WO2023228330A1 - Switch and switch control method - Google Patents

Switch and switch control method Download PDF

Info

Publication number
WO2023228330A1
WO2023228330A1 PCT/JP2022/021433 JP2022021433W WO2023228330A1 WO 2023228330 A1 WO2023228330 A1 WO 2023228330A1 JP 2022021433 W JP2022021433 W JP 2022021433W WO 2023228330 A1 WO2023228330 A1 WO 2023228330A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
switch
section
control unit
input line
Prior art date
Application number
PCT/JP2022/021433
Other languages
French (fr)
Japanese (ja)
Inventor
豊 小松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/021433 priority Critical patent/WO2023228330A1/en
Publication of WO2023228330A1 publication Critical patent/WO2023228330A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the present disclosure relates to a wall-mounted switch used to operate equipment such as lighting equipment and ventilation fans, and a control method thereof.
  • Equipment such as lighting fixtures and ventilation fans are installed in high places such as ceilings and are difficult to operate by touching them directly, so they are often operated using switches installed on the wall.
  • Patent Document 1 discloses a switch system that allows devices such as lighting equipment and ventilation fans to be remotely controlled via wireless communication.
  • the present disclosure has been made in view of the above, and aims to provide a switch that can reduce rush current to the switch itself.
  • a switch includes an operation handle section installed on the front side, a control section that generates an output command signal based on the operation on the operation handle section, and a power supply. It has a first relay that switches between connecting and disconnecting the input line, a second relay connected in series to the first relay, and a bypass resistor connected in parallel to the second relay, and receives power from an external power source. and a power supply section that receives the output command signal and supplies power to the external load based on the output command signal.
  • the control section opens the second relay for a preset period of time when a switching operation is performed on the operating handle section to switch the power input line from cutoff to connection. Close relay open/close.
  • the switch according to the present disclosure has the effect of reducing inrush current to the switch itself.
  • a perspective view of a switch according to Embodiment 1 A perspective view of a switch according to Embodiment 1
  • Schematic diagram of a switch according to Embodiment 1 Exploded perspective view of the switch according to Embodiment 1 Exploded schematic diagram of the switch according to Embodiment 1
  • Functional block diagram of switch according to Embodiment 1 A diagram showing a schematic configuration of a power supply section of a switch according to Embodiment 1
  • Schematic diagram of the power supply section of the switch according to Embodiment 1 A diagram showing signal waveforms of the switch according to Embodiment 1.
  • a diagram showing signal waveforms of a switch according to Embodiment 2 A diagram showing an example of the hardware configuration of the control unit of the switch according to Embodiment 1 and Embodiment 2.
  • FIG. 1 is a diagram showing the configuration of a ventilation system using a switch according to Embodiment 1.
  • a wall-mounted switch 100 is connected to each of the plurality of ventilation fans 42.
  • the operating state of the ventilation fan 42 is instructed by operating the switch 100.
  • Each of the switches 100 is connected to the router 61 via wireless communication.
  • Router 61 is connected to network 63.
  • the switch 100 is connected to a server 62 and a user terminal 64 via a network 63. Note that instead of configuring the ventilation system 200 using a plurality of ventilation fans 42, a ventilation device including one set of ventilation fans 42 and the switch 100 may be used.
  • FIG. 2 and 3 are perspective views of the switch according to the first embodiment.
  • FIG. 2 shows a state of the switch 100 viewed from the front side exposed indoors.
  • FIG. 3 shows a state of the switch 100 as seen from the rear side embedded in the wall 110.
  • FIG. 4 is a schematic diagram of the switch according to the first embodiment.
  • FIG. 5 is an exploded perspective view of the switch according to the first embodiment.
  • FIG. 6 is an exploded schematic diagram of the switch according to the first embodiment.
  • FIG. 7 is a functional block diagram of the switch according to the first embodiment.
  • the switch 100 includes a container 20 that is housed inside a wall 110, a wiring box 10 that covers the container 20 within the wall 110, a design part 30 that is exposed from the wall 110, and a mounting frame 3 for mounting on the wall 110. Equipped with. Note that illustration of the wiring box 10 is omitted in FIGS. 2 and 3. Further, in FIGS. 2 and 3, illustration of the mounting frame 3 is omitted.
  • the mounting frame 3 is fixed to the wall 110 using wood screws (not shown) passed through the mounting holes 3a. By fixing the mounting frame 3 to the wall 110, the entire switch 100 is fixed to the wall 110.
  • the design section 30 includes an operating handle section 1 made of resin and arranged to cover the operating switch 4, and a cover 2 surrounding the operating handle section 1.
  • the operation handle part 1 is a part that allows the user to turn on and off the ventilation fan 42 and to change the intensity of operation, and is installed on the front surface of the switch 100.
  • the cover 2 is attached to the attachment frame 3 by fitting with claws or the like.
  • the operating handle section 1 includes a first operating handle 51, a second operating handle 52, and a display section 53.
  • the first operation handle 51 is a component for switching the ventilation fan 42 on and off by user operation.
  • the second operation handle 52 is a component for switching the operating intensity of the ventilation fan 42 by user operation.
  • the display unit 53 displays the on/off state of the ventilation fan 42, the operating intensity state, and the wireless communication state.
  • the container body 20 includes a control section 5, a communication section 6, a protective cover 7, and a power supply section 8. Further, the container body 20 includes a rectangular cylindrical container cover 9 that houses the control section 5, the communication section 6, the protective cover 7, and the power supply section 8, and an operation switch 4 that covers the front surface of the container cover 9.
  • the operating handle portion 1 is attached to the operating switch 4 by fitting with a claw or the like. Note that the vessel cover 9 only needs to have a cylindrical shape, and is not limited to a square cylindrical shape.
  • the operation switch 4 is provided with a switch transmission part 4a.
  • the switch transmission part 4a is deformable, and deforms toward the control part 5 when the first operating handle 51 or the second operating handle 52 is pressed down.
  • a button (not shown) provided on the control section 5 is pressed.
  • the control unit 5 outputs an output command signal to the power supply unit 8 to instruct the output state. There are three output states: strong operation, weak operation, and stop.
  • the control unit 5 generates an output command signal based on an operation performed on the operating handle unit 1 to request switching of the operating state of the ventilation fan 42 .
  • the control unit 5 outputs a communication signal to the communication unit 6 via the communication wiring 60.
  • the communication signal is output as a state change signal. That is, a first state change signal indicates that the operating state has switched from on to off, a second state change signal indicates that the operating state has switched from off to on, and a second state change signal indicates that the operating intensity has switched from strong to weak.
  • a third state change signal and a fourth state change signal indicating that the driving intensity has switched from weak to strong are defined, and when the state is switched by operating the operating handle part 1, the corresponding state change signals are transmitted. Output.
  • the communication unit 6 is housed in a portion of the container cover 9 that is forward of the portion where the protective cover 7 is placed.
  • the communication unit 6 receives the state change signal output from the control unit 5 via the communication wiring 60 and outputs a wireless signal 65 to the router 61 .
  • the communication unit 6 receives the state change signal from the control unit 5, and transmits the driving state and driving intensity indicated by the state change signal to the user terminal 64 as a wireless signal. It also receives a signal from a switching operation other than the operation handle section 1, for example, a remote operation from the user terminal 64, and transmits the signal to the power supply section 8.
  • a relay in the power supply unit 8 can be opened or closed.
  • the power supply unit 8 has a terminal block 21 to which an external power supply 86 and a load such as a ventilation fan 42 are connected, in addition to electronic components that open and close electronic circuits.
  • the power supply section 8 is supplied with power through the terminal block 21 and also supplies power to the load side.
  • the terminal block 21 has a power input terminal 82 to which a power input line 81 that receives 100V AC power from an external power supply 86 is connected, and an output terminal 83 to which an output wiring 40 that supplies DC power to the motor circuit 41 is connected.
  • Power supply unit 8 generates 12V DC from 100V AC supplied from external power supply 86 and supplies it to control unit 5 through control wiring 50 .
  • the communication unit 6 is supplied with 12V DC from the control unit 5 through the communication wiring 60 . Therefore, a voltage lower than the voltage supplied from the external power supply 86 to the power supply section 8 is applied to the control section 5 and the communication section 6. Further, the power supply section 8 supplies load driving power to the motor circuit 41 based on the output command signal from the control section 5 .
  • the protective cover 7 is disposed in front of the power supply section 8 and comes into contact with the inner wall of the container cover 9, and isolates the space in the container cover 9 in which the power supply section 8 is arranged from the operation handle section 1.
  • the protective cover 7 is placed between the power supply section 8 and the communication section 6.
  • the power supply section 8 is a high voltage section to which a high voltage of 50V or more is applied
  • the control section 5 and the communication section 6 are low voltage sections to which a low voltage of less than 50V is applied.
  • the protective cover 7 suppresses heat generation in the power supply section 8, which is a high voltage section, from affecting the control section 5 and communication section 6, which are low voltage sections, and the operation handle section 1, which is an operation section.
  • the wiring box 10 is arranged to cover the container body 20.
  • the switch 100 is fixed to the wall 110 with screws passed through the mounting holes 3a, with the wiring connected to the terminal block 21 housed in the wiring box 10.
  • FIG. 8 is a diagram showing a schematic configuration of the power supply section of the switch according to the first embodiment. Note that the detailed structure of the power supply unit 8 will be described later.
  • the control section 5 is electrically connected to the communication section 6 and the power supply section 8 using lead wires and connectors (not shown).
  • the first operation handle 51 of the control section 5 When the first operation handle 51 of the control section 5 is pressed down, the first relay 90 in the power supply section 8 is closed, and current flows through the ventilation fan 42. That is, the first operation handle 51 receives a switching operation for switching the power input line 81 from cutoff to connection, and a switching operation for switching the power input line 81 from cutoff to cutoff.
  • the current immediately after the first relay 90 is closed is called an inrush current, and a large current flows instantaneously.
  • the power supply unit 8 includes a second relay 91 and a bypass resistor 92. Immediately after the first relay 90 is closed, the second relay 91 is open, so current flows through the bypass resistor 92. After a certain period of time has elapsed, the second relay 91 is closed, thereby reducing the rush current flowing through the electronic components.
