WO2023231497A1 - 眼科镜片和具有其的框架眼镜 - Google Patents

眼科镜片和具有其的框架眼镜 Download PDF

Info

Publication number
WO2023231497A1
WO2023231497A1 PCT/CN2023/080586 CN2023080586W WO2023231497A1 WO 2023231497 A1 WO2023231497 A1 WO 2023231497A1 CN 2023080586 W CN2023080586 W CN 2023080586W WO 2023231497 A1 WO2023231497 A1 WO 2023231497A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive
area
areas
ophthalmic lens
pattern
Prior art date
Application number
PCT/CN2023/080586
Other languages
English (en)
French (fr)
Inventor
刘欲晓
王溯
何天瑞
白玉婧
Original Assignee
珠海菲特兰医疗科技有限公司
菲特兰有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210869171.2A external-priority patent/CN115202072A/zh
Application filed by 珠海菲特兰医疗科技有限公司, 菲特兰有限公司 filed Critical 珠海菲特兰医疗科技有限公司
Priority to KR1020237038128A priority Critical patent/KR20230169201A/ko
Priority to EP23814082.6A priority patent/EP4336248A1/en
Priority to CA3219042A priority patent/CA3219042A1/en
Priority to IL305941A priority patent/IL305941A/en
Publication of WO2023231497A1 publication Critical patent/WO2023231497A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive

Definitions

  • the present disclosure relates to the technical field of ophthalmic lenses, and in particular, to an ophthalmic lens having a plurality of micro-defocus areas, and glasses having the same.
  • Refractive errors of the human eye include myopia, hyperopia, and astigmatism, among which myopia is the most common refractive error, especially among teenagers.
  • myopia is the most common refractive error, especially among teenagers.
  • the external parallel light passes through the refractive system of the eye and focuses in front of the retina instead of on the fovea of the retina, causing the patient to be unable to see distant objects clearly, which is myopia. That is to say, when the eye Myopia occurs when the axial length is greater than the focal length of the eye's optical system.
  • Ophthalmic devices such as frame lenses or contact lenses are often used to correct or improve a patient's vision, for example, negative lenses are used to correct myopia and positive lenses are used to correct farsightedness.
  • the ophthalmic lenses commonly used for myopia correction are single vision (single focus) spherical lenses, that is, the diopter from the center to the edge of the glasses is the same.
  • the Petzval surface the best focusing surface produced by a single-light spherical lens, is spherical, and the eyeball is generally ellipsoidal. Therefore, the peripheral Petzval surface is located behind the retina, resulting in hyperopic defocus. Hyperopic defocus promotes axial growth and therefore contributes to the progression of myopia.
  • myopia management/control There are currently a variety of ophthalmic lenses used to manage and control the progression of myopia (hereinafter referred to as "myopia management/control"). One of them involves arranging multiple microlenses on a single vision spherical lens. By using these microlenses, The lens forms an image of an object in front of the retina to inhibit the progression of myopia, see CN 104678572 A.
  • myopia management/control lenses that can effectively suppress the growth of the axial length of the eye without significantly affecting visual quality.
  • myopia management/control lenses can improve patients' wearing compliance and/or reduce differences between different individuals, thereby improving the effect of myopia management and control.
  • an ophthalmic lens including a central area, a plurality of first refractive areas and a plurality of second refractive areas, wherein , the plurality of first refractive areas are arranged in a first area surrounding the central area, and the plurality of second refractive areas are arranged further away from the central area than the first area.
  • part or all of the central area has a prescription refractive power based on the prescription of the human eye, and the plurality of first refractive areas and the plurality of second refractive areas all have the same prescription refractive power.
  • Different refractive powers, and the proportion of the total area of the plurality of first refractive areas relative to the area of the first area is greater than the total area of the plurality of second refractive areas relative to the second area. The proportion of area.
  • the density of the plurality of first refractive areas in the first area is greater than the density of the plurality of second refractive areas in the second area; and/or the plurality of first refractive areas are greater than the density of the plurality of second refractive areas in the second area;
  • the average distance between a refractive zone is less than the plurality of The average distance between two refractive areas.
  • the plurality of first refractive areas are configured such that when a wearer wears the ophthalmic lens, an incident light beam passing through part or all of the plurality of first refractive areas is projected on The area between 10 and 20 degrees adjacent to the fovea of the wearer's retina.
  • the plurality of first refractive areas are at least partially arranged in an annular area from an inner edge diameter of 9.0 mm to an outer edge diameter of 15.0 mm centered on the center of the ophthalmic lens, or at least partially arranged in a
  • the ophthalmic lens is within an annular area from an inner edge diameter of 9.5 mm to an outer edge diameter of 14.0 mm, or is at least partially arranged within an inner edge diameter of 11.0 mm to an outer edge diameter of 14.0 mm centered at the center of the ophthalmic lens. within the annular area.
  • the plurality of first refractive areas are arranged at non-spaced intervals; and/or the plurality of second refractive areas are arranged at intervals.
  • the maximum size of the projection of each of the plurality of first refractive areas and each of the plurality of second refractive areas on the ophthalmic lens is independently selected from 0.5 to 2.2 mm; and/or the projection of each of the plurality of first refractive areas and each of the plurality of second refractive areas on the ophthalmic lens is circular; and/or the plurality of Each of the first refractive areas and the plurality of second refractive areas have a surface shape selected from a spherical surface, an aspherical surface, or a toric surface; and/or the plurality of second refractive areas have an equal shape in the ophthalmology department.
  • the area of the projection on the lens is independently selected from 0.5 to 2.2 mm; and/or the projection of each of the plurality of first refractive areas and each of the plurality of second refractive areas on the ophthalmic lens is circular; and/or the plurality of Each of the first refractive areas and the plurality of second refractive areas
  • each of the plurality of first refractive zones has a refractive power obtained by adding a positive refractive power to the prescribed refractive power
  • each of the plurality of second refractive zones has a refractive power obtained by adding a positive refractive power to the prescribed refractive power
  • the size of the refractive area and the plurality of second refractive areas gradually decreases or decreases in a stepwise manner as the radial distance increases; or along the radial direction of the ophthalmic lens, the size of the plurality of second refractive areas increases.
  • the refractive power of a refractive area and the plurality of second refractive areas gradually decreases or decreases in a stepwise manner as the radial distance increases, and/or the plurality of first refractive areas and the The size of the plurality of second refractive zones gradually increases or increases in steps as the radial distance increases.
  • the maximum size of the central area is selected from 3.0 to 11.0 mm; and/or the central area is a circular area centered on the center of the ophthalmic lens, and the diameter of the circular area is selected from 3.0 ⁇ 11.0mm; and/or the first area is an annular area centered on the center of the ophthalmic lens, the inner edge diameter of the annular area is selected from 3.0 ⁇ 11.0mm and the outer edge diameter is selected from 15.0 ⁇ 28.6mm ; And/or the second area is an annular area centered on the center of the ophthalmic lens.
  • the total area ratio of the plurality of first refractive areas in the first zone is greater than or equal to 60% and less than or equal to 78.5%, or greater than 63% and less than or equal to 78.5%, or greater than 66% and less than or equal to 78.5%. Less than or equal to 78.5%; and/or the total area ratio of the plurality of second refractive areas in the second zone is less than 60%, or less than 57%, or less than 54%.
  • the first area includes one or more first patterns, and part or all of the first area is centered on the center of the ophthalmic lens, with an inner edge diameter of 9 mm and an outer edge diameter of 15 mm.
  • a first annular area, and the total area ratio of the first refractive area in any single first pattern within the first annular area is greater than 70% and less than 78.5%, or greater than 72% and less than 78.5% .
  • the first area includes one or more first patterns, part or all of the plurality of first refractive areas are arranged in the one or more first patterns; and/or the second The second zone includes one or more second patterns in which part or all of the plurality of second refractive areas are arranged.
  • both the first pattern and the second pattern are annular patterns arranged concentrically with the center of the ophthalmic lens; or the second pattern is arranged concentrically with the center of the ophthalmic lens. fan ring pattern.
  • the spacing between any two adjacent second patterns is equal to the spacing between any two adjacent first patterns, and/or the spacing between any two adjacent second patterns is equal to The spacing between adjacent first patterns and second patterns; or the spacing between any two adjacent second patterns, the spacing between any two adjacent first patterns and/or the spacing between adjacent second patterns The distance between one pattern and the second pattern is zero; or the distance between any adjacent first patterns is less than or equal to 0.5mm.
  • the number of the first patterns is 1-4, and the number of the second patterns is 1-15.
  • the first refractive areas are evenly distributed within at least one first pattern; and/or the second refractive areas are evenly distributed within at least one second pattern.
  • the edges of adjacent first refractive areas are connected to each other; and/or within at least one first pattern, the spacing between the first refractive areas is are selected from 0 to 0.5 mm; and/or in at least one second pattern, the spacing between the second refractive areas is greater than the maximum value of the spacing between the first refractive areas; and/or Among the plurality of second patterns, the distance between the second refractive areas in the second pattern that is closer to the center of the ophthalmic lens is smaller; and/or the distance between the second refractive areas includes all of the first patterns and all of the second patterns. Among the two patterns, the closer to the center of the ophthalmic lens, the smaller the distance between the first refractive area or the second refractive area in the pattern.
  • the total area ratio of the plurality of first refractive areas in at least one of the first patterns is greater than or equal to 60% and less than or equal to 78.5%, or greater than or equal to 70% and less than or equal to 78.5%; and/ Or when the first area includes multiple first patterns, the total area ratio of the first refractive area in each first pattern is greater than or equal to 60% and less than or equal to 78.5%; and/or in the When the first area includes multiple first patterns, the total area ratio of the first refractive areas in at least two first patterns is greater than or equal to 70% and less than or equal to 78.5%; and/or the multiple first patterns
  • the total area ratio of the two refractive areas in at least one of the second patterns is less than 60% and greater than or equal to 30%, or less than 60% and greater than or equal to 35%, or less than 60% and greater than or equal to 40%; and/or When the second area includes multiple second patterns, the total area ratio of the second refractive area in each second pattern is less than 60% and greater than or equal to
  • the center of the ophthalmic lens is closer to the first pattern
  • the first refractive area accounts for a larger proportion of the total area; and/or in the case where the second area includes a plurality of second patterns, compared with the second pattern further from the center of the ophthalmic lens
  • the total area proportion of the second refractive area, the total area proportion of the second refractive area in the second pattern closer to the center of the ophthalmic lens is greater; and/or in each first pattern
  • the total area ratio of the first refractive area is greater than the total area ratio of the second refractive area in each second pattern.
  • the plurality of first refractive areas are distributed on multiple rays or multiple curves starting from the center of the ophthalmic lens, and/or the multiple second refractive areas are distributed on the The center of the ophthalmic lens is the starting point of multiple rays or multiple curves.
  • the first refractive area and the second refractive area are distributed on each ray or curve, and/or the multiple rays or multiple curves are evenly distributed on the ophthalmic lens.
  • the addition power of the first refractive area is unified, and/or the addition power of the second refractive area is unified, and/or the first refractive area is the same as the addition power of the second refractive area.
  • the addition power of the second refractive area is unified; or on the same ray or curve, the size of the first refractive area is unified, and/or the size of the second refractive area is unified, and/or the third refractive area is unified.
  • the size of the first refractive area and the second refractive area are uniform; or on the same ray or curve, along the direction away from the center of the ophthalmic lens, the change direction of the addition power of the first refractive area and its size
  • the change direction is opposite, and/or the change direction of the addition power of the second refractive area is opposite to the change direction of its size; or on the same ray or curve, along the direction away from the center of the ophthalmic lens, so
  • the size of the first refractive area and the second refractive area increases gradually or stepwise, and/or, on the same ray or curve, in a direction away from the center of the ophthalmic lens, so
  • the addition power of the first refractive area and the second refractive area gradually decreases or decreases in a stepwise manner.
  • adjacent first refractive areas and/or adjacent second refractive areas on the same ray or curve are connected to each other.
  • the number of the plurality of rays or the plurality of curves is 16-40, or 26-35.
  • the number of first refractive areas is less than the number of second refractive areas; and/or when the number of the plurality of rays is 2n, the plurality of rays form n A straight line.
  • the plurality of first refractive areas and the plurality of second refractive areas are configured to maintain a substantially constant image jump throughout the first and second zones.
  • the dispersion coefficient of the image jump of the plurality of first refractive areas and the plurality of second refractive areas is less than 20%.
  • the dispersion coefficient of the image jumps of the plurality of second refractive areas is less than 15%, or less than 12%, or less than 10%.
  • the total area ratio of the first refractive area provided on the temporal side of the first area is different from the total area ratio of the first refractive area provided on the nasal side of the first area; and /Or the addition power of the first refractive area is asymmetrically set on the temporal side and the nasal side of the first area; and/or the total power of the second refractive area set on the temporal side of the second area
  • the area ratio is different from the total area ratio of the second refractive area provided on the nasal side of the second area; and/or the addition power of the second refractive area is different from that on the temporal side of the second area.
  • the nasal side is set asymmetrically.
  • the total area ratio of the first refractive area provided on the temporal side of the first area is greater than the total area ratio of the first refractive area provided on the nasal side of the first area; and/ Or the average addition of the first refractive area provided on the temporal side of the first area is greater than the average addition of the first refractive area provided on the nasal side of the first area; and/or in the first area
  • the total area proportion of the second refractive area set on the temporal side of the second zone is greater than the total area proportion of the second refractive zone set on the nasal side of the second zone; and/or the second refractive zone set on the nasal side of the second zone has a total area proportion;
  • the average addition of the second refractive area provided on the temporal side is greater than the average addition of the second refractive area provided on the nasal side of the second area.
  • the ophthalmic lens is divided into a plurality of sector-shaped areas with the center of the ophthalmic lens as an origin, and in the plurality of sector-shaped areas, the first refractive area is set in such a manner that each sector area is independent of each other and The second refractive area is set in such a manner that each sector area is independent of each other.
  • a frame spectacles on which the ophthalmic lens according to the first aspect of the disclosure and its various optional embodiments is provided.
  • centerline of a pattern or ring in this disclosure means a line passing through the midpoints of the radial width of the pattern or ring.
  • center of the first/second refractive area, etc. mentioned in this disclosure means the geometric center of the projected figure of the refractive area on the front view of the lens.
  • Figure 1 is a front view of an ophthalmic lens according to an exemplary embodiment of the present application
  • Figure 2 is a front view of an ophthalmic lens according to another exemplary embodiment of the present application.
  • Figure 3 is a partial enlarged view of Figure 2;
  • Figure 4 is a front view of an ophthalmic lens according to yet another exemplary embodiment of the present application.
  • Figure 5 is a front view of an ophthalmic lens according to yet another exemplary embodiment of the present application.
  • Figure 6 is a partial enlarged view of Figure 5;
  • Figure 7 is a data chart comparing an ophthalmic lens according to an exemplary embodiment of the present application with a control example
  • 8A-8E are respectively simplified schematic diagrams of ophthalmic lenses according to different embodiments of the present application. They respectively show different distributions of refractive areas. In order to clearly illustrate the arrangement regularity of microlenses, not all microlenses are drawn. the outer contour of the lens; and
  • Figure 9 is a front view of an ophthalmic lens according to yet another exemplary embodiment of the present application.
  • one aspect of the present application provides an ophthalmic lens.
  • the ophthalmic lens 1 includes a central area 5 , a plurality of first refractive areas 2 and a plurality of second refractive areas 3 , wherein the plurality of first refractive areas 2 are arranged in a third area surrounding the central area 5 .
  • the plurality of second refractive areas 3 are arranged further than the first area 8 .
  • the second area 9 away from the central area 5 (the area surrounded by two dotted lines tangent to the innermost second refractive areas 3 and the outermost second refractive areas 3 in Figure 1 )middle.
  • the central area 5 may have a prescribed power based on the prescription of the human eye (the eye of the user/wearer).
  • the central area 5 is designed to be the position where the user's pupil faces when looking straight ahead after wearing glasses. In this way, when viewing far, the parallel entrance pupil light is corrected by the central area 5 and is exactly imaged on the fovea of the macula. , to ensure clear vision.
  • the prescription refractive power is the refractive power prescribed by the vision optometry institution, which can be understood as the conventional power. In the case where the user is myopic, the prescription refractive power may be negative refractive power. In some embodiments, the user may not yet reach the standard of myopia, but the reserve of hyperopia is insufficient.
  • the refractive power of the prescription may be 0 or positive refractive power at this time.
  • the central area 5 may be a monofocal area, having a prescribed refractive power.
  • the central area 5 may be a multifocal area, such as a progressive multifocal area, which has continuously changing refractive power. In this case, the central area 5 only partially has the prescribed refractive power.
  • Each of the plurality of first refractive areas 2 and the plurality of second refractive areas 3 provided on the periphery of the central area 5 has refractive power different from the prescribed refractive power. Therefore, both the first refractive area 2 and the second refractive area 3 can focus light at a position other than the retina of the eye, thereby suppressing the development of refractive error in the eye.
  • At least part of the area on the ophthalmic lens 1 where the first refractive area 2 and the second refractive area 3 are not arranged has the prescribed refractive power, such as shown in Figure 1, Figure 2, Figure 4 or Figure 5.
  • the central area shown is 5.
  • the area where the first refractive area 2 and the second refractive area 3 are not arranged on the ophthalmic lens 1 the central area as shown in Figure 1, Figure 2, Figure 4 or Figure 5 5.
  • the middle area 7) between them can all have the prescribed refractive power.
  • Setting the gaps between the plurality of first refractive areas 2 and/or the plurality of second refractive areas 3 to have prescribed refractive power can provide patients with better visual effects, thereby improving patient compliance and improving myopia. Management and control effects.
  • the gaps between the plurality of first refractive areas 2 and/or the plurality of second refractive areas 3 are continuous, it can provide patients with better visual effects and further improve myopia management and control. Effect.
  • each first refractive zone 2 may have a refractive power obtained by adding a positive refractive power to the prescription refractive power, that is, the overall refractive power of the lens corresponding to the first refractive zone 2 is compared to For prescription refractive power correction.
  • the positive refractive power added to the prescribed refractive power is referred to herein as the addition power of the first refractive zone.
  • each second refractive zone 3 may have a refractive power obtained by adding a positive refractive power to the prescribed refractive power, that is, the refractive power of the lens corresponding to the second refractive zone 3 The overall refractive power is corrected compared to the prescription power.
  • the positive refractive power added to the prescribed refractive power is referred to herein as the addition power of the second refractive zone.
  • the refractive power in a specific micro-area on the periphery of the central area 5 eg -0.75D
  • the refractive power of the central area 5 For example -3.5D
  • each first refractive area 2 may have uniform refractive power or may have different refractive powers.
  • Each second refractive area 3 may also have uniform refractive power, or may have different refractive powers.
  • the refractive powers of the plurality of first refractive areas 2 and the plurality of second refractive areas 3 may be the same.
  • the refractive power of the first refractive zone 2 or the second refractive zone 3 may be constant as the radial distance increases, or may gradually increase or decrease, or Increase or decrease in a stepwise manner.
  • the expression "radial direction of the lens” in this disclosure means the direction from the center point of the lens to the outer periphery in a projection view of the lens.
  • the so-called stepwise increase or decrease means that the first refractive area 2 or the second refractive area 3 arranged in several adjacent patterns (the so-called "patterns" will be discussed in detail later) have the first refractive power.
  • the first refractive areas 2 or the second refractive areas 3 within the patterns outside the patterns may have the second refractive power.
  • the second refractive power may be greater or less than the first refractive power.
  • the first refractive area 2 and the second refractive area 3 may have a gradually or stepwise increase or a gradual or stepwise decrease as the radial distance increases. Small refractive power.
  • the first refractive area 2 or the second refractive area 3 changes with the radial distance as described above, it is preferred that, in some embodiments, the first refractive area 2 or the second refractive area 3 The size of area 3 also changes with radial distance, and its size changes in the opposite direction to its refractive power.
  • the first refractive area 2 or the second The size of the refractive area 3 means the size of its projected pattern on the lens, such as the maximum size. It should be understood that the term "maximum size" in this disclosure refers to the largest size among the sizes of the graphics in all directions.
  • the size may refer to its diameter.
  • the first refractive area 2 or the second refractive area 3 may gradually increase or increase stepwise as the radial distance increases. This is conducive to maintaining a basically constant low-intensity "image jump" throughout the entire lens range, providing the wearer with good visual effects, making it easier for the wearer to adapt and improving wearing compliance.
  • the image jump may be expressed simply as the product of the addition power of a single first or second refractive zone and the maximum dimension (e.g., diameter) of its corresponding projection on the lens, in which case the term "substantially constant” refers to The product of the first refractive area and the second refractive area within the entire range in which the first refractive area and the second refractive area are arranged on the lens (for example, within the entire range of the first zone and the second zone)
  • the dispersion coefficient is less than 30%, preferably less than 25%, more preferably less than 20%.
  • the coefficient of dispersion means the ratio of the standard deviation to the mean.
  • the image jump change of the second refractive area provided on the outside can be made more constant.
  • the image jump of a single second refractive area is expressed as the product of the addition power of the single second refractive area and its maximum size.
  • the dispersion coefficient of the image jumps of the plurality of second refractive areas may be less than 15%, preferably less than 12%, and more preferably less than 10%.
  • the dispersion coefficient of the image jump of multiple second refractive areas can be greater than 1%, Preferably it is greater than 2%, more preferably greater than 3%.
  • the above-mentioned upper limit and lower limit values can be arbitrarily combined to set the range of the dispersion coefficients of the image jumps in the plurality of second refractive areas.
  • the addition power of the first refractive area 2 or the second refractive area 3 relative to the central area 5 can be selected from the range of +1.0D to +10.0D, such as +1.0D, +1.5D, +2.5D, +3.0D, +3.5D, +4.0D, +4.5D, +5.0D, +5.5D, +6.0D, +6.5D, +7.0D, +7.5D, +8.0D, +8.5D, +9.0 D, +9.5D or +10.0D.
  • each first refractive area 2 or second refractive area 3 may be a microlens attached to the original lens, for example, it may be a convex lens.
  • the first refractive area 2 or the second refractive area 3 may have a consistent outline with the original lens, that is, not protruding from the original lens.
  • the first refractive zone 2 or the second refractive zone 3 may have a different refractive index than the original lens.
  • the first refractive area 2 or the second refractive area 3 can be made of a different material from the original lens, or by adjusting the ion concentration therein to adjust the refractive index of different areas when the lens material is polymerized, or by using It is made by irradiating a specific area with ultraviolet light to polymerize it to change the refractive index.
  • the plurality of first refractive areas and the plurality of second refractive areas are microlenses
  • the plurality of first refractive areas can be considered to be microlenses close to the center of the ophthalmic lens
  • the plurality of second refractive areas can be considered as microlenses close to the center of the ophthalmic lens
  • the plurality of second refractive areas are The light area is considered to be the microlens located away from the center of the ophthalmic lens.
  • the closeness and distance mentioned here are not absolute, but relative.
