WO2023228617A1 - Method for producing glass plate - Google Patents

Method for producing glass plate Download PDF

Info

Publication number
WO2023228617A1
WO2023228617A1 PCT/JP2023/014854 JP2023014854W WO2023228617A1 WO 2023228617 A1 WO2023228617 A1 WO 2023228617A1 JP 2023014854 W JP2023014854 W JP 2023014854W WO 2023228617 A1 WO2023228617 A1 WO 2023228617A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
cutting line
laser beam
planned cutting
laser
Prior art date
Application number
PCT/JP2023/014854
Other languages
French (fr)
Japanese (ja)
Inventor
久敏 饗場
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023228617A1 publication Critical patent/WO2023228617A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock

Definitions

  • the present invention relates to a method for manufacturing a glass plate.
  • Various glass plates used for displays such as liquid crystal displays, organic EL displays, organic EL lighting, solar cell panels, etc. are formed into predetermined shapes through a process of cutting the glass plates.
  • Patent Document 1 discloses a cutting method using laser cutting.
  • laser cutting first, an initial crack is formed in a glass plate using a crack forming means such as a diamond cutter.
  • the glass plate is heated by irradiating laser light along the planned cutting line (imaginary line) set on the glass plate, and the heated portion is cooled by a refrigerant such as cooling water sprayed from the cooling means. . Due to the thermal stress (thermal shock) generated in the glass plate at this time, an initial crack develops along the planned cutting line, and the glass plate is cut.
  • thermal stress thermal shock
  • the cutting method disclosed in Patent Document 1 is a technique that targets a very thin glass plate (for example, 200 ⁇ m or less). Therefore, when the glass plate is thick, if the cutting method disclosed in Patent Document 1 is applied as is, the thermal stress generated in the glass plate will be insufficient, and cutting defects such as failure to cut the glass plate may occur.
  • An object of the present invention is to accurately cut a glass plate along a planned cutting line using thermal stress even when the glass plate is thick.
  • the present invention is a method for manufacturing a glass plate that includes a cutting step of cutting a glass plate along a planned cutting line, and the cutting step includes forming an initial crack in a part of the planned cutting line. and a laser beam irradiation step of irradiating a laser beam along the planned cutting line, the wavelength of the laser beam is 2.0 ⁇ m or more and 6.0 ⁇ m or less, and the laser beam irradiation step includes a step of irradiating a laser beam along the planned cutting line.
  • the temperature difference (T L - T O ) between the lowest surface temperature T L of the glass plate and the surface temperature T O of the glass plate at a distant position away from the planned cutting line is 100°C or more, and It is characterized in that the temperature difference (T H - T L ) between the highest surface temperature T H and the lowest surface temperature T L of the glass plate is 130° C. or less.
  • the present invention includes cases in which the initial crack formation step is performed before the laser beam irradiation step, and cases in which the initial crack formation step is performed after the laser beam irradiation step.
  • the wavelength of the laser beam is 2.0 ⁇ m or more and 6.0 ⁇ m or less
  • the temperature difference (T L ⁇ T O ) is 100° C. or more, a sufficient temperature difference is formed between the planned cutting line and the other parts, and thermal stress is likely to occur on the planned cutting line.
  • the temperature difference (T H - T L ) is 130° C. or less, the planned cutting line is heated uniformly, so that initial cracks tend to grow along the planned cutting line due to thermal stress. Therefore, the glass plate can be accurately cut along the planned cutting line.
  • the thickness of the glass plate is preferably 5 mm or more and 22 mm or less.
  • the present invention is particularly useful when the glass plate is thick like this.
  • the relative scanning speed of the laser beam with respect to the glass plate is 50 mm/s or more.
  • the initial crack formation step is preferably performed before the laser beam irradiation step.
  • the laser light is preferably irradiated from a CO laser, Er laser, Ho laser, or HF laser.
  • the glass plate is preferably made of lead glass.
  • the laser beam is irradiated multiple times along the planned cutting line.
  • the planned cutting line is heated multiple times, making it easier to uniformly heat the planned cutting line.
  • the laser beam and the glass plate are relatively moved back and forth along the planned cutting line.
  • the planned cutting line can be heated on both the outward and return passes, so the time required to cut the glass plate can be shortened.
  • the present invention is a method for manufacturing a glass plate, comprising a cutting step of cutting the glass plate along a planned cutting line, the cutting step including an initial crack forming in a part of the planned cutting line.
  • the laser beam irradiation step includes a crack forming step and a laser beam irradiation step of irradiating a laser beam along the planned cutting line, wherein the wavelength of the laser beam is 2.0 ⁇ m or more and 6.0 ⁇ m or less, and the laser beam irradiation step
  • the temperature difference (T L - T O ) between the lowest surface temperature T L of the glass plate on the line and the surface temperature T O of the glass plate at a distant position away from the planned cutting line is 100°C or more, and the laser beam is It is characterized by irradiating multiple times along the planned cutting line.
  • the wavelength of the laser beam is 2.0 ⁇ m or more and 6.0 ⁇ m or less, it becomes easy to heat the inside of the glass plate in addition to the surface layer of the glass plate. Therefore, it becomes easier to uniformly heat the entire thickness direction of the glass plate, and it becomes easier to generate enough thermal stress to cut the entire thickness direction of the glass plate.
  • the temperature difference (T L ⁇ T O ) is 100° C. or more, a sufficient temperature difference is formed between the planned cutting line and the other parts, and thermal stress is likely to occur on the planned cutting line. Then, by irradiating the laser beam multiple times along the planned cutting line, the planned cutting line is uniformly heated, so that initial cracks are likely to develop along the planned cutting line due to thermal stress. Therefore, the glass plate can be accurately cut along the planned cutting line.
  • the planned cutting line can be heated on both the outward and return passes, so the time required to cut the glass plate can be shortened.
  • the present invention even if the glass plate is thick, it is possible to accurately cut the glass plate along the planned cutting line using thermal stress.
  • FIG. 2 is a plan view of a glass plate for explaining an example of the present invention.
  • the method for manufacturing a glass plate according to the present embodiment includes a cutting step S in which the glass plate is cut along a planned cutting line.
  • the cutting process S includes an initial crack forming process S1 and a laser beam irradiation process S2 in this order. That is, in this embodiment, the initial crack formation step S1 is performed before the laser beam irradiation step S2.
  • the crack forming member 1 forms an initial crack (not shown) in a part of the planned cutting line CL provided on the glass plate G placed on the surface plate 2.
  • the planned cutting line CL is a virtual line provided at a position where cutting is planned.
  • the glass plate G to be cut has a rectangular shape.
  • the glass plate G has a first principal surface Ga and a second principal surface Gb facing each other in the thickness direction, and a portion between the first principal surface Ga and the second principal surface Gb at positions corresponding to each side of the glass plate G. It has four intervening end faces Gc to Gf.
  • the first principal surface Ga may be referred to as an upper surface
  • the second principal surface Gb may be referred to as a lower surface.
  • the upper limit of the thickness of the glass plate G is preferably 30 mm or less, more preferably 22 mm or less, and the lower limit is preferably 1 mm or more, more preferably 5 mm or more. This manufacturing method is particularly useful when the glass plate G is thick like this.
  • the composition of lead glass is, for example, in terms of mass percentage in terms of oxides: SiO 2 : 10 to 60 mass %, PbO: 35 to 80 mass %, B 2 O 3 : 0 to 10 mass %, Al 2 O 3 : Examples include compositions of 0 to 10% by mass, SrO: 0 to 10% by mass, BaO: 0 to 20% by mass, Na 2 O: 0 to 10% by mass, and K 2 O: 0 to 10% by mass.
  • the thermal expansion coefficient of the glass plate G in the temperature range of 30 to 380°C is preferably 90 ⁇ 10 -7 /°C or less, more preferably 85 ⁇ 10 -7 /°C or less.
  • Thermal expansion coefficient in the temperature range of 30 to 380°C refers to the average value measured with a dilatometer.
  • the planned cutting line CL is a straight line spanning the two opposing end surfaces Gc and Ge of the glass plate G. That is, one end CLa of the planned cutting line CL intersects with one end surface Gc of the two opposing end surfaces Gc and Ge of the glass plate G, and the other end CLb of the planned cutting line CL intersects with one end surface Gc of the two opposing end surfaces Gc and Ge of the glass plate G. It intersects with the other end surface Ge of the end surfaces Gc and Ge.
  • the crack forming member 1 descends from above the glass plate G at a position corresponding to one end CLa of the planned cutting line CL, and is moved to a corner where the upper surface Ga of the glass plate G and the end surface Gc of the glass plate G intersect. Contact with Gac. That is, the initial crack is formed at the corner Gac of the glass plate G located on the planned cutting line CL.
  • laser beam irradiation is started from one end CLa side of the cutting line CL where an initial crack is formed. Note that the position where the initial crack is formed is not particularly limited as long as it is a part of the planned cutting line CL.
  • the initial crack may be formed on the end surface Gc of the glass plate G, or may be formed on the corner Gbc where the lower surface Gb of the glass plate G and the end surface Gc of the glass plate G intersect, or the initial crack may be formed on the end surface Gc of the glass plate G. It may be formed on the upper surface Ga or the lower surface Gb (the intermediate portion in the longitudinal direction of the planned cutting line CL).
  • the initial crack may be formed, for example, at the corner where the top surface Ga of the glass plate G and the end surface Ge of the glass plate G intersect, or at the corner where the bottom surface Gb of the glass plate G and the end surface Ge of the glass plate G intersect. It may be formed at the corner or on the end face Ge of the glass plate G.
  • the crack forming member 1 is composed of a pointed scriber such as a sintered diamond cutter, but is not limited thereto.
  • the crack forming member 1 may be composed of, for example, a diamond pen, a cemented carbide cutter, sandpaper, or the like.
