、直流变换器和车载充电机的温度以及计算精度(也即模型精度),加权计算出最优的动力电机、直流变换器和车载充电机的估计温度。(6)整车控制器将动力电机、直流变换器和车载充电机的最优估计温度作为控制电机冷却回路的输入,以冷却动力电机。
在本申请实施例的一个示例中,以第二冷却回路中的电池冷却为例,该车辆热管理***的控制方法可以包括:(1)建立电池冷却回路仿真模型。示例性的,电池冷却回路仿真模型可以包括动力电池模型,电加热装置模型,电冷却装置模型,水泵模型和冷却介质管路模型。(2)在试验台架上进行热管理工况的性能试验,采集试验数据,完善热管理***的仿真模型。其中,热管理工况可以包括动力电池冷却工况和动力电池加热工况。(3)整车控制器控制车辆行驶,并且采动力电池的电功率,同时采集动力电池温度传感器的温度信号,判断动力电池热状态,根据预设的温度阈值,控制水泵、电加热装置和电冷却装 置工作。(4)整车控制器将采集到的动力电池的电功率信号和对水泵、电加热装置和电冷却装置的控制信号输入给热管理***电池冷却回路仿真模型,计算出动力电池的仿真温度。(5)整车控制器将根据传感器采集到的动力电池的温度和传感器精度,以及仿真模型计算的动力电池的温度和计算精度,加权计算出最优的动力电池的估计温度。(6)整车控制器将动力电池的最优估计温度作为控制电池冷却回路的输入,以冷却动力电池。
在本申请实施例的一个示例中,以第三冷却回路中的发动机冷却为例,该车辆热管理***的控制方法可以包括:(1)建立发动机冷却回路仿真模型。示例性的,发动机冷却回路仿真模型可以包括发动机模型,热交换器模型,水泵模型,风扇模型和冷却介质管路模型。(2)在试验台架上进行热管理工况的性能试验,采集试验数据,完善热管理***的仿真模型。其中,热管理工况可以包括发动机冷却工况。(3)整车控制器控制车辆行驶,并且采集发动机的功率,同时采集发动机温度传感器的温度信号,判断发动机热状态,根据预设的温度阈值,控制风扇和水泵工作。(4)整车控制器将采集到的发动机的功率信号以及对水泵和风扇的控制信号输入给热管理***发动机冷却回路仿真模型,计算出发动机的仿真温度。(5)整车控制器将根据传感器采集到的发动机的温度和传感器精度,以及仿真模型计算的发动机的温度和计算精度,加权计算出最优的发动机的估计温度。(6)整车控制器将发动机的最优估计温度作为控制发动机冷却回路的输入,以冷却发动机。
上述技术方案,能够通过采用低成本低精度的温度传感器,获得高精度的温度信号,从而在降低整车成本的基础上,达到整车热管理***的最优性能。
实施例四
图5是本申请实施例四提供的一种车辆热管理***的控制装置的示意图,如图5所示,所述装置包括:数据获取模块510、控制信号数据确定模块520、模型计算温度数据确定模块530以及***控制模块540,其中:
数据获取模块510,设置为在车辆行驶过程中,获取待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据;
控制信号数据确定模块520,设置为在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据;
模型计算温度数据确定模块530,设置为将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据;
***控制模块540,设置为根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
本实施例的技术方案,通过获取车辆行驶过程中待控制热管理***中目标动力装置的电功率数据,以及目标动力装置对应的传感器温度数据,并在确定传感器温度数据达到预设温度阈值的情况下,确定目标动力装置对应的控制信号数据,将电功率数据和控制信号数据,输入至待控制热管理***的***仿真模型中,以通过***仿真模型得到模型计算温度数据,从而根据传感器温度数据和模型计算温度数据对待控制热管理***进行控制,解决相关技术的车辆热管理***的控制无法在降低车辆成本的同时确保热管理***性能的问题,能够在不使用高精度的温度传感器的条件下,提高温度采集的精确性,从而降低车辆成本,提高车辆热管理***的性能。
可选的,目标动力装置可以至少包括动力电机装置,直流变换器装置,车载充电装置,动力电池装置和发动机装置中的一个;控制信号数据可以至少包括水泵控制信号,风扇控制信号,电加热装置控制信号和电冷却装置控制信号中的一个。
可选的,数据获取模块510,可以设置为:根据传感器温度数据确定目标动力装置的当前热状态;根据当前热状态确定与当前热状态对应的预设温度阈值。
可选的,模型计算温度数据确定模块530,可以设置为:根据待控制热管 理***,建立待控制热管理***对应的***仿真模型;获取待控制热管理***,在不同热管理工况下的***性能试验数据;根据***性能试验数据对***仿真模型的模型参数进行优化。
可选的,***控制模块540,可以设置为:确定传感器温度数据对应的传感器精度,并将传感器精度作为传感器温度数据对应的第一加权因子;确定***仿真模型对应的模型精度,并将模型精度作为模型计算温度数据对应的第二加权因子;通过加权平均算法,根据传感器温度数据、传感器温度数据对应的第一加权因子、模型计算温度数据和模型计算温度数据对应的第二加权因子,确定目标动力装置对应的当前装置温度;根据当前装置温度,对待控制热管理***进行控制。
可选的,***控制模块540,可以设置为:确定传感器温度数据的温度变化率;在温度变化率超过变化率阈值的情况下,提高传感器温度数据对应的第一加权因子至第一目标加权值,并降低模型计算温度数据对应的第二加权因子至第二目标加权值。
