WO2023228479A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023228479A1
WO2023228479A1 PCT/JP2023/003313 JP2023003313W WO2023228479A1 WO 2023228479 A1 WO2023228479 A1 WO 2023228479A1 JP 2023003313 W JP2023003313 W JP 2023003313W WO 2023228479 A1 WO2023228479 A1 WO 2023228479A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
circuit
closing valve
ratio
Prior art date
Application number
PCT/JP2023/003313
Other languages
French (fr)
Japanese (ja)
Inventor
慎介 井川
勝則 村田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023228479A1 publication Critical patent/WO2023228479A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an air conditioning system.
  • Patent Document 1 describes an air conditioner that shuts off a solenoid valve when the suction side pressure of the compressor becomes less than a predetermined value during pump-down operation, and also stops the compressor after a predetermined time.
  • the purpose of the present disclosure is to determine refrigerant leakage from the closing valve after the end of pump-down operation.
  • a first aspect of the present disclosure includes: a heat source unit (20) having a heat source circuit (11a) to which a compressor (21) and a heat source heat exchanger (22) are connected;
  • An air conditioning system comprising a usage unit (30) having a usage circuit (11b) to which a usage heat exchanger (31) is connected,
  • a refrigerant circuit (11) that performs a refrigeration cycle is configured by connecting the heat source circuit (11a) and the utilization circuit (11b) via a closing valve (46, 47), Opening/closing of the closing valves (46, 47) based on the change in refrigerant pressure in the utilization circuit (11b) after the end of the pump-down operation in which the refrigerant in the utilization circuit (11b) is transferred to the heat source circuit (11a). Determine.
  • refrigerant leakage from the heat source circuit (11a) to the usage circuit (11b) after the end of the pump-down operation can be confirmed by determining whether the closing valves (46, 47) are open or closed.
  • a second aspect of the present disclosure includes, in the first aspect, After the end of the pump-down operation, when the refrigerant pressure at a first time point is a first pressure, and the refrigerant pressure at a second time point after the first time point is a second pressure, the second pressure is the first pressure. If it is higher than , it is determined that the closing valve (46, 47) is open.
  • a third aspect of the present disclosure includes, in the first aspect, After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a first time point is a first ratio, and the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a second time point after the first time point is a first ratio.
  • the ratio of refrigerant pressure to refrigerant temperature is a second ratio
  • if the second ratio is higher than the first ratio, it is determined that the closing valve (46, 47) is open.
  • the determination can be made with higher accuracy.
  • a fourth aspect of the present disclosure provides, in the first to third aspects, After the end of the pump-down operation, when the refrigerant pressure at a first point in time is a first pressure, and the refrigerant pressure at a second point in time after the first pressure is a second pressure, the second pressure is the first pressure. If the pressure is below, it is determined that the closing valve (46, 47) is closed.
  • a fifth aspect of the present disclosure is, in the first to third aspects, After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a first time point is a first ratio, and the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a second time point after the first time point is a first ratio.
  • the ratio of refrigerant pressure to refrigerant temperature is set as a second ratio, if the second ratio is less than or equal to the first ratio, it is determined that the closing valve (46, 47) is closed.
  • the determination can be made with higher accuracy.
  • a sixth aspect of the present disclosure in any one of the first to fifth aspects, Based on the determination of whether the closure valve (46, 47) is open or closed, the user is notified that the closure valve (46, 47) is closed or that the closure valve (46, 47) is open.
  • the user can recognize whether the closing valves (46, 47) are open or closed.
  • the closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the utilization circuit (11b) and a gas side closing valve (46) provided on the gas side,
  • the refrigerant pressure indicates the pressure between the gas side closing valve (46) and the utilization heat exchanger (31).
  • the pressure change after the end of the pump-down operation can be detected and the high pressure during the heating operation can be detected.
  • the refrigerant is a flammable refrigerant.
  • the risk of ignition due to leakage into the room can be reduced.
  • a ninth aspect of the present disclosure is: a heat source unit (20) having a heat source circuit (11a) including a compressor (21) and a heat source heat exchanger (22); A utilization unit (30) having a utilization circuit (11b) including a utilization heat exchanger (31), End of pump-down operation of the air conditioning system, which constitutes a refrigerant circuit (11) that performs a refrigeration cycle by connecting the heat source circuit (11a) and the utilization circuit (11b) via closing valves (46, 47).
  • the closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the heat source circuit (11a) and a gas side closing valve (46) provided on the gas side, initiating the pump down; closing the liquid side closing valve (47); closing the gas side closing valve (46); terminating the pump down operation; a step of determining whether to open or close the closing valve (46, 47) based on a change in the refrigerant pressure in the utilization circuit (11b) or a ratio of the refrigerant pressure to the refrigerant temperature in the utilization circuit (11b); This is a method of checking the open/closed state of the shutoff valve (46, 47) after the end of the pump-down operation.
  • FIG. 1 is a schematic piping system diagram of an air conditioning system according to an embodiment.
  • FIG. 2 is a block diagram of the air conditioning system.
  • FIG. 3 is a flowchart showing the procedure of a method for checking whether a closing valve is opened or closed.
  • FIG. 4 is a flowchart for determining whether the closing valve is open or closed.
  • FIG. 5 is a block diagram corresponding to FIG. 2 of an air conditioning system according to a modification.
  • FIG. 6 is a flowchart of a closure valve opening/closing determination according to a modification.
  • the air conditioning system (1) of this embodiment includes an outdoor unit (20), an indoor unit (30), connecting pipes (12, 13), and a control system. (100).
  • the outdoor unit (20) is an example of the heat source unit (20) of the present disclosure.
  • the indoor unit (30) is an example of the utilization unit (30) of the present disclosure.
  • the air conditioning system (1) regulates the temperature of the air in the indoor space.
  • the air conditioning system (1) switches between cooling operation, heating operation, and pump-down operation.
  • the outdoor unit (20) and the indoor unit (30) are connected to each other via connecting pipes (12, 13). This connection constitutes a refrigerant circuit (11) which is a closed circuit.
  • the refrigerant circuit (11) performs a refrigeration cycle.
  • the refrigerant circuit (11) is configured by connecting an outdoor circuit (11a) and an indoor circuit (11b) via shutoff valves (46, 47), which will be described later.
  • the outdoor circuit (11a) is provided in the outdoor unit (20).
  • the indoor circuit (11b) is provided in the indoor unit (30).
  • the outdoor circuit (11a) is an example of the heat source circuit (11a) of the present disclosure.
  • the indoor circuit (11b) is an example of the utilization circuit (11b) of the present disclosure.
  • the refrigerant circuit (11) is filled with a flammable natural refrigerant.
  • the refrigerant in this embodiment is propane (R290), which is a highly flammable natural refrigerant. Natural refrigerants have zero ozone depletion potential, low global warming potential, and have a low impact on the environment.
  • the flammable refrigerant filled in the refrigerant circuit (11) may be other than propane.
  • the flammable refrigerant filled in the refrigerant circuit (11) may be ammonia (R717), which is a natural refrigerant.
  • the flammable refrigerant filled in the refrigerant circuit (11) may be methane (R50), ethane (R170), butane (R600), or isobutane (R600a), which are highly flammable natural refrigerants.
  • the first connecting pipe (12) and the second connecting pipe (13) are examples of the connecting pipes (12, 13) of the present disclosure.
  • the first connecting pipe (12) and the second connecting pipe (13) connect the indoor unit (30) and the outdoor unit (20) to each other.
  • the first communication pipe (12) is a gas pipe
  • the second communication pipe (13) is a liquid pipe.
  • One end of the first connecting pipe (12) is connected to the gas end of the indoor circuit (11b), and the other end is connected to the gas end of the outdoor circuit (11a).
  • One end of the second communication pipe (13) is connected to the liquid end of the indoor circuit (11b), and the other end is connected to the liquid end of the outdoor circuit (11a).
  • the outdoor unit (20) is placed outdoors.
  • the outdoor unit (20) includes a gas side shutoff valve (46), a liquid side shutoff valve (47), a gas line (26), a liquid line (27), a compressor (21), an outdoor heat exchanger (22), and a four-way It has a switching valve (24), an expansion valve (23), and an outdoor fan (25).
  • the outdoor circuit (11a) includes a gas side closing valve (46), a liquid side closing valve (47), a compressor (21), an outdoor heat exchanger (22), a four-way switching valve (24), and an expansion valve ( 23).
  • the gas-side closure valve (46) and the liquid-side closure valve (47) are examples of closure valves (46, 47) of the present disclosure.
  • the gas side closing valve (46) and the liquid side closing valve (47) are manually opened and closed by an operator.
  • the gas side shutoff valve (46) is provided on the gas side of the outdoor circuit (11a). Specifically, the gas side shutoff valve (46) is connected to the gas side end of the outdoor circuit (11a). One end of the first communication pipe (12) is connected to the gas side shutoff valve (46).
  • the liquid side closing valve (47) is provided on the liquid side of the outdoor circuit (11a). The liquid side shutoff valve (47) is connected to the liquid side end of the outdoor circuit (11a).
  • the gas side shutoff valve (46) and the liquid side shutoff valve (47) are always open, except when performing a pump-down operation, which will be described later, or when removing the indoor unit (30).
  • the gas side closing valve (46) and the liquid side closing valve (47) may be collectively referred to as closing valves (46, 47).
  • the gas line (26) and liquid line (27) constitute the outdoor circuit (11a).
  • the gas line (26) is composed of a gas pipe through which the gas refrigerant flows before condensation or heat radiation in the outdoor heat exchanger (22).
  • One end of the gas line (26) is connected to the gas side end of the outdoor heat exchanger (22).
  • a gas side closing valve (46) is connected to the other end of the gas line (26).
  • a four-way switching valve (24) and a compressor (21) are connected to the gas line (26).
  • the liquid line (27) is composed of a liquid pipe through which the liquid refrigerant flows after condensation or heat dissipation in the outdoor heat exchanger (22).
  • One end of the liquid line (27) is connected to the liquid end of the outdoor heat exchanger (22).
  • a liquid side closing valve (47) is connected to the other end of the liquid line (27).
  • An expansion valve (23) is connected to the liquid line (27).
  • the compressor (21) compresses the sucked refrigerant.
  • the compressor (21) discharges compressed refrigerant.
  • the compressor (21) is a rotary compressor such as a scroll type, a swing piston type, a rolling piston type, or a screw type.
  • the compressor (21) is configured to have a variable operating frequency (rotation speed) using an inverter device.
  • Outdoor heat exchanger and outdoor fan The outdoor heat exchanger (22) is an example of the heat source heat exchanger (22) of the present disclosure.
  • the outdoor heat exchanger (22) is a fin-and-tube type air heat exchanger.
  • the outdoor heat exchanger (22) exchanges heat between the refrigerant flowing therein and outdoor air.
  • the outdoor fan (25) is placed outdoors near the outdoor heat exchanger (22).
  • the outdoor fan (25) in this example is a propeller fan.
  • the outdoor fan (25) generates an airflow that passes through the outdoor heat exchanger (22).
  • the four-way switching valve (24) switches the flow path of the refrigerant circuit (11) between the first refrigeration cycle, which is a cooling cycle, and the second refrigeration cycle, which is a heating cycle. change.
  • the four-way switching valve (24) reverses the flow of refrigerant in the refrigerant circuit (11).
  • the four-way switching valve (24) switches between a first state shown by a solid line in FIG. 1 and a second state shown by a broken line in FIG.
  • the four-way switching valve (24) in the first state communicates the discharge side of the compressor (21) with the gas side of the outdoor heat exchanger (22), and at the same time exchanges indoor heat with the suction side of the compressor (21). Communicate with the gas side of the container (31).
  • the four-way switching valve (24) in the second state allows communication between the discharge side of the compressor (21) and the gas side of the indoor heat exchanger (31), and at the same time allows communication between the suction side of the compressor (21) and the outdoor heat exchanger. Communicate with the gas side of the container (22).
  • the expansion valve (23) reduces the pressure of the refrigerant.
  • the expansion valve (23) is arranged between the gas side closing valve (46) and the outdoor heat exchanger (22) in the outdoor circuit (11a).
  • the expansion valve (23) is an electronic expansion valve whose opening degree can be adjusted.
  • the indoor unit (30) is installed in an indoor space. As shown in FIG. 1, the indoor unit (30) includes an indoor heat exchanger (31), an indoor fan (32), and a pressure sensor (50).
  • the indoor heat exchanger (31) is an example of the heat exchanger (31) used in the present disclosure.
  • the indoor heat exchanger (31) is connected to the indoor circuit (11b).
  • the indoor heat exchanger (31) exchanges heat between the refrigerant and indoor air.
  • the indoor heat exchanger (31) is a fin-and-tube type.
  • the indoor fan (32) is a cross flow fan that transports indoor air. Air conveyed by the indoor fan (32) passes through the indoor heat exchanger (31).
  • the pressure sensor (50) detects the pressure of the refrigerant in the indoor circuit (11b). Specifically, the pressure sensor (50) is provided in the refrigerant pipe between the gas side closing valve (46) and the indoor heat exchanger (31) in the indoor circuit (11b). The pressure sensor (50) detects the refrigerant pressure on the gas side of the indoor heat exchanger (31).
  • the pressure sensor (50) is, for example, a capacitance type.
  • the pressure sensor (50) includes a sensor section and a signal processing section (not shown).
  • the sensor section is a variable capacitance capacitor, and changes its capacitance depending on the refrigerant pressure.
  • the signal processing unit converts the capacitance into a voltage value and transmits (outputs) the voltage value to a control unit (100), which will be described later.
  • the air conditioning system (1) has a notification device (60).
  • the notification device (60) of this example is a speaker.
  • the notification device (60) is provided within the casing of the indoor unit (30).
  • the notification device (60) issues various alarms.
  • the air conditioning system (1) includes a control unit (100).
  • the control unit (100) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit.
  • the MCU includes a CPU (Central Processing Unit), memory, and a communication interface.
  • the memory stores various programs for the CPU to execute.
  • the control section (100) is provided on a control board (not shown) of the indoor unit (30).
  • the control unit (100) is connected to various devices of the air conditioning system (1) via wireless or wired communication lines.
  • the control unit (100) controls the operation of various devices of the air conditioning system (1) based on the received commands. For example, the control unit (100) controls various devices of the air conditioning system (1) to perform heating operation.