  • the laser beam irradiation step S2 a cut is made on the glass plate G placed on the surface plate 2 by the laser device 3 in order to develop an initial crack along the planned cutting line CL.
  • Laser light L is irradiated along the planned line CL.
  • the laser beam L is irradiated from above the upper surface Ga of the glass plate G.
  • the surface plate 2 is preferably a suction surface plate. By using the suction surface plate, the glass plate G can be reliably fixed to the surface plate 2, and it is possible to prevent the glass plate G from shifting during the laser beam irradiation process.
  • the wavelength of the laser beam L is 2.0 ⁇ m or more and 6.0 ⁇ m or less.
  • the laser device 3 is preferably a CO laser, an Er laser (Er:YAG laser), a Ho laser (Ho:YAG laser), or an HF laser.
  • a CO laser it is preferable to use a CO laser as the laser device 3.
  • the wavelength of the laser beam L is, for example, 5.25 ⁇ m or more and 5.75 ⁇ m or less. In this way, when the wavelength of the laser beam L is 2.0 ⁇ m or more and 6.0 ⁇ m or less, it becomes easy to heat the inside of the glass plate G in addition to the surface layer portion of the glass plate G. Therefore, even if the glass plate G is thick, it becomes easy to uniformly heat the entire thickness direction of the glass plate G, and it becomes easy to generate enough thermal stress to cut the entire thickness direction of the glass plate G.
  • the laser beam L is irradiated along the planned cutting line CL of the glass plate G so as to satisfy the following temperature conditions.
  • the temperature conditions are (a) the temperature difference between the lowest surface temperature T L of the glass plate G on the cutting line CL and the surface temperature T O of the glass plate G at a distant position away from the cutting line CL ( (T L - T O ) is 100°C or more, and ( b ) the temperature difference (T H - T L ) is 130°C or less.
  • the temperature difference (T L - T O ) is 100°C or more, a sufficient temperature difference will be formed between the planned cutting line CL (heated area) and the other part (non-heated area), and the planned cutting line will be Thermal stress is likely to occur in the CL. Furthermore, if the temperature difference (T H ⁇ T L ) is 130° C. or less, the entire planned cutting line CL is heated uniformly.
  • the glass plate G can be accurately cut along the planned cutting line CL.
  • the cut surfaces Gg and Gh of the glass plate G cut by thermal stress in this manner become smooth surfaces with few defects (for example, microcracks).
  • the angle ⁇ between the cut surfaces Gg, Gh and the lower surface Gb is approximately 90° (preferably 82° or more and 98° or less, more preferably 87° or more and 93° or less).
  • thermograph PI450G7 for glass temperature measurement manufactured by OPTRIS is preferably used as a measuring instrument. be able to.
  • the temperature difference (T L ⁇ T O ) and the temperature difference (T H ⁇ T L ) are calculated based on the surface temperature of the glass plate G at the time when cutting is completed.
  • the maximum surface temperature T H and the minimum surface temperature T L may be determined based on the measurement results of the surface temperature of the entire planned cutting line CL; It may be determined based on the measurement results of the surface temperature at three points (both ends and the center in the longitudinal direction). That is, among the three measurement points at both ends and the center in the longitudinal direction of the cutting line CL, the temperature at the measurement point with the highest temperature is the maximum surface temperature T H , and the temperature at the measurement point with the lowest temperature is the minimum surface temperature. It may also be T L.
  • the separated position means an unheated area of the glass plate G that is not substantially affected by the heating of the laser beam L, and the surface temperature T O of the glass plate G at the separated position is about room temperature.
  • the distance between the planned cutting line CL and the separated position is, for example, 20 mm.
  • the upper limit of the temperature difference (T L ⁇ T O ) is preferably 570°C or less, more preferably 500°C or less, and the lower limit is preferably 100°C or more, more preferably 110°C or more.
  • the upper limit of the temperature difference (T H - T L ) is preferably 130°C or less, more preferably 100°C or less, and the lower limit is preferably 50°C or more, more preferably 80°C or more.
  • the laser beam L is irradiated multiple times along the planned cutting line CL so that the temperature difference (T L -T O ) and the temperature difference (T H -T L ) satisfy the above temperature conditions.
  • the laser device 3 reciprocates along the cutting line CL while keeping the glass plate G stationary. That is, on the outward path, the laser beam L is scanned from one end CLa of the planned cutting line CL to the other end CLb by moving the laser device 3 according to the arrows O1 and O2. Similarly, on the return trip, the laser beam L is scanned from the other end CLb of the planned cutting line CL to one end CLa by moving the laser device 3 according to the arrows I1 and I2. Through such a procedure, the laser beam L is reciprocated once or multiple times along the cutting line CL.
  • the number of times the laser beam L is irradiated with the cutting line CL increases as the glass plate G becomes thicker.
  • the thermal energy required to cut the glass plate G also increases, so it is possible to increase the number of irradiations with the laser beam L and increase the total amount of thermal energy given to the glass plate G.
  • the thickness of the glass plate G is 5 mm to 10 mm
  • the number of times of irradiation of the laser beam L to the cutting line CL is 5 to 10 times, and when the thickness of the glass plate G is more than 10 mm to 15 mm.
  • the number of times of irradiation of the laser beam L to the planned cutting line CL is 10 to 30 times, and when the thickness of the glass plate G is more than 15 mm to 22 mm, the number of times of irradiation of the laser beam L to the planned cutting line CL is 70 times.
  • the number of times is preferably 110 times.
  • the starting point of the outward path (end point of the backward path) P1 and the end point of the outward path (starting point of the backward path) P2 are It is provided at a position where the line CL is extended to the outside of each end surface Gc, Ge of the glass plate G. That is, the laser beam L passes through both ends CLa and CLb of the planned cutting line CL, and then is turned back at the point P1 or the point P2.
  • the distance between the end face Gc and the point P1 and the distance between the end face Ge and the point P2 are preferably 5 mm to 10 mm.
  • the scanning speed of the laser beam L is preferably 50 mm/s or more and 200 mm/s or less.
  • the scanning speed of the laser beam L is adjusted based on the thickness of the glass plate G, the number of times the laser beam L is irradiated, the output of the laser beam L, and the like.
  • the output of the laser beam L is preferably 50 to 200W.
  • the output of the laser beam L is adjusted based on the thickness of the glass plate G, the number of times the laser beam L is irradiated, the scanning speed of the laser beam L, and the like.
  • the laser beam L is scanned along the cutting line CL by moving the laser device 3 with the glass plate G kept stationary, but the scanning method of the laser beam L is , there is no particular limitation as long as there is relative movement between the laser beam L and the glass plate G (planned cutting line CL).
  • the laser beam L may be scanned along the cutting line CL by moving the glass plate G while keeping the laser device 3 stationary.
  • the angle of the mirror placed on the optical path of the laser beam L may be changed to scan the laser beam L along the planned cutting line CL. good.
  • the initial crack formation step S1 is performed before the laser light irradiation step S2, but the initial crack formation step S1 may be performed after the laser light irradiation step S2.
  • the initial crack forming step S1 is performed after the laser beam irradiation step S2
  • the initial cracks are formed in the glass plate G in advance, so that the initial cracks are formed in the glass plate G when the planned cutting line CL satisfies the predetermined temperature condition.
  • Cutting is automatically performed along the planned cutting line CL starting from the starting point. In other words, the workability of the cutting operation is improved and stable cutting can be achieved.
  • the planned cutting line CL may include a curved line.
  • a glass plate made of soda glass was cut under predetermined conditions, and the success or failure of the cutting was evaluated.
  • the results are shown in Table 1.
  • sample No. 1 to 3 are examples, and sample No. 1 to 3 are examples. 4 to 6 are comparative examples.
  • an initial crack was formed at the corner of the glass plate G located at one end A of the linear planned cutting line CL.
  • A indicates one end of the planned cutting line CL
  • B indicates the center portion B of the planned cutting line CL
  • C indicates the other end of the planned cutting line CL.
  • the laser beam scans the planned cutting line CL multiple times in the order of A ⁇ B ⁇ C ⁇ C ⁇ B ⁇ A ⁇ A ⁇ B ⁇ ... ⁇ C ⁇ B ⁇ A.
  • sample No. In steps 4 to 6, the planned cutting line CL of the glass plate G where the initial crack was formed was heated by irradiating the laser light (CO laser) only once without reciprocating.
  • the laser beam scans the planned cutting line CL only once in the order of A ⁇ B ⁇ C. Note that the wavelength of the laser light (CO laser) was 5.5 ⁇ m.
  • the surface temperature distribution of the entire planned cutting line CL can be grasped, so these three points were taken as measurement points.
  • the one with the highest temperature is the highest surface temperature T H of the glass plate G on the cutting line CL
  • the one with the lowest temperature is the one scheduled to be cut.
  • the lowest surface temperature T L of the glass plate G on the line CL was taken as the temperature difference (T H ⁇ T L ).
  • the surface temperature measured at the measurement point D which is 20 mm (distance M in the figure) away from the measurement point C in the direction orthogonal to the planned cutting line CL, is defined as the surface temperature T O of the glass plate G at the separated position, and the temperature The difference (T L ⁇ T O ) was determined.
  • the surface temperatures at measurement points A, B, C, and D were measured using a glass temperature measurement thermography (PI450G7 manufactured by OPTRIS).
  • the surface temperature of measurement points A, B, C, and D is the same as that of sample No. In samples No. 1 to 3, the surface temperature was measured when cutting the glass plate was completed, and sample No. In 4 to 6, the surface temperature was measured at the time when the laser beam irradiation was completed.
  • the wavelength of the laser beam L should be 2.0 ⁇ m or more and 6.0 ⁇ m or less
  • the temperature difference (T L - T O ) should be 100°C or more
  • the temperature difference (T H - T L ) should be 130°C or less. Then, even if the glass plate G is thick, it can be confirmed that the glass plate G can be accurately cut along the planned cutting line CL.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

