WO2023228639A1 - Inverter device and electric compressor provided with same - Google Patents

Inverter device and electric compressor provided with same Download PDF

Info

Publication number
WO2023228639A1
WO2023228639A1 PCT/JP2023/015929 JP2023015929W WO2023228639A1 WO 2023228639 A1 WO2023228639 A1 WO 2023228639A1 JP 2023015929 W JP2023015929 W JP 2023015929W WO 2023228639 A1 WO2023228639 A1 WO 2023228639A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
circuit
housing
inverter device
electric compressor
Prior art date
Application number
PCT/JP2023/015929
Other languages
French (fr)
Japanese (ja)
Inventor
康平 ▲高▼田
辰樹 柏原
浩 吉田
孝次 小林
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023228639A1 publication Critical patent/WO2023228639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
  • an electric compressor equipped with a motor is used instead of an engine-driven compressor.
  • the vehicle is equipped with a high-voltage power source consisting of a high-voltage battery of about 300 VDC, for example, and a low-voltage power source consisting of a normal battery of about 12 VDC, and the inverter circuit of the inverter device converts the DC voltage of the high-voltage power source into alternating current. This voltage is supplied to the motor of the electric compressor.
  • a control circuit that controls an inverter circuit of an inverter device is supplied with power by converting, for example, a DC voltage from a low-voltage power supply into a predetermined voltage (for example, DC 15V, etc.) using a switching power supply device. Therefore, a switching power supply device is provided with a switching transformer made of an isolation transformer, and a low voltage circuit on the primary side of the switching transformer is insulated from a high voltage circuit on the secondary side. That is, an inverter device including a high voltage circuit supplied with power from a high voltage power supply and a low voltage circuit supplied with power from a low voltage power supply is housed in an inverter accommodating portion configured in the housing of the electric compressor. It was considered to be a form.
  • FIG. 6 100 is a conventional electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle, and 2 indicates its housing.
  • a compression mechanism (not shown) and a motor 8 for driving the compression mechanism are housed in the housing 2
  • an inverter circuit 34 for driving the motor 8 and an inverter circuit 34 for controlling the inverter circuit 34 are housed in the inverter accommodating portion 6 of the housing 2.
  • An inverter device 103 including a control circuit 36, a high voltage circuit filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, and the like is housed.
  • EMI filter high voltage circuit filter
  • EMI filter low voltage circuit filter
  • the vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of about 300 V DC, for supplying power to the motor 8 of the electric compressor 100 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of about 12 V DC.
  • HV power source high voltage power source
  • LV power supply low voltage power supply
  • the inverter circuit 34 of the inverter device 103 is composed of six switching elements (not shown) including three-phase bridge-connected IGBTs, etc., and each switching element is driven by a gate drive signal generated by a gate driver included in the control circuit 36. controlled. Further, each switching element is arranged in a heat exchange relationship with the housing 2, and the heat generated by the switching element is released to the housing 2, so that the switching element is cooled. That is, the housing 2 serves as a heat sink for each switching element.
  • the control circuit 36 is composed of a microprocessor (CPU), and converts the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency by switching each switching element of the inverter circuit 34 with a gate driver and performing PWM modulation. , is supplied to the motor 8.
  • CPU microprocessor
  • the high-voltage circuit filter 37 is connected between the high-voltage power supply 41 and the inverter circuit 34, and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47 in this example.
  • This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34.
  • the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53.
  • the low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
  • the switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36.
  • HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34
  • HV5V is a voltage that serves as a power source for the control circuit 36.
  • the switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • the switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 101 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60.
  • the wire 57 is insulated from the high voltage circuit 102 on the high voltage power supply 41 side.
  • the high voltage circuit 102 and low voltage circuit 101 of the inverter device 103 thus insulated are housed in the inverter accommodating portion 6 in close proximity to each other.
  • the noise of the high voltage circuit 102 can be reduced in the same way as in consumer equipment, but new resonance will occur, and as a result, the high voltage circuit 102 and the cup There was a problem in that the noise of the low voltage circuit 101 that was ringing was significantly worsened.
  • FIG. 8 shows the noise measurement results of the high voltage circuit 102, where the horizontal axis is the frequency and the vertical axis is the noise level.
  • L100 shows the case where the common mode coil is not inserted as shown in FIG. 6, and L101 shows the case where the common mode coil 104 is inserted as shown in FIG.
  • FIG. 8 shows the improvement difference: L100-L101.
  • FIG. 9 shows the noise measurement results of the low voltage circuit 101, where the horizontal axis is the frequency and the vertical axis is the noise level.
  • L103 shows the case where the common mode coil 104 is not inserted into the high voltage circuit 102 as shown in FIG. 6, and L104 shows the case where the common mode coil 104 is inserted into the high voltage circuit 102 as shown in FIG.
  • (b) in FIG. 9 shows the difference between them: L103-L104.
  • the impedance Due to the differential mode resonance between the leakage inductance of the common mode coil 104 and the inter-winding capacitance of the motor 8, the impedance has a minimum value near 6 MHz in FIG. 8, and an extremely large amount of common mode current in this band flows out. .
  • the noise flowing from the high voltage circuit 102 to the low voltage circuit 101 becomes extremely large, and as is clear from FIG. 9(b), the noise in the low voltage circuit 101 becomes significantly worse (FIG. 9(b)
  • a value smaller than 0 means that the noise is increasing).
  • the present invention has been made in order to solve the conventional technical problem, and effectively reduces noise caused by common mode current flowing from the motor and housing without worsening the noise of the low voltage circuit.
  • An object of the present invention is to provide an inverter device and an electric compressor equipped with the same.
  • the inverter device of the present invention includes a high-voltage circuit including a three-phase inverter circuit that is configured of switching elements and is supplied with power from a high-voltage power supply, and a low-voltage circuit that is supplied with power from a low-voltage power supply.
  • the motor is driven by a circuit, and is characterized by having a normal mode coil inserted into a three-phase output section of an inverter circuit.
  • the inverter device of the invention according to claim 2 is characterized in that, in the above invention, normal mode coils are inserted into any one phase, two phases, or all three phases of the three-phase output section of the inverter circuit.
  • the normal mode coil has a higher impedance at higher frequencies than at lower frequencies, and the three-phase output section of the inverter circuit further includes an impedance higher at higher frequencies than at lower frequencies. It is also characterized by the insertion of a common mode coil that provides high impedance at low frequencies.
  • a coil integrally provided with a common mode component corresponding to the common mode coil and a normal mode component corresponding to the normal mode coil is connected to a three-phase output section of the inverter circuit. It is characterized by what it did.
  • An electric compressor includes the inverter device of each of the above inventions, a housing in which the motor is housed, and an inverter accommodating portion configured in the housing, and the inverter device is housed in the inverter accommodating portion of the housing. It is characterized by being
  • the electric compressor of the invention according to claim 6 is characterized in that the housing in the above invention serves as a heat sink for the switching element.
  • the electric compressor of the invention of claim 7 is characterized in that it is mounted on a vehicle in the invention of claim 5.
  • the inverter circuit includes a high voltage circuit including a three-phase inverter circuit configured of switching elements and supplied with power from a high voltage power supply, and a low voltage circuit supplied with power from a low voltage power supply.
  • a high voltage circuit including a three-phase inverter circuit configured of switching elements and supplied with power from a high voltage power supply, and a low voltage circuit supplied with power from a low voltage power supply.
  • the inverter device is housed in the inverter accommodating portion of the housing, as in the invention of claim 6, the housing is used as a heat sink for the switching element, and as in the invention of claim 7, there is a demand for reduction in size and weight. This makes it extremely suitable for vehicle-mounted electric compressors.
  • the normal mode coil is effective when inserted into any one phase, two phases, or all three phases of the three-phase output section of the inverter circuit as in the second aspect of the invention.
  • the noise suppression effect described above can be obtained by simply inserting a normal mode coil into the three-phase output section of the inverter circuit, but if miniaturization is a priority, the normal mode coil can only reduce noise at high frequencies (several (MHz or higher) noise.
  • the inverter device can be improved. It becomes possible to effectively suppress noise over a wide band in both voltage circuits and low voltage circuits.
  • a coil integrally provided with a common mode component corresponding to a common mode coil and a normal mode component corresponding to a normal mode coil is connected to the three-phase output section of the inverter circuit. Therefore, it becomes possible to further reduce the size of the compressor, which is suitable for an electric compressor mounted on a vehicle as in the seventh aspect of the invention.
  • FIG. 1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention (Embodiment 1); FIG. 1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention.
  • 2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1.
  • FIG. 2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1.
  • FIG. 3 is a block diagram of an electric circuit of an electric compressor according to another embodiment to which the present invention is applied (Embodiment 2).
  • FIG. 2 is a block diagram of an electric circuit of a conventional electric compressor.
  • FIG. 7 is a block diagram of an electric circuit when a common mode coil is inserted into the output section of the inverter circuit of the electric compressor shown in FIG. 6.
  • FIG. 8 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 7.
  • FIG. 8 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 7.
  • the electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner installed in an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • the inside of the metallic cylindrical housing 2 of the electric compressor 1 is divided into a compression mechanism housing part 4 and an inverter housing part by a partition wall 3 that intersects in the axial direction of the housing 2.
  • a scroll-type compression mechanism 7 and a motor 8 for driving the compression mechanism 7 are housed in the compression mechanism accommodating portion 4.
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • a bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4.
  • One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7.
  • a suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven.
  • a low-temperature refrigerant which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
  • the refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
  • the inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 .
  • the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
  • the inverter device 16 includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17.
  • the control circuit 36 includes a control circuit 36, an HV connector, an LV connector, etc. (not shown).
  • each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
  • IGBT insulated gate bipolar transistor
  • each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17.
  • the inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked.
  • the substrate 17 is fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
  • each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes.
  • each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3.
  • the switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
  • inverter device 16 of the present invention includes an inverter circuit 34 for driving motor 8, a control circuit 36 for controlling this inverter circuit 34, and a high voltage circuit. It is composed of a filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, etc., and these are wired on the board 17 mentioned above and housed in the inverter accommodating part 6 as mentioned above. Ru.
  • EMI filter filter
  • EMI filter low voltage circuit filter
  • the vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of approximately 300 V DC, for supplying power to the motor 8 of the electric compressor 1 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of approximately 12 V DC.
  • HV power source high voltage power source
  • a low voltage power source (LV power source) 42 consisting of a battery is mounted, and the inverter device 16 is connected to the high voltage power source 41 through the aforementioned HV connector (not shown) and to the low voltage power source 42 through the LV connector.
  • the housing 2 is electrically connected to the vehicle body (ground).
  • the inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36.
  • the control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
  • CPU microprocessor
  • the high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34, and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47 in the embodiment.
  • This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34.
  • the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53.
  • the low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
  • the switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36.
  • HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34
  • HV5V is a voltage that serves as a power source for the control circuit 36.
  • the switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
  • the switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 63 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60.
  • the wire 57 is insulated from the high voltage circuit 64 on the high voltage power supply 41 side.
  • the inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
  • the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side, so the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side.
  • a common mode current flows out (indicated by an arrow in FIG. 1).
  • noise common mode noise due to the common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 becomes dominant.
  • 62 in FIG. 7 is a stray capacitance between the inverter circuit 34 and the housing 2.
  • normal mode coils 66 are inserted into all three phases of the three-phase output section (three wires between the inverter circuit 34 and the motor 8) of the inverter circuit 34 (FIG. 1).
  • 66U is a normal mode coil inserted in the U phase line
  • 66V is a normal mode coil inserted in the V phase line
  • 66W is a normal mode coil inserted in the W phase line.
  • a mode coil 66 is configured.
  • the surge voltage (oscillating voltage) accompanying the switching of the switching elements 18 of each phase of the inverter circuit 34 is absorbed by the normal mode coil 66. This is converted into thermal energy as a loss, and its transmission to the motor 8 side is suppressed.
  • FIG. 3 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise.
  • L100 indicates the case of FIG. 6 described above
  • L1 indicates the case where the normal mode coil 66 is inserted as shown in FIG.
  • (b) in FIG. 3 shows the improvement difference: L100-L1.
  • FIG. 3(b) by inserting the normal mode coil 66 into each phase between the three-phase output part of the inverter circuit 34 and the motor 8, the switching of the switching element 18 of each phase of the inverter circuit 34 is controlled.
  • the accompanying surge voltage (oscillating voltage) is converted into thermal energy as a loss by the normal mode coil 66, and its transmission to the motor 8 side is suppressed, causing a common mode current to flow out via the stray capacitance 61 between the motor 8 and the housing 2.
  • the noise (common mode noise) (indicated by black arrows in FIG. 1) is reduced.
  • FIG. 3(b) shows that the larger the value is than 0, the greater the noise reduction effect is, and it can be seen that the effect is particularly great in a frequency band higher than 6 MHz.
  • FIG. 4 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is the frequency and the vertical axis is the noise.
  • L103 indicates the case of FIG. 6 described above
  • L2 indicates the case where the normal mode coil 66 is inserted into the high voltage circuit 64 as shown in FIG.
  • (b) in FIG. 4 shows the difference between them: L103-L2.
  • the high voltage circuit 64 and the low voltage circuit 63 are housed in the inverter accommodating portion 6 of the housing 2, and a reduction in size and weight is required.
  • the noise suppression effect is extremely favorable.
  • an electric compressor 1 according to another embodiment of the present invention will be described with reference to FIG. 5.
  • components indicated by the same reference numerals as those in FIG. 1 have the same or similar functions.
  • the noise suppression effect can be obtained by simply inserting the normal mode coil 66 into the three-phase output section of the inverter circuit 34 of the inverter device 16, but if miniaturization of the electric compressor 1 is prioritized, the normal mode coil 66 can only reduce noise at a high frequency (6 MHz or higher) above a predetermined value (see FIG. 3).
  • the three-phase output section of the inverter circuit 34 has a small number of windings so that higher impedance can be obtained at lower frequencies than at higher frequencies.
  • a three-phase common mode coil 67 that is small and has low leakage inductance is inserted.
  • the common mode coil 67 which has a characteristic that the impedance is low at high frequencies and high at low frequencies, the low frequency ( It becomes possible to reduce noise at a frequency lower than a predetermined value (frequency band lower than 6 MHz), and it is possible to effectively suppress noise over a wide band in both the high voltage circuit 64 and the low voltage circuit 63. It becomes possible.
  • the compressor By connecting the compressor to the compressor, the compressor can be further miniaturized and is suitable for the electric compressor 1 mounted on a vehicle.
  • the normal mode coils 66 are inserted into all three phases of the three-phase output section of the inverter circuit 34, but the present invention is not limited to this.
  • a normal mode coil may be inserted, or it may be effective to insert it into two of these phases.
  • a high voltage power supply 41 consisting of a high voltage battery of about 300V DC and a low voltage power supply 42 consisting of a battery of about 12V DC are provided, and the DC voltage (HV15V, HV5V) from this low voltage power supply 42 to the high voltage circuit 64 side is ), but the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
  • the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 to 3 are not limited to this, and the invention is not limited to this, and the invention is not limited to this, and the motor is driven by providing a high voltage circuit and a low voltage circuit. It is applicable to various inverter devices. Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compressor (AREA)
  • Inverter Devices (AREA)

