WO2023228878A1 - Polyamide modified cross-section fiber and fiber formed from core-sheath composite yarn - Google Patents

Polyamide modified cross-section fiber and fiber formed from core-sheath composite yarn Download PDF

Info

Publication number
WO2023228878A1
WO2023228878A1 PCT/JP2023/018709 JP2023018709W WO2023228878A1 WO 2023228878 A1 WO2023228878 A1 WO 2023228878A1 JP 2023018709 W JP2023018709 W JP 2023018709W WO 2023228878 A1 WO2023228878 A1 WO 2023228878A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
core
sheath
cross
section
Prior art date
Application number
PCT/JP2023/018709
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 渡邉
泰輔 岸田
千奈美 兼田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023228878A1 publication Critical patent/WO2023228878A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a polyamide multifilament of irregular cross section used for clothing applications. More specifically, by using a multifilament made of polyamide modified cross-section fibers having specific grooves in clothing, it is possible to provide a woven or knitted fabric with excellent water repellency, practical durability, and color fastness.
  • Synthetic fibers such as polyamide and polyester have excellent mechanical and chemical properties, and are therefore widely used in clothing and industrial applications.
  • Patent Document 1 proposes a composite fiber having a so-called gear-shaped cross section, which has a protrusion shape with alternating protrusions and grooves in the core.
  • Patent Document 2 proposes a composite fiber that has a groove in its core and has a cross section in which the width of the wide part of the groove is 1.3 times or more the width of the groove entrance.
  • Patent Document 3 proposes a fiber having 20 or more grooves on the fiber surface with a groove depth that is twice or more the groove width.
  • the woven or knitted fabric undergoes complex deformation due to the intense action of wearing it.
  • it is required to have practical durability that is resistant to deformation, abrasion, and tearing, as well as washing durability that maintains functionality and does not fade.
  • the fibers described in Patent Document 1 and Patent Document 2 become fabrics made of polyamide fibers having a gear-shaped cross section and a teardrop-shaped slit cross section after the sheath component is eluted and removed, and the fibers have water repellency and washing durability. Although it has excellent durability, it has poor practical durability against scratches and tears, and color fading occurs when washed.
  • the fibers described in Patent Document 3 exhibit water-repellent properties due to the grooves, the grooves are deep, so the protrusions formed by the grooves are likely to peel off from the roots due to rubbing and deformation due to wear, making it difficult to use against friction. It has poor durability, and its water repellency is also poor in washing durability and color fading occurs.
  • the present invention solves the above problems, and provides polyamide irregular cross-section fibers that have excellent water repellency and water repellency durability, tear and abrasion resistance, practical durability, and washing dye fastness, and the polyamide irregular cross-section fibers. It is a fiber made of core-sheath type composite yarn that can provide the following properties.
  • the present invention employs the following configuration.
  • a plurality of grooves exist on the outer periphery of the fiber cross section of a single fiber, and the radius of curvature d of the entrance corner of the groove, the groove depth H, and the circumscribed circle diameter D of the fiber cross section are expressed by the following formula (1),
  • the radius of curvature d of the inlet corner, the groove depth H, and the circumscribed circle diameter D of the cross-sectional shape of the core part satisfy the following formulas (1) and (2), d/D ⁇ 0.030...Formula (1) 0.10 ⁇ (H/D) ⁇ 0.30...Formula (2)
  • a fiber made of a core-sheath type composite yarn whose elongation and strength before and after dissolving and removing the sheath portion satisfy the following formulas (3) and (4).
  • the polyamide irregular cross-section fiber of the present invention and the fiber made of the core-sheath type composite yarn have excellent water-repellent performance and water-repellent durability even under usage environments where textile products are subject to elongation, bending, and harsh abrasion during use. It is possible to provide a woven or knitted fabric that is excellent in practical durability, resistant to tearing and abrasion, and excellent in washing color fastness.
  • FIG. 1 is a cross-sectional view for explaining the polyamide irregular cross-section fiber of the present invention.
  • (a) is a cross-sectional view of a single yarn of a polyamide irregular cross-section fiber, showing the circumscribed circle diameter D and the groove depth H.
  • (b) and (c) are cross-sectional aspects of one embodiment of the core-sheath type composite yarn of the present invention,
  • (b) is a polyamide modified cross-section fiber with a sheath polymer arranged only in the groove, and
  • (c) is a polyamide fiber with a modified cross-section.
  • a sheath polymer is arranged to cover the entire core polymer, including grooves of irregular cross-section fibers.
  • FIG. 2 is a schematic diagram for explaining the radius of curvature d of the entrance corner of the groove of the polyamide irregular cross-section fiber of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of a manufacturing apparatus that can be preferably used in the method for manufacturing a core-sheath type composite yarn of the present invention.
  • the polyamide referred to in the present invention is a resin consisting of a high molecular weight body in which a so-called hydrocarbon group is connected to the main chain via an amide bond.
  • Such polyamides have excellent spinning properties and mechanical properties, and are mainly polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecanoamide (nylon 11), polypentamethylene adipamide ( Nylon 56), polypentamethylene sepacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), etc., and copolymers containing these as main components are preferred; polycarbonate is difficult to gel and has good spinning properties.
  • Proamide (nylon 6) is more preferred.
  • the above-mentioned "mainly” means, for example, in the case of polycaproamide, the ⁇ -caprolactam unit constituting the polycaproamide is 80 mol% or more, more preferably 90 mol% or more.
  • Other components include, but are not particularly limited to, polydodecanamide, polyhexamethylene adipamide, polyhexamethylene azeramide, polyhexamethylene sebacamide, polyhexamethylene dodecanoamide, polymethaxylylene adipamide, etc. Units such as aminocarboxylic acid, dicarboxylic acid, and diamine, which are monomers constituting polyamide, polyhexamethylene terephthalamide, polyhexamethylene isophthalamide, etc., can be mentioned.
  • titanium oxide is often used as a matting agent for polyamide, but the polyamide of the present invention may also contain titanium oxide as a matting agent.
  • the content of titanium oxide may be set as appropriate within a range that does not impede the effects of the present invention, and the preferred range is 0 to 2% by weight.
  • various additives other than the above-mentioned titanium oxide may be contained within a range that does not impede the effects of the present invention. Examples of such additives include stabilizers such as manganese compounds, heat resistant agents, and flame retardants.
  • the cross-sectional shape has a plurality of grooves formed on the outer periphery.
  • Water repellency is achieved by trapping an air layer between the water droplets and the fiber surface through the grooves. Furthermore, when applying a water repellent finish, since the inside of the groove is not subject to external abrasion, the water repellent that has penetrated inside the groove is difficult to fall off, resulting in water repellency and durability.
  • the preferred number of grooves is 3 to 16.
  • the shape of the groove is such that the radius of curvature d of the entrance corner of the groove, the groove depth H, and the circumscribed circle diameter D of the fiber cross section satisfy the following formulas (1) and (2). d/D ⁇ 0.030...Formula (1) 0.10 ⁇ (H/D) ⁇ 0.30...Formula (2)
  • the surface form that allows the fabric to exhibit water repellency as a woven or knitted fabric and the prevention of shedding of the water repellent agent make it possible to exhibit excellent water repellency and durability even under harsh usage environments. can.
  • the ratio of the radius of curvature d of the entrance corner of the groove to the diameter D of the circumscribed circle of the fiber cross section (hereinafter referred to as d/D) is 0.030 or less.
  • the entrance corner of the groove is an acute-angled portion near the entrance of the groove in the fiber cross section of the polyamide irregular cross-section fiber (see FIG. 2).
  • the circumscribed circle diameter D of the fiber cross section is the circumscribed circle diameter of the fiber cross section of the polyamide irregular cross section fiber (D in FIG. 1(a)).
  • d/D By setting d/D to 0.030 or less, when water droplets come into contact with the fibers, it is difficult for water droplets to enter the grooves, and furthermore, the air taken in acts to push up the water droplets, making it possible to maintain an air layer. , can maintain water repellency. When d/D exceeds 0.030, water droplets easily enter the grooves and structural water repellency cannot be exhibited.
  • d/D is 0.025 or less. More preferably, d/D is 0.022 or less.
  • the ratio of the groove depth H to the circumscribed circle diameter D of the fiber cross section (hereinafter referred to as H/D) is 0.10 or more and 0.30 or less.
  • the groove depth H is the length from the circumscribed circle in the fiber cross section of the polyamide irregular cross-section fiber to the groove bottom surface (H in FIG. 1(a)).
  • H/D is 0.12 or more and less than 0.28. More preferably, H/D is 0.15 or more and less than 0.25.
  • the polyamide irregular cross-section fiber of the present invention has a rigid amorphous content of 35% to 55%.
  • the rigid amorphous amount is the amount of amorphous that can be determined by the method explained in the Examples section, and is an intermediate state between a crystal and a mobile amorphous, in which molecular motion freezes even above the glass transition temperature (Tg). It is an amorphous material that becomes fluid at a temperature higher than Tg. (For example, see Minoru Totoki, “DSC (3) -Glass transition behavior of polymers-”, Journal of the Japan Institute of Fiber Science and Technology, Vol. 65, No.
  • the amount of rigid amorphous is 38 to 52%.
  • the polyamide irregular cross-section fiber of the present invention is made from a composite yarn having a core-sheath cross-sectional shape, in which the core is a polyamide polymer and the sheath is a thermoplastic polymer that dissolves in alkali or hot water. It can be obtained by elution and removal.
  • the cross-sectional shape of the core is the same as that of the polyamide irregular cross-section fiber of the present invention.
  • the sheath component of the core-sheath type composite yarn of the present invention is made of a thermoplastic polymer that dissolves in alkali or hot water, and the core component is made of a polyamide polymer.
  • the higher the elution rate ratio of the core component and sheath component to the solvent (alkali or hot water), the better the combination, and the elution rate ratio is preferably 10 times or more, and the polymer is selected with a range of 3000 times or less as a guide. can do. More preferably, the elution rate ratio is 100 times or more, and still more preferably 1000 times or more.
  • sheath component examples include polyethylene terephthalate and its copolymers, polylactic acid, polyamide copolymers, polystyrene and its copolymers, polyethylene, polyvinyl alcohol, etc., which can be melt-molded and are more easily eluted than the core component. Select from polymers that show: In composite spinning that passes through the same die, the core component polyamide needs to have heat resistance under melt spinning conditions, and the sheath component is preferably polyethylene terephthalate, its copolymer, or polylactic acid.
  • the cross-sectional shape of the core of the core-sheath type composite yarn of the present invention is an irregular cross-section, and by forming a sharp cross-section, high water-repellent performance can be expressed.
  • polyamide with high wear resistance is selected as the core component.
  • Preferred core components include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecanoamide (nylon 11), polypentamethylene adipamide (nylon 56), and polypentamethylene cepacamide. (nylon 510) and polyhexamethylene sebacamide (nylon 610).
  • the change in elongation before and after dissolving and removing the sheath is: Fiber elongation Ea after dissolving and removing the sheath / Fiber elongation Eb before dissolving and removing the sheath ⁇ 1.30.
  • Ea/Eb By setting Ea/Eb within such a specified range, a woven or knitted fabric with excellent washing color fastness can be obtained. If Ea/Eb exceeds 1.30, the color fastness to washing will be poor.
  • Ea/Eb is 1.10 or less.
  • the change in strength before and after dissolving and removing the sheath is as follows: Fiber strength Sa after dissolving and removing the sheath/Fiber strength Sb before dissolving and removing the sheath ⁇ It is 0.95.
  • Sa/Sb Fiber strength
  • a woven or knitted fabric can be produced that is resistant to tearing and abrasion and has practical durability.
  • Sa/Sb is less than 0.95, the fiber strength is insufficient and tends to tear easily, resulting in poor practical durability.
  • Sa/Sb is 1.00 or more.
  • the polyamide irregular cross-section fiber of the present invention is produced by manufacturing a fiber consisting of a core-sheath type composite yarn having a polyamide polymer as a core component with an irregular cross-sectional shape and a thermoplastic polymer soluble in alkali or hot water as a sheath component, and then performing high-order processing. It can be obtained by eluting and removing the sheath component during the process.
  • FIG. 3 shows an embodiment of a manufacturing apparatus preferably used in a method for manufacturing fibers made of core-sheath type composite yarns.
  • a method for spinning fibers made of the core-sheath type composite yarn of the present invention composite spinning by melt spinning is suitable from the viewpoint of increasing productivity. It is also possible to obtain fibers made of core-sheath type composite yarns by solution spinning or the like.
  • each filament discharged from the composite spinneret 1 is cooled to room temperature by a gas supply device 2 that blows out steam to prevent staining of the spinneret over time, and a cooling device 3. Cool until solidified. Thereafter, a lubricant is applied by an oil supply device 4, and each filament is bundled by a fluid nozzle device 5 to form a multifilament, which is stretched by a take-up roller 6 and a stretching roller 7, and then wound up by a winding device 8.
  • the melt viscosity of the polyamide resin chips used is preferably in the range of 300 poise to 2000 poise. The measurement method will be explained in the Examples section below.
  • melt viscosity of the polyamide resin chip is 1800 poise or less, the extrusion pressure of the molten polymer during spinning and its rate of increase over time can be suppressed, and excessive load on production equipment and the replacement cycle of the spinnerets can be suppressed. It is more preferable because it can extend the period of time and ensure productivity.
  • melt viscosity of the easily dissolvable thermoplastic polymer resin chips used is preferably in the range of 300 poise to 1500 poise. The measurement method will be explained in the Examples section below.
  • the above-mentioned rigid amorphous amount, elongation change Ea/Eb, and strength change Sa/Sb can be achieved.
  • the polyamide modified cross-section fiber and core-sheath type composite yarn of the present invention it is important to control the orientation of each polymer component before drawing in order to achieve the desired rigid amorphous content. be.
  • the difference in melting point between the core component and the sheath component is 50° C. or less.
  • the melting temperature is 20°C higher than the respective melting points (Tm) of the polyamide and the easily dissolvable polymer (Tm + 20°C) or higher; Moreover, it is preferable to melt at a temperature that is 95° C. higher than Tm (Tm+95° C.) or lower. By setting it within such a specified range, the melt viscosity becomes suitable for melt spinning, so stable yarn spinning becomes possible.
  • the ratio of the core component and sheath component when spinning the core-sheath type composite yarn is the core/sheath ratio based on the discharge amount.
  • the ratio can be selected within the range of 50/50 to 90/10.
  • increasing the core ratio is preferable from the viewpoint of productivity of the core-sheath type composite yarn.
  • the core/sheath ratio is more preferably 70/30 to 90/10, as long-term stability of the core-sheath type cross-section and the irregular-shaped cross-section can be manufactured efficiently and in a well-balanced manner while maintaining stability.
  • the polyamide irregular cross-section fiber of the present invention in order to achieve the desired rigidity and amorphous content, it is necessary to control the orientation of the polyamide core before drawing when spinning fibers made of core-sheath type composite yarns. It is important to. That is, the spinning conditions of the spinning draft and cooling should be optimized.
  • the spinning draft of the spinning conditions is the ratio of the take-up roller speed to the discharge linear speed (hereinafter referred to as draft ratio), and is preferably controlled to 75 to 300.
  • draft ratio the ratio of the take-up roller speed to the discharge linear speed
  • the higher the draft ratio the easier the orientation of the polyamide progresses, but from the viewpoint of spinning properties, yarn breakage increases and productivity is significantly reduced, so the draft ratio is preferably 300 or less.
  • the orientation of the polyamide advances and the desired rigid amorphous content can be achieved, and the difference in orientation between the polymers of the core and sheath components can be suppressed, and the elongation change Ea/Eb and the strength change Sa/Sb can be suppressed. Can be made smaller.
  • the solidification point of the discharged polymer entering the cooling zone is brought as close to the upper end of the cooling zone as possible. It is preferable that the vertical distance LS (hereinafter referred to as cooling start distance LS) from the lower surface of the spinneret to the upper end of the cooling air blowing part of the cooling device 3 is 30 mm to 120 mm.
  • the cooling start distance LS By setting the cooling start distance LS to 120 mm or less, the solidification point is increased to promote orientation during spinning, increasing rigid amorphism, and reducing the difference in solidification point between the core component and sheath component polymers to reduce the orientation difference. By making it small, the elongation change Ea/Eb and the strength change Sa/Sb can be suppressed. Further, by quickly solidifying the fiber cross section formed using a composite spinneret, a desired irregular cross section can be obtained.
  • the cooling start distance LS is 30 mm or more, it is possible to moderate the orientation during spinning, promote oriented crystallization during drawing, and exhibit strength.
  • the cooling air velocity is preferably 50 m/min or less.
  • the temperature of the cooling air in the cooling region is also an important factor in heat exchange, and the temperature of the cooling air is preferably 20° C. or less.
  • the temperature of the cooling air is preferably 20° C. or less.
  • the polyamide irregular cross-section fiber of the present invention is a woven or knitted fabric having at least a portion of the fiber made of the above-mentioned core-sheath type composite yarn, and a thermoplastic polymer which is dissolved in alkali or hot water as a sheath component. By elution and removal, it is possible to obtain a woven or knitted fabric having at least a portion of polyamide fibers with irregular cross-sections.
  • Elution and removal of sheath components refers to elution and removal of 99% or more of the sheath components using alkali or hot water as a solvent.
  • the alkali concentration and temperature in elution and removal can be set arbitrarily, but for example, in the case of sodium hydroxide, it is possible to treat with a 1.0% to 8.0% by weight aqueous solution at 80°C to 100°C. preferable.
  • melt viscosity The melt viscosity (poise) of the resin chip sample was measured using a capillary flow tester under the conditions of pore diameter 1.0 mm, pore length 10.00 mm, melting temperature 290° C., and shear rate 1216 sec ⁇ 1 .
  • the rigid amorphous amount of the fiber sample was measured using a differential scanning calorimeter Q1000 manufactured by TA Instruments as a measuring instrument.
  • ⁇ Hm0 is the heat of fusion of polyamide (perfect crystal).
  • ⁇ Cp0 is the difference in specific heat before and after the glass transition temperature (Tg) of polyamide (completely amorphous).
  • Crystallinity Xc and mobile amorphous amount Xma were determined based on the following equations.
  • the rigid amorphous amount Xra was calculated from Xc and Xma.
  • the amount of rigid amorphous crystals was calculated from the average value of two measurements.
  • an embedding agent such as epoxy resin and section it with a microtome to create a fiber cross section.
  • the obtained fiber cross section is observed with a transmission microscope at a magnification that allows observation of one single fiber, and three fibers are randomly selected and the fiber cross section is photographed.
  • d of one single yarn is a value obtained by rounding off the average value of d1, d2, . . . dn to the second decimal place.
  • H and D of one single yarn are values obtained by rounding off the average value of the measured values to the second decimal place.
  • Elongation change Ea/Eb, strength change Sa/Sb The fibers made of core-sheath type composite yarns collected under each spinning condition of Examples and Comparative Examples were set in a 1.125 m/circummeter measuring device, rotated 10 times, taken out from the skein, and filled with a solvent that dissolves the sheath components. After removing 99% or more of the sheath component in the elution bath (bath ratio 100), the elongation and strength were measured as in Section E above. The value obtained by dividing the strength Sa or elongation Ea after elution by the strength Sb or elongation Eb before elution was defined as elongation change Ea/Eb and strength change Sa/Sb.
  • the sheath component was removed by immersing it in a 6.0% by weight aqueous sodium hydroxide solution heated to 95° C. for 30 minutes.
  • Fabric evaluation (a) Water-repellent performance Example 1 Fabric samples were prepared by cutting out 10 pieces of fabric produced using the same manufacturing method to a sample size of 20 cm x 20 cm. For each sample, draw a circle with a diameter of 11.2 cm in the center, stretch it so that the area of the circle is expanded by 80%, attach it to a test piece holding frame used for water repellency test (JIS L1092), and perform a spray test. (JIS L1092 (2020) "Waterproofness Testing Method for Textile Products”), the grade was determined, and the average value of the grade determination results of 10 samples was taken as the water repellent performance. S: 4th grade or above A: 3rd grade or above B: Less than 3rd grade C: 2nd grade or below 3rd grade or above was considered a pass.
  • Example 1 As a core component polyamide polymer, a nylon 6 (N6) chip having a melt viscosity of 1500 poise, a melting point of 225° C., and containing no titanium oxide was dried in a conventional manner to a moisture content of 0.03% by mass or less.
  • thermoplastic polymer for the sheath component a polyethylene terephthalate (PET) chip with a melt viscosity of 850 poise, a melting point of 260° C., and containing no titanium oxide was dried in a conventional manner to a moisture content of 0.015% by mass or less.
  • PET polyethylene terephthalate
  • N6 chips and PET chips were melted separately at 290°C, the core:sheath weight ratio was 80:20, and the cross section shown in Figure 1(b) was obtained using a composite spinneret (pore diameter 0.22 mm, 72 holes). (discharge amount 44.4 g/min).
  • the fibers were spun using a composite spinning machine of the embodiment shown in FIG.
  • Each filament discharged from the composite spinneret 1 is passed through an annular cooling device 3 that blows out cooling rectified air at a cooling start distance LS of 100 mm, a cooling air temperature of 18° C., and a cooling air speed of 35 m/min to bring the yarn to room temperature. Cooled and solidified.
  • a lubricant was applied at a lubricating position Lg of 1000 mm from the bottom surface of the spinneret, and each filament was converged to form a multifilament, and the fluid nozzle device 5 imparted convergence. Convergence was imparted by injecting high-pressure air onto the running yarn within the fluid nozzle device 5.
  • the draft ratio is set to 100, and the fiber is drawn at a draw ratio of 2.2 times between the take-up roller 6 and the drawing roller 7, and is wound up by the winding device 8 to obtain a fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments. Obtained.
  • the fibers made of the obtained core-sheath type composite yarn were used for the warp and weft, and were woven in a plain weave with a warp density of 188 threads/2.54 cm and a weft density of 155 threads/2.54 cm.
  • the obtained gray fabric was dyed and water-repellent treated under the following conditions (a) to (g) to obtain a woven fabric with a warp density of 200 threads/2.54 cm and a weft density of 160 threads/2.54 cm.
  • Table 1 shows the results of evaluating the fabrics using the obtained polyamide irregular cross-section fibers.
  • Example 2 [Comparative example 1] [Comparative example 4] A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1, except that the draft ratio of the spinning conditions was changed as shown in Table 1 and the amount of rigid amorphous was changed, and a woven fabric was obtained. I got it. The evaluation results are shown in Table 1.
  • Example 3 A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1, except that the cooling air velocity was changed as shown in Table 2 and the fiber properties including the rigid amorphous content were changed. , obtained the fabric. The evaluation results are shown in Table 2.
  • Example 4 A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was produced in the same manner as in Example 1, except that the cooling start distance LS was changed as shown in Table 2 and the fiber properties including the rigid amorphous content were changed. The fabric was obtained. The evaluation results are shown in Table 2.
  • Example 5 Except that the thermoplastic polymer of the sheath component was changed to a copolymerized PET chip (melt viscosity 750 poise, melting point 240°C) made by copolymerizing 8.0 mol% of 5-sodium sulfoisophthalic acid and 10% by weight of polyethylene glycol with a molecular weight of 1000.
  • a copolymerized PET chip melt viscosity 750 poise, melting point 240°C
  • fibers consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments were obtained to obtain a woven fabric.
  • the evaluation results are shown in Table 3.
  • Example 6 [Example 7] As shown in Table 3, the core component polyamide polymer was changed to N66 chips (melt viscosity 550 poise, melting point 265 °C) and N610 chips (melt viscosity 570 poise, melting point 225 °C), the discharge rate was 48.4 g/min, and the stretching ratio was changed to A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1 except that the fiber was changed to 2.4 times, and a woven fabric was obtained. The evaluation results are shown in Table 3.
  • the core component polyamide polymer has a melt viscosity of 1200 poise, the melting point 225°C, and an N6 chip that does not contain titanium oxide.
  • the sheath component thermoplastic polymer includes 8.0 mol% of 5-sodium sulfoisophthalic acid and polyethylene glycol 10 with a molecular weight of 1000.
  • a copolymerized PET chip (melt viscosity 450 poise, melting point 240°C) was prepared by copolymerizing PET chips (melt viscosity 450 poise, melting point 240°C), and separately melted at 270°C, with a core:sheath weight ratio of 8:2, and a composite spinneret (pore diameter 0.3 mm, 24 holes) so as to have the cross section shown in FIG. 1(b) (discharge amount: 29.4 g/min). After the melted and discharged yarn was cooled and solidified, an oil agent was applied thereto and the yarn was wound at a spinning speed of 1200 m/min to obtain an undrawn fiber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Provided is woven fabric or knitted fabric demonstrating excellent water repellency, practical durability, and color fastness when modified cross-section polyamide multi filaments used for woven fabric or knitted fabric in clothing application are used as clothing materials. The polyamide modified cross-section fiber according to the present invention has multiple grooves on the outer periphery of the fiber cross-section of a single fiber and has a modified cross-sectional shape in which the curvature radius d of the inlet corner part of the grooves, the groove depth H, and the diameter D of the circumscribed circle of the fiber cross-section satisfy formula (1) and formula (2). The rigid amorphous amount of the polyamide modified cross-section fiber is 35%-55%. Formula (1): d/D ≤ 0.030 Formula (2): 0.10 ≤ (H/D) ≤ 0.30