  • the time to close the second relay 91 can be arbitrarily set by the control unit 5. That is, the period during which the second relay 91 is open can be set by the control unit 5. Therefore, if it is desired to change the time during which the rush current flows, this can be easily done by changing the setting of the time when the second relay 91 is closed in the control section 5.
  • FIG. 9 is a diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to the first embodiment.
  • FIG. 9 shows an example of a motor circuit 41 when using an AC induction motor.
  • the motor circuit 41 is a capacitor induction motor configured by connecting an auxiliary winding 111 and a main winding 112 in parallel to an AC power source, and connecting a capacitor 113 to the auxiliary winding 111 in series.
  • the auxiliary winding 111 and the main winding 112 are out of phase by 90° due to the capacitor 113.
  • a variable speed winding 114 is wound over the main winding 112 in series.
  • the output wiring 40 includes a strong operation output wiring 40a connected to a position 117 that includes only the auxiliary winding 111 of the ventilation fan 42, and a weak output wiring 40a that is connected to a position 118 that includes the auxiliary winding 111 and the variable speed winding 114 of the ventilation fan 42. It includes an output wiring 40b for operation and a common wiring 40c connected to the common position 116.
  • the power supply unit 8 applies 100 V AC power between the output wiring 40a for strong operation and the common wiring 40c, and causes current to flow through the main winding 112 and the auxiliary winding 111, thereby executing the strong operation. do.
  • the power supply section 8 applies 100 V AC power between the weak operation output wiring 40b and the common wiring 40c, and causes current to flow through the main winding 112, the auxiliary winding 111, and the variable speed winding 114. Perform gentle operation.
  • FIG. 10 is a schematic diagram of the power supply section of the switch according to the first embodiment.
  • the power supply unit 8 is connected in series to a power input line 81, an output wiring 40, an input unit 84, a DC low voltage power output wiring 85, a first relay 90 which is a main relay, and a first relay 90.
  • a second relay 91 that is a bypass relay, a bypass resistor 92 connected in parallel to the second relay 91, and a third relay 94 that is a strong/weak relay connected in series to the first relay 90 and the second relay 91.
  • the input unit 84 receives AC power from an external power supply 86, converts a part of it into DC low voltage power, supplies it to the control unit 5 via a DC low voltage power output wiring 85, and converts a part of it into load power. It is output from the output wiring 40 to the motor circuit 41 as a signal.
  • a first signal line 121 that controls opening and closing is connected to the first relay 90 from the control unit 5.
  • the first relay 90 When the first signal line 121 is on, the first relay 90 is in a closed state, that is, in a conductive state.
  • the first relay 90 When the first signal line 121 is off, the first relay 90 is in an open state, that is, in a cutoff state.
  • a second signal line 122 that controls opening and closing is connected to the second relay 91 from the control unit 5 .
  • the second signal line 122 is on, the second relay 91 is in a closed state, that is, in a conductive state.
  • the second signal line 122 When the second signal line 122 is off, the second relay 91 is in an open state, that is, a cutoff state.
  • a third signal line 123 that controls opening and closing is connected to the third relay 94 from the control unit 5 .
  • the third relay 94 When the third signal line 123 is on, the third relay 94 is in a closed state, that is, in a conductive state.
  • the third relay 94 When the third signal line 123 is off, the third relay 94 is in an open state, that is, in a cutoff state.
  • FIG. 11 is a diagram showing signal waveforms of the switch according to the first embodiment.
  • an "on/off signal” indicates a command state caused by an on/off switching operation of the ventilation fan 42 with respect to the first operating handle 51.
  • the on/off signal is at a high level when instructing to turn on the ventilation fan 42, and is at a low level when instructing to turn off the ventilation fan 42.
  • the ventilation fan 42 is instructed to be turned on, and at time T4, the ventilation fan 42 is instructed to be turned off.
  • the "on/off signal” is input to the control unit 5, and command signals to the first relay 90 and the second relay 91 are output.
  • the second relay 91 is in a closed state, that is, in a conductive state.
  • the "on-off signal” changes to instruct to turn on the ventilation fan 42 at time T1
  • the second relay signal is turned off from time T1 to time T3, and is turned back on after time T3.
  • the first relay 90 is closed at time T2 between time T1 and time T3. That is, the first relay 90 is closed while the second relay 91 is opened.
  • time T2 and time T3 current flows through the bypass resistor 92, but at this time, the current is suppressed to about 1/10. Therefore, the time from time T2 to time T3 may be about 10 times the AC cycle. That is, the bypass time may be on the order of 10 msec to 100 msec.
  • the first relay 90 is opened at time T5 between time T4 and time T6. That is, the first relay 90 is opened while the second relay 91 is opened.
  • the second relay 91 is opened, so the current flows only through the bypass resistor 92. Switching noise occurs at the moment the first relay 90 is opened, but since the voltage drops due to the bypass resistor 92, the influence on the electronic circuit can be reduced.
  • FIG. 12 is a diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to the first embodiment.
  • FIG. 12 shows the configuration of the motor circuit 41 when using a DC motor.
  • the motor circuit 41 of the DC motor includes a detection section 250, a rectification section 210, a smoothing section 220, a switching section 230, and a motor winding section 240.
  • the detection unit 250 detects whether the input from the switch 100 is input from the strong terminal or the weak terminal, and outputs it to the switching control unit 231.
  • the rectifier 210 converts the negative voltage component of the input voltage into a positive voltage using a diode bridge circuit 211, performs full-wave rectification, and converts AC power into pulsating DC.
  • the smoothing unit 220 smoothes the pulsating voltage using a smoothing capacitor 221.
  • the switching unit 230 sequentially switches the supply of the stator to the motor winding unit 240 by sequentially switching the switching elements, thereby applying a rotating magnetic field to the motor.
  • the switching control unit 231 uses, for example, a magnet rotor as the rotor, a Hall element is provided on the stator side, detects the rotation angle of the rotor, and switches the switching elements in order according to the rotation angle. There is a way. Further, the switching control unit 231 receives a signal from the detection unit 250 indicating which of the strong and weak modes is selected, and controls the strong and weak operation.
  • the motor winding section 240 is wound around the stator, and forms a rotating magnetic field by sequentially switching the current.
  • DC low voltage power is supplied from the input section 84 to the control section 5, but when a large rush current flows, fluctuation noise is also generated in the power supply to the control section 5 side.
  • the communication unit 6 is easily affected by noise, but the switch 100 according to the first embodiment can suppress inrush current, so malfunctions caused by noise to the communication unit 6 can be suppressed.
  • the overall size is determined, but if a communication section is provided to use the communication function, the size of the relay section can be suppressed in order to maintain the overall size of the switch. are required to do so.
  • an inrush current of about 10 times flows.
  • the switch 100 according to the first embodiment since the inrush current passes through the bypass resistor 92, the inrush current is suppressed to be equal to the rated current by using the bypass resistor 92 with an electrical resistance of about 10 ⁇ to 100 ⁇ . be able to. Therefore, the switch 100 according to the first embodiment can reduce the rush current generated during the on/off switching operation without increasing the size of components such as the relay section.
  • FIG. 13 is a diagram showing signal waveforms of the switch according to the second embodiment.
  • the second operation handle 52 accepts an operation to switch the connection destination of the power input line 81. By operating the second operating handle 52 to switch the connection destination of the power input line 81, the operating intensity of the ventilation fan 42 is changed.
  • the command state by operating the second operating handle 52 is shown as "strength/weakness signal".
  • the strength signal is at a high level when instructing the ventilation fan 42 to operate in a strong manner, and is at a low level when instructing the ventilation fan 42 to operate in a weak manner.
  • T11 a signal that increases the operating intensity of the ventilation fan 42 is output
  • T14 a signal that reduces the operating intensity of the ventilation fan 42 is output.
  • a "strength signal” is input to the control unit 5, and a command signal to the second relay 91 and third relay 94 is output.
  • the second relay 91 In a state where a weak signal is output, the second relay 91 is in a closed state, that is, in a conductive state.
  • the "strong/weak signal” becomes strong at time T11 due to the strong command, the second relay signal is turned off from time T11 to time T13, and is turned back on after time T13.
  • the third relay 94 is closed at time T12 between time T11 and time T13. That is, the third relay 94 is switched while the second relay 91 is open.
  • the third relay 94 is opened at time T15 between time T14 and time T16. That is, the third relay 94 is switched while the second relay 91 is open.
  • the third relay 94 At the moment when the third relay 94 is opened, the second relay 91 is opened, so the current flows only through the bypass resistor 92. At the moment the third relay 94 is opened, an inrush current flows in the same way as at the moment it is closed, but since the voltage drops due to the bypass resistor 92, the voltage applied to the motor circuit 41 also drops, and the inrush current The influence on the motor circuit 41 can be reduced.
  • the switch 100 according to the second embodiment since the inrush current passes through the bypass resistor 92, by using the bypass resistor 92 with an electrical resistance of about 10 ⁇ to 100 ⁇ , the inrush current can be suppressed to the same level as the rated current. Therefore, the switch 100 according to the second embodiment can reduce the rush current that occurs when switching the connection destination of the power input line 81 without increasing the size of components such as the relay section.
  • FIG. 14 is a diagram illustrating an example of the hardware configuration of the control unit of the switch according to the first embodiment and the second embodiment.
  • FIG. 14 shows a hardware configuration in which the functions of the control unit 5 are realized by using hardware that executes a program.
  • the control unit 5 includes a processor 71 that executes various processes, a memory 72 that is a main memory, and a storage device 73 that stores information.
  • the processor 71 may be an arithmetic device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 72 also includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). non-volatile or Volatile semiconductor memory can be used.
  • the storage device 73 stores a program for executing the ventilation air volume determination process.
  • the processor 71 reads the program stored in the storage device 73 into the memory 72 and executes it.
  • the functions of the control unit 5 are realized by the processor 71 reading a program stored in the storage device 73 into the memory 72 and executing it.
  • the configuration shown in the above embodiments shows an example of the content, and it is also possible to combine it with another known technology, or a part of the configuration can be omitted or changed without departing from the gist. It is also possible.