Abstract

[Problem] To provide an inverter device by which it is possible to effectively reduce noise resulting from a common mode current flowing from a motor and a housing, without worsening noise in a low voltage circuit. [Solution] An inverter device 16 comprises: a high voltage circuit 64 constituted of switching elements and including a three-phase inverter circuit 34 to which power is supplied from a high voltage source 41; and a low voltage circuit 63 to which power is supplied from a low voltage power source 42. The inverter device drives a motor 8 using the inverter circuit 34, and comprises normal mode coils 66 that are inserted into a three-phase output unit of the inverter circuit 34. The inverter device 16 is accommodated in an inverter accommodation unit 6 of a housing 2 of an electric compressor 1.

Description

インバータ装置及びそれを備えた電動圧縮機Inverter device and electric compressor equipped with it
 本発明は、モータを駆動するインバータ装置と、それを備えた電動圧縮機に関するものである。 The present invention relates to an inverter device that drives a motor, and an electric compressor equipped with the inverter device.
 ハイブリッド自動車や電気自動車等の電動車両の車室内を空調するための車両用空気調和装置では、エンジン駆動の圧縮機に代わってモータを備えた電動圧縮機が使用される。その場合、車両には例えばDC300V程の高電圧バッテリから成る高電圧電源と、DC12V程の通常のバッテリから成る低電圧電源が搭載され、インバータ装置のインバータ回路により、高電圧電源の直流電圧を交流とした電圧が電動圧縮機のモータに供給される。 In a vehicle air conditioner for air conditioning the interior of an electric vehicle such as a hybrid vehicle or an electric vehicle, an electric compressor equipped with a motor is used instead of an engine-driven compressor. In that case, the vehicle is equipped with a high-voltage power source consisting of a high-voltage battery of about 300 VDC, for example, and a low-voltage power source consisting of a normal battery of about 12 VDC, and the inverter circuit of the inverter device converts the DC voltage of the high-voltage power source into alternating current. This voltage is supplied to the motor of the electric compressor.
 一方、インバータ装置のインバータ回路を制御する制御回路には、例えば低電圧電源の直流電圧をスイッチング電源装置により所定の電圧(例えばDC15V等)に変換して給電する。そのため、スイッチング電源装置には絶縁トランスから成るスイッチングトランスが設けられ、このスイッチングトランスの一次側の低電圧回路と、二次側の高電圧回路とを絶縁している。即ち、高電圧電源から電源が供給される高電圧回路と、低電圧電源から電源が供給される低電圧回路を備えたインバータ装置が、電動圧縮機のハウジングに構成されたインバータ収容部に収容されるかたちとされていた。 On the other hand, a control circuit that controls an inverter circuit of an inverter device is supplied with power by converting, for example, a DC voltage from a low-voltage power supply into a predetermined voltage (for example, DC 15V, etc.) using a switching power supply device. Therefore, a switching power supply device is provided with a switching transformer made of an isolation transformer, and a low voltage circuit on the primary side of the switching transformer is insulated from a high voltage circuit on the secondary side. That is, an inverter device including a high voltage circuit supplied with power from a high voltage power supply and a low voltage circuit supplied with power from a low voltage power supply is housed in an inverter accommodating portion configured in the housing of the electric compressor. It was considered to be a form.
 図6を用いて係る従来の電動圧縮機100の電気回路を説明する。図6において100は電動車両に搭載される車両用空気調和装置の冷媒回路を構成する従来の電動圧縮機であり、2はそのハウジングを示している。このハウジング2内に図示しない圧縮機構と、当該圧縮機構を駆動するモータ8が収容され、ハウジング2のインバータ収容部6にはモータ8を運転するためのインバータ回路34、このインバータ回路34を制御する制御回路36、高電圧回路フィルタ(EMIフィルタ)37、低電圧回路フィルタ(EMIフィルタ)38、及び、スイッチング電源装置39等を備えたインバータ装置103が収納される。 The electric circuit of the conventional electric compressor 100 will be explained using FIG. 6. In FIG. 6, 100 is a conventional electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner mounted on an electric vehicle, and 2 indicates its housing. A compression mechanism (not shown) and a motor 8 for driving the compression mechanism are housed in the housing 2, and an inverter circuit 34 for driving the motor 8 and an inverter circuit 34 for controlling the inverter circuit 34 are housed in the inverter accommodating portion 6 of the housing 2. An inverter device 103 including a control circuit 36, a high voltage circuit filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, and the like is housed.
 尚、車両には電動圧縮機100のモータ8や、図示しない走行用のモータに給電して駆動するための例えばDC300V程の高電圧バッテリから成る高電圧電源(HV電源)41と、DC12V程のバッテリから成る低電圧電源(LV電源)42が搭載されている。また、ハウジング2は車体(グランド)に導通されている。 The vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of about 300 V DC, for supplying power to the motor 8 of the electric compressor 100 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of about 12 V DC. A low voltage power supply (LV power supply) 42 consisting of a battery is mounted. Furthermore, the housing 2 is electrically connected to the vehicle body (ground).
 インバータ装置103のインバータ回路34は、三相ブリッジ接続されたIGBT等から成る図示しない6個のスイッチング素子から構成されており、各スイッチング素子は制御回路36が有するゲートドライバが生成するゲート駆動信号により制御される。また、各スイッチング素子はハウジング2と熱交換関係に配置され、スイッチング素子が発生する熱はハウジング2に放出され、スイッチング素子は冷却される構成とされている。即ち、ハウジング2が各スイッチング素子のヒートシンクとされている。 The inverter circuit 34 of the inverter device 103 is composed of six switching elements (not shown) including three-phase bridge-connected IGBTs, etc., and each switching element is driven by a gate drive signal generated by a gate driver included in the control circuit 36. controlled. Further, each switching element is arranged in a heat exchange relationship with the housing 2, and the heat generated by the switching element is released to the housing 2, so that the switching element is cooled. That is, the housing 2 serves as a heat sink for each switching element.
 制御回路36はマイクロプロセッサ(CPU)から構成されており、インバータ回路34の各スイッチング素子をゲートドライバによりスイッチングしてPWM変調を行うことで、高電圧電源41の直流電圧を所定周波数の交流電圧とし、モータ8に供給する。 The control circuit 36 is composed of a microprocessor (CPU), and converts the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency by switching each switching element of the inverter circuit 34 with a gate driver and performing PWM modulation. , is supplied to the motor 8.
 高電圧回路フィルタ37は高電圧電源41とインバータ回路34の間に接続されており、この例では、コモンモードコイル43、Yコンデンサ44、46、平滑コンデンサ47から構成される。この高電圧回路フィルタ37は、インバータ回路34のスイッチングにより発生するEMIノイズを低減させる作用を奏する。低電圧回路フィルタ38は、この例では、Xコンデンサ48、コモンモードコイル49、Yコンデンサ51、52、平滑コンデンサ53から構成される。低電圧回路フィルタ38は、低電圧電源42とスイッチング電源装置39の間に接続され、スイッチング電源装置39でのスイッチングにより発生するEMIノイズを低減させる作用を奏する。 The high-voltage circuit filter 37 is connected between the high-voltage power supply 41 and the inverter circuit 34, and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47 in this example. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34. In this example, the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
 スイッチング電源装置39は、低電圧電源42(DC12V)をスイッチングして所定の直流電圧(HV15V、HV5V)を生成し、制御回路36に給電するためのDC-DCコンバータである。尚、HV15Vはインバータ回路34のゲート駆動信号を生成するゲートドライバ(制御回路36が有する)に供給される電圧であり、HV5Vは制御回路36の電源となる電圧である。 The switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36. Note that HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34, and HV5V is a voltage that serves as a power source for the control circuit 36.
 スイッチング電源装置39は、一次巻線56と、この一次巻線56とは絶縁された二次巻線57から成る絶縁トランス(カップリングトランス)にて構成されたスイッチングトランス60と、一次巻線56に接続されたスイッチング素子58を有している。そして、スイッチングトランス60の巻数比に応じて、DC15V(HV15V)とDC5V(HV5V)が出力されるようにスイッチング素子58がスイッチング制御される。 The switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
 スイッチング電源装置39は低電圧電源42をスイッチングして制御回路36に電源を供給すると共に、スイッチングトランス60により、一次巻線56が位置する低電圧電源42側の低電圧回路101と、二次巻線57が位置する高電圧電源41側の高電圧回路102とを絶縁する。そして、このように絶縁されたインバータ装置103の高電圧回路102と低電圧回路101が、インバータ収容部6内に近接して収容されることになる。 The switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 101 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60. The wire 57 is insulated from the high voltage circuit 102 on the high voltage power supply 41 side. The high voltage circuit 102 and low voltage circuit 101 of the inverter device 103 thus insulated are housed in the inverter accommodating portion 6 in close proximity to each other.
特開2007-68311号公報JP2007-68311A
 ここで、インバータ回路34を構成するスイッチング素子のスイッチングに伴うサージ電圧(振動電圧)はモータ8側に伝達するため、電圧変動によりモータ8とハウジング2間の浮遊容量(図6に61で示す)を介してコモンモード電流が流出する(図6中に矢印で示す)。特に、電動圧縮機100では、モータ8とハウジング2間の浮遊容量61を介して流出するコモンモード電流によるノイズ(コモンモードノイズ)が支配的となる。尚、図6中の62はインバータ回路34とハウジング2間の浮遊容量である。 Here, since the surge voltage (oscillating voltage) accompanying the switching of the switching elements constituting the inverter circuit 34 is transmitted to the motor 8 side, the stray capacitance between the motor 8 and the housing 2 (indicated by 61 in FIG. 6) due to voltage fluctuations. A common mode current flows out through (indicated by an arrow in FIG. 6). In particular, in the electric compressor 100, noise (common mode noise) due to a common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 becomes dominant. Note that 62 in FIG. 6 is a stray capacitance between the inverter circuit 34 and the housing 2.
 一方、従来より商用交流を電源とするエアコンや給湯器等の民生用機器においては、インバータ回路の出力部にコモンモードコイルやフェライトコアを挿入することにより、モータとハウジング間の浮遊容量を介して流出する経路のインピーダンスを高めてノイズの低減を図っていた(例えば、特許文献1参照)。 On the other hand, in consumer equipment such as air conditioners and water heaters that use commercial AC as a power source, by inserting a common mode coil or ferrite core into the output section of the inverter circuit, the power source is Noise has been reduced by increasing the impedance of the outflow path (for example, see Patent Document 1).