Description

ポリアミド異形断面繊維、および芯鞘型複合糸からなる繊維Fiber consisting of polyamide irregular cross-section fiber and core-sheath type composite yarn
 本発明は、衣料用途に用いられる異形断面ポリアミドマルチフィラメントに関するものである。さらに詳しくは、特定の溝部を有するポリアミド異形断面繊維からなるマルチフィラメントを衣料に用いることで、優れた撥水性能、実用耐久性、染色堅牢度に優れる織物または編物を提供することができる。 The present invention relates to a polyamide multifilament of irregular cross section used for clothing applications. More specifically, by using a multifilament made of polyamide modified cross-section fibers having specific grooves in clothing, it is possible to provide a woven or knitted fabric with excellent water repellency, practical durability, and color fastness.
 ポリアミドやポリエステル等の合成繊維は、機械的・化学的性質において優れた特性を有することから衣料用途や産業用途で広く利用されている。 Synthetic fibers such as polyamide and polyester have excellent mechanical and chemical properties, and are therefore widely used in clothing and industrial applications.
 登山やトレッキング、ウインタースポーツなどのスポーツ用途では、高い撥水性能、実用耐久性が求められており、更には、洗濯堅牢度が必要となる。
繊維製品に撥水機能を付与するには、繊維を織編みして布帛に仕立てた後に、繊維あるいは繊維製品の表層に、撥水皮膜の形成が可能な、いわゆる撥水剤にて処理して撥水機能を付与する撥水加工を施すことが一般的である。
For sports applications such as mountain climbing, trekking, and winter sports, high water repellency and practical durability are required, as well as washing fastness.
To impart water-repellent functionality to textile products, after weaving and knitting the fibers into fabric, the surface layer of the fibers or textile products is treated with a so-called water-repellent agent that can form a water-repellent film. It is common to apply a water-repellent finish to provide a water-repellent function.
 優れた撥水皮膜を形成させることを狙って、薬剤組成やこれを強固に定着する加工条件やプロセス方法などの高次加工技術等の検討に加え、基材である布帛に特異な表面形態を形成させることで、物理的に撥水性能やその耐久性を高める、いわゆるロータス効果を狙う繊維の異形断面化の技術も検討されている。 In order to form an excellent water-repellent film, in addition to examining high-order processing techniques such as chemical composition, processing conditions and process methods to firmly fix it, we also developed a unique surface morphology for the base material, fabric. Techniques are also being considered to create irregular cross-sections of fibers that aim to create the so-called lotus effect, which physically increases water repellency and durability.
 例えば、特許文献1には、芯部に突起部と溝部を交互に有した突起形状を有した、いわゆるギア型断面を有する複合繊維が提案されている。特許文献2には、芯部に溝部を有し、溝の広幅部幅が溝入口幅の1.3倍以上ある断面を有する複合繊維が提案されている。特許文献3には、繊維表面に、溝幅の2倍以上の溝の深さのある溝を20個以上有する繊維が提案されている。 For example, Patent Document 1 proposes a composite fiber having a so-called gear-shaped cross section, which has a protrusion shape with alternating protrusions and grooves in the core. Patent Document 2 proposes a composite fiber that has a groove in its core and has a cross section in which the width of the wide part of the groove is 1.3 times or more the width of the groove entrance. Patent Document 3 proposes a fiber having 20 or more grooves on the fiber surface with a groove depth that is twice or more the groove width.
国際公開第2016-129467号International Publication No. 2016-129467 日本国特開2019-26944号公報Japanese Patent Application Publication No. 2019-26944 日本国特開2003-129327号公報Japanese Patent Application Publication No. 2003-129327
 スポーツ衣料用途においては、着用の動作が激しいので織物または編物は複雑な変形を受ける。また、洗濯頻度も多くなるため、変形、擦れや破れに強い実用耐久性、機能性維持や色落ちしない洗濯耐久性が要求される。 In sports clothing applications, the woven or knitted fabric undergoes complex deformation due to the intense action of wearing it. In addition, since washing becomes more frequent, it is required to have practical durability that is resistant to deformation, abrasion, and tearing, as well as washing durability that maintains functionality and does not fade.
 しかしながら、特許文献1や特許文献2に記載の繊維は、鞘成分を溶出除去した後にギア型断面、涙滴型スリット断面を有するポリアミド繊維からなる布帛となり、撥水性能および撥水性能の洗濯耐久性は優れるものの、擦れや破れに対する実用耐久性は劣り、洗濯による色落ちも発生する。また、特許文献3に記載の繊維も、溝によって撥水性能は発現するものの、溝が深い故に着用に伴う擦れや変形により、溝により形成された突起部が根元から剥離しやすく、擦れに対する実用耐久性に劣り、洗濯による撥水性能の洗濯耐久性も劣り色落ちも発生する。 However, the fibers described in Patent Document 1 and Patent Document 2 become fabrics made of polyamide fibers having a gear-shaped cross section and a teardrop-shaped slit cross section after the sheath component is eluted and removed, and the fibers have water repellency and washing durability. Although it has excellent durability, it has poor practical durability against scratches and tears, and color fading occurs when washed. In addition, although the fibers described in Patent Document 3 exhibit water-repellent properties due to the grooves, the grooves are deep, so the protrusions formed by the grooves are likely to peel off from the roots due to rubbing and deformation due to wear, making it difficult to use against friction. It has poor durability, and its water repellency is also poor in washing durability and color fading occurs.
 本発明は、上記問題を解決するものであり、撥水性能および撥水耐久性に優れ、破れや擦れに強い実用耐久性、洗濯染色堅牢度に優れたポリアミド異形断面繊維および該ポリアミド異形断面繊維を提供できる芯鞘型複合糸からなる繊維である。 The present invention solves the above problems, and provides polyamide irregular cross-section fibers that have excellent water repellency and water repellency durability, tear and abrasion resistance, practical durability, and washing dye fastness, and the polyamide irregular cross-section fibers. It is a fiber made of core-sheath type composite yarn that can provide the following properties.
 上記課題を解決するため、本発明は以下の構成を採用する。
(1)単繊維の繊維横断面の外周に溝部が複数個存在し、該溝部の入口角部の曲率半径d、溝部深さHおよび繊維横断面の外接円直径Dが下式(1)、式(2)を満たす異形断面形状であり、剛直非晶量が35%以上55%以下であるポリアミド異形断面繊維。
d/D≦0.030・・・式(1)
0.10≦(H/D)≦0.30・・・式(2)
(2)鞘部にアルカリまたは熱水に溶解する熱可塑性ポリマー、芯部にポリアミドポリマーを配する芯鞘型断面形状を有し、芯部の断面形状が溝部を複数個有し、該溝部の入口角部の曲率半径d、溝部深さHおよび芯部の断面形状の外接円直径Dが下式(1)、式(2)を満たす異形断面形状であり、
d/D≦0.030・・・式(1)
0.10≦(H/D)≦0.30・・・式(2)
鞘部溶解除去前後の伸度、強度が下式(3)、式(4)を満たす芯鞘型複合糸からなる繊維。
鞘部溶解除去後の繊維伸度Ea/鞘部溶解除去前の繊維伸度Eb≦1.30・・・式(3)
鞘部溶解除去後の繊維強度Sa/鞘部溶解除去前の繊維強度Sb≧0.95・・・式(4)
In order to solve the above problems, the present invention employs the following configuration.
(1) A plurality of grooves exist on the outer periphery of the fiber cross section of a single fiber, and the radius of curvature d of the entrance corner of the groove, the groove depth H, and the circumscribed circle diameter D of the fiber cross section are expressed by the following formula (1), A polyamide irregular cross-sectional fiber having an irregular cross-sectional shape that satisfies formula (2) and having a rigid amorphous content of 35% to 55%.
d/D≦0.030...Formula (1)
0.10≦(H/D)≦0.30...Formula (2)
(2) It has a core-sheath type cross-sectional shape with a thermoplastic polymer soluble in alkali or hot water in the sheath and a polyamide polymer in the core, and the cross-sectional shape of the core has a plurality of grooves. The radius of curvature d of the inlet corner, the groove depth H, and the circumscribed circle diameter D of the cross-sectional shape of the core part satisfy the following formulas (1) and (2),
d/D≦0.030...Formula (1)
0.10≦(H/D)≦0.30...Formula (2)
A fiber made of a core-sheath type composite yarn whose elongation and strength before and after dissolving and removing the sheath portion satisfy the following formulas (3) and (4).
Fiber elongation Ea after dissolving and removing the sheath/fiber elongation Eb before dissolving and removing the sheath: Equation (3)
Fiber strength Sa after sheath dissolution and removal/fiber strength Sb before sheath dissolution and removal...Equation (4)
 本発明のポリアミド異形断面繊維、および芯鞘型複合糸からなる繊維は、繊維製品の使用時における伸び、曲げ擦れ等や過酷な擦過が加わる使用環境下でも、撥水性能および撥水耐久性に優れ、破れや擦れに強い実用耐久性、洗濯染色堅牢度に優れた織物または編物を提供することができるものである。 The polyamide irregular cross-section fiber of the present invention and the fiber made of the core-sheath type composite yarn have excellent water-repellent performance and water-repellent durability even under usage environments where textile products are subject to elongation, bending, and harsh abrasion during use. It is possible to provide a woven or knitted fabric that is excellent in practical durability, resistant to tearing and abrasion, and excellent in washing color fastness.
図1は、本発明のポリアミド異形断面繊維を説明するための断面図である。(a)はポリアミド異形断面繊維の単糸における断面図であり、外接円直径D、溝部深さHを示す。(b)、(c)は、本発明の芯鞘型複合糸の一実施断面態様であり、(b)はポリアミド異形断面繊維における溝部のみに鞘ポリマーを配しており、(c)はポリアミド異形断面繊維の溝部を含み、芯ポリマー全体を覆うように鞘ポリマーを配している。FIG. 1 is a cross-sectional view for explaining the polyamide irregular cross-section fiber of the present invention. (a) is a cross-sectional view of a single yarn of a polyamide irregular cross-section fiber, showing the circumscribed circle diameter D and the groove depth H. (b) and (c) are cross-sectional aspects of one embodiment of the core-sheath type composite yarn of the present invention, (b) is a polyamide modified cross-section fiber with a sheath polymer arranged only in the groove, and (c) is a polyamide fiber with a modified cross-section. A sheath polymer is arranged to cover the entire core polymer, including grooves of irregular cross-section fibers. 図2は、本発明のポリアミド異形断面繊維の溝部の入口角部の曲率半径dを説明するための模式図である。FIG. 2 is a schematic diagram for explaining the radius of curvature d of the entrance corner of the groove of the polyamide irregular cross-section fiber of the present invention. 図3は、本発明の芯鞘型複合糸の製造方法に好ましく用いることのできる製造装置の一実施態様の模式図である。FIG. 3 is a schematic diagram of an embodiment of a manufacturing apparatus that can be preferably used in the method for manufacturing a core-sheath type composite yarn of the present invention.
以下、本発明をさらに詳細に説明する。 The present invention will be explained in more detail below.
 本発明でいうポリアミドとは、いわゆる炭化水素基が主鎖にアミド結合を介して連結された高分子量体からなる樹脂である。
かかるポリアミドは、製糸性、機械特性に優れており、主としてポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカノアミド(ナイロン11)、ポリペンタメチレンアジパミド(ナイロン56)、ポリペンタメチレンセパカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)等およびそれらを主成分とする共重合体が好ましく、ゲル化し難しく、製糸性が良いことからポリカプロアミド(ナイロン6)がさらに好ましい。
The polyamide referred to in the present invention is a resin consisting of a high molecular weight body in which a so-called hydrocarbon group is connected to the main chain via an amide bond.
Such polyamides have excellent spinning properties and mechanical properties, and are mainly polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecanoamide (nylon 11), polypentamethylene adipamide ( Nylon 56), polypentamethylene sepacamide (nylon 510), polyhexamethylene sebacamide (nylon 610), etc., and copolymers containing these as main components are preferred; polycarbonate is difficult to gel and has good spinning properties. Proamide (nylon 6) is more preferred.
 前記「主として」とは、例えば、ポリカプロアミドではポリカプロアミドを構成するε-カプロラクタム単位とし、80モル%以上であることをいい、さらに好ましくは90モル%以上である。その他の成分としては、特に限定されないが、例えば、ポリドデカノアミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンアゼラミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカノアミド、ポリメタキシリレンアジパミド、ポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミド等を構成するモノマーである、アミノカルボン酸、ジカルボン酸、ジアミン等の単位が挙げられる。 The above-mentioned "mainly" means, for example, in the case of polycaproamide, the ε-caprolactam unit constituting the polycaproamide is 80 mol% or more, more preferably 90 mol% or more. Other components include, but are not particularly limited to, polydodecanamide, polyhexamethylene adipamide, polyhexamethylene azeramide, polyhexamethylene sebacamide, polyhexamethylene dodecanoamide, polymethaxylylene adipamide, etc. Units such as aminocarboxylic acid, dicarboxylic acid, and diamine, which are monomers constituting polyamide, polyhexamethylene terephthalamide, polyhexamethylene isophthalamide, etc., can be mentioned.
 一般的に、ポリアミドの艶消し剤として酸化チタンを用いることが多いが、本発明のポリアミドにも、艶消し剤として酸化チタンを含んでいてもよい。酸化チタン含有量は、本発明の効果を阻害しない範囲で適宜設定してよく、その好ましい範囲としては0~2重量%である。また、本発明の効果を阻害しない範囲で、前述の酸化チタン以外にも種々の添加剤を含んでいてもよい。この添加剤を例示すると、マンガン化合物等の安定剤、耐熱剤、難燃剤等が挙げられる。 Generally, titanium oxide is often used as a matting agent for polyamide, but the polyamide of the present invention may also contain titanium oxide as a matting agent. The content of titanium oxide may be set as appropriate within a range that does not impede the effects of the present invention, and the preferred range is 0 to 2% by weight. Moreover, various additives other than the above-mentioned titanium oxide may be contained within a range that does not impede the effects of the present invention. Examples of such additives include stabilizers such as manganese compounds, heat resistant agents, and flame retardants.
