WO2023228308A1 - 磁気抵抗効果素子 - Google Patents

磁気抵抗効果素子 Download PDF

Info

Publication number
WO2023228308A1
WO2023228308A1 PCT/JP2022/021362 JP2022021362W WO2023228308A1 WO 2023228308 A1 WO2023228308 A1 WO 2023228308A1 JP 2022021362 W JP2022021362 W JP 2022021362W WO 2023228308 A1 WO2023228308 A1 WO 2023228308A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetoresistive element
ferromagnetic layer
ferromagnetic
nonmagnetic
Prior art date
Application number
PCT/JP2022/021362
Other languages
English (en)
French (fr)
Inventor
智生 佐々木
振尭 唐
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2022/021362 priority Critical patent/WO2023228308A1/ja
Priority to US17/971,775 priority patent/US20230389444A1/en
Publication of WO2023228308A1 publication Critical patent/WO2023228308A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components

Definitions

  • the present invention relates to a magnetoresistive element.
  • a magnetoresistive element is an element whose resistance value changes in the stacking direction due to the magnetoresistive effect.
  • a magnetoresistive element includes two ferromagnetic layers and a nonmagnetic layer sandwiched between them.
  • a magnetoresistive element in which a conductor is used as a non-magnetic layer is called a giant magnetoresistive (GMR) element
  • a magnetoresistive element in which an insulating layer (tunnel barrier layer, barrier layer) is used as a non-magnetic layer is called a giant magnetoresistive (GMR) element.
  • GMR giant magnetoresistive
  • TMR tunnel magnetoresistive
  • Magnetoresistive elements can be applied to various uses such as magnetic sensors, high-frequency components, magnetic heads, and nonvolatile random access memories (MRAM) (for example, Patent Documents 1 and 2).
  • Patent Document 3 describes a method of controlling the direction of magnetization using spin transfer torque (STT) generated by passing a current in the stacking direction of a magnetoresistive element. This method is called a spin injection magnetization reversal method.
  • STT spin transfer torque
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetoresistive element whose magnetization is reversed with less energy.
  • the present invention provides the following means to solve the above problems.
  • the magnetoresistive element according to the first aspect includes a first ferromagnetic layer, a second ferromagnetic layer, and a nonmagnetic layer.
  • the nonmagnetic layer is between the first ferromagnetic layer and the second ferromagnetic layer.
  • the nonmagnetic layer is undulated with respect to a reference plane perpendicular to the lamination direction.
  • the average distance between the vertices of the convex portions projecting upward with respect to the reference plane may be 30% or less of the width of the nonmagnetic layer.
  • the average distance between the vertices of the convex portions projecting upward with respect to the reference plane may be 30 nm or less.
  • the width of the nonmagnetic layer may be equal to or more than two periods of waviness of the nonmagnetic layer.
  • the difference between the highest point and the lowest point of the nonmagnetic layer may be equal to or less than twice the thickness of the nonmagnetic layer.
  • the magnetoresistive element according to the above aspect may further include a magnetic induction layer.
  • the magnetic induction layer and the nonmagnetic layer sandwich the first ferromagnetic layer.
  • the magnetoresistive element according to the above aspect may further include a spacer layer and a third ferromagnetic layer.
  • the spacer layer is in contact with the second ferromagnetic layer, and the second ferromagnetic layer and the third ferromagnetic layer sandwich the spacer layer.
  • the magnetoresistive element according to the above aspect may further include an underlayer.
  • a layer between the underlayer and the nonmagnetic layer may be undulating with respect to a reference plane perpendicular to the lamination direction.
  • the magnetoresistive element according to the present invention can reverse magnetization with little energy.
  • FIG. 1 is a circuit diagram of a magnetic memory according to a first embodiment.
  • FIG. 2 is a cross-sectional view of a characteristic portion of the magnetic memory according to the first embodiment.