  • the air conditioning system (1) has a remote controller (102).
  • the remote controller (102) is connected to the control unit (100) via a wired or wireless communication line.
  • the remote controller (102) outputs a predetermined command to the control unit (100) based on the user's operation.
  • the air conditioning system (1) of this embodiment performs switching between cooling operation and heating operation.
  • the control unit (100) sets the four-way switching valve (24) to the first state.
  • the control unit (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (32), and adjusts the opening degree of the expansion valve (23).
  • the refrigerant circuit (11) performs a refrigeration cycle (cooling cycle) in which the outdoor heat exchanger (22) functions as a radiator and the indoor heat exchanger (31) functions as an evaporator.
  • control unit (100) sets the four-way switching valve (24) to the second state.
  • control unit (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (32), and adjusts the opening degree of the expansion valve (23).
  • the refrigerant circuit (11) performs a refrigeration cycle (heating cycle) in which the indoor heat exchanger (31) functions as a radiator and the outdoor heat exchanger (22) functions as an evaporator.
  • the air conditioning system (1) performs pump-down operation.
  • the pump-down operation is an operation in which refrigerant in the indoor circuit (11b) is moved to the outdoor circuit (11a).
  • the gas side shutoff valve (46) and liquid side shutoff valve (47) after the pump down operation is completed (the amount of refrigerant in the indoor circuit (11b) has become virtually zero), the outdoor circuit (11a) side is closed.
  • the flow of refrigerant from the indoor circuit (11b) to the indoor circuit (11b) is restricted, and the indoor unit (30) can be safely removed.
  • the gas side closing valve (46) or liquid side closing valve (47) is not completely closed after pump down, there is a risk of refrigerant flowing from the outdoor circuit (11a) side to the indoor circuit (11b) side. be. If the indoor unit (30) is removed in such a state, the refrigerant leaking from the gas side closing valve (46) or the liquid side closing valve (47) will flow into the indoor space. In particular, if the refrigerant is a flammable refrigerant such as a highly twisted refrigerant such as propane, there is a risk of ignition in the indoor space.
  • the refrigerant is a flammable refrigerant such as a highly twisted refrigerant such as propane, there is a risk of ignition in the indoor space.
  • the gas side shutoff valve (46) and liquid side shutoff valve (47) are required to be completely closed after pump down is completed, but it has not been possible to determine whether each shutoff valve (46, 47) is open or closed. It has not been considered.
  • the open/closed states of the gas side closing valve (46) and the liquid side closing valve (47) are checked after the end of the pump-down operation.
  • the confirmation method will be explained below with reference to FIG. 3.
  • step S1 pump down operation is started. Specifically, when a command to perform pump-down operation is transmitted from the remote controller (102) to the control unit (100) by an operator's operation, the control unit (100) that has received the command operates the four-way switching valve (24). ) is switched to the first state and the compressor (21) starts operating. Further, the control unit (100) fully opens the expansion valve (23). In this way, in the pump-down operation, cooling operation is performed.
  • step S2 while the gas side closing valve (46) and the liquid side closing valve (47) are open, only the liquid side closing valve (47) is closed based on the work of the operator. As a result, the refrigerant on the indoor circuit (11b) side is sucked by the compressor (21), and the refrigerant moves to the outdoor circuit (11a).
  • step S3 the gas side closing valve (46) is closed by the operator while the liquid side closing valve (47) is closed.
  • Step S3 is started after a certain period of time has passed since step S2. The certain period of time may be longer than the period during which it is estimated that all the refrigerant in the indoor circuit (11b) has been recovered to the outdoor circuit (11a). Note that the steps S1 to S3 are referred to as pump-down operation.
  • step S4 the pump down operation is stopped. Specifically, when a command to stop pump-down operation is transmitted from the remote controller (102) to the control unit (100) through an operator's operation, the control unit (100) that has received the command stops the compressor ( 21) Stop operation.
  • step S5 the control unit (100) determines whether to open or close the gas side closing valve (46) and the liquid side closing valve (47) based on the change in the refrigerant pressure in the indoor circuit (11b). Details of step S5 will be described later.
  • step S6 is executed.
  • step S9 is executed.
  • control unit (100) does not determine whether each of the gas side closing valve (46) and the liquid side closing valve (47) is open or closed.
  • the open state refers to the state in which the gas side shutoff valve (46) and liquid side shutoff valve (47) are closed by the operator's work in S2 and S3, but are not completely closed and remain slightly open. say.
  • step S6 the control unit (100) operates the notification device (60).
  • the notification device (60) issues a first alarm sound.
  • the first alarm sound may be a simple digital sound or may be a sound notifying that the closing valves (46, 47) are not completely closed.
  • the first alarm makes the operator aware that at least one of the gas side closing valve (46) and liquid side closing valve (47) is not completely closed, and that refrigerant is leaking into the indoor circuit (11b). can.
  • step S7 the gas side closing valve (46) is opened by the operator's work, and the liquid side closing valve (47) is further tightened (retightened).
  • step S8 the control unit (100) starts pump-down operation. Specifically, a command to perform pump-down operation is transmitted from the remote controller (102) to the control unit (100) through an operation by the operator. After step S8 ends, step S3 is executed again.
  • step S9 the control unit (100) operates the notification device (60).
  • the notification device (60) issues a second alarm sound.
  • the second alarm sound may be a simple digital sound or may be a sound notifying that the closing valve (46, 47) is closed.
  • the second alarm allows the operator to recognize that the gas side closing valve (46) and the liquid side closing valve (47) are completely closed and that the refrigerant is not leaking to the indoor circuit (11b).
  • step S5 Details of opening/closing determination of closing valve Next, details of step S5 will be explained.
  • the control unit (100) controls a first pressure P1 that is the refrigerant pressure at the first time point and a second pressure that is the refrigerant pressure at the second time point after the first time point. Based on P2, it is determined whether the closing valves (46, 47) are open or closed. The period from the first time point to the second time point is, for example, 2 to 5 minutes.
  • the first time point is when a predetermined standby period has elapsed from the end of pump down.
  • the waiting period is, for example, about 10 seconds.
  • the control unit (100) acquires the first pressure P1 when 10 seconds have elapsed (first time point) from the end of pump down (the end of step S4), and acquires the first pressure P1 when 3 minutes have elapsed since the first pressure acquisition time (the second time point). 2nd pressure P2 is acquired at the time point).
  • the control unit (100) compares the first pressure P1 and the second pressure P2, and if the second pressure P2 is higher than the first pressure P1, the closing valves (46, 47) are in an open state. It is determined that On the other hand, when the second pressure P2 is lower than the first pressure P1, the control unit (100) determines that the closing valves (46, 47) are in the closed state.
  • step S11 the control unit (100) determines whether the waiting period has elapsed. In other words, the control unit (100) determines whether the time from the end of pump down has reached the first time point. If it is determined that the first time point has come (YES in step S11), step S12 is executed. If it is determined that the first time point has not yet come (NO in step S11), step S11 is executed again.
  • step S12 the control unit (100) acquires a pressure value from the pressure sensor (50). This pressure value is the first pressure P1.
  • the first pressure P1 is stored in memory.
  • step S13 the control unit (100) determines whether the second time point has arrived. If it is determined that the second time point has come (YES in step S13), step S14 is executed. If it is determined that the second time point has not yet come (NO in step S13), step S13 is executed again.
  • step S14 the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the second pressure P2.
  • the second pressure P2 is stored in memory.
  • step S15 the control unit (100) determines whether or not the second pressure P2 is higher than the first pressure P1 with respect to the first pressure P1 obtained in step S12 and the second pressure P2 obtained in step S14. do. If it is determined that the second pressure P2 is higher than the first pressure P1 (YES in step S15), the control unit (100) determines that the closing valve (46, 47) is open (step S16). If it is determined that the second pressure P2 is equal to or lower than the first pressure P1 (NO in step S15), the control unit (100) determines that the closing valve (46, 47) is closed (step S17).
  • the closing valve is activated based on the change in the refrigerant pressure in the indoor circuit (11b) after the end of the pump-down operation that moves the refrigerant in the indoor circuit (11b) to the outdoor circuit (11a). Determine whether (46,47) is open or closed.
  • refrigerant leakage from the outdoor circuit (11a) to the indoor circuit (11b) after the end of the pump-down operation can be confirmed by determining whether the closing valves (46, 47) are opened or closed. As a result, if the shutoff valves (46, 47) are fully closed, the indoor unit (30) can be safely removed after the pump-down operation is completed, and the risk of refrigerant leaking into the indoor space can be reduced.
  • the amount of refrigerant charged in the refrigerant circuit (11) can be checked, and if the amount of refrigerant charged is insufficient, it is no longer necessary to replenish the refrigerant. can be omitted.
  • the second pressure when the second pressure is lower than or equal to the first pressure, it can be seen that the refrigerant is not returning to the indoor circuit (11b) side. Through this determination, it can be easily determined that the closing valve (46, 47) is closed.
  • closure valves (46, 47) are closed and the closure valves (46, 47) are open based on the determination of whether the closure valves (46, 47) are open or closed. Notify the user of this.
  • the notification device (60) emits a first alarm sound indicating that the closing valve (46, 47) is closed and a second alarm sound indicating that the closing valve (46, 47) is open. Emit a sound. With this, the user can easily understand whether the closing valves (46, 47) are open or closed depending on which alarm, the first alarm sound or the second alarm sound, is issued after the pump down is completed.
  • the pressure sensor (50) detects the refrigerant pressure between the gas side closing valve (46) and the indoor heat exchanger (31).
  • one pressure sensor (50) can detect not only the pressure change after the end of the pump-down operation but also the high pressure of the refrigerant during the heating operation. In this way, the pressure sensor (50) can be used both to determine whether the closing valve is open or closed after the end of the pump-down operation and to determine high pressure during normal heating operation, so the pressure sensor (50) can be used effectively.
  • the refrigerant is a flammable refrigerant.
  • a flammable refrigerant if the refrigerant leaks into the indoor circuit (11b) after the pump down is completed, there is a risk that the leaked refrigerant will catch fire in the indoor space when the indoor unit (30) is removed. Since the air conditioning system (1) of this embodiment can suppress refrigerant leakage, the risk of such ignition can be reduced.
  • the air conditioning system (1) of Modification 1 includes a temperature sensor (70) that detects the refrigerant temperature of the indoor circuit (11b). Specifically, the temperature sensor (70) is provided between the gas side closing valve (46) and the indoor heat exchanger (31) in the indoor circuit (11b). The temperature sensor (70) detects the refrigerant temperature on the gas side of the indoor heat exchanger (31).
  • the ratio of refrigerant pressure to refrigerant temperature in the indoor circuit (11b) (specifically, the gas side of the indoor heat exchanger (31)) is defined as P/T.
  • the control unit (100) of this example controls the pressure value (first pressure P1) of the pressure sensor (50) and the temperature value ( A first temperature T1) is obtained.
  • the ratio of refrigerant pressure to refrigerant temperature at this time is defined as a first ratio (P1/T1).
  • the control unit (100) of this example acquires the pressure value (second pressure P2) of the pressure sensor (50) and the temperature value (second temperature T2) of the temperature sensor (70) at the second time point.
  • the ratio of refrigerant pressure to refrigerant temperature at this time is defined as a second ratio (P2/T2).
  • step S5 of the flow of the above embodiment the control unit (100) determines which of the first ratio (P1/T1) and the second ratio (P2/T2) is higher.
  • P1/T1 the first ratio
  • P2/T2 the second ratio
  • steps other than step S5 are the same as in the above embodiment.
  • step S21 the control unit (100) determines whether the time from the end of the pump down operation has reached the first time point. If it is determined that the first time point has come (YES in step S21), step S22 is executed. If it is determined that the first time point has not yet come (NO in step S21), step S21 is executed again.
  • step S22 the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the first pressure P1.
  • the first pressure P1 is stored in memory.
  • step S23 the control unit (100) acquires a temperature value from the temperature sensor (70). This temperature value is the first temperature T1.
  • the first temperature T1 is stored in memory.
  • step S24 the control unit (100) determines whether the second time point has come. If it is determined that the second time point has come (YES in step S24), step S25 is executed. If it is determined that the second time point has not yet come (NO in step S24), step S24 is executed again.
  • step S25 the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the second pressure P2.
  • the second pressure P2 is stored in memory.
  • step S26 the control unit (100) acquires the temperature value from the temperature sensor (70). This temperature value is the second temperature T2.
  • the second temperature T2 is stored in memory.
  • step S27 the control unit (100) determines that the second ratio is higher than the first ratio with respect to the first ratio (P1/T1) and second ratio (P2/T2) obtained in steps S22 to S23 and steps S25 to S26. It is determined whether or not the value is also high. If it is determined that the second ratio is higher than the first ratio (YES in step S27), the control unit (100) determines that the closing valves (46, 47) are open (step S28). If it is determined that the second ratio is less than or equal to the first ratio (NO in step S27), the control unit (100) determines that the closing valve (46, 47) is closed (step S29).
  • opening and closing of the closing valves (46, 47) is determined based on the refrigerant pressure and refrigerant temperature.
  • the control unit (100) determines whether to open or close the closing valves (46, 47) based on the refrigerant pressure in the indoor circuit (11b) after the end of the pump-down operation. Specifically, the control unit (100) of this example determines that the closing valves (46, 47) are open when the refrigerant pressure P at a predetermined time point after the end of the pump-down operation is greater than a first predetermined value. If the value is less than or equal to the first predetermined value, it is determined that the closing valve (46, 47) is closed.
  • the control unit (100) is configured such that the ratio (P/T) of the refrigerant pressure to the refrigerant temperature at a predetermined time point after the end of the pump-down operation is a second predetermined value. If it is larger than the second predetermined value, it may be determined that the closing valve (46, 47) is open, and if it is less than or equal to the second predetermined value, it may be determined that the closing valve (46, 47) is closed.
  • the first predetermined value and the second predetermined value are arbitrary values.
  • the control unit (100) acquires the refrigerant pressure at the first time and the second time, or the ratio of the refrigerant pressure to the refrigerant temperature. Not limited.
  • the control unit (100) may acquire the refrigerant pressure at a third time point after the second time point or the ratio of the refrigerant pressure to the refrigerant temperature. In this way, by comparing the refrigerant pressure at the first, second, and third points, or the refrigerant pressure with respect to the refrigerant temperature, it is possible to more accurately determine whether the closing valve (46, 47) is open or closed. , it is possible to suppress false detection of opening and closing of the closing valves (46, 47).