 本発明のポリアミド異形断面繊維を構成する単繊維および芯鞘型複合糸の芯部の断面形状を、図1の(a)~(c)に例示する。 The cross-sectional shapes of the core of the single fiber and core-sheath composite yarn constituting the polyamide irregular cross-section fiber of the present invention are illustrated in FIGS. 1(a) to (c).
 該断面形状は外周に溝部を複数個形成している。該溝部によって、水滴と繊維表面の間に空気層を取り込むことで撥水性能が得られる。さらには、撥水加工をする際、溝内部が外部からの擦過等を受けないことから溝内部に浸透した撥水剤などが脱落しにくいため、撥水耐久性が発現する。好ましい溝部の個数は3個~16個である。 The cross-sectional shape has a plurality of grooves formed on the outer periphery. Water repellency is achieved by trapping an air layer between the water droplets and the fiber surface through the grooves. Furthermore, when applying a water repellent finish, since the inside of the groove is not subject to external abrasion, the water repellent that has penetrated inside the groove is difficult to fall off, resulting in water repellency and durability. The preferred number of grooves is 3 to 16.
 溝部の形状は、該溝部の入口角部の曲率半径d、溝部深さHおよび繊維横断面の外接円直径Dが下式(1)、式(2)を満たすものである。
d/D≦0.030・・・式(1)
0.10≦(H/D)≦0.30・・・式(2)
溝部の形状をかかる規定範囲とすることで、織物または編物として撥水性能を発現せしめる表面形態と撥水剤の脱落抑制により、過酷な使用環境下でも優れた撥水耐久性を発現することができる。
The shape of the groove is such that the radius of curvature d of the entrance corner of the groove, the groove depth H, and the circumscribed circle diameter D of the fiber cross section satisfy the following formulas (1) and (2).
d/D≦0.030...Formula (1)
0.10≦(H/D)≦0.30...Formula (2)
By setting the shape of the grooves within this specified range, the surface form that allows the fabric to exhibit water repellency as a woven or knitted fabric and the prevention of shedding of the water repellent agent make it possible to exhibit excellent water repellency and durability even under harsh usage environments. can.
 該溝部の入口角部の曲率半径dと繊維横断面の外接円直径Dとの比(以下、d/Dと称す)は、0.030以下である。溝部の入口角部とは、ポリアミド異形断面繊維の繊維横断面における溝部の入口近傍の鋭角な部分である(図2参照)。繊維横断面の外接円直径Dとは、ポリアミド異形断面繊維の繊維横断面における外接円直径である(図1(a)のD)。 The ratio of the radius of curvature d of the entrance corner of the groove to the diameter D of the circumscribed circle of the fiber cross section (hereinafter referred to as d/D) is 0.030 or less. The entrance corner of the groove is an acute-angled portion near the entrance of the groove in the fiber cross section of the polyamide irregular cross-section fiber (see FIG. 2). The circumscribed circle diameter D of the fiber cross section is the circumscribed circle diameter of the fiber cross section of the polyamide irregular cross section fiber (D in FIG. 1(a)).
 d/Dを0.030以下とすることにより、水滴が繊維に接触した際、溝部に水滴が入り込みにくく、さらには取り込まれている空気が、水滴を押し上げようと作用するため空気層を維持でき、撥水性能を保持することができる。d/Dが0.030を超えると水滴が溝部に侵入しやすく構造的な撥水が発揮できない。好ましくは、d/Dは0.025以下である。さらに好ましくは、d/Dは0.022以下である。 By setting d/D to 0.030 or less, when water droplets come into contact with the fibers, it is difficult for water droplets to enter the grooves, and furthermore, the air taken in acts to push up the water droplets, making it possible to maintain an air layer. , can maintain water repellency. When d/D exceeds 0.030, water droplets easily enter the grooves and structural water repellency cannot be exhibited. Preferably, d/D is 0.025 or less. More preferably, d/D is 0.022 or less.
 溝部深さHと繊維横断面の外接円直径Dとの比(以下、H/Dと称す)は、0.10以上0.30以下である。溝部深さHとは、ポリアミド異形断面繊維の繊維横断面における外接円から溝部底面までの長さである(図1(a)のH)。 The ratio of the groove depth H to the circumscribed circle diameter D of the fiber cross section (hereinafter referred to as H/D) is 0.10 or more and 0.30 or less. The groove depth H is the length from the circumscribed circle in the fiber cross section of the polyamide irregular cross-section fiber to the groove bottom surface (H in FIG. 1(a)).
 H/Dをかかる規定範囲とすることにより、水滴の自重や水圧がかかったとしても、溝の奥まで水滴は到達できないので、撥水性能を維持でき、撥水耐久性を発揮できる。なお、水滴侵入の観点から、H/Dが大きいほど良く、0.10未満の場合、水の侵入により構造的な撥水が発揮できず、撥水耐久性は低下する。一方、H/Dが0.30を超える場合、溝部を形成する突起部が外力を受けたときの変形や破壊で溝部の形状を維持することができず、撥水耐久性が低下する。好ましくは、H/Dは0.12以上0.28未満である。さらに好ましくは、H/Dは0.15以上0.25未満である。 By setting H/D within such a specified range, even if water droplets are subjected to their own weight or water pressure, water droplets cannot reach the depths of the grooves, so water repellent performance can be maintained and water repellent durability can be exhibited. In addition, from the viewpoint of water droplet penetration, the higher the H/D, the better; if it is less than 0.10, structural water repellency cannot be exhibited due to water penetration, and the water repellency durability decreases. On the other hand, if H/D exceeds 0.30, the shape of the groove cannot be maintained due to deformation or destruction when the protrusion forming the groove receives external force, resulting in a decrease in water repellent durability. Preferably, H/D is 0.12 or more and less than 0.28. More preferably, H/D is 0.15 or more and less than 0.25.
 本発明のポリアミド異形断面繊維は、剛直非晶量が35%~55%である。剛直非晶量とは、実施例の項で説明する方法によって、その量が求められる非晶量であり、結晶と可動非晶の中間状態で、ガラス転移温度(Tg)以上でも分子運動が凍結しており、Tgよりも高い温度で流動状態となる非晶のことである。(例えば、十時稔、「DSC(3)-高分子のガラス転移挙動編-」、繊維学会誌、Vol.65、No.10(2009)参照。)
 剛直非晶量をかかる規定範囲とすることで、破れや擦れに強い実用耐久性を奏し、洗濯染色堅牢度に優れた織物または編物を得ることができる。剛直非晶量が35%未満の場合、ポリアミドの配向が十分進んでおらず、繊維強度が不足して破れやすくなり洗濯染色堅牢度に劣る。剛直非晶量が55%を超える場合、繊維構造全体の結晶量不足により、繊維強度が不足して破れやすく洗濯染色堅牢度に劣る。また、繊維表面におけるポリアミドの配向が進み、耐摩耗性に劣る。好ましくは、剛直非晶量は38~52%である。
The polyamide irregular cross-section fiber of the present invention has a rigid amorphous content of 35% to 55%. The rigid amorphous amount is the amount of amorphous that can be determined by the method explained in the Examples section, and is an intermediate state between a crystal and a mobile amorphous, in which molecular motion freezes even above the glass transition temperature (Tg). It is an amorphous material that becomes fluid at a temperature higher than Tg. (For example, see Minoru Totoki, “DSC (3) -Glass transition behavior of polymers-”, Journal of the Japan Institute of Fiber Science and Technology, Vol. 65, No. 10 (2009).)
By setting the amount of rigid amorphous within this specified range, it is possible to obtain a woven or knitted fabric that exhibits practical durability that is resistant to tearing and abrasion, and has excellent washing and dyeing fastness. When the amount of rigid amorphous crystals is less than 35%, the orientation of the polyamide is not sufficiently advanced, the fiber strength is insufficient, the fiber becomes easy to tear, and the color fastness to washing is poor. When the amount of rigid amorphous crystals exceeds 55%, the amount of crystals in the entire fiber structure is insufficient, resulting in insufficient fiber strength and easy tearing, resulting in poor washing color fastness. Furthermore, the orientation of the polyamide on the fiber surface progresses, resulting in poor abrasion resistance. Preferably, the amount of rigid amorphous is 38 to 52%.
 なお、特許文献1の段落[0149]記載より、ナイロン6と共重合PETの芯鞘複合繊維において、鞘成分溶出前後の伸度変化率が1.48と大きいことから、ナイロン6に応力がかかりづらく配向が進まず剛直非晶量は35%未満と低くなり、洗濯染色堅牢度が低いことが考えられる。 In addition, from the description in paragraph [0149] of Patent Document 1, in the core-sheath composite fiber of nylon 6 and copolymerized PET, the elongation change rate before and after sheath component elution is as large as 1.48, so stress is applied to nylon 6. It is considered that the orientation is difficult and the amount of rigid amorphous crystals is low, less than 35%, and the washing color fastness is low.
 本発明のポリアミド異形断面繊維は、芯部にポリアミドポリマー、鞘部にアルカリまたは熱水に溶解する熱可塑性ポリマーを配した芯鞘型断面形状を有する複合糸から、高次加工工程で鞘成分を溶出除去することより得ることができる。そして、該芯部の断面形状は、本発明のポリアミド異形断面繊維と同様である。 The polyamide irregular cross-section fiber of the present invention is made from a composite yarn having a core-sheath cross-sectional shape, in which the core is a polyamide polymer and the sheath is a thermoplastic polymer that dissolves in alkali or hot water. It can be obtained by elution and removal. The cross-sectional shape of the core is the same as that of the polyamide irregular cross-section fiber of the present invention.
 本発明の芯鞘型複合糸の鞘成分は、アルカリまたは熱水に溶解する熱可塑性ポリマー、芯成分はポリアミドポリマーからなる。 The sheath component of the core-sheath type composite yarn of the present invention is made of a thermoplastic polymer that dissolves in alkali or hot water, and the core component is made of a polyamide polymer.
 芯成分と鞘成分とは、溶剤(アルカリまたが熱水)に対する溶出速度比が大きいほど好適な組み合わせであり、溶出速度比は10倍以上が好ましく、3000倍以下の範囲を目安にポリマーを選択することができる。より好ましくは溶出速度比が100倍以上で、さらに好ましくは1000倍以上である。 The higher the elution rate ratio of the core component and sheath component to the solvent (alkali or hot water), the better the combination, and the elution rate ratio is preferably 10 times or more, and the polymer is selected with a range of 3000 times or less as a guide. can do. More preferably, the elution rate ratio is 100 times or more, and still more preferably 1000 times or more.
 鞘成分としては、例えば、ポリエチレンテレフタレートおよびその共重合体、ポリ乳酸、ポリアミドの共重合体、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニールアルコールなどの溶融成形可能で、芯成分よりも易溶出性を示すポリマーから選択する。同一口金を通過する複合紡糸では、芯成分のポリアミドの溶融紡糸条件における耐熱性が必要であり、鞘成分は、ポリエチレンテレフタレートおよびその共重合体やポリ乳酸が好ましい。 Examples of the sheath component include polyethylene terephthalate and its copolymers, polylactic acid, polyamide copolymers, polystyrene and its copolymers, polyethylene, polyvinyl alcohol, etc., which can be melt-molded and are more easily eluted than the core component. Select from polymers that show: In composite spinning that passes through the same die, the core component polyamide needs to have heat resistance under melt spinning conditions, and the sheath component is preferably polyethylene terephthalate, its copolymer, or polylactic acid.
 本発明の芯鞘型複合糸の芯部の断面形状は異形断面であり、シャープな断面を形成せしめることで高い撥水性能を発現できる。しかしながら、シャープな断面であると応力が集中しやすく、衝撃や摩擦に対して白化が進行しやすい。このため、芯成分は耐摩耗性が高いポリアミドを選定する。好ましい芯成分は、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリウンデカノアミド(ナイロン11)、ポリペンタメチレンアジパミド(ナイロン56)、ポリペンタメチレンセパカミド(ナイロン510)、ポリヘキサメチレンセバカミド(ナイロン610)である。 The cross-sectional shape of the core of the core-sheath type composite yarn of the present invention is an irregular cross-section, and by forming a sharp cross-section, high water-repellent performance can be expressed. However, if the cross section is sharp, stress tends to concentrate, and whitening tends to progress due to impact or friction. For this reason, polyamide with high wear resistance is selected as the core component. Preferred core components include polycaproamide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecanoamide (nylon 11), polypentamethylene adipamide (nylon 56), and polypentamethylene cepacamide. (nylon 510) and polyhexamethylene sebacamide (nylon 610).
 本発明の芯鞘型複合糸からなる繊維において、鞘部溶解除去前後の伸度変化(Ea/Eb)は、鞘部溶解除去後の繊維伸度Ea/鞘部溶解除去前の繊維伸度Eb≦1.30である。Ea/Ebをかかる規定範囲にすることで、洗濯染色堅牢度に優れる織物または編物となる。Ea/Ebが1.30を超えると洗濯染色堅牢度が劣る。好ましいEa/Ebは1.10以下である。 In the fiber made of the core-sheath type composite yarn of the present invention, the change in elongation before and after dissolving and removing the sheath (Ea/Eb) is: Fiber elongation Ea after dissolving and removing the sheath / Fiber elongation Eb before dissolving and removing the sheath ≦1.30. By setting Ea/Eb within such a specified range, a woven or knitted fabric with excellent washing color fastness can be obtained. If Ea/Eb exceeds 1.30, the color fastness to washing will be poor. Preferably Ea/Eb is 1.10 or less.
 また、本発明の芯鞘型複合糸からなる繊維において、鞘部溶解除去前後の強度変化(Sa/Sb)は、鞘部溶解除去後の繊維強度Sa/鞘部溶解除去前の繊維強度Sb≧0.95である。Sa/Sbをかかる規定範囲にすることで、破れや擦れに強い実用耐久性を有する織物または編物となる。Sa/Sbが0.95未満の場合、繊維強度が不足して破れやすくなり実用耐久性は劣る。好ましいSa/Sbは1.00以上である。 In addition, in the fiber made of the core-sheath type composite yarn of the present invention, the change in strength before and after dissolving and removing the sheath (Sa/Sb) is as follows: Fiber strength Sa after dissolving and removing the sheath/Fiber strength Sb before dissolving and removing the sheath ≧ It is 0.95. By setting Sa/Sb within such a specified range, a woven or knitted fabric can be produced that is resistant to tearing and abrasion and has practical durability. When Sa/Sb is less than 0.95, the fiber strength is insufficient and tends to tear easily, resulting in poor practical durability. Preferably Sa/Sb is 1.00 or more.
 