  • each first refractive area 2 or second refractive area 3 on the lens may be a perfect circle, an oblate circle (oval), a polygon, etc.
  • the number of sides can be greater than or equal to 6.
  • Figure 1 shows that when the first refractive area 2 is circular, any two adjacent ones of the plurality of first refractive areas 2 may be tangent to each other. It can also be said that multiple first refractive areas are arranged non-spaced.
  • Light area 2 Those skilled in the art will understand that in the present disclosure, the expressions "tangent”, “connected”, or “the distance is zero" should include actual situations where there is a certain amount of error caused by, for example, measurement or processing.
  • the maximum size of the projection of each first refractive area 2 or the second refractive area 3 on the lens can be independently selected from the range of 0.5-2.2mm, for example, it can be 0.5mm, 0.6mm ,0.7mm,0.8mm,0.9mm,1.0mm,1.1mm,1.2mm,1.3mm,1.4mm,1.5mm,1.6mm,1.7mm,1.8mm,1.9mm,2.0mm,2.1mm or 2.2mm, or is any value between them.
  • the diameter of the circle is the maximum size, which may be between 0.5-2.2 mm.
  • the projected areas of the plurality of second refractive areas 3 on the ophthalmic lens may be equal. In some exemplary embodiments, the projected areas of the plurality of first refractive areas 2 on the ophthalmic lens may be equal. Alternatively, in some exemplary embodiments, the projected areas of at least part of the plurality of first refractive areas 2 or the plurality of second refractive areas 3 on the ophthalmic lens are equal.
  • the first refractive area 2 or the second refractive area 3 may each have a surface shape selected from spherical, aspherical or toric.
  • the plurality of first refractive areas 2 may have a consistent surface shape or may have different surface shapes.
  • the plurality of second refractive areas 3 may have a consistent surface shape or may have different surface shapes.
  • the shape, spacing and other dimensions of various areas of the ophthalmic lens discussed in this disclosure refer to the plane on the ophthalmic lens or on the front view of the ophthalmic lens, such as shown in the drawings.
  • the shape and size of the projection because the radius of curvature of the surface of the ophthalmic lens is much larger than the size of each refractive area, the local portion arranged in each refractive area can be regarded as substantially flat, so that each refractive area described in the present disclosure
  • the projection of the light area on the ophthalmic lens can be regarded as its projection on the main view of the ophthalmic lens.
  • the first refractive area 2 and the second refractive area 3 may be arranged on the outer surface of the ophthalmic lens (ie, the surface away from the eye), and the front view of the ophthalmic lens as shown in the drawing is Plane projection of this outside surface.
  • the first refractive area 2 and the second refractive area 3 may be arranged on the inner surface of the ophthalmic lens (ie, the surface close to the eye), and as shown in the figures, the ophthalmic lens The front view is a planar projection of this medial surface.
  • FIG. 1 shows that the central area 5 is a circular area centered on the center of the ophthalmic lens 1, in other embodiments, the central area 5 may be a polygon or other rotationally symmetrical graphics.
  • the maximum size of the central area 5 can be 3.0-11.0mm, for example, it can be 3.0mm, 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, or 11.0mm, or anything in between. Any value.
  • the diameter of the central area 5 may be between 3.0-11.0 mm.
  • the first area 8 surrounds the central area 5, its inner edge is the same as the outer edge of the central area 5, and they are both tangent to the inner side of the first refractive area 2 in the innermost ring, and its outer edge is The outer sides of these first refractive areas 2 are tangential, as shown by the dotted lines in the figure.
  • the first area 8 is an annular area centered on the center of the ophthalmic lens.
  • the inner edge diameter of the first region may be selected from 3.0 to 11.0 mm and the outer edge diameter may be selected from 15.0 to 28.6 mm.
  • the second area 9 surrounds the first area 8 and is also an annular area centered on the center of the ophthalmic lens.
  • the inner edge is tangent to the inside of the innermost second refractive zone 3, and the outer edge is tangent to the outside of the outermost second refractive zone 3, as shown by the dotted line in the figure.
  • the second zone 9 is further away from the central zone 5 than the first zone 8 . It should be understood that although FIG. 1 shows that the second area 9 surrounds the first area 8, the invention is not limited thereto. In some embodiments, the second zone 9 may partially surround the first zone 8, such as will be described in detail later in connection with FIG. 4 .
  • a plurality of first refractive areas 2 are arranged in a first area 8 closer to the central area 5, and a plurality of second refractive areas 3 are arranged in a second area 9 farther from the central area 5, and in order to suppress the eyes
  • the development of refractive error can also satisfy clear vision after wearing glasses.
  • appropriate design can be performed so that the density of the first refractive zone in the first zone is greater than that in the third zone. The density of the second refractive zone in the second zone.
  • the degree of density can be expressed by the proportion of total area.
  • the total area ratio of the multiple first refractive areas 2 in the first zone is greater than the total area ratio of the multiple second refractive areas 3 in the second zone, that is, the multiple first refractive areas 3
  • the proportion of the total area of the region 2 relative to the area of the first region is greater than the proportion of the total area of the plurality of second refractive regions 3 relative to the area of the second region.
  • total area ratio means the sum of the areas of all micro-refractive areas (ie, the first refractive area 2 or the second refractive area 3) within an area and the total area of the area. ratio.
  • the density may also be represented by density or spacing.
  • the density of the first refractive area 2 in the first zone may be greater than the density of the second refractive area 3 in the second zone. That is to say, the first refractive areas 2 are arranged more closely as a whole. For example, the average distance between the first refractive area 2 and its surrounding first refractive areas is smaller than the second refractive area 3 and its surroundings.
  • the average spacing between the second refractive areas that is, the average spacing between the plurality of first refractive areas 2 is smaller than the average spacing between the plurality of second refractive areas 3 .
  • the density of refractive areas refers to the number of refractive areas per unit area.
  • the spacing between two refractive zones is the distance between the points at which the two refractive zones are closest to each other.
  • the average spacing between the plurality of first refractive areas 2 refers to the sum of the spacings between each first refractive area 2 in the plurality of first refractive areas 2 and its nearest first refractive area 2
  • the average spacing obtained by dividing the total number of first refractive zones 2 , the nearest first refractive zones 2 being arranged in a pattern as will be explained in detail later. In the case of , it refers to the first refractive area 2 with the smallest distance within a pattern, and in other cases, it refers to the first refractive area 2 with the smallest distance in all directions.
  • the average spacing between the plurality of second refractive zones 3 has a similar definition.
  • each refractive zone is small, and the sizes of different refractive zones are not very different (for example, the maximum value is not more than about 2-3 times the minimum value), so density or spacing can be exploited To describe the density of the first refractive area 2 and the second refractive area 3.
  • the plurality of first refractive areas 2 can form a dense addition (that is, adding positive refractive power to the prescribed refractive power) on the periphery of the central area 5 .
  • This application achieves a better myopia control effect by setting up a high-density myopia defocus area near the central optical zone (such as the central area 5) (such as the aforementioned first zone, corresponding to the more sensitive area of the retina).
  • retaining an appropriate spacing between the second refractive zones 3 for example, setting a lower area ratio in the second zone) in an area farther away from the central optical zone (such as the aforementioned second zone) can not only improve the quality of myopia patients. Compliance can be minimized and the differences in myopia management/control effects among different patients can be minimized, thereby being more conducive to the management and control of myopia progression.
  • the total area ratio of the plurality of first refractive areas 2 in the first zone may be greater than or equal to 60% and Less than or equal to 78.5%, preferably greater than 63% and less than or equal to 78.5%, more preferably greater than 66% and less than or equal to 78.5%.
  • the total area ratio of the plurality of second refractive areas 3 in the second zone is less than 60%, preferably less than 57%, and more preferably less than 54%.
  • the inventor found that when the inner edge diameter centered on the center of the ophthalmic lens is 3.0mm (such as 4.0mm, 5.0mm, 6.0mm, 7.0mm, 8.0mm, 9.0mm, 10.0mm, 11.0mm or any value therebetween) to Intensive lighting is performed within the annular area formed by the outer edge diameter of 28.6mm (such as 15.0mm, 19.8mm, 24.2mm or any value therebetween) (for example, at least from the inner edge diameter of 9.0mm to the outer edge diameter of 15.0 centered on the center of the ophthalmic lens)
  • the myopic defocus caused by intensive lighting in the annular area formed by mm can give more stimulation to the retina, thereby inhibiting the elongation of the eye axis.
  • the first zone may include the above-mentioned annular area formed by an inner edge diameter of 3.0 mm and an outer edge diameter of 28.6 mm centered on the center of the ophthalmic lens, or may substantially include or consist of the annular area.
  • the prescription refractive power is -3.5D
  • the diameter of the central area 5 of the lens is 10mm
  • the first refractive area 2 is located about 5mm from the center.
  • the first refractive area 2 can be located in a circle close to the boundary of the central area 5 with a diameter of 10 mm, then the number of the first refractive area 2 can be ⁇ d1/d2, where d1 is the diameter of the central area 5 and d2 is the maximum dimension (eg diameter) of the first refractive area 2 .
  • d2 is 1.2mm
  • the number of first refractive zones 2 can be calculated to be 26.
  • the number of first refractive areas 2 may be 26-35, and accordingly, the maximum size of the first refractive areas 2 and the diameter of the central area 5 may be designed.
  • the incident light beam passing through the annular area is approximately projected on the retinal macula.
  • Figure 7 is the field curvature integral (absolute value of negative field curvature) calculated by the optical simulation software Optic Studio Zemax when lenses with different microlens arrangements are placed on the surface of the model eye Liou&Brenna.
  • the lens of the present invention is configured by arranging intensively light-added microlenses (i.e., the first refractive area 2) in the part corresponding to the defocus sensitive area of the retina. See the preferred example (its intensively light-enhanced microlenses are generally Located in an annular area with an inner diameter of 9.5mm and an outer diameter of 14mm), it can provide more out-of-focus stimulation to the retina.
  • choroidal thickening average choroidal thickening (6 ⁇ 6)% over 2 weeks. It is currently believed that short-term choroidal thickening is related to the long-term axial growth control effect.
  • the plurality of first refractive areas 2 may be disposed within an annular area having an inner diameter of 3.0 mm and an outer edge diameter of 28.6 mm, for example, all of the first refractive areas 2 may be disposed within the annular area.
  • the plurality of first refractive areas 2 may be disposed with an inner diameter of 3.0 mm to an outer diameter of 24.2 mm. In the annular area, for example, everything is arranged within the annular area.
  • the plurality of first refractive areas 2 may be disposed in an annular area with an inner edge diameter of 3.0 mm to an outer edge diameter of 19.8 mm, for example, all of the first refractive areas 2 may be disposed within the annular area.
  • the plurality of first refractive areas 2 are at least arranged in an annular area from an inner edge diameter of 9.0 mm to an outer edge diameter of 15.0 mm centered on the center of the ophthalmic lens, or the first area at least includes an ophthalmic lens.
  • the center of the lens is an annular area from the inner edge diameter of 9.0mm to the outer edge diameter of 15.0mm.
  • part or all of the plurality of first refractive areas 2 can fill the annular area.
  • the total area of the first refractive area 2 within any single first pattern (the "first pattern" will be discussed in detail later) within the above-mentioned annular area with an inner edge diameter of 9.0 mm to an outer edge diameter of 15.0 mm
  • the proportion is greater than 70% and less than 78.5%, preferably greater than 72% and less than 78.5%.
  • At least part of the plurality of first refractive zones 2 is arranged in an annular area from an inner edge diameter of 9.5 mm to an outer edge diameter of 14.0 mm centered on the center of the ophthalmic lens, or at least part of it is arranged Within the annular area from the inner edge diameter of 11.0mm to the outer edge diameter of 14.0mm centered on the center of the ophthalmic lens.
  • a plurality of first refractive areas 2 are arranged in an annular area (called a first pattern) represented by a first ring 21
  • a plurality of second refractive areas 3 are arranged in an annular area represented by a second ring 31
  • the first area 8 includes only one first pattern, which is the annular area represented by the first ring 21, while the second area 9 includes 5 second patterns, which is the 5 second rings.
  • 31 represents the total annular area.
  • the ring patterns (such as the first ring 21, the second ring 31 and the first patterns 2a and 2b described below) are shown in a simplified manner.
  • the first ring 21 as an annular pattern means that the center of the ophthalmic lens 1 is the center
  • the circle indicated by the reference number 21 in Figure 1 is the center line
  • the inner edge and the outer edge are respectively aligned with the first curve.
  • Light area 2 is tangent to the annular pattern. It can be seen that the center of the first refractive area 2 is located on the center line of the first ring 21 .
  • the center of the second refractive area 3 is located on the center line of the second ring 31 .
  • Each second ring 31 as a ring pattern means that the center of the ophthalmic lens 1 is the center, the corresponding circle indicated by the reference number 31 in FIG. 1 is the center line, the inner edge and the outer edge are respectively connected with the third ring located on the corresponding center line.
  • Two refractive zones 3 are tangent to each other in an annular pattern. Therefore, in Figure 1, the first area 8 is the first ring 21 whose inner and outer edges are respectively tangent to the first refractive area 2, and the second area 9 includes a plurality of second rings 31 and the intervals between them.
  • the area is the annular area between the inner edge of the second ring 31 closest to the center of the lens and the outer edge of the second ring 31 farthest from the center of the lens.
  • the first area and the second area in each exemplary embodiment in FIGS. 2 , 4-5 , and 8A-8E described later are defined similarly to FIG. 1 .
  • FIG. 1 shows that the first area includes 1 first pattern and the second area includes 5 second patterns
  • the first area and/or the second area may include more or less pattern. That is to say, in some embodiments, the first area may include one or more first patterns (such as 1, 2, 3, 4, or 5 first patterns), and multiple first patterns in the first area may A first refractive area is partially or entirely arranged in the one or more first patterns.
  • the second area may also include one or more second patterns (for example, 1, 2, 3, 4, 5, 6, 7 or 8 second patterns). A plurality of second refractive areas are partially or entirely arranged in the one or more second patterns.
  • the number of first patterns may be 1-4, and the number of second patterns may be 1-15.
  • one or more first patterns may be arranged concentrically with the center of the ophthalmic lens 1 .
  • each first pattern only includes the minimum number of first refractive areas that can roughly arrange the pattern.
  • the first pattern in Figure 1 only includes the first refractive areas in the innermost circle, that is, in the diameter
  • Figure 1 shows a total of 6 ring patterns, including a first pattern, namely the first ring 21.
  • One or more second patterns may be disposed concentrically with the center of the ophthalmic lens 1. There is no clear limit to the maximum size of the second pattern, and those skilled in the art can select an appropriate range as needed.
  • each second pattern only includes the minimum number of second refractive areas that can roughly arrange the pattern.
  • the second pattern in Figure 1 has only one circle of second refractive areas in the radial direction.
  • the second refractive area does not include more circles of the second refractive area. Therefore, there are 5 second patterns in Figure 1, that is, 5 second rings 31.
  • Figure 2 shows a modified example of the ophthalmic lens of Figure 1, wherein the first zone includes 2 first patterns instead of 1 first pattern.
  • FIG. 2 shows a situation in which a plurality of first refractive areas 2 are arranged on two first patterns.
  • the first refractive area 2 may be arranged on the first pattern 2 a close to the central area 5 (for convenience of description, it will be referred to as the inner first pattern 2 a below). and on the first pattern 2b that is far away from the central area 5 and adjacent to the first pattern 2a (for convenience of description, it will be referred to as the outer first pattern 2a below).
  • the first refractive areas in the inner first pattern 2a may be connected or closely adjacent to each other.
  • Close proximity means that there is a smaller distance between these first refractive areas, for example, smaller than the distance between the second refractive areas 3 .
  • the first refractive areas in the outer first pattern 2b may be connected or closely adjacent to each other.
  • the first refractive area in the inner first pattern 2a and the first refractive area in the outer first pattern 2b can be arranged either within the pattern or within the pattern. The patterns are all connected.
  • the diameter of the first refractive area in the inner first pattern 2a can be set slightly smaller than the diameter of the first refractive area in the outer first pattern 2b, so that the diameter of the first refractive area in the inner first pattern 2b
  • the number of first refractive areas in the pattern 2a and the first refractive areas in the outer first pattern 2b may be equivalent.
  • the inner first pattern 2a and the outer first pattern 2b are both regarded as an annular area with the circle indicated by 2a and 2b in the figure as the center line, the inner first pattern 2a and the outer first pattern 2a The first pattern 2b even partially overlaps.
  • the first refractive area in the inner first pattern 2a and the first refractive area in the outer first pattern 2b can also be set to have the same diameter.
  • the inner first refractive area The number of first refractive areas in the first pattern 2a may be less than the number of first refractive areas in the outer first pattern 2b.
  • FIGS. 2 to 3 describe an embodiment in which the first refractive areas 2 are arranged into two first patterns as described above, it can be understood that the first refractive areas 2 can also be arranged into more first patterns. Patterns, the two or more first patterns may not overlap, but be connected or have a certain distance.
  • each first pattern and second pattern are annular patterns arranged concentrically with the center of the ophthalmic lens.
  • the first pattern and/or the second pattern may not be concentric with the center of the ophthalmic lens, or may have other shapes, such as sector-ring, quasi-ring, polygon, or rotational symmetry around the center of the lens. other graphics and so on.
  • the plurality of first patterns and/or the plurality of second patterns may be the same as or different from each other.
  • the first and second areas may not be annular areas but may have shapes corresponding to the shapes and arrangements of the first and second patterns.
  • the first area or the second area may be a minimum area formed by including all first patterns or all second patterns respectively.
  • kind An annular shape means that most of the first refractive areas 2 are arranged on one or more circles, while the remaining first refractive areas 2 are outside the circle, for example, arranged on the inside of the circle according to a certain rule (for example, at equal intervals). And at a position immediately adjacent to the circumference, and/or arranged according to a certain rule (for example, at equal intervals) outside the circumference and at a position immediately adjacent to the circumference.
  • the plurality of first refractive areas 2 can be arranged like a sunflower. The shape of the outer contour.
  • the first refractive area 2 and the second refractive area 3 may not be evenly distributed on the entire periphery of the central area 5 as in FIGS. 1 and 2 , but may, for example, only be distributed on the central area 5
  • One side such as the upper side, lower side, left side or right side in the figure, may also be a partial area surrounding the periphery of the central area 5 . They can be arranged symmetrically about the central area 5 or asymmetrically. As for the specific distribution, it can be adjusted accordingly according to the vision of the wearer.
  • the first pattern and/or the second pattern, and the first region and/or the second region including the same may be considered to have a sector-ring shape, such as shown in FIG. 4 . In FIG.
  • the second refractive area 3 may not be provided in area B in the figure, and although not shown, in other embodiments, the first refractive area may not be provided in area B.
  • the area B can be used for the wearer to switch between far vision (for example, looking at a blackboard) and near vision (for example, looking at a book on a table) without moving the head significantly, so this area can Optionally have a different refractive power than the prescribed refractive power for near vision tasks.
  • the second zone can be that the inner edge is tangent to the inner side of the second refractive area 3 in the second ring 31 closest to the center of the lens, and the outer edge is tangent to the second ring 31 farthest from the center of the lens.
  • the annular area that is tangent to the outer side of the second refractive area 3 minus the B area has a fan-ring shape, in which each second pattern is also a fan-ring pattern.
  • the first refractive area 2 is arranged in one first ring 21 (first pattern), while the second refractive area 3 is arranged in five second rings 31 (second pattern). pattern). At this time, the spacing between adjacent rings (each pattern) is equal.
  • a specific numerical example of Figure 1 is given below for illustration: the diameter of the largest second ring 31 can be 30mm (radius 15mm), the diameter of the central area 5 can be 10mm (radius 5mm), and the diameter of the first ring 31 can be 30mm (radius 15mm).
  • the diameters of the optical area 2 and the second refractive area 3 are both 1.2mm, then the spacing between adjacent rings can be (15-5-0.6)/5-1.2 ⁇ 0.7mm, that is, the distance between adjacent rings
  • the spacing (that is, the spacing between two refractive areas on adjacent rings in the radial direction) is approximately 0.7mm.
  • the spacing between adjacent patterns may refer to the distance between the refractive area in one pattern and the refractive area in another adjacent pattern along the radial direction of the lens. distance, or may refer to the distance between the innermost radial distance of the outer pattern and the outermost radial distance of the inner pattern in the radial direction of the lens.
  • the pattern spacing can be determined by two adjacent refractive areas along the radial direction.
  • the pattern spacing may be the diameter of the innermost contour of the outer pattern in the predetermined radial direction and the diameter of the outermost contour of the inner pattern in the predetermined diameter. half the difference in diameter in the direction.
  • the spacing between adjacent rings or adjacent patterns may not be all equal, but may be partially equal, or entirely different.
  • the spacing between any two adjacent second patterns may be equal to the spacing between the adjacent first patterns and the second patterns, and/or equal to the spacing between any two adjacent first patterns ( If there are two first patterns).
  • the spacing between adjacent patterns may be equal to 0.2 to 1.5 times the diameter of the first refractive area 2 or the second refractive area 3, such as 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5 times.
  • first patterns when the number of first patterns (eg, first rings 21 ) is multiple, two adjacent first patterns may be connected or closely adjacent or have a slightly larger spacing. In some embodiments, the distance between any adjacent first patterns may be less than or equal to 0.5 mm. In some embodiments, the distance between adjacent patterns (including the first pattern and the second pattern) may also gradually become larger along the direction away from the central area 5 . In other embodiments, the first patterns may have an equal first spacing between them, and the second patterns may have an equal or unequal second spacing between them, and the first spacing may be smaller than the second spacing.
  • the spacing between adjacent second patterns may be equal.
  • the pattern pitch of the second pattern closer to the outside may also be set to be larger.
  • the spacing between any two adjacent first patterns (if any), the spacing between any two adjacent second patterns (if any), and/or The spacing between adjacent first patterns and second patterns may be zero. For adjacent patterns with a distance of 0, it can also be said that the adjacent patterns are connected.
  • the first area 8 includes two first rings 21 (first pattern), and the second area 9 includes six second rings 31 (second pattern). Each adjacent ring (whether it is the first ring 21 or the second ring 31) can be connected or closely adjacent to each other. In fact, in this case, it is no longer possible to clearly distinguish which is the first ring and which is the second ring.
  • the distance between the outer refractive zones is significantly larger than the distance between the inner refractive zones.
  • a pattern in which the spacing between at least two adjacent refractive areas within the same pattern is less than 0.5 mm may be called a "first pattern”, while a pattern having refractive areas with a greater spacing may be referred to as a "first pattern”.
  • first pattern a pattern in which the spacing between at least two adjacent refractive areas within the same pattern is less than 0.5 mm
  • first pattern having refractive areas with a greater spacing may be referred to as a "first pattern”.
  • second pattern In one embodiment, since there is almost no interval or a small interval (less than 0.5 mm) between the refractive areas on the innermost pattern and the adjacent pattern, it can be considered that the number of the first rings 21 is 2, and the number of the second ring 31 is 6.
  • the spacing between the first rings 21 is zero, the spacing between the second rings 31 is zero, and the spacing between the first and second rings 21 and 31 is also zero.
