WO2023230893A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023230893A1
WO2023230893A1 PCT/CN2022/096392 CN2022096392W WO2023230893A1 WO 2023230893 A1 WO2023230893 A1 WO 2023230893A1 CN 2022096392 W CN2022096392 W CN 2022096392W WO 2023230893 A1 WO2023230893 A1 WO 2023230893A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
signal electrode
sub
electrodes
Prior art date
Application number
PCT/CN2022/096392
Other languages
English (en)
French (fr)
Inventor
罗昶
张元其
张毅
曾扬
张顺
文平
王威
王裕
陈天赐
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001565.4A priority Critical patent/CN117529702A/zh
Priority to PCT/CN2022/096392 priority patent/WO2023230893A1/zh
Publication of WO2023230893A1 publication Critical patent/WO2023230893A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • the display panel can use FMLOC (Flexible Multi-Layer On Cell) technology to achieve touch control.
  • FMLOC Flexible Multi-Layer On Cell
  • the display panel uses opening technology or under-screen camera technology, the touch performance near the light-transmitting area is poor.
  • the purpose of the present disclosure is to overcome the above-mentioned shortcomings of the prior art, provide a display panel and a display device, and improve the touch performance of the light-transmitting area.
  • a display panel including a base substrate, a display layer and a touch layer that are stacked in sequence; the display area of the display panel has a light-transmitting area;
  • the touch control layer is provided with a touch control channel.
  • the touch control channel includes a first signal channel extending along a first direction and a second signal channel extending along a second direction. The second direction and the first signal channel are directions intersect;
  • the touch channels adjacent to the light-transmitting area are heterogeneous touch channels, and at least one of the heterogeneous touch channels includes a plurality of heterogeneous touch sub-channels adjacent to the light-transmitting area;
  • At least one of the heterogeneous touch sub-channels remains continuous.
  • the touch layer includes a first touch metal layer, a touch insulation layer and a second touch metal layer that are sequentially stacked on a side of the display layer away from the base substrate. ;
  • the first signal channel has a plurality of first signal electrodes arranged sequentially along the first direction in the second touch metal layer; between two adjacent first signal electrodes are located the first touch
  • the conductive structure of the metal layer or the second touch metal layer is electrically connected;
  • the second signal channel has a plurality of second signal electrodes arranged sequentially along the second direction in the second touch metal layer; between two adjacent second signal electrodes are located the first touch
  • the conductive structure of the metal layer or the second touch metal layer is electrically connected.
  • each of the first signal channels and each of the second signal channels define a plurality of touch positioning areas distributed in an array; the first signal channels passing through the touch positioning areas A mutual capacitance is formed between the second signal channel and the second signal channel;
  • the display panel includes a first part of the first signal electrode that respectively belongs to two adjacent first signal electrodes and a second part of the first signal electrode that respectively belongs to two adjacent second signal electrodes.
  • the first part and the second part of the second signal electrode of the two signal electrodes; the first part of the first signal electrode and the second part of the first signal electrode are electrically connected, and the third part of the second signal electrode A part is electrically connected to the second part of the second signal electrode.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • the first touch metal layer is provided with a bridge portion, the first portion of the first signal electrode includes at least two sub-electrodes, and at least one of the first signal electrodes The first part of the sub-electrode is electrically connected to the second part of the first signal electrode through the bridge part;
  • the first touch metal layer is provided with a bridge portion
  • the second part of the first signal electrode includes at least two sub-electrodes
  • at least one of the first signal The sub-electrodes of the second part of the electrode are electrically connected to the first part of the first signal electrode through the bridge.
  • the second touch metal layer is provided with a third part of the second signal electrode and a connection part; along the second direction , the third part of the second signal electrode is sandwiched between two adjacent sub-electrodes of the first part of the first signal electrode or between two adjacent sub-electrodes of the second part of the first signal electrode. between electrodes;
  • One of the first part of the second signal electrode and the second part of the second signal electrode is electrically connected to the adjacent third part of the second signal electrode through the connecting part;
  • the first touch metal layer or the second touch metal layer is located between the other one of the first part and the second part of the second signal electrode and the adjacent third part of the second signal electrode.
  • the conductive structures of the layers are electrically connected.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • the second touch metal layer is provided with a connection portion
  • the first part of the second signal electrode includes at least two sub-electrodes, and at least one of the second signal electrodes
  • the first part of the sub-electrode is electrically connected to the second part of the second signal electrode through the connecting part;
  • the second touch metal layer is provided with a connection portion
  • the second part of the second signal electrode includes at least two sub-electrodes
  • at least one of the second signal The sub-electrodes of the second part of the electrode are electrically connected to the first part of the second signal electrode through the connecting part.
  • the second touch metal layer is further provided with a third part of the first signal electrode, and the first touch metal layer is provided with Bridge portion; along the first direction, the third portion of the first signal electrode is sandwiched between two adjacent sub-electrodes of the first portion of the second signal electrode or sandwiched between the third portion of the second signal electrode. Between two adjacent sub-electrodes of the two parts;
  • One of the first part and the second part of the first signal electrode is electrically connected to the adjacent third part of the first signal electrode through the bridge part; the first part of the second signal electrode and another of the second portions is electrically connected to the adjacent third portion of the second signal electrode through a conductive structure located on the first touch metal layer or the second touch metal layer.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • the first part of the second signal electrode includes a plurality of sub-electrodes or the second part of the second signal electrode includes a plurality of sub-electrodes, and the first part of the first signal electrode includes a plurality of sub-electrodes.
  • One part includes a plurality of sub-electrodes or a second part of the first signal electrode includes a plurality of sub-electrodes, and the second touch metal layer is provided with a third part of the second signal electrode and a third part of the first signal electrode, so The first touch metal layer is provided with a plurality of bridge portions;
  • the third part of the first signal electrode is connected to the first part and the second part through different bridge parts; the first part and the second part of the second signal electrode are connected through the third part.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • the first part of the second signal electrode includes a plurality of sub-electrodes or the second part of the second signal electrode includes a plurality of sub-electrodes, and the first part of the first signal electrode includes a plurality of sub-electrodes.
  • One part includes a plurality of sub-electrodes or a second part of the first signal electrode includes a plurality of sub-electrodes, and the second touch metal layer is provided with a third part of the second signal electrode, a third part of the first signal electrode and a plurality of sub-electrodes.
  • the third part of the second signal electrode is connected to the first part and the second part through different connecting parts; the first part and the second part of the first signal electrode are connected through the third part.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • At least one first signal channel includes a first signal sub-channel located in two adjacent heterogeneous touch positioning areas along a first direction; the first signal sub-channel includes a bridge located in the first touch metal layer parts, and the relative positions of the bridge parts in the respective heterogeneous touch positioning areas are different.
  • the distribution trajectory of each bridge portion of at least one first signal sub-channel is not parallel to the first direction.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • At least one second signal channel includes a second signal sub-channel located in two adjacent heterogeneous touch positioning areas along the second direction; the second signal sub-channel includes a connection located on the second touch metal layer parts, and the relative positions of the connecting parts in the respective heterogeneous touch positioning areas are different.
  • the distribution trajectory of each connection portion of at least one second signal sub-channel is not parallel to the second direction.
  • the touch positioning area intersecting with the light-transmitting area is a heterogeneous touch positioning area
  • the first signal channel includes a plurality of first signal sub-channels; along the first direction, at least one of the first signal sub-channels is close to the light-transmitting area
  • the second signal channel is spaced between the end and the light-transmitting area.
  • a touch positioning area that does not intersect with the light-transmitting area is a normal touch positioning area
  • the first touch metal layer is provided with a bridge portion, and the first part and the second part of the first signal electrode are electrically connected through the bridge portion;
  • the second touch metal layer is provided with a connection part, and the first part and the second part of the second signal electrode are electrically connected through the connection part.
  • the number of the first part of the first signal electrode, the second part of the first signal electrode and the bridge part is one, so The number of the first part of the second signal electrode, the second part of the second signal electrode and the connecting part is one.
  • the number of the bridge portions is multiple, and the first portion of the first signal electrode includes one of the plurality of bridge portions.
  • the second part of the first signal electrode includes sub-electrodes corresponding one-to-one to a plurality of the bridge parts; the bridge parts correspond to the sub-electrodes of the first part of the first signal electrode, The sub-electrodes of the second part of the first signal electrode are electrically connected;
  • the second touch metal layer further includes a third part of the second signal electrode; along the second direction, the third part of the second signal electrode is located on the first Between the adjacent sub-electrodes of the first part of a signal electrode, the third part of the second signal electrode is connected to the first part of the second signal electrode and the second part of the second signal electrode through different connection parts. Partially connected.
  • the number of the connecting parts is multiple, and the first part of the second signal electrode includes a plurality of connecting parts one by one.
  • the second part of the second signal electrode includes sub-electrodes corresponding one-to-one to a plurality of the connecting parts; the connecting parts are corresponding to the sub-electrodes of the first part of the second signal electrode, The sub-electrodes of the second part of the second signal electrode are electrically connected;
  • the second touch metal layer further includes a third portion of the first signal electrode; along the second direction, the third portion of the first signal electrode is located on the first signal electrode. Between the adjacent sub-electrodes of the first portion of the two signal electrodes, the third portion of the first signal electrode is connected to the first portion of the first signal electrode and the second portion of the first signal electrode through different bridge portions. Partially connected.
  • the light-transmitting area intersects four touch positioning areas, and the four touch positioning areas are distributed in two rows and two columns.
  • a display device including the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of the overall structure of a display panel in an embodiment of the present disclosure.
  • FIG. 2 is a partial structural diagram of a display panel in an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the overall structure of a display panel in an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display device in an embodiment of the present disclosure.
  • FIG. 5 is a partial structural diagram of a display panel in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a display device in an embodiment of the present disclosure.
  • FIG. 7 is a partial structural diagram of the second touch metal layer in an embodiment of the present disclosure.
  • FIG. 8 is a partial structural diagram of the touch layer in an embodiment of the present disclosure.
  • FIG. 9 is a partial structural diagram of a normal touch positioning area in an embodiment of the present disclosure.
  • FIG. 10 is a partial structural diagram of the second touch metal layer in the normal touch positioning area in an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the distribution of touch positioning areas in an embodiment of the present disclosure.
  • Figure 12-1 is a schematic diagram of the impact of the light-transmitting area on the touch layer in the related art.
  • Figure 12-2 is a partial structural diagram of a portion of the touch layer adjacent to the light-transmitting area in the related art.
  • FIG. 13 is a schematic diagram of the principle in which at least one touch channel is maintained continuous by setting up heterogeneous touch sub-channels in an embodiment of the present disclosure.
  • Figure 14-1 is a schematic diagram of the design principle of the partial structure of the touch layer in an embodiment of the present disclosure.
  • Figure 14-2 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • Figure 15-1 is a schematic diagram of the design principle of the local structure of the touch layer in an embodiment of the present disclosure.
  • Figure 15-2 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • Figure 16-1 is a schematic diagram of the design principle of the partial structure of the touch layer in an embodiment of the present disclosure.
  • Figure 16-2 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram showing that each heterogeneous touch sub-channel in at least one heterogeneous touch positioning area is completely blocked by the light-transmitting area during the design stage in an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram illustrating the principle that in at least one heterogeneous touch positioning area, at least one heterogeneous touch sub-channel is maintained continuous by moving the bridge portion during the design stage, according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram showing that each heterogeneous touch sub-channel in at least one heterogeneous touch positioning area is completely blocked by the light-transmitting area during the design stage, in an embodiment of the present disclosure.
  • 21 is a schematic diagram illustrating the principle that in at least one heterogeneous touch positioning area, at least one heterogeneous touch sub-channel is maintained continuous by moving the bridge portion during the design stage, according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of an embodiment of the present disclosure in which the bridge portion adjacent to the light-transmitting area is removed during the design stage.
  • FIG. 24 is a schematic diagram of the partial structure of the touch layer in an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of an embodiment of the present disclosure in which no touch sub-channel is provided in each normal touch positioning area.
  • FIG. 26 is a schematic structural diagram of a touch sub-channel provided in at least part of the normal touch positioning area in an embodiment of the present disclosure.
  • AA display area; AA1, light-transmitting area; AA2, main display area; BB, peripheral area; B1, binding area; DH, second direction; DV, first direction; BP, substrate substrate; PNL, display panel ; TRW, adapter cable; PDC, pixel drive circuit; EE, display layer; TT, touch layer; TMA, first touch metal layer; TMB, second touch metal layer; TMI, touch insulation layer; TS, Touch channel; TSA, touch positioning area; Tx, first signal channel; TxB, bridge; TxP, first signal electrode; TxPA, first part of the first signal electrode; TxPB, second part of the first signal electrode ; TxPC, the third part of the first signal electrode; SubTx, the first signal sub-channel; SubTxPA, the sub-electrode of the first part of the first signal electrode; SubTxPB, the sub-electrode of the second part of the first signal electrode; Rx, the sub-electrode of the first part Two signal channels; Rx
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the present disclosure provides a display panel PNL, which includes a base substrate BP, a display layer EE and a touch layer TT that are stacked in sequence.
  • the display layer EE is provided with sub-pixels PIX for display and a pixel driving circuit PDC for driving the sub-pixels PIX;
  • the touch layer TT is provided with a touch channel TS for realizing touch.
  • the base substrate BP may be a base substrate BP of inorganic material or a base substrate BP of organic material.
  • the material of the substrate BP may be glass materials such as soda-lime glass, quartz glass, sapphire glass, or may be stainless steel, aluminum, nickel, etc. metallic material.
  • the material of the substrate BP can be polymethyl methacrylate (PMMA), polyvinyl alcohol (Polyvinyl alcohol, PVA), polyvinyl phenol (Polyvinyl phenol, PVP), polyether sulfone (PES), polyimide, polyamide, polyacetal, polycarbonate (PC), polyethylene terephthalate (PET), Polyethylene naphthalate (PEN) or combinations thereof.
  • the base substrate BP may also be a flexible base substrate BP.
  • the material of the base substrate BP may be polyimide (PI).
  • the base substrate BP can also be a composite of multiple layers of materials.
  • the base substrate BP can include a bottom film layer (Bottom Film), a pressure-sensitive adhesive layer, and a pressure-sensitive adhesive layer that are stacked in sequence.
  • Bottom Film Bottom Film
  • a first polyimide layer and a second polyimide layer are stacked in sequence.
  • the sub-pixels of the display layer EE may be self-luminous sub-pixels, or may be optical switches for controlling the passage of light.
  • the display layer EE includes an array substrate and a color filter substrate arranged in pairs, and includes a liquid crystal layer located between the array substrate and the color filter substrate; wherein the substrate substrate BP can Multiplexed as part of the array substrate.
  • the array substrate is provided with a pixel driving circuit PDC for driving the sub-pixels and a pixel electrode electrically connected to the pixel driving circuit PDC; the pixel electrode, the liquid crystal layer, and the common electrode form an optical switch for the sub-pixel, and the common electrode can be disposed on Array substrate or color filter substrate.
  • the display panel PNL can be a liquid crystal display panel.
  • the pixel driving circuit PDC can control the voltage on the pixel electrode, thereby causing a controlled change in the electric field between the pixel electrode and the common electrode; under the control of the electric field between the pixel electrode and the common electrode, the direction and degree of deflection or lodging of the liquid crystal can be controlled Change, thereby causing a controlled change in the polarization direction of light passing through the liquid crystal.
  • a polarizer that cooperates with the display panel PNL can be provided, so that the change in the polarization direction of the light is ultimately manifested as a change in the degree of light transmission.
  • the display layer EE includes a driving circuit layer F100 and a pixel layer F200 that are sequentially stacked on one side of the base substrate BP.
  • the pixel layer F200 is provided with a self-luminous light emitting device.
  • the element serves as a sub-pixel, and the drive circuit layer F100 is provided with a pixel drive circuit PDC for driving the sub-pixel.
  • the drive circuit layer F100 is provided with a pixel drive circuit for driving sub-pixels.
  • any pixel driving circuit may include a transistor F100M and a storage capacitor.
  • the transistor F100M can be a thin film transistor, and the thin film transistor can be selected from a top gate thin film transistor, a bottom gate thin film transistor, or a double gate thin film transistor;
  • the material of the active layer of the thin film transistor can be an amorphous silicon semiconductor material, a low temperature Polycrystalline silicon semiconductor material, metal oxide semiconductor material, organic semiconductor material or other types of semiconductor materials;
  • the thin film transistor can be an N-type thin film transistor or a P-type thin film transistor.
  • the types of any two transistors may be the same or different.
  • some transistors may be N-type transistors and some transistors may be P-type transistors.
  • the material of the active layer of some transistors may be a low-temperature polysilicon semiconductor material, and the material of the active layer of some of the transistors may be metal. Oxide semiconductor materials.
  • the thin film transistor is a low temperature polysilicon transistor. In other embodiments of the present disclosure, some thin film transistors are low temperature polysilicon transistors, and some thin film transistors are metal oxide transistors.
  • the driving circuit layer F100 may include a semiconductor layer SEMI, a gate insulating layer GI, a gate layer GT, an interlayer dielectric layer ILD, a source-drain metal layer SD, etc. stacked between the base substrate BP and the pixel layer F200.
  • Each thin film transistor and storage capacitor can be formed by a semiconductor layer SEMI, a gate insulating layer GI, a gate layer GT, an interlayer dielectric layer ILD, a source-drain metal layer SD and other film layers. The positional relationship of each film layer can be determined according to the film layer structure of the thin film transistor.
  • the semiconductor layer SEMI can be used to form the channel region of the transistor; the gate layer can be used to form gate layer wiring such as scanning wiring, reset control wiring, and emission control wiring, and can also be used to form the transistor.
  • the gate can also be used to form part or all of the electrode plates of the storage capacitor; the source-drain metal layer can be used to form source-drain metal layer traces such as data voltage traces and drive voltage traces, and can also be used to form the storage capacitor. Part of the electrode plate.
  • the driving circuit layer F100 may include a semiconductor layer SEMI, a gate insulating layer GI, a gate layer GT, an interlayer dielectric layer ILD and a source-drain metal layer SD that are stacked in sequence.
  • the thin film transistor formed in this way is Top gate thin film transistor.
  • the driving circuit layer F100 may include a gate layer GT, a gate insulating layer GI, a semiconductor layer SEMI, an interlayer dielectric layer ILD and a source-drain metal layer SD that are stacked in sequence.
  • the thin film thus formed The transistor is a bottom-gate thin film transistor.
  • the gate layer may be one layer, or may be provided as two or three layers as needed.
  • the gate layer GT may include a first gate layer and a second gate layer
  • the gate insulating layer GI may include a first gate insulating layer for isolating the semiconductor layer SEMI and the first gate layer. , and including a second gate insulating layer for isolating the first gate layer and the second gate layer.
  • the driving circuit layer F100 may include a semiconductor layer SEMI, a first gate insulating layer, a first gate layer, a second gate insulating layer, and a second gate layer that are sequentially stacked on one side of the base substrate BP.
  • the gate layer GT may include a first gate layer and a second gate layer, and the semiconductor layer SEMI may be sandwiched between the first gate layer and the second gate layer; the gate insulating layer GI A first gate insulating layer for isolating the semiconductor layer SEMI and the first gate electrode layer may be included, and a second gate insulating layer may be included for isolating the second gate electrode layer and the semiconductor layer SEMI.
  • the driving circuit layer F100 may include a first gate layer, a first gate insulating layer, a semiconductor layer SEMI, a second gate insulating layer, and a second gate layer that are sequentially stacked on one side of the base substrate BP.
  • the semiconductor layer SEMI may include a low-temperature polysilicon semiconductor layer and a metal oxide semiconductor layer; the gate layer includes a first gate layer and a second gate layer, and the gate insulating layer includes first and second gate electrodes. Insulation.
  • the driving circuit layer F100 may include a low-temperature polysilicon semiconductor layer, a first gate insulating layer, a first gate layer, a metal oxide semiconductor layer, a second gate insulating layer, and a second gate insulating layer, which are sequentially stacked on one side of the base substrate BP.
  • the semiconductor layer SEMI may include a low-temperature polysilicon semiconductor layer and a metal oxide semiconductor layer; the gate layer includes first to third gate layers, and the gate insulating layer includes first to third gate insulating layers.
  • the driving circuit layer F100 may include a low-temperature polysilicon semiconductor layer, a first gate insulating layer, a first gate layer, an insulating buffer layer, a second gate layer, and a second gate insulating layer that are sequentially stacked on one side of the base substrate BP. layer, a metal oxide semiconductor layer, a third gate insulating layer, a third gate layer, an interlayer dielectric layer ILD and a source-drain metal layer SD.
  • the source and drain metal layers may be one layer, or may be provided as two or three layers as needed.
  • the source-drain metal layer may include a first source-drain metal layer and a second source-drain metal layer sequentially stacked on a side of the interlayer dielectric layer ILD away from the base substrate, and the first source-drain metal layer and the second An insulating layer, such as a passivation layer and/or a planarization layer, may be sandwiched between the source and drain metal layers.
  • the source-drain metal layer may include a first source-drain metal layer, a second source-drain metal layer, and a third source-drain metal layer sequentially stacked on the side of the interlayer dielectric layer ILD away from the base substrate;
  • An insulating layer such as a passivation layer and/or a resin layer, may be sandwiched between the first source-drain metal layer and the second source-drain metal layer; the second source-drain metal layer and the third source-drain metal layer may be sandwiched
  • An insulating layer is interposed, for example, a passivation layer and/or a planarization layer is interposed.
  • the driving circuit layer F100 may also include a passivation layer, and the passivation layer may be provided on the surface of the source-drain metal layer SD away from the base substrate BP, so as to protect the source-drain metal layer SD.
  • the driving circuit layer F100 may also include a buffer material layer Buff provided between the base substrate BP and the semiconductor layer SEMI, and the semiconductor layer SEMI, the gate layer GT, etc. are located on the buffer material layer away from the base substrate BP. one side.
  • the buffer material layer may be made of inorganic insulating materials such as silicon oxide and silicon nitride.
  • the buffer material layer may be one layer of inorganic material, or may be multiple layers of laminated inorganic material layers.
  • the driving circuit layer F100 may also include a planarization layer PLN located between the source-drain metal layer SD and the pixel layer F200.
  • the planarization layer PLN may provide a planarized surface for the pixel electrode.
  • the material of the planarization layer PLN may be an organic material.
  • the pixel layer F200 may be provided with a light-emitting element electrically connected to the pixel driving circuit, and the light-emitting element may serve as a sub-pixel of the display panel.
  • the pixel layer is provided with light-emitting elements distributed in an array, and each light-emitting element emits light under the control of the pixel driving circuit.
  • the light-emitting element may be an organic electroluminescent diode (OLED), a polymer organic electroluminescent diode (PLED), a micro-light emitting diode (Micro LED), or a quantum dot-organic electroluminescent diode (QD-OLED).
  • QLED quantum dot light-emitting diodes
  • OLED organic electroluminescent diode
  • the display panel is an OLED display panel.
  • the pixel layer F200 may be disposed on a side of the driving circuit layer F200 away from the base substrate F100, and may include a pixel electrode layer AND, a pixel definition layer PDL, a support pillar layer PS, and an organic light-emitting functional layer that are stacked in sequence.