  • the refrigerant pressure acquired by the control unit (100) or the ratio of refrigerant pressure to refrigerant temperature may be four or more points.
  • the closing valve (46, 47) when the second pressure P2 is higher than the first pressure P1 and the difference between P2 and P1 is equal to or greater than a predetermined value, the closing valve (46, 47) is open. It may be determined that Similarly, in the above modification, if the second ratio (P2/T2) is higher than the first ratio (P1/T1) and the difference between the second ratio and the first ratio is equal to or greater than a predetermined value, the closure It may be determined that the valves (46, 47) are open. By providing such a predetermined value, it is possible to suppress false detection of opening and closing of the closing valves (46, 47).
  • the first point in time may be the end of the pump down operation. That is, the control unit (100) may acquire the first pressure P1 or the first ratio (P1/T1) without providing a waiting period.
  • the refrigerant pressure, or the refrigerant pressure and refrigerant temperature at the first or second time point may be acquired based on the operator's operation.
  • the air conditioning system (1) does not need to have the pressure sensor (50).
  • the air conditioning system (1) has a temperature sensor (70) that detects the refrigerant temperature in the indoor circuit (11b), and the refrigerant pressure (including the first pressure and the second pressure) is determined based on the refrigerant temperature. You can ask for it.
  • the refrigerant may be a fluorocarbon-based refrigerant such as R32 or R1234yf, or a nonflammable HFC refrigerant.
  • control section (100) may be provided on a control board (not shown) of the outdoor unit (20).
  • control section (100) may be provided on both the control board of the indoor unit (30) and the control board of the outdoor unit (20), and may be configured to cooperate with each other.
  • the control board of the indoor unit (30) that receives the detected value of the pressure sensor (50) transmits it to the control board of the outdoor unit (20), and the control board of the outdoor unit (20) sends the detected value to the closing valve (46, 47). It may be configured to determine whether it is open or closed.
  • the control unit (100) may be provided on a control board of the remote controller (102).
  • the notification device (60) may be a display provided on the remote controller (102).
  • the display may indicate that the closure valves (46, 47) are not completely closed or that the closure valves (46, 47) are able to close.
  • the present disclosure is useful for air conditioning systems.
  • Air conditioning system 11 Refrigerant circuit 11a Outdoor circuit (heat source circuit) 11b Indoor circuit (circuit used) 20 Outdoor unit (heat source unit) 21 Compressor 22 Outdoor heat exchanger (heat source heat exchanger) 30 Indoor unit (Used unit) 31 Indoor heat exchanger (utilized heat exchanger) 46 Gas side closing valve (closing valve) 47 Liquid side closing valve (closing valve)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning system comprises: a heat source unit (20) that includes a heat source circuit (11a) to which a compressor (21) and a heat-source heat exchanger (22) are connected; and a usage unit (30) that includes a usage circuit (11b) to which a usage heat exchanger (31) is connected. The heat source circuit (11a) and the usage circuit (11b) are coupled via a shut-off valve (46, 47) so as to form a refrigerant circuit (11) for carrying out a refrigeration cycle, and whether the shut-off valve (46, 47) is open or closed is determined on the basis of a refrigerant pressure of the usage circuit (11b) after a pump-down operation for moving a refrigerant from the usage circuit (11b) to the heat source circuit (11a) ends.

Description

空調システムair conditioning system
 本開示は、空調システムに関するものである。 The present disclosure relates to an air conditioning system.
 特許文献1には、ポンプダウン運転において圧縮機の吸入側圧力の圧力が所定値以下になった時、電磁弁を遮断すると共に、所定時間後に圧縮機を停止する空気調和装置が記載されている。 Patent Document 1 describes an air conditioner that shuts off a solenoid valve when the suction side pressure of the compressor becomes less than a predetermined value during pump-down operation, and also stops the compressor after a predetermined time. .
特開2003-161535号公報Japanese Patent Application Publication No. 2003-161535
 ポンプダウン運転終了後に、閉鎖弁から熱源熱交換器側から利用熱交換器側に向かって冷媒が漏れることについてこれまで考慮されてこなかった。 Until now, no consideration has been given to the leakage of refrigerant from the heat source heat exchanger side to the utilization heat exchanger side from the closing valve after the end of the pump-down operation.
 本開示の目的は、ポンプダウン運転終了後の閉鎖弁からの冷媒漏れを判定することにある。 The purpose of the present disclosure is to determine refrigerant leakage from the closing valve after the end of pump-down operation.
 本開示の第1の態様は、
 圧縮機(21)及び熱源熱交換器(22)が接続される熱源回路(11a)を有する熱源ユニット(20)と、
 利用熱交換器(31)が接続される利用回路(11b)を有する利用ユニット(30)とを備える空調システムであって、
 前記熱源回路(11a)と前記利用回路(11b)とが閉鎖弁(46,47)を介して接続されることにより冷凍サイクルを行う冷媒回路(11)が構成され、
 前記利用回路(11b)の冷媒を前記熱源回路(11a)に移動させるポンプダウン運転終了後における、前記利用回路(11b)の冷媒圧力の変化に基づいて、前記閉鎖弁(46,47)の開閉を判定する。
A first aspect of the present disclosure includes:
a heat source unit (20) having a heat source circuit (11a) to which a compressor (21) and a heat source heat exchanger (22) are connected;
An air conditioning system comprising a usage unit (30) having a usage circuit (11b) to which a usage heat exchanger (31) is connected,
A refrigerant circuit (11) that performs a refrigeration cycle is configured by connecting the heat source circuit (11a) and the utilization circuit (11b) via a closing valve (46, 47),
Opening/closing of the closing valves (46, 47) based on the change in refrigerant pressure in the utilization circuit (11b) after the end of the pump-down operation in which the refrigerant in the utilization circuit (11b) is transferred to the heat source circuit (11a). Determine.
 第1の態様では、閉鎖弁(46,47)の開閉判定により、ポンプダウン運転終了後の熱源回路(11a)から利用回路(11b)への冷媒漏れを確認できる。 In the first aspect, refrigerant leakage from the heat source circuit (11a) to the usage circuit (11b) after the end of the pump-down operation can be confirmed by determining whether the closing valves (46, 47) are open or closed.
 本開示の第2の態様は、第1の態様において、
 前記ポンプダウン運転終了後において、第1時点における前記冷媒圧力を第1圧力、前記第1時点より後の第2時点における冷媒圧力を第2圧力としたとき、前記第2圧力が前記第1圧力よりも高い場合、前記閉鎖弁(46,47)が開いていると判定する。
A second aspect of the present disclosure includes, in the first aspect,
After the end of the pump-down operation, when the refrigerant pressure at a first time point is a first pressure, and the refrigerant pressure at a second time point after the first time point is a second pressure, the second pressure is the first pressure. If it is higher than , it is determined that the closing valve (46, 47) is open.
 第2の態様では、第1圧力よりも第2圧力が高い場合、利用回路(11b)側に冷媒が戻ってきていることがわかる。この判定により、閉鎖弁(46,47)が開いていることを把握できる。 In the second aspect, when the second pressure is higher than the first pressure, it can be seen that the refrigerant is returning to the utilization circuit (11b) side. Through this determination, it can be determined that the closing valve (46, 47) is open.
 本開示の第3の態様は、第1の態様において、
 前記ポンプダウン運転終了後において、第1時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第1比率、前記第1時点よりも後の第2時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第2比率としたとき、前記第2比率が前記第1比率よりも高い場合、前記閉鎖弁(46,47)が開いていると判定する。
A third aspect of the present disclosure includes, in the first aspect,
After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a first time point is a first ratio, and the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a second time point after the first time point is a first ratio. When the ratio of refrigerant pressure to refrigerant temperature is a second ratio, if the second ratio is higher than the first ratio, it is determined that the closing valve (46, 47) is open.
 第3の態様では、冷媒温度もパラメータに含めることでより精度高く判定できる。 In the third aspect, by including the refrigerant temperature in the parameters, the determination can be made with higher accuracy.
 本開示の第4の態様は、第1~第3の態様において、
 前記ポンプダウン運転終了後において、第1時点における前記冷媒圧力を第1圧力、前記第1圧力よりも後の第2時点における冷媒圧力を第2圧力としたとき、前記第2圧力が前記第1圧力以下である場合、前記閉鎖弁(46,47)が閉じていると判定する。
A fourth aspect of the present disclosure provides, in the first to third aspects,
After the end of the pump-down operation, when the refrigerant pressure at a first point in time is a first pressure, and the refrigerant pressure at a second point in time after the first pressure is a second pressure, the second pressure is the first pressure. If the pressure is below, it is determined that the closing valve (46, 47) is closed.
 第4の態様では、第2圧力が第1圧力以下である場合、利用回路(11b)側に冷媒が戻ってきていないことがわかる。この判定により、閉鎖弁(46,47)が閉じていることを把握できる。 In the fourth aspect, when the second pressure is lower than the first pressure, it can be seen that the refrigerant is not returning to the utilization circuit (11b) side. Through this determination, it can be determined that the closing valve (46, 47) is closed.
 本開示の第5の態様は、第1~第3の態様において、
 前記ポンプダウン運転終了後において、第1時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第1比率、前記第1時点よりも後の第2時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第2比率としたとき、前記第2比率が前記第1比率以下である場合、前記閉鎖弁(46,47)が閉じていると判定する。
A fifth aspect of the present disclosure is, in the first to third aspects,
After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a first time point is a first ratio, and the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a second time point after the first time point is a first ratio. When the ratio of refrigerant pressure to refrigerant temperature is set as a second ratio, if the second ratio is less than or equal to the first ratio, it is determined that the closing valve (46, 47) is closed.
 第5の態様では、冷媒温度もパラメータに含めることでより精度高く判定できる。 In the fifth aspect, by including the refrigerant temperature in the parameters, the determination can be made with higher accuracy.
 本開示の第6の態様は、第1~第5のいずれか1つの態様において、
 前記閉鎖弁(46,47)の開閉の判定に基づいて、前記閉鎖弁(46,47)が閉じていること、または前記閉鎖弁(46,47)が開いていることをユーザに報知する。
A sixth aspect of the present disclosure, in any one of the first to fifth aspects,
Based on the determination of whether the closure valve (46, 47) is open or closed, the user is notified that the closure valve (46, 47) is closed or that the closure valve (46, 47) is open.
 第6の態様では、ユーザは、閉鎖弁(46,47)の開閉について認識できる。 In the sixth aspect, the user can recognize whether the closing valves (46, 47) are open or closed.
 本開示の第7の態様は、第1~第6のいずれか1つの態様において、
 前記閉鎖弁(46,47)は、前記利用回路(11b)のうち液側に設けられる液側閉鎖弁(47)とガス側に設けられるガス側閉鎖弁(46)とを有し、
 前記冷媒圧力は、前記ガス側閉鎖弁(46)と前記利用熱交換器(31)との間における圧力を示す。
A seventh aspect of the present disclosure, in any one of the first to sixth aspects,
The closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the utilization circuit (11b) and a gas side closing valve (46) provided on the gas side,
The refrigerant pressure indicates the pressure between the gas side closing valve (46) and the utilization heat exchanger (31).
 第7の態様では、ポンプダウン運転終了後の圧力変化の検知と、暖房運転時の高圧の検知とを兼用できる。 In the seventh aspect, the pressure change after the end of the pump-down operation can be detected and the high pressure during the heating operation can be detected.
 本開示の第8の態様は、第1~第7のいずれか1つの態様において、
 前記冷媒は、可燃性冷媒である。
An eighth aspect of the present disclosure, in any one of the first to seventh aspects,
The refrigerant is a flammable refrigerant.
 第8の態様では、冷媒が可燃性である場合、室内に漏洩することによる引火のリスクを低減できる。 In the eighth aspect, if the refrigerant is flammable, the risk of ignition due to leakage into the room can be reduced.
 本開示の第9の態様は、
 圧縮機(21)及び熱源熱交換器(22)を含む熱源回路(11a)を有する熱源ユニット(20)と、
 利用熱交換器(31)を含む利用回路(11b)を有する利用ユニット(30)とを備え、
 前記熱源回路(11a)と前記利用回路(11b)とが閉鎖弁(46,47)を介して接続されることにより冷凍サイクルを行う冷媒回路(11)が構成される空調システムのポンプダウン運転終了後の前記閉鎖弁(46,47)の開閉状態を確認する方法であって、
 前記閉鎖弁(46,47)は、前記熱源回路(11a)のうち液側に設けられる液側閉鎖弁(47)とガス側に設けられるガス側閉鎖弁(46)とを有し、
 前記ポンプダウンを開始するステップと、
 前記液側閉鎖弁(47)を閉じるステップと、
 前記ガス側閉鎖弁(46)を閉じるステップと、
 前記ポンプダウン運転を終了するステップと、
 前記利用回路(11b)の前記冷媒圧力の変化、または、前記利用回路(11b)の冷媒温度に対する前記冷媒圧力の比率に基づいて、前記閉鎖弁(46,47)の開閉を判定するステップとを含む
前記ポンプダウン運転終了後の前記閉鎖弁(46,47)の開閉状態を確認する方法である。
A ninth aspect of the present disclosure is:
a heat source unit (20) having a heat source circuit (11a) including a compressor (21) and a heat source heat exchanger (22);
A utilization unit (30) having a utilization circuit (11b) including a utilization heat exchanger (31),
End of pump-down operation of the air conditioning system, which constitutes a refrigerant circuit (11) that performs a refrigeration cycle by connecting the heat source circuit (11a) and the utilization circuit (11b) via closing valves (46, 47). A method for later confirming the open/closed state of the closing valve (46, 47),
The closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the heat source circuit (11a) and a gas side closing valve (46) provided on the gas side,
initiating the pump down;
closing the liquid side closing valve (47);
closing the gas side closing valve (46);
terminating the pump down operation;
a step of determining whether to open or close the closing valve (46, 47) based on a change in the refrigerant pressure in the utilization circuit (11b) or a ratio of the refrigerant pressure to the refrigerant temperature in the utilization circuit (11b); This is a method of checking the open/closed state of the shutoff valve (46, 47) after the end of the pump-down operation.