 しかしながら、図6のような電動車両に搭載される電動圧縮機100のインバータ装置103では、小型軽量化(振動対策も含む)が必須事項であり、上述した民生用機器のようにインバータ回路34の出力部にコモンモードコイルを入れる、或いは、フェライトコアを付ける等といった対策を施し難い実情がある。 However, in the inverter device 103 of the electric compressor 100 mounted on an electric vehicle as shown in FIG. In reality, it is difficult to take measures such as inserting a common mode coil into the output section or attaching a ferrite core.
 その上、前述した如くインバータ収容部6内で高電圧回路102と低電圧回路101が混在しているので、図7に示すように高電圧回路102にあるインバータ回路34の出力部(インバータ回路34とモータ8の間)に三相のコモンモードコイル104を挿入すると、民生用機器と同様に高電圧回路102のノイズ低減は図れるものの、新たな共振が発生し、結果として高電圧回路102とカップリングしている低電圧回路101のノイズが大幅に悪化してしまうと云う問題があった。 Furthermore, as described above, since the high voltage circuit 102 and the low voltage circuit 101 are mixed in the inverter accommodating section 6, as shown in FIG. If a three-phase common mode coil 104 is inserted between the high voltage circuit 102 and the motor 8), the noise of the high voltage circuit 102 can be reduced in the same way as in consumer equipment, but new resonance will occur, and as a result, the high voltage circuit 102 and the cup There was a problem in that the noise of the low voltage circuit 101 that was ringing was significantly worsened.
 即ち、図8中の(a)は高電圧回路102のノイズ測定結果を示し、横軸は周波数、縦軸はノイズレベルである。また、L100は図6のようにコモンモードコイルを挿入していない場合、L101は図7のようにコモンモードコイル104を挿入した場合を示している。また、図8中の(b)は、改善差違:L100-L101を示している。 That is, (a) in FIG. 8 shows the noise measurement results of the high voltage circuit 102, where the horizontal axis is the frequency and the vertical axis is the noise level. Moreover, L100 shows the case where the common mode coil is not inserted as shown in FIG. 6, and L101 shows the case where the common mode coil 104 is inserted as shown in FIG. Further, (b) in FIG. 8 shows the improvement difference: L100-L101.
 図8(b)から明らかな如く、インバータ回路34の出力部とモータ8の間に三相のコモンモードコイル104を挿入したことにより、モータ8とハウジング2間の浮遊容量61を介して流出するコモンモード電流(図7中に黒矢印で示す)によるノイズ(コモンモードノイズ)は低減される(図8(b)は0より大きい程、ノイズ低減効果が大)。 As is clear from FIG. 8(b), by inserting the three-phase common mode coil 104 between the output part of the inverter circuit 34 and the motor 8, the outflow occurs via the stray capacitance 61 between the motor 8 and the housing 2. Noise (common mode noise) due to the common mode current (indicated by the black arrow in FIG. 7) is reduced (in FIG. 8(b), the larger the value is than 0, the greater the noise reduction effect).
 しかしながら、高電圧回路102にコモンモードコイル104を挿入したことにより、この経路のインピーダンスが高まり、ノイズを抑制して流出しないようにする作用が生じる。その結果、後述する共振よってコモンモード電流(ノイズエネルギー)が、図7中白抜き矢印や破線矢印で示すように低電圧回路101に流出し、低電圧回路101のノイズの悪化をもたらす。 However, by inserting the common mode coil 104 into the high-voltage circuit 102, the impedance of this path increases, producing the effect of suppressing noise and preventing it from leaking out. As a result, common mode current (noise energy) flows into the low voltage circuit 101 due to resonance, which will be described later, as shown by the white arrows and broken line arrows in FIG. 7, resulting in deterioration of noise in the low voltage circuit 101.
 図9中の(a)は低電圧回路101のノイズ測定結果を示し、横軸は周波数、縦軸はノイズレベルである。また、L103は図6のようにコモンモードコイルを高電圧回路102に挿入していない場合、L104は図7のようにコモンモードコイル104を高電圧回路102に挿入した場合を示している。また、図9中の(b)は、それらの差違:L103-L104を示している。 (a) in FIG. 9 shows the noise measurement results of the low voltage circuit 101, where the horizontal axis is the frequency and the vertical axis is the noise level. Further, L103 shows the case where the common mode coil 104 is not inserted into the high voltage circuit 102 as shown in FIG. 6, and L104 shows the case where the common mode coil 104 is inserted into the high voltage circuit 102 as shown in FIG. Further, (b) in FIG. 9 shows the difference between them: L103-L104.
 コモンモードコイル104のリーケージインダクタンスとモータ8の巻線間容量とのディファレンシャルモード共振により、図8の6MHz付近でインピーダンスは極小値を持ち、この帯域のコモンモード電流が極端に多く流出することになる。その結果、高電圧回路102から低電圧回路101に流出するノイズが極端に大きくなり、図9(b)から明らかな如く、低電圧回路101のノイズが大幅に悪化する(図9(b)は0より小さい程、ノイズが増大していることを意味する)。 Due to the differential mode resonance between the leakage inductance of the common mode coil 104 and the inter-winding capacitance of the motor 8, the impedance has a minimum value near 6 MHz in FIG. 8, and an extremely large amount of common mode current in this band flows out. . As a result, the noise flowing from the high voltage circuit 102 to the low voltage circuit 101 becomes extremely large, and as is clear from FIG. 9(b), the noise in the low voltage circuit 101 becomes significantly worse (FIG. 9(b) A value smaller than 0 means that the noise is increasing).
 本発明は、係る従来の技術的課題を解決するために成されたものであり、低電圧回路のノイズを悪化させること無く、モータ及びハウジングから流出するコモンモード電流によるノイズを効果的に低減することができるインバータ装置及びそれを備えた電動圧縮機を提供することを目的とする。 The present invention has been made in order to solve the conventional technical problem, and effectively reduces noise caused by common mode current flowing from the motor and housing without worsening the noise of the low voltage circuit. An object of the present invention is to provide an inverter device and an electric compressor equipped with the same.
 本発明のインバータ装置は、スイッチング素子より構成され、高電圧電源から電源が供給される三相のインバータ回路を含む高電圧回路と、低電圧電源から電源が供給される低電圧回路を備え、インバータ回路によりモータを駆動するものであって、インバータ回路の三相出力部に挿入されたノーマルモードコイルを備えたことを特徴とする。 The inverter device of the present invention includes a high-voltage circuit including a three-phase inverter circuit that is configured of switching elements and is supplied with power from a high-voltage power supply, and a low-voltage circuit that is supplied with power from a low-voltage power supply. The motor is driven by a circuit, and is characterized by having a normal mode coil inserted into a three-phase output section of an inverter circuit.
 請求項2の発明のインバータ装置は、上記発明においてインバータ回路の三相出力部の何れか一相、若しくは、二相、或いは、三相全てにノーマルモードコイルを挿入したことを特徴とする。 The inverter device of the invention according to claim 2 is characterized in that, in the above invention, normal mode coils are inserted into any one phase, two phases, or all three phases of the three-phase output section of the inverter circuit.
 請求項3の発明のインバータ装置は、請求項1の発明においてノーマルモードコイルは、低い周波数よりも高い周波数でインピーダンスが高くなるものであり、インバータ回路の三相出力部には更に、高い周波数よりも低い周波数で高いインピーダンスが得られるコモンモードコイルを挿入したことを特徴とする。 In the inverter device according to the invention of claim 3, in the invention of claim 1, the normal mode coil has a higher impedance at higher frequencies than at lower frequencies, and the three-phase output section of the inverter circuit further includes an impedance higher at higher frequencies than at lower frequencies. It is also characterized by the insertion of a common mode coil that provides high impedance at low frequencies.
 請求項4の発明のインバータ装置は、上記発明においてコモンモードコイルに相当するコモンモード成分と、ノーマルモードコイルに相当するノーマルモード成分を一体に備えたコイルを、インバータ回路の三相出力部に接続したことを特徴とする。 In the inverter device of the invention of claim 4, in the above invention, a coil integrally provided with a common mode component corresponding to the common mode coil and a normal mode component corresponding to the normal mode coil is connected to a three-phase output section of the inverter circuit. It is characterized by what it did.
 請求項5の発明の電動圧縮機は、上記各発明のインバータ装置と、モータが収容されるハウジングと、このハウジングに構成されたインバータ収容部を備え、インバータ装置が、ハウジングのインバータ収容部に収容されていることを特徴とする。 An electric compressor according to a fifth aspect of the present invention includes the inverter device of each of the above inventions, a housing in which the motor is housed, and an inverter accommodating portion configured in the housing, and the inverter device is housed in the inverter accommodating portion of the housing. It is characterized by being
 請求項6の発明の電動圧縮機は、上記発明においてハウジングが、スイッチング素子のヒートシンクとされていることを特徴とする。 The electric compressor of the invention according to claim 6 is characterized in that the housing in the above invention serves as a heat sink for the switching element.
 請求項7の発明の電動圧縮機は、請求項5の発明において車両に搭載されることを特徴とする。 The electric compressor of the invention of claim 7 is characterized in that it is mounted on a vehicle in the invention of claim 5.
 本発明によれば、スイッチング素子より構成され、高電圧電源から電源が供給される三相のインバータ回路を含む高電圧回路と、低電圧電源から電源が供給される低電圧回路を備え、インバータ回路によりモータを駆動するインバータ装置において、インバータ回路の三相出力部にノーマルモードコイルを挿入したので、インバータ回路の各相のスイッチング素子のスイッチングに伴うサージ電圧(振動電圧)は、ノーマルモードコイルにより損失として熱エネルギーに変換され、モータ側への伝達が抑制されることになる。 According to the present invention, the inverter circuit includes a high voltage circuit including a three-phase inverter circuit configured of switching elements and supplied with power from a high voltage power supply, and a low voltage circuit supplied with power from a low voltage power supply. In an inverter device that drives a motor with It is converted into thermal energy, and its transmission to the motor side is suppressed.
 これにより、ノーマルモードコイル以降の電圧変動率が低減され、モータとそれが収容されるハウジング間の浮遊容量を経由して流出するコモンモード電流を低減させ、高電圧回路におけるノイズ(コモンモードノイズ)を抑制することができるようになる。 This reduces the voltage fluctuation rate after the normal mode coil, reduces the common mode current flowing out via stray capacitance between the motor and the housing that houses it, and reduces noise in high voltage circuits (common mode noise). will be able to suppress.