  • EL and common electrode layer COML the pixel electrode layer AND has multiple pixel electrodes in the display area of the display panel; the pixel definition layer PDL has multiple through pixel openings in the display area that are arranged in one-to-one correspondence with the multiple pixel electrodes, and any one pixel opening exposes the corresponding At least part of the pixel electrode.
  • the support pillar layer PS includes a plurality of support pillars in the display area, and the support pillars are located on the surface of the pixel definition layer PDL away from the base substrate F100 to support the fine metal mask (FMM) during the evaporation process.
  • the organic light-emitting functional layer EL at least covers the pixel electrode exposed by the pixel definition layer PDL.
  • the organic light-emitting functional layer EL may include an organic electroluminescent material layer, and may include one of a hole injection layer, a hole transport layer, an electron blocking layer, a hole blocking layer, an electron transport layer and an electron injection layer. Or multiple.
  • Each film layer of the organic light-emitting functional layer EL can be prepared through an evaporation process, and a fine metal mask or an open mask can be used to define the pattern of each film layer during evaporation.
  • the common electrode layer COML can cover the organic light-emitting functional layer EL in the display area. In this way, the pixel electrode, the common electrode layer COML and the organic light-emitting functional layer EL located between the pixel electrode and the common electrode layer COML form an organic electroluminescent diode F200D. Any organic electroluminescent diode can be used as a sub-pixel of the display panel.
  • the pixel layer F200 may also include a light extraction layer located on the side of the common electrode layer COML away from the base substrate F100 to enhance the light extraction efficiency of the organic light emitting diode.
  • the display layer EE may also include a thin film encapsulation layer TFE.
  • the thin film encapsulation layer TFE is provided on the surface of the pixel layer F200 away from the base substrate F100, and may include alternately stacked inorganic encapsulation layers and organic encapsulation layers.
  • the touch layer TT is disposed on the side of the thin film encapsulation layer TFE away from the base substrate BP.
  • the inorganic encapsulation layer can effectively block external moisture and oxygen, preventing water and oxygen from invading the organic light-emitting functional layer EL and causing material degradation.
  • the edge of the inorganic encapsulation layer may be located in the peripheral area.
  • the organic encapsulation layer is located between two adjacent inorganic encapsulation layers to achieve planarization and reduce stress between the inorganic encapsulation layers.
  • the edge of the organic encapsulation layer may be located between the edge of the display area and the edge of the inorganic encapsulation layer.
  • the thin film encapsulation layer TFE includes a first inorganic encapsulation layer CVD1, an organic encapsulation layer INK and a second inorganic encapsulation layer CVD2 sequentially stacked on the side of the pixel layer F200 away from the substrate F100.
  • FIG. 3 is a top structural view of the display panel PNL according to the embodiment of the present disclosure.
  • the display panel PNL may include a display area AA and a peripheral area BB surrounding the display area AA.
  • the display area AA may include a main display area AA2 and at least one light-transmitting area AA1 on one side of the main display area AA2.
  • the light transmittance of the light transmitting area AA1 is greater than the light transmittance of the main display area AA2.
  • the main display area AA2 surrounds the light-transmitting area AA1.
  • a display device applying the display panel PNL may include at least one photosensitive component C300.
  • the photosensitive component C300 can be arranged in one-to-one correspondence with the light-transmitting area AA1, and the photosensitive component C300 can face the corresponding light-transmitting area AA1, so as to receive the light transmitted from the light-transmitting area AA1.
  • the photosensitive component C300 may have a photosensitive area for sensing light, and the orthographic projection of the photosensitive area on the substrate BP may be located in the light-transmitting area AA1.
  • the photosensitive component C300 may be one or more light sensors, such as a camera, an optical fingerprint recognition chip, a light intensity sensor, etc.
  • the photosensitive component C300 may be a camera, such as a CCD (charge coupled device) camera.
  • the light-transmitting area AA1 may be embedded in the main display area AA2 , that is, the main display area AA2 surrounds the light-transmitting area AA1 .
  • the light-transmitting areas AA1 can be arranged dispersedly or adjacently.
  • the light-transmitting area AA1 may also be located on one side of the main display area AA2; for example, the edge of the light-transmitting area AA1 may partially overlap with the inner edge of the peripheral area BB, so that the light-transmitting area AA1 Area AA1 is provided at the edge of the display area AA.
  • any light-transmitting area AA1 may be circular, oblong (rectangular in the middle, semi-circular at both ends), square, rhombus, regular hexagon or other shapes.
  • the shape of the light-transmitting area AA1 may be circular or oblong.
  • the number of light-transmitting areas AA1 may be one or multiple, depending on the settings of the photosensitive component C300. In one example, the number of light-transmitting areas AA1 is one. In this way, the display device may be provided with a photosensitive component C300, such as a camera or an optical fingerprint recognition chip. In another example, the number of light-transmitting areas AA1 is multiple. In this way, the display device can be provided with multiple photosensitive components C300, and any two photosensitive components C300 can be the same or different. For example, the number of light-transmitting areas AA1 is three and they are arranged adjacently.
  • the display device can be provided with different photosensitive components C300 that correspond to the three light-transmitting areas AA1 one-to-one, for example, three different photosensitive components C300 including an imaging camera, a depth camera, and an infrared camera.
  • three different photosensitive components C300 including an imaging camera, a depth camera, and an infrared camera.
  • different technologies can be used to ensure the light transmission performance of the light-transmitting area AA1, such as using perforated screen technology or using under-screen camera technology.
  • the pixel layer F200 may be provided with a light-emitting element C200 , so that the main display area AA2 and the light-transmitting area AA1
  • the light-transmitting area AA1 can realize picture display.
  • the display device can realize off-screen photography and increase the screen-to-body ratio of the display device.
  • the display panel PNL may not have the pixel driving circuit C100 in the light-transmitting area AA1 in order to reduce the impact of the pixel driving circuit C100 on the light transmittance and improve the light transmittance of the light-transmitting area AA1 .
  • the pixel driving circuit C100 of each light-emitting element C200 located in the light-transmitting area AA1 can be disposed in the main display area AA2.
  • the pixel electrode F300D1 of each light-emitting element C200 located in the light-transmitting area AA1 includes an electrode body F300D11 and an electrode extension line F300D12 that are connected to each other.
  • the electrode body F300D11 is located in the light-transmitting area AA1 and is used as the cathode or anode of the light-emitting element C200; the electrode extension line F300D12 is located in the main display area AA2 and the light-transmitting area AA1, one end of which is connected to the electrode body F300D11, and the other end
  • the pixel driving circuit C100 corresponding to the light emitting element C200 is electrically connected.
  • the electrode extension trace F300D12 may be made of transparent conductive material, such as lens metal oxide (such as indium tin oxide).
  • the material of the electrode extension trace F300D12 can also be the same as the material of the electrode body F300D11 and arranged in the same layer, so that the electrode extension trace F300D12 and the electrode body F300D11 can be prepared in the same process.
  • the light-emitting element C200 in the display panel PNL can be divided into a first light-emitting element C201 located in the main display area AA2 and a second light-emitting element C201 located in the light-transmitting area AA1 according to its location.
  • the pixel driving circuit C100 in the display panel PNL of the present disclosure can be divided into a first pixel driving circuit C101 for driving the first light-emitting element C201 and a third pixel driving circuit C101 for driving the second light-emitting element C202 according to the light-emitting element C200 it drives.
  • Two-pixel driving circuit C102 Two-pixel driving circuit C102.
  • the output terminal of the first pixel driving circuit C101 is electrically connected to the pixel electrode F300D1 of the first light-emitting element C201
  • the output terminal of the second pixel driving circuit C102 is electrically connected to the electrode extension line F300D12 of the pixel electrode F300D1 of the second light-emitting element C202. connect.
  • both ends of the electrode extension trace F300D12 are respectively connected to the electrode body F300D11 of the pixel electrode F300D1 of the second light-emitting element C202 and the output end of the second pixel driving circuit C102.
  • the main display area AA2 may include an auxiliary display area adjacent to the light-transmitting area AA1, and the second pixel driving circuit C102 may be disposed in the auxiliary display area.
  • the second light-emitting element C202 and the second pixel driving circuit C102 can both be disposed in the light-transmitting area AA1, and by adjusting the gap and layout between the second pixel driving circuit C102 area and other methods to improve the light transmittance of the light transmittance area AA1.
  • the display panel PNL is provided with a light-transmitting hole in the light-transmitting area AA1. Furthermore, the display area AA is also provided with an encapsulation area surrounding the light-transmitting area AA1 to prevent water and oxygen from invading from the light-transmitting area AA1 to the main display area AA2 and to prevent cracks from extending to the main display area AA2.
  • the touch layer TT has a plurality of touch channels TS.
  • These touch channels TS include a plurality of second signal channels Rx extending along the second direction DH and a plurality of first signal channels extending along the first direction DV. Tx; the second direction DH and the first direction DV intersect.
  • one of the second direction DH and the first direction DV is the row direction (the direction in which the scanning lines extend) of the display panel PNL, and the other is the column direction (the direction in which the data voltage lines extend).
  • the second direction DH is the row direction of the display panel PNL
  • the first direction DV is the column direction of the display panel PNL.
  • each first signal channel Tx and each second signal channel Rx define a plurality of touch positioning areas TSA distributed in an array.
  • the touch capacitance is formed by mutual capacitance between the first signal channel Tx and the second signal channel Rx of the touch positioning area TSA.
  • the capacitance value of the touch capacitor in the touch positioning area TSA will change in response to the touch object (such as a finger).
  • the display device determines the touch by detecting changes in the touch capacitance in different touch positioning areas TSA. control position.
  • the touch layer TT includes a first touch metal layer TMA, a touch insulation layer TMI and a second touch layer sequentially stacked on one side of the display layer EE.
  • the second signal channel Rx has a plurality of second signal electrodes RxP arranged sequentially along the second direction DH in the second touch metal layer TMB; two adjacent second signal electrodes RxP pass through the first touch metal layer TMA.
  • the conductive structure of the second touch metal layer TMB is electrically connected;
  • the first signal channel Tx has a plurality of first signal electrodes TxP arranged sequentially along the first direction DV in the second touch metal layer TMB; two adjacent first signal electrodes TxP
  • the signal electrodes TxP are electrically connected through a conductive structure located in the first touch metal layer TMA or the second touch metal layer TMB.
  • an interdigitated capacitance is formed between the edge of the second signal electrode RxP and the edge of the first signal electrode TxP, and the interdigitated capacitance serves as the touch capacitance in the touch positioning area TSA. part.
  • the display panel PNL includes a first part TxPA and a first signal electrode that respectively belong to two adjacent first signal electrodes TxP.
  • the second part TxPB of the electrode, the first part RxPA and the second part RxPB of the second signal electrode respectively belonging to two adjacent second signal electrodes RxP; the first part TxPA and the second part TxPB of the first signal electrode are connected by a conductive
  • the structure is electrically connected, and the first part RxPA and the second part RxPB of the second signal electrode are electrically connected.
  • the second part RxPB of the second signal electrode in one of the touch positioning areas TSA and the second signal electrode in the other touch positioning area TSA The first part RxPA is adjacent and connected to form a second signal electrode RxP.
  • the second signal electrode RxP located at one end of the second signal channel Rx may only include the first part of the second signal electrode RxPA
  • the second signal electrode RxP located at the other end of the second signal channel Rx may only include the first part of the second signal electrode.
  • the non-end second signal electrode RxP may include a first part RxPA and a second part RxPB of the second signal electrode.
  • the first part RxPA and the second part RxPB of the second signal electrode are respectively located at two adjacent contacts. Control location area TSA.
  • the second part TxPB of the first signal electrode in one of the touch positioning areas TSA and the first signal electrode in the other touch positioning area TSA The first part TxPA is adjacent and connected to form a first signal electrode TxP.
  • the first signal electrode TxP located at one end of the first signal channel Tx may only include the first part TxPA of the first signal electrode
  • the first signal electrode TxP located at the other end of the first signal channel Tx may only include the first part of the first signal electrode TxPA.
  • the non-end first signal electrode TxP may include a first part TxPA and a second part TxPB.
  • the first part TxPA and the second part TxPB of the first signal electrode are respectively located in two adjacent touch positioning areas TSA. .
  • the first signal channel Tx and the second signal channel Rx can be hollowed out to reduce the impact on the light output of the display panel PNL and reduce the reflection of ambient light.
  • the gap between the first signal channel Tx and the second signal channel Rx may be in a bent shape instead of a straight line, that is, the adjacent first signal electrode TxP and the second signal electrode RxP are plugged into each other. In this way, it is helpful to eliminate the visibility of the boundary between the first signal electrode TxP and the second signal electrode RxP, and improve the uniformity of the display panel PNL.
  • the touch layer TT can also be provided with touch traces.
  • the touch traces can be disposed in the peripheral area BB and electrically connected to the touch channel TS to transmit the signals of the first signal channel Tx and the second signal channel Rx to the display.
  • the control component of the device; the control component of the display device can determine the touch position according to the signal transmitted by the touch trace.
  • the first part TxPA of the first signal electrode is close to the touch trace connected to the first signal channel Tx.
  • the first signal electrode TxP located at the end of the first signal channel Tx is connected to the touch trace
  • the first signal electrode TxP is the first part TxPA of the first signal electrode.
  • the first part RxPA of the second signal electrode is close to the touch trace connected to the second signal channel Rx.
  • the second signal electrode RxP located at the end of the second signal channel Rx is connected to the touch trace
  • the second signal electrode RxP is the first part RxPA of the second signal electrode.
  • the touch positioning area TSA can be divided into a normal touch positioning area NTSA and a heterogeneous touch positioning area MTSA.
  • the normal touch positioning area NTSA does not intersect with the light-transmitting area AA1
  • the heterogeneous touch positioning area MTSA intersects with the light-transmitting area AA1.
  • the structures such as the second signal electrode RxP and the first signal electrode TxP in the normal touch positioning area NTSA are not adjacent to the light-transmitting area AA1, and their structures can maintain integrity.
  • the second signal electrode RxP and the first signal electrode TxP in the heterogeneous touch positioning area MTSA are at least partially adjacent to the light-transmitting area AA1, and have a gap to avoid the light-transmitting area AA1 in order to avoid the light-transmitting area AA1.
  • whether the second signal electrode RxP or the first signal electrode TxP is disposed may be determined by whether the edge of the second signal electrode RxP or the first signal electrode TxP is directly adjacent to the light-transmitting area AA1 Avoidance gap; if the edge of a conductive structure is not directly adjacent to the light-transmitting area AA1, for example, there are other conductive structures at intervals, it can be considered that the conductive structure remains intact without an avoidance gap to avoid the light-transmitting area AA1; if a conductive structure The edge of is directly adjacent to the light-transmitting area AA1, and it can be considered that the conductive structure is provided with an avoidance gap to avoid the light-transmitting area AA1.
  • the first touch metal layer TMA is provided with a bridge portion TxB, between the first part TxPA and the second part TxPB of the first signal electrode. are connected through the bridge part TxB;
  • the second touch metal layer TMB is provided with a connection part RxB, and the first part RxPA and the second part RxPB of the second signal electrode are connected through the connection part RxB.
  • the connection portion RxB and the bridge portion TxB overlap to form a mutual capacitance, which is also a part of the touch capacitance in the normal touch positioning area NTSA.
  • the touch layer TT can be implemented using FMLOC (Flexible Multi-Layer On Cell) technology, that is, the touch layer TT is prepared using the display layer EE as the substrate instead of pasting the touch substrate. to display layer EE.
  • FMLOC Flexible Multi-Layer On Cell
  • Figure 12-1 is a partial principle diagram of the touch layer TT avoiding the light-transmitting hole AA1 in the related art.
  • Figure 12-2 is a schematic diagram of the partial structure of the touch layer TT behind the light-transmitting hole AA1 in the related art. Referring to Figure 12-1, the touch channel TS of the touch layer TT needs to avoid the light-transmitting area AA1, which results in at least one touch channel TS being blocked by the light-transmitting area AA1.
  • the touch layer TT can be provided with a transfer line surrounding the light-transmitting area AA1 (for example, the transfer line TRW1 in Figure 12-2 and adapter cable TRW2) to reconnect the isolated touch channel TS.
  • a transfer line surrounding the light-transmitting area AA1 for example, the transfer line TRW1 in Figure 12-2 and adapter cable TRW2
  • the display panel PNL does not have sufficient flatness due to packaging, which makes the touch layer TT prone to short circuit or poor disconnection due to the placement of transfer wiring across the film layer.
  • the transfer wiring will occupy a large layout space and affect the pattern of the first signal electrode TxP or the second signal electrode RxP around the light-transmitting area AA1, thereby affecting the touch performance.
  • Plate capacitance will be formed between different transfer traces.
  • transfer line TRW1 and transfer line TRW2 need to be arranged on the first touch metal layer TMA and the second touch metal layer TMB respectively to form a plate capacitance at the overlapping position.
  • the touch capacitance in the heterogeneous touch positioning area MTSA increases (the change amount of the capacitance in response to the touch action is basically unchanged), affecting the touch performance.
  • the display panel PNL adopts under-screen camera technology, it is difficult to set up a double-layer adapter cable because the light-transmitting area AA1 has no frame.
  • the display panel PNL provided by the embodiment of the present disclosure, referring to FIG. 11 , it can be divided into a normal touch channel NTS and a heterogeneous touch channel MTS according to the relative positional relationship between the touch channel TS and the light-transmitting area AA1.
  • the touch channel TS that is not adjacent to the light-transmitting area AA1 is defined as a normal touch channel NTS
  • the touch channel TS adjacent to the light-transmitting area AA1 is defined as a heterogeneous touch channel MTS.
  • at least one heterogeneous touch channel MTS includes a plurality of heterogeneous touch sub-channels SubMTS adjacent to the display area AA.
  • the heterogeneous touch sub-channel SubMTS can be set up in the heterogeneous touch positioning area MTSA to flexibly avoid the light-transmitting area AA1, avoiding the establishment of transfer wires or reducing the number of transfer wires. , especially to avoid the formation of plate capacitance due to double-layer transfer wiring, thereby reducing or avoiding the impact of the set transfer wiring on the touch sensor.
  • the heterogeneous touch sub-channel SubMTS remains continuous means that the heterogeneous touch sub-channel SubMTS is located between two adjacent conductive structures of the second touch metal layer TMB and is located between the two conductive structures.
  • the conductive connection portion is connected (the conductive connection portion is provided on the first touch metal layer TMA or the second touch metal layer TMB) instead of using a transfer trace provided in an arc along the edge of the light-transmitting area AA1.
  • the first signal channel Tx may be provided with multiple first signal sub-channels SubTx in a heterogeneous touch positioning area MTSA. If the sub-electrodes of a first signal sub-channel SubTx are all connected through the bridge portion TxB located on the first touch metal layer TMA, it is considered that the first signal sub-channel SubTx remains continuous. If at least two sub-electrodes of a first signal sub-channel SubTx are connected through a transfer trace arranged in an arc along the edge of the light-transmitting area AA1, it is considered that the first signal sub-channel SubTx is not continuous. It can be understood that in some cases, the heterogeneous touch sub-channel SubMTS that does not maintain continuity can also maintain electrical contact (ie, normally transmit touch signals) with the help of transfer wiring.
  • two intersecting heterogeneous touch channels MTS are provided in the same heterogeneous touch positioning area MTSA.
  • one heterogeneous touch channel MTS in the same heterogeneous touch positioning area MTSA has multiple heterogeneous touch sub-channels SubMTS, and the other heterogeneous touch channel MTS does not have heterogeneous touch sub-channels.
  • SubMTS that is, the number of heterogeneous touch sub-channel SubMTS is 1).
  • two heterogeneous touch channels MTS are each provided with multiple heterogeneous touch sub-channels SubMTS, and each of the two heterogeneous touch channels MTS
  • the number of touch sub-channels SubMTS may be the same or different, for example, they may all be two.
  • one heterogeneous touch channel MTS can remain continuous while the other heterogeneous touch channel MTS can maintain electrical signals through the transfer wiring surrounding the light-transmitting area AA1 of continuity.
  • the two heterogeneous touch channels MTS can both remain continuous.
  • one electrode in the heterogeneous touch positioning area MTSA, one electrode can be divided into multiple sub-electrodes, and then different heterogeneous touch sub-channels SubMTS are formed through different sub-electrodes.
  • the number of heterogeneous touch positioning areas MTSA may be multiple, for example, it may be 2 to 6.
  • the number of heterogeneous touch positioning areas MTSA is four, and the four heterogeneous touch positioning areas MTSA are arranged in two adjacent rows and two columns.
  • Figure 14-1 shows the design principle of the local structure of the touch layer TT in an embodiment of the present disclosure
  • Figure 14-2 shows a schematic diagram of the local structure of the touch layer TT in an embodiment of the present disclosure.
  • the first touch metal layer TMA is provided with a bridge portion TxB, and the first part TxPA of the first signal electrode includes There are at least two sub-electrodes SubTxPA, and the sub-electrode SubTxPA of the first part of at least one first signal electrode is electrically connected to the second part TxPB of the first signal electrode through the bridge part TxB.
  • the sub-electrode SubTxPA of the first part of the first signal electrode that is farthest from the light-transmitting area AA1 may be connected to the second part of the first signal electrode TxPB through the bridge part TxB without setting a gap to avoid the light-transmitting area AA1.
  • the second touch metal layer TMB is provided with a third part RxPC of the second signal electrode and a connection part RxB, and the connection part RxB overlaps with the bridge part TxB;
  • the third portion RxPC of the second signal electrode is sandwiched between two adjacent sub-electrodes SubTxPA of the first portion of the first signal electrode.
  • One of the first part RxPA and the second part RxPB of the second signal electrode is electrically connected to the third part RxPC of the adjacent second signal electrode through the connection part RxB; the first part RxPA and the second part of the second signal electrode
  • the other one of the parts RxPB is electrically connected to the third part RxPC of the adjacent second signal electrode through the transfer line TRW located in the first touch metal layer TMA or the second touch metal layer TMB, or through the connecting part RxB connection.
  • the transfer line TRW is disposed on the second touch metal layer TMB, and there is a gap between the transfer line TRW and the first signal channel Tx.
  • the transfer line TRW is provided along the edge of the light-transmitting area AA1.
  • the first part TxPA of the first signal electrode in the area MTSA is divided into a plurality of sub-electrodes SubTxPA of the first part of the first signal electrode (two in the example), and the second part TxPB of the first signal electrode is divided into a plurality of sub-electrodes SubTxPA (two in the example).
  • the sub-electrodes SubTxPA of the first part of the first signal electrode correspond one-to-one to the sub-electrodes SubTxPB of the second part of the plurality of first signal electrodes (for example, two), and the bridge portion TxB in the heterogeneous touch positioning area MTSA
  • the number is the same as the number of sub-electrodes SubTxPA of the first part of the first signal electrode; the sub-electrodes SubTxPA of the first part of the first signal electrode and the sub-electrodes SubTxPB of the second part of the first signal electrode are connected through corresponding bridge parts TxB.
  • the third part RxPC of the second signal electrode in the heterogeneous touch positioning area MTSA is connected to the first part RxPA of the second signal electrode and the second part RxPB of the second signal electrode through different connection parts RxB.
  • the prepared display panel PNL that is, in the final layout of the touch layer TT, see Figure 14-2
  • the portion of the bridge portion TxB located in the light-transmitting area AA1 is removed, so that the remaining portion of the first portion TxPA of the first signal electrode and the remaining portion of the second portion TxPB of the first signal electrode are connected through at least one bridge portion TxB.