This method comprises a cutting step S comprising: an initial crack formation step S1 in which an initial crack is formed along some of a predetermined cutting line CL; and a laser-light irradiation step S2 in which laser light L is caused to strike along the predetermined cutting line CL in order to propagate the initial crack along the predetermined cutting line CL. The laser light L has a wavelength of 2.0-6.0 μm. In the laser-light irradiation step, (a) the difference between the lowest surface temperature TL of the glass plate G on the predetermined cutting line CL and the surface temperature TO of the glass plate G in a position apart from the predetermined cutting line CL, TL-TO, is regulated to 100°C or greater and (b) the difference between the highest surface temperature TH of the glass plate G on the predetermined cutting line CL and the lowest surface temperature TL, TH-TL, is regulated to 130°C or less.

Description

ガラス板の製造方法Glass plate manufacturing method
 本発明は、ガラス板の製造方法に関する。 The present invention relates to a method for manufacturing a glass plate.
 液晶ディスプレイ、有機ELディスプレイ等のディスプレイ、有機EL照明、太陽電池のパネル等に用いられる各種ガラス板は、ガラス板を切断する工程を経て所定形状に構成される。 Various glass plates used for displays such as liquid crystal displays, organic EL displays, organic EL lighting, solar cell panels, etc. are formed into predetermined shapes through a process of cutting the glass plates.
 この種のガラス板の切断方法としては、例えば特許文献1には、レーザ割断を用いた切断方法が開示されている。レーザ割断では、まず、ダイヤモンドカッター等のクラック形成手段によりガラス板に初期クラックを形成する。次に、ガラス板に設定される切断予定線(仮想線)に沿ってレーザ光を照射してガラス板を加熱し、冷却手段から噴射される冷却水等の冷媒によって加熱された部分を冷却する。この際にガラス板に生じる熱応力(熱衝撃)によって、初期クラックが切断予定線に沿って進展し、ガラス板が切断される。このように熱応力によって、ガラス板を切断すると、切断面は欠陥の少ない平滑な面となるという利点がある。 As a method for cutting this type of glass plate, for example, Patent Document 1 discloses a cutting method using laser cutting. In laser cutting, first, an initial crack is formed in a glass plate using a crack forming means such as a diamond cutter. Next, the glass plate is heated by irradiating laser light along the planned cutting line (imaginary line) set on the glass plate, and the heated portion is cooled by a refrigerant such as cooling water sprayed from the cooling means. . Due to the thermal stress (thermal shock) generated in the glass plate at this time, an initial crack develops along the planned cutting line, and the glass plate is cut. When a glass plate is cut using thermal stress in this manner, there is an advantage that the cut surface becomes a smooth surface with few defects.
特開2011―116611号公報Japanese Patent Application Publication No. 2011-116611
 しかしながら、特許文献1に開示の切断方法は、非常に薄いガラス板(例えば200μm以下)を切断対象とした技術である。そのため、ガラス板が厚い場合に、特許文献1に開示の切断方法をそのまま適用すると、ガラス板に生じる熱応力が不十分となって、ガラス板が切断できないなどの切断不良が生じ得る。 However, the cutting method disclosed in Patent Document 1 is a technique that targets a very thin glass plate (for example, 200 μm or less). Therefore, when the glass plate is thick, if the cutting method disclosed in Patent Document 1 is applied as is, the thermal stress generated in the glass plate will be insufficient, and cutting defects such as failure to cut the glass plate may occur.
 本発明は、ガラス板が厚い場合でも、熱応力を利用してガラス板を切断予定線に沿って正確に切断することを課題とする。 An object of the present invention is to accurately cut a glass plate along a planned cutting line using thermal stress even when the glass plate is thick.
(1) 本発明は、ガラス板を切断予定線に沿って切断する切断工程を備えるガラス板の製造方法であって、切断工程は、切断予定線の一部に初期クラックを形成する初期クラック形成工程と、切断予定線に沿ってレーザ光を照射するレーザ光照射工程とを備え、レーザ光の波長が、2.0μm以上6.0μm以下であり、レーザ光照射工程では、切断予定線上でのガラス板の最低表面温度TLと切断予定線から離れた離間位置でのガラス板の表面温度TOとの温度差(TL-TO)を100℃以上とし、かつ、切断予定線上でのガラス板の最高表面温度THと最低表面温度TLとの温度差(TH-TL)を130℃以下とすることを特徴とする。なお、本発明は、初期クラック形成工程をレーザ光照射工程の前に行う場合と、初期クラック形成工程をレーザ光照射工程の後に行う場合とを含む。 (1) The present invention is a method for manufacturing a glass plate that includes a cutting step of cutting a glass plate along a planned cutting line, and the cutting step includes forming an initial crack in a part of the planned cutting line. and a laser beam irradiation step of irradiating a laser beam along the planned cutting line, the wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less, and the laser beam irradiation step includes a step of irradiating a laser beam along the planned cutting line. The temperature difference (T L - T O ) between the lowest surface temperature T L of the glass plate and the surface temperature T O of the glass plate at a distant position away from the planned cutting line is 100°C or more, and It is characterized in that the temperature difference (T H - T L ) between the highest surface temperature T H and the lowest surface temperature T L of the glass plate is 130° C. or less. Note that the present invention includes cases in which the initial crack formation step is performed before the laser beam irradiation step, and cases in which the initial crack formation step is performed after the laser beam irradiation step.
 このようにレーザ光の波長が2.0μm以上6.0μm以下であれば、ガラス板の表層部に加えてガラス板の内部も加熱しやすくなる。そのため、ガラス板の厚さ方向全体を均一に加熱しやすくなり、ガラス板の厚さ方向全体を切断し得る十分な熱応力を発生させやすくなる。また、温度差(TL-TO)が100℃以上であれば、切断予定線とそれ以外の部分との間に十分な温度差が形成され、切断予定線に熱応力が生じやすくなる。そして、温度差(TH-TL)が130℃以下であれば、切断予定線が均一に加熱されるため、初期クラックが熱応力によって切断予定線に沿って進展しやすくなる。したがって、ガラス板を切断予定線に沿って正確に切断できる。 In this way, when the wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less, it becomes easy to heat the inside of the glass plate in addition to the surface layer of the glass plate. Therefore, it becomes easier to uniformly heat the entire thickness direction of the glass plate, and it becomes easier to generate enough thermal stress to cut the entire thickness direction of the glass plate. Further, if the temperature difference (T L −T O ) is 100° C. or more, a sufficient temperature difference is formed between the planned cutting line and the other parts, and thermal stress is likely to occur on the planned cutting line. If the temperature difference (T H - T L ) is 130° C. or less, the planned cutting line is heated uniformly, so that initial cracks tend to grow along the planned cutting line due to thermal stress. Therefore, the glass plate can be accurately cut along the planned cutting line.
(2) 上記(1)の構成において、ガラス板の厚さが、5mm以上22mm以下であることが好ましい。 (2) In the configuration of (1) above, the thickness of the glass plate is preferably 5 mm or more and 22 mm or less.
 このようにガラス板の厚い場合に、本発明は特に有用となる。 The present invention is particularly useful when the glass plate is thick like this.
(3) 上記(1)又は(2)の構成において、レーザ光照射工程では、ガラス板に対するレーザ光の相対走査速度が50mm/s以上であることが好ましい。 (3) In the configuration of (1) or (2) above, in the laser beam irradiation step, it is preferable that the relative scanning speed of the laser beam with respect to the glass plate is 50 mm/s or more.
 このようにすれば、切断予定線に沿ってガラス板を均一に加熱しやすくなる。 In this way, it becomes easier to uniformly heat the glass plate along the planned cutting line.
(4) 上記(1)~(3)のいずれかの構成において、初期クラック形成工程は、レーザ光照射工程の前に行われることが好ましい。 (4) In any of the configurations (1) to (3) above, the initial crack formation step is preferably performed before the laser beam irradiation step.
 このようにすれば、切断予定線が上述の温度条件を満たした段階で、ガラス板が初期クラックを起点として切断予定線に沿って自動的に切断される。したがって、切断作業の作業性が良好になると共に、安定的な切断を実現できる。 In this way, when the planned cutting line satisfies the above-mentioned temperature conditions, the glass plate is automatically cut along the planned cutting line starting from the initial crack. Therefore, the workability of the cutting operation is improved and stable cutting can be achieved.
(5) 上記(1)~(4)のいずれかの構成において、レーザ光は、COレーザ、Erレーザ、Hoレーザ、又はHFレーザから照射されることが好ましい。 (5) In any of the configurations (1) to (4) above, the laser light is preferably irradiated from a CO laser, Er laser, Ho laser, or HF laser.
 このようにすれば、波長が2.0μm以上6.0μm以下のレーザ光を容易に得ることができる。 In this way, laser light with a wavelength of 2.0 μm or more and 6.0 μm or less can be easily obtained.
(6) 上記(1)~(5)のいずれかの構成において、ガラス板は、鉛ガラスであることが好ましい。 (6) In any of the configurations (1) to (5) above, the glass plate is preferably made of lead glass.
(7) 上記(1)~(6)のいずれかの構成において、レーザ光照射工程では、レーザ光が、切断予定線に沿って複数回照射されることが好ましい。 (7) In any of the configurations (1) to (6) above, it is preferable that in the laser beam irradiation step, the laser beam is irradiated multiple times along the planned cutting line.
 このようにすれば、切断予定線が複数回加熱されるため、切断予定線を均一に加熱しやすくなる。 In this way, the planned cutting line is heated multiple times, making it easier to uniformly heat the planned cutting line.
(8) 上記(7)の構成において、レーザ光照射工程では、レーザ光とガラス板とを、切断予定線に沿って相対的に往復移動させることが好ましい。 (8) In the configuration of (7) above, it is preferable that in the laser beam irradiation step, the laser beam and the glass plate are relatively moved back and forth along the planned cutting line.
 このようにすれば、往路と復路の両方で切断予定線を加熱できるため、ガラス板の切断に要する時間を短縮できる。 In this way, the planned cutting line can be heated on both the outward and return passes, so the time required to cut the glass plate can be shortened.
(9) 本発明は、ガラス板を切断予定線に沿って切断する切断工程を備えるガラス板の製造方法であって、前記切断工程は、前記切断予定線の一部に初期クラックを形成する初期クラック形成工程と、前記切断予定線に沿ってレーザ光を照射するレーザ光照射工程とを備え、レーザ光の波長が、2.0μm以上6.0μm以下であり、レーザ光照射工程では、切断予定線上でのガラス板の最低表面温度TLと切断予定線から離れた離間位置でのガラス板の表面温度TOとの温度差(TL-TO)を100℃以上とし、かつ、レーザ光を切断予定線に沿って複数回照射することを特徴とする。 (9) The present invention is a method for manufacturing a glass plate, comprising a cutting step of cutting the glass plate along a planned cutting line, the cutting step including an initial crack forming in a part of the planned cutting line. The laser beam irradiation step includes a crack forming step and a laser beam irradiation step of irradiating a laser beam along the planned cutting line, wherein the wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less, and the laser beam irradiation step The temperature difference (T L - T O ) between the lowest surface temperature T L of the glass plate on the line and the surface temperature T O of the glass plate at a distant position away from the planned cutting line is 100°C or more, and the laser beam is It is characterized by irradiating multiple times along the planned cutting line.