Landscapes

  • Keying Circuit Devices (AREA)

Abstract

A switch (100) is provided with: an operating handle unit (1) installed on the front face; a control unit (5) which generates an output command signal on the basis of an operation with respect to the operating handle unit (1); and a power supply unit (8) which includes a first relay for switching connection and disconnection of a power supply input line, a second relay connected in series to the first relay, and a bypass resistance connected in parallel to the second relay, and which receives power supply from an external power supply and supplies power to an external load on the basis of an output command signal. The control unit (5), once a switching operation for switching the power supply input line from disconnection to connection is performed on the operating handle unit (1), opens the second relay for a preset period and closes the first relay in a period in which the second relay is open.

Description

スイッチ及びスイッチの制御方法Switch and switch control method
 本開示は、照明器具及び換気扇といった機器の操作に用いられる壁面設置型のスイッチ及びその制御方法に関する。 The present disclosure relates to a wall-mounted switch used to operate equipment such as lighting equipment and ventilation fans, and a control method thereof.
 照明器具及び換気扇といった機器は、天井面などの高所に設置され、直接触れて操作を行うことが難しいため、壁面に設置されるスイッチを用いて操作されることが多い。 Equipment such as lighting fixtures and ventilation fans are installed in high places such as ceilings and are difficult to operate by touching them directly, so they are often operated using switches installed on the wall.
 特許文献1には、照明器具及び換気扇といった機器を、無線通信を介して遠方から遠隔操作可能なスイッチシステムが開示されている。 Patent Document 1 discloses a switch system that allows devices such as lighting equipment and ventilation fans to be remotely controlled via wireless communication.
特開2020-129468号公報JP2020-129468A
 上記特許文献1に開示されるスイッチシステムでは、操作される機器に対する制御信号の送信タイミング間に時間差を設けることで、複数の機器への突入電流が同時に発生することを防止し、住宅全体としての突入電流を低減することは可能である。しかしながら、上記特許文献1に開示されるスイッチシステムは、スイッチ自体への突入電流を低減することはできない。ゆえに、直流モータ搭載機器などのスイッチへの突入電流が大きい機器が接続される場合は、突入電流に耐えうる電子部品を選定しなければならず、コストの増大及び部品サイズアップに繋がるという課題があった。 In the switch system disclosed in Patent Document 1, by providing a time difference between the transmission timings of control signals to the operated devices, inrush current to multiple devices is prevented from occurring at the same time, and the entire house is It is possible to reduce the inrush current. However, the switch system disclosed in Patent Document 1 cannot reduce the rush current to the switch itself. Therefore, when a device with a large inrush current to the switch is connected, such as a device equipped with a DC motor, it is necessary to select electronic components that can withstand the inrush current, which leads to problems such as increased cost and increased component size. there were.
 本開示は、上記に鑑みてなされたものであって、スイッチ自体への突入電流を低減できるスイッチを得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide a switch that can reduce rush current to the switch itself.
 上述した課題を解決し、目的を達成するために、本開示に係るスイッチは、前面に設置された操作ハンドル部と、操作ハンドル部に対する操作に基づいて出力指令信号を生成する制御部と、電源入力線の接続と遮断とを切り替える第1リレーと、第1リレーに直列に接続された第2リレーと、第2リレーと並列に接続されたバイパス抵抗とを有し、外部電源から電力供給を受けて、出力指令信号に基づき外部負荷に電力を供給する電源部とを備える。制御部は、操作ハンドル部に対して、電源入力線を遮断から接続に切り替える切替操作がなされると、第2リレーを予め設定された期間開き、第2リレーが開いている期間中に第1リレーの開閉を閉じる。 In order to solve the above-mentioned problems and achieve the purpose, a switch according to the present disclosure includes an operation handle section installed on the front side, a control section that generates an output command signal based on the operation on the operation handle section, and a power supply. It has a first relay that switches between connecting and disconnecting the input line, a second relay connected in series to the first relay, and a bypass resistor connected in parallel to the second relay, and receives power from an external power source. and a power supply section that receives the output command signal and supplies power to the external load based on the output command signal. The control section opens the second relay for a preset period of time when a switching operation is performed on the operating handle section to switch the power input line from cutoff to connection. Close relay open/close.
 本開示に係るスイッチは、スイッチ自体への突入電流を低減できるという効果を奏する。 The switch according to the present disclosure has the effect of reducing inrush current to the switch itself.
実施の形態1に係るスイッチを用いた換気システムの構成を示す図A diagram showing the configuration of a ventilation system using a switch according to Embodiment 1. 実施の形態1に係るスイッチの斜視図A perspective view of a switch according to Embodiment 1 実施の形態1に係るスイッチの斜視図A perspective view of a switch according to Embodiment 1 実施の形態1に係るスイッチの模式図Schematic diagram of a switch according to Embodiment 1 実施の形態1に係るスイッチの分解斜視図Exploded perspective view of the switch according to Embodiment 1 実施の形態1に係るスイッチの分解模式図Exploded schematic diagram of the switch according to Embodiment 1 実施の形態1に係るスイッチの機能ブロック図Functional block diagram of switch according to Embodiment 1 実施の形態1に係るスイッチの電源部の概略構成を示す図A diagram showing a schematic configuration of a power supply section of a switch according to Embodiment 1 実施の形態1に係るスイッチから負荷駆動電力が供給されるモータ回路の構成を示す図A diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to Embodiment 1. 実施の形態1に係るスイッチの電源部の模式図Schematic diagram of the power supply section of the switch according to Embodiment 1 実施の形態1に係るスイッチの信号波形を示す図A diagram showing signal waveforms of the switch according to Embodiment 1. 実施の形態1に係るスイッチから負荷駆動電力が供給されるモータ回路の構成を示す図A diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to Embodiment 1. 実施の形態2に係るスイッチの信号波形を示す図A diagram showing signal waveforms of a switch according to Embodiment 2 実施の形態1及び実施の形態2に係るスイッチの制御部のハードウェア構成例を示す図A diagram showing an example of the hardware configuration of the control unit of the switch according to Embodiment 1 and Embodiment 2.
 以下に、実施の形態に係るスイッチ及びスイッチの制御方法を図面に基づいて詳細に説明する。 Below, a switch and a switch control method according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1に係るスイッチを用いた換気システムの構成を示す図である。換気システム200は、複数の換気扇42の各々に対して壁面設置型のスイッチ100が接続される。換気システム200は、スイッチ100に対する操作により換気扇42の運転状態が指示される。スイッチ100の各々は、無線通信でルータ61に接続される。ルータ61は、ネットワーク63に接続されている。スイッチ100は、ネットワーク63を介してサーバ62及びユーザ端末64に接続される。なお、複数の換気扇42を用いて換気システム200を構成せずに、一組の換気扇42及びスイッチ100による換気装置で運用してもよい。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a ventilation system using a switch according to Embodiment 1. In the ventilation system 200, a wall-mounted switch 100 is connected to each of the plurality of ventilation fans 42. In the ventilation system 200, the operating state of the ventilation fan 42 is instructed by operating the switch 100. Each of the switches 100 is connected to the router 61 via wireless communication. Router 61 is connected to network 63. The switch 100 is connected to a server 62 and a user terminal 64 via a network 63. Note that instead of configuring the ventilation system 200 using a plurality of ventilation fans 42, a ventilation device including one set of ventilation fans 42 and the switch 100 may be used.
 図2及び図3は、実施の形態1に係るスイッチの斜視図である。図2は、スイッチ100のうち室内の露出する前面側から見た状態を示している。図3は、スイッチ100のうち壁110の内部に埋め込まれる後面側から見た状態を示している。図4は、実施の形態1に係るスイッチの模式図である。図5は、実施の形態1に係るスイッチの分解斜視図である。図6は、実施の形態1に係るスイッチの分解模式図である。図7は、実施の形態1に係るスイッチの機能ブロック図である。スイッチ100は、壁110の内部に収められる器体20と、器体20を壁110内で覆う配線ボックス10と、壁110から露出する意匠部30と、壁110への取付用の取付枠3とを備える。なお、図2及び図3では、配線ボックス10の図示を省略している。また、図2及び図3では、取付枠3の図示を省略している。 2 and 3 are perspective views of the switch according to the first embodiment. FIG. 2 shows a state of the switch 100 viewed from the front side exposed indoors. FIG. 3 shows a state of the switch 100 as seen from the rear side embedded in the wall 110. FIG. 4 is a schematic diagram of the switch according to the first embodiment. FIG. 5 is an exploded perspective view of the switch according to the first embodiment. FIG. 6 is an exploded schematic diagram of the switch according to the first embodiment. FIG. 7 is a functional block diagram of the switch according to the first embodiment. The switch 100 includes a container 20 that is housed inside a wall 110, a wiring box 10 that covers the container 20 within the wall 110, a design part 30 that is exposed from the wall 110, and a mounting frame 3 for mounting on the wall 110. Equipped with. Note that illustration of the wiring box 10 is omitted in FIGS. 2 and 3. Further, in FIGS. 2 and 3, illustration of the mounting frame 3 is omitted.
 取付枠3は、取付穴3aを通した不図示の木ネジを用いて壁110に固定される。取付枠3が壁110に固定されることで、スイッチ100全体が壁110に固定される。 The mounting frame 3 is fixed to the wall 110 using wood screws (not shown) passed through the mounting holes 3a. By fixing the mounting frame 3 to the wall 110, the entire switch 100 is fixed to the wall 110.
 意匠部30は、操作スイッチ4を覆うように配置される樹脂製の操作ハンドル部1と、操作ハンドル部1の周囲を囲うカバー2とを備える。操作ハンドル部1は、使用者が換気扇42のオンオフの切替及び運転強度の強弱を切り替えるための部品であり、スイッチ100の前面に設置されている。カバー2は、取付枠3に対して爪などによる嵌合で取り付けられる。 The design section 30 includes an operating handle section 1 made of resin and arranged to cover the operating switch 4, and a cover 2 surrounding the operating handle section 1. The operation handle part 1 is a part that allows the user to turn on and off the ventilation fan 42 and to change the intensity of operation, and is installed on the front surface of the switch 100. The cover 2 is attached to the attachment frame 3 by fitting with claws or the like.
 図4に示すように、操作ハンドル部1は、第1操作ハンドル51、第2操作ハンドル52及び表示部53を備える。第1操作ハンドル51は、ユーザ操作により換気扇42のオンオフを切り替えるための部品である。第2操作ハンドル52は、ユーザ操作により換気扇42の運転強度の強弱を切り替えるための部品である。表示部53は、換気扇42のオンオフの状態、運転強度の状態及び無線通信の状態を表示する。 As shown in FIG. 4, the operating handle section 1 includes a first operating handle 51, a second operating handle 52, and a display section 53. The first operation handle 51 is a component for switching the ventilation fan 42 on and off by user operation. The second operation handle 52 is a component for switching the operating intensity of the ventilation fan 42 by user operation. The display unit 53 displays the on/off state of the ventilation fan 42, the operating intensity state, and the wireless communication state.
 器体20は、制御部5、通信部6、保護カバー7及び電源部8を備える。また、器体20は、制御部5、通信部6、保護カバー7及び電源部8を収納する四角筒状の器体カバー9と、器体カバー9の前面を覆う操作スイッチ4とを備える。操作スイッチ4には、操作ハンドル部1が爪などによる嵌合で取り付けられる。なお、器体カバー9は、筒状であればよく、四角筒状に限定されない。 The container body 20 includes a control section 5, a communication section 6, a protective cover 7, and a power supply section 8. Further, the container body 20 includes a rectangular cylindrical container cover 9 that houses the control section 5, the communication section 6, the protective cover 7, and the power supply section 8, and an operation switch 4 that covers the front surface of the container cover 9. The operating handle portion 1 is attached to the operating switch 4 by fitting with a claw or the like. Note that the vessel cover 9 only needs to have a cylindrical shape, and is not limited to a square cylindrical shape.