  • the first part RxPA of the second signal electrode, the second part RxPB of the second signal electrode, the third part RxPC of the second signal electrode, and the part of the connection part RxB located in the light-transmitting area AA1 are also removed;
  • a transfer line TRW is set so that The second signal channel Rx remains open, and the sub-electrode SubTxPA of the first part of the first signal electrode also needs to avoid the transfer line TRW to avoid forming a plate capacitance.
  • the heterogeneous touch positioning area MTSA located in the upper left corner in FIG. 14-2 may be named the first heterogeneous touch positioning area MTSA.
  • the first part of the first signal electrode TxPA includes two first parts of the two first signal electrodes arranged along the second direction DH.
  • the sub-electrode SubTxPA of which there is at least one first part of the first signal electrode SubTxPA is not affected by the light-transmitting area AA1 and is connected to the second part of the first signal electrode TxPB through the bridge part TxB, thereby ensuring that the first different The first signal channel Tx signal in the touch positioning area MTSA is smooth.
  • the first part of the sub-electrode SubTxPA of the other first signal electrode has a gap to avoid the light-transmitting area AA1. In the first heterogeneous touch positioning area MTSA, if the first signal channel Tx does not avoid the light-transmitting area AA1, it should have two heterogeneous touch sub-channels SubMTS.
  • Each heterogeneous touch sub-channel SubMTS includes sequentially connected The sub-electrode SubTxPA of the first part of the first signal electrode, the bridge part TxB and the sub-electrode SubTxPB of the second part of the first signal electrode; in order to avoid the light-transmitting area AA1, the heterogeneous touch sub-channel SubMTS close to the light-transmitting area AA1 is isolated, while the heterogeneous touch sub-channel SubMTS away from the light-transmitting area AA1 remains continuous.
  • the second signal channel Rx includes a first part RxPA of the second signal electrode located in the second touch metal layer TMB, and a second part of the second signal electrode RxPB, the third part RxPC of the second signal electrode and the connection part RxB, and includes a transfer line TRW; wherein the bridge part TxB and the connection part RxB are overlapped.
  • the first part RxPA of the second signal electrode is located on the side of the first part sub-electrode SubTxPA of the first signal electrode away from the light-transmitting area AA1, so that there is no need to set a gap to avoid the light-transmitting area AA1.
  • the third part RxPC of the second signal electrode is located between two adjacent sub-electrodes SubTxPA of the first part of the first signal electrode, and is provided with a gap to avoid the light-transmitting area AA1.
  • the first part RxPA of the second signal electrode and the third part RxPC of the second signal electrode are connected through a connection part RxB.
  • the second part RxPB of the second signal electrode has a gap that avoids the light-transmitting area AA1, and the connection between the third part RxPC and the second part RxPB of the second signal electrode is blocked by the light-transmitting area AA1.
  • the second part RxPB and the third part RxPC of the second signal electrode are connected through a transfer line TRW provided along the edge of the light-transmitting area AA1.
  • the transfer line TRW may be provided on the first touch metal layer TMA or the second touch metal layer TMA. Control the metal layer TMB.
  • a wiring gap is reserved between the first signal electrode and the light-transmitting area AA1, and the transfer line TRW is arranged in the wiring gap; this can avoid excessively increasing the plate capacitance formed between the transfer line TRW and the first signal channel Tx.
  • the capacitance value of the touch capacitor in a heterogeneous touch positioning area MTSA ensures touch performance while keeping the second signal channel Rx and the first signal channel Tx signals open.
  • the first touch metal layer TMA is provided with a bridge portion TxB, and a second portion of the first signal electrode TxPB It includes at least two sub-electrodes SubTxPB, and the sub-electrode SubTxPB of the second part of at least one first signal electrode is electrically connected to the first part TxPA of the first signal electrode through the bridge part TxB.
  • sub-electrode SubTxPB of the second part of the first signal electrode that is farthest from the light-transmitting area AA1 may be connected to the first part TxPA of the first signal electrode through the bridge part TxB without providing a gap to avoid the light-transmitting area AA1.
  • the second touch metal layer TMB is provided with a third part RxPC of the second signal electrode and a connection part RxB, and the connection part RxB overlaps with the bridge part TxB; along In the second direction DH, the third part RxPC of the second signal electrode is sandwiched between the second part sub-electrodes SubTxPB of two adjacent first signal electrodes.
  • One of the first part RxPA and the second part RxPB of the second signal electrode is electrically connected to the third part RxPC of the adjacent second signal electrode through the connection part RxB; the first part RxPA and the second part of the second signal electrode
  • the other one of the parts RxPB is electrically connected to the third part RxPC of the adjacent second signal electrode through the transfer line TRW located in the first touch metal layer TMA or the second touch metal layer TMB, or through the connecting part RxB connection.
  • the first part TxPA of the first signal electrode in at least one heterogeneous touch positioning area MTSA is also divided into the first part TxPA of the plurality of first signal electrodes.
  • the two parts of sub-electrodes SubTxPB correspond one-to-one to the first part of the plurality of first signal electrodes SubTxPA (for example, two), and the number of bridge portions TxB in the heterogeneous touch positioning area MTSA is consistent with the number of the first signal electrodes.
  • the number of sub-electrodes SubTxPB of the second part is the same; the sub-electrodes SubTxPB of the second part of the first signal electrode and the sub-electrodes SubTxPA of the first part of the first signal electrode are connected through corresponding bridge parts TxB.
  • the third part RxPC of the second signal electrode in the heterogeneous touch positioning area MTSA is connected to the first part RxPA of the second signal electrode and the second part RxPB of the second signal electrode through different connection parts RxB.
  • the sub-electrode SubTxPB of the second part of the first signal electrode, the sub-electrode SubTxPA of the first part of the first signal electrode and the part of the bridge part TxB located in the light-transmitting area AA1 are removed, so that the first The remaining portion of the second portion of the signal electrode TxPB and the remaining portion of the first portion of the first signal electrode TxPA are connected through at least one bridge portion TxB.
  • the first part RxPA of the second signal electrode, the second part RxPB of the second signal electrode, the third part RxPC of the second signal electrode, and the part of the connection part RxB located in the light-transmitting area AA1 are also removed;
  • a transfer line TRW is set so that The second signal channel Rx remains open, and the sub-electrode SubTxPB of the second part of the first signal electrode also needs to avoid the transfer line TRW to avoid forming a plate capacitance.
  • the heterogeneous touch positioning area MTSA located in the lower left corner in FIG. 14-2 may be named the second heterogeneous touch positioning area MTSA.
  • the second part TxPB of the first signal electrode includes two sub-electrodes SubTxPB of the second part of the two first signal electrodes arranged along the second direction DH.
  • the second part of the first signal electrode is not affected by the light-transmitting area AA1 and is connected to the first part TxPA of the first signal electrode through the bridge part TxB, thereby ensuring the second heterogeneous touch positioning
  • the Tx signal of the first signal channel in the area MTSA is smooth.
  • the heterogeneous touch sub-channel SubMTS to which the second part of the sub-electrode SubTxPB of the other first signal electrode participates is separated by the light-transmitting area AA1.
  • the first signal electrode is connected to the second part of the sub-electrode SubTxPB.
  • the sub-electrode SubTxPA of the first part of the signal electrode is separated by the light-transmitting area AA1; of course, the sub-electrode SubTxPB of the second part of the first signal electrode close to the light-transmitting area AA1 itself can also be separated by the light-transmitting area AA1 in other examples. Partitioned with gaps.
  • the second signal channel Rx includes the first part RxPA of the second signal electrode of the second touch metal layer TMB, the second signal The second part of the electrode RxPB, the third part of the second signal electrode RxPC and the connection part RxB, and include a transfer line TRW; wherein the bridge part TxB and the connection part RxB are overlapped.
  • the first part RxPA of the second signal electrode is located on the side of the second part sub-electrode SubTxPB of the first signal electrode away from the light-transmitting area AA1, so there is no need to set a gap to avoid the light-transmitting area AA1.
  • the third part RxPC of the second signal electrode is located between the second part sub-electrodes SubTxPB of two adjacent first signal electrodes, and is provided with a gap to avoid the light-transmitting area AA1.
  • the first part RxPA of the second signal electrode and the third part RxPC of the second signal electrode are connected through a connection part RxB.
  • the second part RxPB of the second signal electrode has a notch to avoid the light-transmitting area AA1.
  • connection between the third part RxPC and the second part RxPB of the second signal electrode is interrupted by the light-transmitting area AA1 (as shown in Figure 14-2)
  • the connection between the second part RxPB and the third part RxPC of the second signal electrode are connected through a transfer line TRW provided along the edge of the light-transmitting area AA1.
  • the transfer line TRW may be provided on the first touch metal layer TMA or the second touch metal layer TMB.
  • a wiring gap is reserved between the sub-electrode SubTxPB of the second part of the first signal electrode and the light-transmitting area AA1 between the third part RxPC and the second part RxPB of the second signal electrode, and the transfer line TRW is arranged in the wiring in the gap; this can avoid the formation of plate capacitance between the transfer line TRW and the first signal channel Tx and excessively increase the capacitance value of the touch capacitor in the second heterogeneous touch positioning area MTSA, thereby causing the second signal channel Rx The touch performance is guaranteed while keeping the Tx signal of the first signal channel unblocked.
  • Figure 14-1 and Figure 14-2 illustrate the solution and principle of setting multiple heterogeneous touch sub-channels SubMTS in the first signal channel Tx in at least one heterogeneous touch positioning area MTSA to avoid being completely blocked by the light-transmitting area AA1 .
  • the above design concepts and principles can also be applied in other examples of the present disclosure, for example, the second signal channel Rx in at least one heterogeneous touch positioning area MTSA is provided with multiple heterogeneous touch sub-channels SubMTS to avoid light-transmitted areas.
  • AA1 is completely isolated.
  • Figure 15-1 illustrates the design principle diagram of a partial design in which the second signal channel Rx in at least one heterogeneous touch positioning area MTSA is provided with multiple heterogeneous touch sub-channels SubMTS to avoid being completely blocked by the light-transmitting area AA1;
  • Figure 15-2 illustrates a partial structural schematic diagram in which the second signal channel Rx in at least one heterogeneous touch positioning area MTSA is provided with multiple heterogeneous touch sub-channels SubMTS to avoid being completely blocked by the light-transmitting area AA1.
  • the second touch metal layer TMB is provided with a connection portion RxB
  • the first part RxPA of the second signal electrode includes The sub-electrodes SubRxPA of the first portion of at least two second signal electrodes, and the sub-electrodes SubRxPA of the first portion of at least one second signal electrode are electrically connected to the second portion RxPB of the second signal electrode through the connection portion RxB.
  • the sub-electrode SubRxPA of the first part of the second signal electrode that is farthest from the light-transmitting area AA1 may be connected to the second part RxPB of the second signal electrode through the connection part RxB without providing a gap to avoid the light-transmitting area AA1. At least part of the remaining first part of the sub-electrodes SubRxPA of the second signal electrode can avoid the light-transmitting area AA1 and be provided with an escape gap. Of course, no escape gap may be provided.
  • the second touch metal layer TMB is provided with the third part of the first signal electrode TxPC
  • the first touch metal layer TMA is provided with the bridge portion TxB
  • the bridge portion TxB It is arranged overlapping the connection part RxB; along the first direction DV, the third part TxPC of the first signal electrode is sandwiched between the first part sub-electrodes SubRxPA of two adjacent second signal electrodes.
  • One of the first part TxPA and the second part TxPB of the first signal electrode is electrically connected to the adjacent third part TxPC of the first signal electrode through the bridge part TxB; the first part TxPA of the first signal electrode and the first The other of the second portions TxPB of the signal electrode is electrically connected to the adjacent third portion TxPC of the first signal electrode through a transfer line TRW located in the first touch metal layer TMA or the second touch metal layer TMB. , of course, in some cases it can also be connected through the bridge TxB.
  • the second part RxPB of the second signal electrode in the heterogeneous touch positioning area MTSA is also divided into two second signal electrodes.
  • the sub-electrodes SubRxPA of the first part correspond one-to-one to the sub-electrodes SubRxPB of the second part of the plurality of second signal electrodes (for example, two), and the number of the connection parts RxB in the heterogeneous touch positioning area MTSA is the same as that of the second part of the second signal electrode.
  • the number of sub-electrodes SubRxPA of the first part of the signal electrode is the same; the sub-electrodes SubRxPA of the first part of the second signal electrode and the sub-electrodes SubRxPB of the second part of the second signal electrode are connected through corresponding connection parts RxB.
  • the third part TxPC of the first signal electrode in the heterogeneous touch positioning area MTSA is connected to the first part TxPA of the first signal electrode and the second part TxPB of the first signal electrode through different bridge parts TxB.
  • the first part of the sub-electrode SubRxPA of the second signal electrode, the second part of the sub-electrode SubRxPB of the second signal electrode and the part of the connection portion RxB located in the light-transmitting area AA1 are removed, so that the second The remaining portion of the first portion RxPA of the signal electrode and the remaining portion of the second portion RxPB of the second signal electrode are connected through at least one connection portion RxB.
  • the first part TxPA of the first signal electrode, the second part TxPB of the first signal electrode, the third part TxPC of the first signal electrode, and the part of the bridge part TxB located in the light-transmitting area AA1 are also removed.
  • the transfer line TRW is set to keep the first signal channel Tx open, and the sub-electrode SubRxPA of the first part of the second signal electrode also needs to avoid the transfer line TRW to avoid forming a plate capacitance.
  • the heterogeneous touch positioning area MTSA in the upper left corner of Figure 15-2 is called the third heterogeneous touch positioning area MTSA.
  • the first part of the second signal electrode RxPA includes two first part sub-electrodes SubRxPA of the two second signal electrodes arranged along the first direction DV, in which at least one second The sub-electrode SubRxPA of the first part of the signal electrode is not affected by the light-transmitting area AA1 and is connected to the second part RxPB of the second signal electrode through the connection part RxB, thus ensuring the second signal channel Rx in the heterogeneous touch positioning area MTSA1.
  • the signal is clear.
  • the first part of the sub-electrode SubRxPA of the other second signal electrode has a gap to avoid the light-transmitting area AA1.
  • the first signal channel Tx includes a first part TxPA of the first signal electrode located in the second touch metal layer TMB, a second part TxPB of the first signal electrode, the first signal electrode
  • the third part TxPC includes a bridge part TxB located on the first touch metal layer TMA and includes a transfer line TRW.
  • the connection part RxB and the bridge part TxB are arranged overlappingly.
  • the first part TxPA of the first signal electrode is located on the side of the first part sub-electrode SubRxPA of the second signal electrode away from the light-transmitting area AA1, so there is no need to set a gap to avoid the light-transmitting area AA1.
  • the third part TxPC of the first signal electrode is located between the first part sub-electrodes SubRxPA of two adjacent second signal electrodes, and is provided with a gap to avoid the light-transmitting area AA1.
  • the first part of the first signal electrode TxPA and the third part of the first signal electrode TxPC are connected through a bridge part TxB.
  • the second part TxPB of the first signal electrode has a gap that avoids the light-transmitting area AA1, and the connection between the third part TxPC of the first signal electrode and the second part TxPB of the first signal electrode is interrupted by the light-transmitting area AA1.
  • the second part TxPB of the first signal electrode and the third part TxPC of the first signal electrode are connected through a transfer line TRW provided along the edge of the light-transmitting area AA1, and the transfer line TRW can be provided on the first touch metal layer TMA or the second touch metal layer TMB.
  • a wiring gap is reserved between the third part TxPC of the first signal electrode and the second part TxPB of the first signal electrode, between the sub-electrode SubRxPA of the first part of the second signal electrode and the light-transmitting area AA1, and the transfer line TRW arranged in the wiring gap; this can avoid the formation of plate capacitance between the transfer line TRW and the second signal channel Rx and excessively increase the capacitance value of the touch capacitor in the third heterogeneous touch positioning area MTSA, thereby making the third heterogeneous touch positioning area MTSA The touch performance is ensured while the first signal channel Tx and the second signal channel Rx signals remain unobstructed.
  • the second touch metal layer TMB is provided with a connection portion RxB, and a second portion of the second signal electrode RxPB
  • the sub-electrode SubRxPB of the second part of at least two second signal electrodes is included, and the sub-electrode SubRxPB of the second part of at least one second signal electrode is electrically connected to the first part RxPA of the second signal electrode through the connection part RxB.
  • the sub-electrode SubRxPB of the second part of the second signal electrode that is farthest from the light-transmitting area AA1 may be connected to the first part RxPA of the second signal electrode through the connection part RxB without providing a gap to avoid the light-transmitting area AA1.
  • At least part of the second part of the remaining sub-electrodes SubRxPB of the second signal electrode may be provided with a gap to avoid the light-transmitting area AA1. Of course, no gap may be provided to avoid the light-transmitting area AA1.
  • the second touch metal layer TMB is provided with the third part of the first signal electrode TxPC
  • the first touch metal layer TMA is provided with the bridge portion TxB
  • the bridge portion TxB It is arranged overlapping the connection part RxB; along the first direction DV, the third part TxPC of the first signal electrode is sandwiched between the second part sub-electrodes SubRxPB of the two adjacent second signal electrodes.
  • One of the first part TxPA and the second part TxPB of the first signal electrode is electrically connected to the adjacent third part TxPC of the first signal electrode through the bridge part TxB; the first part TxPA of the first signal electrode and the first The other of the second portions TxPB of the signal electrode is electrically connected to the adjacent third portion TxPC of the first signal electrode through a transfer line TRW located in the first touch metal layer TMA or the second touch metal layer TMB. ; Of course, in some cases, it can also be connected through the bridge part TxB.
  • the first part RxPA of the second signal electrode in the heterogeneous touch positioning area MTSA is also divided into a plurality of second signal electrodes.
  • the second part of the sub-electrodes SubRxPB corresponds one-to-one to the first part of the plurality of second signal electrodes SubRxPA (for example, two), and the number of the connection portions RxB in the heterogeneous touch positioning area MTSA is consistent with the second signal
  • the number of sub-electrodes SubRxPB in the second part of the electrode is the same; the sub-electrodes SubRxPB in the second part of the second signal electrode and the sub-electrodes SubRxPA in the first part of the second signal electrode are connected through corresponding connection parts RxB.
  • the third part TxPC of the first signal electrode in the heterogeneous touch positioning area MTSA is connected to the first part TxPA of the first signal electrode and the second part TxPB of the first signal electrode through different bridge parts TxB.
  • the sub-electrode SubRxPB of the second part of the second signal electrode, the sub-electrode SubRxPA of the first part of the second signal electrode and the part of the connection part RxB located in the light-transmitting area AA1 are removed, so that the second The remaining portion of the second portion of the signal electrode RxPB and the remaining portion of the first portion of the second signal electrode RxPA are connected through at least one connection portion RxB.
  • the first part TxPA of the first signal electrode, the second part TxPB of the first signal electrode, the third part TxPC of the first signal electrode, and the part of the bridge part TxB located in the light-transmitting area AA1 are also removed.
  • the transfer line TRW is set to keep the first signal channel Tx open, and the sub-electrode SubRxPB of the second part of the second signal electrode also needs to avoid the transfer line TRW to avoid forming a plate capacitance.
  • the heterogeneous touch positioning area MTSA in the upper right corner of Figure 15-2 is called the fourth heterogeneous touch positioning area MTSA.
  • the second part RxPB of the second signal electrode includes two sub-electrodes SubRxPB of the second part of the two second signal electrodes arranged along the first direction DV, at least one of which The second part of the sub-electrode SubRxPB of the second signal electrode is not affected by the light-transmitting area AA1 and is connected to the first part of the second signal electrode RxPA through the connection part RxB, thereby ensuring that the fourth heterogeneous touch positioning area MTSA
  • the Rx signal of the second signal channel is smooth.
  • the sub-electrode SubRxPA of the first part of the second signal electrode connected to the second part of the sub-electrode SubRxPB of the other second signal electrode is separated by the light-transmitting area AA1.
  • the first signal channel Tx includes a first part TxPA of the first signal electrode located in the second touch metal layer TMB, and a second part of the first signal electrode TxPB, the third part of the first signal electrode TxPC, and include a transfer line TRW and a bridge part TxB; wherein the connection part RxB and the bridge part TxB are overlapped.
  • the first part TxPA of the first signal electrode is located on the side of the second part sub-electrode SubRxPB of the second signal electrode away from the light-transmitting area AA1, so that there is no need to set a gap to avoid the light-transmitting area AA1.
  • the third part TxPC of the first signal electrode is located between the second part sub-electrodes SubRxPB of two adjacent second signal electrodes, and is provided with a gap to avoid the light-transmitting area AA1.
  • the first part TxPA of the first signal electrode and the third part TxPC of the first signal electrode are connected by a bridge part TxB.
  • the second part TxPB of the first signal electrode has a gap that avoids the light-transmitting area AA1, and the connection between the third part TxPC of the first signal electrode and the second part TxPB of the first signal electrode is interrupted by the light-transmitting area AA1.
  • the second part TxPB of the first signal electrode and the third part TxPC of the first signal electrode are connected through a transfer line TRW provided along the edge of the light-transmitting area AA1, and the transfer line TRW can be provided on the first touch metal layer TMA or the second touch metal layer TMB.
  • a wiring gap is reserved between the third part TxPC of the first signal electrode and the second part TxPB of the first signal electrode, between the sub-electrode SubRxPB of the second part of the second signal electrode and the light-transmitting area AA1, and the transfer line TRW is arranged in the wiring gap; this can prevent the formation of plate capacitance between the transfer line TRW and the second signal channel Rx and excessively increase the capacitance value of the touch capacitor in the fourth heterogeneous touch positioning area MTSA, thereby causing The touch performance is ensured while the first signal channel Tx and the second signal channel Rx signals remain unobstructed.
  • Figure 16-1 illustrates that the second signal channel Rx and the first signal channel Tx in at least one heterogeneous touch positioning area MTSA are equipped with multiple heterogeneous touch sub-channels SubMTS to avoid being completely cut off by the light-transmitting area AA1
  • Design schematic diagram of the design Figure 16-2 illustrates that both the second signal channel Rx and the first signal channel Tx in at least one heterogeneous touch positioning area MTSA are provided with multiple heterogeneous touch sub-channels SubMTS to avoid light transmission.
  • the first part of the second signal electrode RxPA includes a plurality of sub-electrodes SubRxPA or the second part of the second signal electrode RxPB includes a plurality of sub-electrodes SubRxPB
  • the first part TxPA of the first signal electrode includes a plurality of sub-electrodes SubTxPA or the second part TxPB of the first signal electrode includes a plurality of sub-electrodes SubTxPB
  • the second touch metal layer TMB is provided with a second signal electrode.
  • the third part RxPC and the third part TxPC of the first signal electrode, the first touch metal layer TMA is provided with a plurality of bridge parts TxB; between the third part TxPC of the first signal electrode and the first part TxPA and the second part TxPB The first part RxPA and the second part RxPB of the second signal electrode are connected through the third part RxPC.
  • the first signal channel Tx includes a plurality of first signal sub-channels SubTx, wherein at least one first signal sub-channel SubTx includes the first portions of the first signal electrodes connected in sequence.