 このようにレーザ光の波長が2.0μm以上6.0μm以下であれば、ガラス板の表層部に加えてガラス板の内部も加熱しやすくなる。そのため、ガラス板の厚さ方向全体を均一に加熱しやすくなり、ガラス板の厚さ方向全体を切断し得る十分な熱応力を発生させやすくなる。また、温度差(TL-TO)が100℃以上であれば、切断予定線とそれ以外の部分との間に十分な温度差が形成され、切断予定線に熱応力が生じやすくなる。そして、レーザ光を切断予定線に沿って複数回照射すれば、切断予定線が均一に加熱されるため、初期クラックが熱応力によって切断予定線に沿って進展しやすくなる。したがって、ガラス板を切断予定線に沿って正確に切断できる。 In this way, when the wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less, it becomes easy to heat the inside of the glass plate in addition to the surface layer of the glass plate. Therefore, it becomes easier to uniformly heat the entire thickness direction of the glass plate, and it becomes easier to generate enough thermal stress to cut the entire thickness direction of the glass plate. Further, if the temperature difference (T L −T O ) is 100° C. or more, a sufficient temperature difference is formed between the planned cutting line and the other parts, and thermal stress is likely to occur on the planned cutting line. Then, by irradiating the laser beam multiple times along the planned cutting line, the planned cutting line is uniformly heated, so that initial cracks are likely to develop along the planned cutting line due to thermal stress. Therefore, the glass plate can be accurately cut along the planned cutting line.
(10) 上記(9)の構成において、レーザ光照射工程では、レーザ光とガラス板とを、切断予定線に沿って相対的に往復移動させることが好ましい。 (10) In the configuration of (9) above, it is preferable that in the laser beam irradiation step, the laser beam and the glass plate are relatively moved back and forth along the planned cutting line.
 このようにすれば、往路と復路の両方で切断予定線を加熱できるため、ガラス板の切断に要する時間を短縮できる。 In this way, the planned cutting line can be heated on both the outward and return passes, so the time required to cut the glass plate can be shortened.
 本発明によれば、ガラス板が厚い場合でも、熱応力を利用してガラス板を切断予定線に沿って正確に切断できる。 According to the present invention, even if the glass plate is thick, it is possible to accurately cut the glass plate along the planned cutting line using thermal stress.
ガラス板の製造方法に含まれる切断工程のフロー図である。It is a flowchart of the cutting process included in the manufacturing method of a glass plate. 初期クラック形成工程を示す斜視図である。It is a perspective view showing an initial crack formation process. レーザ光照射工程を示す斜視図である。It is a perspective view showing a laser beam irradiation process. レーザ光照射工程を示す斜視図である。It is a perspective view showing a laser beam irradiation process. 図4のX-X断面図である。5 is a sectional view taken along line XX in FIG. 4. FIG. 本発明の実施例を説明するためのガラス板の平面図である。FIG. 2 is a plan view of a glass plate for explaining an example of the present invention.
 以下、本発明を実施するための形態について図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1に示すように、本実施形態に係るガラス板の製造方法は、ガラス板を切断予定線に沿って切断する切断工程Sを備える。切断工程Sは、初期クラック形成工程S1と、レーザ光照射工程S2とをこの順に備える。つまり、本実施形態では、レーザ光照射工程S2の前に、初期クラック形成工程S1が行われる。 As shown in FIG. 1, the method for manufacturing a glass plate according to the present embodiment includes a cutting step S in which the glass plate is cut along a planned cutting line. The cutting process S includes an initial crack forming process S1 and a laser beam irradiation process S2 in this order. That is, in this embodiment, the initial crack formation step S1 is performed before the laser beam irradiation step S2.
(初期クラック形成工程)
 図2に示すように、初期クラック形成工程S1では、クラック形成部材1によって、定盤2に載置されたガラス板Gに設けられた切断予定線CLの一部に初期クラック(図示省略)を形成する。切断予定線CLは、切断が予定されている位置に設けられた仮想線である。
(Initial crack formation process)
As shown in FIG. 2, in the initial crack forming step S1, the crack forming member 1 forms an initial crack (not shown) in a part of the planned cutting line CL provided on the glass plate G placed on the surface plate 2. Form. The planned cutting line CL is a virtual line provided at a position where cutting is planned.
 本実施形態では、切断対象となるガラス板Gは、矩形状である。ガラス板Gは、厚さ方向に対向する第一主面Ga及び第二主面Gbと、ガラス板Gの各辺に対応する位置で、第一主面Ga及び第二主面Gbの間に介在する4つの端面Gc~Gfとを備える。以下の説明では、第一主面Gaを上面、第二主面Gbを下面という場合がある。 In this embodiment, the glass plate G to be cut has a rectangular shape. The glass plate G has a first principal surface Ga and a second principal surface Gb facing each other in the thickness direction, and a portion between the first principal surface Ga and the second principal surface Gb at positions corresponding to each side of the glass plate G. It has four intervening end faces Gc to Gf. In the following description, the first principal surface Ga may be referred to as an upper surface, and the second principal surface Gb may be referred to as a lower surface.
 ガラス板Gの厚さの上限値は、好ましくは30mm以下、より好ましくは22mm以下であり、下限値は、好ましくは1mm以上、より好ましくは5mm以上である。本製造方法は、このようにガラス板Gが厚い場合に特に有用である。 The upper limit of the thickness of the glass plate G is preferably 30 mm or less, more preferably 22 mm or less, and the lower limit is preferably 1 mm or more, more preferably 5 mm or more. This manufacturing method is particularly useful when the glass plate G is thick like this.
 ガラス板Gの種類に特に制限はないが、放射線遮蔽用鉛ガラスは厚いほど遮蔽性が向上し、上記ガラス板Gの厚さを満足しやすいので、ガラス板Gは、鉛ガラスであることが好ましい。鉛ガラスの組成としては、例えば、酸化物換算の質量百分率で、SiO2:10~60質量%、PbO:35~80質量%、B23:0~10質量%、Al23:0~10質量%、SrO:0~10質量%、BaO:0~20質量%、Na2O:0~10質量%、K2O:0~10質量%の組成が挙げられる。 There is no particular restriction on the type of the glass plate G, but the thicker the lead glass for radiation shielding, the better the shielding properties, and it is easier to satisfy the thickness of the glass plate G mentioned above, so the glass plate G should be lead glass. preferable. The composition of lead glass is, for example, in terms of mass percentage in terms of oxides: SiO 2 : 10 to 60 mass %, PbO: 35 to 80 mass %, B 2 O 3 : 0 to 10 mass %, Al 2 O 3 : Examples include compositions of 0 to 10% by mass, SrO: 0 to 10% by mass, BaO: 0 to 20% by mass, Na 2 O: 0 to 10% by mass, and K 2 O: 0 to 10% by mass.
 ガラス板Gの30~380℃の温度範囲における熱膨張係数は、90×10-7/℃以下であることが好ましく、85×10-7/℃以下であることがより好ましい。熱膨張係数が小さい場合、切断予定線CLに十分な熱応力を発生させることができず、ガラス板Gを切断できない。熱膨張係数が大きい場合、切断予定線CLに熱応力が過剰に発生し、切断予定線CLから外れた位置にクラックが発生するおそれがある。「30~380℃の温度範囲における熱膨張係数」は、ディラトメーターで測定した平均値を指す。 The thermal expansion coefficient of the glass plate G in the temperature range of 30 to 380°C is preferably 90×10 -7 /°C or less, more preferably 85×10 -7 /°C or less. When the coefficient of thermal expansion is small, sufficient thermal stress cannot be generated on the planned cutting line CL, and the glass plate G cannot be cut. When the coefficient of thermal expansion is large, excessive thermal stress is generated on the planned cutting line CL, and cracks may occur at positions deviating from the planned cutting line CL. "Thermal expansion coefficient in the temperature range of 30 to 380°C" refers to the average value measured with a dilatometer.
 切断予定線CLは、ガラス板Gの対向する2つの端面Gc,Geに跨る直線である。つまり、切断予定線CLの一端CLaは、ガラス板Gの対向する2つの端面Gc,Geのうちの一方の端面Gcと交わり、切断予定線CLの他端CLbは、ガラス板の対向する2つの端面Gc,Geのうちの他方の端面Geと交わる。 The planned cutting line CL is a straight line spanning the two opposing end surfaces Gc and Ge of the glass plate G. That is, one end CLa of the planned cutting line CL intersects with one end surface Gc of the two opposing end surfaces Gc and Ge of the glass plate G, and the other end CLb of the planned cutting line CL intersects with one end surface Gc of the two opposing end surfaces Gc and Ge of the glass plate G. It intersects with the other end surface Ge of the end surfaces Gc and Ge.
 本実施形態では、クラック形成部材1は、切断予定線CLの一端CLaに対応する位置でガラス板Gの上方から下降し、ガラス板Gの上面Gaとガラス板Gの端面Gcとが交わる角部Gacと接触する。つまり、初期クラックは、切断予定線CL上に位置するガラス板Gの角部Gacに形成される。本実施形態では、後述するレーザ光照射工程S2において、初期クラックが形成された切断予定線CLの一端CLa側からレーザ光の照射が開始される。なお、初期クラックの形成位置は、切断予定線CLの一部であれば特に限定されない。初期クラックは、例えば、ガラス板Gの端面Gcに形成されてもよいし、ガラス板Gの下面Gbとガラス板Gの端面Gcとが交わる角部Gbcに形成されてもよいし、ガラス板Gの上面Ga又は下面Gb(切断予定線CLの長手方向の中間部)に形成されてもよい。あるいは、初期クラックは、例えば、ガラス板Gの上面Gaとガラス板Gの端面Geとが交わる角部に形成されてもよいし、ガラス板Gの下面Gbとガラス板Gの端面Geとが交わる角部に形成されてもよいし、ガラス板Gの端面Geに形成されてもよい。 In this embodiment, the crack forming member 1 descends from above the glass plate G at a position corresponding to one end CLa of the planned cutting line CL, and is moved to a corner where the upper surface Ga of the glass plate G and the end surface Gc of the glass plate G intersect. Contact with Gac. That is, the initial crack is formed at the corner Gac of the glass plate G located on the planned cutting line CL. In the present embodiment, in a laser beam irradiation step S2 to be described later, laser beam irradiation is started from one end CLa side of the cutting line CL where an initial crack is formed. Note that the position where the initial crack is formed is not particularly limited as long as it is a part of the planned cutting line CL. For example, the initial crack may be formed on the end surface Gc of the glass plate G, or may be formed on the corner Gbc where the lower surface Gb of the glass plate G and the end surface Gc of the glass plate G intersect, or the initial crack may be formed on the end surface Gc of the glass plate G. It may be formed on the upper surface Ga or the lower surface Gb (the intermediate portion in the longitudinal direction of the planned cutting line CL). Alternatively, the initial crack may be formed, for example, at the corner where the top surface Ga of the glass plate G and the end surface Ge of the glass plate G intersect, or at the corner where the bottom surface Gb of the glass plate G and the end surface Ge of the glass plate G intersect. It may be formed at the corner or on the end face Ge of the glass plate G.
 クラック形成部材1は、焼結ダイヤモンドカッター等の尖端状のスクライバーにより構成されるが、これに限定されない。クラック形成部材1は、例えば、ダイヤモンドペン、超硬合金カッター、サンドペーパー等により構成されてもよい。 The crack forming member 1 is composed of a pointed scriber such as a sintered diamond cutter, but is not limited thereto. The crack forming member 1 may be composed of, for example, a diamond pen, a cemented carbide cutter, sandpaper, or the like.
(レーザ光照射工程)