図1は、実施形態の空調システムの概略の配管系統図である。FIG. 1 is a schematic piping system diagram of an air conditioning system according to an embodiment. 図2は、空気調和システムのブロック図である。FIG. 2 is a block diagram of the air conditioning system. 図3は、閉鎖弁の開閉を確認する方法の手順を示すフローチャートである。FIG. 3 is a flowchart showing the procedure of a method for checking whether a closing valve is opened or closed. 図4は、閉鎖弁の開閉判定のフローチャートである。FIG. 4 is a flowchart for determining whether the closing valve is open or closed. 図5は、変形例に係る空調システムの図2に相当するブロック図である。FIG. 5 is a block diagram corresponding to FIG. 2 of an air conditioning system according to a modification. 図6は、変形例に係る閉鎖弁開閉判定のフローチャートである。FIG. 6 is a flowchart of a closure valve opening/closing determination according to a modification.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。また、以下に説明する各実施形態、変形例、その他の例等の各構成は、本発明を実施可能な範囲において、組み合わせたり、一部を置換したりできる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its applications, or its uses. Furthermore, the configurations of the embodiments, modifications, and other examples described below can be combined or partially replaced within the scope of implementing the present invention.
 (1)空調システムの全体構成
 図1及び図2に示すように、本実施形態の空調システム(1)は、室外ユニット(20)、室内ユニット(30)、連絡配管(12,13)及び制御部(100)を有する。室外ユニット(20)は、本開示の熱源ユニット(20)の一例である。室内ユニット(30)は、本開示の利用ユニット(30)の一例である。空調システム(1)は、室内空間の空気の温度を調節する。空調システム(1)は、冷房運転、暖房運転及びポンプダウン運転を切り換えて行う。
(1) Overall configuration of air conditioning system As shown in FIGS. 1 and 2, the air conditioning system (1) of this embodiment includes an outdoor unit (20), an indoor unit (30), connecting pipes (12, 13), and a control system. (100). The outdoor unit (20) is an example of the heat source unit (20) of the present disclosure. The indoor unit (30) is an example of the utilization unit (30) of the present disclosure. The air conditioning system (1) regulates the temperature of the air in the indoor space. The air conditioning system (1) switches between cooling operation, heating operation, and pump-down operation.
 室外ユニット(20)と室内ユニット(30)とは、連絡配管(12,13)を介して互いに接続される。この接続により、閉回路である冷媒回路(11)が構成される。 The outdoor unit (20) and the indoor unit (30) are connected to each other via connecting pipes (12, 13). This connection constitutes a refrigerant circuit (11) which is a closed circuit.
 (2-1)冷媒回路
 冷媒回路(11)は、冷凍サイクルを行う。冷媒回路(11)は、室外回路(11a)と室内回路(11b)とが、後述する閉鎖弁(46,47)を介して接続されることにより構成される。室外回路(11a)は、室外ユニット(20)に設けられる。室内回路(11b)は、室内ユニット(30)に設けられる。室外回路(11a)は、本開示の熱源回路(11a)の一例である。室内回路(11b)は、本開示の利用回路(11b)の一例である。
(2-1) Refrigerant circuit The refrigerant circuit (11) performs a refrigeration cycle. The refrigerant circuit (11) is configured by connecting an outdoor circuit (11a) and an indoor circuit (11b) via shutoff valves (46, 47), which will be described later. The outdoor circuit (11a) is provided in the outdoor unit (20). The indoor circuit (11b) is provided in the indoor unit (30). The outdoor circuit (11a) is an example of the heat source circuit (11a) of the present disclosure. The indoor circuit (11b) is an example of the utilization circuit (11b) of the present disclosure.
 冷媒回路(11)には、可燃性の自然冷媒が充填されている。本実施形態の冷媒は、強燃性の自然冷媒であるプロパン(R290)である。自然冷媒は、オゾン破壊係数がゼロであり、地球温暖化係数も低く、環境への負荷が少ない冷媒である。 The refrigerant circuit (11) is filled with a flammable natural refrigerant. The refrigerant in this embodiment is propane (R290), which is a highly flammable natural refrigerant. Natural refrigerants have zero ozone depletion potential, low global warming potential, and have a low impact on the environment.
 冷媒回路(11)に充填される可燃性の冷媒は、プロパン以外でもよい。例えば、冷媒回路(11)に充填される可燃性の冷媒は、自然冷媒であるアンモニア(R717)でもよい。また、冷媒回路(11)に充填される可燃性の冷媒として、強燃性の自然冷媒であるメタン(R50)、エタン(R170)、ブタン(R600)、イソブタン(R600a)でもよい。 The flammable refrigerant filled in the refrigerant circuit (11) may be other than propane. For example, the flammable refrigerant filled in the refrigerant circuit (11) may be ammonia (R717), which is a natural refrigerant. Furthermore, the flammable refrigerant filled in the refrigerant circuit (11) may be methane (R50), ethane (R170), butane (R600), or isobutane (R600a), which are highly flammable natural refrigerants.
 (2-2)第1連絡配管及び第2連絡配管
 第1連絡配管(12)及び第2連絡配管(13)は、本開示の連絡配管(12,13)の一例である。第1連絡配管(12)及び第2連絡配管(13)は、室内ユニット(30)及び室外ユニット(20)を互いに接続する。第1連絡配管(12)はガス管であり、第2連絡配管(13)は液管である。
(2-2) First connecting pipe and second connecting pipe The first connecting pipe (12) and the second connecting pipe (13) are examples of the connecting pipes (12, 13) of the present disclosure. The first connecting pipe (12) and the second connecting pipe (13) connect the indoor unit (30) and the outdoor unit (20) to each other. The first communication pipe (12) is a gas pipe, and the second communication pipe (13) is a liquid pipe.
 第1連絡配管(12)は、その一端が室内回路(11b)のガス端部に接続し、その他端が室外回路(11a)のガス端部に接続する。第2連絡配管(13)は、その一端が室内回路(11b)の液端部に接続し、その他端が室外回路(11a)の液端部に接続する。 One end of the first connecting pipe (12) is connected to the gas end of the indoor circuit (11b), and the other end is connected to the gas end of the outdoor circuit (11a). One end of the second communication pipe (13) is connected to the liquid end of the indoor circuit (11b), and the other end is connected to the liquid end of the outdoor circuit (11a).
 (2-3)室外ユニット
 室外ユニット(20)は、室外に配置される。室外ユニット(20)は、ガス側閉鎖弁(46)、液側閉鎖弁(47)、ガスライン(26)、液ライン(27)、圧縮機(21)、室外熱交換器(22)、四方切換弁(24)、膨張弁(23)、及び室外ファン(25)を有する。具体的に、室外回路(11a)が、ガス側閉鎖弁(46)、液側閉鎖弁(47)圧縮機(21)、室外熱交換器(22)、四方切換弁(24)及び膨張弁(23)を有する。
(2-3) Outdoor unit The outdoor unit (20) is placed outdoors. The outdoor unit (20) includes a gas side shutoff valve (46), a liquid side shutoff valve (47), a gas line (26), a liquid line (27), a compressor (21), an outdoor heat exchanger (22), and a four-way It has a switching valve (24), an expansion valve (23), and an outdoor fan (25). Specifically, the outdoor circuit (11a) includes a gas side closing valve (46), a liquid side closing valve (47), a compressor (21), an outdoor heat exchanger (22), a four-way switching valve (24), and an expansion valve ( 23).
 (2-3-1)ガス側閉鎖弁及び液側閉鎖弁
 ガス側閉鎖弁(46)及び液側閉鎖弁(47)は、本開示の閉鎖弁(46,47)の一例である。ガス側閉鎖弁(46)及び液側閉鎖弁(47)は、作業者によって手動で開閉操作を行う。ガス側閉鎖弁(46)は、室外回路(11a)のうちガス側に設けられる。具体的に、ガス側閉鎖弁(46)は、室外回路(11a)のガス側の端部に接続される。ガス側閉鎖弁(46)には、第1連絡配管(12)の一端が接続する。液側閉鎖弁(47)は、室外回路(11a)のうち液側に設けられる。液側閉鎖弁(47)は、室外回路(11a)の液側の端部に接続される。液側閉鎖弁(47)には、第2連絡配管(13)の一端が接続する。ガス側閉鎖弁(46)及び液側閉鎖弁(47)は、後述のポンプダウン運転を行う場合や室内ユニット(30)を取り外す場合を除いて、常に開放されている。以下の説明では、ガス側閉鎖弁(46)及び液側閉鎖弁(47)をまとめて閉鎖弁(46,47)と呼ぶ場合がある。
(2-3-1) Gas-side closure valve and liquid-side closure valve The gas-side closure valve (46) and the liquid-side closure valve (47) are examples of closure valves (46, 47) of the present disclosure. The gas side closing valve (46) and the liquid side closing valve (47) are manually opened and closed by an operator. The gas side shutoff valve (46) is provided on the gas side of the outdoor circuit (11a). Specifically, the gas side shutoff valve (46) is connected to the gas side end of the outdoor circuit (11a). One end of the first communication pipe (12) is connected to the gas side shutoff valve (46). The liquid side closing valve (47) is provided on the liquid side of the outdoor circuit (11a). The liquid side shutoff valve (47) is connected to the liquid side end of the outdoor circuit (11a). One end of the second communication pipe (13) is connected to the liquid side closing valve (47). The gas side shutoff valve (46) and the liquid side shutoff valve (47) are always open, except when performing a pump-down operation, which will be described later, or when removing the indoor unit (30). In the following description, the gas side closing valve (46) and the liquid side closing valve (47) may be collectively referred to as closing valves (46, 47).
 (2-3-2)ガスライン及び液ライン
 ガスライン(26)及び液ライン(27)は、室外回路(11a)を構成する。ガスライン(26)は、室外熱交換器(22)における凝縮または放熱前のガス冷媒が流れるガス管で構成される。ガスライン(26)の一端は、室外熱交換器(22)のガス側の端部に繋がる。ガスライン(26)の他端には、ガス側閉鎖弁(46)が接続される。ガスライン(26)には、四方切換弁(24)と圧縮機(21)とが接続される。
(2-3-2) Gas line and liquid line The gas line (26) and liquid line (27) constitute the outdoor circuit (11a). The gas line (26) is composed of a gas pipe through which the gas refrigerant flows before condensation or heat radiation in the outdoor heat exchanger (22). One end of the gas line (26) is connected to the gas side end of the outdoor heat exchanger (22). A gas side closing valve (46) is connected to the other end of the gas line (26). A four-way switching valve (24) and a compressor (21) are connected to the gas line (26).
 液ライン(27)は、室外熱交換器(22)における凝縮または放熱後の液冷媒が流れる液管で構成される。液ライン(27)の一端は、室外熱交換器(22)の液端部に繋がる。液ライン(27)の他端には、液側閉鎖弁(47)が接続される。液ライン(27)には、膨張弁(23)が接続される。 The liquid line (27) is composed of a liquid pipe through which the liquid refrigerant flows after condensation or heat dissipation in the outdoor heat exchanger (22). One end of the liquid line (27) is connected to the liquid end of the outdoor heat exchanger (22). A liquid side closing valve (47) is connected to the other end of the liquid line (27). An expansion valve (23) is connected to the liquid line (27).
 (2-3-3)圧縮機
 圧縮機(21)は、吸入した冷媒を圧縮する。圧縮機(21)は、圧縮した冷媒を吐出する。圧縮機(21)は、スクロール式、揺動ピストン式、ローリングピストン式、スクリュー式などの回転式圧縮機である。圧縮機(21)は、インバータ装置により運転周波数(回転数)が可変に構成される。
(2-3-3) Compressor The compressor (21) compresses the sucked refrigerant. The compressor (21) discharges compressed refrigerant. The compressor (21) is a rotary compressor such as a scroll type, a swing piston type, a rolling piston type, or a screw type. The compressor (21) is configured to have a variable operating frequency (rotation speed) using an inverter device.
 (2-3-4)室外熱交換器及び室外ファン
 室外熱交換器(22)は、本開示の熱源熱交換器(22)の一例である。室外熱交換器(22)は、フィンアンドチューブ式の空気熱交換器である。室外熱交換器(22)は、その内部を流れる冷媒と室外空気とを熱交換させる。
(2-3-4) Outdoor heat exchanger and outdoor fan The outdoor heat exchanger (22) is an example of the heat source heat exchanger (22) of the present disclosure. The outdoor heat exchanger (22) is a fin-and-tube type air heat exchanger. The outdoor heat exchanger (22) exchanges heat between the refrigerant flowing therein and outdoor air.
 室外ファン(25)は、室外において室外熱交換器(22)の近傍に配置される。本例の室外ファン(25)は、プロペラファンである。室外ファン(25)は、室外熱交換器(22)を通過する空気流を発生させる。 The outdoor fan (25) is placed outdoors near the outdoor heat exchanger (22). The outdoor fan (25) in this example is a propeller fan. The outdoor fan (25) generates an airflow that passes through the outdoor heat exchanger (22).
 (2-3-5)四方切換弁
 四方切換弁(24)は、冷房サイクルである第1冷凍サイクルと、暖房サイクルである第2冷凍サイクルとを切り換えるように、冷媒回路(11)の流路を変更する。四方切換弁(24)は、冷媒回路(11)の冷媒の流れを逆転させる。四方切換弁(24)は、図1の実線で示す第1状態と、図1の破線で示す第2状態とに切り換わる。第1状態の四方切換弁(24)は、圧縮機(21)の吐出側と室外熱交換器(22)のガス側とを連通させると同時に、圧縮機(21)の吸入側と室内熱交換器(31)のガス側とを連通させる。第2状態の四方切換弁(24)は、圧縮機(21)の吐出側と室内熱交換器(31)のガス側とを連通させると同時に、圧縮機(21)の吸入側と室外熱交換器(22)のガス側とを連通させる。
(2-3-5) Four-way switching valve The four-way switching valve (24) switches the flow path of the refrigerant circuit (11) between the first refrigeration cycle, which is a cooling cycle, and the second refrigeration cycle, which is a heating cycle. change. The four-way switching valve (24) reverses the flow of refrigerant in the refrigerant circuit (11). The four-way switching valve (24) switches between a first state shown by a solid line in FIG. 1 and a second state shown by a broken line in FIG. The four-way switching valve (24) in the first state communicates the discharge side of the compressor (21) with the gas side of the outdoor heat exchanger (22), and at the same time exchanges indoor heat with the suction side of the compressor (21). Communicate with the gas side of the container (31). The four-way switching valve (24) in the second state allows communication between the discharge side of the compressor (21) and the gas side of the indoor heat exchanger (31), and at the same time allows communication between the suction side of the compressor (21) and the outdoor heat exchanger. Communicate with the gas side of the container (22).