可选的,***控制模块540,还可以设置为:确定待控制热管理***对应的车辆控制装置的启动时间;在启动时间未达到时间阈值的情况下,提高传感器温度数据对应的第一加权因子至第一目标加权值,并降低模型计算温度数据对应的第二加权因子至第二目标加权值。
本申请实施例所提供的车辆热管理***的控制装置可执行本申请任意实施例所提供的车辆热管理***的控制方法,具备执行方法相应的功能模块和效果。
实施例五
图6示出了可以用来实施本申请的实施例的电子设备10的结构示意图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂 窝电话、智能电话、可穿戴设备(如头盔、眼镜、手表等)和其它类似的计算装置。本文所示的部件、它们的连接关系、以及它们的功能仅仅作为示例,并且不意在限制申请本申请的保护范围。
如图6所示,电子设备60包括至少一个处理器61,以及与至少一个处理器61通信连接的存储器,如只读存储器(Read-Only Memory,ROM)62、随机访问存储器(Random Access Memory,RAM)63等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器61可以根据存储在只读存储器(ROM)62中的计算机程序或者从存储单元68加载到随机访问存储器(RAM)63中的计算机程序,来执行各种适当的动作和处理。在RAM 63中,还可存储电子设备60操作所需的各种程序和数据。处理器61、ROM 62以及RAM 63通过总线64彼此相连。输入/输出(Input/Output,I/O)接口65也连接至总线64。
电子设备60中的多个部件连接至I/O接口65,包括:输入单元66,例如键盘、鼠标等;输出单元67,例如各种类型的显示器、扬声器等;存储单元68,例如磁盘、光盘等;以及通信单元69,例如网卡、调制解调器、无线通信收发机等。通信单元69允许电子设备60通过诸如因特网的计算机网络和各种电信网络与其他设备交换信息/数据。
处理器61可以是各种具有处理和计算能力的通用或专用处理组件。处理器61的示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、各种专用的人工智能(Artificial Intelligence,AI)计算芯片、各种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processing,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器61执行上文所描述的方法和处理,例如车辆热管理***的控制方法。
在一些实施例中,车辆热管理***的控制方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元68。在一些实施例中,计算机程序的部分或者全部可以经由ROM 62和通信单元69中至少之一而被载入 或安装到电子设备60上。当计算机程序加载到RAM 63并由处理器61执行时,可以执行上文描述的车辆热管理***的控制方法的至少一个步骤。备选地,在其他实施例中,处理器61可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行车辆热管理***的控制方法。
本文中以上描述的***和技术的各种实施方式可以在数字电子电路***、集成电路***、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上***(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)、计算机硬件、固件、软件、和它们的组合中实现。这些各种实施方式可以包括:实施在至少一个计算机程序中,该至少一个计算机程序可在包括至少一个可编程处理器的可编程***上执行或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储***、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储***、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用至少一个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和框图中所规定的功能或操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机 器可读存储介质的示例会包括基于至少一个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、快闪存储器、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在电子设备上实施此处描述的***和技术,该电子设备具有:用于向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者液晶显示器(Liquid Crystal Display,LCD)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给电子设备。其它种类的装置还可以设置为提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的***和技术实施在包括后台部件的计算***(例如,作为数据服务器)、或者包括中间件部件的计算***(例如,应用服务器)、或者包括前端部件的计算***(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的***和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算***中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将***的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)、区块链网络和互联网。