 図3に示すように、レーザ光照射工程S2では、切断予定線CLに沿って初期クラックを進展させるために、レーザ装置3によって、定盤2に載置されたガラス板Gに設けられた切断予定線CLに沿ってレーザ光Lを照射する。レーザ光Lは、ガラス板Gの上面Gaの上方側から照射される。本実施形態では、切断予定線CLを均一に加熱するために、レーザ光Lの照射により加熱された領域は、冷却ガス等の冷媒により積極的に冷却されることなく自然冷却される。ガラス板Gを定盤2に固定するために、定盤2は吸着定盤であることが好ましい。吸着定盤を使用することで、ガラス板Gを定盤2に確実に固定することができ、レーザ光照射工程を実行中のガラス板Gの位置ずれを防止することができる。
(Laser light irradiation process)
As shown in FIG. 3, in the laser beam irradiation step S2, a cut is made on the glass plate G placed on the surface plate 2 by the laser device 3 in order to develop an initial crack along the planned cutting line CL. Laser light L is irradiated along the planned line CL. The laser beam L is irradiated from above the upper surface Ga of the glass plate G. In this embodiment, in order to uniformly heat the planned cutting line CL, the area heated by the irradiation of the laser beam L is naturally cooled without being actively cooled by a coolant such as cooling gas. In order to fix the glass plate G to the surface plate 2, the surface plate 2 is preferably a suction surface plate. By using the suction surface plate, the glass plate G can be reliably fixed to the surface plate 2, and it is possible to prevent the glass plate G from shifting during the laser beam irradiation process.
 レーザ光Lの波長は、2.0μm以上6.0μm以下である。レーザ装置3は、COレーザ、Erレーザ(Er:YAGレーザ)、Hoレーザ(Ho:YAGレーザ)、又はHFレーザであることが好ましい。特に、レーザ装置3としては、COレーザを用いることが好ましい。COレーザを用いた場合、レーザ光Lの波長は、例えば、5.25μm以上5.75μm以下とされる。このようにレーザ光Lの波長が2.0μm以上6.0μm以下であれば、ガラス板Gの表層部に加えてガラス板Gの内部も加熱しやすくなる。そのため、ガラス板Gが厚い場合でも、ガラス板Gの厚さ方向全体を均一に加熱しやすくなり、ガラス板Gの厚さ方向全体を切断し得る十分な熱応力を発生させやすくなる。 The wavelength of the laser beam L is 2.0 μm or more and 6.0 μm or less. The laser device 3 is preferably a CO laser, an Er laser (Er:YAG laser), a Ho laser (Ho:YAG laser), or an HF laser. In particular, it is preferable to use a CO laser as the laser device 3. When a CO laser is used, the wavelength of the laser beam L is, for example, 5.25 μm or more and 5.75 μm or less. In this way, when the wavelength of the laser beam L is 2.0 μm or more and 6.0 μm or less, it becomes easy to heat the inside of the glass plate G in addition to the surface layer portion of the glass plate G. Therefore, even if the glass plate G is thick, it becomes easy to uniformly heat the entire thickness direction of the glass plate G, and it becomes easy to generate enough thermal stress to cut the entire thickness direction of the glass plate G.
 レーザ光Lは、次の温度条件を満たすように、ガラス板Gの切断予定線CLに沿って照射される。つまり、温度条件は、(a)切断予定線CL上でのガラス板Gの最低表面温度TLと切断予定線CLから離れた離間位置でのガラス板Gの表面温度TOとの温度差(TL-TO)が100℃以上となること、かつ、(b)切断予定線CL上でのガラス板Gの最高表面温度THと最低表面温度TLとの温度差(TH-TL)が130℃以下となること、である。温度差(TL-TO)が100℃以上であれば、切断予定線CL(加熱領域)とそれ以外の部分(非加熱領域)との間に十分な温度差が形成され、切断予定線CLに熱応力が生じやすくなる。また、温度差(TH-TL)が130℃以下であれば、切断予定線CL全体が均一に加熱される。 The laser beam L is irradiated along the planned cutting line CL of the glass plate G so as to satisfy the following temperature conditions. In other words, the temperature conditions are (a) the temperature difference between the lowest surface temperature T L of the glass plate G on the cutting line CL and the surface temperature T O of the glass plate G at a distant position away from the cutting line CL ( (T L - T O ) is 100°C or more, and ( b ) the temperature difference (T H - T L ) is 130°C or less. If the temperature difference (T L - T O ) is 100°C or more, a sufficient temperature difference will be formed between the planned cutting line CL (heated area) and the other part (non-heated area), and the planned cutting line will be Thermal stress is likely to occur in the CL. Furthermore, if the temperature difference (T H −T L ) is 130° C. or less, the entire planned cutting line CL is heated uniformly.
 したがって、レーザ光Lの波長を2.0μm以上6.0μm以下、温度差(TL-TO)を100℃以上、温度差(TH-TL)を130℃以下とすれば、ガラス板Gが厚い場合でも、初期クラックを熱応力によって切断予定線CLに沿って進展させることができる。これにより、図4及び図5に示すように、ガラス板Gを切断予定線CLに沿って正確に切断できる。そして、このように熱応力で切断されたガラス板Gの切断面Gg,Ghは、欠陥(例えばマイクロクラック)の少ない平滑な面となる。また、切断面Gg,Ghと下面Gbとのなす角θは、ほぼ90°(好ましくは、82°以上98°以下、より好ましくは87°以上93°以下)となる。 Therefore, if the wavelength of the laser beam L is 2.0 μm or more and 6.0 μm or less, the temperature difference (T L - T O ) is 100 °C or more, and the temperature difference (T H - T L ) is 130 °C or less, the glass plate Even when G is thick, an initial crack can be made to grow along the planned cutting line CL due to thermal stress. Thereby, as shown in FIGS. 4 and 5, the glass plate G can be accurately cut along the planned cutting line CL. The cut surfaces Gg and Gh of the glass plate G cut by thermal stress in this manner become smooth surfaces with few defects (for example, microcracks). Further, the angle θ between the cut surfaces Gg, Gh and the lower surface Gb is approximately 90° (preferably 82° or more and 98° or less, more preferably 87° or more and 93° or less).
 最高表面温度TH、最低表面温度TL、及び離間位置でのガラス板Gの表面温度TOを測定する際は、測定器として、例えばOPTRIS社製のガラス温度測定用サーモグラフィPI450G7を好適に用いることができる。 When measuring the maximum surface temperature T H , the minimum surface temperature T L , and the surface temperature T O of the glass plate G at a separate position, for example, a thermograph PI450G7 for glass temperature measurement manufactured by OPTRIS is preferably used as a measuring instrument. be able to.
 ここで、温度差(TL-TO)及び温度差(TH-TL)は、切断が完了した時点でのガラス板Gの表面温度に基づいて算出される。最高表面温度TH及び最低表面温度TLは、切断予定線CL全体の表面温度の測定結果に基づいて求めてもよいが、切断予定線CL上の任意の複数点(例えば、切断予定線CLの長手方向の両端部及び中央部の3点)における表面温度の測定結果に基づいて求めてもよい。すなわち、切断予定線CLの長手方向の両端部及び中央部の3つの測定点のうち、最も温度が高い測定点の温度を最高表面温度TH、最も温度が低い測定点の温度を最低表面温度TLとしてもよい。離間位置は、レーザ光Lの加熱の影響を実質的に受けないガラス板Gの非加熱領域を意味し、離間位置でのガラス板Gの表面温度TOは室温程度となる。切断予定線CLと離間位置との距離は、例えば20mmである。 Here, the temperature difference (T L −T O ) and the temperature difference (T H −T L ) are calculated based on the surface temperature of the glass plate G at the time when cutting is completed. The maximum surface temperature T H and the minimum surface temperature T L may be determined based on the measurement results of the surface temperature of the entire planned cutting line CL; It may be determined based on the measurement results of the surface temperature at three points (both ends and the center in the longitudinal direction). That is, among the three measurement points at both ends and the center in the longitudinal direction of the cutting line CL, the temperature at the measurement point with the highest temperature is the maximum surface temperature T H , and the temperature at the measurement point with the lowest temperature is the minimum surface temperature. It may also be T L. The separated position means an unheated area of the glass plate G that is not substantially affected by the heating of the laser beam L, and the surface temperature T O of the glass plate G at the separated position is about room temperature. The distance between the planned cutting line CL and the separated position is, for example, 20 mm.
 温度差(TL-TO)の上限値は、好ましくは570℃以下、より好ましくは500℃以下であり、下限値は、好ましくは100℃以上、より好ましくは110℃以上である。温度差(TH-TL)の上限値は、好ましくは130℃以下、より好ましくは100℃以下であり、下限値は、好ましくは50℃以上、より好ましくは80℃以上である。 The upper limit of the temperature difference (T L −T O ) is preferably 570°C or less, more preferably 500°C or less, and the lower limit is preferably 100°C or more, more preferably 110°C or more. The upper limit of the temperature difference (T H - T L ) is preferably 130°C or less, more preferably 100°C or less, and the lower limit is preferably 50°C or more, more preferably 80°C or more.
 レーザ光Lは、温度差(TL-TO)及び温度差(TH-TL)が上記の温度条件を満たすように、切断予定線CLに沿って複数回照射される。詳細には、図3に示すように、レーザ装置3は、ガラス板Gを静止させた状態で、切断予定線CLに沿って往復移動する。つまり、往路では、矢印O1,O2に従ってレーザ装置3を移動させることにより、レーザ光Lが切断予定線CLの一端CLaから他端CLbまで走査される。同様に、復路では、矢印I1,I2に従ってレーザ装置3を移動させることにより、レーザ光Lが切断予定線CLの他端CLbから一端CLaまで走査される。このような手順により、レーザ光Lを切断予定線CLに沿って一回又は複数回往復させる。 The laser beam L is irradiated multiple times along the planned cutting line CL so that the temperature difference (T L -T O ) and the temperature difference (T H -T L ) satisfy the above temperature conditions. Specifically, as shown in FIG. 3, the laser device 3 reciprocates along the cutting line CL while keeping the glass plate G stationary. That is, on the outward path, the laser beam L is scanned from one end CLa of the planned cutting line CL to the other end CLb by moving the laser device 3 according to the arrows O1 and O2. Similarly, on the return trip, the laser beam L is scanned from the other end CLb of the planned cutting line CL to one end CLa by moving the laser device 3 according to the arrows I1 and I2. Through such a procedure, the laser beam L is reciprocated once or multiple times along the cutting line CL.
 切断予定線CLに対するレーザ光Lの照射回数(往復回数×2)は、ガラス板Gが厚くなるに連れて増加させることが好ましい。つまり、ガラス板Gが厚くなるに連れて、ガラス板Gの切断に要する熱エネルギーも大きくなるため、レーザ光Lの照射回数を増加させ、ガラス板Gに与える熱エネルギーの総和を増加させることが好ましい。例えば、ガラス板Gの厚さが5mm~10mmの場合、切断予定線CLに対するレーザ光Lの照射回数は5~10回であることが好ましく、ガラス板Gの厚さが10mm超~15mmの場合、切断予定線CLに対するレーザ光Lの照射回数は10~30回であることが好ましく、ガラス板Gの厚さが15mm超~22mmの場合、切断予定線CLに対するレーザ光Lの照射回数は70~110回であることが好ましい。 It is preferable that the number of times the laser beam L is irradiated with the cutting line CL (number of reciprocating times x 2) increases as the glass plate G becomes thicker. In other words, as the glass plate G becomes thicker, the thermal energy required to cut the glass plate G also increases, so it is possible to increase the number of irradiations with the laser beam L and increase the total amount of thermal energy given to the glass plate G. preferable. For example, when the thickness of the glass plate G is 5 mm to 10 mm, it is preferable that the number of times of irradiation of the laser beam L to the cutting line CL is 5 to 10 times, and when the thickness of the glass plate G is more than 10 mm to 15 mm. It is preferable that the number of times of irradiation of the laser beam L to the planned cutting line CL is 10 to 30 times, and when the thickness of the glass plate G is more than 15 mm to 22 mm, the number of times of irradiation of the laser beam L to the planned cutting line CL is 70 times. The number of times is preferably 110 times.