 次に、本発明のポリアミド異形断面繊維の製造方法の一例を、具体的に説明する。
本発明のポリアミド異形断面繊維は、ポリアミドポリマーを異形断面形状の芯成分とし、アルカリまたは熱水に溶解する熱可塑性ポリマーを鞘成分とした芯鞘型複合糸からなる繊維を製造し、高次加工工程で鞘成分を溶出除去することより得ることができる。

Next, an example of the method for manufacturing the polyamide irregular cross-section fiber of the present invention will be specifically described.
The polyamide irregular cross-section fiber of the present invention is produced by manufacturing a fiber consisting of a core-sheath type composite yarn having a polyamide polymer as a core component with an irregular cross-sectional shape and a thermoplastic polymer soluble in alkali or hot water as a sheath component, and then performing high-order processing. It can be obtained by eluting and removing the sheath component during the process.
 以下、芯鞘型複合糸からなる繊維の製造方法、鞘成分の溶出除去方法について説明する。 Hereinafter, a method for manufacturing a fiber made of a core-sheath type composite yarn and a method for elution and removal of the sheath component will be explained.
 図3は芯鞘型複合糸からなる繊維の製造方法に好ましく用いる製造装置の一実施形態を示すものである。
ここで、本発明の芯鞘型複合糸からなる繊維を製糸する方法としては、溶融紡糸による複合紡糸が生産性を高めるという観点から好適である。溶液紡糸などでも、芯鞘型複合糸からなる繊維を得ることは可能である。
FIG. 3 shows an embodiment of a manufacturing apparatus preferably used in a method for manufacturing fibers made of core-sheath type composite yarns.
Here, as a method for spinning fibers made of the core-sheath type composite yarn of the present invention, composite spinning by melt spinning is suitable from the viewpoint of increasing productivity. It is also possible to obtain fibers made of core-sheath type composite yarns by solution spinning or the like.
 まず、それぞれポリアミドと易溶出性の熱可塑性ポリマーを溶融し、ギヤポンプにて計量・輸送し、複合紡糸口金1に設けられた吐出孔から最終的に押し出し、各フィラメントを形成する。このようにして複合紡糸口金1から吐出された各フィラメントを、図3に示すように、口金の経時汚れを抑制するために蒸気を吹き出す気体供給装置2、冷却装置3にて吐出糸条を室温まで冷却固化する。その後、給油装置4で油剤付与するとともに流体ノズル装置5で各フィラメントを集束してマルチフィラメントを形成し、引き取りローラー6、延伸ローラー7において延伸した後、巻取装置8で巻き取る。 First, polyamide and easily dissolvable thermoplastic polymer are respectively melted, measured and transported by a gear pump, and finally extruded from a discharge hole provided in the composite spinneret 1 to form each filament. As shown in FIG. 3, each filament discharged from the composite spinneret 1 is cooled to room temperature by a gas supply device 2 that blows out steam to prevent staining of the spinneret over time, and a cooling device 3. Cool until solidified. Thereafter, a lubricant is applied by an oil supply device 4, and each filament is bundled by a fluid nozzle device 5 to form a multifilament, which is stretched by a take-up roller 6 and a stretching roller 7, and then wound up by a winding device 8.
 本発明のポリアミド異形断面繊維、芯鞘型複合糸からなる繊維の製造において、用いるポリアミド樹脂チップの溶融粘度は300poise~2000poiseの範囲であることが好ましい。測定方法は、後述の実施例の項で説明する。 In the production of the polyamide irregular cross-section fiber and core-sheath type composite yarn of the present invention, the melt viscosity of the polyamide resin chips used is preferably in the range of 300 poise to 2000 poise. The measurement method will be explained in the Examples section below.
 芯成分であるポリアミド樹脂チップの溶融粘度が高くなるほど、紡糸線上での応力を受けやすくなり、ポリアミドの繊維構造形成は進む。かかる規定範囲とすることにより、前述の剛直非晶量、伸度変化Ea/Eb、強度変化Sa/Sbを奏することができる。 The higher the melt viscosity of the polyamide resin chips that are the core component, the more easily they receive stress on the spinning line, and the formation of the polyamide fiber structure progresses. By setting it within such a specified range, the above-mentioned rigid amorphous amount, elongation change Ea/Eb, and strength change Sa/Sb can be achieved.
 また製糸性の観点から、ポリアミド樹脂チップの溶融粘度は1800poise以下であると、紡糸時の溶融ポリマーの押出圧およびその経時の上昇速度を抑制でき、生産設備への過剰な負荷や口金の交換周期の延長が図れて生産性が確保できるため、より好ましい。 In addition, from the viewpoint of yarn-spinning properties, if the melt viscosity of the polyamide resin chip is 1800 poise or less, the extrusion pressure of the molten polymer during spinning and its rate of increase over time can be suppressed, and excessive load on production equipment and the replacement cycle of the spinnerets can be suppressed. It is more preferable because it can extend the period of time and ensure productivity.
 本発明のポリアミド異形断面繊維、芯鞘型複合糸からなる繊維の製造において、用いる易溶出性の熱可塑性ポリマー樹脂チップの溶融粘度は300poise~1500poiseの範囲であることが好ましい。測定方法は、後述の実施例の項で説明する。 In the production of the polyamide irregular cross-section fiber and core-sheath type composite yarn of the present invention, the melt viscosity of the easily dissolvable thermoplastic polymer resin chips used is preferably in the range of 300 poise to 1500 poise. The measurement method will be explained in the Examples section below.
 鞘成分である易溶出性の熱可塑性ポリマー樹脂チップの溶融粘度が低くなるほど、紡糸線上での応力を受けにくくなり、芯成分のポリアミドの繊維構造形成が進む。かかる規定範囲とすることにより、前述の剛直非晶量、伸度変化Ea/Eb、強度変化Sa/Sbを奏することができる。 The lower the melt viscosity of the easily dissolvable thermoplastic polymer resin chips that are the sheath component, the less stress they receive on the spinning line, and the more fibrous structure formation of the polyamide core component. By setting it within such a specified range, the above-mentioned rigid amorphous amount, elongation change Ea/Eb, and strength change Sa/Sb can be achieved.
 本発明のポリアミド異形断面繊維、芯鞘型複合糸からなる繊維の製造において、所望する剛直非晶量を実現するためには、延伸前までのそれぞれのポリマー成分の配向を制御することが重要である。複合紡糸された吐出ポリマーに応力がかかりはじめる固化点で、ポリアミドの方に応力を高くする、もしくは、易溶出性の熱可塑性ポリマーとの固化点差を小さくすることがよいことから、複合比や吐出量、比熱にもよるが、芯成分と鞘成分との融点差は50℃以下とすることが好ましい。 In the production of the polyamide modified cross-section fiber and core-sheath type composite yarn of the present invention, it is important to control the orientation of each polymer component before drawing in order to achieve the desired rigid amorphous content. be. At the solidification point where stress begins to be applied to the composite-spun discharged polymer, it is better to increase the stress on polyamide or to reduce the difference in solidification point between it and the easily dissolvable thermoplastic polymer. Although it depends on the amount and specific heat, it is preferable that the difference in melting point between the core component and the sheath component is 50° C. or less.
 本発明のポリアミド異形断面繊維、芯鞘型複合糸からなる繊維の製造において、溶融温度は、ポリアミド、易溶出性ポリマーの各融点(Tm)に対して、20℃高い温度(Tm+20℃)以上、かつTmに対して95℃高い温度(Tm+95℃)以下の範囲で溶融することが好ましい。かかる規定範囲とすることで、溶融紡糸に適した溶融粘度となるため、安定した製糸が可能となる。 In the production of the polyamide modified cross-section fiber and core-sheath type composite yarn of the present invention, the melting temperature is 20°C higher than the respective melting points (Tm) of the polyamide and the easily dissolvable polymer (Tm + 20°C) or higher; Moreover, it is preferable to melt at a temperature that is 95° C. higher than Tm (Tm+95° C.) or lower. By setting it within such a specified range, the melt viscosity becomes suitable for melt spinning, so stable yarn spinning becomes possible.
 本発明のポリアミド異形断面繊維、芯鞘型複合糸からなる繊維の製造において、芯鞘型複合糸を紡糸する際の芯成分と鞘成分の比率は、吐出量を基準に重量比で芯/鞘比率で50/50~90/10の範囲で選択することができる。この芯/鞘比率のうち、芯比率を高めると芯鞘型複合糸の生産性という観点からは好適である。但し、芯鞘型断面および異型断面の長期安定性を、効率的かつ安定性を維持しつつバランス良く製造できる範囲として、芯/鞘比率は70/30~90/10がより好ましい。 In the production of fibers made of polyamide irregular cross-section fibers and core-sheath type composite yarns of the present invention, the ratio of the core component and sheath component when spinning the core-sheath type composite yarn is the core/sheath ratio based on the discharge amount. The ratio can be selected within the range of 50/50 to 90/10. Of this core/sheath ratio, increasing the core ratio is preferable from the viewpoint of productivity of the core-sheath type composite yarn. However, the core/sheath ratio is more preferably 70/30 to 90/10, as long-term stability of the core-sheath type cross-section and the irregular-shaped cross-section can be manufactured efficiently and in a well-balanced manner while maintaining stability.
 本発明のポリアミド異形断面繊維の製造において、所望する剛直非晶量を実現するためには、芯鞘型複合糸からなる繊維を製糸する際、延伸前までの芯部であるポリアミドの配向を制御することが重要である。すなわち、紡糸ドラフト、冷却の紡糸条件を最適化することである。 In the production of the polyamide irregular cross-section fiber of the present invention, in order to achieve the desired rigidity and amorphous content, it is necessary to control the orientation of the polyamide core before drawing when spinning fibers made of core-sheath type composite yarns. It is important to. That is, the spinning conditions of the spinning draft and cooling should be optimized.
 紡糸条件の紡糸ドラフトは、引き取りローラー速度と吐出線速度の比(以下、ドラフト比と称す)であり、75~300に制御するのが好ましい。ドラフト比が小さいほど、ポリアミドの配向が進みにくくなるため、剛直非晶量が低くなる。一方、ドラフト比が大きいほどポリアミドの配向が進みやすくなるが、製糸性の観点から糸切れが増加して生産性が著しく低下するため、ドラフト比は300以下であることが好ましい。ドラフト比を75以上とすると、ポリアミドの配向が進んで所望の剛直非晶量を実現でき、芯成分と鞘成分のポリマーの配向差を抑制でき伸度変化Ea/Eb、強度変化Sa/Sbを小さくできる。 The spinning draft of the spinning conditions is the ratio of the take-up roller speed to the discharge linear speed (hereinafter referred to as draft ratio), and is preferably controlled to 75 to 300. The smaller the draft ratio is, the more difficult it is for the orientation of the polyamide to progress, so the amount of rigid amorphous crystals becomes lower. On the other hand, the higher the draft ratio, the easier the orientation of the polyamide progresses, but from the viewpoint of spinning properties, yarn breakage increases and productivity is significantly reduced, so the draft ratio is preferably 300 or less. When the draft ratio is set to 75 or more, the orientation of the polyamide advances and the desired rigid amorphous content can be achieved, and the difference in orientation between the polymers of the core and sheath components can be suppressed, and the elongation change Ea/Eb and the strength change Sa/Sb can be suppressed. Can be made smaller.
 紡糸条件の冷却は、複合紡糸された吐出ポリマーの固化点を高くするのが好ましく、効率よく冷却するのがよい。固化点を高くすることにより、紡糸での配向を促進し、剛直非晶を高めるともに、芯成分と鞘成分のポリマーの固化点差を小さくして配向差を小さくすることで、伸度変化Ea/Eb、強度変化Sa/Sbを抑制することができる。また、複合紡糸口金にて形成した繊維断面を素早く固化することで、所望の異形断面を得ることができる。 It is preferable to cool the spinning conditions to raise the solidification point of the discharged composite spun polymer, and it is preferable to cool it efficiently. By increasing the solidification point, orientation during spinning is promoted and rigid amorphousness is increased, and by reducing the difference in solidification point between the polymers of the core and sheath components to reduce the orientation difference, the change in elongation Ea/ Eb and intensity change Sa/Sb can be suppressed. Further, by quickly solidifying the fiber cross section formed using a composite spinneret, a desired irregularly shaped cross section can be obtained.
 冷却域に入ってきた吐出ポリマーは可能な限り、固化点を冷却域上端に近づける。紡糸口金の下面から冷却装置3の冷却風吹出し部の上端部までの鉛直方向距離LS(以下、冷却開始距離LSと称す)を30mm~120mmとすることが好ましい。 The solidification point of the discharged polymer entering the cooling zone is brought as close to the upper end of the cooling zone as possible. It is preferable that the vertical distance LS (hereinafter referred to as cooling start distance LS) from the lower surface of the spinneret to the upper end of the cooling air blowing part of the cooling device 3 is 30 mm to 120 mm.
 冷却開始距離LSを120mm以下とすることで、固化点を高くして紡糸での配向を促進し、剛直非晶を高めるともに、芯成分と鞘成分のポリマーの固化点差を小さくして配向差を小さくすることで、伸度変化Ea/Eb、強度変化Sa/Sbを抑制することができる。また、複合紡糸口金にて形成した繊維断面を素早く固化することで、所望の異型断面を得ることができる。冷却開始距離LSが30mm以上では、紡糸での配向を適度にして延伸における配向結晶化を促進して強度を奏することができる。 By setting the cooling start distance LS to 120 mm or less, the solidification point is increased to promote orientation during spinning, increasing rigid amorphism, and reducing the difference in solidification point between the core component and sheath component polymers to reduce the orientation difference. By making it small, the elongation change Ea/Eb and the strength change Sa/Sb can be suppressed. Further, by quickly solidifying the fiber cross section formed using a composite spinneret, a desired irregular cross section can be obtained. When the cooling start distance LS is 30 mm or more, it is possible to moderate the orientation during spinning, promote oriented crystallization during drawing, and exhibit strength.
 また、ヌッセルト熱交換式冷却方式の観点から、固化点を上端に近づける有効な方法として冷却風速度を速くすることが好ましい。その規定範囲は単糸繊度にもよるが、冷却域下端面で30m/分~50m/分の範囲にあることが好ましい。
冷却風速度を30m/分以上とすることで、ポリマーの熱交換速度が速くなり、固化点が冷却域上端面に近づく。このため芯成分と鞘成分のポリマーの固化点差は小さくなり、所望の剛直非晶量となる。一方、操業性の観点から、冷却風速度は50m/分以下が好ましい。