  • FIG. 1 is a cross-sectional view of a magnetoresistive element according to a first embodiment.
  • FIG. 1 is a plan view of a magnetoresistive element according to a first embodiment.
  • FIG. 2 is an enlarged view of a characteristic portion of the magnetoresistive element according to the first embodiment. 1 is a diagram summarizing the results of Examples 1 to 4 and a comparative example.
  • direction One direction of one surface of a substrate Sub (see FIG. 2), which will be described later, is the x direction, and a direction perpendicular to the x direction is the y direction.
  • the z direction is a direction perpendicular to the x direction and the y direction.
  • the z direction is an example of a lamination direction in which each layer is laminated.
  • the +z direction may be expressed as "up” and the -z direction as "down”. Up and down do not necessarily correspond to the direction in which gravity is applied.
  • connection is not limited to being physically connected.
  • connection is not limited to the case where two layers are physically in contact with each other, but also includes the case where two layers are connected with another layer in between.
  • connection in this specification also includes electrical connection.
  • FIG. 1 is a configuration diagram of a magnetic memory 100 according to the first embodiment.
  • the magnetic memory 100 includes a plurality of magnetoresistive elements 10, a plurality of source lines SL, a plurality of bit lines BL, and a plurality of first switching elements Sw1.
  • the magnetoresistive elements 10 are arranged, for example, in a matrix. Each of the magnetoresistive elements 10 is connected to a source line SL and a bit line BL.
  • the source line SL electrically connects the power source and one or more magnetoresistive elements 10.
  • the bit line BL electrically connects the reference potential and one or more magnetoresistive elements 10.
  • the reference potential is, for example, ground.
  • a power source is connected to the magnetic memory 100 in use.
  • the flow of current to the magnetoresistive element 10 is controlled by the first switching element Sw1.
  • data is written and read by turning on the first switching element Sw1.
  • the magnetoresistive element 10 writes data using spin transfer torque when a current flows in the stacking direction.
  • the first switching element Sw1 is an element that controls the flow of current.
  • the first switching element Sw1 is, for example, a transistor, an element that utilizes a phase change in a crystal layer such as an Ovonic Threshold Switch (OTS), or an element that utilizes a change in band structure such as a metal-insulator transition (MIT) switch.
  • Ovonic Threshold Switch Ovonic Threshold Switch
  • MIT metal-insulator transition
  • FIG. 2 is a cross-sectional view of a characteristic part of the magnetic memory 100 according to the first embodiment.
  • the first switching element Sw1 shown in FIG. 2 is a transistor Tr.
  • the transistor Tr is, for example, a field effect transistor, and includes a gate electrode G, a gate insulating film GI, and a source S and a drain D formed on a substrate Sub.
  • the source S and drain D are defined by the direction of current flow, and are the same region. The positional relationship between the source S and the drain D may be reversed.
  • the substrate Sub is, for example, a semiconductor substrate.
  • the transistor Tr and the magnetoresistive element 10 are electrically connected via the via wiring V, the electrode 11, and the electrode 12. Further, the transistor Tr and the bit line BL are connected by a via wiring V.
  • the via wiring V extends in the z direction.
  • the source line SL is connected to the magnetoresistive element 10 via the electrode 12.
  • the via wiring V and the electrodes 11 and 12 include a conductive material.
  • the via wiring V and the electrode 11 may be integrated. Further, the source line SL and the electrode 12 may be integrated. That is, the electrode 11 may be a part of the via wiring V, and the electrode 12 may be a part of the source line SL.
  • the periphery of the magnetoresistive element 10 is covered with an insulating layer 90.
  • the insulating layer 90 is an insulating layer that insulates between wires of multilayer wiring and between elements.
  • the insulating layer 90 is made of, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), or aluminum oxide (Al 2 O). 3 ), zirconium oxide (ZrO x ), magnesium oxide (MgO), aluminum nitride (AlN), etc.