 本実施形態では、レーザ光Lを切断予定線CLの両端CLa,CLbにも確実に照射するために、往路の始点(復路の終点)P1及び往路の終点(復路の始点)P2が、切断予定線CLをガラス板Gの各端面Gc,Geの外側に延長した位置に設けられている。つまり、レーザ光Lは、切断予定線CLの両端CLa,CLbを通り過ぎてから点P1又は点P2で折り返される。端面Gcと点P1との離間距離、及び、端面Geと点P2との離間距離は、5mm~10mmであることが好ましい。 In this embodiment, in order to reliably irradiate the laser beam L to both ends CLa and CLb of the planned cutting line CL, the starting point of the outward path (end point of the backward path) P1 and the end point of the outward path (starting point of the backward path) P2 are It is provided at a position where the line CL is extended to the outside of each end surface Gc, Ge of the glass plate G. That is, the laser beam L passes through both ends CLa and CLb of the planned cutting line CL, and then is turned back at the point P1 or the point P2. The distance between the end face Gc and the point P1 and the distance between the end face Ge and the point P2 are preferably 5 mm to 10 mm.
 レーザ光Lの走査速度は、50mm/s以上200mm/s以下であることが好ましい。レーザ光Lの走査速度は、ガラス板Gの厚さ、レーザ光Lの照射回数、レーザ光Lの出力などに基づいて調整される。 The scanning speed of the laser beam L is preferably 50 mm/s or more and 200 mm/s or less. The scanning speed of the laser beam L is adjusted based on the thickness of the glass plate G, the number of times the laser beam L is irradiated, the output of the laser beam L, and the like.
 レーザ光Lの出力は、50~200Wであることが好ましい。レーザ光Lの出力は、ガラス板Gの厚さ、レーザ光Lの照射回数、レーザ光Lの走査速度などに基づいて調整される。 The output of the laser beam L is preferably 50 to 200W. The output of the laser beam L is adjusted based on the thickness of the glass plate G, the number of times the laser beam L is irradiated, the scanning speed of the laser beam L, and the like.
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Note that the present invention is not limited to the configuration of the embodiments described above, nor is it limited to the effects described above. The present invention can be modified in various ways without departing from the gist of the invention.
 上記の実施形態では、ガラス板Gを静止させた状態でレーザ装置3を移動させることにより、レーザ光Lを切断予定線CLに沿って走査する場合を説明したが、レーザ光Lの走査方法は、レーザ光Lとガラス板G(切断予定線CL)との間に相対移動があれば特に限定されない。例えば、レーザ装置3を静止させた状態でガラス板Gを移動させることにより、レーザ光Lを切断予定線CLに沿って走査するようにしてもよい。また、レーザ装置3及びガラス板Gを静止させた状態で、レーザ光Lの光路上に配置されたミラーの角度を変えて、レーザ光Lを切断予定線CLに沿って走査するようにしてもよい。 In the above embodiment, a case has been described in which the laser beam L is scanned along the cutting line CL by moving the laser device 3 with the glass plate G kept stationary, but the scanning method of the laser beam L is , there is no particular limitation as long as there is relative movement between the laser beam L and the glass plate G (planned cutting line CL). For example, the laser beam L may be scanned along the cutting line CL by moving the glass plate G while keeping the laser device 3 stationary. Alternatively, while the laser device 3 and the glass plate G are stationary, the angle of the mirror placed on the optical path of the laser beam L may be changed to scan the laser beam L along the planned cutting line CL. good.
 上記の実施形態では、レーザ光照射工程S2の前に初期クラック形成工程S1を行う場合を説明したが、レーザ光照射工程S2の後に初期クラック形成工程S1を行ってもよい。ただし、レーザ光照射工程S2の後に初期クラック形成工程S1を行った場合、初期クラックを形成する時点でガラス板Gの切断予定線CLの温度が再び低下してしまうおそれがある。したがって、レーザ光照射工程S2の前に初期クラック形成工程S1を行うことが好ましい。このようにすれば、レーザ光照射工程S2では、ガラス板Gに予め初期クラックが形成された状態となるため、切断予定線CLが所定の温度条件を満たした段階で、ガラス板Gが初期クラックを起点として切断予定線CLに沿って自動的に切断される。つまり、切断作業の作業性が良好になると共に、安定的な切断を実現できる。 In the above embodiment, a case has been described in which the initial crack formation step S1 is performed before the laser light irradiation step S2, but the initial crack formation step S1 may be performed after the laser light irradiation step S2. However, if the initial crack forming step S1 is performed after the laser beam irradiation step S2, there is a risk that the temperature of the planned cutting line CL of the glass plate G may drop again at the time when the initial crack is formed. Therefore, it is preferable to perform the initial crack formation step S1 before the laser beam irradiation step S2. In this way, in the laser beam irradiation step S2, the initial cracks are formed in the glass plate G in advance, so that the initial cracks are formed in the glass plate G when the planned cutting line CL satisfies the predetermined temperature condition. Cutting is automatically performed along the planned cutting line CL starting from the starting point. In other words, the workability of the cutting operation is improved and stable cutting can be achieved.
 上記の実施形態では、切断予定線CL全体が直線状である場合を説明したが、切断予定線CLは曲線を含んでいてもよい。 In the above embodiment, the case where the entire planned cutting line CL is linear has been described, but the planned cutting line CL may include a curved line.
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to these Examples.
 ソーダガラスからなるガラス板を所定の条件で切断し、切断の成否を評価した。その結果を表1に示す。表中において、試料No.1~3が実施例であり、試料No.4~6が比較例である。 A glass plate made of soda glass was cut under predetermined conditions, and the success or failure of the cutting was evaluated. The results are shown in Table 1. In the table, sample No. 1 to 3 are examples, and sample No. 1 to 3 are examples. 4 to 6 are comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図6に示すように、試料No.1~6では、直線状の切断予定線CLの一端部Aに位置するガラス板Gの角部に初期クラックを形成した。なお、図中のAは切断予定線CLの一端部、Bは切断予定線CLの中央部B、Cは切断予定線CLの他端部を示す。 As shown in FIG. 6, sample No. In Nos. 1 to 6, an initial crack was formed at the corner of the glass plate G located at one end A of the linear planned cutting line CL. In addition, in the figure, A indicates one end of the planned cutting line CL, B indicates the center portion B of the planned cutting line CL, and C indicates the other end of the planned cutting line CL.
 試料No.1~3では、初期クラックが形成されたガラス板Gの切断予定線CLに沿ってレーザ光(COレーザ)を往復させながら照射することにより、切断予定線CLを加熱した。つまり、試料No.1~3では、A→B→C→C→B→A→A→B→…→C→B→Aの順にレーザ光が切断予定線CL上を複数回走査される。一方、試料No.4~6では、初期クラックが形成されたガラス板Gの切断予定線CLに沿ってレーザ光(COレーザ)を往復させることなく一回だけ照射することにより、切断予定線CLを加熱した。つまり、試料No.4~6では、A→B→Cの順にレーザ光が切断予定線CL上を一回だけ走査される。なお、レーザ光(COレーザ)の波長は、5.5μmであった。 Sample No. In steps 1 to 3, the planned cutting line CL of the glass plate G on which the initial crack was formed was heated by irradiating it with a laser beam (CO laser) while reciprocating along the planned cutting line CL. In other words, sample No. In steps 1 to 3, the laser beam scans the planned cutting line CL multiple times in the order of A→B→C→C→B→A→A→B→...→C→B→A. On the other hand, sample No. In steps 4 to 6, the planned cutting line CL of the glass plate G where the initial crack was formed was heated by irradiating the laser light (CO laser) only once without reciprocating. In other words, sample No. In steps 4 to 6, the laser beam scans the planned cutting line CL only once in the order of A→B→C. Note that the wavelength of the laser light (CO laser) was 5.5 μm.
 なお、切断予定線CLのA、B及びCで表面温度を測定すれば、切断予定線CL全体の表面温度分布を把握できるため、これら3点を測定点とした。そして、これら測定点A、B、Cで測定された表面温度のうち、最も温度が高いものを切断予定線CL上でのガラス板Gの最高表面温度TH、最も温度が低いものを切断予定線CL上でのガラス板Gの最低表面温度TLとし、温度差(TH-TL)を求めた。また、測定点Cから切断予定線CLと直交する方向に20mm(図中の距離M)離れた測定点Dで測定された表面温度を離間位置でのガラス板Gの表面温度TOとし、温度差(TL-TO)を求めた。なお、測定点A、B、C、Dの表面温度は、ガラス温度測定用サーモグラフィ(OPTRIS社製のPI450G7)を用いて測定した。また、測定点A、B、C、Dの表面温度は、試料No.1~3では、ガラス板の切断が完了した時点で測定した表面温度とし、試料No.4~6では、レーザ光の照射が終了した時点で測定した表面温度とした。 Note that by measuring the surface temperature at points A, B, and C of the planned cutting line CL, the surface temperature distribution of the entire planned cutting line CL can be grasped, so these three points were taken as measurement points. Among the surface temperatures measured at these measurement points A, B, and C, the one with the highest temperature is the highest surface temperature T H of the glass plate G on the cutting line CL, and the one with the lowest temperature is the one scheduled to be cut. The lowest surface temperature T L of the glass plate G on the line CL was taken as the temperature difference (T H −T L ). In addition, the surface temperature measured at the measurement point D, which is 20 mm (distance M in the figure) away from the measurement point C in the direction orthogonal to the planned cutting line CL, is defined as the surface temperature T O of the glass plate G at the separated position, and the temperature The difference (T L −T O ) was determined. The surface temperatures at measurement points A, B, C, and D were measured using a glass temperature measurement thermography (PI450G7 manufactured by OPTRIS). Moreover, the surface temperature of measurement points A, B, C, and D is the same as that of sample No. In samples No. 1 to 3, the surface temperature was measured when cutting the glass plate was completed, and sample No. In 4 to 6, the surface temperature was measured at the time when the laser beam irradiation was completed.
 表1の結果からも、レーザ光Lの波長を2.0μm以上6.0μm以下、温度差(TL-TO)を100℃以上、温度差(TH-TL)を130℃以下とすれば、ガラス板Gが厚い場合でも、ガラス板Gを切断予定線CLに沿って正確に切断できることが確認できる。 From the results in Table 1, it is clear that the wavelength of the laser beam L should be 2.0 μm or more and 6.0 μm or less, the temperature difference (T L - T O ) should be 100°C or more, and the temperature difference (T H - T L ) should be 130°C or less. Then, even if the glass plate G is thick, it can be confirmed that the glass plate G can be accurately cut along the planned cutting line CL.
1           クラック形成部材
2           定盤
3           レーザ装置
A,B,C,D     測定点
CL          切断予定線
G           ガラス板
Ga,Gb       主面
Gc,Gd,Ge,Gf 端面
Gac,Gbc     角部
L           レーザ光
S           切断工程
S1          初期クラック形成工程
S2          レーザ光照射工程
1 Crack forming member 2 Surface plate 3 Laser device A, B, C, D Measuring point CL Cutting line G Glass plate Ga, Gb Main surface Gc, Gd, Ge, Gf End surface Gac, Gbc Corner L Laser beam S Cutting process S1 Initial crack formation process S2 Laser light irradiation process