 更に、ノーマルモードコイルにより電圧変動率が抑制されることで、低電圧回路に伝搬するノイズも抑制されると共に、コモンモードコイルを挿入する場合のような悪化もなく、結果として低電圧回路におけるノイズも効果的に抑制することができるようになる。これは請求項5の発明の如くインバータ装置がハウジングのインバータ収容部に収容されて、請求項6の発明の如くハウジングがスイッチング素子のヒートシンクとされ、請求項7の発明の如く小型軽量化が要求される車両搭載型の電動圧縮機において極めて好適なものとなる。 Furthermore, by suppressing the voltage fluctuation rate with the normal mode coil, noise propagating to the low voltage circuit is also suppressed, and there is no deterioration like when inserting a common mode coil, and as a result, noise in the low voltage circuit is suppressed. can also be effectively suppressed. This is because, as in the invention of claim 5, the inverter device is housed in the inverter accommodating portion of the housing, as in the invention of claim 6, the housing is used as a heat sink for the switching element, and as in the invention of claim 7, there is a demand for reduction in size and weight. This makes it extremely suitable for vehicle-mounted electric compressors.
 尚、ノーマルモードコイルは、請求項2の発明の如くインバータ回路の三相出力部の何れか一相、若しくは、二相、或いは、三相全てに挿入することで効果が出る。 Note that the normal mode coil is effective when inserted into any one phase, two phases, or all three phases of the three-phase output section of the inverter circuit as in the second aspect of the invention.
 ここで、インバータ回路の三相出力部にノーマルモードコイルを挿入するのみでも上記のようなノイズ抑制効果は得られるが、小型化を優先した場合、ノーマルモードコイルで低減できるのは高い周波数(数MHz以上)のノイズに限られてしまう。 Here, the noise suppression effect described above can be obtained by simply inserting a normal mode coil into the three-phase output section of the inverter circuit, but if miniaturization is a priority, the normal mode coil can only reduce noise at high frequencies (several (MHz or higher) noise.
 そこで、請求項3の発明の如く、インバータ回路の三相出力部に更に、高い周波数よりも低い周波数で高いインピーダンスが得られる小型でリーケージインダクタンスが低いコモンモードコイルを挿入すれば、インバータ装置の高電圧回路と低電圧回路の双方において、広帯域に渡り、効果的にノイズの抑制を図ることが可能となる。 Therefore, as in the invention of claim 3, if a small common mode coil with low leakage inductance that can obtain higher impedance at lower frequencies than at higher frequencies is further inserted into the three-phase output section of the inverter circuit, the inverter device can be improved. It becomes possible to effectively suppress noise over a wide band in both voltage circuits and low voltage circuits.
 この場合、請求項4の発明の如くコモンモードコイルに相当するコモンモード成分と、ノーマルモードコイルに相当するノーマルモード成分を一体に備えたコイルをインバータ回路の三相出力部に接続するようにすれば、更なる小型化を図ることができるようになり、請求項7の発明の如き車両に搭載される電動圧縮機において好適なものとなる。 In this case, as in the invention of claim 4, a coil integrally provided with a common mode component corresponding to a common mode coil and a normal mode component corresponding to a normal mode coil is connected to the three-phase output section of the inverter circuit. Therefore, it becomes possible to further reduce the size of the compressor, which is suitable for an electric compressor mounted on a vehicle as in the seventh aspect of the invention.
本発明を適用した一実施例の電動圧縮機の電気回路のブロック図である(実施例1)。1 is a block diagram of an electric circuit of an electric compressor according to an embodiment of the present invention (Embodiment 1); FIG. 本発明の一実施例の電動圧縮機の概略断面図である。1 is a schematic cross-sectional view of an electric compressor according to an embodiment of the present invention. 図1の電動圧縮機における高電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 1. FIG. 図1の電動圧縮機における低電圧回路のノイズを説明する図である。2 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 1. FIG. 本発明を適用した他の実施例の電動圧縮機の電気回路のブロック図である(実施例2)。FIG. 3 is a block diagram of an electric circuit of an electric compressor according to another embodiment to which the present invention is applied (Embodiment 2). 従来の電動圧縮機の電気回路のブロック図である。FIG. 2 is a block diagram of an electric circuit of a conventional electric compressor. 図6の電動圧縮機のインバータ回路の出力部にコモンモードコイルを挿入した場合の電気回路のブロック図である。FIG. 7 is a block diagram of an electric circuit when a common mode coil is inserted into the output section of the inverter circuit of the electric compressor shown in FIG. 6. FIG. 図7の電動圧縮機における高電圧回路のノイズを説明する図である。8 is a diagram illustrating noise in a high voltage circuit in the electric compressor of FIG. 7. FIG. 図7の電動圧縮機における低電圧回路のノイズを説明する図である。8 is a diagram illustrating noise in a low voltage circuit in the electric compressor of FIG. 7. FIG.
 以下、本発明の実施の形態について、図面に基づいて詳細に説明する。尚、下記の各図において、図6や図7と同一符号で示すものは同一若しくは同様の機能を奏するものとする。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In each of the figures below, the parts indicated by the same reference numerals as those in FIGS. 6 and 7 have the same or similar functions.
 先ず、図2を参照しながら本発明を適用した実施例の電動圧縮機(所謂インバータ一体型電動圧縮機)1について説明する。尚、実施例の電動圧縮機1は、ハイブリッド自動車や電気自動車等の電動車両に搭載される車両用空気調和装置の冷媒回路の一部を構成するものである。 First, an electric compressor (so-called inverter-integrated electric compressor) 1 according to an embodiment of the present invention will be described with reference to FIG. The electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner installed in an electric vehicle such as a hybrid vehicle or an electric vehicle.
 (1)電動圧縮機1の構成
 図2において、電動圧縮機1の金属性の筒状ハウジング2内は、当該ハウジング2の軸方向に交差する仕切壁3により圧縮機構収容部4とインバータ収容部6とに区画されており、圧縮機構収容部4内に例えばスクロール型の圧縮機構7と、この圧縮機構7を駆動するモータ8が収容されている。
(1) Structure of the electric compressor 1 In FIG. 2, the inside of the metallic cylindrical housing 2 of the electric compressor 1 is divided into a compression mechanism housing part 4 and an inverter housing part by a partition wall 3 that intersects in the axial direction of the housing 2. For example, a scroll-type compression mechanism 7 and a motor 8 for driving the compression mechanism 7 are housed in the compression mechanism accommodating portion 4.
 この場合、実施例のモータ8はハウジング2に固定されたステータ9と、このステータ9の内側で回転するロータ11から成るIPMSM(Interior Permanent Magnet Synchronous Motor)である。 In this case, the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor) consisting of a stator 9 fixed to the housing 2 and a rotor 11 rotating inside the stator 9.
 仕切壁3の圧縮機構収容部4側の中心部には軸受部12が形成されており、ロータ11の駆動軸13の一端はこの軸受部12に支持され、駆動軸13の他端は圧縮機構7に連結されている。ハウジング2の圧縮機構収容部4に対応する位置の仕切壁3近傍には吸入口14が形成されており、モータ8のロータ11(駆動軸13)が回転して圧縮機構7が駆動されると、この吸入口14からハウジング2の圧縮機構収容部4内に作動流体である低温の冷媒が流入し、圧縮機構7に吸引されて圧縮される。 A bearing part 12 is formed in the center of the partition wall 3 on the side of the compression mechanism housing part 4. One end of the drive shaft 13 of the rotor 11 is supported by this bearing part 12, and the other end of the drive shaft 13 is connected to the compression mechanism housing part 4. It is connected to 7. A suction port 14 is formed near the partition wall 3 at a position corresponding to the compression mechanism accommodating portion 4 of the housing 2, and when the rotor 11 (drive shaft 13) of the motor 8 rotates and the compression mechanism 7 is driven. A low-temperature refrigerant, which is a working fluid, flows into the compression mechanism accommodating portion 4 of the housing 2 through the suction port 14, and is sucked into the compression mechanism 7 and compressed.
 そして、この圧縮機構7で圧縮され、高温・高圧となった冷媒は、図示しない吐出口よりハウジング2外の前記冷媒回路に吐出される構成とされている。また、吸入口14から流入した低温の冷媒は、仕切壁3近傍を通ってモータ8の周囲を通過し、圧縮機構7に吸引されることから、仕切壁3も冷却されることになる。 The refrigerant compressed by the compression mechanism 7 to a high temperature and high pressure is discharged to the refrigerant circuit outside the housing 2 from a discharge port (not shown). Further, the low-temperature refrigerant flowing in from the suction port 14 passes near the partition wall 3, passes around the motor 8, and is sucked into the compression mechanism 7, so that the partition wall 3 is also cooled.
 そして、この仕切壁3で圧縮機構収容部4と区画されたインバータ収容部6内には、モータ8を駆動制御する本発明のインバータ装置16が収容される。この場合、インバータ装置16は、仕切壁3を貫通する密封端子やリード線を介してモータ8に給電する構成とされている。 The inverter device 16 of the present invention that drives and controls the motor 8 is housed in the inverter housing section 6 that is separated from the compression mechanism housing section 4 by the partition wall 3 . In this case, the inverter device 16 is configured to supply power to the motor 8 via a sealed terminal or lead wire that penetrates the partition wall 3 .
 (2)インバータ装置16の構造
 本発明の一実施例のインバータ装置16は、基板17と、この基板17の一面側に配線された6個のスイッチング素子18と、基板17の他面側に配線された制御回路36と、図示しないHVコネクタ、LVコネクタ等から構成されている。各スイッチング素子18は、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。
(2) Structure of the inverter device 16 The inverter device 16 according to one embodiment of the present invention includes a substrate 17, six switching elements 18 wired on one side of the substrate 17, and wired on the other side of the substrate 17. The control circuit 36 includes a control circuit 36, an HV connector, an LV connector, etc. (not shown). In the embodiment, each switching element 18 is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion.
 この場合、各スイッチング素子18が後述する三相のインバータ回路34を構成するものであり、各スイッチング素子18の端子部22は、基板17に接続されている。そして、このように組み立てられたインバータ装置16は、各スイッチング素子18がある一面側が仕切壁3側となった状態でインバータ収容部6内に収容されて仕切壁3に取り付けられ、カバー23にて塞がれる。この場合、基板17は仕切壁3から起立するボス部24を介して仕切壁3に固定されることになる。 In this case, each switching element 18 constitutes a three-phase inverter circuit 34 to be described later, and the terminal portion 22 of each switching element 18 is connected to the substrate 17. The inverter device 16 assembled in this way is housed in the inverter accommodating portion 6 and attached to the partition wall 3 with one side on which each switching element 18 is located facing the partition wall 3, and is attached to the partition wall 3 with the cover 23. Blocked. In this case, the substrate 17 is fixed to the partition wall 3 via the boss portion 24 that stands up from the partition wall 3.