 操作スイッチ4には、スイッチ伝動部4aが設けられている。スイッチ伝動部4aは変形可能であり、第1操作ハンドル51又は第2操作ハンドル52が押下されると制御部5側へ変形する。スイッチ伝動部4aが制御部5側へ変形すると、制御部5に設けられた不図示のボタンが押下される。 The operation switch 4 is provided with a switch transmission part 4a. The switch transmission part 4a is deformable, and deforms toward the control part 5 when the first operating handle 51 or the second operating handle 52 is pressed down. When the switch transmission section 4a is deformed toward the control section 5, a button (not shown) provided on the control section 5 is pressed.
 制御部5は、電源部8に対して、出力状態を指示する出力指令信号を出力する。出力状態は、強運転、弱運転及び停止の三つの状態である。制御部5は、操作ハンドル部1に対する換気扇42の運転状態の切り替えを要求する操作に基づいて出力指令信号を生成する。 The control unit 5 outputs an output command signal to the power supply unit 8 to instruct the output state. There are three output states: strong operation, weak operation, and stop. The control unit 5 generates an output command signal based on an operation performed on the operating handle unit 1 to request switching of the operating state of the ventilation fan 42 .
 制御部5は、通信部6に対して通信配線60を介して通信用信号を出力する。通信用信号は、状態変化信号として出力される。すなわち、運転状態がオンからオフに切り替わったことを示す第1状態変化信号、運転状態がオフからオンに切り替わったことを示す第2状態変化信号、運転強度が強から弱に切り替わったことを示す第3状態変化信号、運転強度が弱から強に切り替わったことを示す第4状態変化信号を定めておき、操作ハンドル部1に対する操作により状態が切り替わったときに、それぞれに対応する状態変化信号を出力する。 The control unit 5 outputs a communication signal to the communication unit 6 via the communication wiring 60. The communication signal is output as a state change signal. That is, a first state change signal indicates that the operating state has switched from on to off, a second state change signal indicates that the operating state has switched from off to on, and a second state change signal indicates that the operating intensity has switched from strong to weak. A third state change signal and a fourth state change signal indicating that the driving intensity has switched from weak to strong are defined, and when the state is switched by operating the operating handle part 1, the corresponding state change signals are transmitted. Output.
 通信部6は、器体カバー9のうち、保護カバー7が配置された部分よりも前方の部分に収納されている。通信部6は、制御部5から通信配線60を介して出力された状態変化信号を受けて、無線信号65をルータ61に対して出力する。 The communication unit 6 is housed in a portion of the container cover 9 that is forward of the portion where the protective cover 7 is placed. The communication unit 6 receives the state change signal output from the control unit 5 via the communication wiring 60 and outputs a wireless signal 65 to the router 61 .
 通信部6は、状態変化信号を制御部5から受信し、状態変化信号が示す運転状態及び運転強度を無線信号にてユーザ端末64へ送信する。また、操作ハンドル部1以外での切替操作、例えばユーザ端末64による遠隔操作の信号を受信し、電源部8へ信号を送信する。通信部6が遠隔操作の信号を電源部8に送信することで、電源部8内のリレーを開閉させることができる。 The communication unit 6 receives the state change signal from the control unit 5, and transmits the driving state and driving intensity indicated by the state change signal to the user terminal 64 as a wireless signal. It also receives a signal from a switching operation other than the operation handle section 1, for example, a remote operation from the user terminal 64, and transmits the signal to the power supply section 8. When the communication unit 6 transmits a remote control signal to the power supply unit 8, a relay in the power supply unit 8 can be opened or closed.
 電源部8は、電子回路の開閉を行う電子部品の他に、外部電源86を換気扇42などの負荷が接続される端子台21を持つ。電源部8は、端子台21を通じて電源が供給されるとともに、負荷側へ電源を供給する。 The power supply unit 8 has a terminal block 21 to which an external power supply 86 and a load such as a ventilation fan 42 are connected, in addition to electronic components that open and close electronic circuits. The power supply section 8 is supplied with power through the terminal block 21 and also supplies power to the load side.
 端子台21は、外部電源86から交流100Vの電力供給を受ける電源入力線81が接続される電源入力端子82と、モータ回路41に直流電力を供給する出力配線40が接続される出力端子83とを備えている。電源部8は、外部電源86から供給される100Vの交流から12Vの直流を生成し、制御配線50を通じて制御部5に供給する。通信部6には、制御部5から通信配線60を通じて12Vの直流が供給される。したがって、制御部5及び通信部6には、外部電源86から電源部8に供給される電圧よりも低い電圧が印加される。また、電源部8は、制御部5からの出力指令信号に基づいて、モータ回路41に負荷駆動電力を供給する。 The terminal block 21 has a power input terminal 82 to which a power input line 81 that receives 100V AC power from an external power supply 86 is connected, and an output terminal 83 to which an output wiring 40 that supplies DC power to the motor circuit 41 is connected. It is equipped with Power supply unit 8 generates 12V DC from 100V AC supplied from external power supply 86 and supplies it to control unit 5 through control wiring 50 . The communication unit 6 is supplied with 12V DC from the control unit 5 through the communication wiring 60 . Therefore, a voltage lower than the voltage supplied from the external power supply 86 to the power supply section 8 is applied to the control section 5 and the communication section 6. Further, the power supply section 8 supplies load driving power to the motor circuit 41 based on the output command signal from the control section 5 .
 保護カバー7は、電源部8よりも前方に配置されて器体カバー9の内壁と当接し、器体カバー9内の電源部8が配置された空間を操作ハンドル部1から隔離する。例えば、保護カバー7は、電源部8と通信部6との間に配置される。実施の形態1では、電源部8は50V以上の高い電圧が印加される高電圧部であり、制御部5及び通信部6は50V未満の低い電圧が印加される低電圧部である。保護カバー7は、高電圧部である電源部8での発熱が低電圧部である制御部5及び通信部6と、操作部である操作ハンドル部1とへ影響することを抑制する。 The protective cover 7 is disposed in front of the power supply section 8 and comes into contact with the inner wall of the container cover 9, and isolates the space in the container cover 9 in which the power supply section 8 is arranged from the operation handle section 1. For example, the protective cover 7 is placed between the power supply section 8 and the communication section 6. In the first embodiment, the power supply section 8 is a high voltage section to which a high voltage of 50V or more is applied, and the control section 5 and the communication section 6 are low voltage sections to which a low voltage of less than 50V is applied. The protective cover 7 suppresses heat generation in the power supply section 8, which is a high voltage section, from affecting the control section 5 and communication section 6, which are low voltage sections, and the operation handle section 1, which is an operation section.
 配線ボックス10は、器体20を覆うように配置される。スイッチ100は、端子台21に接続される配線が配線ボックス10に収納された状態で、取付穴3aを通したネジによって壁110に固定される。 The wiring box 10 is arranged to cover the container body 20. The switch 100 is fixed to the wall 110 with screws passed through the mounting holes 3a, with the wiring connected to the terminal block 21 housed in the wiring box 10.
 図8は、実施の形態1に係るスイッチの電源部の概略構成を示す図である。なお、電源部8の詳細な構造については後述する。制御部5は、不図示のリード線及びコネクタを用いて通信部6及び電源部8と電気的に接続されている。制御部5の第1操作ハンドル51が押下されることで電源部8内の第1リレー90が閉じられ、換気扇42に電流が流れる。すなわち、第1操作ハンドル51は、電源入力線81を遮断から接続に切り替える切替操作と、電源入力線81を切断から遮断へ切り替える切替操作を受け付ける。第1リレー90が閉じられた直後の電流は突入電流と呼ばれ、瞬間的に大きな電流が流れる。特に直流モータ搭載機器では回路の仕様上、交流モータ搭載機器と比較して大きな電流が流れる。この突入電流を低減するために、電源部8は、第2リレー91及びバイパス抵抗92を備える。第1リレー90が閉じられた直後は第2リレー91が開かれているため、バイパス抵抗92に電流が流れる。一定時間経過すると第2リレー91が閉じられることで電子部品に流れる突入電流を低減させることができる。 FIG. 8 is a diagram showing a schematic configuration of the power supply section of the switch according to the first embodiment. Note that the detailed structure of the power supply unit 8 will be described later. The control section 5 is electrically connected to the communication section 6 and the power supply section 8 using lead wires and connectors (not shown). When the first operation handle 51 of the control section 5 is pressed down, the first relay 90 in the power supply section 8 is closed, and current flows through the ventilation fan 42. That is, the first operation handle 51 receives a switching operation for switching the power input line 81 from cutoff to connection, and a switching operation for switching the power input line 81 from cutoff to cutoff. The current immediately after the first relay 90 is closed is called an inrush current, and a large current flows instantaneously. Particularly in equipment equipped with a DC motor, a larger current flows than equipment equipped with an AC motor due to the circuit specifications. In order to reduce this rush current, the power supply unit 8 includes a second relay 91 and a bypass resistor 92. Immediately after the first relay 90 is closed, the second relay 91 is open, so current flows through the bypass resistor 92. After a certain period of time has elapsed, the second relay 91 is closed, thereby reducing the rush current flowing through the electronic components.
 第2リレー91を閉じる時刻は、制御部5にて任意に設定可能である。すなわち、第2リレー91を開いている期間は、制御部5にて設定可能である。したがって、突入電流の流れる時間を変更したい場合は、制御部5にて第2リレー91を閉じる時刻の設定を変更することで容易に対応可能である。 The time to close the second relay 91 can be arbitrarily set by the control unit 5. That is, the period during which the second relay 91 is open can be set by the control unit 5. Therefore, if it is desired to change the time during which the rush current flows, this can be easily done by changing the setting of the time when the second relay 91 is closed in the control section 5.
 スイッチ100に突入電流が大きい機器を接続したい場合においても、バイパス抵抗92のみ変更すればよく、第1リレー90及び第2リレー91は変更する必要がないため、容易に対応可能である。 Even when it is desired to connect a device with a large inrush current to the switch 100, it is possible to easily handle this because only the bypass resistor 92 needs to be changed, and the first relay 90 and the second relay 91 do not need to be changed.
 図9は、実施の形態1に係るスイッチから負荷駆動電力が供給されるモータ回路の構成を示す図である。図9は、交流誘導機モータを使用する場合のモータ回路41の例を示している。図9に示すように、モータ回路41は、交流電源に補助巻線111と主巻線112とを並列に接続し、補助巻線111にコンデンサ113を直列接続して構成されたコンデンサ誘導電動機を備えている。補助巻線111と主巻線112とは、コンデンサ113により、位相が90°ずれている。主巻線112には変速巻線114が直列に重ね巻きされる。交流電源の接続位置を、片方を共通位置116に接続し、もう片方を主巻線112のみを含む位置117と、主巻線112と変速巻線114とを含む位置118とで切換えることで、コンデンサ誘導電動機における速度調整を行う。 FIG. 9 is a diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to the first embodiment. FIG. 9 shows an example of a motor circuit 41 when using an AC induction motor. As shown in FIG. 9, the motor circuit 41 is a capacitor induction motor configured by connecting an auxiliary winding 111 and a main winding 112 in parallel to an AC power source, and connecting a capacitor 113 to the auxiliary winding 111 in series. We are prepared. The auxiliary winding 111 and the main winding 112 are out of phase by 90° due to the capacitor 113. A variable speed winding 114 is wound over the main winding 112 in series. By switching the connection position of the AC power supply between one side connected to the common position 116 and the other side between a position 117 including only the main winding 112 and a position 118 including the main winding 112 and the variable speed winding 114, Perform speed adjustment in a capacitor induction motor.