Claims (10)

  1.  ガラス板を切断予定線に沿って切断する切断工程を備えるガラス板の製造方法であって、
     前記切断工程は、前記切断予定線の一部に初期クラックを形成する初期クラック形成工程と、前記切断予定線に沿ってレーザ光を照射するレーザ光照射工程とを備え、
     前記レーザ光の波長が、2.0μm以上6.0μm以下であり、
     前記レーザ光照射工程では、前記切断予定線上での前記ガラス板の最低表面温度TLと前記切断予定線から離れた離間位置での前記ガラス板の表面温度TOとの温度差(TL-TO)を100℃以上とし、かつ、前記切断予定線上での前記ガラス板の最高表面温度THと最低表面温度TLとの温度差(TH-TL)を130℃以下とすることを特徴とするガラス板の製造方法。
    A method for manufacturing a glass plate comprising a cutting step of cutting the glass plate along a planned cutting line,
    The cutting step includes an initial crack forming step of forming an initial crack in a part of the planned cutting line, and a laser beam irradiation step of irradiating a laser beam along the planned cutting line,
    The wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less,
    In the laser beam irradiation step, a temperature difference ( TL - T O ) is 100°C or higher, and the temperature difference ( TH - T L ) between the highest surface temperature T H and the lowest surface temperature T L of the glass plate on the cutting line is 130°C or lower. A method for manufacturing a glass plate characterized by:
  2.  前記ガラス板の厚さが、5mm以上22mm以下である請求項1に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1, wherein the thickness of the glass plate is 5 mm or more and 22 mm or less.
  3.  前記レーザ光照射工程では、前記ガラス板に対する前記レーザ光の相対走査速度が50mm/s以上である請求項1又は2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1 or 2, wherein in the laser beam irradiation step, a relative scanning speed of the laser beam with respect to the glass plate is 50 mm/s or more.
  4.  前記初期クラック形成工程は、前記レーザ光照射工程の前に行われる請求項1又は2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1 or 2, wherein the initial crack formation step is performed before the laser beam irradiation step.
  5.  前記レーザ光は、COレーザ、Erレーザ、Hoレーザ、又はHFレーザから照射される請求項1又は2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1 or 2, wherein the laser light is irradiated with a CO laser, an Er laser, a Ho laser, or an HF laser.
  6.  前記ガラス板は、鉛ガラスである請求項1又は2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1 or 2, wherein the glass plate is lead glass.
  7.  前記レーザ光照射工程では、前記レーザ光が、前記切断予定線に沿って複数回照射される請求項1又は2に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1 or 2, wherein in the laser light irradiation step, the laser light is irradiated multiple times along the planned cutting line.
  8.  前記レーザ光照射工程では、前記レーザ光と前記ガラス板とを、前記切断予定線に沿って相対的に往復移動させる請求項7に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 7, wherein in the laser beam irradiation step, the laser beam and the glass plate are relatively moved back and forth along the planned cutting line.
  9.  ガラス板を切断予定線に沿って切断する切断工程を備えるガラス板の製造方法であって、
     前記切断工程は、前記切断予定線の一部に初期クラックを形成する初期クラック形成工程と、前記切断予定線に沿ってレーザ光を照射するレーザ光照射工程とを備え、
     前記レーザ光の波長が、2.0μm以上6.0μm以下であり、
     前記レーザ光照射工程では、前記切断予定線上での前記ガラス板の最低表面温度TLと前記切断予定線から離れた離間位置での前記ガラス板の表面温度TOとの温度差(TL-TO)を100℃以上とし、かつ、前記レーザ光を前記切断予定線に沿って複数回照射することを特徴とするガラス板の製造方法。
    A method for manufacturing a glass plate comprising a cutting step of cutting the glass plate along a planned cutting line,
    The cutting step includes an initial crack forming step of forming an initial crack in a part of the planned cutting line, and a laser beam irradiation step of irradiating a laser beam along the planned cutting line,
    The wavelength of the laser beam is 2.0 μm or more and 6.0 μm or less,
    In the laser beam irradiation step, a temperature difference ( TL - A method for producing a glass plate, characterized in that the temperature (T O ) is 100° C. or higher, and the laser beam is irradiated multiple times along the planned cutting line.
  10.  前記レーザ光照射工程では、前記レーザ光と前記ガラス板とを、前記切断予定線に沿って相対的に往復移動させる請求項9に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 9, wherein in the laser beam irradiation step, the laser beam and the glass plate are relatively moved back and forth along the planned cutting line.
PCT/JP2023/014854 2022-05-27 2023-04-12 Method for producing glass plate WO2023228617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086700 2022-05-27
JP2022086700 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228617A1 true WO2023228617A1 (en) 2023-11-30