  • the second signal channel Rx also includes a plurality of second signal sub-channels SubRx, wherein at least one second signal sub-channel SubRx includes a first part of the second signal electrode sub-electrode SubRxPA, a third part of the second signal electrode RxPC and a second The second part of the sub-electrode SubRxPB of the signal electrode, and the conductive structure connecting the three sub-electrodes.
  • connection portion RxB provided on the second touch metal layer TMB, or it can be provided
  • the transfer line TRW on the first touch metal layer TMA or the second touch metal layer TMB is such that the second signal sub-channel SubRx remains electrically connected.
  • the first part RxPA of the second signal electrode includes a plurality of sub-electrodes SubRxPA or a second part of the second signal electrode
  • the part RxPB includes a plurality of sub-electrodes SubRxPB
  • the first part TxPA of the first signal electrode includes a plurality of sub-electrodes SubTxPA or the second part TxPB of the first signal electrode includes a plurality of sub-electrodes SubTxPB
  • the second touch metal layer TMB is provided with a second signal electrode
  • the third part RxPC of the second signal electrode is connected to the first part RxPA and the second part RxPB through different connection parts RxB;
  • the first part TxPA and the second part TxPB of the first signal electrode are connected through
  • the second signal channel Rx includes a plurality of second signal sub-channels SubRx, wherein at least one second signal sub-channel SubRx includes the first parts of the second signal electrodes connected in sequence.
  • the first signal channel Tx also includes a plurality of first signal sub-channels SubTx, wherein at least one first signal sub-channel SubTx includes a first portion of the sub-electrode SubTxPA of the first signal electrode, a third portion of the first signal electrode TxPC and a first The second part of the sub-electrode SubTxPB of the signal electrode, and the conductive structure connecting the three sub-electrodes. Any one of these conductive structures can be the bridge portion TxB provided on the first touch metal layer TMA, or it can be provided The transfer line TRW on the first touch metal layer TMA or the second touch metal layer TMB is such that the first signal sub-channel SubTx remains electrically connected.
  • the heterogeneous touch positioning area MTSA in the upper left corner of Figure 16-1 and Figure 16-2 is called the fifth heterogeneous touch positioning area MTSA
  • the heterogeneous touch positioning area MTSA in the lower left corner is called
  • the heterogeneous touch positioning area MTSA in the upper right corner is called the seventh heterogeneous touch positioning area MTSA
  • the heterogeneous touch positioning area MTSA in the lower right corner is called the eighth heterogeneous touch Location area MTSA.
  • the light-transmitting area AA1 intersects the fifth heterogeneous touch positioning area MTSA, the sixth heterogeneous touch positioning area MTSA, the seventh heterogeneous touch positioning area MTSA, and the eighth heterogeneous touch positioning area MTSA.
  • the first signal channel Tx in each heterogeneous touch positioning area MTSA includes two first signal sub-channels SubTx, and each second The signal channel Rx includes two second signal sub-channels SubRx.
  • the first part of the first signal electrode TxPA in the heterogeneous touch positioning area MTSA includes sub-electrodes SubTxPA that respectively belong to the first part of the first signal electrode of the two first signal sub-channels SubTx
  • the second part of the first signal electrode TxPB includes sub-electrodes SubTxPB that respectively belong to the second parts of the two first signal sub-channels SubTx.
  • the heterogeneous touch positioning area MTSA also includes sub-electrodes that belong to the two first signal sub-channels SubTx respectively.
  • the third part TxPC of the two first signal electrodes of the signal sub-channel SubTx includes four bridge parts TxB respectively belonging to the two first signal sub-channels SubTx.
  • any first signal sub-channel SubTx includes a first part of the first signal electrode Sub-electrode SubTxPA, a bridge part TxB, a third part of the first signal electrode TxPC, a bridge part TxB and a third part of the first signal electrode.
  • the first part of the second signal electrode RxPA in the heterogeneous touch positioning area MTSA includes sub-electrodes SubRxPA that respectively belong to the first part of the second signal electrode of the two second signal sub-channels SubRx.
  • the second signal The second part of the electrode RxPB includes sub-electrodes SubRxPB that belong to the second parts of the two second signal sub-channels SubRx respectively.
  • the heterogeneous touch positioning area MTSA also includes sub-electrodes that belong to the two second signal sub-channels respectively.
  • the third part RxPC of the two second signal electrodes of SubRx and includes four connection parts RxB respectively belonging to the two second signal sub-channels SubRx.
  • any second signal sub-channel SubRx includes a first part of the second signal electrode Sub-electrode SubRxPA, a connection part RxB, a third part of the second signal electrode RxPC, a connection part RxB and a third part of the second signal electrode connected in sequence.
  • Two-part sub-electrode SubRxPB In the display panel PNL according to the embodiment of the present disclosure, referring to FIG. 16-2 , the parts of the first signal channel Tx and the second signal channel Rx located in the light-transmitting area AA1 are removed, and when necessary, a transfer line TRW is added to ensure isomerism.
  • At least one second signal sub-channel SubRx and at least one first signal sub-channel SubTx in the touch positioning area MTSA remain electrically connected.
  • at least one second signal sub-channel SubRx or at least one first signal sub-channel SubTx remains continuous instead of being switched through the transfer line TRW to achieve electrical connection, thereby reducing the transfer line TRW quantity.
  • FIG. 16-2 shows the patterns of the first signal channel Tx and the second signal channel Rx in the fifth to eighth heterogeneous touch positioning areas MTSA to MTSA of the display panel PNL in this example.
  • a first signal sub-channel SubTx remains continuous, and a second signal sub-channel SubRx remains electrically connected through the transfer line TRW.
  • the first signal sub-channel SubTx close to the first part of the sub-electrode SubRxPA of the second signal electrode remains continuous;
  • the third part RxPC of a second signal electrode is connected to the first part of the sub-electrode SubRxPA of a second signal electrode through the connection part RxB.
  • the electrode SubRxPA is connected and connected to the sub-electrode SubRxPB of the second part of a second signal electrode through the transfer line TRW.
  • a first signal sub-channel SubTx remains continuous, and a second signal sub-channel SubRx remains continuous.
  • a first signal sub-channel SubTx remains continuous, and a second signal sub-channel SubRx remains electrically connected through the transfer line TRW.
  • the first signal sub-channel SubTx close to the second part of the sub-electrode SubRxPB of the second signal electrode remains continuous;
  • the third part RxPC of a second signal electrode is connected to the first part of a second signal electrode through the transfer line TRW.
  • the sub-electrode SubRxPA is connected to the second part of the second signal electrode Sub-electrode SubRxPB through the connection part RxB.
  • a first signal sub-channel SubTx remains continuous, and a second signal sub-channel SubRx remains continuous.
  • the bridge portion TxB or the connection portion RxB in the heterogeneous touch sub-channel SubMTS can also be offset to avoid the light-transmitting area AA1, so that the first signal sub-channel At least one of SubTx and the second signal sub-channel SubRx remains continuous; in this way, at least one first signal sub-channel SubTx has multiple bridge portions TxB and the distribution trajectory of each bridge portion TxB is not parallel to the first direction DV (for example, a polyline ), or at least one second signal sub-channel SubRx has a plurality of connection parts RxB and the distribution trajectory of each connection part RxB is not parallel to the second direction DH (for example, a polyline).
  • At least one first signal channel Tx has at least one continuous first signal channel Tx in two adjacent heterogeneous touch positioning areas MTSA along the first direction DV.
  • Signal sub-channel SubTx the continuous first signal sub-channel SubTx includes electrodes located on the second touch metal layer TMB (for example, the first part of the first signal electrode sub-electrode SubTxPA, the second part of the first signal electrode sub-electrode SubTxPB ) and the bridge portion TxB connected to the electrode and located in the first touch metal layer TMA.
  • Each bridge portion TxB of the continuous first signal sub-channel SubTx has different relative positions in the heterogeneous touch positioning area MTSA where they are located.
  • the relative position of the bridge portion TxB in the heterogeneous touch positioning area MTSA may refer to the distance between the bridge portion TxB and each vertex corner or each side of the heterogeneous touch positioning area MTSA.
  • the position vector of the bridge part TxB can be used to represent the relative position relationship of the bridge part TxB in the heterogeneous touch positioning area MTSA.
  • the position vector can include four distance parameters, and the four distance parameters respectively represent the heterogeneous touch positioning area MTSA. The distance between the four vertex corners of the touch positioning area MTSA and the center of the bridge part TxB.
  • Figures 17, 18, 20 and 21 are design schematic diagrams of partial designs of this embodiment of the present disclosure.
  • the first signal channel Tx and the second signal channel Rx in the heterogeneous touch positioning area MTSA can be designed without considering the light-transmitting area AA1 (as shown in Figure 17 and (shown in Figure 20), and then determine the initial position of each bridge part TxB; then take the factor of the light-transmitting area AA1 into consideration, and make one of the first signal sub-channels SubTx remain continuous (shown in Figures 18 and 21) .
  • At least one bridge TxB in the heterogeneous touch positioning area MTSA may be offset along the second direction DH.
  • the distribution track of each bridge portion TxB is not parallel to the first direction DV.
  • at least one first signal channel Tx has a first signal sub-channel SubTx in two adjacent heterogeneous touch positioning areas MTSA along the first direction DV.
  • the first signal sub-channel SubTx has at least two bridge portions TxB, and the distribution trajectory of the bridge portions TxB of the first signal sub-channel SubTx is not parallel to the first direction DV.
  • This offset method can reduce the impact on each electrode of the first signal channel Tx, and is conducive to keeping the area of the electrodes of the first signal sub-channel SubTx as large as possible.
  • At least one bridge TxB in the heterogeneous touch positioning area MTSA may be offset along the first direction DV. In this way, in the two adjacent heterogeneous touch positioning areas MTSA along the second direction DH, the distribution track of each bridge portion TxB is not parallel to the second direction DH.
  • at least one second signal channel Rx includes a second signal sub-channel SubRx located in two adjacent heterogeneous touch positioning areas MTSA along the second direction DH.
  • the second signal sub-channel SubRx The distribution trajectory of the connection portion RxB (that is, the distribution trajectory of each bridge portion TxB overlapping with the second signal sub-channel SubRx) is not parallel to the second direction DH.
  • At least one bridge TxB in the heterogeneous touch positioning area MTSA may be offset in the first direction DV and the second direction DH at the same time.
  • connection portions RxB of the second signal channel Rx can also be moved to avoid that each connection portion RxB is blocked by the light-transmitting area AA1.
  • at least one second signal channel Rx includes a second signal sub-channel SubRx located in two adjacent heterogeneous touch positioning areas MTSA along the second direction DH; the second signal sub-channel SubRx includes a second signal sub-channel SubRx located in the first The connection portion RxB of the two touch metal layers TMB, and the relative positions of the connection portions RxB in the heterogeneous touch positioning areas MTSA where they are located are different.
  • the distribution trajectory of each connection portion RxB of at least one second signal sub-channel SubRx is not parallel to the second direction DH.
  • FIG. 23 is a design principle diagram of a partial design of an embodiment of the present disclosure.
  • FIG. 24 is a partial structural diagram of the touch layer TT in an embodiment of the present disclosure.
  • the first signal channel Tx includes a plurality of first signal sub-channels SubTx; along the first direction DV, at least one first signal channel Tx A second signal channel Rx is spaced between an end of a signal sub-channel SubTx close to the light-transmitting area AA1 and the light-transmitting area AA1.
  • the bridge portion TxB in the heterogeneous touch positioning area MTSA, the bridge portion TxB cannot be reliably provided at the position DD adjacent to the light-transmitting area AA1 because it is close to the light-transmitting area AA1. Therefore, the bridge portion TxB may not be provided at the adjacent position DD. In this way, the electrodes that should originally be part of the first signal sub-channel SubTx cannot pass through the bridge part TxB and become part of the first signal sub-channel SubTx. These electrodes can be connected to the second signal channel Rx and serve as part of the second signal channel Rx. In this way, as shown in FIG.
  • the second signal channel Rx is spaced between at least part of the first signal sub-channel SubTx and the light-transmitting area AA1 .
  • the electrode that is too small due to avoiding the light-transmitting area AA1 does not need to be connected to the bridge portion TxB through a via hole, and the process difficulties caused by arranging a via hole too close to the light-transmitting area AA1 are avoided; not only In this way, incorporating this part of the electrode into the second signal channel Rx can improve the stability of the second signal channel Rx and ensure the smooth flow of the second signal channel Rx.
  • the first signal channel Tx in the heterogeneous touch positioning area MTSA includes two first signal sub-channels SubTx; where the first signal The sub-channel SubTx may include the sub-electrode SubTxPA of the first part of the first signal electrode, the bridge part TxB, and the sub-electrode SubTxPB of the second part of the first signal electrode which are connected in sequence.
  • the second signal channel Rx in the heterogeneous touch positioning area MTSA includes the first part RxPA of the second signal electrode, the connection part RxB, the third part RxPC of the second signal electrode, the connection part RxB and the second signal electrode connected in sequence.
  • Part 2 RxPB wherein, the third part RxPC of the second signal electrode is located between the two first signal sub-channels SubTx.
  • the portion where the first signal channel Tx and the second signal channel Rx of the heterogeneous touch positioning area MTSA intersect with the light-transmitting area AA1 is removed.
  • the heterogeneous touch positioning area MTSA shown in the lower left corner of Figure 23 the first part of the sub-electrode SubTxPA of the first signal electrode of the first signal sub-channel SubTx that is blocked by the light-transmitting area AA1 is provided with a light-transmitting area AA1. Notch, and retain only a small part of itself.
  • the first part of the sub-electrode SubTxPA of the first signal electrode can be electrically connected to the second part of the first signal electrode Sub-electrode SubTxPB through the bridge part TxB, thereby causing the blocked first signal sub-channel SubTx The end is adjacent to the light-transmitting area AA1.
  • the via hole is very close to the light-transmitting area AA1 and it is inconvenient to set it up.
  • no bridge may be provided at the sub-electrode of the sub-electrode SubTxPA that should be the first part of the first signal electrode in the heterogeneous touch positioning area MTSA shown in the lower left corner of FIG. 24 part TxB, the sub-electrode may not remain connected to the sub-electrode SubTxPB of the second part of the first signal electrode, but may be connected to the first part of the second signal electrode RxPA and the third part of the second signal electrode that are arranged in the same layer and adjacent to each other.
  • RxPC connection which in turn serves as part of the second signal path Rx.
  • a second signal channel Rx is spaced between the end of the blocked first signal sub-channel SubTx close to the light-transmitting area AA1 and the light-transmitting area AA1 . In this way, the provision of via holes is avoided and the smooth flow of the second signal channel Rx is ensured.
  • the first touch metal layer TMA is provided with a bridge portion TxB, between the first part TxPA and the second part TxPB of the first signal electrode. It is electrically connected through the bridge part TxB; in the normal touch positioning area NTSA, the second touch metal layer TMB is provided with a connection part RxB, and the first part RxPA and the second part RxPB of the second signal electrode are electrically connected through the connection part RxB.
  • the number of the first part TxPA of the first signal electrode, the second part TxPB of the first signal electrode and the bridge part TxB is one, and the number of the first part RxPA of the second signal electrode, the second part of the second signal electrode
  • the number of the second part RxPB and the connection part RxB is one.
  • the second signal channel Rx may only include one channel, and the second signal channel Rx may also maintain one channel.
  • each heterogeneous touch positioning area MTSA may be provided with a touch sub-channel (such as the first signal sub-channel SubTx or the second signal sub-channel SubRx) to avoid the light-transmitting area AA1, and each of the normal touch positioning areas NTSA
  • the touch channel TS does not have a touch sub-channel.
  • the touch channel TS in at least part of the normal touch positioning area NTSA, may also be provided with multiple touch sub-channels.
  • each touch positioning area TSA covered by at least one heterogeneous touch channel MTS is provided with a touch sub-channel.
  • the number of bridge portions TxB is multiple, and the first part TxPA of the first signal electrode includes a sub-section corresponding to the multiple bridge portions TxB.
  • the electrode SubTxPA and the second part of the first signal electrode TxPB include sub-electrodes SubTxPB that correspond one-to-one to the plurality of bridge parts TxB; the bridge part TxB and the corresponding sub-electrodes SubTxPA of the first part of the first signal electrode and the first signal electrode
  • the second part of the sub-electrodes SubTxPB is electrically connected; in at least part of the normal touch positioning area NTSA, the second touch metal layer TMB also includes a third part of the second signal electrode RxPC; along the second direction DH, the second signal electrode
  • the third part RxPC is located between the adjacent sub-electrodes SubTxPA of the first part of the first signal electrode.
  • the third part RxPC of the second signal electrode is connected to the first part RxPA and the second part of the second signal electrode through different connection parts RxB.
  • the second part of the signal electrode is connected to RxPB.
  • the first signal channel Tx may have multiple first signal sub-channels SubTx, and the second signal channel Rx maintains one channel.
  • each first signal channel Tx has a plurality of first signal sub-channels SubTx, and each first signal sub-channel SubTx includes a first part of the first signal electrode connected in sequence.
  • connection parts RxB is multiple
  • the first part RxPA of the second signal electrode includes a sub-electrode SubRxPA corresponding to the multiple connection parts RxB one-to-one
  • the second part RxPB of the second signal electrode includes a sub-electrode SubRxPB that corresponds one-to-one to the plurality of connection parts RxB; the connection part RxB is associated with the corresponding sub-electrode SubRxPA of the first part of the second signal electrode and the second part of the second signal electrode.
  • the sub-electrodes SubRxPB are electrically connected; in at least part of the normal touch positioning area NTSA, the second touch metal layer TMB also includes a third part of the first signal electrode TxPC; along the first direction DV, the third part of the first signal electrode
  • the part TxPC is located between the adjacent sub-electrodes SubRxPA of the first part of the second signal electrode.
  • the third part TxPC of the first signal electrode is connected to the first part TxPA of the first signal electrode and the first part of the first signal electrode through different bridge parts TxB. Part 2 TxPB connection.
  • the second signal channel Rx may have multiple second signal sub-channels SubRx, and the first signal channel Tx maintains one channel.
  • each second signal channel Rx has a plurality of second signal sub-channels SubRx, and each second signal sub-channel SubRx includes the first part of the second signal electrode connected in sequence.
  • the sub-electrode SubRxPA, the connection portion RxB and the second portion of the second signal electrode are sub-electrodes SubRxPB.
  • An embodiment of the present disclosure also provides a display device, which includes any of the display panels described in the above display panel embodiments.