Further, from the viewpoint of the Nusselt heat exchange type cooling system, it is preferable to increase the cooling air velocity as an effective method for bringing the solidification point closer to the upper end. Although the specified range depends on the single yarn fineness, it is preferably in the range of 30 m/min to 50 m/min at the lower end surface of the cooling zone.
By setting the cooling air velocity to 30 m/min or more, the heat exchange rate of the polymer increases, and the solidification point approaches the upper end surface of the cooling zone. Therefore, the solidification point difference between the polymers of the core component and the sheath component becomes small, resulting in a desired amount of rigid amorphous material. On the other hand, from the viewpoint of operability, the cooling air speed is preferably 50 m/min or less.
 また、上記同様に冷却域における冷却風温度も熱交換における重要な因子であり、冷却風温度は20℃以下であることが好ましい。冷却風温度を20℃以下とすることで、ポリマーの熱交換速度が速くなり、固化点が冷却域上端面に近づくため、剛直非晶量の増大ができる。 Furthermore, similarly to the above, the temperature of the cooling air in the cooling region is also an important factor in heat exchange, and the temperature of the cooling air is preferably 20° C. or less. By setting the cooling air temperature to 20° C. or lower, the heat exchange rate of the polymer becomes faster and the solidification point approaches the upper end surface of the cooling region, so that the amount of rigid amorphous crystals can be increased.
 本発明のポリアミド異形断面繊維は、前述した芯鞘型複合糸からなる繊維を少なくとも一部に有する織物または編物とし、アルカリまたは熱水により鞘成分であるアルカリまたは熱水に溶解する熱可塑性ポリマーを溶出除去することにより、ポリアミド異形断面繊維を少なくとも一部に有する織物または編物を得ることができる。 The polyamide irregular cross-section fiber of the present invention is a woven or knitted fabric having at least a portion of the fiber made of the above-mentioned core-sheath type composite yarn, and a thermoplastic polymer which is dissolved in alkali or hot water as a sheath component. By elution and removal, it is possible to obtain a woven or knitted fabric having at least a portion of polyamide fibers with irregular cross-sections.
 鞘成分の溶出除去とは、アルカリまたは熱水を溶剤として、鞘成分を99%以上溶出除去することを言う。ここで言うアルカリとは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が挙げられるが、水酸化ナトリウム、水酸化カリウム等の強アルカリ(pH=10~14)を用いることが好ましい。また、溶出除去におけるアルカリ濃度、温度は任意に設定することができるが、例えば水酸化ナトリウムの場合、1.0重量%~8.0重量%水溶液で、80℃~100℃で処理することが好ましい。 Elution and removal of sheath components refers to elution and removal of 99% or more of the sheath components using alkali or hot water as a solvent. The alkali mentioned here includes sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, etc., and it is preferable to use a strong alkali (pH=10 to 14) such as sodium hydroxide and potassium hydroxide. In addition, the alkali concentration and temperature in elution and removal can be set arbitrarily, but for example, in the case of sodium hydroxide, it is possible to treat with a 1.0% to 8.0% by weight aqueous solution at 80°C to 100°C. preferable.
 A.溶融粘度
 樹脂チップ試料について、孔径1.0mm、孔長10.00mm、溶融温度290℃、剪断速度1216sec-1の条件下において、キャピラリーフローテスターにて測定した値を溶融粘度(poise)とした。
A. Melt viscosity The melt viscosity (poise) of the resin chip sample was measured using a capillary flow tester under the conditions of pore diameter 1.0 mm, pore length 10.00 mm, melting temperature 290° C., and shear rate 1216 sec −1 .
 B.剛直非晶量
 繊維試料の剛直非晶量は、TA Instrumetes社製示差走査熱量計Q1000を測定機器として用いて測定した。
示差走査熱量(以下、DSC)測定から得られた融解熱量ΔHmと冷結晶化熱量ΔHcの差(ΔHm-ΔHc)、温度変調DSC測定から得られた比熱差ΔCp、さらにポリアミドが100%結晶(完全結晶)の理論値とポリアミドが100%非晶(完全非晶)の理論値を用いた。
B. Rigid Amorphous Amount The rigid amorphous amount of the fiber sample was measured using a differential scanning calorimeter Q1000 manufactured by TA Instruments as a measuring instrument.
The difference between the heat of fusion ΔHm and the cold crystallization heat ΔHc obtained from differential scanning calorimetry (hereinafter referred to as DSC) measurement (ΔHm - ΔHc), the specific heat difference ΔCp obtained from temperature modulation DSC measurement, and the fact that polyamide is 100% crystalline (completely The theoretical value for polyamide (crystalline) and the theoretical value for polyamide to be 100% amorphous (completely amorphous) were used.
 ここでΔHm0は、ポリアミド(完全結晶)の融解熱量である。ΔCp0は、ポリアミド(完全非晶)のガラス転移温度(Tg)前後での比熱差である。 Here, ΔHm0 is the heat of fusion of polyamide (perfect crystal). ΔCp0 is the difference in specific heat before and after the glass transition temperature (Tg) of polyamide (completely amorphous).
 次式に基づいて、結晶化度Xcと可動非晶量Xmaを求めた。XcとXmaより剛直非晶量Xraを算出した。
なお、剛直非晶量は、これらを2回測定した平均値から算出した。
Xc(%)=(ΔHm-ΔHc)/ΔHm0×100
Xma(%)=ΔCp/ΔCp0×100
Xra(%)=100-(Xc+Xma) 。
Crystallinity Xc and mobile amorphous amount Xma were determined based on the following equations. The rigid amorphous amount Xra was calculated from Xc and Xma.
The amount of rigid amorphous crystals was calculated from the average value of two measurements.
Xc (%) = (ΔHm-ΔHc)/ΔHm0×100
Xma (%) = ΔCp/ΔCp0×100
Xra (%) = 100-(Xc+Xma).
 C.断面形状
 繊維試料を、以下のどちらかの処理をする。
・銅板に開けた直径0.3mm~1.0mm程度の穴に、よく引きそろえた繊維試料を穴いっぱいに通し、銅板の表裏面をカミソリで切断して繊維横断面を作製する、
または、
・繊維試料をエポキシ樹脂などの包埋剤にて包埋して、ミクロトームで切片して繊維横断面を作製する。
C. Cross-sectional shape Treat the fiber sample in one of the following ways.
・Pass a well-aligned fiber sample through a hole with a diameter of about 0.3 mm to 1.0 mm drilled in a copper plate, and cut the front and back sides of the copper plate with a razor to create a fiber cross section.
or
・Embed the fiber sample in an embedding agent such as epoxy resin and section it with a microtome to create a fiber cross section.
 得られた繊維横断面を、透過顕微鏡で単糸が1本観察できる倍率の観察をして、無作為に3本抽出して、繊維横断面を撮影する。 The obtained fiber cross section is observed with a transmission microscope at a magnification that allows observation of one single fiber, and three fibers are randomly selected and the fiber cross section is photographed.
 撮影した各画像から同一画像内で全溝部に関して、画像処理ソフト(WINROOF)を用いて、1個の溝部にある2つの入口角部の曲率半径dを単位μmで測定して、平均値を求める(d1,d2,・・・dn)。単糸1本のdは、d1,d2,・・・dnの平均値を四捨五入して小数点第2位までの値である。 Using image processing software (WINROOF), measure the radius of curvature d of the two entrance corners in one groove in μm for all grooves in the same image from each photographed image, and find the average value. (d1, d2,...dn). d of one single yarn is a value obtained by rounding off the average value of d1, d2, . . . dn to the second decimal place.
 同様に、1個の溝部にある溝部深さHと単糸(芯成分)外接円直径Dを単位μmで測定した(H1,H2,・・・Hn、D1,D2,・・・Dn)。単糸1本のHおよびDは、測定値の平均値を四捨五入して小数点第2位までの値である。 Similarly, the groove depth H in one groove and the single yarn (core component) circumscribed circle diameter D were measured in μm (H1, H2, . . . Hn, D1, D2, . . . Dn). H and D of one single yarn are values obtained by rounding off the average value of the measured values to the second decimal place.
 以上の操作を抽出した単糸分(3本)の画像について、繰り返し、それぞれの値(d、H、D)の単純な数平均値を用いて、それぞれの値(d/D、H/D)を求める。 For the image of single thread (3 threads) extracted by the above operation, repeat and use the simple numerical average value of each value (d, H, D). ).
 D.総繊度
 (a)芯鞘型複合糸からなる繊維
繊維試料を、1.125m/周の検尺器に、1/30cN×表示デシテックスの張力で200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせの質量を量り、公定水分率を乗じた値から繊度を算出した。なお、ナイロン6の公定水分率は4.5%とした。
D. Total fineness (a) A fiber sample consisting of a core-sheath type composite yarn was rotated 200 times using a 1.125 m/circummeter measuring instrument at a tension of 1/30 cN x indicated decitex to create a loop-shaped skein, and heated with hot air. After drying in a dryer (105±2° C. x 60 minutes), the mass of the skein was measured using a balance, and the fineness was calculated from the value multiplied by the official moisture content. Note that the official moisture content of nylon 6 was 4.5%.
 (b)ポリアミド異形断面繊維
芯鞘型複合糸の鞘成分を99%以上除去した後、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせの質量を量り、公定水分率を乗じた値から繊度を算出した。なお、ナイロン6の公定水分率は4.5%とした。
(b) After removing 99% or more of the sheath component of the polyamide irregular cross-section fiber core-sheath type composite yarn, dry it in a hot air dryer (105±2℃ x 60 minutes), weigh the mass of the skein on a balance, and determine the official The fineness was calculated from the value multiplied by the moisture content. Note that the official moisture content of nylon 6 was 4.5%.
 E.強度、伸度
 繊維試料を、JIS L1013(2021)引張強さ及び伸び率に準じて測定し、引張強さ-伸び曲線を描く。
試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/分にて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。
伸度、強度は、下式にて求めた。
伸度=切断時の伸長(%)
強度=切断時の引張強さ(cN)/総繊度(dtex) 。
E. Strength, Elongation A fiber sample is measured according to JIS L1013 (2021) tensile strength and elongation, and a tensile strength-elongation curve is drawn.
The test conditions were a constant speed extension type testing machine, a grip interval of 50 cm, and a tensile speed of 50 cm/min. In addition, when the tensile strength at the time of cutting was smaller than the maximum strength, the maximum tensile strength and elongation at that time were measured.
Elongation and strength were determined using the following formula.
Elongation = elongation at cutting (%)
Strength = tensile strength at cutting (cN)/total fineness (dtex).
 F.伸度変化Ea/Eb、強度変化Sa/Sb
 実施例、比較例の各紡糸条件で採取した芯鞘型複合糸からなる繊維を1.125m/周の検尺器にセットして10回転させてカセ取りし、鞘成分が溶解する溶剤で満たされた溶出浴(浴比100)にて鞘成分を99%以上除去した後、上記E項の通り伸度、強度を測定した。溶出後の強度Saまたは伸度Eaを溶出前の強度Sbまたは伸度Ebで除した値を伸度変化Ea/Eb、強度変化Sa/Sbとした。
ここでは、95℃に温めた6.0重量%水酸化ナトリウム水溶液に30分浸漬することで、鞘成分を除去した。
F. Elongation change Ea/Eb, strength change Sa/Sb
The fibers made of core-sheath type composite yarns collected under each spinning condition of Examples and Comparative Examples were set in a 1.125 m/circummeter measuring device, rotated 10 times, taken out from the skein, and filled with a solvent that dissolves the sheath components. After removing 99% or more of the sheath component in the elution bath (bath ratio 100), the elongation and strength were measured as in Section E above. The value obtained by dividing the strength Sa or elongation Ea after elution by the strength Sb or elongation Eb before elution was defined as elongation change Ea/Eb and strength change Sa/Sb.
Here, the sheath component was removed by immersing it in a 6.0% by weight aqueous sodium hydroxide solution heated to 95° C. for 30 minutes.
 G.布帛評価
 (a)撥水性能
実施例1同様の製法で作成した織物を20cm×20cmのサンプルサイズになるように10枚切り出し、布帛サンプルを準備した。各サンプルについて、中央に直径11.2cmの円を描き、該円の面積が80%拡大されるように伸張し、撥水度試験(JIS L1092)に使用する試験片保持枠に取り付け、スプレー試験(JIS L1092(2020)「繊維製品の防水性試験方法」)を行い、級判定を行い、10サンプルの級判定結果の平均値を撥水性能とした。
S:4級以上
A:3級以上
B:3級未満
C:2級以下
3級以上を合格とした。
G. Fabric evaluation (a) Water-repellent performance Example 1 Fabric samples were prepared by cutting out 10 pieces of fabric produced using the same manufacturing method to a sample size of 20 cm x 20 cm. For each sample, draw a circle with a diameter of 11.2 cm in the center, stretch it so that the area of the circle is expanded by 80%, attach it to a test piece holding frame used for water repellency test (JIS L1092), and perform a spray test. (JIS L1092 (2020) "Waterproofness Testing Method for Textile Products"), the grade was determined, and the average value of the grade determination results of 10 samples was taken as the water repellent performance.
S: 4th grade or above A: 3rd grade or above B: Less than 3rd grade C: 2nd grade or below 3rd grade or above was considered a pass.
 (b)撥水加工の洗濯耐久性
実施例1同様の製法で作成した織物の洗濯方法については、JIS L1930(2014)「繊維製品の家庭洗濯試験方法」に記載のC4M法を用いた。洗濯回数は0回、50回で評価を行った。なお、撥水性能は上記G項(a)で行った。
S:4級以上
A:3級以上
B:3級未満
C:2級以下
洗濯回数50回の級判定において、3級以上を合格とした。
(b) Washing durability of water-repellent finishing Example 1 As for the washing method of the fabric made by the same manufacturing method, the C4M method described in JIS L1930 (2014) "Home washing test method for textile products" was used. The evaluation was performed after washing 0 times and 50 times. Note that the water repellency was measured in accordance with Section G (a) above.
S: Grade 4 or higher A: Grade 3 or higher B: Less than grade 3 C: Grade 2 or lower In the grade determination after washing 50 times, a grade 3 or higher was considered to be a pass.
 (c)引裂強力
実施例1同様の製法で作成した織物について、JIS L1096(2020)「織物及び編物の生地試験方法」(8.17 A法)に準じて、ヨコ方向における任意の3ヶ所の引裂強度を測定し、その平均値を測定した。
S:4.5N以上
A:4.1N以上4.5N未満
B:3.7N以上4.1N未満
C:3.7N未満
4段階評価し、SとAを合格とした。