Family

ID=88919110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014854 WO2023228617A1 (en) 2022-05-27 2023-04-12 Method for producing glass plate

Country Status (2)

Country Link
TW (1) TW202346233A (en)
WO (1) WO2023228617A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224091A (en) * 1990-03-21 1992-08-13 Philips Gloeilampenfab:Nv Method and apparatus for dividing brittle plate
JP2009066851A (en) * 2007-09-12 2009-04-02 Mitsuboshi Diamond Industrial Co Ltd Method of chamfering brittle substrate
JP2010089144A (en) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd Method for cutting brittle material substrate
WO2020032124A1 (en) * 2018-08-10 2020-02-13 日本電気硝子株式会社 Method for manufacturing glass sheet
JP2021123513A (en) * 2020-02-04 2021-08-30 日本電気硝子株式会社 Glass sheet and method for manufacturing glass sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224091A (en) * 1990-03-21 1992-08-13 Philips Gloeilampenfab:Nv Method and apparatus for dividing brittle plate
JP2009066851A (en) * 2007-09-12 2009-04-02 Mitsuboshi Diamond Industrial Co Ltd Method of chamfering brittle substrate
JP2010089144A (en) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd Method for cutting brittle material substrate
WO2020032124A1 (en) * 2018-08-10 2020-02-13 日本電気硝子株式会社 Method for manufacturing glass sheet
JP2021123513A (en) * 2020-02-04 2021-08-30 日本電気硝子株式会社 Glass sheet and method for manufacturing glass sheet

Also Published As

Publication number Publication date
TW202346233A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
US20200156986A1 (en) Methods of cutting glass using a laser
US8584490B2 (en) Laser cutting method
JP5113462B2 (en) Method for chamfering a brittle material substrate
KR101081613B1 (en) Method for scribing fragile material and apparatus for scribing fragile material
TWI670240B (en) Glass film with specially formed edge, method for producing same, and use thereof
KR20140075769A (en) Method for cutting thin glass with special edge formation
CN103764579A (en) Cutting method for reinforced glass plate and reinforced glass plate cutting device
KR20150037816A (en) Method for cutting tempered glass plate
JP2013075802A (en) Method for cutting tempered glass plate
KR20070088588A (en) Brittle material scribing method and scribing apparatus
KR20190101404A (en) How to Remove a Board
TW201321318A (en) Glass film having a specially designed edge
JP7318651B2 (en) Glass plate manufacturing method
JP7459536B2 (en) Glass plate and method for producing the same
WO2023228617A1 (en) Method for producing glass plate
US20210179474A1 (en) Method for producing glass sheets and glass sheets produced by such method and use thereof
WO2021157305A1 (en) Method for manufacturing glass plate
KR20220137868A (en) Method for manufacturing a glass plate
CN114096490A (en) Tempered glass plate and method for producing same
WO2014175146A1 (en) Method for cutting glass plate
JP6725836B2 (en) Method for manufacturing cut glass plate and cutting device for glass base plate
US20220161369A1 (en) Apparatus for processing glass laminate substrate and processing and cutting methods using the same
WO2014175145A1 (en) Method for cutting glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811495

Country of ref document: EP

Kind code of ref document: A1