  • the display device may be a smartphone screen, a smart watch screen, or other types of display devices. Since the display device has any of the display panels described in the above display panel embodiments, it has the same beneficial effects, and the disclosure will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开提供一种显示面板和显示装置,属于显示技术领域。该显示面板(PNL),包括依次层叠设置的衬底基板(BP)、显示层(EE)和触控层(TT);所述显示面板(PNL)的显示区(AA)具有透光区(AA1);所述触控层(TT)设置有触控通道(TS),所述触控通道(TS)包括沿沿第一方向(DV)延伸的第一信号通道(Tx)和沿第二方向(DH)延伸的第二信号通道(Rx),所述第二方向(DH)和所述第一方向(DV)相交;其中,与所述透光区(AA1)相邻的触控通道(TS)为异构触控通道(MTS),至少一个所述异构触控通道(MTS)包括多个与所述透光区(AA1)相邻的异构触控通道(MTS);在所述异构触控通道MTS的多个所述异构触控通道(MTS)中,至少一个所述异构触控通道(MTS)保持连续。该显示面板能够提高透光区的触控性能。

Description

显示面板和显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示面板和显示装置。
背景技术
显示面板可以采用FMLOC(Flexible Multi-Layer On Cell)技术来实现触控。然而,当显示面板采用开孔技术或者屏下摄像技术时,透光区附近的触控性能较差。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于克服上述现有技术的不足,提供一种显示面板和显示装置,提高透光区的触控性能。
根据本公开的一个方面,提供一种显示面板,包括依次层叠设置的衬底基板、显示层和触控层;所述显示面板的显示区具有透光区;
所述触控层设置有触控通道,所述触控通道包括沿沿第一方向延伸的第一信号通道和沿第二方向延伸的第二信号通道,所述第二方向和所述第一方向相交;
其中,与所述透光区相邻的触控通道为异构触控通道,至少一个所述异构触控通道包括多个与所述透光区相邻的异构触控亚通道;
在所述异构触控通道的多个所述异构触控亚通道中,至少一个所述异构触控亚通道保持连续。
根据本公开的一种实施方式,所述触控层包括依次层叠设置于所述显示层远离所述衬底基板一侧的第一触控金属层、触控绝缘层和第二触控金属层;
所述第一信号通道在所述第二触控金属层具有沿第一方向依次排列 的多个第一信号电极;相邻两个所述第一信号电极之间通过位于所述第一触控金属层或者第二触控金属层的导电结构电连接;
所述第二信号通道在所述第二触控金属层具有沿第二方向依次排列的多个第二信号电极;相邻两个所述第二信号电极之间通过位于所述第一触控金属层或者第二触控金属层的导电结构电连接。
根据本公开的一种实施方式,各个所述第一信号通道和各个所述第二信号通道限定出阵列分布的多个触控定位区;通过所述触控定位区的所述第一信号通道和所述第二信号通道之间形成互容电容;
在同一所述触控定位区中,所述显示面板包括分别属于相邻两个第一信号电极的第一信号电极的第一部分和第一信号电极的第二部分、分别属于相邻两个第二信号电极的第二信号电极的第一部分和第二部分;所述第一信号电极的第一部分和所述第一信号电极的第二部分之间电连接,且所述第二信号电极的第一部分和所述第二信号电极的第二部分之间电连接。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
在至少一个所述异构触控定位区中,所述第一触控金属层设置有桥接部,所述第一信号电极的第一部分包括至少两个子电极,且至少一个所述第一信号电极的第一部分的子电极通过所述桥接部与所述第一信号电极的第二部分电连接;
和/或者,
在至少一个所述异构触控定位区中,所述第一触控金属层设置有桥接部,所述第一信号电极的第二部分包括至少两个子电极,且至少一个所述第一信号电极的第二部分的子电极通过所述桥接部与第一信号电极的第一部分电连接。
根据本公开的一种实施方式,在至少一个所述异构触控定位区中,所述第二触控金属层设置有第二信号电极的第三部分和连接部;沿所述第二方向,所述第二信号电极的第三部分夹设于所述第一信号电极的第一部分的相邻两个子电极之间或者夹设于所述第一信号电极的第二部分的相邻两个子电极之间;
所述第二信号电极的第一部分和所述第二信号电极的第二部分中的 一个,与相邻的所述第二信号电极的第三部分之间通过所述连接部电连接;所述第二信号电极的第一部分和第二部分中的另一个,与相邻的所述第二信号电极的第三部分之间通过位于所述第一触控金属层或者所述第二触控金属层的导电结构电连接。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
在至少一个所述异构触控定位区中,所述第二触控金属层设置有连接部,所述第二信号电极的第一部分包括至少两个子电极,且至少一个所述第二信号电极的第一部分的子电极通过所述连接部与所述第二信号电极的第二部分电连接;
和/或者,
在至少一个所述异构触控定位区中,所述第二触控金属层设置有连接部,所述第二信号电极的第二部分包括至少两个子电极,且至少一个所述第二信号电极的第二部分的子电极通过所述连接部与所述第二信号电极的第一部分电连接。
根据本公开的一种实施方式,在至少一个所述异构触控定位区中,所述第二触控金属层还设置有第一信号电极的第三部分,第一触控金属层设置有桥接部;沿所述第一方向,所述第一信号电极的第三部分夹设于所述第二信号电极的第一部分的相邻两个子电极之间或者夹设于第二信号电极的第二部分的相邻两个子电极之间;
所述第一信号电极的第一部分和第二部分中的一个,与相邻的所述第一信号电极的第三部分之间通过所述桥接部电连接;所述第二信号电极的第一部分和第二部分中的另一个,与相邻的所述第二信号电极的第三部分之间通过位于所述第一触控金属层或者所述第二触控金属层的导电结构电连接。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
在至少一个所述异构触控定位区中,所述第二信号电极的第一部分包括多个子电极或者所述第二信号电极的第二部分包括多个子电极,所述第一信号电极的第一部分包括多个子电极或者所述第一信号电极的第二部 分包括多个子电极,所述第二触控金属层设置有第二信号电极的第三部分和第一信号电极的第三部分,所述第一触控金属层设置有多个桥接部;
所述第一信号电极的第三部分与第一部分、第二部分之间通过不同的所述桥接部连接;所述第二信号电极的第一部分和第二部分通过第三部分连接。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
在至少一个所述异构触控定位区中,所述第二信号电极的第一部分包括多个子电极或者所述第二信号电极的第二部分包括多个子电极,所述第一信号电极的第一部分包括多个子电极或者所述第一信号电极的第二部分包括多个子电极,所述第二触控金属层设置有第二信号电极的第三部分、第一信号电极的第三部分和多个连接部;
所述第二信号电极的第三部分与第一部分、第二部分之间通过不同的所述连接部连接;所述第一信号电极的第一部分和第二部分通过第三部分连接。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
至少一个第一信号通道包括位于沿第一方向相邻的两个异构触控定位区中的第一信号亚通道;所述第一信号亚通道包括位于所述第一触控金属层的桥接部,且所述桥接部在各自所在的异构触控定位区中的相对位置不同。
根据本公开的一种实施方式,至少一个所述第一信号亚通道的各个所述桥接部的分布轨迹不平行于所述第一方向。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
至少一个第二信号通道包括位于沿第二方向相邻的两个异构触控定位区中的第二信号亚通道;所述第二信号亚通道包括位于所述第二触控金属层的连接部,且所述连接部在各自所在的异构触控定位区中的相对位置不同。
根据本公开的一种实施方式,至少一个所述第二信号亚通道的各个所 述连接部的分布轨迹不平行于所述第二方向。
根据本公开的一种实施方式,与所述透光区相交的所述触控定位区为异构触控定位区;
在至少一个所述异构触控定位区中,所述第一信号通道包括多个第一信号亚通道;沿所述第一方向,至少一个所述第一信号亚通道靠近所述透光区的端部与所述透光区之间,间隔有所述第二信号通道。
根据本公开的一种实施方式,不与所述透光区相交的触控定位区为正常触控定位区;
在所述正常触控定位区,所述第一触控金属层设置有桥接部,所述第一信号电极的第一部分和第二部分之间通过所述桥接部电连接;
在所述正常触控定位区,所述第二触控金属层设置有连接部,所述第二信号电极的第一部分和第二部分之间通过所述连接部电连接。
根据本公开的一种实施方式,在所述正常触控定位区中,所述第一信号电极的第一部分、所述第一信号电极的第二部分和所述桥接部的数量为一个,所述第二信号电极的第一部分、所述第二信号电极的第二部分和所述连接部的数量为一个。
根据本公开的一种实施方式,在至少部分所述正常触控定位区中,所述桥接部的数量为多个,所述第一信号电极的第一部分包括与多个所述桥接部一一对应的子电极,所述第一信号电极的第二部分包括与多个所述桥接部一一对应的子电极;所述桥接部与对应的所述第一信号电极的第一部分的子电极、所述第一信号电极的第二部分的子电极电连接;
在至少部分所述正常触控定位区中,所述第二触控金属层还包括第二信号电极的第三部分;沿第二方向,所述第二信号电极的第三部分位于所述第一信号电极的第一部分的相邻的子电极之间,所述第二信号电极的第三部分通过不同的连接部与所述第二信号电极的第一部分、所述第二信号电极的第二部分连接。
根据本公开的一种实施方式,在至少部分所述正常触控定位区中,所述连接部的数量为多个,所述第二信号电极的第一部分包括与多个所述连接部一一对应的子电极,所述第二信号电极的第二部分包括与多个所述连接部一一对应的子电极;所述连接部与对应的所述第二信号电极的第一部 分的子电极、所述第二信号电极的第二部分的子电极电连接;
在至少部分所述正常触控定位区中,所述第二触控金属层还包括第一信号电极的第三部分;沿第二方向,所述第一信号电极的第三部分位于所述第二信号电极的第一部分的相邻的子电极之间,所述第一信号电极的第三部分通过不同的桥接部与所述第一信号电极的第一部分、所述第一信号电极的第二部分连接。
根据本公开的一种实施方式,所述透光区与四个触控定位区相交,所述四个触控定位区呈两行两列分布。
根据本公开的另一个方面,提供一种显示装置,包括上述的显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施方式中显示面板的整体结构示意图。
图2为本公开一种实施方式中显示面板的局部结构示意图。
图3为本公开一种实施方式中显示面板的整体结构示意图。
图4为本公开一种实施方式中显示装置的结构示意图。
图5为本公开一种实施方式中显示面板的局部结构示意图。
图6为本公开一种实施方式中显示装置的结构示意图。
图7为本公开一种实施方式中第二触控金属层的局部结构示意图。
图8为本公开一种实施方式中触控层的局部结构示意图。
图9为本公开一种实施方式中正常触控定位区的局部结构示意图。
图10为本公开一种实施方式中正常触控定位区内的第二触控金属层的局部结构示意图。
图11为本公开一种实施方式中触控定位区的分布示意图。
图12-1为相关技术中透光区对触控层的影响示意图。
图12-2为相关技术中触控层临近透光区部分的局部结构示意图。
图13为本公开一种实施方式中,至少一个触控通道通过设置异构触控亚通道来保持连续的原理示意图。
图14-1为本公开一种实施方式中触控层的局部结构的设计原理示意图。
图14-2为本公开一种实施方式中触控层的局部结构的示意图。
图15-1为本公开一种实施方式中触控层的局部结构的设计原理示意图。
图15-2为本公开一种实施方式中触控层的局部结构的示意图。
图16-1为本公开一种实施方式中触控层的局部结构的设计原理示意图。
图16-2为本公开一种实施方式中触控层的局部结构的示意图。
图17为本公开的一种实施方式中,至少一个异构触控定位区中各个异构触控亚通道在设计阶段面临被透光区全部隔断的示意图。
图18为本公开的一种实施方式中,至少一个异构触控定位区中,在设计阶段通过移动桥接部而使得至少一个异构触控亚通道保持连续的原理示意图。
图19为本公开一种实施方式中触控层的局部结构的示意图。
图20为本公开的一种实施方式中,至少一个异构触控定位区中各个异构触控亚通道在设计阶段面临被透光区全部隔断的示意图。
图21为本公开的一种实施方式中,至少一个异构触控定位区中,在设计阶段通过移动桥接部而使得至少一个异构触控亚通道保持连续的原理示意图。
图22为本公开一种实施方式中触控层的局部结构的示意图。
图23为本公开的一种实施方式中,在设计阶段去除临近透光区的桥接部的结构示意图。
图24为本公开一种实施方式中触控层的局部结构的示意图。
图25为本公开一种实施方式中,各个正常触控定位区中均不设置触控亚通道的结构示意图。
图26为本公开一种实施方式中,至少部分正常触控定位区中设置触控亚通道的结构示意图。
附图中所用到的至少部分符号的含义如下:
AA、显示区;AA1、透光区;AA2、主显示区;BB、***区;B1、绑定区;DH、第二方向;DV、第一方向;BP、衬底基板;PNL、显示面板;TRW、转接线;PDC、像素驱动电路;EE、显示层;TT、触控层;TMA、第一触控金属层;TMB、第二触控金属层;TMI、触控绝缘层;TS、触控通道;TSA、触控定位区;Tx、第一信号通道;TxB、桥接部;TxP、第一信号电极;TxPA、第一信号电极的第一部分;TxPB、第一信号电极的第二部分;TxPC、第一信号电极的第三部分;SubTx、第一信号亚通道;SubTxPA、第一信号电极的第一部分的子电极;SubTxPB、第一信号电极的第二部分的子电极;Rx、第二信号通道;RxB、连接部;RxP、第二信号电极;RxPA、第二信号电极的第一部分;RxPB、第二信号电极的第二部分;RxPC、第二信号电极的第三部分;SubRx、第二信号亚通道;SubRxPA、第二信号电极的第一部分的子电极;SubRxPB、第二信号电极的第二部分的子电极;MTS、异构触控通道;NTS、正常触控通道;SubMTS、异构触控亚通道;MTSA、异构触控定位区;NTSA、正常触控定位区。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上, 或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
参见图1,本公开提供一种显示面板PNL,包括依次层叠设置的衬底基板BP、显示层EE和触控层TT。其中,显示层EE设置有用于显示的子像素PIX和驱动子像素PIX的像素驱动电路PDC;触控层TT设置有用于实现触控的触控通道TS。
在本公开的一些实施方式中,衬底基板BP可以为无机材料的衬底基板BP,也可以为有机材料的衬底基板BP。举例而言,在本公开的一种实施方式中,衬底基板BP的材料可以为钠钙玻璃(soda-lime glass)、石英玻璃、蓝宝石玻璃等玻璃材料,或者可以为不锈钢、铝、镍等金属材料。在本公开的另一种实施方式中,衬底基板BP的材料可以为聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚乙烯醇(Polyvinyl alcohol,PVA)、聚乙烯基苯酚(Polyvinyl phenol,PVP)、聚醚砜(Polyether sulfone,PES)、聚酰亚胺、聚酰胺、聚缩醛、聚碳酸酯(Poly carbonate,PC)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚萘二甲酸乙二酯(Polyethylene naphthalate,PEN)或其组合。在本公开的另一种实施方式中,衬底基板BP也可以为柔性衬底基板BP,例如衬底基板BP的材料可以为聚酰亚胺(polyimide,PI)。衬底基板BP还可以为多层材料的复合,举例而言,在本公开的一种实施方式中,衬底基板BP可以包括依次层叠设置的底膜层(Bottom Film)、压敏胶层、第一聚酰亚胺层和第二聚酰亚胺层。
在本公开中,显示层EE的子像素可以为自发光的子像素,也可以为用于控制光线通过的光开关。
示例性的,在本公开的一种实施方式中,显示层EE包括对盒设置的阵列基板和彩膜基板,以及包括位于阵列基板和彩膜基板之间的液晶层; 其中衬底基板BP可以复用为阵列基板的一部分。其中,阵列基板上设置有用于驱动子像素的像素驱动电路PDC以及与像素驱动电路PDC电连接的像素电极;像素电极与液晶层、公共电极组成作为子像素的光开关,且公共电极可以设置于阵列基板或者彩膜基板。如此,该显示面板PNL可以为一种液晶显示面板。像素驱动电路PDC可以控制像素电极上的电压,进而使得像素电极和公共电极之间的电场受控的改变;在像素电极和公共电极的电场的控制下,液晶的偏转或者倒伏的方向和程度可以改变,进而使得透光该液晶处的光线的偏振方向受控的改变。在采用该显示面板PNL的显示装置中,可以通过设置与显示面板PNL配合的偏光片,进而使得光线的偏振方向的改变最终呈现为光线透过程度的改变。
再示例性的,在另外一种实施方式中,参见图2,显示层EE包括依次层叠设置于衬底基板BP一侧的驱动电路层F100和像素层F200,像素层F200设置有自发光的发光元件作为子像素,驱动电路层F100设置有用于驱动子像素的像素驱动电路PDC。
驱动电路层F100设置有用于驱动子像素的像素驱动电路。在驱动电路层F100中,任意一个像素驱动电路可以包括有晶体管F100M和存储电容。进一步地,晶体管F100M可以为薄膜晶体管,薄膜晶体管可以选自顶栅型薄膜晶体管、底栅型薄膜晶体管或者双栅型薄膜晶体管;薄膜晶体管的有源层的材料可以为非晶硅半导体材料、低温多晶硅半导体材料、金属氧化物半导体材料、有机半导体材料或者其他类型的半导体材料;薄膜晶体管可以为N型薄膜晶体管或者P型薄膜晶体管。
可以理解的是,像素驱动电路中的各个晶体管中,任意两个晶体管之间的类型可以相同或者不相同。示例性地,在一种实施方式中,在一个像素驱动电路中,部分晶体管可以为N型晶体管且部分晶体管可以为P型晶体管。再示例性地,在本公开的另一种实施方式中,在一个像素驱动电路中,部分晶体管的有源层的材料可以为低温多晶硅半导体材料,且部分晶体管的有源层的材料可以为金属氧化物半导体材料。在本公开的一些实施方式中,薄膜晶体管为低温多晶硅晶体管。在本公开的另外一些实施方式中,部分薄膜晶体管为低温多晶硅晶体管,部分薄膜晶体管为金属氧化物晶体管。
可选地,驱动电路层F100可以包括层叠于衬底基板BP和像素层F200之间的半导体层SEMI、栅极绝缘层GI、栅极层GT、层间电介质层ILD和源漏金属层SD等。各个薄膜晶体管和存储电容可以由半导体层SEMI、栅极绝缘层GI、栅极层GT、层间电介质层ILD、源漏金属层SD等膜层形成。其中,各个膜层的位置关系可以根据薄膜晶体管的膜层结构确定。进一步地,半导体层SEMI可以用于形成晶体管的沟道区;栅极层可以用于形成扫描走线、复位控制走线、发光控制走线等栅极层走线,也可以用于形成晶体管的栅极,还可以用于形成存储电容的部分或者全部电极板;源漏金属层可以用于形成数据电压走线、驱动电压走线等源漏金属层走线,也可以用于形成存储电容的部分电极板。
在一种示例中,驱动电路层F100可以包括依次层叠设置的半导体层SEMI、栅极绝缘层GI、栅极层GT、层间电介质层ILD和源漏金属层SD,如此所形成的薄膜晶体管为顶栅型薄膜晶体管。
在另一种示例中,在驱动电路层F100可以包括依次层叠设置的栅极层GT、栅极绝缘层GI、半导体层SEMI、层间电介质层ILD和源漏金属层SD,如此所形成的薄膜晶体管为底栅型薄膜晶体管。
在本公开实施方式的显示面板PNL中,栅极层可以为一层,也可以根据需要设置为两层或者三层。在一种示例中,栅极层GT可以包括第一栅极层和第二栅极层,栅极绝缘层GI可以包括用于隔离半导体层SEMI和第一栅极层的第一栅极绝缘层,以及包括用于隔离第一栅极层和第二栅极层的第二栅极绝缘层。举例而言,驱动电路层F100可以包括依次层叠设置于衬底基板BP一侧的半导体层SEMI、第一栅极绝缘层、第一栅极层、第二栅极绝缘层、第二栅极层、层间电介质层ILD和源漏金属层SD。在一种示例中,栅极层GT可以包括第一栅极层和第二栅极层,半导体层SEMI可以夹设于第一栅极层和第二栅极层之间;栅极绝缘层GI可以包括用于隔离半导体层SEMI和第一栅极层的第一栅极绝缘层,以及包括用于隔离第二栅极层和半导体层SEMI的第二栅极绝缘层。举例而言,驱动电路层F100可以包括依次层叠设置于衬底基板BP一侧的第一栅极层、第一栅极绝缘层、半导体层SEMI、第二栅极绝缘层、第二栅极层、层间电介质层ILD和源漏金属层SD。这样,可以形成具有双栅结构的晶体管。在 一种示例中,半导体层SEMI可以包括低温多晶硅半导体层和金属氧化物半导体层;栅极层包括第一栅极层和第二栅极层,栅极绝缘层包括第一和第二栅极绝缘层。驱动电路层F100可以包括依次层叠设置于衬底基板BP一侧的低温多晶硅半导体层、第一栅极绝缘层、第一栅极层、金属氧化物半导体层、第二栅极绝缘层、第二栅极层、层间电介质层ILD和源漏金属层SD,这些膜层之间可以设置有绝缘层。在一种示例中,半导体层SEMI可以包括低温多晶硅半导体层和金属氧化物半导体层;栅极层包括第一至第三栅极层,栅极绝缘层包括第一至第三栅极绝缘层。驱动电路层F100可以包括依次层叠设置于衬底基板BP一侧的低温多晶硅半导体层、第一栅极绝缘层、第一栅极层、绝缘缓冲层、第二栅极层、第二栅极绝缘层、金属氧化物半导体层、第三栅极绝缘层、第三栅极层、层间电介质层ILD和源漏金属层SD。
在本公开实施方式的显示面板PNL中,源漏金属层可以为一层,也可以根据需要设置为两层或者三层。在一种示例中,源漏金属层可以包括依次层叠于层间电介质层ILD远离衬底基板一侧的第一源漏金属层和第二源漏金属层,第一源漏金属层和第二源漏金属层之间可以夹设有绝缘层,例如夹设有钝化层和/或平坦化层。在另一种示例中,源漏金属层可以包括依次层叠于层间电介质层ILD远离衬底基板一侧的第一源漏金属层、第二源漏金属层、第三源漏金属层;第一源漏金属层和第二源漏金属层之间可以夹设有绝缘层,例如夹设有钝化层和/或树脂层;第二源漏金属层和第三源漏金属层之间可以夹设有绝缘层,例如夹设有钝化层和/或平坦化层。
可选地,驱动电路层F100还可以包括有钝化层,钝化层可以设于源漏金属层SD远离衬底基板BP的表面,以便保护源漏金属层SD。
可选地,驱动电路层F100还可以包括设于衬底基板BP与半导体层SEMI之间的缓冲材料层Buff,且半导体层SEMI、栅极层GT等均位于缓冲材料层远离衬底基板BP的一侧。缓冲材料层的材料可以为氧化硅、氮化硅等无机绝缘材料。缓冲材料层可以为一层无机材料层,也可以为多层层叠的无机材料层。
可选地,驱动电路层F100还可以包括位于源漏金属层SD和像素层F200之间的平坦化层PLN,平坦化层PLN可以为像素电极提供平坦化表 面。可选地,平坦化层PLN的材料可以为有机材料。
像素层F200可以设置有与像素驱动电路对应电连接的发光元件,发光元件可以作为显示面板的子像素。如此,像素层设置有阵列分布的发光元件,且各个发光元件在像素驱动电路的控制下发光。在本公开中,发光元件可以为有机电致发光二极管(OLED)、高分子有机电致发光二极管(PLED)、微发光二极管(Micro LED)、量子点-有机电致发光二极管(QD-OLED)、量子点发光二极管(QLED)或者其他类型的发光元件。示例性地,发光元件为有机电致发光二极管(OLED),则该显示面板为OLED显示面板。如下,以发光元件为有机电致发光二极管为例,对像素层的一种可行结构进行示例性的介绍。
在该示例中,像素层F200可以设置于驱动电路层F200远离衬底基板F100的一侧,其可以包括依次层叠设置的像素电极层AND、像素定义层PDL、支撑柱层PS、有机发光功能层EL和公共电极层COML。其中,像素电极层AND在显示面板的显示区具有多个像素电极;像素定义层PDL在显示区具有与多个像素电极一一对应设置的多个贯通的像素开口,任意一个像素开口暴露对应的像素电极的至少部分区域。支撑柱层PS在显示区包括多个支撑柱,且支撑柱位于像素定义层PDL远离衬底基板F100的表面,以便在蒸镀制程中支撑精细金属掩模版(Fine Metal Mask,FMM)。有机发光功能层EL至少覆盖被像素定义层PDL所暴露的像素电极。其中,有机发光功能层EL可以包括有机电致发光材料层,以及可以包括有空穴注入层、空穴传输层、电子阻挡层、空穴阻挡层、电子传输层和电子注入层中的一种或者多种。可以通过蒸镀工艺制备有机发光功能层EL的各个膜层,且在蒸镀时可以采用精细金属掩模版或者开放式掩膜板(Open Mask)定义各个膜层的图案。公共电极层COML在显示区可以覆盖有机发光功能层EL。如此,像素电极、公共电极层COML和位于像素电极和公共电极层COML之间的有机发光功能层EL形成有机发电致光二极管F200D,任意一个有机电致发光二极管可以作为显示面板的一个子像素。