 出力配線40は、換気扇42の補助巻線111のみを含む位置117に接続される強運転用出力配線40aと、換気扇42の補助巻線111及び変速巻線114を含む位置118に接続される弱運転用出力配線40bと、共通位置116に接続される共通配線40cとを含んでいる。強運転指令時には、電源部8は、強運転用出力配線40aと共通配線40cとの間に交流100V電力を印加し、主巻線112及び補助巻線111に電流を流すことで強運転を実施する。弱運転指令時には、電源部8は、弱運転用出力配線40bと共通配線40cとの間に交流100V電力を印加し、主巻線112、補助巻線111及び変速巻線114に電流を流すことで弱運転を実施する。 The output wiring 40 includes a strong operation output wiring 40a connected to a position 117 that includes only the auxiliary winding 111 of the ventilation fan 42, and a weak output wiring 40a that is connected to a position 118 that includes the auxiliary winding 111 and the variable speed winding 114 of the ventilation fan 42. It includes an output wiring 40b for operation and a common wiring 40c connected to the common position 116. When commanding strong operation, the power supply unit 8 applies 100 V AC power between the output wiring 40a for strong operation and the common wiring 40c, and causes current to flow through the main winding 112 and the auxiliary winding 111, thereby executing the strong operation. do. At the time of the weak operation command, the power supply section 8 applies 100 V AC power between the weak operation output wiring 40b and the common wiring 40c, and causes current to flow through the main winding 112, the auxiliary winding 111, and the variable speed winding 114. Perform gentle operation.
 次に、電源部8の詳細な構造について説明する。図10は、実施の形態1に係るスイッチの電源部の模式図である。電源部8は、電源入力線81と、出力配線40と、入力部84と、直流低電圧電源出力配線85と、主リレーである第1リレー90と、第1リレー90に直列に接続されたバイパスリレーである第2リレー91と、第2リレー91に並列に接続されたバイパス抵抗92と、第1リレー90及び第2リレー91に直列に接続された強弱リレーである第3リレー94とを有する。 Next, the detailed structure of the power supply section 8 will be explained. FIG. 10 is a schematic diagram of the power supply section of the switch according to the first embodiment. The power supply unit 8 is connected in series to a power input line 81, an output wiring 40, an input unit 84, a DC low voltage power output wiring 85, a first relay 90 which is a main relay, and a first relay 90. A second relay 91 that is a bypass relay, a bypass resistor 92 connected in parallel to the second relay 91, and a third relay 94 that is a strong/weak relay connected in series to the first relay 90 and the second relay 91. have
 入力部84は、外部電源86から交流電力の供給を受けて、一部を直流低電圧電力に変換し、直流低電圧電源出力配線85を介して制御部5に供給し、一部を負荷電力として出力配線40からモータ回路41に出力する。 The input unit 84 receives AC power from an external power supply 86, converts a part of it into DC low voltage power, supplies it to the control unit 5 via a DC low voltage power output wiring 85, and converts a part of it into load power. It is output from the output wiring 40 to the motor circuit 41 as a signal.
 第1リレー90には、開閉を制御する第1信号線121が制御部5から接続される。第1信号線121がオンのとき、第1リレー90は閉状態、すなわち導通状態となる。第1信号線121がオフのとき、第1リレー90は開状態、すなわち遮断状態となる。第2リレー91には、開閉を制御する第2信号線122が制御部5から接続される。第2信号線122がオンのとき、第2リレー91は閉状態、すなわち導通状態となる。第2信号線122がオフのとき、第2リレー91は開状態、すなわち遮断状態となる。第3リレー94には、開閉を制御する第3信号線123が制御部5から接続される。第3信号線123がオンのとき、第3リレー94は閉状態、すなわち導通状態となる。第3信号線123がオフのとき、第3リレー94は開状態、すなわち遮断状態となる。 A first signal line 121 that controls opening and closing is connected to the first relay 90 from the control unit 5. When the first signal line 121 is on, the first relay 90 is in a closed state, that is, in a conductive state. When the first signal line 121 is off, the first relay 90 is in an open state, that is, in a cutoff state. A second signal line 122 that controls opening and closing is connected to the second relay 91 from the control unit 5 . When the second signal line 122 is on, the second relay 91 is in a closed state, that is, in a conductive state. When the second signal line 122 is off, the second relay 91 is in an open state, that is, a cutoff state. A third signal line 123 that controls opening and closing is connected to the third relay 94 from the control unit 5 . When the third signal line 123 is on, the third relay 94 is in a closed state, that is, in a conductive state. When the third signal line 123 is off, the third relay 94 is in an open state, that is, in a cutoff state.
 第1リレー90及び第2リレー91の動作について説明する。図11は、実施の形態1に係るスイッチの信号波形を示す図である。図11において、第1操作ハンドル51に対する換気扇42のオンオフ切替操作による指令状態を「オンオフ信号」に示す。オンオフ信号は、換気扇42のオンを指示するときはハイレベルであり、換気扇42のオフを指示するときはローレベルである。時刻T1で換気扇42のオンが指示され、時刻T4で換気扇42のオフが指示される。 The operations of the first relay 90 and the second relay 91 will be explained. FIG. 11 is a diagram showing signal waveforms of the switch according to the first embodiment. In FIG. 11, an "on/off signal" indicates a command state caused by an on/off switching operation of the ventilation fan 42 with respect to the first operating handle 51. The on/off signal is at a high level when instructing to turn on the ventilation fan 42, and is at a low level when instructing to turn off the ventilation fan 42. At time T1, the ventilation fan 42 is instructed to be turned on, and at time T4, the ventilation fan 42 is instructed to be turned off.
 「オンオフ信号」が制御部5に入力され、第1リレー90及び第2リレー91への指令信号が出力される。時刻T1において換気扇42のオンが指示されるとき、第2リレー91は閉状態、すなわち導通状態である。「オンオフ信号」が時刻T1で換気扇42のオンを指示するように変化すると、第2リレー信号は時刻T1から時刻T3までオフされ、時刻T3以降はオンに戻る。 The "on/off signal" is input to the control unit 5, and command signals to the first relay 90 and the second relay 91 are output. When the ventilation fan 42 is instructed to be turned on at time T1, the second relay 91 is in a closed state, that is, in a conductive state. When the "on-off signal" changes to instruct to turn on the ventilation fan 42 at time T1, the second relay signal is turned off from time T1 to time T3, and is turned back on after time T3.
 第1リレー90は、時刻T1と時刻T3との間の時刻T2において閉じられる。すなわち、第1リレー90は、第2リレー91が開かれた状態で閉じられる。 The first relay 90 is closed at time T2 between time T1 and time T3. That is, the first relay 90 is closed while the second relay 91 is opened.
 第1リレー90が閉じられた瞬間は、第2リレー91は開かれているため、電流はバイパス抵抗92のみを流れる。第1リレー90が閉じられた瞬間には突入電流が流れるが、バイパス抵抗92により電圧が降下するため、モータ回路41に印加される電圧も降下し、突入電流によるモータ回路41への影響を低減させることができる。 At the moment when the first relay 90 is closed, the second relay 91 is open, so current flows only through the bypass resistor 92. An inrush current flows at the moment the first relay 90 is closed, but since the voltage drops due to the bypass resistor 92, the voltage applied to the motor circuit 41 also drops, reducing the influence of the inrush current on the motor circuit 41. can be done.
 突入電流収束後の時刻T3に、第2リレー91を閉じることで、時刻T3以降はバイパス抵抗92による電力消費を回避することができる。 By closing the second relay 91 at time T3 after the inrush current converges, power consumption by the bypass resistor 92 can be avoided after time T3.
 時刻T2から時刻T3の間はバイパス抵抗92を経由して電流を流すが、この際には電流を1/10程度に抑制する。従って、時刻T2から時刻T3の時間は、交流周期の10倍程度の時間とすれば良い。すなわち、バイパス時間は十msecオーダーから百msecオーダーとすれば良い。 Between time T2 and time T3, current flows through the bypass resistor 92, but at this time, the current is suppressed to about 1/10. Therefore, the time from time T2 to time T3 may be about 10 times the AC cycle. That is, the bypass time may be on the order of 10 msec to 100 msec.
 スイッチオフ時も同様である。「オンオフ信号」が時刻T4で換気扇42のオフを指示するように変化すると、第2リレー信号は時刻T4から時刻T6までオフされ、時刻T6以降はオンに戻る。 The same applies when the switch is turned off. When the "on-off signal" changes to instruct the ventilation fan 42 to be turned off at time T4, the second relay signal is turned off from time T4 to time T6, and then turned back on after time T6.
 第1リレー90は、時刻T4と時刻T6との間の時刻T5において開かれる。すなわち、第1リレー90は、第2リレー91が開かれた状態で開かれる。 The first relay 90 is opened at time T5 between time T4 and time T6. That is, the first relay 90 is opened while the second relay 91 is opened.
 第1リレー90が開かれた瞬間は、第2リレー91が開かれているため、電流はバイパス抵抗92のみを流れる。第1リレー90が開かれた瞬間は、スイッチングノイズが発生するが、バイパス抵抗92により電圧が降下するため、電子回路への影響を低減させることができる。 At the moment when the first relay 90 is opened, the second relay 91 is opened, so the current flows only through the bypass resistor 92. Switching noise occurs at the moment the first relay 90 is opened, but since the voltage drops due to the bypass resistor 92, the influence on the electronic circuit can be reduced.
 図12は、実施の形態1に係るスイッチから負荷駆動電力が供給されるモータ回路の構成を示す図である。図12は、直流モータを使用する場合のモータ回路41の構成を示している。直流モータのモータ回路41は、検出部250と、整流部210と、平滑部220と、スイッチング部230と、モータ巻線部240と、を備える。 FIG. 12 is a diagram showing the configuration of a motor circuit to which load driving power is supplied from the switch according to the first embodiment. FIG. 12 shows the configuration of the motor circuit 41 when using a DC motor. The motor circuit 41 of the DC motor includes a detection section 250, a rectification section 210, a smoothing section 220, a switching section 230, and a motor winding section 240.
 検出部250は、スイッチ100からの入力が強端子から入力されたか、弱端子から入力されたかを検出し、スイッチング制御部231に出力する。 The detection unit 250 detects whether the input from the switch 100 is input from the strong terminal or the weak terminal, and outputs it to the switching control unit 231.
 整流部210は、ダイオードブリッジ回路211により、入力電圧の負電圧分を正電圧に変換して全波整流し、交流電力を脈動する直流に変換する。 The rectifier 210 converts the negative voltage component of the input voltage into a positive voltage using a diode bridge circuit 211, performs full-wave rectification, and converts AC power into pulsating DC.
 平滑部220は、平滑コンデンサ221により脈動電圧を平滑化する。 The smoothing unit 220 smoothes the pulsating voltage using a smoothing capacitor 221.
 スイッチング部230は、スイッチング素子を順に切り替えることにより、固定子のモータ巻線部240への供給を順に切り替え、モータに対して回転磁界を与える。切り替え制御方法としては、スイッチング制御部231にて、例えば回転子を磁石回転子とし、固定子側にホール素子を設けて回転子の回転角度を検出し、回転角度に応じてスイッチング素子を順に切り替える方法がある。また、スイッチング制御部231は、強弱のどちらが選択されているかの信号を検出部250から受信して、強弱運転を制御する。 The switching unit 230 sequentially switches the supply of the stator to the motor winding unit 240 by sequentially switching the switching elements, thereby applying a rotating magnetic field to the motor. As a switching control method, the switching control unit 231 uses, for example, a magnet rotor as the rotor, a Hall element is provided on the stator side, detects the rotation angle of the rotor, and switches the switching elements in order according to the rotation angle. There is a way. Further, the switching control unit 231 receives a signal from the detection unit 250 indicating which of the strong and weak modes is selected, and controls the strong and weak operation.
 モータ巻線部240は、固定子に巻かれており、順に電流を切り替えることにより、回転磁界を形成する。 The motor winding section 240 is wound around the stator, and forms a rotating magnetic field by sequentially switching the current.
 電源オフ時には平滑コンデンサ221の電荷は放出されているため、電源投入時にはまず平滑コンデンサ221を充電する必要があり、突入電流の原因となる。すなわち、平滑コンデンサ221を使用する直流モータでは、突入電流は大きくなる。 Since the charge in the smoothing capacitor 221 is released when the power is turned off, it is necessary to charge the smoothing capacitor 221 first when the power is turned on, which causes an inrush current. That is, in a DC motor using the smoothing capacitor 221, the rush current becomes large.