 (2-3-6)膨張弁
 膨張弁(23)は、冷媒を減圧する。膨張弁(23)は、室外回路(11a)において、ガス側閉鎖弁(46)と室外熱交換器(22)の間に配置される。膨張弁(23)は、開度が調節可能な電子膨張弁である。
(2-3-6) Expansion valve The expansion valve (23) reduces the pressure of the refrigerant. The expansion valve (23) is arranged between the gas side closing valve (46) and the outdoor heat exchanger (22) in the outdoor circuit (11a). The expansion valve (23) is an electronic expansion valve whose opening degree can be adjusted.
 (2-4)室内ユニット
 室内ユニット(30)は、室内空間に設置される。図1に示すように、室内ユニット(30)は、室内熱交換器(31)、室内ファン(32)及び圧力センサ(50)を備える。
(2-4) Indoor unit The indoor unit (30) is installed in an indoor space. As shown in FIG. 1, the indoor unit (30) includes an indoor heat exchanger (31), an indoor fan (32), and a pressure sensor (50).
 (2-4-1)室内熱交換器及び室内ファン
 室内熱交換器(31)は、本開示の利用熱交換器(31)の一例である。室内熱交換器(31)は、室内回路(11b)に接続される。
(2-4-1) Indoor heat exchanger and indoor fan The indoor heat exchanger (31) is an example of the heat exchanger (31) used in the present disclosure. The indoor heat exchanger (31) is connected to the indoor circuit (11b).
 室内熱交換器(31)は、冷媒と室内空気とを熱交換させる。室内熱交換器(31)はフィンアンドチューブ式である。室内ファン(32)は、室内空気を搬送するクロスフローファンである。室内ファン(32)により搬送される空気は、室内熱交換器(31)を通過する。 The indoor heat exchanger (31) exchanges heat between the refrigerant and indoor air. The indoor heat exchanger (31) is a fin-and-tube type. The indoor fan (32) is a cross flow fan that transports indoor air. Air conveyed by the indoor fan (32) passes through the indoor heat exchanger (31).
 (2-4-2)圧力センサ
 圧力センサ(50)は、室内回路(11b)の冷媒の圧力を検出する。具体的に、圧力センサ(50)は、室内回路(11b)のうち、ガス側閉鎖弁(46)と室内熱交換器(31)との間の冷媒配管に設けられる。圧力センサ(50)は、室内熱交換器(31)のガス側の冷媒圧力を検出する。
(2-4-2) Pressure sensor The pressure sensor (50) detects the pressure of the refrigerant in the indoor circuit (11b). Specifically, the pressure sensor (50) is provided in the refrigerant pipe between the gas side closing valve (46) and the indoor heat exchanger (31) in the indoor circuit (11b). The pressure sensor (50) detects the refrigerant pressure on the gas side of the indoor heat exchanger (31).
 圧力センサ(50)は、例えば静電容量式である。圧力センサ(50)は、図示しないセンサ部と信号処理部とから構成される。センサ部は、可変容量コンデンサであり、冷媒圧力に応じて静電容量を変化させる。信号処理部は、静電容量を電圧値に変換して、後述する制御部(100)に送信(出力)する。 The pressure sensor (50) is, for example, a capacitance type. The pressure sensor (50) includes a sensor section and a signal processing section (not shown). The sensor section is a variable capacitance capacitor, and changes its capacitance depending on the refrigerant pressure. The signal processing unit converts the capacitance into a voltage value and transmits (outputs) the voltage value to a control unit (100), which will be described later.
 (2-4-3)報知装置
 空調システム(1)は、報知装置(60)を有する。本例の報知装置(60)は、スピーカである。報知装置(60)は、室内ユニット(30)のケーシング内に設けられる。報知装置(60)は、各種のアラームを発報する。
(2-4-3) Notification device The air conditioning system (1) has a notification device (60). The notification device (60) of this example is a speaker. The notification device (60) is provided within the casing of the indoor unit (30). The notification device (60) issues various alarms.
 (3)制御部
 空調システム(1)は、制御部(100)を有する。制御部(100)は、MCU(Micro Control Unit,マイクロコントローラユニット)、電気回路、電子回路を含む。MCUは、CPU(Central Processing Unit,中央演算処理装置)、メモリ、通信インターフェースを含む。メモリには、CPUが実行するための各種のプログラムが記憶されている。
制御部(100)は、室内ユニット(30)の制御基板(図示省略)に設けられる。制御部(100)は、空調システム(1)の各種の機器と無線または有線の通信線により接続される。制御部(100)は、受信した指令に基づいて、空調システム(1)の各種の機器の運転を制御する。例えば、制御部(100)は、暖房運転を行うように空調システム(1)の各種の機器を制御する。
(3) Control unit The air conditioning system (1) includes a control unit (100). The control unit (100) includes an MCU (Micro Control Unit), an electric circuit, and an electronic circuit. The MCU includes a CPU (Central Processing Unit), memory, and a communication interface. The memory stores various programs for the CPU to execute.
The control section (100) is provided on a control board (not shown) of the indoor unit (30). The control unit (100) is connected to various devices of the air conditioning system (1) via wireless or wired communication lines. The control unit (100) controls the operation of various devices of the air conditioning system (1) based on the received commands. For example, the control unit (100) controls various devices of the air conditioning system (1) to perform heating operation.
 (4)リモートコントローラ
 空調システム(1)は、リモートコントローラ(102)を有する。リモートコントローラ(102)は、有線または無線の通信線により制御部(100)に接続される。リモートコントローラ(102)は、ユーザの操作に基づいて、制御部(100)に所定の指令を出力する。
(4) Remote controller The air conditioning system (1) has a remote controller (102). The remote controller (102) is connected to the control unit (100) via a wired or wireless communication line. The remote controller (102) outputs a predetermined command to the control unit (100) based on the user's operation.
 (5)空調システムの運転動作
 本実施形態の空調システム(1)は、冷房運転と暖房運転とを切り換えて行う。
(5) Operation of air conditioning system The air conditioning system (1) of this embodiment performs switching between cooling operation and heating operation.
 (5-1)冷房運転
 冷房運転では、制御部(100)は四方切換弁(24)を第1状態とする。冷房運転では、制御部(100)は、圧縮機(21)、室外ファン(25)、及び室内ファン(32)を運転し、膨張弁(23)の開度を調整する。
(5-1) Cooling operation In the cooling operation, the control unit (100) sets the four-way switching valve (24) to the first state. In the cooling operation, the control unit (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (32), and adjusts the opening degree of the expansion valve (23).
 冷房運転中の冷媒回路(11)は、室外熱交換器(22)が放熱器として機能し、室内熱交換器(31)が蒸発器として機能する冷凍サイクル(冷房サイクル)を行う。 During cooling operation, the refrigerant circuit (11) performs a refrigeration cycle (cooling cycle) in which the outdoor heat exchanger (22) functions as a radiator and the indoor heat exchanger (31) functions as an evaporator.
 (5-2)暖房運転
 暖房運転では、制御部(100)が四方切換弁(24)を第2状態とする。暖房運転では、制御部(100)は、圧縮機(21)、室外ファン(25)、及び室内ファン(32)が運転し、膨張弁(23)の開度が調整される。
(5-2) Heating operation In the heating operation, the control unit (100) sets the four-way switching valve (24) to the second state. In the heating operation, the control unit (100) operates the compressor (21), the outdoor fan (25), and the indoor fan (32), and adjusts the opening degree of the expansion valve (23).
 暖房運転中の冷媒回路(11)は、室内熱交換器(31)が放熱器として機能し、室外熱交換器(22)が蒸発器として機能する冷凍サイクル(暖房サイクル)を行う。 During heating operation, the refrigerant circuit (11) performs a refrigeration cycle (heating cycle) in which the indoor heat exchanger (31) functions as a radiator and the outdoor heat exchanger (22) functions as an evaporator.
 (6)ポンプダウン運転終了後における課題
 空調システム(1)は、ポンプダウン運転を行う。ポンプダウン運転は、室内回路(11b)中の冷媒を室外回路(11a)に移動させる運転である。ポンプダウン運転終了(室内回路(11b)中の冷媒量が実質的にゼロになった)後にガス側閉鎖弁(46)及び液側閉鎖弁(47)を閉じることで、室外回路(11a)側から室内回路(11b)側への冷媒の流入が制限され、安全に室内ユニット(30)を取り外すことができる。
(6) Issues after completion of pump-down operation The air conditioning system (1) performs pump-down operation. The pump-down operation is an operation in which refrigerant in the indoor circuit (11b) is moved to the outdoor circuit (11a). By closing the gas side shutoff valve (46) and liquid side shutoff valve (47) after the pump down operation is completed (the amount of refrigerant in the indoor circuit (11b) has become virtually zero), the outdoor circuit (11a) side is closed. The flow of refrigerant from the indoor circuit (11b) to the indoor circuit (11b) is restricted, and the indoor unit (30) can be safely removed.
 しかし、ポンプダウン終了後にガス側閉鎖弁(46)又は液側閉鎖弁(47)が完全に閉じ切っていないと、室外回路(11a)側から室内回路(11b)側へ冷媒が流入するおそれがある。そのような状態で、室内ユニット(30)を取り外すと、ガス側閉鎖弁(46)または液側閉鎖弁(47)から漏れた冷媒が室内空間に流入してしまう。特に、プロパン等の強撚性冷媒のような可燃性冷媒であると室内空間で引火するおそれがある。 However, if the gas side closing valve (46) or liquid side closing valve (47) is not completely closed after pump down, there is a risk of refrigerant flowing from the outdoor circuit (11a) side to the indoor circuit (11b) side. be. If the indoor unit (30) is removed in such a state, the refrigerant leaking from the gas side closing valve (46) or the liquid side closing valve (47) will flow into the indoor space. In particular, if the refrigerant is a flammable refrigerant such as a highly twisted refrigerant such as propane, there is a risk of ignition in the indoor space.
 従って、ポンプダウン終了後にガス側閉鎖弁(46)及び液側閉鎖弁(47)は完全に閉じていることが求められるが、各閉鎖弁(46,47)の開閉を判定することはこれまで検討されてこなかった。 Therefore, the gas side shutoff valve (46) and liquid side shutoff valve (47) are required to be completely closed after pump down is completed, but it has not been possible to determine whether each shutoff valve (46, 47) is open or closed. It has not been considered.
 上記課題に対して、本実施形態の空調システム(1)では、ポンプダウン運転終了後のガス側閉鎖弁(46)及び液側閉鎖弁(47)の開閉状態の確認を行う。以下、該確認方法について図3を参照しながら説明する。 To address the above problem, in the air conditioning system (1) of the present embodiment, the open/closed states of the gas side closing valve (46) and the liquid side closing valve (47) are checked after the end of the pump-down operation. The confirmation method will be explained below with reference to FIG. 3.
 ステップS1では、ポンプダウン運転が開始される。具体的に、作業者の操作によりリモートコントローラ(102)からポンプダウン運転を行う指令が制御部(100)に送信されると、該指令を受信した制御部(100)は、四方切換弁(24)を第1状態に切り換えると共に圧縮機(21)の運転を開始する。さらに、制御部(100)は、膨張弁(23)を全開にする。このようにポンプダウン運転では、冷房運転が行われる。 In step S1, pump down operation is started. Specifically, when a command to perform pump-down operation is transmitted from the remote controller (102) to the control unit (100) by an operator's operation, the control unit (100) that has received the command operates the four-way switching valve (24). ) is switched to the first state and the compressor (21) starts operating. Further, the control unit (100) fully opens the expansion valve (23). In this way, in the pump-down operation, cooling operation is performed.
 ステップS2では、ガス側閉鎖弁(46)及び液側閉鎖弁(47)が開放された状態で、作業者の作業に基づいて液側閉鎖弁(47)のみが閉鎖される。このことで、室内回路(11b)側の冷媒が圧縮機(21)によって吸引され、該冷媒が室外回路(11a)に移動する。 In step S2, while the gas side closing valve (46) and the liquid side closing valve (47) are open, only the liquid side closing valve (47) is closed based on the work of the operator. As a result, the refrigerant on the indoor circuit (11b) side is sucked by the compressor (21), and the refrigerant moves to the outdoor circuit (11a).
 ステップS3では、液側閉鎖弁(47)が閉鎖された状態で、作業者によってガス側閉鎖弁(46)が閉鎖される。ステップS3はステップS2から一定時間が経過した後に開始される。一定時間は、室内回路(11b)中の冷媒がすべて室外回路(11a)に回収されたと推測される期間以上であればよい。なお、ステップS1~S3までの工程をポンプダウン運転とする。 In step S3, the gas side closing valve (46) is closed by the operator while the liquid side closing valve (47) is closed. Step S3 is started after a certain period of time has passed since step S2. The certain period of time may be longer than the period during which it is estimated that all the refrigerant in the indoor circuit (11b) has been recovered to the outdoor circuit (11a). Note that the steps S1 to S3 are referred to as pump-down operation.
 ステップS4では、ポンプダウン運転が停止する。具体的に、作業者の操作により、リモートコントローラ(102)からポンプダウン運転を停止する指令が制御部(100)に送信されると、該指令を受信した制御部(100)は、圧縮機(21)の運転を停止する。 In step S4, the pump down operation is stopped. Specifically, when a command to stop pump-down operation is transmitted from the remote controller (102) to the control unit (100) through an operator's operation, the control unit (100) that has received the command stops the compressor ( 21) Stop operation.