可选的,像素层F200还可以包括位于公共电极层COML远离衬底基板F100一侧的光取出层,以增强有机发光二极管的出光效率。
可选地,显示层EE还可以包括薄膜封装层TFE。薄膜封装层TFE设 于像素层F200远离衬底基板F100的表面,可以包括交替层叠设置的无机封装层和有机封装层。触控层TT设置于薄膜封装层TFE远离衬底基板BP的一侧。其中,无机封装层可以有效的阻隔外界的水分和氧气,避免水氧入侵有机发光功能层EL而导致材料降解。可选地,无机封装层的边缘可以位于***区。有机封装层位于相邻的两层无机封装层之间,以便实现平坦化和减弱无机封装层之间的应力。其中,有机封装层的边缘,可以位于显示区的边缘和无机封装层的边缘之间。示例性地,薄膜封装层TFE包括依次层叠于像素层F200远离衬底基板F100一侧的第一无机封装层CVD1、有机封装层INK和第二无机封装层CVD2。
图3为本公开实施方式的显示面板PNL的一种俯视结构图。参见图3,显示面板PNL可以包括显示区AA和围绕显示区AA的***区BB。其中,显示区AA可以包括主显示区AA2和主显示区AA2一侧的至少一个透光区AA1。透光区AA1的透光率大于主显示区AA2的透光率。示例性的,主显示区AA2环绕透光区AA1。
参见图4和图6,应用该显示面板PNL的显示装置可以包括至少一个感光组件C300。其中,感光组件C300可以与透光区AA1一一对应设置,且感光组件C300可以正对对应的透光区AA1,以便接收从透光区AA1透射的光线。感光组件C300可以具有用于感测光线的感光区域,感光区域在衬底基板BP上的正投影可以位于透光区AA1内。感光组件C300可以为一个或者多个光线传感器,例如可以为摄像头、光学指纹识别芯片、光强传感器等。在一些实施方式中,感光组件C300可以为一摄像头,例如可以为一个CCD(电荷耦合器件)摄像头。
可选地,参见图3,透光区AA1可以嵌于主显示区AA2中,即主显示区AA2环绕透光区AA1。当透光区AA1的数量为多个时,透光区AA1可以分散设置,也可以相邻设置。当然地,在本公开的其他实施方式中,透光区AA1也可以位于主显示区AA2的一侧;例如,透光区AA1的边缘可以与***区BB的内边缘部分交叠,使得透光区AA1设置于显示区AA的边缘位置。
可选地,任意一个透光区AA1的形状可以为圆形、长圆形(中间矩形、两端半圆形)、方形、菱形、正六边形或者其他形状。在本公开的一 种实施方式中,透光区AA1的形状可以为圆形或者长圆形。
透光区AA1的数量可以为一个,也可以为多个,以满足感光组件C300的设置为准。在一种示例中,透光区AA1的数量为一个。如此,显示装置可以设置一个感光组件C300,例如可以设置一个摄像头或者光学指纹识别芯片。在另一种示例中,透光区AA1的数量为多个。如此,该显示装置可以设置多个感光组件C300,任意两个感光组件C300可以相同或者不相同。示例性地,透光区AA1的数量为三个且相邻设置。如此,显示装置可以设置有与三个透光区AA1一一对应的不同的感光组件C300,例如设置有成像摄像头、深景摄像头、红外摄像头三种不同的感光组件C300。
在本公开实施方式中,可以采用不同的技术以保证透光区AA1的透光性能,例如采用开孔屏技术或者采用屏下摄像技术。
举例而言,在本公开的一些实施方式中,参见图4和图5,在主显示区AA2和透光区AA1内,像素层F200均可以设置有发光元件C200,以便使得主显示区AA2和透光区AA1均能够实现画面显示。显示装置通过在透光区AA1处设置摄像头,可以实现屏下摄像,提高显示装置的屏占比。
参见图5,在一种示例中,显示面板PNL在透光区AA1可以不设置像素驱动电路C100,以便降低像素驱动电路C100对透光率的影响,提高透光区AA1的透光率。位于透光区AA1的各个发光元件C200的像素驱动电路C100,可以设置于主显示区AA2内。进一步地的,位于透光区AA1的各个发光元件C200的像素电极F300D1包括相互连接的电极本体F300D11和电极延伸走线F300D12。其中,电极本体F300D11位于透光区AA1内且用于作为发光元件C200的阴极或者阳极;电极延伸走线F300D12设于主显示区AA2和透光区AA1,其一端与电极本体F300D11连接,另一端与该发光元件C200对应的像素驱动电路C100电连接。进一步的,电极延伸走线F300D12可以采用透明导电材料,例如采用透镜金属氧化物(例如氧化铟锡)。电极延伸走线F300D12的材料还可以与电极本体F300D11的材料相同且同层设置,这使得电极延伸走线F300D12与电极本体F300D11可以在相同的工序中制备出来。
换言之,在该示例中,本公开实施方式的显示面板PNL中的发光元 件C200根据所处的位置,可以分为位于主显示区AA2的第一发光元件C201和位于透光区AA1的第二发光元件C202。本公开的显示面板PNL中的像素驱动电路C100可以根据其所驱动的发光元件C200,分为用于驱动第一发光元件C201的第一像素驱动电路C101和用于驱动第二发光元件C202的第二像素驱动电路C102。其中,第一像素驱动电路C101的输出端与第一发光元件C201的像素电极F300D1电连接,第二像素驱动电路C102的输出端与第二发光元件C202的像素电极F300D1的电极延伸走线F300D12电连接。换言之,电极延伸走线F300D12的两端分别连接第二发光元件C202的像素电极F300D1的电极本体F300D11和第二像素驱动电路C102的输出端。可选的,主显示区AA2可以包括与透光区AA1相邻的辅助显示区,第二像素驱动电路C102可以设置于辅助显示区内。
当然的,在本公开的另一种示例中,第二发光元件C202和第二像素驱动电路C102可以均设置于透光区AA1中,且通过调整第二像素驱动电路C102之间的间隙和布图面积等方式来提高透光区AA1的透光率。
再举例而言,在本公开的另外一些实施方式中,参见图6,显示面板PNL在透光区AA1处设置有透光孔。进一步的,显示区AA还设置有围绕透光区AA1的封装区,以避免水氧从透光区AA1向主显示区AA2入侵、阻挡裂纹向主显示区AA2延伸等。
图7和图8为本公开实施方式中触控层TT的结构示意图。参见图7,触控层TT具有多个触控通道TS,这些触控通道TS包括多个沿第二方向DH延伸的第二信号通道Rx和多个沿第一方向DV延伸的第一信号通道Tx;第二方向DH和第一方向DV相交。在一种实施方式中,第二方向DH和第一方向DV中的一个为显示面板PNL的行方向(扫描走线延伸的方向),另一个为列方向(数据电压走线延伸的方向)。示例性的,第二方向DH为显示面板PNL的行方向,第一方向DV为显示面板PNL的列方向。
参见图7,各个第一信号通道Tx和各个第二信号通道Rx限定出阵列分布的多个触控定位区TSA。通过触控定位区TSA的第一信号通道Tx和第二信号通道Rx之间互容而形成触控电容。在触控时,触控定位区TSA内的触控电容的电容值会响应触控物(例如手指)而改变,显示装置通过 检测不同触控定位区TSA中的触控电容的改变而判断触控位置。
在本公开的一种实施方式中,参见图7和图8,触控层TT包括依次层叠设置于显示层EE一侧的第一触控金属层TMA、触控绝缘层TMI和第二触控金属层TMB。第二信号通道Rx在第二触控金属层TMB具有沿第二方向DH依次排列的多个第二信号电极RxP;相邻两个第二信号电极RxP之间通过位于第一触控金属层TMA或者第二触控金属层TMB的导电结构电连接;第一信号通道Tx在第二触控金属层TMB具有沿第一方向DV依次排列的多个第一信号电极TxP;相邻两个第一信号电极TxP之间通过位于第一触控金属层TMA或者第二触控金属层TMB的导电结构电连接。参见图9,在触控定位区TSA中,第二信号电极RxP的边缘和第一信号电极TxP的边缘之间形成插指电容,该插指电容作为触控定位区TSA内的触控电容的一部分。
在一种示例中,参见图7和图9,在同一触控定位区TSA中,显示面板PNL包括分别属于相邻两个第一信号电极TxP的第一信号电极的第一部分TxPA和第一信号电极的第二部分TxPB、分别属于相邻两个第二信号电极RxP的第二信号电极的第一部分RxPA和第二部分RxPB;第一信号电极的第一部分TxPA和第二部分TxPB之间通过导电结构电连接,且第二信号电极的第一部分RxPA和第二部分RxPB之间电连接。在沿第二方向DH相邻的两个触控定位区TSA中,其中一个触控定位区TSA中的第二信号电极的第二部分RxPB与另一个触控定位区TSA中的第二信号电极的第一部分RxPA相邻且连接,共同组成一个第二信号电极RxP。这样,位于第二信号通道Rx一端的第二信号电极RxP可以仅包括第二信号电极的第一部分RxPA,位于第二信号通道Rx另一端的第二信号电极RxP可以仅包括第二信号电极的第二部分RxPB,非端部的第二信号电极RxP可以包括第二信号电极的第一部分RxPA和第二部分RxPB,第二信号电极的第一部分RxPA和第二部分RxPB分别位于相邻的两个触控定位区TSA中。在沿第一方向DV相邻的两个触控定位区TSA中,其中一个触控定位区TSA中的第一信号电极的第二部分TxPB与另一个触控定位区TSA中的第一信号电极的第一部分TxPA相邻且连接,共同组成一个第一信号电极TxP。这样,位于第一信号通道Tx一端的第一信号电极TxP可以仅 包括第一信号电极的第一部分TxPA,位于第一信号通道Tx另一端的第一信号电极TxP可以仅包括第一信号电极的第二部分TxPB,非端部的第一信号电极TxP可以包括第一部分TxPA和第二部分TxPB,第一信号电极的第一部分TxPA和第二部分TxPB分别位于相邻的两个触控定位区TSA中。
参见图10,第一信号通道Tx、第二信号通道Rx可以呈镂空设计,以减少对显示面板PNL出光的影响并降低对环境光线的反射。进一步的,第一信号通道Tx和第二信号通道Rx之间的间隙可以呈弯折形状而非直线,即使得相邻的第一信号电极TxP和第二信号电极RxP相互插接。这样,利于消除第一信号电极TxP和第二信号电极RxP之间的边界的可视程度,提高显示面板PNL的均一性。
触控层TT还可以设置有触控走线,触控走线可以设置于***区BB且与触控通道TS电连接,以便将第一信号通道Tx和第二信号通道Rx的信号传输至显示装置的控制组件;显示装置的控制组件可以根据触控走线传输的信号来确定触控位置。
在本公开的一种实施方式中,在第一信号电极TxP的第一部分TxPA和第二部分TxPB中,第一信号电极的第一部分TxPA靠近该第一信号通道Tx所连接的触控走线。换言之,位于第一信号通道Tx的端部的第一信号电极TxP与触控走线连接,该第一信号电极TxP为第一信号电极的第一部分TxPA。在第二信号电极RxP的第一部分RxPA和第二部分RxPB中,第二信号电极的第一部分RxPA靠近该第二信号通道Rx所连接的触控走线。换言之,位于第二信号通道Rx的端部的第二信号电极RxP与触控走线连接,该第二信号电极RxP为第二信号电极的第一部分RxPA。
在本公开实施方式中,参见图11,根据触控定位区TSA与透光区AA1的相对位置关系,可以将触控定位区TSA分为正常触控定位区NTSA和异构触控定位区MTSA。其中,正常触控定位区NTSA与透光区AA1不相交,异构触控定位区MTSA与透光区AA1相交。换言之,正常触控定位区NTSA中的第二信号电极RxP、第一信号电极TxP等结构均不与透光区AA1相邻,其结构可以保持完整性。异构触控定位区MTSA中的第二信号电极RxP和第一信号电极TxP,至少部分与透光区AA1相邻,且为 了避让透光区AA1而具有避让透光区AA1的缺口。在本公开的一些示例中,可以通过第二信号电极RxP的边缘或者第一信号电极TxP的边缘是否与透光区AA1直接相邻来确定第二信号电极RxP或者第一信号电极TxP是否设置了避让缺口;如果一个导电结构的边缘与透光区AA1不直接相邻,例如间隔有其他导电结构,则可以认为该导电结构保持完整而没有设置避让透光区AA1的避让缺口;如果一个导电结构的边缘与透光区AA1直接相邻,而可以认为该导电结构设置了避让透光区AA1的避让缺口。
在本公开的一种实施方式中,参见图9,在正常触控定位区NTSA中,第一触控金属层TMA设置有桥接部TxB,第一信号电极的第一部分TxPA和第二部分TxPB之间通过桥接部TxB连接;第二触控金属层TMB设置有连接部RxB,第二信号电极的第一部分RxPA和第二部分RxPB通过连接部RxB连接。这样,连接部RxB和桥接部TxB之间交叠而形成互容电容,该互容电容也是正常触控定位区NTSA中的触控电容的一部分。
在本公开的一种实施方式中,触控层TT可以采用FMLOC(Flexible Multi-Layer On Cell)技术来实现,即以显示层EE为基板来制备触控层TT,而非将触控基板粘贴至显示层EE。
图12-1为相关技术中,触控层TT避让透光孔AA1的局部原理示意图。图12-2为相关技术中,避让透光孔AA1后触控层TT的局部结构示意图。参见图12-1,触控层TT的触控通道TS需要避让透光区AA1,这导致至少一个触控通道TS会被透光区AA1隔断。
在相关技术中,参见图12-2,当显示面板PNL为采用开孔屏技术时,触控层TT可以设置环绕透光区AA1的转接走线(例如图12-2中的转接线TRW1和转接线TRW2)以使得被隔断的触控通道TS重新连接。然而,在环绕透光区AA1的位置,显示面板PNL因封装而不具有足够的平坦度,这使触控层TT容易因跨膜层设置转接走线而出现短路或者断路不良。不仅如此,转接走线会占用较大的布图空间,影响透光区AA1周围的第一信号电极TxP或者第二信号电极RxP的图案,进而影响触控性能。不同的转接走线之间会形成平板电容,例如转接线TRW1和转接线TRW2需要分别设置在第一触控金属层TMA和第二触控金属层TMB而在交叠位 置形成平板电容,这导致该异构触控定位区MTSA内的触控电容增大(响应触控动作时电容的变化量却基本不变),影响触控性能。当显示面板PNL采用屏下摄像技术时,因透光区AA1没有边框而难以设置双层转接线。这些情况均导致,具有透光区AA1的显示面板PNL在采用FMLOC技术时,触控层TT的触控性能难以保持稳定可靠。
在本公开实施方式提供的显示面板PNL中,参见图11,可以根据触控通道TS与透光区AA1的相对位置关系而分为正常触控通道NTS和异构触控通道MTS。其中,将与透光区AA1不相邻的触控通道TS定义为正常触控通道NTS,将与透光区AA1相邻的触控通道TS定义为异构触控通道MTS。在本公开实施方式中,参见图13,至少一个异构触控通道MTS包括多个与显示区AA相邻的异构触控亚通道SubMTS。在异构触控通道MTS的多个异构触控亚通道SubMTS中,至少一个异构触控亚通道SubMTS保持连续。这样,在异构触控通道MTS可以在异构触控定位区MTSA内设置异构触控亚通道SubMTS而灵活地避让透光区AA1,避免设置转接走线或者减少转接走线的数量,尤其是避免设置双层转接走线而形成平板电容,进而减小或者避免所设置的转接走线对触控传感器的影响。在本公开中,异构触控亚通道SubMTS保持连续是指,异构触控亚通道SubMTS位于第二触控金属层TMB的相邻两个导电结构之间通过位于该两个导电结构之间的导电连接部连接(该导电连接部设置于第一触控金属层TMA或者第二触控金属层TMB),而非采用沿透光区AA1边缘弧形设置的转接走线连接。
作为一种示例,第一信号通道Tx在一个异构触控定位区MTSA中可以设置多个第一信号亚通道SubTx。如果一个第一信号亚通道SubTx的子电极之间均通过位于第一触控金属层TMA的桥接部TxB连接,则认为该第一信号亚通道SubTx保持连续。如果一个第一信号亚通道SubTx的至少两个子电极之间通过沿透光区AA1边缘弧形设置的转接走线连接,则认为该第一信号亚通道SubTx没有保持连续。可以理解的是,在一些情形下,没有保持连续的异构触控亚通道SubMTS也可以借助转接走线保持电性上的联系(即正常传递触控信号)。
在本公开实施方式的显示面板PNL中,同一异构触控定位区MTSA 中设置有相交的两个异构触控通道MTS(即设置有第一信号通道Tx和第二信号通道Rx)。在一种示例中,同一异构触控定位区MTSA中的一个异构触控通道MTS具有多个异构触控亚通道SubMTS,另一个异构触控通道MTS不设置异构触控亚通道SubMTS(即异构触控亚通道SubMTS的数量为1)。在另一种示例中,同一异构触控定位区MTSA中,两个异构触控通道MTS均设置有多个异构触控亚通道SubMTS,两个异构触控通道MTS各自的异构触控亚通道SubMTS的数量可以相同或者不同,例如可以均为两个。在一种示例中,同一异构触控定位区MTSA中,一个异构触控通道MTS可以保持连续而另一个异构触控通道MTS可以通过围绕透光区AA1的转接走线保持电信号的连续。在另一种示例中,同一异构触控定位区MTSA中,两个异构触控通道MTS可以均保持连续。
在本公开的一些实施方式中,在异构触控定位区MTSA中,可以将一个电极分割为多个子电极,进而通过不同的子电极形成不同的异构触控亚通道SubMTS。
在本公开的一些实施方式中,异构触控定位区MTSA的数量可以为多个,例如可以为2~6个。示例性的,异构触控定位区MTSA的数量为四个,四个异构触控定位区MTSA排列成相邻的两行两列。
图14-1展示了本公开一种实施方式中触控层TT的局部结构的设计原理;图14-2展示了本公开一种实施方式中触控层TT的局部结构的示意图。
参见图14-2,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第一触控金属层TMA设置有桥接部TxB,第一信号电极的第一部分TxPA包括至少两个子电极SubTxPA,且至少一个第一信号电极的第一部分的子电极SubTxPA通过桥接部TxB与第一信号电极的第二部分TxPB电连接。
在一种示例中,最远离透光区AA1的第一信号电极的第一部分的子电极SubTxPA可以不设置避让透光区AA1的缺口而通过桥接部TxB与第一信号电极的第二部分TxPB连接。
可选的,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有第二信号电极的第三部分RxPC和连接部RxB,连接部RxB与桥接部TxB交叠设置;沿第二方向DH,第二信号电极的第三部分RxPC夹 设于第一信号电极的第一部分的相邻两个子电极SubTxPA之间。第二信号电极的第一部分RxPA和第二部分RxPB中的一个,与相邻的第二信号电极的第三部分RxPC之间通过连接部RxB电连接;第二信号电极的第一部分RxPA和第二部分RxPB中的另一个,与相邻的第二信号电极的第三部分RxPC之间通过位于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW电连接,或者通过连接部RxB连接。
在一种示例中,转接线TRW设置于第二触控金属层TMB,且转接线TRW与第一信号通道Tx之间具有间隙。
在一种示例中,转接线TRW沿透光区AA1的边缘设置。
参见图14-1所示的触控层TT的局部结构的设计原理,在不考虑透光区AA1的辅助设计状态(设计过程中的状态而非最终版图)下,至少一个异构触控定位区MTSA中的第一信号电极的第一部分TxPA被划分为多个第一信号电极的第一部分的子电极SubTxPA(示例的为两个),第一信号电极的第二部分TxPB划分为与多个第一信号电极的第一部分的子电极SubTxPA一一对应的多个第一信号电极的第二部分的子电极SubTxPB(例如为两个),且异构触控定位区MTSA中的桥接部TxB的数量与第一信号电极的第一部分的子电极SubTxPA的数量相同;第一信号电极的第一部分的子电极SubTxPA和第一信号电极的第二部分的子电极SubTxPB通过对应的桥接部TxB连接。异构触控定位区MTSA中的第二信号电极的第三部分RxPC与第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB通过不同的连接部RxB连接。在制备的显示面板PNL中(即在触控层TT的最终版图中,参见图14-2),第一信号电极的第一部分的子电极SubTxPA、第一信号电极的第二部分的子电极SubTxPB和桥接部TxB位于透光区AA1的部分被去除,以使得第一信号电极的第一部分TxPA的剩余部分和第一信号电极的第二部分TxPB的剩余部分之间通过至少一个桥接部TxB连接。同时,第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB、第二信号电极的第三部分RxPC、连接部RxB位于透光区AA1的部分也被去除;第二信号电极的第一部分RxPA、第二信号电极的第三部分RxPC、第二信号电极的第二部分RxPB三者依次连接所形成的第二信号通道Rx被透光区AA1隔断时,则设置转接线TRW以使得 第二信号通道Rx保持畅通,且第一信号电极的第一部分的子电极SubTxPA还需要避让转接线TRW以避免形成平板电容。
在本公开中,为了表示方便,可以将图14-2中位于左上角的异构触控定位区MTSA命名为第一异构触控定位区MTSA。作为一种示例,参见图14-2,在第一异构触控定位区MTSA中,第一信号电极的第一部分TxPA包括两个沿第二方向DH排列的两个第一信号电极的第一部分的子电极SubTxPA,其中至少有一个第一信号电极的第一部分的子电极SubTxPA不受透光区AA1的影响而通过桥接部TxB与第一信号电极的第二部分TxPB连接,进而保证第一异构触控定位区MTSA中的第一信号通道Tx信号畅通。另一个第一信号电极的第一部分的子电极SubTxPA避让透光区AA1而具有缺口。在该第一异构触控定位区MTSA中,第一信号通道Tx如果不避让透光区AA1则应当具有两个异构触控亚通道SubMTS,每个异构触控亚通道SubMTS包括依次连接的第一信号电极的第一部分的子电极SubTxPA、桥接部TxB和第一信号电极的第二部分的子电极SubTxPB;为了避让透光区AA1,靠近透光区AA1的异构触控亚通道SubMTS被隔断,而远离透光区AA1的异构触控亚通道SubMTS保持连续。参见图14-2,在第一异构触控定位区MTSA中,第二信号通道Rx包括位于第二触控金属层TMB的第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB、第二信号电极的第三部分RxPC和连接部RxB,以及包括转接线TRW;其中,桥接部TxB和连接部RxB交叠设置。沿第二方向DH,第二信号电极的第一部分RxPA位于第一信号电极的第一部分的子电极SubTxPA远离透光区AA1的一侧,进而无需设置避让透光区AA1的缺口。沿第二方向DH,第二信号电极的第三部分RxPC位于第一信号电极的第一部分的相邻两个子电极SubTxPA之间,且设置有避让透光区AA1的缺口。第二信号电极的第一部分RxPA和第二信号电极的第三部分RxPC之间通过连接部RxB连接。第二信号电极的第二部分RxPB具有避让透光区AA1的缺口,且第二信号电极的第三部分RxPC与第二部分RxPB之间的连接被透光区AA1隔断。因此,第二信号电极的第二部分RxPB与第三部分RxPC之间通过沿透光区AA1边缘设置的转接线TRW连接,该转接线TRW可以设置于第一触控金属层TMA或者第二触 控金属层TMB。其中,第一信号电极与透光区AA1之间预留布线间隙,转接线TRW布设于该布线间隙中;这可以避免转接线TRW与第一信号通道Tx之间形成平板电容而过度增大第一异构触控定位区MTSA中的触控电容的电容值,进而在使得第二信号通道Rx和第一信号通道Tx信号保持畅通的情况下保证触控性能。
参见图14-2,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第一触控金属层TMA设置有桥接部TxB,第一信号电极的第二部分TxPB包括至少两个子电极SubTxPB,且至少一个第一信号电极的第二部分的子电极SubTxPB通过桥接部TxB与第一信号电极的第一部分TxPA电连接。进一步的,最远离透光区AA1的第一信号电极的第二部分的子电极SubTxPB可以不设置避让透光区AA1的缺口而通过桥接部TxB与第一信号电极的第一部分TxPA连接。
进一步的,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有第二信号电极的第三部分RxPC和连接部RxB,连接部RxB与桥接部TxB交叠设置;沿第二方向DH,第二信号电极的第三部分RxPC夹设于相邻两个第一信号电极的第二部分的子电极SubTxPB之间。第二信号电极的第一部分RxPA和第二部分RxPB中的一个,与相邻的第二信号电极的第三部分RxPC之间通过连接部RxB电连接;第二信号电极的第一部分RxPA和第二部分RxPB中的另一个,与相邻的第二信号电极的第三部分RxPC之间通过位于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW电连接,或者通过连接部RxB连接。
参见图14-1,在不考虑透光区AA1的辅助设计状态下,至少一个异构触控定位区MTSA中的第一信号电极的第一部分TxPA也划分为与多个第一信号电极的第二部分的子电极SubTxPB一一对应的多个第一信号电极的第一部分的子电极SubTxPA(例如为两个),且异构触控定位区MTSA中的桥接部TxB的数量与第一信号电极的第二部分的子电极SubTxPB的数量相同;第一信号电极的第二部分的子电极SubTxPB和第一信号电极的第一部分的子电极SubTxPA通过对应的桥接部TxB连接。异构触控定位区MTSA中的第二信号电极的第三部分RxPC与第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB通过不同的连接部RxB连接。 在制备的显示面板PNL中,第一信号电极的第二部分的子电极SubTxPB、第一信号电极的第一部分的子电极SubTxPA和桥接部TxB位于透光区AA1的部分被去除,以使得第一信号电极的第二部分TxPB的剩余部分和第一信号电极的第一部分TxPA的剩余部分之间通过至少一个桥接部TxB连接为准。同时,第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB、第二信号电极的第三部分RxPC、连接部RxB位于透光区AA1的部分也被去除;第二信号电极的第一部分RxPA、第二信号电极的第三部分RxPC、第二信号电极的第二部分RxPB三者依次连接所形成的第二信号通道Rx被透光区AA1隔断时,则设置转接线TRW以使得第二信号通道Rx保持畅通,且第一信号电极的第二部分的子电极SubTxPB还需要避让转接线TRW以避免形成平板电容。