 このようにインバータ装置16が仕切壁3に取り付けられた状態で、各スイッチング素子18は仕切壁3に直接若しくは所定の絶縁熱伝導材を介して密着し、ハウジング2の仕切壁3と熱交換関係となる。そして、前述した如く仕切壁3は圧縮機構収容部4内に吸入される冷媒によって冷やされているので、各スイッチング素子18Aは仕切壁3を介して吸入冷媒と熱交換関係となり、仕切壁3の厚みを介して圧縮機構収容部4内に吸入された冷媒によって冷却され、各スイッチング素子18自体は仕切壁3を介して冷媒に放熱するかたちとなる。即ち、ハウジング2(仕切壁3)が各スイッチング素子18のヒートシンクとされている。 With the inverter device 16 attached to the partition wall 3 in this manner, each switching element 18 is in close contact with the partition wall 3 either directly or via a predetermined insulating heat conductive material, and is in a heat exchange relationship with the partition wall 3 of the housing 2. becomes. As described above, since the partition wall 3 is cooled by the refrigerant sucked into the compression mechanism housing section 4, each switching element 18A is in a heat exchange relationship with the sucked refrigerant through the partition wall 3. The switching elements 18 are cooled by the refrigerant sucked into the compression mechanism accommodating portion 4 through the thickness, and each switching element 18 itself radiates heat to the refrigerant through the partition wall 3. That is, the housing 2 (partition wall 3) serves as a heat sink for each switching element 18.
 (3)インバータ装置16の回路構成
 次に、図1において本発明のインバータ装置16は、モータ8を運転するためのインバータ回路34と、このインバータ回路34を制御する制御回路36と、高電圧回路フィルタ(EMIフィルタ)37と、低電圧回路フィルタ(EMIフィルタ)38と、スイッチング電源装置39等から構成され、これらが前述した基板17上に配線され、前述した如くインバータ収容部6内に収納される。
(3) Circuit configuration of inverter device 16 Next, in FIG. 1, inverter device 16 of the present invention includes an inverter circuit 34 for driving motor 8, a control circuit 36 for controlling this inverter circuit 34, and a high voltage circuit. It is composed of a filter (EMI filter) 37, a low voltage circuit filter (EMI filter) 38, a switching power supply device 39, etc., and these are wired on the board 17 mentioned above and housed in the inverter accommodating part 6 as mentioned above. Ru.
 尚、車両には電動圧縮機1のモータ8や、図示しない走行用のモータに給電して駆動するための例えばDC300V程の高電圧バッテリから成る高電圧電源(HV電源)41と、DC12V程のバッテリから成る低電圧電源(LV電源)42が搭載されており、インバータ装置16は前述した図示しないHVコネクタにより高電圧電源41に接続され、LVコネクタにより低電圧電源42に接続される。また、ハウジング2は車体(グランド)に導通されている。 The vehicle has a high voltage power source (HV power source) 41 consisting of, for example, a high voltage battery of approximately 300 V DC, for supplying power to the motor 8 of the electric compressor 1 and a driving motor (not shown), and a high voltage power source (HV power source) 41 of approximately 12 V DC. A low voltage power source (LV power source) 42 consisting of a battery is mounted, and the inverter device 16 is connected to the high voltage power source 41 through the aforementioned HV connector (not shown) and to the low voltage power source 42 through the LV connector. Furthermore, the housing 2 is electrically connected to the vehicle body (ground).
 インバータ回路34は、三相ブリッジ接続の前述した6個のスイッチング素子18から構成されており、各スイッチング素子18は制御回路36が有するゲートドライバが生成するゲート駆動信号により制御される。制御回路36はマイクロプロセッサ(CPU)から構成されており、インバータ回路34の各スイッチング素子18をゲートドライバによりスイッチングしてPWM変調を行うことで、高電圧電源41の直流電圧を所定周波数の交流電圧とし、モータ8に供給する。 The inverter circuit 34 is composed of the aforementioned six switching elements 18 connected in a three-phase bridge, and each switching element 18 is controlled by a gate drive signal generated by a gate driver included in the control circuit 36. The control circuit 36 is composed of a microprocessor (CPU), and performs PWM modulation by switching each switching element 18 of the inverter circuit 34 with a gate driver, thereby converting the DC voltage of the high voltage power supply 41 into an AC voltage of a predetermined frequency. and supplies it to the motor 8.
 高電圧回路フィルタ37は高電圧電源41とインバータ回路34の間に接続されており、実施例では、コモンモードコイル43、Yコンデンサ44、46、平滑コンデンサ47から構成される。この高電圧回路フィルタ37は、インバータ回路34のスイッチングにより発生するEMIノイズを低減させる作用を奏する。低電圧回路フィルタ38は、実施例では、Xコンデンサ48、コモンモードコイル49、Yコンデンサ51、52、平滑コンデンサ53から構成される。低電圧回路フィルタ38は、低電圧電源42とスイッチング電源装置39の間に接続され、スイッチング電源装置39でのスイッチングにより発生するEMIノイズを低減させる作用を奏する。 The high voltage circuit filter 37 is connected between the high voltage power supply 41 and the inverter circuit 34, and is composed of a common mode coil 43, Y capacitors 44 and 46, and a smoothing capacitor 47 in the embodiment. This high voltage circuit filter 37 functions to reduce EMI noise generated by switching of the inverter circuit 34. In the embodiment, the low voltage circuit filter 38 includes an X capacitor 48, a common mode coil 49, Y capacitors 51 and 52, and a smoothing capacitor 53. The low voltage circuit filter 38 is connected between the low voltage power supply 42 and the switching power supply device 39, and functions to reduce EMI noise generated by switching in the switching power supply device 39.
 スイッチング電源装置39は、低電圧電源42(DC12V)をスイッチングして所定の直流電圧(HV15V、HV5V)を生成し、制御回路36に給電するためのDC-DCコンバータである。尚、HV15Vはインバータ回路34のゲート駆動信号を生成するゲートドライバ(制御回路36が有する)に供給される電圧であり、HV5Vは制御回路36の電源となる電圧である。 The switching power supply device 39 is a DC-DC converter that switches the low voltage power supply 42 (DC 12V) to generate a predetermined DC voltage (HV15V, HV5V) and supplies power to the control circuit 36. Note that HV15V is a voltage supplied to a gate driver (which the control circuit 36 has) that generates a gate drive signal for the inverter circuit 34, and HV5V is a voltage that serves as a power source for the control circuit 36.
 スイッチング電源装置39は、一次巻線56と、この一次巻線56とは絶縁された二次巻線57から成る絶縁トランス(カップリングトランス)にて構成されたスイッチングトランス60と、一次巻線56に接続されたスイッチング素子58を有している。そして、スイッチングトランス60の巻数比に応じて、DC15V(HV15V)とDC5V(HV5V)が出力されるようにスイッチング素子58がスイッチング制御される。 The switching power supply device 39 includes a switching transformer 60 including an isolation transformer (coupling transformer) including a primary winding 56 and a secondary winding 57 insulated from the primary winding 56; It has a switching element 58 connected to. Then, according to the turns ratio of the switching transformer 60, the switching element 58 is controlled to output DC15V (HV15V) and DC5V (HV5V).
 スイッチング電源装置39は低電圧電源42をスイッチングして制御回路36に電源を供給すると共に、スイッチングトランス60により、一次巻線56が位置する低電圧電源42側の低電圧回路63と、二次巻線57が位置する高電圧電源41側の高電圧回路64とを絶縁する。そして、インバータ装置16は上記のように絶縁された高電圧回路64と低電圧回路63が基板17上で近接した状態で構成され、インバータ収容部6内に収容されている。 The switching power supply device 39 switches the low voltage power supply 42 to supply power to the control circuit 36, and also connects the low voltage circuit 63 on the low voltage power supply 42 side, where the primary winding 56 is located, and the secondary winding by the switching transformer 60. The wire 57 is insulated from the high voltage circuit 64 on the high voltage power supply 41 side. The inverter device 16 is configured such that the high voltage circuit 64 and the low voltage circuit 63 which are insulated as described above are placed close to each other on the substrate 17, and is housed in the inverter accommodating portion 6.
 ここで、前述した如くインバータ回路34を構成するスイッチング素子18のスイッチングに伴うサージ電圧(振動電圧)はモータ8側に伝達するため、電圧変動によりモータ8とハウジング2間の浮遊容量61を介してコモンモード電流が流出する(図1中に矢印で示す)。特に、実施例のような電動圧縮機1では、モータ8とハウジング2間の浮遊容量61を介して流出するコモンモード電流によるノイズ(コモンモードノイズ)が支配的となる。尚、図7中の62は同様にインバータ回路34とハウジング2間の浮遊容量である。 Here, as mentioned above, the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side, so the surge voltage (oscillating voltage) accompanying the switching of the switching element 18 constituting the inverter circuit 34 is transmitted to the motor 8 side. A common mode current flows out (indicated by an arrow in FIG. 1). In particular, in the electric compressor 1 as in the embodiment, noise (common mode noise) due to the common mode current flowing out through the stray capacitance 61 between the motor 8 and the housing 2 becomes dominant. Note that 62 in FIG. 7 is a stray capacitance between the inverter circuit 34 and the housing 2.
 そこで、この実施例ではインバータ回路34の三相出力部(インバータ回路34とモータ8の間の三線)の三相全てにノーマルモードコイル66をそれぞれ挿入している(図1)。尚、図1において、66UはU相線に挿入されたノーマルモードコイル、66VはV相線に挿入されたノーマルモードコイル、66WはW相線に挿入されたノーマルモードコイルであり、これらでノーマルモードコイル66が構成される。このように、インバータ回路34の三相出力部にノーマルモードコイル66を挿入したことにより、インバータ回路34の各相のスイッチング素子18のスイッチングに伴うサージ電圧(振動電圧)は、ノーマルモードコイル66により損失として熱エネルギーに変換され、モータ8側への伝達が抑制されるようになる。 Therefore, in this embodiment, normal mode coils 66 are inserted into all three phases of the three-phase output section (three wires between the inverter circuit 34 and the motor 8) of the inverter circuit 34 (FIG. 1). In Fig. 1, 66U is a normal mode coil inserted in the U phase line, 66V is a normal mode coil inserted in the V phase line, and 66W is a normal mode coil inserted in the W phase line. A mode coil 66 is configured. As described above, by inserting the normal mode coil 66 into the three-phase output section of the inverter circuit 34, the surge voltage (oscillating voltage) accompanying the switching of the switching elements 18 of each phase of the inverter circuit 34 is absorbed by the normal mode coil 66. This is converted into thermal energy as a loss, and its transmission to the motor 8 side is suppressed.