(c) Tear strength Example 1 For fabrics made using the same manufacturing method, three arbitrary locations in the horizontal direction were tested in accordance with JIS L1096 (2020) “Fabric testing methods for woven and knitted fabrics” (8.17 A method). The tear strength was measured and the average value was determined.
S: 4.5N or more A: 4.1N or more and less than 4.5N B: 3.7N or more and less than 4.1N C: Less than 3.7N Evaluation was performed in four stages, and S and A were considered to be passed.
 (d)耐摩耗性
摩耗方法についてはJIS L1076(2012)「織物及び編物のピリング試験方法」に記載のアピアランス・リテンション形試験機を用い、上部ホルダー底面積を約13平方cm、摩擦回数を90rpm、押圧荷重を7.36Nに設定し、上部ホルダー及び下部摩擦板の上に実施例1同様の製法で作成した織物を固定し、10分間摩耗した。摩耗後、上部ホルダーにセットした織物の単繊維のフィブリル化の様子を(株)キーエンス社製マイクロスコープVHX-2000にて50倍で観察した。
(d) Abrasion resistance For the abrasion method, use the appearance/retention type tester described in JIS L1076 (2012) "Pilling test method for woven and knitted fabrics", the bottom area of the upper holder is approximately 13 square cm, and the number of frictions is 90 rpm. The pressing load was set at 7.36 N, and the fabric produced by the same manufacturing method as Example 1 was fixed on the upper holder and the lower friction plate, and worn for 10 minutes. After abrasion, the state of fibrillation of the single fibers of the fabric set in the upper holder was observed using a microscope VHX-2000 manufactured by Keyence Corporation at a magnification of 50 times.
 この際、摩耗処理前後の織物表面変化を確認し、フィブリル化の様子を3段階評価した。処理前後にて織物表面全体にフィブリル化が発生した場合は、不可として「C」、一部に発生が認められる場合は可として「B」、発生が認められない場合は良として「A」とした。 At this time, changes in the fabric surface before and after the abrasion treatment were confirmed, and the state of fibrillation was evaluated on three levels. If fibrillation occurs on the entire surface of the fabric before and after treatment, it will be graded as "C" as not acceptable. If fibrillation is observed in some areas, it will be graded as "B", and if no fibrillation is observed, it will be graded as "A" as good. did.
 (e)洗濯染色堅牢度
実施例1同様の製法で作成した織物について、JIS L0844(2011)洗濯に対する染色堅ろう度試験方法」A-1法に準じて実施した。
S:4級以上
A:3級以上
B:3級未満
C:2級以下
変褪色3級以上を合格とした。
(e) Dye fastness to washing Example 1 Fabrics prepared by the same manufacturing method were tested in accordance with JIS L0844 (2011) "Test method for dye fastness to washing" A-1.
S: 4th grade or higher A: 3rd grade or higher B: Less than 3rd grade C: 2nd grade or lower Discoloration, fading, 3rd grade or higher was considered a pass.
 〔実施例1〕
 芯成分のポリアミドポリマーとして、溶融粘度が1500poise、融点225℃、酸化チタンを含まないナイロン6(N6)チップを、水分率0.03質量%以下となるよう常法にて乾燥した。
[Example 1]
As a core component polyamide polymer, a nylon 6 (N6) chip having a melt viscosity of 1500 poise, a melting point of 225° C., and containing no titanium oxide was dried in a conventional manner to a moisture content of 0.03% by mass or less.
 鞘成分の熱可塑性ポリマーとして、溶融粘度が850poise、融点が260℃、酸化チタンを含まないポリエチレンテレフタレート(PET)チップを、水分率0.015質量%以下となるよう常法にて乾燥した。 As a thermoplastic polymer for the sheath component, a polyethylene terephthalate (PET) chip with a melt viscosity of 850 poise, a melting point of 260° C., and containing no titanium oxide was dried in a conventional manner to a moisture content of 0.015% by mass or less.
 得られたN6チップとPETチップを290℃にて別々に溶融し、芯:鞘重量比を80:20とし、複合紡糸口金(孔径0.22mm、72ホール)より図1(b)の断面となるように吐出させた(吐出量44.4g/分)。 The obtained N6 chips and PET chips were melted separately at 290°C, the core:sheath weight ratio was 80:20, and the cross section shown in Figure 1(b) was obtained using a composite spinneret (pore diameter 0.22 mm, 72 holes). (discharge amount 44.4 g/min).
 紡糸は、図3に示す態様の複合紡糸機を用いて紡糸した。
複合紡糸口金1から吐出された各フィラメントを、冷却開始距離LS100mm、冷却風温度18℃、冷却風速度35m/分にて冷却整流風を吹き出す環状の冷却装置3を通過させて糸条を室温まで冷却固化した。
The fibers were spun using a composite spinning machine of the embodiment shown in FIG.
Each filament discharged from the composite spinneret 1 is passed through an annular cooling device 3 that blows out cooling rectified air at a cooling start distance LS of 100 mm, a cooling air temperature of 18° C., and a cooling air speed of 35 m/min to bring the yarn to room temperature. Cooled and solidified.
 その後、紡糸口金の下面からの給油位置Lgを1000mmの位置で油剤付与するとともに各フィラメントを集束しマルチフィラメントを形成し、流体ノズル装置5で収束性を付与した。収束性付与は、流体ノズル装置5内で走行糸条に高圧空気を噴射することにより行った。 Thereafter, a lubricant was applied at a lubricating position Lg of 1000 mm from the bottom surface of the spinneret, and each filament was converged to form a multifilament, and the fluid nozzle device 5 imparted convergence. Convergence was imparted by injecting high-pressure air onto the running yarn within the fluid nozzle device 5.
 その後、ドラフト比100として、引き取りローラー6と延伸ローラー7間にて延伸倍率2.2倍で延伸し、巻取装置8にて巻き取り、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得た。 Thereafter, the draft ratio is set to 100, and the fiber is drawn at a draw ratio of 2.2 times between the take-up roller 6 and the drawing roller 7, and is wound up by the winding device 8 to obtain a fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments. Obtained.
 得られた芯鞘型複合糸からなる繊維を経糸と緯糸に用い、経密度188本/2.54cm、緯密度155本/2.54cm、平組織にて製織した。
得られた生機を、以下(a)~(g)条件にて染色・撥水加工を施し、経密度200本/2.54cm、緯密度160本/2.54cmの織物を得た。
The fibers made of the obtained core-sheath type composite yarn were used for the warp and weft, and were woven in a plain weave with a warp density of 188 threads/2.54 cm and a weft density of 155 threads/2.54 cm.
The obtained gray fabric was dyed and water-repellent treated under the following conditions (a) to (g) to obtain a woven fabric with a warp density of 200 threads/2.54 cm and a weft density of 160 threads/2.54 cm.
 (a)精錬:ノイゲン WS 5ml/L、水酸化ナトリウム5g/L、浴比1:50、95℃×60分
 (b)中間セット:180℃×1分
 (c)溶解除去処理(鞘成分の溶出):6.0重量%水酸化ナトリウム水溶液、95℃×30分
 (d)染色:酸性染料(Nylosan Blue-GFL167%(サンドス社製)1.0%owf、98℃×60分
 (e)固着処理:合成タンニン(ナイロンフィックス501 センカ社製)3g/l、80℃×20分
 (f)仕上げセット:200℃×1分
 (g)撥水加工:対象の織物を、ネオシードNR-158(日華化学社製)を5.0重量%、ベッカミンM-3(DIC社製)を0.3重量%、キャタリストACX(DIC社製)を0.3重量%、イソプロプルアルコール1重量%、水93.5重量%で混合した処理液に浸漬し、マングルにて絞り率60%で絞液後、130℃×1分で乾燥、170℃×35秒でキュアリングして、撥水加工布帛サンプルを得る。なお、溶出後の繊維がナイロンの場合は、フィックス処理を行う。フィックス処理は、ナイロンフィックス501(センカ社製)を5%owfで使用し、反応条件は80℃×30分、浴比は生地:水を1:20で行った。
(a) Refining: Neugen WS 5ml/L, sodium hydroxide 5g/L, bath ratio 1:50, 95℃ x 60 minutes (b) Intermediate setting: 180℃ x 1 minute (c) Dissolution and removal treatment (of sheath components) Elution): 6.0% by weight aqueous sodium hydroxide solution, 95°C x 30 minutes (d) Staining: Acid dye (Nylosan Blue-GFL167% (manufactured by Sandoz) 1.0% owf, 98°C x 60 minutes (e) Fixation treatment: Synthetic tannin (Nylon Fix 501 manufactured by Senka) 3g/l, 80℃ x 20 minutes (f) Finishing set: 200℃ x 1 minute (g) Water repellent treatment: The target fabric was coated with NeoSeed NR-158 ( 5.0% by weight of Beckamine M-3 (manufactured by DIC), 0.3% by weight of Catalyst ACX (manufactured by DIC), 1% by weight of isopropyl alcohol. , immersed in a treatment solution mixed with 93.5% water by weight, squeezed with a mangle at a squeezing rate of 60%, dried at 130°C for 1 minute, and cured at 170°C for 35 seconds to make it water repellent. Obtain a fabric sample. If the fiber after elution is nylon, perform a fix treatment. For the fix treatment, Nylon Fix 501 (manufactured by Senka) was used at 5% owf, and the reaction conditions were 80°C x 30 minutes. The bath ratio was 1:20 (dough:water).
 得られたポリアミド異形断面繊維を用いた織物について評価した結果を表1に示す。 Table 1 shows the results of evaluating the fabrics using the obtained polyamide irregular cross-section fibers.
 〔実施例2〕〔比較例1〕〔比較例4〕
 紡糸条件のドラフト比を表1に記載のとおり変更して剛直非晶量を変更した以外は実施例1と同様の方法で、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得、織物を得た。評価結果を表1に示す。
[Example 2] [Comparative example 1] [Comparative example 4]
A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1, except that the draft ratio of the spinning conditions was changed as shown in Table 1 and the amount of rigid amorphous was changed, and a woven fabric was obtained. I got it. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔実施例3〕〔比較例2〕
 冷却風速度を表2に記載のとおり変更して剛直非晶量を含む繊維物性を変更した以外は実施例1と同様の方法で、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得、織物を得た。評価結果を表2に示す。
[Example 3] [Comparative example 2]
A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1, except that the cooling air velocity was changed as shown in Table 2 and the fiber properties including the rigid amorphous content were changed. , obtained the fabric. The evaluation results are shown in Table 2.
 〔実施例4〕〔比較例3〕
 冷却開始距離LSを表2に記載のとおり変更して剛直非晶量を含む繊維物性を変更した以外は実施例1と同様の方法で、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得、織物を得た。評価結果を表2に示す。
[Example 4] [Comparative example 3]
A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was produced in the same manner as in Example 1, except that the cooling start distance LS was changed as shown in Table 2 and the fiber properties including the rigid amorphous content were changed. The fabric was obtained. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔実施例5〕
 鞘成分の熱可塑性ポリマーとして、5-ナトリウムスルホイソフタル酸8.0モル%および分子量1000のポリエチレングリコール10重量%を共重合した共重合PETチップ(溶融粘度750poise、融点240℃)に変更した以外は実施例1と同様の方法で、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得、織物を得た。評価結果を表3に示す。
[Example 5]
Except that the thermoplastic polymer of the sheath component was changed to a copolymerized PET chip (melt viscosity 750 poise, melting point 240°C) made by copolymerizing 8.0 mol% of 5-sodium sulfoisophthalic acid and 10% by weight of polyethylene glycol with a molecular weight of 1000. In the same manner as in Example 1, fibers consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments were obtained to obtain a woven fabric. The evaluation results are shown in Table 3.
 〔実施例6〕〔実施例7〕
 芯成分のポリアミドポリマーを表3に記載の通りN66チップ(溶融粘度550poise、融点265℃)、N610チップ(溶融粘度570poise、融点225℃)に変更、吐出量を48.4g/分、延伸倍率を2.4倍に変更した以外は実施例1と同様の方法で、66dtex、36フィラメントの芯鞘型複合糸からなる繊維を得、織物を得た。評価結果を表3に示す。
[Example 6] [Example 7]
As shown in Table 3, the core component polyamide polymer was changed to N66 chips (melt viscosity 550 poise, melting point 265 °C) and N610 chips (melt viscosity 570 poise, melting point 225 °C), the discharge rate was 48.4 g/min, and the stretching ratio was changed to A fiber consisting of a core-sheath type composite yarn of 66 dtex and 36 filaments was obtained in the same manner as in Example 1 except that the fiber was changed to 2.4 times, and a woven fabric was obtained. The evaluation results are shown in Table 3.
 〔比較例5〕
 芯成分のポリアミドポリマーとして、溶融粘度が1200poise、融点225℃、酸化チタンを含まないN6チップ、鞘成分の熱可塑性ポリマーとして、5-ナトリウムスルホイソフタル酸8.0モル%および分子量1000のポリエチレングリコール10重量%を共重合した共重合PETチップ(溶融粘度450poise、融点240℃)とし、270℃にて別々に溶融し、芯:鞘重量比を8:2とし、複合紡糸口金(孔径0.3mm、24ホール)より図1(b)の断面となるように吐出させた(吐出量29.4g/分)。溶融吐出した糸条を冷却固化した後油剤付与し、紡糸速度1200m/分で巻き取ることで未延伸繊維を得た。更に、未延伸繊維を90℃と130℃に加熱したローラー間で2.92倍延伸を行い(延伸速度800m/分)、84dtex、24フィラメントの芯鞘型複合糸からなる繊維を得て、織物を得た。評価結果を表3に示す。
[Comparative example 5]
The core component polyamide polymer has a melt viscosity of 1200 poise, the melting point 225°C, and an N6 chip that does not contain titanium oxide.The sheath component thermoplastic polymer includes 8.0 mol% of 5-sodium sulfoisophthalic acid and polyethylene glycol 10 with a molecular weight of 1000. A copolymerized PET chip (melt viscosity 450 poise, melting point 240°C) was prepared by copolymerizing PET chips (melt viscosity 450 poise, melting point 240°C), and separately melted at 270°C, with a core:sheath weight ratio of 8:2, and a composite spinneret (pore diameter 0.3 mm, 24 holes) so as to have the cross section shown in FIG. 1(b) (discharge amount: 29.4 g/min). After the melted and discharged yarn was cooled and solidified, an oil agent was applied thereto and the yarn was wound at a spinning speed of 1200 m/min to obtain an undrawn fiber. Furthermore, the undrawn fibers were drawn 2.92 times between rollers heated to 90°C and 130°C (drawing speed: 800 m/min) to obtain fibers consisting of a core-sheath type composite yarn of 84 dtex and 24 filaments. I got it. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1:複合紡糸口金
2:気体供給装置
3:冷却装置
4:給油装置
5:流体ノズル装置
6:引き取りローラー
7:延伸ローラー
8:巻取装置
LS:冷却開始距離
Lg:給油位置
d:溝部の入口角部の曲率半径
D:繊維横断面の外接円直径
H:溝部深さ
1: Composite spinneret 2: Gas supply device 3: Cooling device 4: Oil supply device 5: Fluid nozzle device 6: Take-up roller 7: Stretching roller 8: Winding device LS: Cooling start distance Lg: Oil supply position d: Entrance of groove Corner radius of curvature D: Circumscribed circle diameter of fiber cross section H: Groove depth