  • FIG. 3 is a cross-sectional view of the magnetoresistive element 10.
  • FIG. 3 is a cross section of the magnetoresistive element 10 taken along an xz plane passing through the center of the magnetoresistive element 10.
  • FIG. 4 is a plan view of the magnetoresistive element 10 viewed from the z direction.
  • the magnetoresistive element 10 is an element that records and stores data.
  • the magnetoresistive element 10 records data using a resistance value in the z direction.
  • the resistance value of the magnetoresistive element 10 in the z direction changes by applying a write current in the z direction.
  • the resistance value of the magnetoresistive element 10 in the z direction can be read by applying a read current to the magnetoresistive element 10 in the z direction.
  • the magnetoresistive element 10 includes a first ferromagnetic layer 1 , a second ferromagnetic layer 2 , and a nonmagnetic layer 3 .
  • the nonmagnetic layer 3 is located between the first ferromagnetic layer 1 and the second ferromagnetic layer 2.
  • the magnetoresistive element 10 may have a buffer layer 4, a seed layer 5, a ferromagnetic layer 6, a spacer layer 7, and a magnetic induction layer 8.
  • the buffer layer 4, the seed layer 5, the ferromagnetic layer 6 and the spacer layer 7 are located between the first ferromagnetic layer 1 and the electrode 11, and the magnetic induction layer 8 is located between the second ferromagnetic layer 2 and the electrode 12. located between.
  • the magnetoresistive element 10 is a columnar stacked body.
  • the planar shape of the magnetoresistive element 10 as viewed from the z direction is not particularly limited. For example, as shown in FIG. 2, it may be a circular shape in which the width W1 in the x direction and the width W2 in the y direction match. The width W1 and the width W2 do not need to match, and the shape in plan view may be an ellipse, an oval, or a rectangle.
  • the widths W1 and W2 of the magnetoresistive element 10 are, for example, 10 nm or more and 2000 nm or less, preferably 30 nm or more and 500 nm or less.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 are, for example, perpendicular magnetization films having an axis of easy magnetization in the z direction.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may be in-plane magnetized films having an axis of easy magnetization in any direction within the xy plane.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 each contain a ferromagnetic material.
  • the magnetization of the first ferromagnetic layer 1 is, for example, more difficult to move than the magnetization of the second ferromagnetic layer 2.
  • the first ferromagnetic layer 1 is called a magnetization fixed layer.
  • the second ferromagnetic layer 2 is called a magnetization free layer.
  • the magnetization fixed layer is located closer to the substrate Sub than the magnetization free layer, and is called a bottom pin structure.
  • the positional relationship between the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may be reversed.
  • the resistance value of the magnetoresistive element 10 changes according to a change in the relative angle between the magnetization of the first ferromagnetic layer 1 and the magnetization of the second ferromagnetic layer 2.
  • Each of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 is made of, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, or a combination of these metals. It is an alloy containing at least one or more elements of B, C, and N.
  • Each of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 is made of, for example, Co-Fe, Co-Fe-B, Ni-Fe, Co-Ho alloy, Sm-Fe alloy, Fe-Pt alloy, Co-Pt alloy, CoCrPt alloy.
  • each of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may include a multilayer film in which Co and Pt or Co and Ni are laminated multiple times, for example.
  • the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may include a Heusler alloy.
  • Heusler alloys include intermetallic compounds with a chemical composition of XYZ or X 2 YZ.
  • X is Co, Fe, Ni, or a transition metal element of the Cu group or a noble metal element on the periodic table;
  • Y is a transition metal element of the Mn, V, Cr, or Ti group, or an element species of X;
  • Z is a group III element. It is a typical element of group V.
  • Heusler alloy examples include Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , Co 2 FeGe 1-c Ga c , and the like. Heusler alloys have high spin polarizability.
  • Nonmagnetic layer 3 includes a nonmagnetic material.