在本公开的示例中,为了表示方便,可以将图14-2中位于左下角的异构触控定位区MTSA命名为第二异构触控定位区MTSA。作为一种示例,在第二异构触控定位区MTSA中,第一信号电极的第二部分TxPB包括两个沿第二方向DH排列的两个第一信号电极的第二部分的子电极SubTxPB,其中至少有一个第一信号电极的第二部分的子电极SubTxPB不受透光区AA1的影响而通过桥接部TxB与第一信号电极的第一部分TxPA连接,进而保证第二异构触控定位区MTSA中的第一信号通道Tx信号畅通。另一个第一信号电极的第二部分的子电极SubTxPB所参与的异构触控亚通道SubMTS被透光区AA1隔断,例如该第一信号电极的第二部分的子电极SubTxPB所连接的第一信号电极的第一部分的子电极SubTxPA被透光区AA1隔断;当然的,该靠近透光区AA1的第一信号电极的第二部分的子电极SubTxPB自身在其他示例中也可以被透光区AA1隔断而具有缺口。
参见图14-1和图14-2,在第二异构触控定位区MTSA中,第二信号通道Rx包括位于第二触控金属层TMB的第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB、第二信号电极的第三部分RxPC和连接部RxB,以及包括转接线TRW;其中,桥接部TxB和连接部RxB交叠设置。沿第二方向DH,第二信号电极的第一部分RxPA位于第一信号电极的第二部分的子电极SubTxPB远离透光区AA1的一侧,进而无需设置避 让透光区AA1的缺口。沿第二方向DH,第二信号电极的第三部分RxPC位于相邻两个第一信号电极的第二部分的子电极SubTxPB之间,且设置有避让透光区AA1的缺口。第二信号电极的第一部分RxPA和第二信号电极的第三部分RxPC之间通过连接部RxB连接。第二信号电极的第二部分RxPB具有避让透光区AA1的缺口。如果第二信号电极的第三部分RxPC与第二部分RxPB之间的连接被透光区AA1隔断(如图14-2所示例),第二信号电极的第二部分RxPB与第三部分RxPC之间通过沿透光区AA1边缘设置的转接线TRW连接,该转接线TRW可以设置于第一触控金属层TMA或者第二触控金属层TMB。其中,第二信号电极的第三部分RxPC与第二部分RxPB之间的第一信号电极的第二部分的子电极SubTxPB与透光区AA1之间预留布线间隙,转接线TRW布设于该布线间隙中;这可以避免转接线TRW与第一信号通道Tx之间形成平板电容而过度增大第二异构触控定位区MTSA中的触控电容的电容值,进而在使得第二信号通道Rx和第一信号通道Tx信号保持畅通的情况下保证触控性能。
图14-1和图14-2示意了至少一个异构触控定位区MTSA中的第一信号通道Tx设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断的方案及原理。上述设计构思及原理也可以在本公开的其他示例中应用,例如使得至少一个异构触控定位区MTSA中的第二信号通道Rx设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断。图15-1示意了至少一个异构触控定位区MTSA中的第二信号通道Rx设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断的局部设计的设计原理图;图15-2示意了至少一个异构触控定位区MTSA中的第二信号通道Rx设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断的局部结构示意图。
参见图15-2,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有连接部RxB,第二信号电极的第一部分RxPA包括至少两个第二信号电极的第一部分的子电极SubRxPA,且至少一个第二信号电极的第一部分的子电极SubRxPA通过连接部RxB与第二信号电极的第二部分RxPB电连接。进一步的,最远离透光区AA1的第二信号电极的第一部分的子电极SubRxPA可以不设置避让透光区 AA1的缺口而通过连接部RxB与第二信号电极的第二部分RxPB连接。其余第二信号电极的第一部分的子电极SubRxPA中的至少部分可以避让透光区AA1而设置避让缺口,当然的,也可以不设置避让缺口。
进一步的,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有第一信号电极的第三部分TxPC,第一触控金属层TMA设置有桥接部TxB,桥接部TxB与连接部RxB交叠设置;沿第一方向DV,第一信号电极的第三部分TxPC夹设于相邻两个第二信号电极的第一部分的子电极SubRxPA之间。第一信号电极的第一部分TxPA和第二部分TxPB中的一个,与相邻的第一信号电极的第三部分TxPC之间通过桥接部TxB电连接;第一信号电极的第一部分TxPA和第一信号电极的第二部分TxPB中的另一个,与相邻的第一信号电极的第三部分TxPC之间通过位于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW电连接,当然的,在一些情况下也可以通过桥接部TxB连接。
进一步的,参见图15-1,在不考虑透光区AA1的辅助设计状态下,异构触控定位区MTSA中的第二信号电极的第二部分RxPB也划分为与两个第二信号电极的第一部分的子电极SubRxPA一一对应的多个第二信号电极的第二部分的子电极SubRxPB(例如为两个),且异构触控定位区MTSA中的连接部RxB的数量与第二信号电极的第一部分的子电极SubRxPA的数量相同;第二信号电极的第一部分的子电极SubRxPA和第二信号电极的第二部分的子电极SubRxPB通过对应的连接部RxB连接。异构触控定位区MTSA中的第一信号电极的第三部分TxPC与第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB通过不同的桥接部TxB连接。在制备的显示面板PNL中,第二信号电极的第一部分的子电极SubRxPA、第二信号电极的第二部分的子电极SubRxPB和连接部RxB位于透光区AA1的部分被去除,以使得第二信号电极的第一部分RxPA的剩余部分和第二信号电极的第二部分RxPB的剩余部分之间通过至少一个连接部RxB连接为准。同时,第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB、第一信号电极的第三部分TxPC、桥接部TxB位于透光区AA1的部分也被去除。当第一信号电极的第一部分TxPA、第一信号电极的第三部分TxPC、第一信号电极的第二部分TxPB三者依次 连接所形成的第一信号通道Tx被透光区AA1隔断时,则设置转接线TRW以使得第一信号通道Tx保持畅通,且第二信号电极的第一部分的子电极SubRxPA还需要避让转接线TRW以避免形成平板电容。
作为一种示例,为了表述方便,将图15-2的左上角的异构触控定位区MTSA称为第三异构触控定位区MTSA。在第三异构触控定位区MTSA中,第二信号电极的第一部分RxPA包括两个沿第一方向DV排列的两个第二信号电极的第一部分的子电极SubRxPA,其中至少有一个第二信号电极的第一部分的子电极SubRxPA不受透光区AA1的影响而通过连接部RxB与第二信号电极的第二部分RxPB连接,进而保证异构触控定位区MTSA1中的第二信号通道Rx信号畅通。另一个第二信号电极的第一部分的子电极SubRxPA避让透光区AA1而具有缺口。
在第三异构触控定位区MTSA中,第一信号通道Tx包括位于第二触控金属层TMB的第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB、第一信号电极的第三部分TxPC,以及包括位于第一触控金属层TMA的桥接部TxB,并包括转接线TRW。其中,连接部RxB和桥接部TxB交叠设置。沿第一方向DV,第一信号电极的第一部分TxPA位于第二信号电极的第一部分的子电极SubRxPA远离透光区AA1的一侧,进而无需设置避让透光区AA1的缺口。沿第一方向DV,第一信号电极的第三部分TxPC位于相邻两个第二信号电极的第一部分的子电极SubRxPA之间,且设置有避让透光区AA1的缺口。第一信号电极的第一部分TxPA和第一信号电极的第三部分TxPC之间通过桥接部TxB连接。第一信号电极的第二部分TxPB具有避让透光区AA1的缺口,且第一信号电极的第三部分TxPC与第一信号电极的第二部分TxPB之间的连接被透光区AA1隔断。因此,第一信号电极的第二部分TxPB与第一信号电极的第三部分TxPC之间通过沿透光区AA1边缘设置的转接线TRW连接,该转接线TRW可以设置于第一触控金属层TMA或者第二触控金属层TMB。其中,第一信号电极的第三部分TxPC与第一信号电极的第二部分TxPB之间的第二信号电极的第一部分的子电极SubRxPA与透光区AA1之间预留布线间隙,转接线TRW布设于该布线间隙中;这可以避免转接线TRW与第二信号通道Rx之间形成平板电容而过度增大第三异构触控定位区MTSA中的触 控电容的电容值,进而在使得第一信号通道Tx和第二信号通道Rx信号保持畅通的情况下保证触控性能。
参见图15-2,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有连接部RxB,第二信号电极的第二部分RxPB包括至少两个第二信号电极的第二部分的子电极SubRxPB,且至少一个第二信号电极的第二部分的子电极SubRxPB通过连接部RxB与第二信号电极的第一部分RxPA电连接。进一步的,最远离透光区AA1的第二信号电极的第二部分的子电极SubRxPB可以不设置避让透光区AA1的缺口而通过连接部RxB与第二信号电极的第一部分RxPA连接。其余第二信号电极的第二部分的子电极SubRxPB中的至少部分可以避让透光区AA1而设置避让缺口,当然的,也可以不设置避让透光区AA1的缺口。
进一步的,在至少一个异构触控定位区MTSA中,第二触控金属层TMB设置有第一信号电极的第三部分TxPC,第一触控金属层TMA设置有桥接部TxB,桥接部TxB与连接部RxB交叠设置;沿第一方向DV,第一信号电极的第三部分TxPC夹设于相邻两个第二信号电极的第二部分的子电极SubRxPB之间。第一信号电极的第一部分TxPA和第二部分TxPB中的一个,与相邻的第一信号电极的第三部分TxPC之间通过桥接部TxB电连接;第一信号电极的第一部分TxPA和第一信号电极的第二部分TxPB中的另一个,与相邻的第一信号电极的第三部分TxPC之间通过位于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW电连接;当然的,在一些情形下,也可以通过桥接部TxB连接。
进一步的,参见图15-1,在不考虑透光区AA1的辅助设计状态下,异构触控定位区MTSA中的第二信号电极的第一部分RxPA也划分为与多个第二信号电极的第二部分的子电极SubRxPB一一对应的多个第二信号电极的第一部分的子电极SubRxPA(例如为两个),且异构触控定位区MTSA中的连接部RxB的数量与第二信号电极的第二部分的子电极SubRxPB的数量相同;第二信号电极的第二部分的子电极SubRxPB和第二信号电极的第一部分的子电极SubRxPA通过对应的连接部RxB连接。异构触控定位区MTSA中的第一信号电极的第三部分TxPC与第一信号电 极的第一部分TxPA、第一信号电极的第二部分TxPB通过不同的桥接部TxB连接。在制备的显示面板PNL中,第二信号电极的第二部分的子电极SubRxPB、第二信号电极的第一部分的子电极SubRxPA和连接部RxB位于透光区AA1的部分被去除,以使得第二信号电极的第二部分RxPB的剩余部分和第二信号电极的第一部分RxPA的剩余部分之间通过至少一个连接部RxB连接为准。同时,第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB、第一信号电极的第三部分TxPC、桥接部TxB位于透光区AA1的部分也被去除。当第一信号电极的第一部分TxPA、第一信号电极的第三部分TxPC、第一信号电极的第二部分TxPB三者依次连接所形成的第一信号通道Tx被透光区AA1隔断时,则设置转接线TRW以使得第一信号通道Tx保持畅通,且第二信号电极的第二部分的子电极SubRxPB还需要避让转接线TRW以避免形成平板电容。
作为一种示例,为了表述方便,将图15-2的右上角的异构触控定位区MTSA称为第四异构触控定位区MTSA。在第四异构触控定位区MTSA中,第二信号电极的第二部分RxPB包括两个沿第一方向DV排列的两个第二信号电极的第二部分的子电极SubRxPB,其中至少有一个第二信号电极的第二部分的子电极SubRxPB不受透光区AA1的影响而通过连接部RxB与第二信号电极的第一部分RxPA连接,进而保证第四异构触控定位区MTSA中的第二信号通道Rx信号畅通。另一个第二信号电极的第二部分的子电极SubRxPB所连接的第二信号电极的第一部分的子电极SubRxPA被透光区AA1隔断。
参见图15-2,在第四异构触控定位区MTSA中,第一信号通道Tx包括位于第二触控金属层TMB的第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB、第一信号电极的第三部分TxPC,以及包括转接线TRW和桥接部TxB;其中,连接部RxB和桥接部TxB交叠设置。沿第一方向DV,第一信号电极的第一部分TxPA位于第二信号电极的第二部分的子电极SubRxPB远离透光区AA1的一侧,进而无需设置避让透光区AA1的缺口。沿第一方向DV,第一信号电极的第三部分TxPC位于相邻两个第二信号电极的第二部分的子电极SubRxPB之间,且设置有避让透光区AA1的缺口。第一信号电极的第一部分TxPA和第一信号电极的第三 部分TxPC之间通过桥接部TxB连接。第一信号电极的第二部分TxPB具有避让透光区AA1的缺口,且第一信号电极的第三部分TxPC与第一信号电极的第二部分TxPB之间的连接被透光区AA1隔断。因此,第一信号电极的第二部分TxPB与第一信号电极的第三部分TxPC之间通过沿透光区AA1边缘设置的转接线TRW连接,该转接线TRW可以设置于第一触控金属层TMA或者第二触控金属层TMB。其中,第一信号电极的第三部分TxPC与第一信号电极的第二部分TxPB之间的第二信号电极的第二部分的子电极SubRxPB与透光区AA1之间预留布线间隙,转接线TRW布设于该布线间隙中;这可以避免转接线TRW与第二信号通道Rx之间形成平板电容而过度增大第四异构触控定位区MTSA中的触控电容的电容值,进而在使得第一信号通道Tx和第二信号通道Rx信号保持畅通的情况下保证触控性能。
图16-1示意了至少一个异构触控定位区MTSA中的第二信号通道Rx和第一信号通道Tx均设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断的局部设计的设计原理图;图16-2示意了至少一个异构触控定位区MTSA中的第二信号通道Rx和第一信号通道Tx均设置多个异构触控亚通道SubMTS以避免被透光区AA1完全隔断的局部结构示意图。
参见图16-2,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第二信号电极的第一部分RxPA包括多个子电极SubRxPA或者第二信号电极的第二部分RxPB包括多个子电极SubRxPB,第一信号电极的第一部分TxPA包括多个子电极SubTxPA或者第一信号电极的第二部分TxPB包括多个子电极SubTxPB,第二触控金属层TMB设置有第二信号电极的第三部分RxPC和第一信号电极的第三部分TxPC,第一触控金属层TMA设置有多个桥接部TxB;第一信号电极的第三部分TxPC与第一部分TxPA、第二部分TxPB之间通过不同的桥接部TxB连接;第二信号电极的第一部分RxPA和第二部分RxPB通过第三部分RxPC连接。换言之,在至少一个异构触控定位区MTSA中,第一信号通道Tx包括多个第一信号亚通道SubTx,其中至少一个第一信号亚通道SubTx包括依次连接的第一信号电极的第一部分的子电极SubTxPA、桥接部TxB、第一信号电极的第三部分TxPC、桥接部TxB和第一信号电极的第二部分的子电 极SubTxPB,进而使得该第一信号亚通道SubTx保持连续。第二信号通道Rx也包括多个第二信号亚通道SubRx,其中至少一个第二信号亚通道SubRx包括第二信号电极的第一部分的子电极SubRxPA、第二信号电极的第三部分RxPC和第二信号电极的第二部分的子电极SubRxPB,以及连接着三个子电极之间的导电结构,这些导电结构中的任意一个可以为设于第二触控金属层TMB的连接部RxB,也可以为设置于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW,以使得第二信号亚通道SubRx保持电性连通为准。
参见图16-2,在本公开的另一种实施方式中,在至少一个异构触控定位区MTSA中,第二信号电极的第一部分RxPA包括多个子电极SubRxPA或者第二信号电极的第二部分RxPB包括多个子电极SubRxPB,第一信号电极的第一部分TxPA包括多个子电极SubTxPA或者第一信号电极的第二部分TxPB包括多个子电极SubTxPB,第二触控金属层TMB设置有第二信号电极的第三部分RxPC、第一信号电极的第三部分TxPC和多个连接部RxB;第二信号电极的第三部分RxPC与第一部分RxPA、第二部分RxPB之间通过不同的连接部RxB连接;第一信号电极的第一部分TxPA和第二部分TxPB通过第三部分TxPC连接。换言之,在至少一个异构触控定位区MTSA中,第二信号通道Rx包括多个第二信号亚通道SubRx,其中至少一个第二信号亚通道SubRx包括依次连接的第二信号电极的第一部分的子电极SubRxPA、连接部RxB、第二信号电极的第三部分RxPC、连接部RxB和第二信号电极的第二部分的子电极SubRxPB,进而使得该第二信号亚通道SubRx保持连续。第一信号通道Tx也包括多个第一信号亚通道SubTx,其中至少一个第一信号亚通道SubTx包括第一信号电极的第一部分的子电极SubTxPA、第一信号电极的第三部分TxPC和第一信号电极的第二部分的子电极SubTxPB,以及连接着三个子电极之间的导电结构,这些导电结构中的任意一个可以为设于第一触控金属层TMA的桥接部TxB,也可以为设置于第一触控金属层TMA或者第二触控金属层TMB的转接线TRW,以使得第一信号亚通道SubTx保持电性连通为准。
作为一种示例,将图16-1和图16-2中左上角的异构触控定位区MTSA称为第五异构触控定位区MTSA,左下角的异构触控定位区MTSA称为 第六异构触控定位区MTSA,右上角的异构触控定位区MTSA称为第七异构触控定位区MTSA,右下角的异构触控定位区MTSA称为第八异构触控定位区MTSA。透光区AA1与第五异构触控定位区MTSA、第六异构触控定位区MTSA、第七异构触控定位区MTSA、第八异构触控定位区MTSA相交。在不考虑透光区AA1的辅助设计状态下,如图16-1所示,各个异构触控定位区MTSA中的第一信号通道Tx包括两个第一信号亚通道SubTx,且各个第二信号通道Rx包括两个第二信号亚通道SubRx。具体的,在该辅助设计状态,异构触控定位区MTSA中的第一信号电极的第一部分TxPA包括分别属于两个第一信号亚通道SubTx的第一信号电极的第一部分的子电极SubTxPA,第一信号电极的第二部分TxPB包括分别属于两个第一信号亚通道SubTx两个第一信号电极的第二部分的子电极SubTxPB,异构触控定位区MTSA还包括分别属于两个第一信号亚通道SubTx的两个第一信号电极的第三部分TxPC,以及包括分别属于两个第一信号亚通道SubTx的四个桥接部TxB。其中,任意一个第一信号亚通道SubTx包括依次连接的第一信号电极的第一部分的子电极SubTxPA、桥接部TxB、第一信号电极的第三部分TxPC、桥接部TxB和第一信号电极的第二部分的子电极SubTxPB。在该辅助设计状态,异构触控定位区MTSA中的第二信号电极的第一部分RxPA包括分别属于两个第二信号亚通道SubRx的第二信号电极的第一部分的子电极SubRxPA,第二信号电极的第二部分RxPB包括分别属于两个第二信号亚通道SubRx两个第二信号电极的第二部分的子电极SubRxPB,异构触控定位区MTSA还包括分别属于两个第二信号亚通道SubRx的两个第二信号电极的第三部分RxPC,以及包括分别属于两个第二信号亚通道SubRx的四个连接部RxB。其中,任意一个第二信号亚通道SubRx包括依次连接的第二信号电极的第一部分的子电极SubRxPA、连接部RxB、第二信号电极的第三部分RxPC、连接部RxB和第二信号电极的第二部分的子电极SubRxPB。在本公开实施方式的显示面板PNL中,参见图16-2,第一信号通道Tx和第二信号通道Rx位于透光区AA1的部分被去除,且在必要时添加转接线TRW以保证异构触控定位区MTSA中的至少一条第二信号亚通道SubRx和至少一条第一信号亚通道SubTx保持电性连通。其中,在异构触控定位区MTSA 中,至少一条第二信号亚通道SubRx或者至少一条第一信号亚通道SubTx保持连续而非通过转接线TRW转接以实现电性连通,进而减少转接线TRW的数量。图16-2示出了该示例中的显示面板PNL的第五异构触控定位区MTSA~第八异构触控定位区MTSA中的第一信号通道Tx和第二信号通道Rx的图案。
参见图16-2,在第五异构触控定位区MTSA中,一条第一信号亚通道SubTx保持连续,且一条第二信号亚通道SubRx通过转接线TRW保持电性连通。具体的,靠近第二信号电极的第一部分的子电极SubRxPA的第一信号亚通道SubTx保持连续;一个第二信号电极的第三部分RxPC通过连接部RxB与一个第二信号电极的第一部分的子电极SubRxPA连接,且通过转接线TRW与一个第二信号电极的第二部分的子电极SubRxPB连接。在第六异构触控定位区MTSA中,一条第一信号亚通道SubTx保持连续,且一条第二信号亚通道SubRx保持连续。在第七异构触控定位区MTSA中,一条第一信号亚通道SubTx保持连续,且一条第二信号亚通道SubRx通过转接线TRW保持电性连通。具体的,靠近第二信号电极的第二部分的子电极SubRxPB的第一信号亚通道SubTx保持连续;一个第二信号电极的第三部分RxPC通过转接线TRW与一个第二信号电极的第一部分的子电极SubRxPA连接,通过连接部RxB与一个第二信号电极的第二部分的子电极SubRxPB连接。在第八异构触控定位区MTSA中,一条第一信号亚通道SubTx保持连续,且一条第二信号亚通道SubRx保持连续。
参见图19和图22,在本公开的一些实施方式中,异构触控亚通道SubMTS中的桥接部TxB或者连接部RxB还可以偏移以避让透光区AA1,以使得第一信号亚通道SubTx和第二信号亚通道SubRx中至少一个保持连续;这样,至少一个第一信号亚通道SubTx中具有多个桥接部TxB且各个桥接部TxB的分布轨迹不平行于第一方向DV(例如为折线),或者至少一个第二信号亚通道SubRx中具有多个连接部RxB且各个连接部RxB的分布轨迹不平行于第二方向DH(例如为折线)。
参见图19和图22,在本公开的一种实施方式中,至少一个第一信号通道Tx具有在沿第一方向DV相邻的两个异构触控定位区MTSA中连续 的至少一条第一信号亚通道SubTx,连续的第一信号亚通道SubTx包括位于第二触控金属层TMB的电极(例如第一信号电极的第一部分的子电极SubTxPA、第一信号电极的第二部分的子电极SubTxPB)和连接电极且位于第一触控金属层TMA的桥接部TxB。连续的第一信号亚通道SubTx的各个桥接部TxB,在各自所在的异构触控定位区MTSA中的相对位置不同。在本公开的实施方式中,桥接部TxB在异构触控定位区MTSA中的相对位置,可以是指桥接部TxB与异构触控定位区MTSA的各个顶角或者各个边之间的距离。在一种示例中,可以采用桥接部TxB的位置向量来表示桥接部TxB在异构触控定位区MTSA中的相对位置关系,该位置向量可以包括四个距离参数,四个距离参数分别表示异构触控定位区MTSA的四个顶角与桥接部TxB的中心之间的距离。
图17、图18、图20和图21,为本公开的该实施方式的局部设计的设计原理图。在本实施方式的显示面板PNL的设计过程中,可以先不考虑透光区AA1而对异构触控定位区MTSA中的第一信号通道Tx和第二信号通道Rx进行设计(如图17和图20所示),进而确定出各个桥接部TxB的初始位置;再将透光区AA1的因素考虑进来,并使得其中一个第一信号亚通道SubTx保持连续(如图18和图21所示)。在这个过程中,如图18和图21,如果预期被保持连续的第一信号亚通道SubTx被透光区AA1隔断,则可以改变该第一信号亚通道SubTx上的桥接部TxB的位置,并适应性的改变该第一信号亚通道SubTx的各个子电极的形状,使得该第一信号亚通道SubTx的各个桥接部TxB位于透光区AA1以外,进而使得该第一信号亚通道SubTx通过变形而保持连续。这种方式可以在降低各个第一信号通道Tx和第二信号通道Rx的设计难度的基础上,确保第一信号亚通道SubTx保持连续,使得该显示面板PNL在设计过程中具有更多的灵活性。