 実施の形態1に係るスイッチ100では、入力部84から制御部5に直流低電圧電力が供給されるが、大きな突入電流が流れると、制御部5側への電源にも変動ノイズが発生する。特に、通信部6は、ノイズの影響を受けやすいが、実施の形態1に係るスイッチ100により、突入電流を抑制できるため、通信部6へのノイズによる誤動作を抑制することができる。 In the switch 100 according to the first embodiment, DC low voltage power is supplied from the input section 84 to the control section 5, but when a large rush current flows, fluctuation noise is also generated in the power supply to the control section 5 side. In particular, the communication unit 6 is easily affected by noise, but the switch 100 according to the first embodiment can suppress inrush current, so malfunctions caused by noise to the communication unit 6 can be suppressed.
 また、壁面設置型のスイッチの場合、全体のサイズは決められているが、通信機能を使用するために通信部を設けると、スイッチ全体のサイズを維持するために、リレー部の大型化を抑制することが求められる。従来のスイッチでは、10A未満の定格電流に対しても、突入電流は10倍程度の電流が流れる。これに対し、実施の形態1に係るスイッチ100では、突入時にはバイパス抵抗92を経由するため、電気抵抗が10Ωから100Ω程度のバイパス抵抗92を用いることにより、突入電流を定格電流と同等に抑制することができる。このため、実施の形態1に係るスイッチ100は、リレー部などの部品サイズをアップさせることなく、オンオフ切替操作時に発生する突入電流を低減できる。 In addition, in the case of a wall-mounted switch, the overall size is determined, but if a communication section is provided to use the communication function, the size of the relay section can be suppressed in order to maintain the overall size of the switch. are required to do so. In conventional switches, even with a rated current of less than 10 A, an inrush current of about 10 times flows. On the other hand, in the switch 100 according to the first embodiment, since the inrush current passes through the bypass resistor 92, the inrush current is suppressed to be equal to the rated current by using the bypass resistor 92 with an electrical resistance of about 10Ω to 100Ω. be able to. Therefore, the switch 100 according to the first embodiment can reduce the rush current generated during the on/off switching operation without increasing the size of components such as the relay section.
実施の形態2.
 実施の形態2に係るスイッチ100の構成は、実施の形態1に係るスイッチ100と同様である。図13は、実施の形態2に係るスイッチの信号波形を示す図である。第2操作ハンドル52は、電源入力線81の接続先切替操作を受け付ける。第2操作ハンドル52に対する操作により電源入力線81の接続先が切り替えられることにより、換気扇42の運転強度の強弱が変更される。図13において、第2操作ハンドル52の操作による指令状態を「強弱信号」に示す。強弱信号は、換気扇42に強運転を指示するときはハイレベルであり、換気扇42に弱運転を指示するときはローレベルである。時刻T11で換気扇42の運転強度を強にする信号が出力され、時刻T14で換気扇42の運転硬度を弱にする信号が出力される。
Embodiment 2.
The configuration of switch 100 according to the second embodiment is the same as that of switch 100 according to the first embodiment. FIG. 13 is a diagram showing signal waveforms of the switch according to the second embodiment. The second operation handle 52 accepts an operation to switch the connection destination of the power input line 81. By operating the second operating handle 52 to switch the connection destination of the power input line 81, the operating intensity of the ventilation fan 42 is changed. In FIG. 13, the command state by operating the second operating handle 52 is shown as "strength/weakness signal". The strength signal is at a high level when instructing the ventilation fan 42 to operate in a strong manner, and is at a low level when instructing the ventilation fan 42 to operate in a weak manner. At time T11, a signal that increases the operating intensity of the ventilation fan 42 is output, and at time T14, a signal that reduces the operating intensity of the ventilation fan 42 is output.
 第2操作ハンドル52が操作されることにより、「強弱信号」が制御部5に入力され、第2リレー91及び第3リレー94への指令信号が出力される。弱信号が出力される状態では、第2リレー91は閉状態、すなわち導通状態である。強指令により「強弱信号」が時刻T11で強になると、第2リレー信号は時刻T11から時刻T13までオフされ、時刻T13以降はオンに戻る。 By operating the second operating handle 52, a "strength signal" is input to the control unit 5, and a command signal to the second relay 91 and third relay 94 is output. In a state where a weak signal is output, the second relay 91 is in a closed state, that is, in a conductive state. When the "strong/weak signal" becomes strong at time T11 due to the strong command, the second relay signal is turned off from time T11 to time T13, and is turned back on after time T13.
 第3リレー94は、時刻T11と時刻T13との間の時刻T12で閉じられる。すなわち、第3リレー94は、第2リレー91が開かれた状態で切り替えられる。 The third relay 94 is closed at time T12 between time T11 and time T13. That is, the third relay 94 is switched while the second relay 91 is open.
 第3リレー94が閉じられた瞬間は、第2リレー91が開かれているため、電流はバイパス抵抗92のみを流れる。第3リレー94が閉じられて強弱出力配線が切り替わった瞬間には突入電流が流れるが、バイパス抵抗92により電圧が降下するため、モータ回路41に印加される電圧も降下し、突入電流によるモータ回路41への影響を低減させることができる。 At the moment when the third relay 94 is closed, the second relay 91 is open, so current flows only through the bypass resistor 92. An inrush current flows at the moment the third relay 94 is closed and the strong/weak output wiring is switched, but since the voltage drops due to the bypass resistor 92, the voltage applied to the motor circuit 41 also drops, and the motor circuit due to the inrush current 41 can be reduced.
 突入電流収束後の時刻T13で、第3リレー94を閉じることで、時刻T13以降はバイパス抵抗92による電力消費を回避することができる。 By closing the third relay 94 at time T13 after the inrush current converges, power consumption by the bypass resistor 92 can be avoided after time T13.
 弱指令時も同様である。「強弱信号」が時刻T14で弱になると、第2リレー信号は時刻T14から時刻T16までオフされ、時刻T16以降はオンに戻る。 The same applies to weak commands. When the "strong/weak signal" becomes weak at time T14, the second relay signal is turned off from time T14 to time T16, and is turned back on after time T16.
 第3リレー94は、時刻T14と時刻T16との間の時刻T15のタイミングで開かれる。すなわち、第3リレー94は、第2リレー91が開かれた状態で切り替えられる。 The third relay 94 is opened at time T15 between time T14 and time T16. That is, the third relay 94 is switched while the second relay 91 is open.
 第3リレー94が開かれた瞬間は、第2リレー91が開かれているため、電流はバイパス抵抗92のみを流れる。第3リレー94が開かれた瞬間にも、閉じられた瞬間と同様に突入電流が流れるが、バイパス抵抗92により電圧が降下するため、モータ回路41に印加される電圧も降下し、突入電流によるモータ回路41への影響を低減させることができる。 At the moment when the third relay 94 is opened, the second relay 91 is opened, so the current flows only through the bypass resistor 92. At the moment the third relay 94 is opened, an inrush current flows in the same way as at the moment it is closed, but since the voltage drops due to the bypass resistor 92, the voltage applied to the motor circuit 41 also drops, and the inrush current The influence on the motor circuit 41 can be reduced.
 実施の形態2に係るスイッチ100では、突入時にはバイパス抵抗92を経由するため、電気抵抗が10Ωから100Ω程度のバイパス抵抗92を用いることにより、突入電流を定格電流と同等に抑制することができる。このため、実施の形態2に係るスイッチ100は、リレー部などの部品サイズをアップさせることなく、電源入力線81の接続先切替操作時に発生する突入電流を低減できる。 In the switch 100 according to the second embodiment, since the inrush current passes through the bypass resistor 92, by using the bypass resistor 92 with an electrical resistance of about 10Ω to 100Ω, the inrush current can be suppressed to the same level as the rated current. Therefore, the switch 100 according to the second embodiment can reduce the rush current that occurs when switching the connection destination of the power input line 81 without increasing the size of components such as the relay section.
 次に、上記の実施の形態1及び実施の形態2に係るスイッチ100が備える制御部5のハードウェア構成について説明する。図14は、実施の形態1及び実施の形態2に係るスイッチの制御部のハードウェア構成例を示す図である。図14には、プログラムを実行するハードウェアを用いることによって制御部5の機能が実現される場合におけるハードウェア構成を示している。 Next, the hardware configuration of the control unit 5 included in the switch 100 according to the first and second embodiments described above will be described. FIG. 14 is a diagram illustrating an example of the hardware configuration of the control unit of the switch according to the first embodiment and the second embodiment. FIG. 14 shows a hardware configuration in which the functions of the control unit 5 are realized by using hardware that executes a program.
 制御部5は、各種処理を実行するプロセッサ71と、メインメモリであるメモリ72と、情報を記憶する記憶装置73とを有する。プロセッサ71には、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ72には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性又は揮発性の半導体メモリを用いることができる。記憶装置73には、換気風量決定処理を実行するためのプログラムが格納されている。プロセッサ71は、記憶装置73に格納されているプログラムをメモリ72に読み出して実行する。プロセッサ71が記憶装置73に格納されているプログラムをメモリ72に読み出して実行することにより、制御部5の機能が実現される。 The control unit 5 includes a processor 71 that executes various processes, a memory 72 that is a main memory, and a storage device 73 that stores information. The processor 71 may be an arithmetic device, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 72 also includes RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). non-volatile or Volatile semiconductor memory can be used. The storage device 73 stores a program for executing the ventilation air volume determination process. The processor 71 reads the program stored in the storage device 73 into the memory 72 and executes it. The functions of the control unit 5 are realized by the processor 71 reading a program stored in the storage device 73 into the memory 72 and executing it.
 以上の実施の形態に示した構成は、内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments shows an example of the content, and it is also possible to combine it with another known technology, or a part of the configuration can be omitted or changed without departing from the gist. It is also possible.
 1 操作ハンドル部、2 カバー、3 取付枠、3a 取付穴、4 操作スイッチ、4a スイッチ伝動部、5 制御部、6 通信部、7 保護カバー、8 電源部、9 器体カバー、10 配線ボックス、20 器体、21 端子台、30 意匠部、40 出力配線、40a 強運転用出力配線、40b 弱運転用出力配線、40c 共通配線、41 モータ回路、42 換気扇、50 制御配線、51 第1操作ハンドル、52 第2操作ハンドル、53 表示部、60 通信配線、61 ルータ、62 サーバ、63 ネットワーク、64 ユーザ端末、65 無線信号、71 プロセッサ、72 メモリ、73 記憶装置、81 電源入力線、82 電源入力端子、83 出力端子、84 入力部、85 直流低電圧電源出力配線、86 外部電源、90 第1リレー、91 第2リレー、92 バイパス抵抗、94 第3リレー、100 スイッチ、110 壁、111 補助巻線、112 主巻線、113 コンデンサ、114 変速巻線、116 共通位置、117,118 位置、121 第1信号線、122 第2信号線、123 第3信号線、200 換気システム、210 整流部、211 ダイオードブリッジ回路、220 平滑部、221 平滑コンデンサ、230 スイッチング部、231 スイッチング制御部、240 モータ巻線部、250 検出部。 1 Operation handle part, 2 Cover, 3 Mounting frame, 3a Mounting hole, 4 Operation switch, 4a Switch transmission part, 5 Control part, 6 Communication part, 7 Protective cover, 8 Power supply part, 9 Body cover, 10 Wiring box, 20 Body, 21 Terminal block, 30 Design part, 40 Output wiring, 40a Output wiring for strong operation, 40b Output wiring for weak operation, 40c Common wiring, 41 Motor circuit, 42 Ventilation fan, 50 Control wiring, 51 First operation handle , 52 Second operation handle, 53 Display unit, 60 Communication wiring, 61 Router, 62 Server, 63 Network, 64 User terminal, 65 Wireless signal, 71 Processor, 72 Memory, 73 Storage device, 81 Power input line, 82 Power input Terminal, 83 Output terminal, 84 Input section, 85 DC low voltage power supply output wiring, 86 External power supply, 90 First relay, 91 Second relay, 92 Bypass resistor, 94 Third relay, 100 Switch, 110 Wall, 111 Auxiliary winding line, 112 main winding, 113 capacitor, 114 variable speed winding, 116 common position, 117, 118 position, 121 first signal line, 122 second signal line, 123 third signal line, 200 ventilation system, 210 rectifier, 211 Diode bridge circuit, 220 Smoothing section, 221 Smoothing capacitor, 230 Switching section, 231 Switching control section, 240 Motor winding section, 250 Detection section.