计算***可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,又称为云计算服务器或云主机,是云计算服务体系中的一项主机产品,以解决了传统物理主机与虚拟专用服务器(Virtual Private Server,VPS)服务中,存在 的管理难度大,业务扩展性弱的缺陷。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种车辆热管理***的控制方法,包括:
    获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据;
    在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据;
    将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据;
    根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
  2. 根据权利要求1所述的方法,其中,所述目标动力装置至少包括动力电机装置,直流变换器装置,车载充电装置,动力电池装置和发动机装置中的一个;
    所述控制信号数据至少包括水泵控制信号,风扇控制信号,电加热装置控制信号和电冷却装置控制信号中的一个。
  3. 根据权利要求1所述的方法,其中,在所述获取车辆行驶过程中,待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据之后,包括:
    根据所述传感器温度数据确定所述目标动力装置的当前热状态;
    根据所述当前热状态确定与所述当前热状态对应的预设温度阈值。
  4. 根据权利要求1所述的方法,其中,在所述将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型之前,包括:
    根据所述待控制热管理***,建立所述待控制热管理***对应的***仿真模型;
    获取所述待控制热管理***,在不同热管理工况下的***性能试验数据;
    根据所述***性能试验数据对所述***仿真模型的模型参数进行优化。
  5. 根据权利要求1所述的方法,其中,所述根据所述传感器温度数据和所 述模型计算温度数据,对所述待控制热管理***进行控制,包括:
    确定所述传感器温度数据对应的传感器精度,并将所述传感器精度作为所述传感器温度数据对应的第一加权因子;
    确定所述***仿真模型对应的模型精度,并将所述模型精度作为所述模型计算温度数据对应的第二加权因子;
    通过加权平均算法,根据所述传感器温度数据、所述传感器温度数据对应的第一加权因子、所述模型计算温度数据和所述模型计算温度数据对应的第二加权因子,确定所述目标动力装置对应的当前装置温度;
    根据所述当前装置温度,对所述待控制热管理***进行控制。
  6. 根据权利要求5所述的方法,其中,在所述通过加权平均算法,根据所述传感器温度数据、所述传感器温度数据对应的第一加权因子、所述模型计算温度数据和所述模型计算温度数据对应的第二加权因子,确定所述目标动力装置对应的当前装置温度之前,还包括:
    确定所述传感器温度数据的温度变化率;
    在所述温度变化率超过变化率阈值的情况下,提高所述传感器温度数据对应的所述第一加权因子至第一目标加权值,并降低所述模型计算温度数据对应的所述第二加权因子至第二目标加权值。
  7. 根据权利要求5所述的方法,其中,在所述通过加权平均算法,根据所述传感器温度数据、所述传感器温度数据对应的第一加权因子、所述模型计算温度数据和所述模型计算温度数据对应的第二加权因子,确定所述目标动力装置对应的当前装置温度之前,还包括:
    确定所述待控制热管理***对应的车辆控制装置的启动时间;
    在所述启动时间未达到时间阈值的情况下,提高所述传感器温度数据对应的所述第一加权因子至第一目标加权值,并降低所述模型计算温度数据对应的所述第二加权因子至第二目标加权值。
  8. 一种车辆热管理***的控制装置,包括:
    数据获取模块(510),设置为在车辆行驶过程中,获取待控制热管理***中目标动力装置的电功率数据,以及所述目标动力装置对应的传感器温度数据;
    控制信号数据确定模块(520),设置为在确定所述传感器温度数据达到预设温度阈值的情况下,确定所述目标动力装置对应的控制信号数据;
    模型计算温度数据确定模块(530),设置为将所述电功率数据和所述控制信号数据,输入至所述待控制热管理***的***仿真模型中,以通过所述***仿真模型得到模型计算温度数据;
    ***控制模块(540),设置为根据所述传感器温度数据和所述模型计算温度数据,对所述待控制热管理***进行控制。
  9. 一种电子设备,包括:
    至少一个处理器(61);以及