  • the size of the first refractive area 2 or the second refractive area 3 in the first ring 21 or the second ring 31 becomes larger toward the outer side.
  • the distance between adjacent first refractive areas 2 or second refractive areas 3 within 31 is also larger.
  • first refractive areas 2 in the first pattern are all connected (arranged in a non-spaced manner)
  • there may also be a smaller spacing between the first refractive areas 2 that is to say, there may also be a smaller spacing between adjacent first refractive areas 2 in the direction extending along the first pattern (for example, Spacing less than 0.5mm, such as 0.4mm, 0.3mm, 0.2mm, 0.1mm).
  • the distance between the first refractive zones 2 eg, the average distance
  • the distance between the second refractive zones 3 eg, the average distance
  • the spacing (eg, average spacing) between the first refractive areas 2 along the direction in which the first pattern extends is smaller than the spacing (eg, the average spacing) between the second refractive areas 3 in the direction in which the second pattern extends. spacing), but in certain directions (such as radial direction), the spacing (such as the average spacing) between the first refractive areas 2 can also be smaller than, equal to, or even larger than the second refractive areas 3 in the same direction. spacing (such as average spacing).
  • the plurality of second refractive areas 3 may be arranged as a plurality of island-shaped areas spaced apart from each other in one or more second patterns. In some embodiments, within at least one second pattern, the spacing between the second refractive areas 3 is greater than the maximum value of the spacing between the first refractive areas 2 . The inventor found that retaining an appropriate spacing between the second refractive zones 3 can not only improve the compliance and visual comfort of patients wearing glasses, but also minimize the differences in myopia management/control effects for different patients.
  • the inventor believes that if the defocus range of myopia is too large and the focusing light on the retina is insufficient, it may make it difficult for the eye to judge whether to adjust the retina forward or backward to find the focus point, thus leading to differences between different patients. Large effect difference, so it is important to maintain sufficient spacing between multiple second refractive zones 3.
  • the second refractive areas 3 in each second pattern can be set to have the same spacing.
  • the spacing between the second refractive areas 3 in different second patterns can be equal. This will be manifested in that the number of the second refractive areas 3 on the second pattern closer to the outside is larger, or the size is larger.
  • the distance between two adjacent refractive areas in the pattern is larger, Examples are shown in Figures 1, 4 and 5. That is to say, among any two adjacent patterns, the distance between the refractive areas in the pattern relatively close to the center of the ophthalmic lens is smaller than the distance between the refractive areas in the pattern far away from the center of the ophthalmic lens. spacing.
  • the above rule may also exist only for the second pattern.
  • the first refractive areas in each first pattern can be connected or closely adjacent to each other, for example, as shown in Figure 2 shown.
  • the distance between the second refractive areas within the second pattern may be greater the further away from the center of the ophthalmic lens.
  • the spacing between two adjacent refractive areas within a single pattern gradually increases from zero, but does not exceed 2.00mm, preferably not more than 2.00 mm. Exceeding 1.90mm, more preferably not exceeding 1.80mm, for example gradually increasing to 1.20mm.
  • the first refractive areas 2 are illustrated as being uniformly disposed along the extending direction of the first pattern, in an embodiment not shown, the first refractive areas 2 are arranged along the first pattern.
  • the extension direction of the pattern can also be set non-uniformly.
  • the extension direction of the first pattern refers to the extension direction of the lines generally formed by the first pattern.
  • the first patterns are all formed as rings 21, then the extension direction of the first pattern can be understood as the extension direction of the lines forming the rings, that is, the circumferential direction.
  • it may also include some non-uniformly arranged first refractive areas.
  • the non-uniformly arranged first refractive areas are discretely distributed along the extension direction of the first pattern, and there may be a larger spacing between them, but they are connected or closely arranged with those along the extension direction of the first pattern.
  • the first refractive areas 2 are adjacent to or adjacent to each other.
  • the second refractive areas 3 are illustrated as being uniformly arranged along the extension direction of the second pattern, in an embodiment not shown, the second refractive areas 3 are arranged along the second pattern.
  • the extension direction of the pattern can also be set non-uniformly.
  • the extension direction of the second pattern refers to the extension direction of the lines generally formed by the second pattern.
  • the second pattern is formed as a ring 31, then the extension direction of the second pattern can be understood as the extension direction of the lines forming the ring, that is, the circumferential direction.
  • it may also include some second refractive areas arranged non-uniformly.
  • the non-uniformly arranged second refractive areas are discretely distributed along the extension direction of the second pattern, and may have a larger spacing between them, but they are different from those second refractive areas arranged along the extension direction of the second pattern.
  • Area 3 is adjacent or adjacent to each other.
  • adjacent second patterns may not be in contact with each other (that is, not as shown in FIG. 5 ) or not immediately adjacent to each other, but may have a slightly larger spacing (for example, as shown in FIGS. 1 and 2 ).
  • the total area ratio of the first refractive area 2 can be set to be greater than or equal to 60% and less than or equal to 78.5% in at least one first pattern or each first pattern.
  • the total area ratio of the first refractive area 2 can be set to be greater than or equal to 70% and less than or equal to 78.5% in at least one first pattern.
  • the total area ratio of the first refractive area 2 provided in at least two first patterns is greater than or equal to 70% and less than or equal to 78.5%.
  • the total area ratio of the second refractive area 3 in at least one second pattern or each second pattern may be set to be less than 60% and greater than or equal to 30%, preferably less than 60% and greater than or equal to 35%, more preferably less than 60% and greater than or equal to 40%.
  • the total area ratio of the second refractive area 3 in each second pattern can be set to be less than 60% and greater than or equal to 30%.
  • the total area ratio of the first refractive area in each first pattern is greater than the total area ratio of the second refractive area in each second pattern.
  • the total area ratio of the refractive area contained in each pattern can gradually become smaller in the direction away from the center of the lens.
  • the first pattern may be closer to the center of the ophthalmic lens than the total area of the first refractive area in the first pattern that is farther from the center of the ophthalmic lens.
  • the total area of the first refractive area in the first pattern accounts for a larger proportion.
  • the total area proportion of the second refractive area in the second pattern that is further from the center of the ophthalmic lens is closer to the center of the ophthalmic lens.
  • the second refractive area in the second pattern accounts for a larger proportion of the total area.
  • the center of the lens can be used as the origin to divide the lens into multiple sector areas, such as 2 to 36 sector areas, such as 2 to 18 sectors, such as 2 to 4 sectors, such as 3, 4 , 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 sectors.
  • the first refractive area 2 may be provided in these sectors in such a manner that the sectors are independent of each other and the second refractive area 3 may be provided in such a manner that the sectors are independent of each other.
  • each of the first patterns, second patterns, first areas, and second areas discussed above can be divided into multiple parts that respectively fall in the plurality of sector areas to discuss setting the first curve in each part.
  • the settings of the first refractive areas 2 in different sector-shaped areas may be the same or different; the settings of the second refractive areas 3 in different sector-shaped areas may be the same or different.
  • the arrangement (such as shape, size, density, spacing, area) of the first refractive area 2 and/or the second refractive area 3 in at least one of the plurality of sector-shaped areas Scale and/or Addition) are different from the settings in other sectors.
  • first refractive zone 2 and/or the second refractive zone may be arranged in at least one sector as previously described, for example, in any of Figures 1-6 and 8A-8E 3, or the first refractive area 2 and/or the second refractive area 3 may be provided in at least some sectors, respectively, using a plurality of methods as described above, such as in Figures 1-6 and 8A-8E.
  • the total area ratio of the plurality of first refractive areas 2 in the first area (or at least one first pattern) is greater than or equal to 60% and less than or equal to 78.5%, preferably greater than 63% and less than or equal to 78.5%.
  • the total area ratio of the plurality of second refractive areas 3 in the second zone is less than 60%, preferably is less than 57%, more preferably less than 54%, and the total area ratio of the plurality of second refractive areas 3 in at least one second pattern included in the second area is less than 60% and greater than or equal to 30%, preferably less than 60% and 35% or more, more preferably less than 60% and 40% or more.
  • some implementations include one or more first patterns in the first area and at least part of the first area is a first annular area centered on the center of the ophthalmic lens, with an inner edge diameter of 9 mm and an outer edge diameter of 15 mm.
  • first annular area centered on the center of the ophthalmic lens, with an inner edge diameter of 9 mm and an outer edge diameter of 15 mm.
  • any one in the first annular area is greater than 70% and less than 78.5%, preferably greater than 72% and less than 78.5%.
  • first patterns, second patterns, etc. to describe the arrangement of the plurality of first refractive areas 2 and the plurality of second refractive areas 3 as mentioned above, it is also possible to use rays to describe their arrangement.
  • rays to describe their arrangement.
  • a plurality of first refractive areas 2 and a plurality of second refractive areas 3 are distributed on a plurality of rays 4 starting from the center of the ophthalmic lens (ie, the center of the circle of these refractive areas located on ray 4).
  • the ray-like distribution is set so that when the user wears the spectacle lenses, the user will have a ray-like clear area for vision in both the upper and lower nasal temporal directions, taking into account the user's clear vision in all directions of the upper and lower nasal temporalities. demand, especially when the pattern spacing is small.
  • the first refractive area 2 and the second refractive area 3 are distributed on each ray 4 .
  • the shape of the projection of the first refractive area 2 and the second refractive area 3 on the ophthalmic lens is not circular, it can be said that the center of the first refractive area 2 and the second refractive area 3 ( The center of the projected figure (e.g. on an ophthalmic lens) is located on ray 4.
  • the number of first refractive zones is less than, equal to or greater than the number of second refractive zones. For example, when the number of rays 4 is 2n, these rays 4 form n straight lines.
  • parts of the plurality of first refractive areas 2 and the plurality of second refractive areas 3 may not be distributed on the rays.
  • the refractive areas on some rings may be opposite to each other.
  • the refractive zones on adjacent rings are staggered.
  • the number of refractive areas on each ring is equal.
  • a radial continuous blank area will be formed outside, that is, a radial continuous distance refractive correction area, which helps to provide good visual quality.
  • the number of refractive areas on the ring may be smaller closer to the central area 5 , and correspondingly, the number of refractive areas on the ring farther away from the central area 5 may be larger.
  • adjacent first refractive areas and/or adjacent second refractive areas on the same ray may be connected to each other, as shown in FIG. 5 .
  • the ophthalmic lens of the present application (such as the above-mentioned lens with a structure that will form a radial continuous distance refractive correction area outside the central optical zone) scored better after long-term wearing. High (Table 1).
  • the contents of the questionnaire include: comfort level when wearing, whether there is double vision, whether you feel tired, dizzy, have a headache or unable to adapt, how easy it is to adapt to wearing new lenses, and whether you walk when wearing them. Feel any difficulty, whether you can go up and down stairs while wearing glasses, etc. (The total score for each item is 10 points. Finally, the average score of all items is averaged. The average score is 10 points. The higher the score, the more comfortable it is. The better the degree).
  • the comparison ophthalmic lens 1 does not have a radial continuous distance refractive correction zone.
  • the first refractive area 2 and the second refractive area 3 on each ray may have a gradually or stepwise increasing size as a whole along the direction away from the central area 5, and Has a gradual or stepwise reduction in add brightness.
  • this arrangement is optically optimized to maintain a basically constant low-intensity "image jump" throughout the entire lens range when other parameters remain unchanged, combined with ray-like and continuous distance refractive correction. area, can provide good visual effects for subjects, and subjects can easily adapt and have high wearing compliance.
  • the dispersion coefficient of the image jumps of the plurality of second refractive areas may be less than 15%, preferably less than 12%, and more preferably less than 10%.
  • the dispersion coefficient of the image jump of multiple second refractive areas can be greater than 1%, Preferably it is greater than 2%, more preferably greater than 3%.
  • the above-mentioned upper limit and lower limit values can be arbitrarily combined to set the range of the dispersion coefficients of the image jumps in the plurality of second refractive areas.
  • additional second refractive areas may be distributed between two adjacent rays 4, and these additional second refractive areas may also be arranged in a regular pattern.
  • the pattern in which the additional second refractive areas are arranged is referred to as the additional pattern 41 herein, for example, as shown in FIG. 8A .
  • additional patterns 41 may be provided between every two adjacent rays 4 .
  • additional patterns 41 may be provided between a part of two adjacent rays 4, while no pattern is provided between another part of two adjacent rays 4 (that is, a blank is formed).
  • the additional pattern 41 and the blank space may be arranged alternately, as shown in FIG. 8B.
  • all additional patterns 41 can be distributed divergently relative to the central area 5 .
  • Corresponding to each additional pattern 41 it can be straight as shown in the figure, or it can be curved in any way.
  • a plurality of first refractive areas and a plurality of second refractive areas may be distributed on a plurality of curves 42, such as shown in Figures 8C-8D.
  • the center of the first refractive zone 2 and the second refractive zone 3 eg, the center of a projected figure on an ophthalmic lens
  • These curves 42 can be distributed divergently relative to the central area 5 . That is to say, the distance between the two intersection points m 1 and m 2 on the adjacent curve 42 and the intersecting circle centered on the center of the ophthalmic lens (see the dotted line in the figure) increases with the diameter of the intersecting circle.
  • the plurality of curves 42 may be Bend in the same direction, such as counterclockwise (as shown in Figure 8C), or clockwise in other embodiments not shown.
  • each curve 42 may also have multiple bending directions, as shown in FIG. 8D , which shows that each curve 42 is generally in a wavy shape with two bends. In other embodiments not shown, each curve 42 may also be wavy with more bends. Furthermore, these bends may be uniformly distributed on each curve 42 or may be non-uniformly distributed on each curve 42 .
  • portions closer to the central area 5 may have less curvature, while portions further away from the central area 5 may have more curvature.
  • adjacent first refractive areas and/or adjacent second refractive areas on the same curve may be connected to each other.
  • the rays or curves of the first part may not coincide with the rays or curves of the second part or may partially coincide.
  • the second refractive area 3 within each second pattern shown in Figure 1, Figure 2, Figure 4 or Figure 5 can be moved a certain distance along the circumferential direction (it can also be said to be moved around the center of the lens A certain angle), so that the first refractive area 2 and the second refractive area 3 are respectively distributed in one of the two sets of rays starting from the center of the ophthalmic lens (the rays are twice as many as shown in the figure) superior.
  • a plurality of first refractive areas and a plurality of second refractive areas may be distributed on a plurality of composite lines 43, for example as shown in Figure 8E.
  • the center of the first refractive zone 2 and the second refractive zone 3 eg, the center of a projected figure on an ophthalmic lens
  • the plurality of composite lines 43 may be distributed divergently relative to the central area 5 .
  • the composite line 43 may be composed of multiple straight lines, multiple curves, or a combination of straight lines and curves.
  • the composite line 43 may include a main line extending in a radial direction of the ophthalmic lens and two branch lines extending outwardly from an end of the main line away from the center of the ophthalmic lens.
  • the plurality of composite lines 43 may also be repeatedly arranged along the circumferential direction of the ophthalmic lens. That is to say, the distances between the intersecting circles centered on the center of the ophthalmic lens (see the dotted line in the figure) and the intersections m 1 , m 2 . . . m n formed by corresponding parts of the plurality of composite lines 43 are equal.
  • the first refractive area and the second refractive area are distributed on each ray or curve as described above, and/or the multiple rays or multiple curves are evenly distributed on the On ophthalmic lenses.
  • the addition power of the first refractive area is unified, and/or the addition power of the second refractive area is unified, and/or the first refractive area
  • the addition powers of the area and the second refractive area are unified; or on the same ray or curve, the size of the first refractive area is unified, and/or the size of the second refractive area is unified, and/or the The size of the first refractive area and the second refractive area are uniform; or on the same ray or curve, along the direction away from the center of the ophthalmic lens, the direction of change of the addition power of the first refractive area The direction of change of its size is opposite, and/or the direction of change of the addition power of the second refractive area is opposite to
  • the first refractive area 2 and the second refractive area 3 may be asymmetrically provided on both sides of the nasal side and temporal side of the lens, for example, as shown in FIG. 9 .
  • the "nasal side” and “temporal side” in this disclosure refer to the left and right sides divided by a vertical line passing through the center of the lens (such as a vertical dotted line passing through the center as shown in Figure 9), where when paired with The side close to the nose when worn is the "nasal side", and the side far away from the nose is the "temporal side”.
  • the nasal and temporal sides of the human eye are not symmetrical, and a large number of studies have measured off-axis aberrations of the human eye, most of which were measured in the horizontal field of view. Research has found that as the horizontal viewing angle increases, defocus and astigmatism will change (AtchisonDA.Recent advances in measurement of monochromatic aberrations of human eyes. Clin Exp Optom. 2005 Jan; 88(1):5-27). Due to the asymmetry of the human eye, the defocus of the human eye itself is not the same in different directions in the horizontal visual field, and there is a certain difference between the nasal side and the temporal side.
  • the first refractive zone 2 and the first refractive zone 2 may be asymmetrically provided nasally and temporally within the first zone (or each first pattern) and/or the second zone (or each second pattern). /or the shape, size, density, spacing, area ratio and/or addition of the second refractive area 3.
  • the number of the first refractive areas 2 and the second refractive areas 3 on the nasal side (left side) and temporal side (right side) can be set asymmetrically as shown in Figure 9, so that in the first area ( The total area proportion of the first refractive region 2 provided on the temporal side of the first pattern 21) is greater than the total area proportion of the first refractive region 2 provided on the nasal side, and in the second area (each second pattern 31 ) The total area proportion of the second refractive region 3 provided on the temporal side is greater than the total area proportion of the second refractive region 3 provided on the nasal side.
  • the wearer's eyeball such as the refractive state of the nasotemporal peripheral retina
  • the eye length profile such as through the Shin Nippon automatic refractor, or the multispectral refractive topography instrument (MRT), or IOLMaster, or LensStar, or measured by ultrasound or magnetic resonance imaging
  • MRT multispectral refractive topography instrument
  • IOLMaster IOLMaster
  • LensStar or measured by ultrasound or magnetic resonance imaging
  • the inventor of the present application believes that by asymmetrically setting the refractive areas on the nasal side and the temporal side, the asymmetry of the human eye can be compensated, so that the wearer can obtain sufficient myopic defocus in different directions, thereby making it easier to Manage and control the progression of myopia well.
  • the density or total area ratio of the first refractive area provided on the temporal side of the first area or first pattern is the same as the density or total area ratio of the first refractive area provided on the nasal side of the first area or first pattern.
  • the proportion of total area is different.
  • the addition power of the first refractive area is asymmetrically set on the temporal side and the nasal side of the first zone or single first pattern.
  • two first refractive zones that are substantially symmetrical about a vertical line passing through the center of the lens have different addition powers.
  • the addition powers of the first refractive areas respectively provided on the temporal side and the nasal side of the first area or each first pattern are each a unified value, but the unified values on both sides are different.
  • the adding power of the first refractive area provided in the first area or the temporal side of each first pattern changes in the radial direction or the circumferential direction of the lens (the trend and/or value of the change, etc. ) is different from the nasal side.
  • the density or total area ratio of the second refractive area provided on the temporal side of the second area or second pattern is the same as the density or total area ratio of the second refractive area provided on the nasal side of the second area or second pattern.
  • the proportion of total area is different.
  • the addition power of the second refractive area is asymmetrically set on the temporal side and the nasal side of the second zone or single second pattern.
  • two second refractive zones that are substantially symmetrical about a vertical line passing through the center of the lens have different addition powers.
  • the addition powers of the second refractive areas respectively provided on the temporal side and the nasal side of the second area or each second pattern are each a unified value, but the unified values on both sides are different.
  • set it in the second The addition power of the second refractive area on the temporal side of the zone or each second pattern changes in a radial direction or a circumferential direction of the lens (a trend of change and/or a value, etc.) that is different from that on the nasal side.
  • the addition power, density and/or area ratio of the first refractive zone 2 and/or the second refractive zone 3 on the temporal side are increased, To balance the myopic defocus on both sides. Therefore, preferably, the density or total area ratio of the first refractive area provided on the temporal side of the first area or at least one first pattern is greater than that provided on the nasal side of the first area or at least one first pattern. The density or total area ratio of the first refractive zone.
  • the average addition of the first refractive area provided on the temporal side of the first area or at least one first pattern is greater than the first refractive area provided on the nasal side of the first area or at least one first pattern.
  • the addition power of the first refractive area on the temporal side is greater than the addition power of the first refractive area on the nasal side.
  • the addition powers of the first refractive areas respectively provided on the temporal side and the nasal side of the first area or each first pattern are each a unified value, and the unified value on the temporal side is greater than the unified value on the nasal side.
  • the density or total area ratio of the second refractive area provided on the temporal side of the second area or at least one second pattern is greater than that of the second refractive area provided on the nasal side of the second area or at least one second pattern.
  • the average addition of the second refractive area provided on the temporal side of the second area or at least one second pattern is greater than the second refractive area provided on the nasal side of the second area or at least one second pattern. the average addition.
  • the addition power of the second refractive area on the temporal side is greater than the addition power of the second refractive area on the nasal side.
  • the addition powers of the second refractive areas respectively provided on the temporal side and the nasal side of the second area or each second pattern are each a unified value, and the unified value on the temporal side is greater than the unified value on the nasal side.
  • the number of first refractive areas 2 within each first pattern is the same as the number of first refractive areas 2 within each second pattern (eg, second ring 31).
  • the number of the two refractive areas 3 may be the same, for example, as shown in Figures 1, 2, 5, 8C-8D, and 9.
  • the total number of first refractive areas 2 and second refractive areas 3 arranged on the entire ophthalmic lens may be 170-400, more preferably, 190-300.
  • a frame spectacles is also provided, on which various ophthalmic lenses according to various embodiments of the present invention can be provided. Therefore, the frame glasses can not only suppress the development of refractive error in the wearer's eyes, but also provide the wearer with clear vision.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