 これにより、ノーマルモードコイル66以降の電圧変動率が低減され、モータ8とハウジング2間の浮遊容量61を経由して流出するコモンモード電流(図1に矢印で示す)を低減させ、高電圧回路64におけるノイズ(コモンモードノイズ)を抑制することができるようになる。 As a result, the voltage fluctuation rate after the normal mode coil 66 is reduced, and the common mode current (indicated by the arrow in FIG. 1) flowing out via the stray capacitance 61 between the motor 8 and the housing 2 is reduced, and the high voltage circuit 64 (common mode noise) can be suppressed.
 更に、ノーマルモードコイル66により電圧変動率が抑制されることで、低電圧回路63に伝搬するノイズも抑制されると共に、図7の如くコモンモードコイルを挿入する場合のような悪化もなく、結果として低電圧回路63におけるノイズも効果的に抑制することができるようになる。 Furthermore, since the voltage fluctuation rate is suppressed by the normal mode coil 66, noise propagating to the low voltage circuit 63 is also suppressed, and there is no deterioration as in the case of inserting a common mode coil as shown in FIG. As a result, noise in the low voltage circuit 63 can also be effectively suppressed.
 図3中の(a)は図1の高電圧回路64のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L100は前述した図6の場合、L1は図1のようにノーマルモードコイル66を挿入した場合を示している。また、図3中の(b)は、改善差違:L100-L1を示している。 (a) in FIG. 3 shows the noise measurement results of the high voltage circuit 64 in FIG. 1, where the horizontal axis is frequency and the vertical axis is noise. Further, L100 indicates the case of FIG. 6 described above, and L1 indicates the case where the normal mode coil 66 is inserted as shown in FIG. Further, (b) in FIG. 3 shows the improvement difference: L100-L1.
 図3(b)から明らかな如く、インバータ回路34の三相出力部とモータ8の間の各相にノーマルモードコイル66を挿入したことにより、インバータ回路34の各相のスイッチング素子18のスイッチングに伴うサージ電圧(振動電圧)は、ノーマルモードコイル66により損失として熱エネルギーに変換され、モータ8側への伝達が抑制され、モータ8とハウジング2間の浮遊容量61を介して流出するコモンモード電流(図1中に黒矢印で示す)によるノイズ(コモンモードノイズ)は低減されている。図3(b)は0より大きい程、ノイズ低減効果が大であることを示しており、特に、6MHzより高い周波数帯で効果が大であることが分かる。 As is clear from FIG. 3(b), by inserting the normal mode coil 66 into each phase between the three-phase output part of the inverter circuit 34 and the motor 8, the switching of the switching element 18 of each phase of the inverter circuit 34 is controlled. The accompanying surge voltage (oscillating voltage) is converted into thermal energy as a loss by the normal mode coil 66, and its transmission to the motor 8 side is suppressed, causing a common mode current to flow out via the stray capacitance 61 between the motor 8 and the housing 2. The noise (common mode noise) (indicated by black arrows in FIG. 1) is reduced. FIG. 3(b) shows that the larger the value is than 0, the greater the noise reduction effect is, and it can be seen that the effect is particularly great in a frequency band higher than 6 MHz.
 また、図4中の(a)は図1の低電圧回路63のノイズ測定結果を示し、横軸は周波数、縦軸はノイズである。また、L103は前述した図6の場合、L2は図1のようにノーマルモードコイル66を高電圧回路64に挿入した場合を示している。また、図4中の(b)は、それらの差違:L103-L2を示している。 Further, (a) in FIG. 4 shows the noise measurement results of the low voltage circuit 63 in FIG. 1, where the horizontal axis is the frequency and the vertical axis is the noise. Further, L103 indicates the case of FIG. 6 described above, and L2 indicates the case where the normal mode coil 66 is inserted into the high voltage circuit 64 as shown in FIG. Further, (b) in FIG. 4 shows the difference between them: L103-L2.
 図4中の(b)から明らかな如く、ノーマルモードコイル66により電圧変動率が抑制されることで、低電圧回路63に伝搬するノイズも抑制されると共に、図7の如くコモンモードコイルを挿入する場合のような悪化もなく、結果として低電圧回路63におけるノイズも効果的に抑制できている(図4中の(b)は0より大きい程、ノイズ低減効果が大であることを示す)。 As is clear from (b) in FIG. 4, by suppressing the voltage fluctuation rate by the normal mode coil 66, the noise propagating to the low voltage circuit 63 is also suppressed, and the common mode coil is inserted as shown in FIG. As a result, the noise in the low voltage circuit 63 can be effectively suppressed ((b) in FIG. 4 indicates that the larger the value is than 0, the greater the noise reduction effect is). .
 特に、実施例のように車両搭載型の電動圧縮機1では、高電圧回路64と低電圧回路63がハウジング2のインバータ収容部6に収容され、小型軽量化が要求されるので、上記のようなノイズ抑制効果は極めて好適なものとなる。 In particular, in the vehicle-mounted electric compressor 1 as in the embodiment, the high voltage circuit 64 and the low voltage circuit 63 are housed in the inverter accommodating portion 6 of the housing 2, and a reduction in size and weight is required. The noise suppression effect is extremely favorable.
 次に、図5を参照しながら、本発明の他の実施例の電動圧縮機1について説明する。尚、図5において、図1と同一符号で示すものは同一若しくは同様の機能を奏するものとする。前述した如く、インバータ装置16のインバータ回路34の三相出力部に、ノーマルモードコイル66を挿入するのみでもノイズ抑制効果は得られるが、電動圧縮機1の小型化を優先した場合、ノーマルモードコイル66で低減できるのは所定値以上の高い周波数(6MHz以上)のノイズに限られてしまう(図3参照)。 Next, an electric compressor 1 according to another embodiment of the present invention will be described with reference to FIG. 5. Note that in FIG. 5, components indicated by the same reference numerals as those in FIG. 1 have the same or similar functions. As mentioned above, the noise suppression effect can be obtained by simply inserting the normal mode coil 66 into the three-phase output section of the inverter circuit 34 of the inverter device 16, but if miniaturization of the electric compressor 1 is prioritized, the normal mode coil 66 can only reduce noise at a high frequency (6 MHz or higher) above a predetermined value (see FIG. 3).
 そこで、この実施例では図1の構成に加えて、図5に示す如くインバータ回路34の三相出力部に更に、高い周波数よりも低い周波数で高いインピーダンスが得られるように、巻き回数が少なく、小型でリーケージインダクタンスが低い三相のコモンモードコイル67を挿入している。このように、高い周波数ではインピーダンスが低く、低い周波数でインピーダンスが高くなる特性のコモンモードコイル67を更に挿入することで、低電圧回路63の悪化を回避しながら、高電圧回路64における低い周波数(所定値より低い周波数:6MHzより低い周波数帯)でのノイズを低減することが可能となり、高電圧回路64と低電圧回路63の双方において、広帯域に渡り、効果的にノイズの抑制を図ることが可能となる。 Therefore, in this embodiment, in addition to the configuration of FIG. 1, as shown in FIG. 5, the three-phase output section of the inverter circuit 34 has a small number of windings so that higher impedance can be obtained at lower frequencies than at higher frequencies. A three-phase common mode coil 67 that is small and has low leakage inductance is inserted. In this way, by further inserting the common mode coil 67 which has a characteristic that the impedance is low at high frequencies and high at low frequencies, the low frequency ( It becomes possible to reduce noise at a frequency lower than a predetermined value (frequency band lower than 6 MHz), and it is possible to effectively suppress noise over a wide band in both the high voltage circuit 64 and the low voltage circuit 63. It becomes possible.
 この場合、図5に破線四角で示すようにコモンモードコイル67に相当するコモンモード成分と、ノーマルモードコイル66に相当するノーマルモード成分を一体に備えたコイル68をインバータ回路34の三相出力部に接続するようにすれば、更なる小型化を図ることができるようになり、車両に搭載される電動圧縮機1において好適なものとなる。 In this case, as shown by the broken line square in FIG. By connecting the compressor to the compressor, the compressor can be further miniaturized and is suitable for the electric compressor 1 mounted on a vehicle.
 尚、実施例ではインバータ回路34の三相出力部の三相全てにノーマルモードコイル66をそれぞれ挿入するようにしたが、それに限らず、三相出力部のUVW相のうちの何れか一相にノーマルモードコイルを挿入するようにしてもよく、それらのうちの二相に挿入するようにしても効果がある。 In the embodiment, the normal mode coils 66 are inserted into all three phases of the three-phase output section of the inverter circuit 34, but the present invention is not limited to this. A normal mode coil may be inserted, or it may be effective to insert it into two of these phases.
 また、実施例ではDC300V程の高電圧バッテリから成る高電圧電源41と、DC12V程のバッテリから成る低電圧電源42を設け、この低電圧電源42から高電圧回路64側の直流電圧(HV15V、HV5V)を生成する場合で説明したが、それに限らず、高電圧電源41から直接高電圧回路64側の直流電圧(HV15V、HV5V)を生成するようにしてもよい。 In addition, in the embodiment, a high voltage power supply 41 consisting of a high voltage battery of about 300V DC and a low voltage power supply 42 consisting of a battery of about 12V DC are provided, and the DC voltage (HV15V, HV5V) from this low voltage power supply 42 to the high voltage circuit 64 side is ), but the present invention is not limited to this, and the direct current voltage (HV15V, HV5V) on the high voltage circuit 64 side may be directly generated from the high voltage power supply 41.
 また、実施例では電動圧縮機のモータを駆動するインバータ装置で本発明を説明したが、請求項1乃至請求項3の発明ではそれに限らず、高電圧回路と低電圧回路を備えてモータを駆動する種々のインバータ装置に適用可能である。更に、実施例で示した具体的な構成や数値はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能である。 Further, in the embodiments, the present invention has been described using an inverter device that drives the motor of an electric compressor, but the inventions of claims 1 to 3 are not limited to this, and the invention is not limited to this, and the invention is not limited to this, and the motor is driven by providing a high voltage circuit and a low voltage circuit. It is applicable to various inverter devices. Further, the specific configurations and numerical values shown in the examples are not limited to those, and can be variously changed without departing from the spirit of the present invention.
 1 電動圧縮機
 2 ハウジング
 3 仕切壁
 6 インバータ収容部
 8 モータ
 16 インバータ装置
 17 基板
 18 スイッチング素子
 34 インバータ回路
 36 制御回路
 37 高電圧回路フィルタ
 38 低電圧回路フィルタ
 39 スイッチング電源装置
 41 高電圧電源
 42 低電圧電源
 63 低電圧回路
 64 高電圧回路
 66 ノーマルモードコイル
 67 コモンモードコイル
 68 コイル
1 Electric compressor 2 Housing 3 Partition wall 6 Inverter housing 8 Motor 16 Inverter device 17 Board 18 Switching element 34 Inverter circuit 36 Control circuit 37 High voltage circuit filter 38 Low voltage circuit filter 39 Switching power supply device 41 High voltage power supply 42 Low voltage Power supply 63 Low voltage circuit 64 High voltage circuit 66 Normal mode coil 67 Common mode coil 68 Coil