  • the nonmagnetic layer 3 is an insulator (when it is a tunnel barrier layer)
  • examples of its material include Al 2 O 3 , SiO 2 , MgO, and MgAl 2 O 4 .
  • materials in which a part of Al, Si, and Mg is replaced with Zn, Be, etc. can also be used.
  • MgO and MgAl 2 O 4 are materials that can realize coherent tunneling, and therefore can efficiently inject spins.
  • the nonmagnetic layer 3 is made of metal, Cu, Au, Ag, etc. can be used as the material.
  • the nonmagnetic layer 3 is a semiconductor, Si, Ge, CuInSe 2 , CuGaSe 2 , Cu(In, Ga)Se 2 or the like can be used as the material.
  • FIG. 5 is an enlarged view of characteristic parts of the magnetoresistive element 10 according to the first embodiment.
  • the nonmagnetic layer 3 is undulating with respect to the reference plane S1.
  • the reference plane S1 is a plane that passes through the midpoint between the highest point and the lowest point of the nonmagnetic layer 3 in the z direction and extends in the xy plane orthogonal to the stacking direction. Waving with respect to the reference surface S1 means that upwardly convex portions and downwardly convex portions with respect to the reference surface S1 are arranged alternately in one direction.
  • the nonmagnetic layer 3 for example, upwardly convex portions and downwardly convex portions are periodically arranged in one direction with respect to the reference surface S1.
  • the period p of the waviness of the nonmagnetic layer 3 is preferably 30% or less of the width W1 of the nonmagnetic layer 3. It is preferable that the period p of the waviness of the nonmagnetic layer 3 is, for example, 30 nm or less.
  • the period p can be determined as the average value of the distances between the vertices of the convex portions that protrude upward with respect to the reference surface S1.
  • the average value of the distance between the vertices of the convex portions is obtained by determining the distances between the vertices 2T of adjacent convex portions and calculating the average value thereof.
  • the distance between the apexes 2T of adjacent convex portions can be measured using, for example, a scanning electron microscope.
  • the period p may be determined as the average value of the distances between the vertices of the convex portions that protrude downward with respect to the reference surface S1.
  • the nonmagnetic layer 3 has, for example, undulations of two periods or more in any direction within the xy plane.
  • the width W1 or the width W2 of the nonmagnetic layer 3 is equal to or larger than two periods of waviness (2p).
  • the width of the nonmagnetic layer 3 in the long axis direction is, for example, equal to or more than two periods of waviness (2p).
  • the height difference h between the highest point and the lowest point of the nonmagnetic layer 3 is, for example, less than twice the thickness t of the nonmagnetic layer 3.
  • the height difference h between the highest point and the lowest point of the nonmagnetic layer 3 is the height of a perpendicular line drawn from the highest point in the z direction to a plane extending in the xy plane through the lowest point in the z direction.
  • the thickness t of the nonmagnetic layer 3 is the average value of the thicknesses of the nonmagnetic layer 3 measured at ten different points in the xy plane.
  • the height difference h between the highest point and the lowest point of the nonmagnetic layer 3 and the film thickness t of the nonmagnetic layer 3 can be measured with a scanning electron microscope.
  • the thickness t of the nonmagnetic layer 3 is, for example, 0.5 nm or more and 10.0 nm or less, and 1.0 nm or more and 5.0 nm or less.
  • the degree of inclination of the magnetization M2 of the second ferromagnetic layer 2 with respect to the z direction is within a predetermined range. If the slope of the magnetization M2 of the second ferromagnetic layer 2 is within a predetermined range, a decrease in the MR ratio of the magnetoresistive element 10 can be suppressed.
  • the buffer layer 4 and the seed layer 5 are called base layers.
  • Buffer layer 4 is a layer that alleviates lattice mismatch between different crystals.