本公开涉及一种眼科镜片和具有其的框架眼镜。该眼科镜片包括中心区域、多个第一屈光区域和多个第二屈光区域,其中,所述多个第一屈光区域被布置在包围所述中心区域的第一区中,所述多个第二屈光区域被布置在相比于所述第一区更远离所述中心区域的第二区中,所述中心区域的部分或全部具有基于人眼的处方的处方屈光力,所述多个第一屈光区域与所述多个第二屈光区域均具有与所述处方屈光力不同的屈光力,以及所述多个第一屈光区域的总面积相对于所述第一区的面积的占比大于所述多个第二屈光区域的总面积相对于所述第二区的面积的占比。由此,本公开能够对近视进展形成更有效地管理和控制。

Description

眼科镜片和具有其的框架眼镜 技术领域
本公开涉及一种眼镜片的技术领域,具体地,涉及一种具有多个微型离焦区域的眼科镜片、以及具有其的框架眼镜。
背景技术
人眼的屈光不正包括近视、远视和散光等,其中近视是最常见的屈光不正,尤其在青少年中多发。当眼睛处于调节静止状态时,外界的平行光线经过眼睛的屈光***后,聚焦在视网膜前而不是视网膜黄斑中心凹上,导致患者看不清远处物体,即发生近视;也就是说,当眼睛的轴向长度大于眼睛的光学***的焦距时,即发生近视。
通常使用框架镜片或接触镜片等眼科装置来矫正或提高患者视力,例如使用负镜片矫正近视,使用正透镜矫正远视。常规用于近视矫正的眼科镜片是单光(单焦点)球镜,即眼镜中心到边缘的屈光度是相同的。通过单光球镜产生的最佳聚焦面Petzval面为球形,而眼球一般为椭球形,因此导致周边Petzval面位于视网膜后,形成远视离焦。远视离焦促进眼轴生长,因此促进近视的进展。
目前已经存在多种用于对近视进展进行管理和控制(下文中简称为“近视管理/控制”)的眼科镜片,其中一种涉及在单光球镜上布置多个微透镜,通过使用这些微透镜在视网膜前方形成物体的像来抑制近视进展,参见CN 104678572 A。
然而,对于能够有效抑制眼睛轴向长度增长,又不显著影响视觉质量的近视管理/控制镜片,还存在着需求。另外,还希望近视管理/控制镜片能够提高患者配戴依从性,并且/或者减小不同个体间差异,从而提高近视管理和控制效果。
发明内容
为了至少部分地解决现有技术中存在的问题,根据本公开的第一个方面,提供了一种眼科镜片,包括中心区域、多个第一屈光区域和多个第二屈光区域,其中,所述多个第一屈光区域被布置在包围所述中心区域的第一区中,所述多个第二屈光区域被布置在相比于所述第一区更远离所述中心区域的第二区中,所述中心区域的部分或全部具有基于人眼的处方的处方屈光力,所述多个第一屈光区域与所述多个第二屈光区域均具有与所述处方屈光力不同的屈光力,以及所述多个第一屈光区域的总面积相对于所述第一区的面积的占比大于所述多个第二屈光区域的总面积相对于所述第二区的面积的占比。
可选地,在所述第一区内所述多个第一屈光区域的密度大于在所述第二区内所述多个第二屈光区域的密度;并且/或者所述多个第一屈光区域之间的平均间距小于所述多个第 二屈光区域之间的平均间距。
可选地,所述多个第一屈光区域被配置为,当配戴者配戴所述眼科镜片时,穿过所述多个第一屈光区域中的部分或全部的入射光束投射在所述配戴者的视网膜黄斑中心凹旁10度至20度之间的区域。
可选地,所述多个第一屈光区域至少部分被布置在以所述眼科镜片中心为中心的内缘直径9.0mm至外缘直径15.0mm的环形区域内,或者至少部分被布置在以所述眼科镜片中心为中心的内缘直径9.5mm至外缘直径14.0mm的环形区域内,或者至少部分被布置在以所述眼科镜片中心为中心的内缘直径11.0mm至外缘直径14.0mm的环形区域内。
可选地,所述多个第一屈光区域非间隔开地设置;并且/或者所述多个第二屈光区域间隔开地设置。
可选地,所述多个第一屈光区域中的每个以及所述多个第二屈光区域中的每个在所述眼科镜片上的投影的最大尺寸各自独立地选自0.5~2.2mm;并且/或者所述多个第一屈光区域中的每个以及所述多个第二屈光区域中的每个在所述眼科镜片上的投影为圆形;并且/或者所述多个第一屈光区域和所述多个第二屈光区域各自具有选自球面、非球面或复曲面的表面形状;并且/或者所述多个第二屈光区域具有相等的在所述眼科镜片上的投影的面积。
可选地,所述多个第一屈光区域中的每一个具有通过向所述处方屈光力增加正的屈光力而获得的屈光力,并且/或者所述多个第二屈光区域中的每一个具有通过向所述处方屈光力增加正的屈光力而获得的屈光力;或者所述多个第一屈光区域与所述多个第二屈光区域的屈光力均相同;或者沿所述眼科镜片的径向方向,所述多个第一屈光区域和所述多个第二屈光区域的屈光力随着径向距离的增大而逐渐增大或呈阶梯式增大,并且/或者所述多个第一屈光区域和所述多个第二屈光区域的尺寸随着径向距离的增大而逐渐减小或呈阶梯式减小;或者沿所述眼科镜片的径向方向,所述多个第一屈光区域和所述多个第二屈光区域的屈光力随着径向距离的增大而逐渐减小或呈阶梯式减小,并且/或者所述多个第一屈光区域和所述多个第二屈光区域的尺寸随着径向距离的增大而逐渐增大或呈阶梯式增大。
可选地,所述中心区域的最大尺寸选自3.0~11.0mm;并且/或者所述中心区域为以所述眼科镜片的中心为中心的圆形区域,所述圆形区域的直径选自3.0~11.0mm;并且/或者所述第一区为以所述眼科镜片的中心为中心的环形区域,所述环形区域的内缘直径选自3.0~11.0mm且外缘直径选自15.0~28.6mm;并且/或者所述第二区为以所述眼科镜片的中心为中心的环形区域。
可选地,在所述第一区内所述多个第一屈光区域的总面积占比大于等于60%且小于等于78.5%,或者大于63%且小于等于78.5%,或者大于66%且小于等于78.5%;并且/或者在所述第二区内所述多个第二屈光区域的总面积占比小于60%,或者小于57%,或者小于54%。
可选地,所述第一区包括一个或多个第一图案,所述第一区的部分或全部为以所述眼科镜片的中心为中心的、内缘直径为9mm、外缘直径为15mm的第一环形区域,并且在所述第一环形区域内的任一单个第一图案内的第一屈光区域的总面积占比大于70%且小于78.5%,或者大于72%且小于78.5%。
可选地,所述第一区包括一个或多个第一图案,所述多个第一屈光区域的部分或全部排列在所述一个或多个第一图案中;并且/或者所述第二区包括一个或多个第二图案,所述多个第二屈光区域的部分或全部排列在所述一个或多个第二图案中。
可选地,所述第一图案和所述第二图案均为与所述眼科镜片的中心同中心地设置的环形图案;或者所述第二图案为与所述眼科镜片的中心同中心地设置的扇环图案。
可选地,任意相邻的两个第二图案之间的间距与任意相邻的两个第一图案之间的间距相等,并且/或者任意相邻的两个第二图案之间的间距等于相邻的第一图案与第二图案之间的间距;或者任意相邻的两个第二图案之间的间距、任意相邻的两个第一图案之间的间距和/或相邻的第一图案与第二图案之间的间距均为零;或者任意相邻的第一图案之间的间距小于或等于0.5mm。
可选地,所述第一图案的数量为1-4个,所述第二图案的数量为1-15个。
可选地,在至少一个第一图案内所述第一屈光区域是均匀分布的;并且/或者在至少一个第二图案内所述第二屈光区域是均匀分布的。
可选地,在至少一个第一图案内,相邻的所述第一屈光区域的边缘彼此相接;并且/或者在至少一个第一图案内,所述第一屈光区域之间的间距均选自0~0.5mm;并且/或者在至少一个第二图案内,所述第二屈光区域之间的间距均大于所述第一屈光区域之间的间距的最大值;并且/或者在所述多个第二图案中越靠近所述眼科镜片的中心的第二图案内的第二屈光区域之间的间距越小;并且/或者在包括全部所述第一图案和全部所述第二图案的图案中,越靠近所述眼科镜片的中心的图案内的第一屈光区域或第二屈光区域之间的间距越小。
可选地,所述多个第一屈光区域在至少一个所述第一图案内的总面积占比大于等于60%且小于等于78.5%,或者大于等于70%且小于等于78.5%;并且/或者在所述第一区包括多个第一图案的情况下,每个第一图案中的第一屈光区域的总面积占比均大于等于60%且小于等于78.5%;并且/或者在所述第一区包括多个第一图案的情况下,至少两个第一图案中的第一屈光区域的总面积占比大于等于70%且小于等于78.5%;并且/或者所述多个第二屈光区域在至少一个所述第二图案内的总面积占比小于60%且大于等于30%,或者小于60%且大于等于35%,或者小于60%且大于等于40%;并且/或者在所述第二区包括多个第二图案的情况下,每个第二图案中的第二屈光区域的总面积占比均小于60%且大于等于30%。
可选地,在所述第一区包括多个第一图案的情况下,相比于离所述眼科镜片的中心更远的第一图案中的第一屈光区域的总面积占比,离所述眼科镜片的中心更近的第一图案中 的第一屈光区域的总面积占比更大;并且/或者在所述第二区包括多个第二图案的情况下,相比于离所述眼科镜片的中心更远的第二图案中的第二屈光区域的总面积占比,离所述眼科镜片的中心更近的第二图案中的第二屈光区域的总面积占比更大;并且/或者每个第一图案中的第一屈光区域的总面积占比比每个第二图案中的第二屈光区域的总面积占比大。
可选地,所述多个第一屈光区域分布在以所述眼科镜片的中心为起点的多条射线或多条曲线上,并且/或者所述多个第二屈光区域分布在以所述眼科镜片的中心为起点的多条射线或多条曲线上。
可选地,每条射线或曲线上均分布有第一屈光区域和第二屈光区域,并且/或者所述多条射线或多条曲线均匀地分布在所述眼科镜片上。
可选地,在同一条射线或曲线上,所述第一屈光区域的加光度统一,并且/或者所述第二屈光区域的加光度统一,并且/或者所述第一屈光区域与第二屈光区域的加光度统一;或者在同一条射线或曲线上,所述第一屈光区域的尺寸统一,并且/或者所述第二屈光区域的尺寸统一,并且/或者所述第一屈光区域与第二屈光区域的尺寸统一;或者在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域的加光度的变化方向与其尺寸的变化方向相反,并且/或者所述第二屈光区域的加光度的变化方向与其尺寸的变化方向相反;或者在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的尺寸逐渐增大或阶梯式增大,并且/或者,在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的加光度逐渐减小或呈阶梯式减小。
可选地,同一条射线或曲线上相邻的第一屈光区域和/或相邻的第二屈光区域彼此相接。
可选地,所述多条射线或所述多条曲线的数量为16-40个,或者为26-35个。
可选地,在每条射线或曲线上,第一屈光区域的数量小于第二屈光区域的数量;并且/或者当所述多条射线的数量为2n时,所述多条射线形成n条直线。
可选地,所述多个第一屈光区域和所述多个第二屈光区域被配置为能够在整个第一区和第二区的范围内维持基本恒定的像跳。
可选地,在整个第一区和第二区的范围内,所述多个第一屈光区域和所述多个第二屈光区域的像跳的离散系数小于20%。
可选地,在整个所述第二区的范围内,所述多个第二屈光区域的像跳的离散系数小于15%,或者小于12%,或者小于10%。
可选地,在所述第一区的颞侧设置的第一屈光区域的总面积占比与在所述第一区的鼻侧设置的第一屈光区域的总面积占比不同;并且/或者所述第一屈光区域的加光度在所述第一区的颞侧与鼻侧不对称地设置;并且/或者在所述第二区的颞侧设置的第二屈光区域的总面积占比与在所述第二区的鼻侧设置的第二屈光区域的总面积占比不同;并且/或者所述第二屈光区域的加光度在所述第二区的颞侧与鼻侧不对称地设置。
可选地,在所述第一区的颞侧设置的第一屈光区域的总面积占比大于在所述第一区的鼻侧设置的第一屈光区域的总面积占比;并且/或者在所述第一区的颞侧设置的第一屈光区域的平均加光度大于在所述第一区的鼻侧设置的第一屈光区域的平均加光度;并且/或者在所述第二区的颞侧设置的第二屈光区域的总面积占比大于在所述第二区的鼻侧设置的第二屈光区域的总面积占比;并且/或者在所述第二区的颞侧设置的第二屈光区域的平均加光度大于在所述第二区的鼻侧设置的第二屈光区域的平均加光度。
可选地,所述眼科镜片被分成以所述眼科镜片的中心作为原点的多个扇形区,在所述多个扇形区中,以各扇形区彼此独立的方式来设置第一屈光区域并且以各扇形区彼此独立的方式来设置第二屈光区域。
根据本公开的第二个方面,提供了一种框架眼镜,在所述框架眼镜上设有根据本公开第一个方面及其各种可选实施例所述的眼科镜片。
应理解,本公开中的表述“选自……”意指能够选择其后数值范围中的任意值,包括该数值范围的两个端点值。
应理解,本公开中所说的图案或环的中心线意指通过该图案或环的径向宽度上的中点的连线。另外,本公开中所述的第一/第二屈光区域等的中心意指该屈光区域在镜片主视图上的投影的图形的几何中心。
在申请内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本申请内容部分并不是要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不是试图限定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本申请的优点和特征。
附图说明
本申请的下列附图在此作为本申请的一部分用于理解本申请。附图中示出了本申请的实施方式及其描述,用来解释本申请的原理。在附图中,
图1为根据本申请的一个示例性实施例的眼科镜片的主视图;
图2为根据本申请的另一个示例性实施例的眼科镜片的主视图;
图3为图2的局部放大图;
图4为根据本申请的再一个示例性实施例的眼科镜片的主视图;
图5为根据本申请的又一个示例性实施例的眼科镜片的主视图;
图6为图5的局部放大图;
图7为根据本申请的一个示例性实施例的眼科镜片与对照例做对比的数据图表;
图8A-8E分别为根据本申请的不同实施例的眼科镜片的简化示意图,它们分别示出了屈光区域的不同分布,其中为了清楚地示出微透镜的排布规律而未画出所有微透镜的外轮廓;以及
图9为根据本申请的还一个示例性实施例的眼科镜片的主视图。
其中,上述附图包括以下附图标记:
1、眼科镜片;2、第一屈光区域;2a、内侧的第一图案;2b、外侧的第一图案;3、第二屈光区域;4、射线;41、附加图案;42、曲线;43、复合线;5、中心区域;6、***区域;7、中间区域;8、第一区;9、第二区;21、第一环;31、第二环。
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本申请。然而,本领域技术人员可以了解,如下描述仅示例性地示出了本申请的优选实施例,本申请可以无需一个或多个这样的细节而得以实施。此外,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行详细描述。
为了彻底了解本申请实施方式,将在下列的描述中提出详细的结构。显然,本申请实施方式的施行并不限定于本领域的技术人员所熟习的特殊细节。本申请的较佳实施方式详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
为了抑制眼睛的屈光不正的发展,还能满足戴镜后的清晰视力,本申请的一个方面提供了一种眼科镜片。
下面首先将以图1为例对本申请的眼科镜片进行详细说明。
如图1所示,眼科镜片1包括中心区域5、多个第一屈光区域2和多个第二屈光区域3,其中多个第一屈光区域2被布置在包围中心区域5的第一区8(如图1中的与多个第一屈光区域2相切的两条虚线所包围的区域)中,多个第二屈光区域3被布置在相比于第一区8更远离中心区域5的第二区9(如图1中的与最内侧的多个第二屈光区域3和最外侧的多个第二屈光区域3分别相切的两条虚线所包围的区域)中。
中心区域5的部分或全部可以具有基于人眼(使用者/配戴者的眼睛)的处方的处方屈光力。在一些实施例中,中心区域5被设计为使用者配戴眼镜后平视前方时瞳孔正对的位置,这样,视远时平行入瞳光线经过中心区域5校正后,正好成像在黄斑中心凹上,以保证视力清晰。处方屈光力为视力验光机构所开处方中的屈光力,可以理解为常规说的度数。在使用者为近视的情况下,该处方屈光力可以为负屈光力。而在一些实施例中,使用者可能还未达近视标准,但远视储备已不足,为了预防近视,此时该处方屈光力可以为0或正屈光力。在一些实施例中,中心区域5可以为单焦点区域,其具有处方屈光力。在另一些实施例中,中心区域5可以为多焦的区域,例如为渐进多焦的区域,其具有连续变化的屈光力。在这种情况下,中心区域5仅部分具有处方屈光力。
在中心区域5***设置的多个第一屈光区域2与多个第二屈光区域3均具有与处方屈光力不同的屈光力。因此,第一屈光区域2与第二屈光区域3均能够将光线聚焦在眼睛的视网膜以外的位置,从而抑制眼睛的屈光不正的发展。
在一些实施例中,眼科镜片1上未布置有第一屈光区域2和第二屈光区域3的区域中的至少部分具有处方屈光力,例如图1、图2、图4或图5中所示的中心区域5、在第一 区8和第二区9中间的区域、在第一区8和第二区9之外的***区域6、以及在各个第一屈光区域2和第二屈光区域3之间的中间区域7中的至少一者具有处方屈光力。优选地,在一些实施例中,眼科镜片1上未布置有第一屈光区域2和第二屈光区域3的区域(如图1、图2、图4或图5中所示的中心区域5、在第一区8和第二区9中间的区域、在第一区8和第二区9之外的***区域6、以及在各个第一屈光区域2和第二屈光区域3之间的中间区域7)都可以具有处方屈光力。将处于多个第一屈光区域2和/或多个第二屈光区域3之间的间隙都设置为具有处方屈光力,能给患者提供更好的视觉效果,从而提升患者依从性,提高近视管理和控制的效果。特别地,在多个第一屈光区域2和/或多个第二屈光区域3之间的间隙具有连续性的情况下,能给患者提供更优秀的视觉效果,进一步提升近视管理和控制的效果。
优选地,在一些实施例中,各个第一屈光区域2可以具有通过向处方屈光力增加正的屈光力而获得的屈光力,也就是说,第一屈光区域2所对应的镜片的整体屈光力相比于处方屈光力更正。在本文中该向处方屈光力增加的正屈光力被称为第一屈光区域的加光度。另外地或者可替代地,在一些实施例中,各个第二屈光区域3可以具有通过向处方屈光力增加正的屈光力而获得的屈光力,也就是说,第二屈光区域3所对应的镜片的整体屈光力相比于处方屈光力更正。在本文中该向处方屈光力增加的正屈光力被称为第二屈光区域的加光度。由此,通过在第一屈光区域2和第二屈光区域3中进行加光,使得中心区域5***的特定微型区域中的屈光力(例如-0.75D)相比于中心区域5的屈光力(例如-3.5D)更正,从而在周边视网膜上形成视网膜能感知而大脑感知不到的近视离焦,由此在不影响或不显著影响视觉质量的情况下控制眼轴增长,从而起到防止近视、或者阻止或延缓近视加深的作用。
在一些实施例中,各个第一屈光区域2可以具有统一的屈光力,也可以具有不同的屈光力。各个第二屈光区域3也可以具有统一的屈光力,或者具有不同的屈光力。在一些实施例中,多个第一屈光区域2与多个第二屈光区域3的屈光力可以均相同。
在一些实施例中,沿眼科镜片的径向方向,第一屈光区域2或第二屈光区域3的屈光力可以随着径向距离的增大而恒定,或者逐渐增大或减小,或者呈阶梯式增大或减小。本公开中的表述“镜片的径向方向”意指在镜片投影图中镜片中心点向外周的方向。所谓的阶梯式增大或减小是指布置在相邻的若干个图案(稍后将详细讨论所谓的“图案”)内的第一屈光区域2或第二屈光区域3具有第一屈光力,而该若干个图案外侧的若干个图案内的第一屈光区域2或第二屈光区域3可以具有第二屈光力。第二屈光力可以大于或小于第一屈光力。示例性地,沿眼科镜片的径向方向,第一屈光区域2和第二屈光区域3可以整体上具有随着径向距离的增大而逐渐或阶梯式增大或者逐渐或阶梯式减小的屈光力。
在如前所述第一屈光区域2或第二屈光区域3的屈光力随径向距离变化的情况下,优选的是,在一些实施例中,第一屈光区域2或第二屈光区域3的尺寸也随径向距离变化,并且其尺寸的变化方向与其屈光力的变化方向相反。在本公开中,第一屈光区域2或第二 屈光区域3的尺寸意指其在镜片上的投影的图形的尺寸,例如最大尺寸。应理解,本公开中的术语“最大尺寸”指的是图形在各个方向上的尺寸中的最大尺寸。在如图1所示的各屈光区域的投影的图形为圆形的情况下该尺寸可以指其直径。例如,在一些情况下,在第一屈光区域2或第二屈光区域3的屈光力随径向距离的增大而逐渐减小或阶梯式减小的情况下,第一屈光区域2或第二屈光区域3的尺寸可以随径向距离的增大而逐渐增大或阶梯式增大。这样有利于在整个镜片范围内维持基本恒定的低强度“像跳”,为配戴者提供良好的视觉效果,使得配戴者容易适应,提高配戴依从性。
像跳可以用单个第一或第二屈光区域的加光度与其对应的在镜片上的投影的最大尺寸(例如直径)的乘积来简单表示,在此情况下,术语“基本恒定”指的是在镜片上布置有第一屈光区域和第二屈光区域的整个范围内(例如整个第一区和第二区的范围内)的第一屈光区域和第二屈光区域的该乘积的离散系数小于30%,优选小于25%,更优选小于20%。本领域技术人员应理解,离散系数(CV,即Coefficient of Variation)意为标准差与平均值之比。另外,应理解,除了上述提到的随径向距离变化的方式之外,可以采用其他方式来设计各个第一或第二屈光区域的加光度与其最大尺寸,从而实现期望的像跳变化。另外,在一些实施例中,为了提高周边视觉质量,可以使外侧设置的第二屈光区域的像跳变化更加恒定。单个第二屈光区域的像跳用单个第二屈光区域的加光度与其最大尺寸的乘积来表示。在一些实施例中,在整个第二区的范围内,多个第二屈光区域的像跳的离散系数可以小于15%,优选地小于12%,更优选地小于10%。另外,在一些实施例中,为了保证周边设置的第二屈光区域的近视控制效果,在整个第二区的范围内,多个第二屈光区域的像跳的离散系数可以大于1%,优选地大于2%,更优选地大于3%。在一些实施例中,可以任意结合上述的上限和下限数值来设定多个第二屈光区域的像跳的离散系数的范围。
优选地,第一屈光区域2或第二屈光区域3相对于中心区域5的加光度可以选自+1.0D至+10.0D的范围,例如+1.0D、+1.5D、+2.5D、+3.0D、+3.5D、+4.0D、+4.5D、+5.0D、+5.5D、+6.0D、+6.5D、+7.0D、+7.5D、+8.0D、+8.5D、+9.0D、+9.5D或+10.0D。