Claims (7)

  1.  スイッチング素子より構成され、高電圧電源から電源が供給される三相のインバータ回路を含む高電圧回路と、低電圧電源から電源が供給される低電圧回路を備え、前記インバータ回路によりモータを駆動するインバータ装置において、
     前記インバータ回路の三相出力部に挿入されたノーマルモードコイルを備えたことを特徴とするインバータ装置。
    A high-voltage circuit including a three-phase inverter circuit that is composed of switching elements and is supplied with power from a high-voltage power supply, and a low-voltage circuit that is supplied with power from a low-voltage power supply, and the motor is driven by the inverter circuit. In the inverter device,
    An inverter device comprising a normal mode coil inserted into a three-phase output section of the inverter circuit.
  2.  前記インバータ回路の三相出力部の何れか一相、若しくは、二相、或いは、三相全てにノーマルモードコイルを挿入したことを特徴とする請求項1に記載のインバータ装置。 The inverter device according to claim 1, wherein a normal mode coil is inserted into any one phase, two phases, or all three phases of the three-phase output section of the inverter circuit.
  3.  前記ノーマルモードコイルは、低い周波数よりも高い周波数でインピーダンスが高くなるものであり、
     前記インバータ回路の三相出力部には更に、高い周波数よりも低い周波数で高いインピーダンスが得られるコモンモードコイルを挿入したことを特徴とする請求項1に記載のインバータ装置。
    The normal mode coil has higher impedance at higher frequencies than at lower frequencies,
    2. The inverter device according to claim 1, further comprising a common mode coil that provides higher impedance at lower frequencies than at higher frequencies.
  4.  前記コモンモードコイルに相当するコモンモード成分と、前記ノーマルモードコイルに相当するノーマルモード成分を一体に備えたコイルを、前記インバータ回路の三相出力部に接続したことを特徴とする請求項3に記載のインバータ装置。 Claim 3, wherein a coil integrally provided with a common mode component corresponding to the common mode coil and a normal mode component corresponding to the normal mode coil is connected to a three-phase output section of the inverter circuit. The inverter device described.
  5.  前記モータが収容されるハウジングと、該ハウジングに構成されたインバータ収容部を備え、
     前記インバータ装置は、前記ハウジングのインバータ収容部に収容されていることを特徴とする請求項1乃至請求項4のうちの何れかに記載のインバータ装置を備えた電動圧縮機。
    comprising a housing in which the motor is housed, and an inverter housing configured in the housing,
    The electric compressor equipped with an inverter device according to any one of claims 1 to 4, wherein the inverter device is housed in an inverter accommodating portion of the housing.
  6.  前記ハウジングが、前記スイッチング素子のヒートシンクとされていることを特徴とする請求項5に記載の電動圧縮機。 The electric compressor according to claim 5, wherein the housing serves as a heat sink for the switching element.
  7.  車両に搭載されることを特徴とする請求項5に記載の電動圧縮機。 The electric compressor according to claim 5, wherein the electric compressor is mounted on a vehicle.
PCT/JP2023/015929 2022-05-24 2023-04-21 Inverter device and electric compressor provided with same WO2023228639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084650 2022-05-24
JP2022084650A JP2023172680A (en) 2022-05-24 2022-05-24 Inverter device and motor compressor having the same