  • the buffer layer 4 includes, for example, a metal containing at least one element selected from the group consisting of Ta, Ti, Zr, and Cr, or at least one element selected from the group consisting of Ta, Ti, Zr, and Cu. It is a nitride. More specifically, the buffer layer 4 is, for example, Ta (single substance), TaN (tantalum nitride), CuN (copper nitride), TiN (titanium nitride), or NiAl (nickel aluminum).
  • the thickness of the buffer layer 4 is, for example, 1 nm or more and 5 nm or less.
  • Buffer layer 4 is, for example, amorphous.
  • the buffer layer 4 is located between the seed layer 5 and the electrode 11 and is in contact with the electrode 11. The buffer layer 4 suppresses the influence of the crystal structure of the electrode 11 on the crystal structure of the first ferromagnetic layer 1 .
  • the seed layer 5 improves the crystallinity of the layer stacked on the seed layer 5.
  • Seed layer 5 is located, for example, between buffer layer 4 and ferromagnetic layer 6 and on buffer layer 4 .
  • the seed layer 5 is, for example, a compound having a (001)-oriented NaCl structure.
  • the seed layer 5 is made of, for example, Pt, Ru, Zr, NiCr alloy, or NiFeCr.
  • the film thickness of the seed layer 5 is, for example, 1 nm or more and 5 nm or less.
  • the ferromagnetic layer 6 is magnetically coupled to the first ferromagnetic layer 1, for example.
  • the magnetic coupling is, for example, antiferromagnetic coupling and is caused by RKKY interaction.
  • the magnetization direction of the first ferromagnetic layer 1 and the magnetization direction of the ferromagnetic layer 6 are in an antiparallel relationship.
  • the material constituting the ferromagnetic layer 6 is, for example, the same as that of the first ferromagnetic layer 1.
  • the ferromagnetic layer 6, the spacer layer 7, and the first ferromagnetic layer 1 have a synthetic antiferromagnetic structure (SAF structure).
  • a synthetic antiferromagnetic structure consists of two magnetic layers sandwiching a nonmagnetic layer. The antiferromagnetic coupling between the first ferromagnetic layer 1 and the ferromagnetic layer 6 makes the coercive force of the first ferromagnetic layer 1 larger than that in the case without the ferromagnetic layer 6.
  • the spacer layer 7 is located between the second ferromagnetic layer 2 and the ferromagnetic layer 6. Spacer layer 7 is also called a magnetic coupling layer.
  • the spacer layer 7 is made of, for example, Ru or Ir.
  • the magnetic induction layer 8 strengthens the magnetic anisotropy of the second ferromagnetic layer 2, for example.
  • the magnetic induction layer 8 strengthens the perpendicular magnetic anisotropy of the second ferromagnetic layer 2, for example.
  • the magnetic induction layer 8 is made of, for example, magnesium oxide, W, Ta, Mo, or the like. When the magnetic induction layer 8 is made of magnesium oxide, it is preferable that the magnesium oxide is deficient in oxygen in order to improve conductivity.
  • the thickness of the magnetic induction layer 8 is, for example, 0.5 nm or more and 5.0 nm or less.
  • each layer other than the non-magnetic layer 3 may undulate with respect to a plane parallel to the reference plane S1, similarly to the non-magnetic layer 3.
  • each of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 may be undulated with respect to a plane parallel to the reference plane S1.
  • the period of waviness of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 substantially matches the period of waviness of the nonmagnetic layer 3.
  • the height of the waviness of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 substantially matches the height of the waviness of the nonmagnetic layer 3.
  • Each of the first ferromagnetic layer 1 and the second ferromagnetic layer 2 reflects the shape of the nonmagnetic layer 3, for example.
  • the layers for example, the ferromagnetic layer 6, the spacer layer 7) between the underlayer (buffer layer 4 and seed layer 5) and the first ferromagnetic layer 1 are It may be undulating.
  • the period of waviness of these layers substantially matches the period of waviness of the nonmagnetic layer 3.