在一些示例性的实施例中,各个第一屈光区域2或第二屈光区域3可以为附加在原镜片上的微透镜,例如,可以为凸透镜。可选地,第一屈光区域2或第二屈光区域3可以与原镜片具有一致的轮廓,即不凸出于原镜片。在此情况下,第一屈光区域2或第二屈光区域3可以具有不同于原镜片的折射率。例如,第一屈光区域2或第二屈光区域3可以采用与原镜片不同的材料制成,或者通过调整其中离子浓度来调整镜片材料聚合时不同区域的折射率而制成,或者通过使用紫外线照射特定区域使其重聚合以改变折射率而制成。
在多个第一屈光区域和多个第二屈光区域均为微透镜的情况下,可以将多个第一屈光区域认为是靠近眼科镜片的中心的微透镜,而多个第二屈光区域认为是远离眼科镜片的中心的微透镜。此处所说的靠近和远离并非绝对的,而是相对的。
在一些实施例中,各个第一屈光区域2或第二屈光区域3在镜片上的投影可以呈正圆形、扁圆形(椭圆形)、多边形等。对于多边形来说,边数可以大于或等于6。如图1所 示,当第一屈光区域2为圆形时,多个第一屈光区域2中的任意相邻的两个可以是彼此相切的,也可以说是非间隔开地设置多个第一屈光区域2。本领域技术人员应理解,在本公开中,表述“相切”、“相接”、或“间距为零”等应包含由例如测量或加工等导致的存在一定误差量的实际情况。
在一些实施例中,每个第一屈光区域2或第二屈光区域3在镜片上的投影的最大尺寸可以各自独立地选自0.5-2.2mm的范围,例如可以为0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、2.1mm或者2.2mm,或者是它们之间的任意值。在一些实施例中,当第一屈光区域2或第二屈光区域3在镜片上的投影为圆形时,圆形的直径即为最大尺寸,其可以在0.5-2.2mm之间。在一些示例性的实施例中,多个第二屈光区域3在眼科镜片上的投影的面积可以相等。在一些示例性的实施例中,多个第一屈光区域2在眼科镜片上的投影的面积可以相等。或者,在一些示例性的实施例中,多个第一屈光区域2或多个第二屈光区域3中的至少一部分在眼科镜片上的投影的面积相等。
示例性地,第一屈光区域2或第二屈光区域3可以各自具有选自球面、非球面或复曲面的表面形状。多个第一屈光区域2可以具有一致的表面形状,也可以具有不同的表面形状。多个第二屈光区域3可以具有一致的表面形状,也可以具有不同的表面形状。
本领域技术人员应理解,本公开中讨论的眼科镜片的各区域等的形状、间距及其他尺寸等指的是在眼科镜片上或者说在例如附图所示的眼科镜片的主视图上的平面投影的形状及尺寸。在本公开中,因为眼科镜片的表面的曲率半径远远大于各屈光区域的尺寸,所以在各屈光区域布置的局部可以被视为基本平坦的,从而在本公开中所述的各屈光区域在眼科镜片上的投影可以视为其在眼科镜片的主视图上的投影。在一些实施例中,第一屈光区域2和第二屈光区域3可以被布置在眼科镜片的外侧表面(即远离眼睛的表面)上,并且如附图所示的眼科镜片的主视图是该外侧表面的平面投影。当然,在另一些实施例中,第一屈光区域2和第二屈光区域3可以被布置在眼科镜片的内侧表面(即靠近眼睛的表面)上,并且如附图所示的眼科镜片的主视图是该内侧表面的平面投影。
虽然图1示出了中心区域5为以眼科镜片1的中心为中心的圆形区域,但是在另一些实施例中,中心区域5可以为多边形、或者其他旋转对称的图形。中心区域5的最大尺寸可以为3.0-11.0mm,例如可以为3.0mm、4.0mm、5.0mm、6.0mm、7.0mm、8.0mm、9.0mm、10.0mm、或者11.0mm,或者是它们之间的任意值。当如图1所示中心区域5为圆形时,中心区域5的直径可以在3.0-11.0mm之间。
如图1所示,第一区8包围中心区域5,其内缘与中心区域5的外缘相同,均与最内侧一环内的第一屈光区域2的内侧相切,其外缘与这些第一屈光区域2的外侧相切,如图中虚线所示。此时第一区8为以眼科镜片的中心为中心的环形区域。在一些实施例中,第一区的内缘直径可以选自3.0~11.0mm且外缘直径可以选自15.0~28.6mm。
如图1所示,第二区9包围第一区8,也为以眼科镜片的中心为中心的环形区域,其 内缘与最内侧第二屈光区域3的内侧相切,而外缘与最外侧第二屈光区域3的外侧相切,如图中虚线所示。第二区9比第一区8更远离中心区域5。应理解,虽然图1示出的是第二区9包围第一区8,但是本发明不限于此。在一些实施例中,第二区9可以部分地包围第一区8,例如稍后将结合图4详细描述的。
在离中心区域5较近的第一区8中布置多个第一屈光区域2,在离中心区域5较远的第二区9中布置多个第二屈光区域3,并且为了抑制眼睛的屈光不正的发展的同时还能满足戴镜后的清晰视力,在一些示例性的实施例中,可以通过适当设计,使得在第一区中的第一屈光区域的密集程度大于在第二区中的第二屈光区域的密集程度。
该密集程度可以由总面积占比来表示。换句话说,在第一区内多个第一屈光区域2的总面积占比大于在第二区内多个第二屈光区域3的总面积占比,即,多个第一屈光区域2的总面积相对于第一区的面积的占比大于多个第二屈光区域3的总面积相对于第二区的面积的占比。在本公开中,表述“总面积占比”意指在一个区域内的所有微型屈光区域(即第一屈光区域2或第二屈光区域3)的面积之和与该区域总面积的比值。在一些实施例中,该密集程度也可以由密度或间距来表示。也就是说,在第一区内的第一屈光区域2的密度可以大于在第二区内的第二屈光区域3的密度。即整体而言第一屈光区域2之间排列的更加紧密,例如整体而言第一屈光区域2与其周围第一屈光区域之间的间距的平均值小于第二屈光区域3与其周围第二屈光区域之间的间距的平均值,也可以说,多个第一屈光区域2之间的平均间距小于多个第二屈光区域3之间的平均间距。屈光区域的密度是指单位面积上屈光区域的个数。两个屈光区域之间的间距是指这两个屈光区域彼此最接近的点之间的距离。多个第一屈光区域2之间的平均间距指的是这多个第一屈光区域2中的各个第一屈光区域2与其最邻近的第一屈光区域2之间的间距的总和除以第一屈光区域2的总数量而得到的间距平均值,其中,最邻近的第一屈光区域2在如稍后将详述地按图案来排列这多个第一屈光区域2的情况下指的是在一个图案内间距最小的那个第一屈光区域2,而在其他情况下指的就是各个方向上间距最小的那个第一屈光区域2。多个第二屈光区域3之间的平均间距具有类似的定义。在一些情况下,每个屈光区域的尺寸都较小,而且不同的屈光区域的尺寸相差不是很大(比如最大值不超过最小值的约2-3倍),因此可以利用密度或间距来描述第一屈光区域2和第二屈光区域3的密集程度。
由此,多个第一屈光区域2可以在中心区域5的***形成密集加光(所述加光即向处方屈光力增加正的屈光力)。本申请通过在中央光学区(例如中心区域5)附近(例如前述第一区,对应于视网膜较敏感区域)设置高密度近视离焦区域,实现了更好的近视控制效果。另外,在较远离中央光学区的区域(例如前述第二区)中在第二屈光区域3之间保留适当的间隔(例如在第二区设置较低面积占比)不仅可以提高近视患者的依从度,而且可以最大程度减少不同患者的近视管理/控制效果之间的差异,从而更利于对近视进展的管理和控制。
在一些实施例中,在第一区内多个第一屈光区域2的总面积占比可以大于等于60%且 小于等于78.5%,优选地大于63%且小于等于78.5%,更优选地大于66%且小于等于78.5%。
在一些实施例中,在第二区内多个第二屈光区域3的总面积占比小于60%,优选地小于57%,更优选地小于54%。
另外,发明人发现,在以眼科镜片中心为中心的内缘直径3.0mm(例如4.0mm、5.0mm、6.0mm、7.0mm、8.0mm、9.0mm、10.0mm、11.0mm或其间任意值)至外缘直径28.6mm(例如15.0mm、19.8mm、24.2mm或其间任意值)形成的环形区域内进行密集加光(例如至少在以眼科镜片中心为中心的内缘直径9.0mm至外缘直径15.0mm形成的环形区域内进行密集加光)所形成的近视离焦能够给予视网膜更多刺激,从而抑制眼轴的伸长。换句话说,第一区可以包括上述的以眼科镜片中心为中心的内缘直径3.0mm至外缘直径28.6mm形成的环形区域、或基本上包括该环形区域、或由该环形区域构成。
下面举一个例子来简要说明第一屈光区域2的设计:可假设处方屈光力为-3.5D,镜片的中心区域5的直径为10mm,第一屈光区域2位于距离中心5mm左右的位置处。示例性地,如图1所示,第一屈光区域2可以位于紧靠直径10mm的中心区域5的边界设置成一圈,则第一屈光区域2的数量可以为π×d1/d2,其中d1为中心区域5的直径,而d2为第一屈光区域2的最大尺寸(例如直径)。当d2为1.2mm时,可以计算出第一屈光区域2的数量为26个。当然,在一些实施例中,第一屈光区域2的数量可以为26-35个,对应地,可以设计出第一屈光区域2的最大尺寸和中心区域5的直径。通过将第一屈光区域2密集地设置在中心区域5的周围,可以有效地延缓眼轴加长,抑制近视效果更好。
在一些实施例中,优选地,在以眼科镜片中心为中心的内缘直径9mm至外缘直径15mm形成的环形区域内进行密集加光,此时穿过环形区域的入射光束大致投射在视网膜黄斑中心凹旁10度至20度之间的区域。与此相一致的是,有研究表明施加在靠近视网膜黄斑中心凹的竞争性近视离焦信号对减缓眼轴的轴向生长具有更强且更一致的作用(E.L.Smith III等,Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys,Vision Research,17(3):32-40,2020)。下面图7的实验结果也证明了此点。图7是通过光学模拟软件Optic Studio Zemax,对具有不同微透镜排列的镜片放置在模型眼Liou&Brenna表面时,计算得到的场曲积分(负场曲绝对值)。如图7所示,本发明的镜片通过在对应视网膜离焦敏感区域的部分设置密集加光的微透镜(即第一屈光区域2),参见优选例(其密集加光的微透镜大体上位于内径为9.5mm且外径为14mm的环形区域),能够给视网膜提供更多离焦刺激。在一项小规模实验中,发现本申请眼科镜片能够有效促进脉络膜增厚(2周平均脉络膜增厚(6±6)%),目前认为短期脉络膜增厚与长期眼轴增长控制效果相关。
因为考虑到镜片在配戴中会存在上下移动的情况,为了确保覆盖视网膜离焦敏感区域,可以在具有额外宽度的环形区域内进行密集加光。整体而言,多个第一屈光区域2可以被设置在内缘直径3.0mm至外缘直径28.6mm的环形区域内,例如全部被设置在该环形区域内。示例性地,多个第一屈光区域2可以被设置在内缘直径3.0mm至外缘直径24.2mm的 环形区域内,例如全部被设置在该环形区域内。示例性地,多个第一屈光区域2可以被设置在内缘直径3.0mm至外缘直径19.8mm的环形区域内,例如全部被设置在该环形区域内。在一些实施例中,将多个第一屈光区域2至少设置在以眼科镜片中心为中心的内缘直径9.0mm至外缘直径15.0mm的环形区域内,或者说第一区至少包含以眼科镜片中心为中心的内缘直径9.0mm至外缘直径15.0mm的环形区域。为了达到在该环形区域内密集加光的效果,优选地,多个第一屈光区域2的部分或全部能够布满该环形区域。优选地,在上述内缘直径9.0mm至外缘直径15.0mm的环形区域内的任一单个第一图案(稍后将详细讨论“第一图案”)内的第一屈光区域2的总面积占比大于70%且小于78.5%,优选地大于72%且小于78.5%。另外,在一些实施例中,多个第一屈光区域2中的至少部分被布置在以眼科镜片中心为中心的内缘直径9.5mm至外缘直径14.0mm的环形区域,或者至少部分被布置在以眼科镜片中心为中心的内缘直径11.0mm至外缘直径14.0mm的环形区域内。
如图1所示,多个第一屈光区域2布置在由第一环21表示的一个环形区域(称为第一图案)内,多个第二屈光区域3布置在由第二环31表示的5个环形区域(称为第二图案)内。也就是说,在图1中,第一区8仅包括一个第一图案,其为第一环21表示的环形区域,而第二区9包括5个第二图案,其为5个第二环31表示的总环形区域。
本领域技术人员应理解,为了简单方便图示起见,在本申请的各个图中,环形图案(例如第一环21、第二环31以及后述的第一图案2a、2b)均被简化显示为该圆环的中心线。例如,在图1中,作为环形图案的第一环21意指以眼科镜片1的中心为中心、以图1中标号21所指的圆为中心线、内缘和外缘分别与第一屈光区域2相切的环形图案。可以看出,第一屈光区域2的中心位于第一环21的中心线上。另外,同样,在图1中,第二屈光区域3的中心位于第二环31的中心线上。作为环形图案的各个第二环31意指以眼科镜片1的中心为中心、以图1中标号31所指的相应的圆为中心线、内缘和外缘分别与位于相应中心线上的第二屈光区域3相切的环形图案。由此,在图1中,第一区8就是内缘和外缘分别与第一屈光区域2相切的第一环21,第二区9包括多个第二环31及其之间间隔的区域,即为在最靠近镜片中心的那个第二环31的内缘与最远离镜片中心的那个第二环31的外缘之间的环形区域。稍后描述的图2、图4-5、图8A-8E中的各示例性实施例中的第一区和第二区均与图1类似地限定。
虽然图1示出的是第一区包括1个第一图案,第二区包括5个第二图案,但是在其他实施例中第一区和/或第二区可以包括更多或更少的图案。也就是说,在一些实施例中,第一区可以包括一个或多个第一图案(例如1个、2个、3个、4个、或5个第一图案),第一区内的多个第一屈光区域部分或全部布置在所述一个或多个第一图案中。类似地,第二区也可以包括一个或多个第二图案(例如1个、2个、3个、4个、5个、6个、7个或8个第二图案),第二区内的多个第二屈光区域部分或全部布置在所述一个或多个第二图案中。在一些实施例中,第一图案的数量可以为1-4个,第二图案的数量可以为1-15个。
如图1所示,一个或多个第一图案可以与眼科镜片1的中心同中心地设置。出于简单 考虑,每个第一图案仅包括能够大致排列出该图案的最少数量的第一屈光区域,例如,图1中的第一图案仅包括最内一圈的第一屈光区域,即在径向上只有一圈第一屈光区域而不包括更多圈第一屈光区域。图1总共示出6个环形图案,其中包括一个第一图案,即第一环21。一个或多个第二图案可以与眼科镜片1的中心同中心地设置,对于第二图案的最大尺寸没有明确限制,本领域技术人员可以根据需要选择合适的范围。与第一图案类似,出于简单考虑,每个第二图案仅包括能够大致排列出该图案的最少数量的第二屈光区域,例如,图1中的第二图案在径向上只有一圈第二屈光区域而不包括更多圈第二屈光区域,因此,图1有5个第二图案,即5个第二环31。
图2示出了图1的眼科镜片的一种变型示例,其中第一区包括2个第一图案而非1个第一图案。
具体而言,图2示出了多个第一屈光区域2排布在2个第一图案上的情况。参见图3示出的图2中的局部,第一屈光区域2可以排布在靠近中心区域5的第一图案2a(为了描述方便,后文将其称为内侧的第一图案2a)上和远离中心区域5且与第一图案2a相邻的第一图案2b(为了描述方便,后文将其称为外侧的第一图案2a)上。内侧的第一图案2a中的第一屈光区域之间可以相接或者紧邻。紧邻是指这些第一屈光区域之间具有较小的间距,例如比第二屈光区域3之间的间距小。外侧的第一图案2b中的第一屈光区域之间可以相接或者紧邻。为了增大第一屈光区域2的密集加光作用,可以使内侧的第一图案2a中的第一屈光区域和外侧的第一图案2b中的第一屈光区域无论在图案内还是在图案之间都相接。在此情况下,可以将内侧的第一图案2a中的第一屈光区域的直径设置得比外侧的第一图案2b中的第一屈光区域的直径略小些,这样,内侧的第一图案2a中的第一屈光区域和外侧的第一图案2b中的第一屈光区域的数量可以相当。在这种情况下,如果把内侧的第一图案2a和外侧的第一图案2b均视为以图中2a和2b所指的圆为中线的环形区域的话,内侧的第一图案2a和外侧的第一图案2b甚至有部分是重叠的。当然,在其他实施例中,内侧的第一图案2a中的第一屈光区域和外侧的第一图案2b中的第一屈光区域也可以设置成直径是一样大的,这样的话,内侧的第一图案2a中的第一屈光区域的数量可以少于外侧的第一图案2b中的第一屈光区域的数量。虽然图2至图3描述了第一屈光区域2排列成如上所述的2个第一图案的实施例,但是可以理解的是,第一屈光区域2也可以排列成更多个第一图案,该2个或多个第一图案可以不重叠,而是相接或者具有一定间距。
在前面图1和图2所示的实施例中,每个第一图案和第二图案都为与眼科镜片的中心同中心地设置的环形图案。但在另一些实施例中,第一图案和/或第二图案可以不与眼科镜片的中心同中心,或者可以具有其他形状,例如扇环形、类环形、多边形或者沿所述镜片的中心旋转对称的其他图形等等。另外,在具有多个第一图案和多个第二图案的情况下,该多个第一图案和/或多个第二图案可以彼此相同或不同。在这些情况下,第一区和第二区也可以不是环形区域,而是与第一图案和第二图案的形状和布置相对应的形状。例如,第一区或第二区可以分别为包含所有第一图案或所有第二图案而形成的一个最小区域。类 环形是指大部分第一屈光区域2排列在一个或多个圆周上,而其余的第一屈光区域2处于圆周之外,例如,按照一定规律(例如等间隔地)排列在圆周的内侧且与圆周紧邻的位置处,和/或按照一定规律(例如等间隔地)排列在圆周的外侧且与圆周紧邻的位置处,例如多个第一屈光区域2可以排布成类似太阳花的外轮廓的形状。
在一些实施例中,第一屈光区域2和第二屈光区域3可以不像图1和图2中那样均匀分布在中心区域5的整个外周上,而是例如可以只分布在中心区域5的一侧,比如图中的上侧、下侧、左侧或者右侧,也可为环绕中心区域5的***的部分区域。它们可以关于中心区域5对称设置,也可以非对称地设置。至于具体怎么分布可以根据配戴人的视力情况做相应的调整。在一些示例中,可以认为第一图案和/或第二图案、以及包含其的第一区和/或第二区具有扇环形状,例如图4所示的。在图4中,图中的B区域内可以不设置第二屈光区域3,而虽未示出但在另一些实施例中B区域内还可以不设置第一屈光区域。在一些实施例中,该区域B可以用于供配戴者在视远(例如看黑板)和视近(例如看桌上书本)之间切换时可以不用大幅度移动头部,因此该区域可以任选具有用于视近任务的不同于处方屈光力的屈光力。在这种情况下,第二区可以为内缘与最靠近镜片中心的那个第二环31内的第二屈光区域3的内侧相切、外缘与最远离镜片中心的那个第二环31内的第二屈光区域3的外侧相切的环形区域减去B区域,即具有扇环形状,其中每个第二图案也为扇环图案。
如前所述,在图1中第一屈光区域2被布置在1个第一环21(第一图案)内,而第二屈光区域3被布置在5个第二环31(第二图案)内。此时各个相邻的环(各个图案)之间的间距是相等的。下面给出了图1的一个具体的数值实施例来进行说明:最大的第二环31的直径可以为30mm(半径为15mm),中心区域5的直径为10mm(半径为5mm),第一屈光区域2和第二屈光区域3的直径均为1.2mm,则相邻的环之间的间距可以为(15-5-0.6)/5-1.2≈0.7mm,即相邻的环之间的间隔(即沿径向方向相邻环上两个屈光区域之间的间隔)大概为0.7mm。
在本文中,相邻的图案之间的间距(可简称为图案间距)可以指沿着镜片的径向方向、一个图案内的屈光区域与相邻的另一个图案内的屈光区域之间的距离,或者可以指在镜片的径向方向上外侧图案的最内侧径向距离与内侧图案的最外侧径向距离之间的距离。当如图1所示不同图案上的屈光区域均沿着径向方向呈放射状分布时,图案间距可以由沿径向方向相邻的两个屈光区域来确定。当不同图案上的屈光区域未沿着径向方向呈放射状分布时,图案间距可以是外侧图案的最内轮廓的在预定径向方向上的直径与内侧图案的最外轮廓的在该预定径向方向上的直径之差的一半。
在一些实施方式中,各个相邻环或相邻图案之间的间距也可以不全部相等,而是可以部分相等,或者全部不同。例如,任意相邻的两个第二图案之间的间距可以等于相邻的第一图案与第二图案之间的间距,并且/或者等于任意相邻的两个第一图案之间的间距(如果有两个第一图案的话)。
在一些实施方式中,例如,相邻的图案(包括第一图案与第二图案)之间的间距可以等于第一屈光区域2或第二屈光区域3的直径的0.2至1.5倍,例如0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、或1.5倍。
在一些实施例中,当第一图案(例如第一环21)的数量为多个时,相邻的两个第一图案之间可以相接或者紧邻或者具有稍微大一些的间距。在一些实施例中,任意相邻的第一图案之间的间距可以小于或等于0.5mm。在一些实施例中,还可以沿着远离中心区域5的方向,相邻的图案(包括第一图案与第二图案)之间的间距逐渐变大。在另一些实施例中,第一图案之间可以具有相等的第一间距,而第二图案之间可以具有相等或者不等的第二间距,第一间距可以小于第二间距。
在一些实施例中,当第二图案(例如第二环31)的数量为多个时,相邻的第二图案之间的间距可以是相等的。当然,也可以设置为越靠近外侧的第二图案的图案间距越大。
在一些实施例中,任意相邻的两个第一图案(如果有的话)之间的间距、任意相邻的两个第二图案(如果有的话)之间的间距、和/或相邻的第一图案与第二图案之间的间距可以为零。对于间距为0的相邻图案,也可以说该相邻图案是相接的。如图5及其局部图(图6)所示,第一区8包括2个第一环21(第一图案),第二区9包括6个第二环31(第二图案)。各个相邻的环(无论是第一环21还是第二环31)之间都可以相接或者紧邻。事实上,在这种情况下,已经不能那么清晰地分辨哪些是第一环,哪些是第二环。但是从整体上看,仍然能够清晰地看出外侧的屈光区域之间的间距明显大于内侧的屈光区域之间的间距。在此,出于清楚考虑,可以将同一图案内至少两个相邻的屈光区域之间的间距小于0.5mm的图案称为“第一图案”,而具有更大间距的屈光区域的图案可称为“第二图案”。在一个实施例中,由于最内侧的一个图案上以及与之相邻的一个图案上的屈光区域之间几乎没有间隔或者间隔较小(小于0.5mm),因此可以认为第一环21的数量为2个,第二环31的数量为6个。第一环21之间的间距为零,第二环31之间的间距为零,且第一环21和第二环31之间的间距也为零。另外,如图5所示,越靠近外侧,第一环21或第二环31内的第一屈光区域2或第二屈光区域3的尺寸越大,而第一环21或第二环31内的相邻第一屈光区域2或第二屈光区域3之间的间距也越大。