Claims (2)

  1. 単繊維の繊維横断面の外周に溝部が複数個存在し、
    該溝部の入口角部の曲率半径d、溝部深さHおよび繊維横断面の外接円直径Dが下式(1)、式(2)を満たす異形断面形状であり、
    剛直非晶量が35%以上55%以下であるポリアミド異形断面繊維。
    d/D≦0.030・・・式(1)
    0.10≦(H/D)≦0.30・・・式(2)
    There are multiple grooves on the outer periphery of the fiber cross section of the single fiber,
    The groove has an irregular cross-sectional shape in which the radius of curvature d of the entrance corner, the groove depth H, and the circumscribed circle diameter D of the fiber cross section satisfy the following formulas (1) and (2),
    A polyamide irregular cross-section fiber having a rigid amorphous content of 35% or more and 55% or less.
    d/D≦0.030...Formula (1)
    0.10≦(H/D)≦0.30...Formula (2)
  2. 鞘部にアルカリまたは熱水に溶解する熱可塑性ポリマー、芯部にポリアミドポリマーを配する芯鞘型断面形状を有し、
    芯部の断面形状が溝部を複数個有し、該溝部の入口角部の曲率半径d、溝部深さHおよび芯部の断面形状の外接円直径Dが下式(1)、式(2)を満たす異形断面形状であり、
    d/D≦0.030・・・式(1)
    0.10≦(H/D)≦0.30・・・式(2)
    鞘部溶解除去前後の伸度、強度が下式(3)、式(4)を満たす芯鞘型複合糸からなる繊維。
    鞘部溶解除去後の繊維伸度Ea/鞘部溶解除去前の繊維伸度Eb≦1.30・・・式(3)
    鞘部溶解除去後の繊維強度Sa/鞘部溶解除去前の繊維強度Sb≧0.95・・・式(4)
    It has a core-sheath cross-sectional shape with a thermoplastic polymer that dissolves in alkali or hot water in the sheath and a polyamide polymer in the core.
    The cross-sectional shape of the core has a plurality of grooves, and the radius of curvature d of the entrance corner of the groove, the groove depth H, and the circumscribed circle diameter D of the cross-sectional shape of the core are expressed by the following formulas (1) and (2). It has an irregular cross-sectional shape that satisfies
    d/D≦0.030...Formula (1)
    0.10≦(H/D)≦0.30...Formula (2)
    A fiber made of a core-sheath type composite yarn whose elongation and strength before and after dissolving and removing the sheath portion satisfy the following formulas (3) and (4).
    Fiber elongation Ea after dissolving and removing the sheath/fiber elongation Eb before dissolving and removing the sheath: Equation (3)
    Fiber strength Sa after sheath dissolution and removal/fiber strength Sb before sheath dissolution and removal...Equation (4)
PCT/JP2023/018709 2022-05-27 2023-05-19 Polyamide modified cross-section fiber and fiber formed from core-sheath composite yarn WO2023228878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086567 2022-05-27
JP2022-086567 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228878A1 true WO2023228878A1 (en) 2023-11-30