    与所述至少一个处理器(61)通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器(61)执行的计算机程序,所述计算机程序被所述至少一个处理器(61)执行,以使所述至少一个处理器(61)能够执行权利要求1-7中任一项所述的车辆热管理***的控制方法。
  10. 一种计算机可读存储介质,存储有计算机指令,所述计算机指令设置为使处理器执行时实现权利要求1-7中任一项所述的车辆热管理***的控制方法。
PCT/CN2023/097069 2022-05-31 2023-05-30 一种车辆热管理***的控制方法、装置、设备及介质 WO2023232017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210614043.3 2022-05-31
CN202210614043.3A CN114995545B (zh) 2022-05-31 2022-05-31 一种车辆热管理***的控制方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023232017A1 true WO2023232017A1 (zh) 2023-12-07

Family

ID=83030915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097069 WO2023232017A1 (zh) 2022-05-31 2023-05-30 一种车辆热管理***的控制方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN114995545B (zh)
WO (1) WO2023232017A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114995545B (zh) * 2022-05-31 2024-03-26 中国第一汽车股份有限公司 一种车辆热管理***的控制方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103593A (zh) * 2019-06-17 2020-12-18 比亚迪股份有限公司 车辆热管理方法、装置、车辆及存储介质
CN113050426A (zh) * 2021-03-22 2021-06-29 山东大学 一种融合遗传蚁群算法的热管理控制方法及***
US20210237708A1 (en) * 2020-02-05 2021-08-05 Goodrich Corporation Model-based aircraft brake temperature estimation
CN113394485A (zh) * 2021-04-01 2021-09-14 东北林业大学 一种易拆卸的混合动力车动力电池保温方法及***
CN113947021A (zh) * 2021-10-20 2022-01-18 重庆金康赛力斯新能源汽车设计院有限公司 一种热管理控制方法和热管理控制装置
CN114995545A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 一种车辆热管理***的控制方法、装置、设备及介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373909B2 (ja) * 2004-12-28 2009-11-25 本田技研工業株式会社 プラントの温度制御装置
CN101553716A (zh) * 2005-10-11 2009-10-07 艾科嘉公司 热预测管理模型
CN102331719B (zh) * 2011-07-11 2013-04-17 联合汽车电子有限公司 基于热模型的混合动力汽车动态降额控制方法
EP2551982B1 (de) * 2011-07-27 2013-09-25 Siemens Aktiengesellschaft Thermische Überwachung eines Umrichters
US20150291054A1 (en) * 2014-04-15 2015-10-15 Ford Global Technologies, Llc Traction Battery Air Thermal Management Control System
DE102014216310A1 (de) * 2014-08-18 2016-02-18 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung einer Temperatur einer Leistungs- und Ansteuerelektronik eines elektrischen Antriebssystems
US20160201933A1 (en) * 2015-01-14 2016-07-14 Google Inc. Predictively controlling an environmental control system
US20170271984A1 (en) * 2016-03-04 2017-09-21 Atigeo Corp. Using battery dc characteristics to control power output
CN106357184B (zh) * 2016-11-01 2018-06-15 安徽大学 基于神经网络的车用永磁同步电机输出转矩的温度补偿方法
CN206361055U (zh) * 2016-12-30 2017-07-28 绍兴亚大机械科技有限公司 大型车制动鼓自动风冷***