虽然前面图1示出的是在第一图案内相邻的第一屈光区域2都是相接的(非间隔开地排列),但是,在一些实施例中,在至少一个第一图案内,第一屈光区域2之间也可以具有较小的间距,也就是说在沿着第一图案延伸的方向上,相邻第一屈光区域2之间也可以具有较小的间距(例如小于0.5mm的间距,例如0.4mm、0.3mm、0.2mm、0.1mm)。但无论如何,第一屈光区域2之间的间距(例如平均间距)可以小于第二屈光区域3之间的间距(例如平均间距)。例如沿着第一图案延伸的方向上的第一屈光区域2之间的间距(例如平均间距)小于沿着第二图案延伸的方向上的第二屈光区域3之间的间距(例如平均间距),但在某些方向上(例如径向上),第一屈光区域2之间的间距(例如平均间距)也可以小于、等于或者甚至大于同一方向上的第二屈光区域3之间的间距(例如平均间距)。
在一些实施例中,多个第二屈光区域3可以作为多个彼此间隔开的岛形区域彼此间隔开地排布在一个或多个第二图案中。在一些实施例中,在至少一个第二图案内,第二屈光区域3之间的间距均大于第一屈光区域2之间的间距的最大值。发明人发现,在第二屈光区域3之间保留适当的间隔不仅可以提高戴镜患者的依从性和视觉舒适度,而且可以最大程度减少不同患者的近视管理/控制效果之间的差异。不希望受限于任何理论,发明人相信,如果近视离焦范围过大,视网膜上聚焦光线不足,可能导致眼睛难以判断该调节视网膜向前还是向后寻找聚焦点,从而导致不同患者之间较大的效果差异,所以在多个第二屈光区域3之间保留足够的间距很重要。
在一些实施例中,可以将每个第二图案中的第二屈光区域3都设置成间距一样大,例如不同第二图案内的第二屈光区域3之间的间距可以是相等的,这样会表现为越靠近外侧的第二图案上的第二屈光区域3的数量越多,或者尺寸越大。
在一些实施例中,从整体上看,包括第一图案和第二图案的所有图案,对于越远离眼科镜片的中心的图案,该图案内相邻两个屈光区域之间的间距越大,例如图1、4和5所示的。也就是说,任意两个相邻的图案中,相对来说靠近眼科镜片的中心的那个图案内的屈光区域之间的间距小于远离眼科镜片的中心的那个图案内的屈光区域之间的间距。当然,也可以仅针对第二图案存在上述规律。具体地,当存在多个第一图案时,为了保证在对应视网膜离焦敏感区域的部分进行密集加光,每个第一图案内的第一屈光区域之间可以相接或者紧邻,例如图2所示的。在此情况下,越远离眼科镜片的中心的第二图案内的第二屈光区域之间的间距可以越大。在一个示例性实施例中,从最内侧的一个图案到最外侧的一个图案,单个图案内相邻的两个屈光区域之间的间距从零逐渐增大,但不超过2.00mm,优选不超过1.90mm,更优选不超过1.80mm,例如逐渐增大到1.20mm。
虽然在图示实施例中,第一屈光区域2被图示为沿着第一图案的延伸方向均匀地设置,但是在未示出的实施例中,第一屈光区域2沿着第一图案的延伸方向也可以非均匀地设置。第一图案的延伸方向是指第一图案大体形成的线条的延伸方向。例如,在图1、图2、图5中,第一图案均形成为圆环21,那么第一图案的延伸方向可以理解为形成该圆环的线条的延伸方向,也就是圆周方向。在其他实施例中,对于一个第一图案来说,除了均匀排布的这些第一屈光区域之外,其还可以包括非均匀地排布的一些第一屈光区域。非均匀地排布的第一屈光区域沿着第一图案的延伸方向离散地分布,它们之间可以具有较大的间距,但是它们与沿第一图案的延伸方向相接或者紧密排列的那些第一屈光区域2相接或者紧邻。
虽然在图示实施例中,第二屈光区域3被图示为沿着第二图案的延伸方向均匀地设置,但是在未示出的实施例中,第二屈光区域3沿着第二图案的延伸方向也可以非均匀地设置。第二图案的延伸方向是指第二图案大体形成的线条的延伸方向。例如,在图1、图2、图5中,第二图案均形成为圆环31,那么第二图案的延伸方向可以理解为形成该圆环的线条的延伸方向,也就是圆周方向。在其他实施例中,对于一个第二图案来说,除了均匀排布 的这些第二屈光区域之外,其还可以包括非均匀地排布的一些第二屈光区域。非均匀地排布的第二屈光区域沿着第二图案的延伸方向离散地分布,它们之间可以具有较大的间距,但是它们与沿第二图案的延伸方向排列的那些第二屈光区域3相接或者紧邻。可选地,相邻的第二图案之间可以不相接(即不像图5中那样)或者不紧邻,而是具有稍微大一些的间距(例如图1和2所示)。
上面讨论了各个图案内的屈光区域之间的间距的设计,而下面将讨论各个图案内的总面积占比的设计。例如,优选地,在至少一个第一图案或者每个第一图案内可以设置第一屈光区域2的总面积占比大于等于60%且小于等于78.5%。优选地,在至少一个第一图案内可以设置第一屈光区域2的总面积占比大于等于70%且小于等于78.5%。优选地,在至少两个第一图案内设置第一屈光区域2的总面积占比大于等于70%且小于等于78.5%。在一些实施例中,在至少一个第二图案内或者每个第二图案内可以设置第二屈光区域3的总面积占比小于60%且大于等于30%,优选地小于60%且大于等于35%,更优选地小于60%且大于等于40%。优选地,在第二区包括多个第二图案的情况下,在每个第二图案内可以设置第二屈光区域3的总面积占比小于60%且大于等于30%。
在一些实施例中,每个第一图案中的第一屈光区域的总面积占比均比每个第二图案中的第二屈光区域的总面积占比大。在包含多个图案的情况下,各图案内所包含的屈光区域的总面积占比可以沿着远离镜片中心的方向逐渐变小。例如,在第一区包括多个第一图案的情况下,相比于离眼科镜片的中心更远的第一图案中的第一屈光区域的总面积占比,离眼科镜片的中心更近的第一图案中的第一屈光区域的总面积占比更大。例如,在第二区包括多个第二图案的情况下,相比于离眼科镜片的中心更远的第二图案中的第二屈光区域的总面积占比,离眼科镜片的中心更近的第二图案中的第二屈光区域的总面积占比更大。
另外,例如,在一些实施例中,可以以镜片的中心作为原点,将镜片分成多个扇形区,例如2~36个扇形区,例如2~18个、例如2~4个、例如3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18个扇形区。可以在这些扇形区中以各扇形区彼此独立的方式来设置第一屈光区域2并且以各扇形区彼此独立的方式来设置第二屈光区域3。例如,可以将前面讨论的各个第一图案、第二图案、第一区和第二区等区域分成分别落在该多个扇形区中的多个部分,来讨论在各个部分中设置第一屈光区域2和第二屈光区域3的方式。也就是说,在不同扇形区中的第一屈光区域2的设置可以相同或不同;在不同扇形区中的第二屈光区域3的设置可以相同或不同。示例性地,在一些实施例中,所述多个扇形区中的至少一个中的第一屈光区域2和/或第二屈光区域3的设置(例如形状、尺寸、密度、间距、面积占比和/或加光度)与其他扇形区中的设置不同。在一些实施例中,可以在至少一个扇形区中按照如前所述的例如图1-6和8A-8E中的任意一个的方式来设置第一屈光区域2和/或第二屈光区域3,或者可以在至少一些扇形区中分别使用如前所述的例如图1-6和8A-8E中的多个的方式来设置第一屈光区域2和/或第二屈光区域3。在一些实施例中,在所述多个扇形区中的比如至少20%-60%(例如20%、30%、40%、50%、60%)的 扇形区中,在第一区(或至少一个第一图案)内多个第一屈光区域2的总面积占比大于等于60%且小于等于78.5%,优选地大于63%且小于等于78.5%,更优选地大于66%且小于等于78.5%,再优选地大于等于70%且小于等于78.5%,并且在第二区内多个第二屈光区域3的总面积占比小于60%,优选地小于57%,更优选地小于54%,而在第二区包含的至少一个第二图案内多个第二屈光区域3的总面积占比小于60%且大于等于30%,优选地小于60%且大于等于35%,更优选地小于60%且大于等于40%。另外,在第一区包括一个或多个第一图案且第一区的至少部分为以眼科镜片的中心为中心的、内缘直径为9mm、外缘直径为15mm的第一环形区域的一些实施例中,在所述多个扇形区中的比如至少20%-60%(例如20%、30%、40%、50%、60%)的扇形区中,在第一环形区域内的任一单个第一图案内的第一屈光区域的总面积占比大于70%且小于78.5%,优选地大于72%且小于78.5%。
另外,例如如图1所示,除了如前述用第一图案、第二图案等方式来描述多个第一屈光区域2和多个第二屈光区域3的布置方式之外,还可以利用射线的方式来描述它们的布置。换句话说,如图1所示,多个第一屈光区域2和多个第二屈光区域3分布在以眼科镜片的中心为起点的多条射线4上(即这些屈光区域的圆心位于射线4上)。设置为射线状的分布是为当使用者配戴此眼镜片后,在上下鼻颞方向上均具有视物的射线状的清晰区域,兼顾了使用者在上下鼻颞的各个方向的视物清晰需求,尤其在图案间距较小的情况下。
在一些实施例中,每条射线4上均分布有第一屈光区域2和第二屈光区域3。在第一屈光区域2和第二屈光区域3在眼科镜片上的投影的形状不为圆形的一些实施例中,可以说第一屈光区域2和第二屈光区域3的中心(例如在眼科镜片上的投影的图形的中心)位于射线4上。在每条射线4上,第一屈光区域的数量小于、等于或者大于第二屈光区域的数量。示例性地,当射线4的数量为2n时,这些射线4形成n条直线。当然,在未示出的其他实施例中,多个第一屈光区域2和多个第二屈光区域3中的部分也可以不分布在射线上,例如有些环上的屈光区域可以相对于相邻环上的屈光区域交错设置。当多个第一屈光区域2和多个第二屈光区域3都分布在射线4上时,每个环上的屈光区域的数量是相等的,在这种情况下,在中心光学区以外将会形成放射状的连续空白区域,也就是放射状的连续的远用屈光矫正区域,这有助于提供良好的视觉质量。可选地,越靠近中心区域5的环上的屈光区域的数量可以越少,相应地,越远离中心区域5的环上的屈光区域的数量可以越多。在一些实施例中,同一条射线上相邻的第一屈光区域和/或相邻的第二屈光区域可以彼此相接,如图5所示地那样。
在针对患者舒适度的问卷调查中发现,本申请的眼科镜片(例如上述具有在中心光学区以外将会形成放射状的连续的远用屈光矫正区域的结构的镜片)在长期配戴后评分更高(表1),所述问卷内容包括:配戴时舒适度,是否有复视,是否感到疲劳、头晕、头疼或无法适应,配戴新镜片时的适应难易程度,配戴时走路是否感觉任何困难,戴镜时能否上下楼梯等(每项总分10分,最后取所有项分值平均,平均值总分10分,分值越高舒适 度越佳)。对比眼科镜片1不具有放射状的连续的远用屈光矫正区域。
表1:
可选地,在一些实施例中,沿着远离中心区域5的方向,每条射线上第一屈光区域2和第二屈光区域3可以整体上具有逐渐或阶梯式增大的尺寸,并且具有逐渐或阶梯式减小的加光度。如前所述,这样的排布方式通过光学优化,在其他参数不变的情况下能够在整个镜片范围内维持基本恒定的低强度“像跳”,结合射线状且连续的远用屈光矫正区域,能够为受试者提供良好的视觉效果,受试者容易适应,配戴依从性高。在一些实施例中,在整个第二区的范围内,多个第二屈光区域的像跳的离散系数可以小于15%,优选地小于12%,更优选地小于10%。另外,在一些实施例中,为了保证周边设置的第二屈光区域的近视控制效果,在整个第二区的范围内,多个第二屈光区域的像跳的离散系数可以大于1%,优选地大于2%,更优选地大于3%。在一些实施例中,可以任意结合上述的上限和下限数值来设定多个第二屈光区域的像跳的离散系数的范围。
示例性地,在相邻的两条射线4之间还可以分布有额外的第二屈光区域,这些额外的第二屈光区域也可以排列成规则的图案。为了描述的清楚,本文将额外的第二屈光区域所排列的图案称为附加图案41,例如图8A所示的。可选地,可以在每相邻的两条射线4之间都设置附加图案41。或者,可以在一部分相邻的两条射线4之间设置附加图案41,而另外一部分相邻的两条射线4之间不设置任何图案(即形成留白)。在此情况下,附加图案41和留白可以交替设置,如图8B所示。从整体上看,所有的附加图案41可以相对于中心区域5发散地分布。对应每个附加图案41而言,其可以是图中所示的直线状的,也可以是以任何方式弯曲的曲线状的。
示例性地,代替多条射线4,多个第一屈光区域和多个第二屈光区域可以分布在多条曲线42上,例如图8C-8D所示的。在一些实施例中,第一屈光区域2和第二屈光区域3的中心(例如在眼科镜片上的投影的图形的中心)可以位于曲线42上。这些曲线42可以相对于中心区域5发散地分布。也就是说,相邻的曲线42上、与以眼科镜片的中心为中心的相交圆(见图中的虚线)的两个交点m1和m2之间的距离随着该相交圆的直径的增大而逐渐增大。示例性地,对于同一相交圆而言,其可以与所有的曲线42相交,任意相邻的两条曲线42与该相交圆的交点之间的距离可以是相等的。示例性地,多条曲线42可以 朝向同一方向弯曲,例如朝向逆时针方向弯曲(如图8C所示),或者在未示出的其他实施例中朝向顺时针方向弯曲。当然,每条曲线42也可以具有多个弯曲方向,如图8D所示,其示出了每条曲线42大体上呈具有两个弯曲的波浪形。在未示出的其他实施例中,每条曲线42也可以呈具有更多弯曲的波浪状。此外,这些弯曲可以均匀地分布在每条曲线42上,也可以非均匀地分布在每条曲线42上。例如,靠近中心区域5的部分可以分布较少的弯曲,而远离中心区域5的部分可以分布较多的弯曲。在一些实施例中,同一条曲线上相邻的第一屈光区域和/或相邻的第二屈光区域可以彼此相接。
另外,在未示出的其他实施例中,可以在以眼科镜片的中心为起点的多条射线或多条曲线(如前面图所示或与之类似的射线或曲线)中的第一部分上布置第一屈光区域2,而在第二部分上布置第二屈光区域3,第一部分的射线或曲线可以与第二部分的射线或曲线不重合或者部分重合。在一个示例中,可以将图1、图2、图4或图5所示的每个第二图案内的第二屈光区域3沿周向方向移动一定距离(也可以说是绕镜片中心移动一定角度),使得第一屈光区域2与第二屈光区域3分别分布在以眼科镜片的中心为起点的两组射线(此时射线比图中所示多出一倍)中的一组上。
无论是射线41还是曲线42,它们都是单个的线条所形成的。可选地,代替射线41还是曲线42,多个第一屈光区域和多个第二屈光区域可以分布在多个复合线43上,例如图8E所示的。在一些实施例中,第一屈光区域2和第二屈光区域3的中心(例如在眼科镜片上的投影的图形的中心)可以位于复合线43上。多个复合线43可以相对于中心区域5发散地分布。复合线43可以由多条直线、或者由多条曲线、或者由直线和曲线的组合而成。在图示实施例中,复合线43可以包括沿眼科镜片的径向方向延伸的主线和从主线的远离眼科镜片的中心的端部向外延伸的两条支线。多条复合线43也可以沿着眼科镜片的周向方向重复排列。也就是说,以眼科镜片的中心为中心的相交圆(见图中的虚线)与多条复合线43上相应部分形成的交点m1、m2…mn之间的距离是相等的。
在一些实施例中,如前所述的每条射线或曲线上均分布有第一屈光区域和第二屈光区域,并且/或者所述多条射线或多条曲线均匀地分布在所述眼科镜片上。在一些实施例中,在同一条射线或曲线上,所述第一屈光区域的加光度统一,并且/或者所述第二屈光区域的加光度统一,并且/或者所述第一屈光区域与第二屈光区域的加光度统一;或者在同一条射线或曲线上,所述第一屈光区域的尺寸统一,并且/或者所述第二屈光区域的尺寸统一,并且/或者所述第一屈光区域与第二屈光区域的尺寸统一;或者在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域的加光度的变化方向与其尺寸的变化方向相反,并且/或者所述第二屈光区域的加光度的变化方向与其尺寸的变化方向相反;或者在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的尺寸逐渐增大,并且/或者,在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的加光度呈阶梯式减小。在一些实施例中,如前所述的射线或曲线的数量可以为16-40个,优选地可以为 26-35个。
另外,在一些示例性实施例中,可以在镜片的鼻侧和颞侧这两侧不对称地设置第一屈光区域2和第二屈光区域3,例如图9所示的那样。应理解,本公开中的“鼻侧”和“颞侧”指的是以穿过镜片中心的垂直线(例如图9所示的穿过中心的垂直虚线)划分的左右两侧,其中当配戴时靠近鼻子的一侧为“鼻侧”,远离鼻子的一侧为“颞侧”。人眼的鼻侧和颞侧并非对称,有大量研究测量了人眼的离轴像差,在这些研究中,大多数是在水平视野中进行测量。研究发现,随着水平视角的增加,离焦、散光都会发生变化(AtchisonDA.Recent advances in measurement of monochromatic aberrations of human eyes.Clin Exp Optom.2005 Jan;88(1):5-27)。由于人眼的不对称性,水平视野中不同方向人眼自身的离焦并不相同,鼻侧和颞侧有一定的差异。因此,在一些实施例中,可以在第一区(或各个第一图案)和/或第二区(或各个第二图案)内在鼻侧和颞侧不对称地设置第一屈光区域2和/或第二屈光区域3的形状、尺寸、密度、间距、面积占比和/或加光度。例如,可以如图9所示地不对称地设置鼻侧(左侧)和颞侧(右侧)的第一屈光区域2和第二屈光区域3的个数,使得在第一区(第一图案21)的颞侧设置的第一屈光区域2的总面积占比大于在鼻侧设置的第一屈光区域2的总面积占比,而且在第二区(各第二图案31)的颞侧设置的第二屈光区域3的总面积占比大于在鼻侧设置的第二屈光区域3的总面积占比。又例如,可以根据配戴者的眼球屈光力分布(例如鼻颞侧外周视网膜的屈光状态)和/或眼长轮廓(例如通过Shin Nippon自动屈光仪,或者多光谱屈光地形图仪器(MRT),或者IOLMaster,或者LensStar,或者超声或磁共振成像等测量得到)来确定鼻侧和颞侧的第一屈光区域2和/或第二屈光区域3的形状、尺寸、密度、间距、面积占比和/或加光度。本申请的发明人相信,通过不对称地设置鼻侧和颞侧地屈光区域,可以补偿人眼的不对称性,使得配戴者在不同方向上均可获得足够的近视离焦,从而更好地对近视进展进行管理和控制。
优选地,在第一区或第一图案的颞侧设置的第一屈光区域的密度或总面积占比与在第一区或第一图案的鼻侧设置的第一屈光区域的密度或总面积占比不同。优选地,第一屈光区域的加光度在第一区或单个第一图案的颞侧与鼻侧不对称地设置。例如,关于穿过镜片中心的垂直线基本对称的两个第一屈光区域的加光度不同。或者,分别设置在第一区或各第一图案的颞侧与鼻侧的第一屈光区域的加光度各自为一统一值,但两侧的统一值不同。又或者,设置在第一区或各第一图案的颞侧的第一屈光区域的加光度沿镜片的径向方向上或沿环向方向上的变化方式(改变的趋势和/或数值等)与鼻侧不同。优选地,在第二区或第二图案的颞侧设置的第二屈光区域的密度或总面积占比与在第二区或第二图案的鼻侧设置的第二屈光区域的密度或总面积占比不同。优选地,第二屈光区域的加光度在第二区或单个第二图案的颞侧与鼻侧不对称地设置。例如,关于穿过镜片中心的垂直线基本对称的两个第二屈光区域的加光度不同。或者,分别设置在第二区或各第二图案的颞侧与鼻侧的第二屈光区域的加光度各自为一统一值,但两侧的统一值不同。又或者,设置在第二 区或各第二图案的颞侧的第二屈光区域的加光度沿镜片的径向方向上或沿环向方向上的变化方式(改变的趋势和/或数值等)与鼻侧不同。
在一些情况下,在鼻侧更容易出现远视离焦,因此,增大在颞侧的第一屈光区域2和/或第二屈光区域3的加光度、密度和/或面积占比,以平衡两侧的近视离焦程度。因此,优选地,在第一区或至少一个第一图案的颞侧设置的第一屈光区域的密度或总面积占比大于在所述第一区或至少一个第一图案的鼻侧设置的第一屈光区域的密度或总面积占比。优选地,在第一区或至少一个第一图案的颞侧设置的第一屈光区域的平均加光度大于在所述第一区或至少一个第一图案的鼻侧设置的第一屈光区域的平均加光度。例如,在关于穿过镜片中心的垂直线基本对称的两个第一屈光区域之间,颞侧的第一屈光区域的加光度大于鼻侧的第一屈光区域的加光度。或者,分别设置在第一区或各第一图案的颞侧与鼻侧的第一屈光区域的加光度各自为一统一值,而颞侧的统一值大于鼻侧的统一值。优选地,在第二区或至少一个第二图案的颞侧设置的第二屈光区域的密度或总面积占比大于在所述第二区或至少一个第二图案的鼻侧设置的第二屈光区域的密度或总面积占比。优选地,在第二区或至少一个第二图案的颞侧设置的第二屈光区域的平均加光度大于在所述第二区或至少一个第二图案的鼻侧设置的第二屈光区域的平均加光度。例如,在关于穿过镜片中心的垂直线基本对称的两个第二屈光区域之间,颞侧的第二屈光区域的加光度大于鼻侧的第二屈光区域的加光度。或者,分别设置在第二区或各第二图案的颞侧与鼻侧的第二屈光区域的加光度各自为一统一值,而颞侧的统一值大于鼻侧的统一值。
另外,根据本申请一些示例性的实施例,每个第一图案(例如第一环21)内的第一屈光区域2的数量与每个第二图案(例如第二环31)内的第二屈光区域3的数量可以是相同的,例如图1、2、5、8C-8D、9所示的。优选地,在整个眼科镜片上,总共布置的第一屈光区域2和第二屈光区域3的数量可以为170-400个,更优选地,为190-300个。
根据本公开的一个方面,还提供了一种框架眼镜,在该框架眼镜上可以设有上述根据本发明各个实施例的各种眼科镜片。由此,该框架眼镜既可以抑制配戴者的眼睛的屈光不正的发展,还能为配戴者提供清晰视力。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、部件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
本申请已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本申请限制于所描述的实施例范围内。此外本领域技术人员可 以理解的是,本申请并不局限于上述实施例,根据本申请的教导还可以做出更多种的变型和修改,这些变型和修改均落在本申请所要求保护的范围以内。本申请的保护范围由附属的权利要求书及其等效范围所界定。