Claims (7)

  1.  前面に設置された操作ハンドル部と、
     前記操作ハンドル部に対する操作に基づいて出力指令信号を生成する制御部と、
     電源入力線の接続と遮断とを切り替える第1リレーと、前記第1リレーに直列に接続された第2リレーと、前記第2リレーと並列に接続されたバイパス抵抗とを有し、外部電源から電力供給を受けて、前記出力指令信号に基づき外部負荷に電力を供給する電源部とを備え、
     前記制御部は、前記操作ハンドル部に対して、前記電源入力線を遮断から接続に切り替える切替操作がなされると、前記第2リレーを予め設定された期間開き、前記第2リレーが開いている期間中に前記第1リレーを閉じることを特徴とするスイッチ。
    The operation handle part installed on the front,
    a control unit that generates an output command signal based on an operation on the operation handle unit;
    It has a first relay that switches between connection and disconnection of a power input line, a second relay connected in series to the first relay, and a bypass resistor connected in parallel to the second relay, and is connected to an external power source. a power supply unit that receives power supply and supplies power to an external load based on the output command signal;
    The control unit opens the second relay for a preset period of time when a switching operation is performed on the operation handle unit to switch the power input line from cutoff to connection, and the second relay is opened. A switch characterized in that the first relay is closed during the period.
  2.  前記制御部は、前記操作ハンドル部に対して、前記電源入力線を接続から遮断に切り替える切替操作がなされると、前記第2リレーを予め設定された期間開き、前記第2リレーが開いている期間中に前記第1リレーを開くことを特徴とする請求項1に記載のスイッチ。 The control unit opens the second relay for a preset period of time when a switching operation to switch the power input line from connection to disconnection is performed on the operation handle unit, and the second relay is open. 2. The switch of claim 1, wherein the first relay is opened during the interval.
  3.  前記電源部は、前記第1リレー及び前記第2リレーに直列に接続され、前記電源入力線の接続先を切り替える第3リレーを有し、
     前記制御部は、前記操作ハンドル部に対して前記電源入力線の接続先の切替操作がなされると、前記第2リレーを予め設定された期間開き、前記第2リレーが開いている期間中に前記第3リレーの接続先を切り替える制御を行うことを特徴とする請求項1又は2に記載のスイッチ。
    The power supply unit includes a third relay that is connected in series to the first relay and the second relay and switches the connection destination of the power input line,
    The control section opens the second relay for a preset period when the operation handle section is operated to switch the connection destination of the power input line, and during the period when the second relay is open, the control section opens the second relay for a preset period. The switch according to claim 1 or 2, wherein the switch controls switching of a connection destination of the third relay.
  4.  前記第2リレーを開く期間を変更可能であることを特徴とする請求項1から3のいずれか1項に記載のスイッチ。 The switch according to any one of claims 1 to 3, wherein the period during which the second relay is opened can be changed.
  5.  前面に設置された操作ハンドル部と、前記操作ハンドル部に対する操作に基づいて出力指令信号を生成する制御部と、電源入力線の接続と遮断とを切り替える第1リレーと、前記第1リレーに直列に接続された第2リレーと、前記第2リレーと並列に接続されたバイパス抵抗とを有し、外部電源から電力供給を受けて、前記出力指令信号に基づき外部負荷に電力を供給する電源部とを有するスイッチの制御方法であって、
     前記操作ハンドル部に対する前記電源入力線を遮断から接続に切り替える切替操作に応じて、前記制御部が、前記第2リレーを開く工程と、
     前記制御部が、前記第2リレーが開いている間に前記第1リレーを閉じる工程と、
     前記制御部が前記第2リレーを閉じる工程とを備えることを特徴とするスイッチの制御方法。
    an operation handle section installed on the front side, a control section that generates an output command signal based on an operation on the operation handle section, a first relay that switches connection and disconnection of a power input line, and a first relay connected in series to the first relay. a second relay connected to the second relay; and a bypass resistor connected in parallel with the second relay, a power supply section receiving power from an external power source and supplying power to an external load based on the output command signal. A method for controlling a switch, comprising:
    a step in which the control unit opens the second relay in response to a switching operation that switches the power input line to the operation handle unit from cutoff to connection;
    the control unit closing the first relay while the second relay is open;
    A method for controlling a switch, comprising a step of causing the control unit to close the second relay.
  6.  前記操作ハンドル部に対する前記電源入力線を接続から遮断に切り替える切替操作に応じて、前記制御部が、前記第2リレーを開く工程と、
     前記制御部が、前記第2リレーが開いている間に前記第1リレーを開く工程と、
     前記制御部が、前記第2リレーを閉じる工程とを備えることを特徴とする請求項5に記載のスイッチの制御方法。
    a step in which the control unit opens the second relay in response to a switching operation that switches the power input line to the operation handle unit from connection to disconnection;
    the control unit opening the first relay while the second relay is open;
    6. The switch control method according to claim 5, further comprising the step of: closing the second relay.
  7.  前面に設置された操作ハンドル部と、前記操作ハンドル部に対する操作に基づいて出力指令信号を生成する制御部と、電源入力線の接続と遮断とを切り替える第1リレーと、前記第1リレーに直列に接続された第2リレーと、前記第2リレーと並列に接続されたバイパス抵抗と、前記第2リレーに直列に接続され、前記電源入力線の接続先を切り替える第3リレーとを有し、外部電源から電力供給を受けて、前記出力指令信号に基づき外部負荷に電力を供給する電源部とを有するスイッチの制御方法であって、
     前記操作ハンドル部に対する前記電源入力線の接続先の切替操作に応じて、前記制御部が、前記第2リレーを開く工程と、
     前記制御部が、前記第2リレーが開いている間に前記第3リレーを切り替える工程と、
     前記制御部が、前記第2リレーを閉じる工程とを備えることを特徴とするスイッチの制御方法。
    an operation handle section installed on the front side, a control section that generates an output command signal based on an operation on the operation handle section, a first relay that switches connection and disconnection of a power input line, and a first relay connected in series to the first relay. a second relay connected to the second relay, a bypass resistor connected in parallel to the second relay, and a third relay connected in series to the second relay to switch the connection destination of the power input line, A method for controlling a switch, comprising: a power supply section that receives power from an external power source and supplies power to an external load based on the output command signal;
    a step of the control unit opening the second relay in response to an operation of switching the connection destination of the power input line to the operation handle unit;
    a step in which the control unit switches the third relay while the second relay is open;
    A method for controlling a switch, characterized in that the control section includes a step of closing the second relay.
PCT/JP2022/021433 2022-05-25 2022-05-25 Switch and switch control method WO2023228330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021433 WO2023228330A1 (en) 2022-05-25 2022-05-25 Switch and switch control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021433 WO2023228330A1 (en) 2022-05-25 2022-05-25 Switch and switch control method