  • Each of these layers reflects the shape of the non-magnetic layer 3, for example.
  • the magnetoresistive element 10 is formed by a process of laminating each layer and a process of processing a part of each layer into a predetermined shape.
  • the lamination of each layer can be performed using a sputtering method, a chemical vapor deposition (CVD) method, an electron beam evaporation method (EB evaporation method), an atomic laser deposition method, or the like.
  • CVD chemical vapor deposition
  • EB evaporation method electron beam evaporation method
  • atomic laser deposition method or the like.
  • Each layer can be processed using photolithography or the like.
  • the buffer layer 4 is formed on the electrode 11, and the buffer layer 4 is processed into a predetermined shape. Then, the buffer layer 4 is surrounded by an insulating layer 90.
  • CMP chemical mechanical polishing
  • unevenness is formed on the surface of the buffer layer 4.
  • the chemical mechanical polishing conditions vary depending on the chemical mechanical polishing pressure, the chemical mechanical polishing time, the type of polishing agent, the material forming the buffer layer 4, and the material forming the insulating layer 90. The period, height, etc. of the unevenness formed on the buffer layer 4 can be adjusted by changing these conditions.
  • the conditions for CMP polishing vary depending on the device, the type of polishing agent, the material constituting the buffer layer 4, the material constituting the insulating layer 90, polishing pressure, and polishing time. Therefore, the conditions for CMP polishing are determined in advance by setting the conditions multiple times and giving feedback multiple times. The conditions for CMP polishing can be determined by conducting a preliminary study in which these parameters are changed using samples produced under the same conditions. By performing CMP polishing under the same conditions on samples prepared under the same conditions, the surface state of the buffer layer 4 can be controlled with good reproducibility.
  • a seed layer 5, a ferromagnetic layer 6, a spacer layer 7, a first ferromagnetic layer 1, a nonmagnetic layer 3, a second ferromagnetic layer 2, and a magnetic induction layer 8 are formed on the buffer layer 4 that has been subjected to CMP polishing. Films are formed in order. Each of these layers follows the surface shape of the buffer layer 4 and curves. As a result, each of these layers has a undulating shape with respect to a flat surface extending in the in-plane direction.
  • each of the formed layers is processed into a predetermined shape, and the periphery thereof is covered with an insulating layer 90. Then, the insulating layer 90 is removed until the surface of the magnetic induction layer 8 is exposed. Thereafter, an electrode 12 is formed on the magnetic induction layer 8.
  • the reversal current density required to reverse the magnetization of the second ferromagnetic layer 2 can be lowered. This is considered to be because the magnetization of the second ferromagnetic layer 2 is slightly inclined along the surface of the nonmagnetic layer 3.
  • the magnetization M2 of the second ferromagnetic layer 2 is oriented perpendicular to the surface of the nonmagnetic layer 3. Magnetization M2 is inclined with respect to the z direction.
  • spin is injected from the first ferromagnetic layer 1
  • the magnetization M2 is reversed while performing precession.
  • the magnetization M2 is tilted in the initial state, the magnetization M2 easily precesses for magnetization reversal, and the energy required for magnetization reversal becomes smaller.
  • the magnetoresistive element 10 can reduce the reversal current density necessary for reversing the magnetization of the second ferromagnetic layer 2.
  • the magnetoresistive element 10 is applied to the magnetic memory 100, but the invention is not limited to this example.
  • the magnetoresistive element 10 may be used in a magnetic head, a magnetic sensor, or the like.
  • the widths W1 and W2 of the magnetoresistive element 10 are, for example, 0.01 ⁇ m or more and 10 ⁇ m or less, preferably 0.06 ⁇ m or more and 10 ⁇ m or less.
  • the period of the waviness in this case is, for example, 5 nm or more and 300 nm or less, preferably 10 nm or more and 150 nm or less.
  • the thickness is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • Example 1 A magnetoresistive element with a diameter of 100 nm was fabricated.