Claims (31)

  1. 一种眼科镜片,包括中心区域、多个第一屈光区域和多个第二屈光区域,其中,
    所述多个第一屈光区域被布置在包围所述中心区域的第一区中,
    所述多个第二屈光区域被布置在相比于所述第一区更远离所述中心区域的第二区中,
    所述中心区域的部分或全部具有基于人眼的处方的处方屈光力,
    所述多个第一屈光区域与所述多个第二屈光区域均具有与所述处方屈光力不同的屈光力,以及
    所述多个第一屈光区域的总面积相对于所述第一区的面积的占比大于所述多个第二屈光区域的总面积相对于所述第二区的面积的占比。
  2. 根据权利要求1所述的眼科镜片,其中,
    在所述第一区内所述多个第一屈光区域的密度大于在所述第二区内所述多个第二屈光区域的密度;并且/或者
    所述多个第一屈光区域之间的平均间距小于所述多个第二屈光区域之间的平均间距。
  3. 根据权利要求1或2所述的眼科镜片,其中,所述多个第一屈光区域被配置为,当配戴者配戴所述眼科镜片时,穿过所述多个第一屈光区域中的部分或全部的入射光束投射在所述配戴者的视网膜黄斑中心凹旁10度至20度之间的区域。
  4. 根据权利要求1-3中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域至少部分被布置在以所述眼科镜片中心为中心的内缘直径9.0mm至外缘直径15.0mm的环形区域内,或者至少部分被布置在以所述眼科镜片中心为中心的内缘直径9.5mm至外缘直径14.0mm的环形区域内,或者至少部分被布置在以所述眼科镜片中心为中心的内缘直径11.0mm至外缘直径14.0mm的环形区域内。
  5. 根据权利要求1-4中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域非间隔开地设置;并且/或者
    所述多个第二屈光区域间隔开地设置。
  6. 根据权利要求1-5中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域中的每个以及所述多个第二屈光区域中的每个在所述眼科镜片上的投影的最大尺寸各自独立地选自0.5~2.2mm;并且/或者
    所述多个第一屈光区域中的每个以及所述多个第二屈光区域中的每个在所述眼科镜片上的投影为圆形;并且/或者
    所述多个第一屈光区域和所述多个第二屈光区域各自具有选自球面、非球面或复曲面的表面形状;并且/或者
    所述多个第二屈光区域具有相等的在所述眼科镜片上的投影的面积。
  7. 根据权利要求1-6中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域中的每一个具有通过向所述处方屈光力增加正的屈光力而获得的屈光力,并且/或者所述多个第二屈光区域中的每一个具有通过向所述处方屈光力增加正的屈光力而获得的屈光力;或者
    所述多个第一屈光区域与所述多个第二屈光区域的屈光力均相同;或者
    沿所述眼科镜片的径向方向,所述多个第一屈光区域和所述多个第二屈光区域的屈光力随着径向距离的增大而逐渐增大或呈阶梯式增大,并且/或者所述多个第一屈光区域和所述多个第二屈光区域的尺寸随着径向距离的增大而逐渐减小或呈阶梯式减小;或者
    沿所述眼科镜片的径向方向,所述多个第一屈光区域和所述多个第二屈光区域的屈光力随着径向距离的增大而逐渐减小或呈阶梯式减小,并且/或者所述多个第一屈光区域和所述多个第二屈光区域的尺寸随着径向距离的增大而逐渐增大或呈阶梯式增大。
  8. 根据权利要求1-7中任一项所述的眼科镜片,其中,
    所述中心区域的最大尺寸选自3.0~11.0mm;并且/或者
    所述中心区域为以所述眼科镜片的中心为中心的圆形区域,所述圆形区域的直径选自3.0~11.0mm;并且/或者
    所述第一区为以所述眼科镜片的中心为中心的环形区域,所述环形区域的内缘直径选自3.0~11.0mm且外缘直径选自15.0~28.6mm;并且/或者
    所述第二区为以所述眼科镜片的中心为中心的环形区域。
  9. 根据权利要求1-8中任一项所述的眼科镜片,其中,
    在所述第一区内所述多个第一屈光区域的总面积占比大于等于60%且小于等于78.5%,或者大于63%且小于等于78.5%,或者大于66%且小于等于78.5%;并且/或者
    在所述第二区内所述多个第二屈光区域的总面积占比小于60%,或者小于57%,或者小于54%。
  10. 根据权利要求1-9中任一项所述的眼科镜片,其中,
    所述第一区包括一个或多个第一图案,所述第一区的部分或全部为以所述眼科镜片的中心为中心的、内缘直径为9mm、外缘直径为15mm的第一环形区域,并且在所述第一环形区域内的任一单个第一图案内的第一屈光区域的总面积占比大于70%且小于78.5%,或者大于72%且小于78.5%。
  11. 根据权利要求1-10中任一项所述的眼科镜片,其中,
    所述第一区包括一个或多个第一图案,所述多个第一屈光区域的部分或全部排列在所述一个或多个第一图案中;并且/或者
    所述第二区包括一个或多个第二图案,所述多个第二屈光区域的部分或全部排列在所述一个或多个第二图案中。
  12. 根据权利要求11所述的眼科镜片,其中,
    所述第一图案和所述第二图案均为与所述眼科镜片的中心同中心地设置的环形图案;或者
    所述第二图案为与所述眼科镜片的中心同中心地设置的扇环图案。
  13. 根据权利要求11或12所述的眼科镜片,其中,
    任意相邻的两个第二图案之间的间距与任意相邻的两个第一图案之间的间距相等,并且/或者任意相邻的两个第二图案之间的间距等于相邻的第一图案与第二图案之间的间距;或者
    任意相邻的两个第二图案之间的间距、任意相邻的两个第一图案之间的间距和/或相邻的第一图案与第二图案之间的间距均为零;或者
    任意相邻的第一图案之间的间距小于或等于0.5mm。
  14. 根据权利要求11-13中任一项所述的眼科镜片,其中,
    所述第一图案的数量为1-4个,所述第二图案的数量为1-15个。
  15. 根据权利要求11-14中任一项所述的眼科镜片,其中,
    在至少一个第一图案内所述第一屈光区域是均匀分布的;并且/或者
    在至少一个第二图案内所述第二屈光区域是均匀分布的。
  16. 根据权利要求11-15中任一项所述的眼科镜片,其中,
    在至少一个第一图案内,相邻的所述第一屈光区域的边缘彼此相接;并且/或者
    在至少一个第一图案内,所述第一屈光区域之间的间距均选自0~0.5mm;并且/或者
    在至少一个第二图案内,所述第二屈光区域之间的间距均大于所述第一屈光区域之间的间距的最大值;并且/或者
    在所述多个第二图案中越靠近所述眼科镜片的中心的第二图案内的第二屈光区域之间的间距越小;并且/或者
    在包括全部所述第一图案和全部所述第二图案的图案中,越靠近所述眼科镜片的中心 的图案内的第一屈光区域或第二屈光区域之间的间距越小。
  17. 根据权利要求11-16中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域在至少一个所述第一图案内的总面积占比大于等于60%且小于等于78.5%,或者大于等于70%且小于等于78.5%;并且/或者
    在所述第一区包括多个第一图案的情况下,每个第一图案中的第一屈光区域的总面积占比均大于等于60%且小于等于78.5%;并且/或者
    在所述第一区包括多个第一图案的情况下,至少两个第一图案中的第一屈光区域的总面积占比大于等于70%且小于等于78.5%;并且/或者
    所述多个第二屈光区域在至少一个所述第二图案内的总面积占比小于60%且大于等于30%,或者小于60%且大于等于35%,或者小于60%且大于等于40%;并且/或者
    在所述第二区包括多个第二图案的情况下,每个第二图案中的第二屈光区域的总面积占比均小于60%且大于等于30%。
  18. 根据权利要求11-17中任一项所述的眼科镜片,其中,
    在所述第一区包括多个第一图案的情况下,相比于离所述眼科镜片的中心更远的第一图案中的第一屈光区域的总面积占比,离所述眼科镜片的中心更近的第一图案中的第一屈光区域的总面积占比更大;并且/或者
    在所述第二区包括多个第二图案的情况下,相比于离所述眼科镜片的中心更远的第二图案中的第二屈光区域的总面积占比,离所述眼科镜片的中心更近的第二图案中的第二屈光区域的总面积占比更大;并且/或者
    每个第一图案中的第一屈光区域的总面积占比比每个第二图案中的第二屈光区域的总面积占比大。
  19. 根据权利要求1-18中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域分布在以所述眼科镜片的中心为起点的多条射线或多条曲线上,并且/或者
    所述多个第二屈光区域分布在以所述眼科镜片的中心为起点的多条射线或多条曲线上。
  20. 根据权利要求19所述的眼科镜片,其中,每条射线或曲线上均分布有第一屈光区域和第二屈光区域,并且/或者所述多条射线或多条曲线均匀地分布在所述眼科镜片上。
  21. 根据权利要求19或20所述的眼科镜片,其中,
    在同一条射线或曲线上,所述第一屈光区域的加光度统一,并且/或者所述第二屈光 区域的加光度统一,并且/或者所述第一屈光区域与第二屈光区域的加光度统一;或者
    在同一条射线或曲线上,所述第一屈光区域的尺寸统一,并且/或者所述第二屈光区域的尺寸统一,并且/或者所述第一屈光区域与第二屈光区域的尺寸统一;或者
    在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域的加光度的变化方向与其尺寸的变化方向相反,并且/或者所述第二屈光区域的加光度的变化方向与其尺寸的变化方向相反;或者
    在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的尺寸逐渐增大或阶梯式增大,并且/或者,在同一条射线或曲线上,沿着远离所述眼科镜片的中心的方向,所述第一屈光区域和所述第二屈光区域的加光度逐渐减小或呈阶梯式减小。
  22. 根据权利要求19-21中任一项所述的眼科镜片,其中,同一条射线或曲线上相邻的第一屈光区域和/或相邻的第二屈光区域彼此相接。
  23. 根据权利要求19-22中任一项所述的眼科镜片,其中,所述多条射线或所述多条曲线的数量为16-40个,或者为26-35个。
  24. 根据权利要求19-23中任一项所述的眼科镜片,其中,
    在每条射线或曲线上,第一屈光区域的数量小于第二屈光区域的数量;并且/或者
    当所述多条射线的数量为2n时,所述多条射线形成n条直线。
  25. 根据权利要求1-24中任一项所述的眼科镜片,其中,
    所述多个第一屈光区域和所述多个第二屈光区域被配置为能够在整个第一区和第二区的范围内维持基本恒定的像跳。
  26. 根据权利要求25所述的眼科镜片,其中,
    在整个第一区和第二区的范围内,所述多个第一屈光区域和所述多个第二屈光区域的像跳的离散系数小于20%。
  27. 根据权利要求25所述的眼科镜片,其中,
    在整个所述第二区的范围内,所述多个第二屈光区域的像跳的离散系数小于15%,或者小于12%,或者小于10%。
  28. 根据权利要求1-27中任一项所述的眼科镜片,其中,
    在所述第一区的颞侧设置的第一屈光区域的总面积占比与在所述第一区的鼻侧设置 的第一屈光区域的总面积占比不同;并且/或者
    所述第一屈光区域的加光度在所述第一区的颞侧与鼻侧不对称地设置;并且/或者
    在所述第二区的颞侧设置的第二屈光区域的总面积占比与在所述第二区的鼻侧设置的第二屈光区域的总面积占比不同;并且/或者
    所述第二屈光区域的加光度在所述第二区的颞侧与鼻侧不对称地设置。
  29. 根据权利要求28所述的眼科镜片,其中,
    在所述第一区的颞侧设置的第一屈光区域的总面积占比大于在所述第一区的鼻侧设置的第一屈光区域的总面积占比;并且/或者
    在所述第一区的颞侧设置的第一屈光区域的平均加光度大于在所述第一区的鼻侧设置的第一屈光区域的平均加光度;并且/或者
    在所述第二区的颞侧设置的第二屈光区域的总面积占比大于在所述第二区的鼻侧设置的第二屈光区域的总面积占比;并且/或者
    在所述第二区的颞侧设置的第二屈光区域的平均加光度大于在所述第二区的鼻侧设置的第二屈光区域的平均加光度。
  30. 根据权利要求1-27中任一项所述的眼科镜片,其中,
    所述眼科镜片被分成以所述眼科镜片的中心作为原点的多个扇形区,在所述多个扇形区中,以各扇形区彼此独立的方式来设置第一屈光区域并且以各扇形区彼此独立的方式来设置第二屈光区域。
  31. 一种框架眼镜,在所述框架眼镜上设有根据权利要求1-30中任一项所述的眼科镜片。
PCT/CN2023/080586 2022-05-30 2023-03-09 眼科镜片和具有其的框架眼镜 WO2023231497A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237038128A KR20230169201A (ko) 2022-05-30 2023-03-09 안과용 렌즈 및 안과용 렌즈를 포함하는 프레임 안경
EP23814082.6A EP4336248A1 (en) 2022-05-30 2023-03-09 Ophthalmic lens and frame glasses having same
CA3219042A CA3219042A1 (en) 2022-05-30 2023-03-09 Ophthalmic lenses and frame eyeglasses with the same
IL305941A IL305941A (en) 2022-05-30 2023-09-13 Ophthalmological lenses and frame glasses with such lenses

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202210602454.0 2022-05-30
CN202210602454 2022-05-30
CN202210869171.2A CN115202072A (zh) 2022-05-30 2022-07-22 眼科镜片和具有其的框架眼镜
CN202221916689.9U CN218547163U (zh) 2022-05-30 2022-07-22 眼科镜片和具有其的框架眼镜
CN202210869171.2 2022-07-22
CN202221916689.9 2022-07-22
CN202221959148.4 2022-07-27
CN202221959148.4U CN218524972U (zh) 2022-05-30 2022-07-27 眼科镜片和具有其的框架眼镜
CN202210890733.1A CN115145052A (zh) 2022-05-30 2022-07-27 眼科镜片和具有其的框架眼镜
CN202210890733.1 2022-07-27
CN202211268086.7A CN117250773A (zh) 2022-05-30 2022-10-17 眼科镜片和具有其的框架眼镜
CN202211268086.7 2022-10-17
CN202211698087.5A CN117215092A (zh) 2022-05-30 2022-12-28 眼科镜片和具有其的框架眼镜
CN202211698087.5 2022-12-28
CN202223532292 2022-12-28
CN202223532292.2 2022-12-28

Publications (1)

Publication Number Publication Date
WO2023231497A1 true WO2023231497A1 (zh) 2023-12-07

Family

ID=89026840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080586 WO2023231497A1 (zh) 2022-05-30 2023-03-09 眼科镜片和具有其的框架眼镜

Country Status (2)

Country Link
TW (1) TW202416021A (zh)
WO (1) WO2023231497A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678572A (zh) 2013-11-29 2015-06-03 豪雅镜片泰国有限公司 眼镜片
US11275259B2 (en) * 2020-06-08 2022-03-15 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
CN216434562U (zh) * 2021-08-29 2022-05-03 爱博诺德(北京)医疗科技股份有限公司 眼镜片及光学眼镜
CN115145052A (zh) * 2022-05-30 2022-10-04 珠海菲特兰医疗科技有限公司 眼科镜片和具有其的框架眼镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678572A (zh) 2013-11-29 2015-06-03 豪雅镜片泰国有限公司 眼镜片
US11275259B2 (en) * 2020-06-08 2022-03-15 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
CN216434562U (zh) * 2021-08-29 2022-05-03 爱博诺德(北京)医疗科技股份有限公司 眼镜片及光学眼镜
CN115145052A (zh) * 2022-05-30 2022-10-04 珠海菲特兰医疗科技有限公司 眼科镜片和具有其的框架眼镜
CN115202072A (zh) * 2022-05-30 2022-10-18 珠海菲特兰医疗科技有限公司 眼科镜片和具有其的框架眼镜
CN218524972U (zh) * 2022-05-30 2023-02-24 珠海菲特兰医疗科技有限公司 眼科镜片和具有其的框架眼镜
CN218547163U (zh) * 2022-05-30 2023-02-28 珠海菲特兰医疗科技有限公司 眼科镜片和具有其的框架眼镜

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATCHISON DA: "Recent advances in measurement of monochromatic aberrations of human eyes.", CLIN EXP OPTOM., vol. 88, no. 1, January 2005 (2005-01-01), pages 5 - 27, XP009102679
E. L. SMITH III ET AL.: "Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys", VISION RESEARCH, vol. 17, no. 3, 2020, pages 32 - 40, XP086388961, DOI: 10.1016/j.visres.2020.08.003

Also Published As

Publication number Publication date
TW202416021A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
US9829722B2 (en) Method and system for retarding the progression of myopia
US11061253B2 (en) Ophthalmic lenses for reducing, minimizing, and/or eliminating interference on in-focus images by out-of-focus light
EP2616876B1 (en) System for retarding progression of myopia
WO2023065556A1 (zh) 一种眼镜片及框架眼镜
EP4006624B1 (en) Spectacle lens design, method of manufacturing a spectacle lens and method of providing a spectacle lens for at least retarding myopia progression
JP7387793B2 (ja) 低輻輳眼鏡
JP2019530012A (ja) コンタクトレンズの上方部分にレンチキュラを備えるコンタクトレンズ
CN216434562U (zh) 眼镜片及光学眼镜
EP4006626A1 (en) Spectacle lens design, spectacle lens kit and method of manufacturing a spectacle lens
JP2023530103A (ja) 光学レンズ
CN218524972U (zh) 眼科镜片和具有其的框架眼镜
WO2023231497A1 (zh) 眼科镜片和具有其的框架眼镜
JP2024522919A (ja) レンズ要素
EP4336248A1 (en) Ophthalmic lens and frame glasses having same
EP4365668A1 (en) Spectacle lens with non-concentric microstructures
JP2024527108A (ja) レンズ要素
WO2022238191A1 (en) Spectacle lens design, spectacle lens kit, method of manufacturing a spectacle lens and method of providing a spectacle lens design
WO2024132653A2 (en) Spectacle lens design data and method for manufacturing a spectacle lens
CN118091980A (zh) 多点离焦接触镜
CN111566547A (zh) 低会聚负焦度眼镜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20237038128

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3219042

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023814082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023577607

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023814082

Country of ref document: EP

Effective date: 20231207

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814082

Country of ref document: EP

Kind code of ref document: A1