在一种示例中,参见图18和图19,异构触控定位区MTSA中的至少一个桥接部TxB可以沿第二方向DH方向偏移。这样,该被偏移的桥接部TxB所参与的第一信号亚通道SubTx中,各个桥接部TxB的分布轨迹不平行于第一方向DV。如此,在该示例的显示面板PNL中,参见图19,至少一第一信号通道Tx在沿第一方向DV相邻的两个异构触控定位区 MTSA中具有第一信号亚通道SubTx,该第一信号亚通道SubTx具有至少两个桥接部TxB,且该第一信号亚通道SubTx的桥接部TxB的分布轨迹不平行于第一方向DV。这种偏移方式,可以减小对第一信号通道Tx的各个电极的影响,并利于使得第一信号亚通道SubTx的电极保持尽量大的面积。
在另一种示例中,参见图21和图22,异构触控定位区MTSA中的至少一个桥接部TxB可以沿第一方向DV方向偏移。如此,沿第二方向DH相邻的两个异构触控定位区MTSA中,各个桥接部TxB的分布轨迹不平行于第二方向DH。具体的,参见图22,至少一个第二信号通道Rx包括位于沿第二方向DH相邻的两个异构触控定位区MTSA中的第二信号亚通道SubRx,该第二信号亚通道SubRx中的连接部RxB的分布轨迹(即与该第二信号亚通道SubRx交叠的各个桥接部TxB的分布轨迹)不平行于第二方向DH。
当然的,在本公开实施方式的其他示例中,异构触控定位区MTSA中的至少一个桥接部TxB可以同时在第一方向DV和第二方向DH上偏移。
在本公开的另外一种实施方式中,还可以对第二信号通道Rx的连接部RxB进行移动,以避免各个连接部RxB均被透光区AA1隔断。换言之,至少一个第二信号通道Rx包括位于沿第二方向DH相邻的两个异构触控定位区MTSA中的第二信号亚通道SubRx;所述第二信号亚通道SubRx包括位于所述第二触控金属层TMB的连接部RxB,且所述连接部RxB在各自所在的异构触控定位区MTSA中的相对位置不同。在一种示例中,至少一个所述第二信号亚通道SubRx的各个所述连接部RxB的分布轨迹不平行于所述第二方向DH。
图23为本公开的一种实施方式的局部设计的设计原理图。图24为本公开的一种实施方式中触控层TT的局部结构示意图。参见图24,在本公开的一种实施方式中,在至少一个异构触控定位区MTSA中,第一信号通道Tx包括多个第一信号亚通道SubTx;沿第一方向DV,至少一个第一信号亚通道SubTx靠近透光区AA1的端部与透光区AA1之间,间隔有第二信号通道Rx。
参见图23,在异构触控定位区MTSA中临近透光区AA1的临近位置 DD,因靠近透光区AA1而无法可靠的设置桥接部TxB,则可以不在该临近位置DD设置桥接部TxB。这样,原本应该作为第一信号亚通道SubTx一部分的电极无法通过桥接部TxB而作为第一信号亚通道SubTx的一部分,这些电极可以与第二信号通道Rx连接而作为第二信号通道Rx的一部分。这样,如图24所示,这使得至少部分第一信号亚通道SubTx与透光区AA1之间间隔有第二信号通道Rx。通过这种设置方式,因避让透光区AA1而导致尺寸太小的电极无需通过过孔与桥接部TxB连接,避免了在太靠近透光区AA1的位置设置过孔而导致的工艺困难;不仅如此,将这部分电极并入第二信号通道Rx可以提高第二信号通道Rx的稳定性,保证第二信号通道Rx畅通。
作为一种示例,参见图23,在不考虑透光区AA1的辅助设计状态下,异构触控定位区MTSA中的第一信号通道Tx包括两个第一信号亚通道SubTx;其中第一信号亚通道SubTx可以包括依次连接的第一信号电极的第一部分的子电极SubTxPA、桥接部TxB和第一信号电极的第二部分的子电极SubTxPB。异构触控定位区MTSA中的第二信号通道Rx包括依次连接的第二信号电极的第一部分RxPA、连接部RxB、第二信号电极的第三部分RxPC、连接部RxB和第二信号电极的第二部分RxPB。其中,第二信号电极的第三部分RxPC位于两个第一信号亚通道SubTx之间。在该示例的显示面板PNL中,异构触控定位区MTSA的第一信号通道Tx和第二信号通道Rx与透光区AA1相交的部分被去除。在图23左下角所示的异构触控定位区MTSA中,被透光区AA1隔断的第一信号亚通道SubTx的第一信号电极的第一部分的子电极SubTxPA设置有避让透光区AA1的缺口,且自身仅保留很小的部分。在理论上,该第一信号电极的第一部分的子电极SubTxPA可以通过桥接部TxB与第一信号电极的第二部分的子电极SubTxPB保持电连接,进而使得该被隔断的第一信号亚通道SubTx的端部临近透光区AA1。然而,该第一信号电极的第一部分的子电极SubTxPA在与桥接部TxB连接时,过孔距离透光区AA1非常近而不便设置。因此,在本示例的显示面板PNL中,图24左下角所示的异构触控定位区MTSA中的该本应作为第一信号电极的第一部分的子电极SubTxPA的子电极处可以不设置桥接部TxB,该子电极可不与第一信号电极的第二 部分的子电极SubTxPB保持连接,而是与同层设置且相邻的第二信号电极的第一部分RxPA和第二信号电极的第三部分RxPC连接,进而作为第二信号通道Rx的一部分。如此,在图24左下角所示的异构触控定位区MTSA中,被隔断的第一信号亚通道SubTx靠近透光区AA1的端部与透光区AA1之间间隔有第二信号通道Rx。这样,既避免了设置过孔,又保证了第二信号通道Rx的畅通。
在本公开的一种实施方式中,参见图9,在正常触控定位区NTSA,第一触控金属层TMA设置有桥接部TxB,第一信号电极的第一部分TxPA和第二部分TxPB之间通过桥接部TxB电连接;在正常触控定位区NTSA,第二触控金属层TMB设置有连接部RxB,第二信号电极的第一部分RxPA和第二部分RxPB之间通过连接部RxB电连接。
在正常触控定位区NTSA中,第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB和桥接部TxB的数量为一个,第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB和连接部RxB的数量为一个。换言之,在正常触控定位区NTSA中,第二信号通道Rx可以仅包括一个通路,第二信号通道Rx也可以进保持一个通路。在异构触控定位区MTSA中,第一信号通道Tx的第一信号亚通道SubTx在正常触控定位区NTSA重新合并,第二信号通道Rx的第二信号亚通道SubRx在正常触控定位区NTSA重新合并。换言之,各个异构触控定位区MTSA中可以设置有触控亚通道(例如第一信号亚通道SubTx或者第二信号亚通道SubRx)以避让透光区AA1,各个正常触控定位区NTSA中各个触控通道TS均不设置触控亚通道。
在本公开的另一种实施方式中,至少部分正常触控定位区NTSA中,触控通道TS也可以设置多条触控亚通道。例如,至少一个异构触控通道MTS所覆盖的各个触控定位区TSA均设置触控亚通道。
在一种示例中,参见图26,在至少部分正常触控定位区NTSA中,桥接部TxB的数量为多个,第一信号电极的第一部分TxPA包括与多个桥接部TxB一一对应的子电极SubTxPA,第一信号电极的第二部分TxPB包括与多个桥接部TxB一一对应的子电极SubTxPB;桥接部TxB与对应的第一信号电极的第一部分的子电极SubTxPA、第一信号电极的第二部分的 子电极SubTxPB电连接;在至少部分正常触控定位区NTSA中,第二触控金属层TMB还包括第二信号电极的第三部分RxPC;沿第二方向DH,第二信号电极的第三部分RxPC位于第一信号电极的第一部分的相邻的子电极SubTxPA之间,第二信号电极的第三部分RxPC通过不同的连接部RxB与第二信号电极的第一部分RxPA、第二信号电极的第二部分RxPB连接。换言之,在至少部分正常触控定位区NTSA中,第一信号通道Tx可以具有多个第一信号亚通道SubTx,第二信号通道Rx保持一个通道。进一步的,在各个正常触控定位区NTSA中,各个第一信号通道Tx均具有多个第一信号亚通道SubTx,每个第一信号亚通道SubTx包括依次连接的第一信号电极的第一部分的子电极SubTxPA、桥接部TxB和第一信号电极的第二部分的子电极SubTxPB。
在另一种示例中,在至少部分正常触控定位区NTSA中,连接部RxB的数量为多个,第二信号电极的第一部分RxPA包括与多个连接部RxB一一对应的子电极SubRxPA,第二信号电极的第二部分RxPB包括与多个连接部RxB一一对应的子电极SubRxPB;连接部RxB与对应的第二信号电极的第一部分的子电极SubRxPA、第二信号电极的第二部分的子电极SubRxPB电连接;在至少部分正常触控定位区NTSA中,第二触控金属层TMB还包括第一信号电极的第三部分TxPC;沿第一方向DV,第一信号电极的第三部分TxPC位于第二信号电极的第一部分的相邻的子电极SubRxPA之间,第一信号电极的第三部分TxPC通过不同的桥接部TxB与第一信号电极的第一部分TxPA、第一信号电极的第二部分TxPB连接。换言之,在至少部分正常触控定位区NTSA中,第二信号通道Rx可以具有多个第二信号亚通道SubRx,第一信号通道Tx保持一个通道。进一步的,在各个正常触控定位区NTSA中,各个第二信号通道Rx均具有多个第二信号亚通道SubRx,每个第二信号亚通道SubRx包括依次连接的第二信号电极的第一部分的子电极SubRxPA、连接部RxB和第二信号电极的第二部分的子电极SubRxPB。
本公开实施方式还提供一种显示装置,该显示装置包括上述显示面板实施方式所描述的任意一种显示面板。该显示装置可以为智能手机屏幕、智能手表屏幕或者其他类型的显示装置。由于该显示装置具有上述显示面 板实施方式所描述的任意一种显示面板,因此具有相同的有益效果,本公开在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (20)

  1. 一种显示面板,包括依次层叠设置的衬底基板、显示层和触控层;所述显示面板的显示区具有透光区;
    所述触控层设置有触控通道,所述触控通道包括沿沿第一方向延伸的第一信号通道和沿第二方向延伸的第二信号通道,所述第二方向和所述第一方向相交;
    其中,与所述透光区相邻的触控通道为异构触控通道,至少一个所述异构触控通道包括多个与所述透光区相邻的异构触控亚通道;
    在所述异构触控通道的多个所述异构触控亚通道中,至少一个所述异构触控亚通道保持连续。
  2. 根据权利要求1所述的显示面板,其中,所述触控层包括依次层叠设置于所述显示层远离所述衬底基板一侧的第一触控金属层、触控绝缘层和第二触控金属层;
    所述第一信号通道在所述第二触控金属层具有沿第一方向依次排列的多个第一信号电极;相邻两个所述第一信号电极之间通过位于所述第一触控金属层或者第二触控金属层的导电结构电连接;
    所述第二信号通道在所述第二触控金属层具有沿第二方向依次排列的多个第二信号电极;相邻两个所述第二信号电极之间通过位于所述第一触控金属层或者第二触控金属层的导电结构电连接。
  3. 根据权利要求2所述的显示面板,其中,各个所述第一信号通道和各个所述第二信号通道限定出阵列分布的多个触控定位区;通过所述触控定位区的所述第一信号通道和所述第二信号通道之间形成互容电容;
    在同一所述触控定位区中,所述显示面板包括分别属于相邻两个第一信号电极的第一信号电极的第一部分和第一信号电极的第二部分、分别属于相邻两个第二信号电极的第二信号电极的第一部分和第二部分;所述第一信号电极的第一部分和所述第一信号电极的第二部分之间电连接,且所述第二信号电极的第一部分和所述第二信号电极的第二部分之间电连接。
  4. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    在至少一个所述异构触控定位区中,所述第一触控金属层设置有桥接 部,所述第一信号电极的第一部分包括至少两个子电极,且至少一个所述第一信号电极的第一部分的子电极通过所述桥接部与所述第一信号电极的第二部分电连接;
    和/或者,
    在至少一个所述异构触控定位区中,所述第一触控金属层设置有桥接部,所述第一信号电极的第二部分包括至少两个子电极,且至少一个所述第一信号电极的第二部分的子电极通过所述桥接部与第一信号电极的第一部分电连接。
  5. 根据权利要求4所述的显示面板,其中,在至少一个所述异构触控定位区中,所述第二触控金属层设置有第二信号电极的第三部分和连接部;沿所述第二方向,所述第二信号电极的第三部分夹设于所述第一信号电极的第一部分的相邻两个子电极之间或者夹设于所述第一信号电极的第二部分的相邻两个子电极之间;
    所述第二信号电极的第一部分和所述第二信号电极的第二部分中的一个,与相邻的所述第二信号电极的第三部分之间通过所述连接部电连接;所述第二信号电极的第一部分和第二部分中的另一个,与相邻的所述第二信号电极的第三部分之间通过位于所述第一触控金属层或者所述第二触控金属层的导电结构电连接。
  6. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    在至少一个所述异构触控定位区中,所述第二触控金属层设置有连接部,所述第二信号电极的第一部分包括至少两个子电极,且至少一个所述第二信号电极的第一部分的子电极通过所述连接部与所述第二信号电极的第二部分电连接;
    和/或者,
    在至少一个所述异构触控定位区中,所述第二触控金属层设置有连接部,所述第二信号电极的第二部分包括至少两个子电极,且至少一个所述第二信号电极的第二部分的子电极通过所述连接部与所述第二信号电极的第一部分电连接。
  7. 根据权利要求6所述的显示面板,其中,在至少一个所述异构触 控定位区中,所述第二触控金属层还设置有第一信号电极的第三部分,第一触控金属层设置有桥接部;沿所述第一方向,所述第一信号电极的第三部分夹设于所述第二信号电极的第一部分的相邻两个子电极之间或者夹设于所述第二信号电极的第二部分的相邻两个子电极之间;
    所述第一信号电极的第一部分和第二部分中的一个,与相邻的所述第一信号电极的第三部分之间通过所述桥接部电连接;所述第二信号电极的第一部分和第二部分中的另一个,与相邻的所述第二信号电极的第三部分之间通过位于所述第一触控金属层或者所述第二触控金属层的导电结构电连接。
  8. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    在至少一个所述异构触控定位区中,所述第二信号电极的第一部分包括多个子电极或者所述第二信号电极的第二部分包括多个子电极,所述第一信号电极的第一部分包括多个子电极或者所述第一信号电极的第二部分包括多个子电极,所述第二触控金属层设置有第二信号电极的第三部分和第一信号电极的第三部分,所述第一触控金属层设置有多个桥接部;
    所述第一信号电极的第三部分与第一部分、第二部分之间通过不同的所述桥接部连接;所述第二信号电极的第一部分和第二部分通过第三部分连接。
  9. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    在至少一个所述异构触控定位区中,所述第二信号电极的第一部分包括多个子电极或者所述第二信号电极的第二部分包括多个子电极,所述第一信号电极的第一部分包括多个子电极或者所述第一信号电极的第二部分包括多个子电极,所述第二触控金属层设置有第二信号电极的第三部分、第一信号电极的第三部分和多个连接部;
    所述第二信号电极的第三部分与第一部分、第二部分之间通过不同的所述连接部连接;所述第一信号电极的第一部分和第二部分通过第三部分连接。
  10. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所 述触控定位区为异构触控定位区;
    至少一个第一信号通道包括位于沿第一方向相邻的两个异构触控定位区中的第一信号亚通道;所述第一信号亚通道包括位于所述第一触控金属层的桥接部,且所述桥接部在各自所在的异构触控定位区中的相对位置不同。
  11. 根据权利要求10所述的显示面板,其中,至少一个所述第一信号亚通道的各个所述桥接部的分布轨迹不平行于所述第一方向。
  12. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    至少一个第二信号通道包括位于沿第二方向相邻的两个异构触控定位区中的第二信号亚通道;所述第二信号亚通道包括位于所述第二触控金属层的连接部,且所述连接部在各自所在的异构触控定位区中的相对位置不同。
  13. 根据权利要求12所述的显示面板,其中,至少一个所述第二信号亚通道的各个所述连接部的分布轨迹不平行于所述第二方向。
  14. 根据权利要求3所述的显示面板,其中,与所述透光区相交的所述触控定位区为异构触控定位区;
    在至少一个所述异构触控定位区中,所述第一信号通道包括多个第一信号亚通道;沿所述第一方向,至少一个所述第一信号亚通道靠近所述透光区的端部与所述透光区之间,间隔有所述第二信号通道。
  15. 根据权利要求3~12任意一项所述的显示面板,其中,不与所述透光区相交的触控定位区为正常触控定位区;
    在所述正常触控定位区,所述第一触控金属层设置有桥接部,所述第一信号电极的第一部分和第二部分之间通过所述桥接部电连接;
    在所述正常触控定位区,所述第二触控金属层设置有连接部,所述第二信号电极的第一部分和第二部分之间通过所述连接部电连接。
  16. 根据权利要求15所述的显示面板,其中,在所述正常触控定位区中,所述第一信号电极的第一部分、所述第一信号电极的第二部分和所述桥接部的数量为一个,所述第二信号电极的第一部分、所述第二信号电极的第二部分和所述连接部的数量为一个。
  17. 根据权利要求15所述的显示面板,其中,在至少部分所述正常触控定位区中,所述桥接部的数量为多个,所述第一信号电极的第一部分包括与多个所述桥接部一一对应的子电极,所述第一信号电极的第二部分包括与多个所述桥接部一一对应的子电极;所述桥接部与对应的所述第一信号电极的第一部分的子电极、所述第一信号电极的第二部分的子电极电连接;
    在至少部分所述正常触控定位区中,所述第二触控金属层还包括第二信号电极的第三部分;沿所述第二方向,所述第二信号电极的第三部分位于所述第一信号电极的第一部分的相邻的子电极之间,所述第二信号电极的第三部分通过不同的连接部与所述第二信号电极的第一部分、所述第二信号电极的第二部分连接。
  18. 根据权利要求15所述的显示面板,其中,在至少部分所述正常触控定位区中,所述连接部的数量为多个,所述第二信号电极的第一部分包括与多个所述连接部一一对应的子电极,所述第二信号电极的第二部分包括与多个所述连接部一一对应的子电极;所述连接部与对应的所述第二信号电极的第一部分的子电极、所述第二信号电极的第二部分的子电极电连接;
    在至少部分所述正常触控定位区中,所述第二触控金属层还包括第一信号电极的第三部分;沿所述第二方向,所述第一信号电极的第三部分位于所述第二信号电极的第一部分的相邻的子电极之间,所述第一信号电极的第三部分通过不同的桥接部与所述第一信号电极的第一部分、所述第一信号电极的第二部分连接。
  19. 根据权利要求3~12任意一项所述的显示面板,其中,所述透光区与四个触控定位区相交,所述四个触控定位区呈两行两列分布。
  20. 一种显示装置,包括权利要求1~19任意一项所述的显示面板。
PCT/CN2022/096392 2022-05-31 2022-05-31 显示面板和显示装置 WO2023230893A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001565.4A CN117529702A (zh) 2022-05-31 2022-05-31 显示面板和显示装置
PCT/CN2022/096392 WO2023230893A1 (zh) 2022-05-31 2022-05-31 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096392 WO2023230893A1 (zh) 2022-05-31 2022-05-31 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023230893A1 true WO2023230893A1 (zh) 2023-12-07

Family

ID=89026698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096392 WO2023230893A1 (zh) 2022-05-31 2022-05-31 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN117529702A (zh)
WO (1) WO2023230893A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545085A (zh) * 2018-11-22 2019-03-29 武汉天马微电子有限公司 显示面板和显示装置
CN110007804A (zh) * 2019-04-16 2019-07-12 京东方科技集团股份有限公司 一种触控模组及显示装置
CN111984153A (zh) * 2020-08-31 2020-11-24 武汉天马微电子有限公司 一种显示面板以及显示装置
US20210200364A1 (en) * 2019-12-27 2021-07-01 Lg Display Co., Ltd. Touch display device
CN114201066A (zh) * 2020-09-17 2022-03-18 京东方科技集团股份有限公司 触控基板、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109545085A (zh) * 2018-11-22 2019-03-29 武汉天马微电子有限公司 显示面板和显示装置
CN110007804A (zh) * 2019-04-16 2019-07-12 京东方科技集团股份有限公司 一种触控模组及显示装置
US20210200364A1 (en) * 2019-12-27 2021-07-01 Lg Display Co., Ltd. Touch display device
CN111984153A (zh) * 2020-08-31 2020-11-24 武汉天马微电子有限公司 一种显示面板以及显示装置
CN114201066A (zh) * 2020-09-17 2022-03-18 京东方科技集团股份有限公司 触控基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN117529702A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN112071882B (zh) 显示基板及其制备方法、显示装置
JP6756538B2 (ja) 表示装置
US20180033843A1 (en) Pixel structure and display panel
US11994778B2 (en) Color filter substrate and display panel
CN104752482A (zh) 有机发光二极管显示装置
KR102443121B1 (ko) 디스플레이 패널 및 그 제조 방법 및 디스플레이 디바이스
US20240008331A1 (en) Display device
CN111309171A (zh) 触摸面板和触摸显示装置
KR20170019548A (ko) 표시 장치
US20220392993A1 (en) Display substrate and display device
US10770014B2 (en) Display device
CN113937236A (zh) 显示基板及其制备方法、显示装置
JP2023531339A (ja) 表示パネル及び表示装置
KR20190031407A (ko) 터치 센서 및 이를 포함하는 표시 장치
CN114628481A (zh) 显示面板及显示装置
US11903251B2 (en) Display device having touch sensor
US20230337469A1 (en) Display device
US20240196689A1 (en) Display panel, display module, and display device
WO2023230893A1 (zh) 显示面板和显示装置
CN218353029U (zh) 显示面板及显示装置
CN113272965A (zh) 显示面板及显示装置
CN115220269B (zh) 显示面板及显示装置
CN113193031B (zh) 显示面板和显示装置
KR20070005983A (ko) 표시 기판, 이의 제조 방법 및 이를 갖는 표시 장치
WO2023020326A1 (zh) 显示面板及其制作方法和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944230

Country of ref document: EP

Kind code of ref document: A1