  • the magnetoresistive element includes, in order from the side closest to the substrate, a buffer layer (TiN), a seed layer (NiCr alloy), a ferromagnetic layer (CoFe alloy), a magnetic coupling layer (Ru), and a first ferromagnetic layer (CoFe alloy). , a nonmagnetic layer (MgO), a second ferromagnetic layer (CoFe alloy), and a magnetic induction layer (MgO).
  • the surface was subjected to CMP polishing to create irregularities on the surface of the buffer layer.
  • the nonmagnetic layer was undulating according to the unevenness of the buffer layer.
  • the period of waviness of the nonmagnetic layer was 20 nm.
  • Reversal current density was measured using the produced magnetoresistive element of Example 1.
  • the reversal current density of Example 1 was 5.15 MA/cm 2 .
  • Examples 2 to 4" differ from Example 1 in that the period of waviness of the nonmagnetic layer is changed.
  • the period of the waviness of the nonmagnetic layer was changed by changing the conditions for CMP polishing the buffer layer.
  • the undulation period of Example 2 was 30 nm
  • the undulation period of Example 3 was 40 nm
  • the undulation period of Example 4 was 60 nm. Then, the reversal current density was measured using each of the magnetoresistive elements of Examples 2 to 4.
  • Comparative Example 1 differs from Example 1 in that the nonmagnetic layer is flat. By changing the conditions for CMP polishing the buffer layer and flattening the surface of the buffer layer, the nonmagnetic layer became flat. Reversal current density was measured using the magnetoresistive element of Comparative Example 1.
  • Examples 1 to 4 and Comparative Example 1 are summarized in FIG. 6.
  • the distance between the convex portions is expressed as the width (100 nm) of the magnetoresistive element.
  • the reversal current density of the magnetoresistive element became smaller.
  • the period of the waviness was 30% or less of the width of the magnetoresistive element, the reversal current density of the magnetoresistive element became particularly small.
  • SYMBOLS 1 First ferromagnetic layer, 2...Second ferromagnetic layer, 2T...Vertex, 3...Nonmagnetic layer, 4...Buffer layer, 5...Seed layer, 6...Ferromagnetic layer, 7...Spacer layer, 8...Magnetic Induction layer, 10... Magnetoresistive element, 11, 12... Electrode, 90... Insulating layer, 100... Magnetic memory, S1... Reference surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hall/Mr Elements (AREA)