 ステップS5では、制御部(100)は、室内回路(11b)の冷媒圧力の変化に基づいて、ガス側閉鎖弁(46)及び液側閉鎖弁(47)の開閉を判定する。ステップS5の詳細は後述する。ガス側閉鎖弁(46)及び液側閉鎖弁(47)の少なくとも一方が開状態であると判定されたとき(ステップS5のYES)、ステップS6が実行される。ガス側閉鎖弁(46)及び液側閉鎖弁(47)が閉状態であると判定されたとき(ステップS5のNO)、ステップS9が実行される。 In step S5, the control unit (100) determines whether to open or close the gas side closing valve (46) and the liquid side closing valve (47) based on the change in the refrigerant pressure in the indoor circuit (11b). Details of step S5 will be described later. When it is determined that at least one of the gas side closing valve (46) and the liquid side closing valve (47) is in the open state (YES in step S5), step S6 is executed. When it is determined that the gas side closing valve (46) and the liquid side closing valve (47) are in the closed state (NO in step S5), step S9 is executed.
 ここで制御部(100)は、ガス側閉鎖弁(46)及び液側閉鎖弁(47)のそれぞれについて開閉を判定しない。開状態と判定されたとき、ガス側閉鎖弁(46)及び液側閉鎖弁(47)の少なくとも一方が開状態となっている。また、開状態は、S2及びS3において、作業者の作業によりガス側閉鎖弁(46)及び液側閉鎖弁(47)が閉鎖されても、完全に閉鎖しきれずにわずかに開いている状態をいう。 Here, the control unit (100) does not determine whether each of the gas side closing valve (46) and the liquid side closing valve (47) is open or closed. When it is determined that the valve is in the open state, at least one of the gas-side closing valve (46) and the liquid-side closing valve (47) is in the open state. In addition, the open state refers to the state in which the gas side shutoff valve (46) and liquid side shutoff valve (47) are closed by the operator's work in S2 and S3, but are not completely closed and remain slightly open. say.
 ステップS6では、制御部(100)は、報知装置(60)を作動させる。報知装置(60)は、第1アラーム音を発報する。第1アラーム音は、単なるデジタル音でもよいし、完全に閉鎖弁(46,47)が閉鎖しきれていない旨を報知する音声であってもよい。第1アラームにより、作業者はガス側閉鎖弁(46)及び液側閉鎖弁(47)の少なくとも一方が完全に閉鎖されておらず、冷媒が室内回路(11b)側に漏れていることを認識できる。 In step S6, the control unit (100) operates the notification device (60). The notification device (60) issues a first alarm sound. The first alarm sound may be a simple digital sound or may be a sound notifying that the closing valves (46, 47) are not completely closed. The first alarm makes the operator aware that at least one of the gas side closing valve (46) and liquid side closing valve (47) is not completely closed, and that refrigerant is leaking into the indoor circuit (11b). can.
 ステップS7では、作業者の作業によりガス側閉鎖弁(46)が開放され、かつ、液側閉鎖弁(47)がさらに締められる(増し締めされる)。 In step S7, the gas side closing valve (46) is opened by the operator's work, and the liquid side closing valve (47) is further tightened (retightened).
 ステップS8では、制御部(100)は、ポンプダウン運転を開始する。具体的に、作業者の操作によりリモートコントローラ(102)からポンプダウン運転を行う指令が制御部(100)に送信される。ステップS8の終了後、再びステップS3が実行される。 In step S8, the control unit (100) starts pump-down operation. Specifically, a command to perform pump-down operation is transmitted from the remote controller (102) to the control unit (100) through an operation by the operator. After step S8 ends, step S3 is executed again.
 ステップS9では、制御部(100)は、報知装置(60)を作動させる。報知装置(60)は、第2アラーム音を発報する。第2アラーム音は、単なるデジタル音でもよいし、閉鎖弁(46,47)が閉鎖されたことを報知する音声であってもよい。第2アラームにより、作業者はガス側閉鎖弁(46)及び液側閉鎖弁(47)が完全に閉鎖されて、冷媒が室内回路(11b)側に漏れていないことを認識できる。 In step S9, the control unit (100) operates the notification device (60). The notification device (60) issues a second alarm sound. The second alarm sound may be a simple digital sound or may be a sound notifying that the closing valve (46, 47) is closed. The second alarm allows the operator to recognize that the gas side closing valve (46) and the liquid side closing valve (47) are completely closed and that the refrigerant is not leaking to the indoor circuit (11b).
 (7)閉鎖弁の開閉判定の詳細
 次にステップS5の詳細について説明する。
(7) Details of opening/closing determination of closing valve Next, details of step S5 will be explained.
 制御部(100)は、ポンプダウン運転終了(ステップS4終了)後において、第1時点における冷媒圧力である第1圧力P1と、第1時点より後の第2時点における冷媒圧力である第2圧力P2とに基づいて、閉鎖弁(46,47)の開閉を判定する。第1時点から第2時点までの期間は、例えば2~5分間である。 After the end of the pump down operation (end of step S4), the control unit (100) controls a first pressure P1 that is the refrigerant pressure at the first time point and a second pressure that is the refrigerant pressure at the second time point after the first time point. Based on P2, it is determined whether the closing valves (46, 47) are open or closed. The period from the first time point to the second time point is, for example, 2 to 5 minutes.
 本実施形態では、第1時点は、ポンプダウン終了時から所定の待機期間の経過時である。待機期間は、例えば約10秒間である。制御部(100)は、ポンプダウン終了時(ステップS4終了時)から10秒経過時(第1時点)に、第1圧力P1を取得し、第1圧力取得時から3分間経過時(第2時点)に第2圧力P2を取得する。 In this embodiment, the first time point is when a predetermined standby period has elapsed from the end of pump down. The waiting period is, for example, about 10 seconds. The control unit (100) acquires the first pressure P1 when 10 seconds have elapsed (first time point) from the end of pump down (the end of step S4), and acquires the first pressure P1 when 3 minutes have elapsed since the first pressure acquisition time (the second time point). 2nd pressure P2 is acquired at the time point).
 制御部(100)は、第1圧力P1と第2圧力P2とを比較して、第1圧力P1よりも第2圧力P2の方が高い場合、閉鎖弁(46,47)は開状態であると判定する。一方、第2圧力P2が第1圧力P1以下である場合、制御部(100)は、閉鎖弁(46,47)は閉状態であると判定する。以上の一連のフローについて、図4を参照しながら説明する。 The control unit (100) compares the first pressure P1 and the second pressure P2, and if the second pressure P2 is higher than the first pressure P1, the closing valves (46, 47) are in an open state. It is determined that On the other hand, when the second pressure P2 is lower than the first pressure P1, the control unit (100) determines that the closing valves (46, 47) are in the closed state. The above series of flows will be explained with reference to FIG. 4.
 ステップS11では、制御部(100)は、待機期間が経過したか判定する。言い換えると、制御部(100)は、ポンプダウン終了時からの時間が第1時点となったかを判定する。第1時点になったと判定された場合(ステップS11のYES)、ステップS12が実行される。第1時点になっていないと判定された場合(ステップS11のNO)、再びステップS11が実行される。 In step S11, the control unit (100) determines whether the waiting period has elapsed. In other words, the control unit (100) determines whether the time from the end of pump down has reached the first time point. If it is determined that the first time point has come (YES in step S11), step S12 is executed. If it is determined that the first time point has not yet come (NO in step S11), step S11 is executed again.
 ステップS12では、制御部(100)は、圧力センサ(50)から圧力値を取得する。この圧力値は第1圧力P1である。第1圧力P1はメモリに保存される。 In step S12, the control unit (100) acquires a pressure value from the pressure sensor (50). This pressure value is the first pressure P1. The first pressure P1 is stored in memory.
 ステップS13では、制御部(100)は、第2時点になったかを判定する。第2時点になったと判定された場合(ステップS13のYES)、ステップS14が実行される。第2時点となっていないと判定された場合(ステップS13のNO)、再びステップS13が実行される。 In step S13, the control unit (100) determines whether the second time point has arrived. If it is determined that the second time point has come (YES in step S13), step S14 is executed. If it is determined that the second time point has not yet come (NO in step S13), step S13 is executed again.
 ステップS14では、制御部(100)は、圧力センサ(50)から圧力値を取得する。この圧力値は第2圧力P2である。第2圧力P2はメモリに保存される。 In step S14, the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the second pressure P2. The second pressure P2 is stored in memory.
 ステップS15では、制御部(100)は、ステップS12で取得した第1圧力P1、及びステップS14で取得した第2圧力P2について、第2圧力P2が第1圧力P1よりも高いか否かを判定する。第2圧力P2が第1圧力P1よりも高いと判定された場合(ステップS15のYES)、制御部(100)は、閉鎖弁(46,47)が開いていると判定する(ステップS16)。第2圧力P2が第1圧力P1以下であると判定された場合(ステップS15のNO)、制御部(100)は、閉鎖弁(46,47)が閉じていると判定する(ステップS17)。 In step S15, the control unit (100) determines whether or not the second pressure P2 is higher than the first pressure P1 with respect to the first pressure P1 obtained in step S12 and the second pressure P2 obtained in step S14. do. If it is determined that the second pressure P2 is higher than the first pressure P1 (YES in step S15), the control unit (100) determines that the closing valve (46, 47) is open (step S16). If it is determined that the second pressure P2 is equal to or lower than the first pressure P1 (NO in step S15), the control unit (100) determines that the closing valve (46, 47) is closed (step S17).
 (8)特徴
 (8-1)特徴1
 本実施形態の空調システム(1)では、室内回路(11b)の冷媒を室外回路(11a)に移動させるポンプダウン運転終了後における、室内回路(11b)の冷媒圧力の変化に基づいて、閉鎖弁(46,47)の開閉を判定する。
(8) Features (8-1) Feature 1
In the air conditioning system (1) of this embodiment, the closing valve is activated based on the change in the refrigerant pressure in the indoor circuit (11b) after the end of the pump-down operation that moves the refrigerant in the indoor circuit (11b) to the outdoor circuit (11a). Determine whether (46,47) is open or closed.
 本実施形態によると、閉鎖弁(46,47)の開閉に判定により、ポンプダウン運転終了後の室外回路(11a)から室内回路(11b)への冷媒漏れを確認できる。これにより、閉鎖弁(46,47)が全閉であればポンプダウン運転終了後に安全に室内ユニット(30)を取り外すことができ、ひいては室内空間に冷媒が漏れるリスクを低減できる。 According to the present embodiment, refrigerant leakage from the outdoor circuit (11a) to the indoor circuit (11b) after the end of the pump-down operation can be confirmed by determining whether the closing valves (46, 47) are opened or closed. As a result, if the shutoff valves (46, 47) are fully closed, the indoor unit (30) can be safely removed after the pump-down operation is completed, and the risk of refrigerant leaking into the indoor space can be reduced.
  また、冷媒回路(11)の冷媒が減少することを抑制できるため、冷媒回路(11)中の冷媒充填量を確認したり、冷媒の充填量が足りていない場合、新たに冷媒を補充する手間を省くことができる。 In addition, since it is possible to suppress the amount of refrigerant in the refrigerant circuit (11) from decreasing, the amount of refrigerant charged in the refrigerant circuit (11) can be checked, and if the amount of refrigerant charged is insufficient, it is no longer necessary to replenish the refrigerant. can be omitted.
 (8-2)特徴2
 本実施形態の空調システム(1)では、ポンプダウン運転終了後において、第2圧力が第1圧力よりも高い場合、閉鎖弁(46,47)が開いていると判定する。
(8-2) Feature 2
In the air conditioning system (1) of this embodiment, if the second pressure is higher than the first pressure after the end of the pump-down operation, it is determined that the closing valve (46, 47) is open.
 本実施形態によると、第2圧力が第1圧力よりも高い場合、室内回路(11b)側に冷媒が戻ってきていることがわかる。この判定により、閉鎖弁(46,47)が開いていることを簡便に把握できる。 According to this embodiment, when the second pressure is higher than the first pressure, it can be seen that the refrigerant is returning to the indoor circuit (11b) side. Through this determination, it can be easily determined that the closing valve (46, 47) is open.
 (8-3)特徴3
 本実施形態の空調システム(1)では、ポンプダウン運転終了後において、第2圧力が、第1圧力以下である場合、閉鎖弁(46,47)が閉じていると判定する。
(8-3) Feature 3
In the air conditioning system (1) of this embodiment, after the end of the pump-down operation, if the second pressure is equal to or lower than the first pressure, it is determined that the closing valve (46, 47) is closed.
 本実施形態によると、第2圧力が第1圧力以下である場合、室内回路(11b)側に冷媒が戻ってきていないことがわかる。この判定により、閉鎖弁(46,47)が閉じていることを簡便に把握できる。 According to the present embodiment, when the second pressure is lower than or equal to the first pressure, it can be seen that the refrigerant is not returning to the indoor circuit (11b) side. Through this determination, it can be easily determined that the closing valve (46, 47) is closed.
 (8-4)特徴4
 本実施形態の空調システム(1)では、閉鎖弁(46,47)の開閉の判定に基づいて、閉鎖弁(46,47)が閉じていること及び閉鎖弁(46,47)が開いていることをユーザに報知する。
(8-4) Feature 4
In the air conditioning system (1) of the present embodiment, the closure valves (46, 47) are closed and the closure valves (46, 47) are open based on the determination of whether the closure valves (46, 47) are open or closed. Notify the user of this.
 本実施形態によると、報知装置(60)は、閉鎖弁(46,47)が閉じていることを示す第1アラーム音と、閉鎖弁(46,47)が開いていることを示す第2アラーム音を発報する。このことで、ポンプダウン終了後において、第1アラーム音または第2アラーム音のどちらのアラームが発報されるかによりユーザは、閉鎖弁(46,47)の開閉について簡便に把握できる。 According to this embodiment, the notification device (60) emits a first alarm sound indicating that the closing valve (46, 47) is closed and a second alarm sound indicating that the closing valve (46, 47) is open. Emit a sound. With this, the user can easily understand whether the closing valves (46, 47) are open or closed depending on which alarm, the first alarm sound or the second alarm sound, is issued after the pump down is completed.
 (8-5)特徴5
 本実施形態の空調システム(1)では、圧力センサ(50)は、ガス側閉鎖弁(46)と室内熱交換器(31)との間における冷媒圧力を検出する。
(8-5) Feature 5
In the air conditioning system (1) of this embodiment, the pressure sensor (50) detects the refrigerant pressure between the gas side closing valve (46) and the indoor heat exchanger (31).