US20190250205A1 (en) * 2018-02-13 2019-08-15 GM Global Technology Operations LLC Thermal model based health assessment of igbt
CN208216686U (zh) * 2018-04-27 2018-12-11 三江学院 半导体制冷的发电机缓速制动***
CN109435680B (zh) * 2018-09-19 2021-04-27 上海汽车集团股份有限公司 车辆动力***温度控制装置及其控制方法
CN112181008B (zh) * 2020-09-02 2022-06-21 珠海泰坦新动力电子有限公司 高温化成柜热源功率智能控制方法、装置及介质
KR20220059243A (ko) * 2020-11-02 2022-05-10 삼성전자주식회사 전력 측정에 기초한 온도 검출 및 열 관리를 위한 방법 및 장치
CN114537087B (zh) * 2022-03-22 2023-07-04 河南科技大学 一种纯电动汽车集成式热管理***性能优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103593A (zh) * 2019-06-17 2020-12-18 比亚迪股份有限公司 车辆热管理方法、装置、车辆及存储介质
US20210237708A1 (en) * 2020-02-05 2021-08-05 Goodrich Corporation Model-based aircraft brake temperature estimation
CN113050426A (zh) * 2021-03-22 2021-06-29 山东大学 一种融合遗传蚁群算法的热管理控制方法及***
CN113394485A (zh) * 2021-04-01 2021-09-14 东北林业大学 一种易拆卸的混合动力车动力电池保温方法及***
CN113947021A (zh) * 2021-10-20 2022-01-18 重庆金康赛力斯新能源汽车设计院有限公司 一种热管理控制方法和热管理控制装置
CN114995545A (zh) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 一种车辆热管理***的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN114995545A (zh) 2022-09-02
CN114995545B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2020239114A1 (zh) 充电方法及装置、充电***、电子设备、存储介质
WO2023232017A1 (zh) 一种车辆热管理***的控制方法、装置、设备及介质
CN108987848A (zh) 一种电池包的温度控制方法
WO2023236888A1 (zh) 一种热管理控制方法、装置、整车控制器及介质
WO2023174202A1 (zh) 电机的主动加热方法、装置、设备、存储介质及程序产品
CN115587512A (zh) 基于ANSYS TwinBuilder的锂电池热电耦合数字孪生模型构建方法
CN107508424B (zh) 确定冷却***的控制参数的方法、装置及车辆
CN115498218A (zh) 一种低温启动控制方法、装置、电子设备及存储介质
CN116359771A (zh) 锂离子电池寿命预测方法、电子设备及可读存储介质
WO2023236727A1 (zh) 网关控制器的温度调控方法、装置、设备及介质
WO2021249301A1 (zh) 一种液冷动力电池冷却液流量控制方法、***及汽车
WO2024001899A1 (zh) 温度调节方法、装置、电子设备及介质
CN113954695A (zh) 电动汽车电池冷却控制方法、装置、设备及车辆
US11744040B2 (en) Optimal control logic in liquid cooling solution for heterogeneous computing
CN116160916A (zh) 一种电动汽车整车热管理方法、装置、设备及存储介质
CN115033988A (zh) 一种动力总成温度估算方法、装置、整车控制器及介质
CN115906467A (zh) 基于换电站的数据处理方法、装置、电子设备及存储介质
CN114019371B (zh) 一种基于高斯过程回归的电机极端工况的温度预测***
WO2024140107A1 (zh) 一种容量衰减系数确定方法、设备及存储介质
CN115458828A (zh) 车辆动力电池的冷却方法、装置、电子设备及车辆
CN115129093B (zh) 动力总成的温度控制方法、温度控制装置、存储介质
CN112928360B (zh) 一种动力电池导热传输方法、***、终端和储存介质
CN116409213A (zh) 基于电池快充的热管理控制方法、装置及电子设备
WO2024036628A1 (zh) 能源***的拓扑建模方法及装置
CN116865402A (zh) 一种无线充电装置加热控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815196

Country of ref document: EP

Kind code of ref document: A1