Publications (1)

Publication Number Publication Date
WO2023228639A1 true WO2023228639A1 (en) 2023-11-30

Family

ID=88919190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015929 WO2023228639A1 (en) 2022-05-24 2023-04-21 Inverter device and electric compressor provided with same

Country Status (2)

Country Link
JP (1) JP2023172680A (en)
WO (1) WO2023228639A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204136A (en) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp Pwm inverter device
JP2009171841A (en) * 2009-03-16 2009-07-30 Hitachi Ltd Electric motor system
JP2017022961A (en) * 2015-07-07 2017-01-26 株式会社豊田自動織機 On-vehicle inverter device and on-vehicle air conditioner
JP2022051274A (en) * 2020-09-18 2022-03-31 サンデン・オートモーティブコンポーネント株式会社 Motor-driven compressor
JP2022061801A (en) * 2020-10-07 2022-04-19 株式会社アイシン Vehicle driving system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204136A (en) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp Pwm inverter device
JP2009171841A (en) * 2009-03-16 2009-07-30 Hitachi Ltd Electric motor system
JP2017022961A (en) * 2015-07-07 2017-01-26 株式会社豊田自動織機 On-vehicle inverter device and on-vehicle air conditioner
JP2022051274A (en) * 2020-09-18 2022-03-31 サンデン・オートモーティブコンポーネント株式会社 Motor-driven compressor
JP2022061801A (en) * 2020-10-07 2022-04-19 株式会社アイシン Vehicle driving system

Also Published As

Publication number Publication date
JP2023172680A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR101911768B1 (en) Fluid machine
US11025141B2 (en) On-board electric compressor with a motor and noise reducing unit with inverter device having a damping unit reducing Q value of low pass filter circuit
KR101843375B1 (en) Vehicle inveter device and motor-driven compressor
US11097592B2 (en) On-board electric compressor
US10879773B2 (en) On-vehicle motor-driven compressor
WO2014103482A1 (en) Inverter-integrated electrical compressor
KR101972434B1 (en) Electric compressor
KR20190114830A (en) On-vehicle motor-driven compressor
WO2012114584A1 (en) Inverter integrated motor-driven compressor
US10978981B2 (en) Drive apparatus for electric motor and air conditioner
WO2023228639A1 (en) Inverter device and electric compressor provided with same
WO2023228640A1 (en) Inverter device and electric compressor equipped therewith
WO2023228642A1 (en) Inverter device and electric compressor comprising same
WO2023228641A1 (en) Inverter device and electric compressor comprising same
JP2018076783A (en) On-vehicle motor compressor
CN114208007A (en) Circuit body and refrigeration cycle device
JP2024017396A (en) Common mode coil, inverter device, and electric compressor
WO2023248708A1 (en) Composite device
WO2024135248A1 (en) On-vehicle electric compressor
US20230299648A1 (en) Motor-driven compressor
US20240145152A1 (en) Motor-driven compressor
JP6491761B2 (en) Power conversion circuit
JP2012010500A (en) Refrigerating device
CN116646153A (en) electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811517

Country of ref document: EP

Kind code of ref document: A1