 本実施形態によると、ポンプダウン運転終了後の圧力変化のみならず、暖房運転時の冷媒の高圧を1つの圧力センサ(50)で検知できる。このように、圧力センサ(50)を、ポンプダウン運転終了後の閉鎖弁の開閉判定と、通常の暖房運転時の高圧判定との両方に活用できるため、圧力センサ(50)を有効利用できる。 According to this embodiment, one pressure sensor (50) can detect not only the pressure change after the end of the pump-down operation but also the high pressure of the refrigerant during the heating operation. In this way, the pressure sensor (50) can be used both to determine whether the closing valve is open or closed after the end of the pump-down operation and to determine high pressure during normal heating operation, so the pressure sensor (50) can be used effectively.
 (8-6)特徴6
 本実施形態の空調システム(1)では、冷媒は可燃性冷媒である。このような可燃性冷媒では、ポンプダウン終了後に冷媒が室内回路(11b)側に漏れていると、室内ユニット(30)の取り外しの際に漏れた冷媒が室内空間で引火する恐れがあるが、本実施形態の空調システム(1)により冷媒の漏洩が抑制できるため、このような引火のリスクを低減できる。
(8-6) Feature 6
In the air conditioning system (1) of this embodiment, the refrigerant is a flammable refrigerant. With such a flammable refrigerant, if the refrigerant leaks into the indoor circuit (11b) after the pump down is completed, there is a risk that the leaked refrigerant will catch fire in the indoor space when the indoor unit (30) is removed. Since the air conditioning system (1) of this embodiment can suppress refrigerant leakage, the risk of such ignition can be reduced.
 (9)変形例
 以下、変形例の空調システムについて上記実施形態の空調システム(1)と異なる構成について説明する。
(9) Modification Example Hereinafter, a description will be given of a configuration of an air conditioning system of a modification example that is different from the air conditioning system (1) of the above embodiment.
 (9-1)変形例1
 図5に示すように、変形例1の空調システム(1)は、室内回路(11b)の冷媒温度を検出する温度センサ(70)を備える。具体的に、温度センサ(70)は、室内回路(11b)のうちガス側閉鎖弁(46)と室内熱交換器(31)との間に設けられる。温度センサ(70)は、室内熱交換器(31)のガス側の冷媒温度を検出する。
(9-1) Modification example 1
As shown in FIG. 5, the air conditioning system (1) of Modification 1 includes a temperature sensor (70) that detects the refrigerant temperature of the indoor circuit (11b). Specifically, the temperature sensor (70) is provided between the gas side closing valve (46) and the indoor heat exchanger (31) in the indoor circuit (11b). The temperature sensor (70) detects the refrigerant temperature on the gas side of the indoor heat exchanger (31).
 室内回路(11b)(具体的には室内熱交換器(31)のガス側)の冷媒温度に対する冷媒圧力の比率をP/Tとする。本例の制御部(100)は、ポンプダウン運転終了時から待機期間経過時(第1時点)における圧力センサ(50)の圧力値(第1圧力P1)と温度センサ(70)の温度値(第1温度T1)とを取得する。このときの冷媒温度に対する冷媒圧力の比率を第1比率(P1/T1)とする。 The ratio of refrigerant pressure to refrigerant temperature in the indoor circuit (11b) (specifically, the gas side of the indoor heat exchanger (31)) is defined as P/T. The control unit (100) of this example controls the pressure value (first pressure P1) of the pressure sensor (50) and the temperature value ( A first temperature T1) is obtained. The ratio of refrigerant pressure to refrigerant temperature at this time is defined as a first ratio (P1/T1).
 本例の制御部(100)は、第2時点における圧力センサ(50)の圧力値(第2圧力P2)と温度センサ(70)の温度値(第2温度T2)とを取得する。このときの冷媒温度に対する冷媒圧力の比率を第2比率(P2/T2)とする。 The control unit (100) of this example acquires the pressure value (second pressure P2) of the pressure sensor (50) and the temperature value (second temperature T2) of the temperature sensor (70) at the second time point. The ratio of refrigerant pressure to refrigerant temperature at this time is defined as a second ratio (P2/T2).
 制御部(100)は、上記実施形態のフロー(図3参照)のステップS5において、第1比率(P1/T1)及び第2比率(P2/T2)のどちらが高いか判定する。以下、本例の閉鎖弁(46,47)の開閉の判定について、図6を用いて説明する。なお、ステップS5以外のステップは上記実施形態と同一である。 In step S5 of the flow of the above embodiment (see FIG. 3), the control unit (100) determines which of the first ratio (P1/T1) and the second ratio (P2/T2) is higher. Hereinafter, the determination of whether to open or close the closing valves (46, 47) of this example will be explained using FIG. 6. Note that steps other than step S5 are the same as in the above embodiment.
 ステップS21では、制御部(100)は、ポンプダウン運転終了時からの時間が第1時点となったかを判定する。第1時点になったと判定された場合(ステップS21のYES)、ステップS22が実行される。第1時点になっていないと判定された場合(ステップS21のNO)、再びステップS21が実行される。 In step S21, the control unit (100) determines whether the time from the end of the pump down operation has reached the first time point. If it is determined that the first time point has come (YES in step S21), step S22 is executed. If it is determined that the first time point has not yet come (NO in step S21), step S21 is executed again.
 ステップS22では、制御部(100)は、圧力センサ(50)から圧力値を取得する。この圧力値は第1圧力P1である。第1圧力P1はメモリに保存される。 In step S22, the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the first pressure P1. The first pressure P1 is stored in memory.
 ステップS23では、制御部(100)は、温度センサ(70)から温度値を取得する。この温度値は第1温度T1である。第1温度T1はメモリに保存される。 In step S23, the control unit (100) acquires a temperature value from the temperature sensor (70). This temperature value is the first temperature T1. The first temperature T1 is stored in memory.
 ステップS24では、制御部(100)は、第2時点となったかを判定する。第2時点になったと判定された場合(ステップS24のYES)、ステップS25が実行される。第2時点になっていないと判定された場合(ステップS24のNO)、再びステップS24が実行される。 In step S24, the control unit (100) determines whether the second time point has come. If it is determined that the second time point has come (YES in step S24), step S25 is executed. If it is determined that the second time point has not yet come (NO in step S24), step S24 is executed again.
 ステップS25では、制御部(100)は、圧力センサ(50)から圧力値を取得する。この圧力値は第2圧力P2である。第2圧力P2はメモリに保存される。 In step S25, the control unit (100) acquires the pressure value from the pressure sensor (50). This pressure value is the second pressure P2. The second pressure P2 is stored in memory.
 ステップS26では、制御部(100)は、温度センサ(70)から温度値を取得する。この温度値は第2温度T2である。第2温度T2はメモリに保存される。 In step S26, the control unit (100) acquires the temperature value from the temperature sensor (70). This temperature value is the second temperature T2. The second temperature T2 is stored in memory.
 ステップS27では、制御部(100)は、ステップS22~S23及びステップS25~S26で取得した第1比率(P1/T1)及び第2比率(P2/T2)について、第2比率が第1比率よりも高いか否かを判定する。第2比率が第1比率よりも高いと判定された場合(ステップS27のYES)、制御部(100)は、閉鎖弁(46,47)が開いていると判定する(ステップS28)。第2比率が第1比率以下であると判定された場合(ステップS27のNO)、制御部(100)は、閉鎖弁(46,47)が閉じていると判定する(ステップS29)。 In step S27, the control unit (100) determines that the second ratio is higher than the first ratio with respect to the first ratio (P1/T1) and second ratio (P2/T2) obtained in steps S22 to S23 and steps S25 to S26. It is determined whether or not the value is also high. If it is determined that the second ratio is higher than the first ratio (YES in step S27), the control unit (100) determines that the closing valves (46, 47) are open (step S28). If it is determined that the second ratio is less than or equal to the first ratio (NO in step S27), the control unit (100) determines that the closing valve (46, 47) is closed (step S29).
 このように本例では、冷媒圧力及び冷媒温度に基づいて、閉鎖弁(46,47)の開閉を判定する。状態方程式(PV=nRT;Pは圧力、Vは体積、nはモル数、Rは定数及びTは温度を示す)に、冷媒圧力及び冷媒温度をパラメータとして代入することで冷媒の体積を求めることができ、上記実施形態の冷媒圧力のみの場合よりもより正確に閉鎖弁(46,47)の開閉判定を行うことができる。このことで、閉鎖弁(46,47)の開閉について誤検知を抑制できる。 In this way, in this example, opening and closing of the closing valves (46, 47) is determined based on the refrigerant pressure and refrigerant temperature. Find the volume of the refrigerant by substituting the refrigerant pressure and refrigerant temperature as parameters into the equation of state (PV=nRT; P is pressure, V is volume, n is the number of moles, R is a constant, and T is temperature). Therefore, it is possible to determine whether the closing valves (46, 47) are open or closed more accurately than when using only the refrigerant pressure in the above embodiment. This makes it possible to suppress false detections regarding the opening and closing of the closing valves (46, 47).
 (9-2)変形例2
 変形例2の空調システム(1)は、制御部(100)は、ポンプダウン運転終了後における、室内回路(11b)の冷媒圧力に基づいて、閉鎖弁(46,47)の開閉を判定する。具体的に、本例の制御部(100)は、ポンプダウン運転終了後における所定の時点の冷媒圧力Pが、第1所定値よりも大きい場合、閉鎖弁(46,47)が開いていると判定し、第1所定値以下である場合、閉鎖弁(46,47)が閉じていると判定する。
(9-2) Modification example 2
In the air conditioning system (1) of Modification 2, the control unit (100) determines whether to open or close the closing valves (46, 47) based on the refrigerant pressure in the indoor circuit (11b) after the end of the pump-down operation. Specifically, the control unit (100) of this example determines that the closing valves (46, 47) are open when the refrigerant pressure P at a predetermined time point after the end of the pump-down operation is greater than a first predetermined value. If the value is less than or equal to the first predetermined value, it is determined that the closing valve (46, 47) is closed.
 温度センサ(70)を備えている空調システム(1)において、制御部(100)は、ポンプダウン運転終了後における所定の時点の冷媒温度に対する冷媒圧力の比率(P/T)が、第2所定値よりも大きい場合、閉鎖弁(46,47)が開いていると判定し、第2所定値以下である場合、閉鎖弁(46,47)が閉じていると判定してもよい。第1所定値及び第2所定値は、任意の値である。 In the air conditioning system (1) including the temperature sensor (70), the control unit (100) is configured such that the ratio (P/T) of the refrigerant pressure to the refrigerant temperature at a predetermined time point after the end of the pump-down operation is a second predetermined value. If it is larger than the second predetermined value, it may be determined that the closing valve (46, 47) is open, and if it is less than or equal to the second predetermined value, it may be determined that the closing valve (46, 47) is closed. The first predetermined value and the second predetermined value are arbitrary values.
 (10)その他の実施形態
 上記実施形態及び上記変形例1において、制御部(100)は、第1時点及び第2時点の冷媒圧力、または冷媒温度に対する冷媒圧力の比率を取得するが、これに限定されない。制御部(100)は、第2時点よりも後の第3時点の冷媒圧力、または冷媒温度に対する冷媒圧力の比率を取得してもよい。このように、第1時点、第2時点及び第3時点の3点の冷媒圧力、または冷媒温度に対する冷媒圧力を比較することで、より正確に閉鎖弁(46,47)の開閉判定ができると共に、閉鎖弁(46,47)の開閉の誤検知を抑制できる。なお、制御部(100)が取得する冷媒圧力、または冷媒温度に対する冷媒圧力の比率は、4点以上であってもよい。
(10) Other Embodiments In the above embodiment and the above modification 1, the control unit (100) acquires the refrigerant pressure at the first time and the second time, or the ratio of the refrigerant pressure to the refrigerant temperature. Not limited. The control unit (100) may acquire the refrigerant pressure at a third time point after the second time point or the ratio of the refrigerant pressure to the refrigerant temperature. In this way, by comparing the refrigerant pressure at the first, second, and third points, or the refrigerant pressure with respect to the refrigerant temperature, it is possible to more accurately determine whether the closing valve (46, 47) is open or closed. , it is possible to suppress false detection of opening and closing of the closing valves (46, 47). Note that the refrigerant pressure acquired by the control unit (100) or the ratio of refrigerant pressure to refrigerant temperature may be four or more points.
 上記実施形態及び上記変形例1において、第2圧力P2が第1圧力P1よりも高く、かつ、P2とP1との差が所定値以上である場合、閉鎖弁(46,47)は開いていると判定してもよい。同様に、上記変形例において、第2比率(P2/T2)が第1比率(P1/T1)よりも高く、かつ、第2比率と第1比率との差が所定値以上である場合、閉鎖弁(46,47)は開いていると判定してもよい。このような所定値を設けることで、閉鎖弁(46,47)の開閉の誤検知を抑制できる。 In the embodiment and modification 1 above, when the second pressure P2 is higher than the first pressure P1 and the difference between P2 and P1 is equal to or greater than a predetermined value, the closing valve (46, 47) is open. It may be determined that Similarly, in the above modification, if the second ratio (P2/T2) is higher than the first ratio (P1/T1) and the difference between the second ratio and the first ratio is equal to or greater than a predetermined value, the closure It may be determined that the valves (46, 47) are open. By providing such a predetermined value, it is possible to suppress false detection of opening and closing of the closing valves (46, 47).
 上記実施形態及び上記変形例1において、ポンプダウン運転終了時を第1時点としてもよい。すなわち、待期期間を設けずに、制御部(100)は第1圧力P1、または第1比率(P1/T1)を取得してもよい。 In the above embodiment and the first modification, the first point in time may be the end of the pump down operation. That is, the control unit (100) may acquire the first pressure P1 or the first ratio (P1/T1) without providing a waiting period.
 上記実施形態及び上記各変形例において、作業者の操作に基づいて、第1時点または第2時点の冷媒圧力、または冷媒圧力及び冷媒温度が取得されてもよい。 In the above embodiment and each modification, the refrigerant pressure, or the refrigerant pressure and refrigerant temperature at the first or second time point may be acquired based on the operator's operation.
 上記実施形態及び上記各変形例において、空調システム(1)は圧力センサ(50)を有していなくてもよい。この場合、空調システム(1)は、室内回路(11b)の冷媒温度を検出する温度センサ(70)を有し、冷媒圧力(第1圧力及び第2圧力を含む)は、冷媒温度に基づいて求めてもよい。 In the above embodiment and each of the above modifications, the air conditioning system (1) does not need to have the pressure sensor (50). In this case, the air conditioning system (1) has a temperature sensor (70) that detects the refrigerant temperature in the indoor circuit (11b), and the refrigerant pressure (including the first pressure and the second pressure) is determined based on the refrigerant temperature. You can ask for it.