Publications (1)

Publication Number Publication Date
WO2023228330A1 true WO2023228330A1 (en) 2023-11-30

Family

ID=88918719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021433 WO2023228330A1 (en) 2022-05-25 2022-05-25 Switch and switch control method

Country Status (1)

Country Link
WO (1) WO2023228330A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209889A (en) * 1996-02-09 1997-08-12 Denso Corp Starter for vehicle
JPH10191639A (en) * 1996-12-20 1998-07-21 Yaskawa Electric Corp Method for protecting resistor for preventing inrush current
JP2009068426A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Engine start controller
JP2014090551A (en) * 2012-10-29 2014-05-15 Konica Minolta Inc Power supply device
JP2018178901A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Start system control device of internal combustion engine
WO2019116509A1 (en) * 2017-12-14 2019-06-20 三菱電機株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209889A (en) * 1996-02-09 1997-08-12 Denso Corp Starter for vehicle
JPH10191639A (en) * 1996-12-20 1998-07-21 Yaskawa Electric Corp Method for protecting resistor for preventing inrush current
JP2009068426A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Engine start controller
JP2014090551A (en) * 2012-10-29 2014-05-15 Konica Minolta Inc Power supply device
JP2018178901A (en) * 2017-04-18 2018-11-15 トヨタ自動車株式会社 Start system control device of internal combustion engine
WO2019116509A1 (en) * 2017-12-14 2019-06-20 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP2022517126A (en) How to control a smart switch module with a smart switch module and a standard light switch
US4494012A (en) Switch timer
EP0036666A1 (en) Remote load selector
WO2007026793A1 (en) Heat-exchange cooling device and power supply circuit driver used therefore
US20240191721A1 (en) Adaptive capacitor section for fan speed control
TWI625936B (en) Electronic switch device and electronic switch system
WO2023228330A1 (en) Switch and switch control method
US20220066485A1 (en) Timing for power-stealing circuits in smart-home devices
CN211293683U (en) Power switch control device and electric equipment comprising same
US4814929A (en) Breaker box interface device
JP2000055439A (en) Power source device and air conditioner using same
JP7004557B2 (en) Inrush power control device, power control system and control method
KR101091590B1 (en) Apparatus for getting a source of electric power in smart lamp switch
US7482770B2 (en) Methods and systems for providing PWM control signals to an electronically commutated motor
JP2014532389A (en) Home appliance including an electric motor having at least two coils, method and system for controlling the home appliance, and method of using the electric motor for powering the home appliance
JP2014531884A (en) Home appliance, system and method for controlling home appliance
KR100315809B1 (en) power supply of washing machine
US11585551B2 (en) Dynamic input selection for power-stealing smart-home devices
CA3015330A1 (en) Hvac signaling over a two-wire connection
US11348745B1 (en) Home automation apparatus
WO2023157246A1 (en) Switch
JP3068655B2 (en) Control device for air conditioner
CN108931040B (en) Electric control assembly and air conditioner
US20120104871A1 (en) Energy efficient compact electronic timer for an electrical load
CA3128988A1 (en) Timing and dynamic input selection for power-stealing circuits in smart-home devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024522806

Country of ref document: JP

Kind code of ref document: A