Family

ID=88919232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018709 WO2023228878A1 (en) 2022-05-27 2023-05-19 Polyamide modified cross-section fiber and fiber formed from core-sheath composite yarn

Country Status (1)

Country Link
WO (1) WO2023228878A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160441A (en) * 1985-01-09 1986-07-21 帝人株式会社 Production of composite fiber and false twisted two-layered structural yarn
JPH06235168A (en) * 1993-02-10 1994-08-23 Toyobo Co Ltd Woven or knit fabric of extremely modified falsely twisted textured yarn
JPH0835145A (en) * 1992-12-04 1996-02-06 Toyobo Co Ltd Crepe woven fabric and its production
JP2000199122A (en) * 1999-01-06 2000-07-18 Unitika Ltd Hollow fiber having curb type cross section
JP2007262610A (en) * 2006-03-28 2007-10-11 Teijin Fibers Ltd Combined filament yarn
JP2013224504A (en) * 2012-04-23 2013-10-31 Toray Monofilament Co Ltd Conjugate monofilament and fabric
WO2018021011A1 (en) * 2016-07-26 2018-02-01 東レ株式会社 Polyamide multifilament, and lace knit and stockings using same
JP2019026944A (en) * 2017-07-26 2019-02-21 東レ株式会社 Sheath-core composite fiber
WO2019208427A1 (en) * 2018-04-25 2019-10-31 東レ株式会社 Polyamide fiber, woven or knit fabric, and method for producing polyamide fiber
JP2020105682A (en) * 2018-12-25 2020-07-09 東レ株式会社 Sheath-core composite fiber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160441A (en) * 1985-01-09 1986-07-21 帝人株式会社 Production of composite fiber and false twisted two-layered structural yarn
JPH0835145A (en) * 1992-12-04 1996-02-06 Toyobo Co Ltd Crepe woven fabric and its production
JPH06235168A (en) * 1993-02-10 1994-08-23 Toyobo Co Ltd Woven or knit fabric of extremely modified falsely twisted textured yarn
JP2000199122A (en) * 1999-01-06 2000-07-18 Unitika Ltd Hollow fiber having curb type cross section
JP2007262610A (en) * 2006-03-28 2007-10-11 Teijin Fibers Ltd Combined filament yarn
JP2013224504A (en) * 2012-04-23 2013-10-31 Toray Monofilament Co Ltd Conjugate monofilament and fabric
WO2018021011A1 (en) * 2016-07-26 2018-02-01 東レ株式会社 Polyamide multifilament, and lace knit and stockings using same
JP2019026944A (en) * 2017-07-26 2019-02-21 東レ株式会社 Sheath-core composite fiber
WO2019208427A1 (en) * 2018-04-25 2019-10-31 東レ株式会社 Polyamide fiber, woven or knit fabric, and method for producing polyamide fiber
JP2020105682A (en) * 2018-12-25 2020-07-09 東レ株式会社 Sheath-core composite fiber

Similar Documents

Publication Publication Date Title
US9783916B2 (en) Woven fabric
KR20180097712A (en) Core-sheath type conjugate fiber, false-twist yarn and fiber structure
WO2007102522A1 (en) Cojugated fiber containing yarn
CN113330156B (en) Water-repellent woven knitted fabric, method for producing same, and clothing
JP2016204784A (en) Polyamide core-sheath composite fiber excellent in hygroscopicity and contact cool feeling and fabric using the same
TWI814764B (en) Dyeable polyolefin fibers and fiber structures containing the same
JP5254730B2 (en) Thin fabric for organdy
US20210040650A1 (en) Polyamide multifilament and knitted lace manufactured using same
WO2023228878A1 (en) Polyamide modified cross-section fiber and fiber formed from core-sheath composite yarn
JP6213693B2 (en) Core-sheath composite cross-section fiber with excellent hygroscopic and anti-mold properties
JP6939102B2 (en) Core-sheath composite fiber, false plying and fiber structure with excellent hygroscopicity
JP4100063B2 (en) Composite fibers and fiber structures
CA3003681A1 (en) Polyamide fiber capable of high-temperature dyeing
TW202413753A (en) Polyamide special-shaped cross-section fibers and fibers containing core-sheath type composite filaments
CN114657654A (en) Core-sheath composite fiber, application thereof and profiled fiber
JP6690160B2 (en) Anti-static polyamide core-sheath composite fiber with excellent durability
JP2010059570A (en) Woven fabric and textile product
JP2005048309A (en) Polyamide fiber, polyamide woven fabric and textile product composed of the same
JP2019515157A (en) Core-sheath composite fiber and woven fabric thereof
WO2022107671A1 (en) Sea-island composite polyester fiber
JP2006124851A (en) Highly hygroscopic polyamide combined filament yarn with different shrinkage percentage and method for producing the same
JP2004019046A (en) Water-absorbing, quick-drying and water penetration-proof fiber and method for producing the same
JP2000154429A (en) Polyamide conjugated fiber
JP2006265743A (en) Polyamide fiber for woven fabric and method for producing the same
CN116096948A (en) Polyamide multifilament yarn, method for producing the same, and braid

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023540484

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811750

Country of ref document: EP

Kind code of ref document: A1