 上記実施形態及び上記各変形例において、冷媒は、R32やR1234yf等のフロン系の冷媒、不燃性のHFC冷媒であってもよい。 In the above embodiment and each modification, the refrigerant may be a fluorocarbon-based refrigerant such as R32 or R1234yf, or a nonflammable HFC refrigerant.
 上記実施形態及び上記各変形例において、制御部(100)は、室外ユニット(20)の制御基板(図示省略)に設けれられてもよい。または、制御部(100)は、室内ユニット(30)の制御基板と室外ユニット(20)の制御基板の双方に設けられ、相互に連携するように構成されていてもよい。例えば、圧力センサ(50)の検出値を受信した室内ユニット(30)の制御基板が室外ユニット(20)の制御基板に送信し、室外ユニット(20)の制御基板が閉鎖弁(46,47)の開閉の判定を行うように構成されてもよい。制御部(100)は、リモートコントローラ(102)の制御基板に設けれてもよい。 In the above embodiment and each of the above modifications, the control section (100) may be provided on a control board (not shown) of the outdoor unit (20). Alternatively, the control section (100) may be provided on both the control board of the indoor unit (30) and the control board of the outdoor unit (20), and may be configured to cooperate with each other. For example, the control board of the indoor unit (30) that receives the detected value of the pressure sensor (50) transmits it to the control board of the outdoor unit (20), and the control board of the outdoor unit (20) sends the detected value to the closing valve (46, 47). It may be configured to determine whether it is open or closed. The control unit (100) may be provided on a control board of the remote controller (102).
 報知装置(60)は、リモートコントローラ(102)に設けられるディスプレイであってもよい。ディスプレイに、閉鎖弁(46,47)が完全に閉鎖できていないこと、または、閉鎖弁(46,47)が閉鎖できていることが表示されてもよい。 The notification device (60) may be a display provided on the remote controller (102). The display may indicate that the closure valves (46, 47) are not completely closed or that the closure valves (46, 47) are able to close.
 以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態及び変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」及び「第3」という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. Furthermore, the above embodiments and modifications may be combined or replaced as appropriate, as long as the functionality of the object of the present disclosure is not impaired. The descriptions of "first," "second," and "third" mentioned above are used to distinguish the words to which these descriptions are given, and even limit the number and order of the words. It's not a thing.
 以上説明したように、本開示は、空調システムについて有用である。 As explained above, the present disclosure is useful for air conditioning systems.
1     空調システム
11    冷媒回路
11a   室外回路(熱源回路)
11b   室内回路(利用回路)
20    室外ユニット(熱源ユニット)
21    圧縮機
22    室外熱交換器(熱源熱交換器)
30    室内ユニット(利用ユニット)
31    室内熱交換器(利用熱交換器)
46    ガス側閉鎖弁(閉鎖弁)
47    液側閉鎖弁(閉鎖弁)
1 Air conditioning system
11 Refrigerant circuit
11a Outdoor circuit (heat source circuit)
11b Indoor circuit (circuit used)
20 Outdoor unit (heat source unit)
21 Compressor
22 Outdoor heat exchanger (heat source heat exchanger)
30 Indoor unit (Used unit)
31 Indoor heat exchanger (utilized heat exchanger)
46 Gas side closing valve (closing valve)
47 Liquid side closing valve (closing valve)

Claims (9)

  1.  圧縮機(21)及び熱源熱交換器(22)が接続される熱源回路(11a)を有する熱源ユニット(20)と、
     利用熱交換器(31)が接続される利用回路(11b)を有する利用ユニット(30)とを備える空調システムであって、
     前記熱源回路(11a)と前記利用回路(11b)とが閉鎖弁(46,47)を介して接続されることにより冷凍サイクルを行う冷媒回路(11)が構成され、
     前記利用回路(11b)の冷媒を前記熱源回路(11a)に移動させるポンプダウン運転終了後における、前記利用回路(11b)の冷媒圧力に基づいて、前記閉鎖弁(46,47)の開閉を判定する
    ことを特徴とする空調システム。
    a heat source unit (20) having a heat source circuit (11a) to which a compressor (21) and a heat source heat exchanger (22) are connected;
    An air conditioning system comprising a usage unit (30) having a usage circuit (11b) to which a usage heat exchanger (31) is connected,
    A refrigerant circuit (11) that performs a refrigeration cycle is configured by connecting the heat source circuit (11a) and the utilization circuit (11b) via a closing valve (46, 47),
    Determining whether to open or close the closing valve (46, 47) based on the refrigerant pressure in the usage circuit (11b) after the end of the pump-down operation for moving the refrigerant in the usage circuit (11b) to the heat source circuit (11a). An air conditioning system characterized by:
  2.  前記ポンプダウン運転終了後において、第1時点における前記冷媒圧力を第1圧力、前記第1時点より後の第2時点における前記冷媒圧力を第2圧力としたとき、前記第2圧力が前記第1圧力よりも高い場合、前記閉鎖弁(46,47)が開いていると判定する
    ことを特徴とする請求項1に記載の空調システム。
    After the end of the pump-down operation, when the refrigerant pressure at a first time point is a first pressure and the refrigerant pressure at a second time point after the first time point is a second pressure, the second pressure is the first pressure. The air conditioning system according to claim 1, characterized in that if the pressure is higher than the pressure, it is determined that the closing valve (46, 47) is open.
  3.  前記ポンプダウン運転終了後において、第1時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第1比率、前記第1時点よりも後の第2時点における前記利用回路(11b)の冷媒温度に対する冷媒圧力の比率を第2比率としたとき、前記第2比率が前記第1比率よりも高い場合、前記閉鎖弁(46,47)が開いていると判定する
    ことを特徴とする請求項1に記載の空調システム。
    After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a first time point is a first ratio, and the ratio of the refrigerant pressure to the refrigerant temperature of the utilization circuit (11b) at a second time point after the first time point is a first ratio. A claim characterized in that, when a ratio of refrigerant pressure to refrigerant temperature is a second ratio, if the second ratio is higher than the first ratio, it is determined that the closing valve (46, 47) is open. The air conditioning system according to item 1.
  4.  前記ポンプダウン運転終了後において、第1時点における前記冷媒圧力を第1圧力、前記第1圧力よりも後の第2時点における前記冷媒圧力を第2圧力としたとき、前記第2圧力が前記第1圧力以下である場合、前記閉鎖弁(46,47)が閉じていると判定する
    ことを特徴とする請求項1~3のいずれか1つに記載の空調システム。
    After the end of the pump down operation, when the refrigerant pressure at a first time point is a first pressure, and the refrigerant pressure at a second time point after the first pressure is a second pressure, the second pressure is the second pressure. The air conditioning system according to any one of claims 1 to 3, characterized in that when the pressure is below 1 pressure, it is determined that the closing valve (46, 47) is closed.
  5.  前記ポンプダウン運転終了後において、第1時点における前記利用回路(11b)の冷媒温度に対する前記冷媒圧力の比率を第1比率、前記第1時点よりも後の第2時点における前記利用回路(11b)の冷媒温度に対する前記冷媒圧力の比率を第2比率としたとき、前記第2比率が前記第1比率以下である場合、前記閉鎖弁(46,47)が閉じていると判定する
    ことを特徴とする請求項1~3のいずれか1つに記載の空調システム。
    After the end of the pump-down operation, the ratio of the refrigerant pressure to the refrigerant temperature in the utilization circuit (11b) at a first time point is a first ratio, and the utilization circuit (11b) at a second time point after the first time point is a first ratio. When the ratio of the refrigerant pressure to the refrigerant temperature is set as a second ratio, if the second ratio is equal to or lower than the first ratio, it is determined that the closing valve (46, 47) is closed. The air conditioning system according to any one of claims 1 to 3.
  6.  前記閉鎖弁(46,47)の開閉の判定に基づいて、前記閉鎖弁(46,47)が閉じていること、または前記閉鎖弁(46,47)が開いていることをユーザに報知する
    ことを特徴とする請求項1~3のいずれか1つに記載の空調システム。
    Notifying a user that the closing valve (46, 47) is closed or that the closing valve (46, 47) is open based on the determination of whether the closing valve (46, 47) is open or closed. The air conditioning system according to any one of claims 1 to 3, characterized by:
  7.  前記閉鎖弁(46,47)は、前記利用回路(11b)のうち液側に設けられる液側閉鎖弁(47)とガス側に設けられるガス側閉鎖弁(46)とを有し、
     前記冷媒圧力は、前記ガス側閉鎖弁(46)と前記利用熱交換器(31)との間における圧力を示す
    ことを特徴とする請求項1~3のいずれか1つに記載の空調システム。
    The closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the utilization circuit (11b) and a gas side closing valve (46) provided on the gas side,
    The air conditioning system according to any one of claims 1 to 3, wherein the refrigerant pressure indicates the pressure between the gas side closing valve (46) and the utilization heat exchanger (31).
  8.  前記冷媒は、可燃性冷媒であることを特徴とする請求項1~3のいずれか1つに記載の空調システム。 The air conditioning system according to any one of claims 1 to 3, wherein the refrigerant is a flammable refrigerant.
  9.  圧縮機(21)及び熱源熱交換器(22)を含む熱源回路(11a)を有する熱源ユニット(20)と、
     利用熱交換器(31)を含む利用回路(11b)を有する利用ユニット(30)とを備え、
     前記熱源回路(11a)と前記利用回路(11b)とが閉鎖弁(46,47)を介して接続されることにより冷凍サイクルを行う冷媒回路(11)が構成される空調システムのポンプダウン運転終了後の前記閉鎖弁(46,47)の開閉状態を確認する方法であって、
     前記閉鎖弁(46,47)は、前記熱源回路(11a)のうち液側に設けられる液側閉鎖弁(47)とガス側に設けられるガス側閉鎖弁(46)とを有し、
     前記ポンプダウン運転を開始するステップと、
     前記液側閉鎖弁(47)を閉じるステップと、
     前記ガス側閉鎖弁(46)を閉じるステップと、
     前記ポンプダウン運転を終了するステップと、
     前記利用回路(11b)の冷媒圧力の変化、または、前記利用回路(11b)の冷媒温度に対する前記冷媒圧力の比率に基づいて、前記閉鎖弁(46,47)の開閉を判定するステップとを含む
    ポンプダウン運転終了後の前記閉鎖弁(46,47)の開閉状態を確認する方法。
    a heat source unit (20) having a heat source circuit (11a) including a compressor (21) and a heat source heat exchanger (22);
    A utilization unit (30) having a utilization circuit (11b) including a utilization heat exchanger (31),
    End of pump-down operation of the air conditioning system, which constitutes a refrigerant circuit (11) that performs a refrigeration cycle by connecting the heat source circuit (11a) and the utilization circuit (11b) via closing valves (46, 47). A method for later confirming the open/closed state of the closing valve (46, 47),
    The closing valve (46, 47) includes a liquid side closing valve (47) provided on the liquid side of the heat source circuit (11a) and a gas side closing valve (46) provided on the gas side,
    starting the pump down operation;
    closing the liquid side closing valve (47);
    closing the gas side closing valve (46);
    terminating the pump down operation;
    and determining whether to open or close the closing valve (46, 47) based on a change in the refrigerant pressure in the usage circuit (11b) or a ratio of the refrigerant pressure to the refrigerant temperature in the usage circuit (11b). A method of checking the open/closed state of the closing valve (46, 47) after the end of pump-down operation.
PCT/JP2023/003313 2022-05-26 2023-02-02 Air conditioning system WO2023228479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-085926 2022-05-26
JP2022085926A JP2023173581A (en) 2022-05-26 2022-05-26 air conditioning system

Publications (1)

Publication Number Publication Date
WO2023228479A1 true WO2023228479A1 (en) 2023-11-30

Family

ID=88918881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003313 WO2023228479A1 (en) 2022-05-26 2023-02-02 Air conditioning system

Country Status (2)

Country Link
JP (1) JP2023173581A (en)
WO (1) WO2023228479A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205798B1 (en) * 1999-01-19 2001-03-27 Carrier Corporation Test for the automated detection of leaks between high and low pressure sides of a refrigeration system
JP2009222272A (en) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp Refrigerating device
JP2009300009A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2022024290A (en) * 2020-07-15 2022-02-09 パナソニックIpマネジメント株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205798B1 (en) * 1999-01-19 2001-03-27 Carrier Corporation Test for the automated detection of leaks between high and low pressure sides of a refrigeration system
JP2009222272A (en) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp Refrigerating device
JP2009300009A (en) * 2008-06-13 2009-12-24 Mitsubishi Heavy Ind Ltd Refrigerating device
JP2022024290A (en) * 2020-07-15 2022-02-09 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2023173581A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US11268718B2 (en) Refrigeration apparatus
US11415345B2 (en) Refrigeration apparatus
CN109844426B (en) Refrigerating device
US10852042B2 (en) Air conditioning system
US11015828B2 (en) Refrigeration system with utilization unit leak detection
CN111094871B (en) Refrigerating device
JP6861804B2 (en) Air conditioner
JP6849021B2 (en) Refrigeration cycle system
WO2020008625A1 (en) Refrigeration cycle device
JP6634517B2 (en) Refrigeration cycle device
CN113994151A (en) Refrigerant cycle device
US20220290885A1 (en) Air conditioning system
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
WO2020202465A1 (en) Air conditioner
WO2023228479A1 (en) Air conditioning system
AU2018310045A1 (en) Refrigeration Apparatus
JPWO2019035205A1 (en) Air conditioner
US20220373205A1 (en) Air-conditioning system
JP2020118393A (en) Air conditioner and method for operating air conditioner
WO2020111241A1 (en) Refrigeration cycle device and refrigeration cycle system
WO2020049646A1 (en) Water-cooled air conditioner
US20240060667A1 (en) Installation assistance system for air conditioning device, installation assistance device, and installation assistance method
US20240044533A1 (en) Air conditioning system, operation control method therefor, and operation control device for air conditioning system
WO2020008624A1 (en) Refrigeration cycle device
WO2024105738A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811360

Country of ref document: EP

Kind code of ref document: A1