Abstract

この磁気抵抗効果素子は、第1強磁性層と第2強磁性層と非磁性層とを備え、前記非磁性層は、前記第1強磁性層と前記第2強磁性層との間に有り、前記非磁性層は、前記積層方向と直交する平坦面に対してうねっている。

Description

磁気抵抗効果素子
 本発明は、磁気抵抗効果素子に関する。
 磁気抵抗効果素子は、磁気抵抗効果により積層方向の抵抗値が変化する素子である。磁気抵抗効果素子は、2つの強磁性層とこれらに挟まれた非磁性層とを備える。非磁性層に導体が用いられた磁気抵抗効果素子は、巨大磁気抵抗(GMR)素子と言われ、非磁性層に絶縁層(トンネルバリア層、バリア層)が用いられた磁気抵抗効果素子は、トンネル磁気抵抗(TMR)素子と言われる。
 磁気抵抗効果素子は、磁気センサ、高周波部品、磁気ヘッド及び不揮発性ランダムアクセスメモリ(MRAM)等の様々な用途への応用が可能である(例えば、特許文献1及び2)。例えば、特許文献3には、磁気抵抗効果素子の積層方向に電流を流すことで生ずるスピントランスファートルク(STT)を利用して、磁化の向きを制御する方法が記載されている。この方法は、スピン注入磁化反転方式と呼ばれている。
特許第5586028号公報 特許第5988019号公報 特開第2015-156501号公報
 磁化反転を容易にするために、磁化反転に必要なエネルギーを小さくしたいという要望がある。
 本発明は上記事情に鑑みてなされたものであり、少ないエネルギーで磁化反転する磁気抵抗効果素子を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様にかかる磁気抵抗効果素子は、第1強磁性層と第2強磁性層と非磁性層とを備える。前記非磁性層は、前記第1強磁性層と前記第2強磁性層との間に有る。前記非磁性層は、前記積層方向と直交する基準面に対してうねっている。
(2)上記態様にかかる磁気抵抗効果素子は、前記基準面に対して上方に突出する凸部の頂点間距離の平均値が、前記非磁性層の幅の30%以下でもよい。
(3)上記態様にかかる磁気抵抗効果素子は、前記基準面に対して上方に突出する凸部の頂点間距離の平均値が、30nm以下でもよい。
(4)上記態様にかかる磁気抵抗効果素子は、前記非磁性層の幅が、前記非磁性層のうねりの2周期分以上でもよい。
(5)上記態様にかかる磁気抵抗効果素子は、前記非磁性層の最高点と最低点との差が、前記非磁性層の膜厚の2倍以下でもよい。
(6)上記態様にかかる磁気抵抗効果素子は、磁気誘起層をさらに備えてもよい。前記磁気誘起層と前記非磁性層とは、前記第1強磁性層を挟む。
(7)上記態様にかかる磁気抵抗効果素子は、スペーサ層と第3強磁性層とをさらに備えてもよい。前記スペーサ層は、前記第2強磁性層に接し、前記第2強磁性層と前記第3強磁性層とは、前記スペーサ層を挟む。
(8)上記態様にかかる磁気抵抗効果素子は、下地層をさらに備えてもよい。前記下地層と前記非磁性層との間にある層は、前記積層方向と直交する基準面に対してうねっていてもよい。
 本発明にかかる磁気抵抗効果素子は、少ないエネルギーで磁化反転できる。
第1実施形態にかかる磁気メモリの回路図である。 第1実施形態にかかる磁気メモリの特徴部分の断面図である。 第1実施形態にかかる磁気抵抗効果素子の断面図である。 第1実施形態にかかる磁気抵抗効果素子の平面図である。 第1実施形態にかかる磁気抵抗効果素子の特徴部分の拡大図である。 実施例1~4及び比較例の結果をまとめた図である。
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
 まず方向について定義する。後述する基板Sub(図2参照)の一面の一方向をx方向、x方向と直交する方向をy方向とする。z方向は、x方向及びy方向と直交する方向である。z方向は、各層が積層される積層方向の一例である。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。
 本明細書で「接続」とは、物理的に接続される場合に限定されない。例えば、二つの層が物理的に接している場合に限られず、二つの層の間が他の層を間に挟んで接続している場合も「接続」に含まれる。また本明細書での「接続」は電気的な接続も含む。
「第1実施形態」
 図1は、第1実施形態にかかる磁気メモリ100の構成図である。磁気メモリ100は、複数の磁気抵抗効果素子10と、複数のソース線SLと、複数のビット線BLと、複数の第1スイッチング素子Sw1と、を備える。
 磁気抵抗効果素子10は、例えば、行列状に配列している。磁気抵抗効果素子10のそれぞれは、ソース線SL、ビット線BLに接続されている。ソース線SLは、電源と1つ以上の磁気抵抗効果素子10とを電気的に接続する。ビット線BLは、基準電位と1つ以上の磁気抵抗効果素子10とを電気的に接続する。基準電位は、例えば、グラウンドである。電源は、使用時に磁気メモリ100に接続される。
 磁気抵抗効果素子10への電流の流れは、第1スイッチング素子Sw1で制御される。磁気抵抗効果素子10は、第1スイッチング素子Sw1をONにすることで、データの書き込み、読出しが行われる。磁気抵抗効果素子10は、積層方向に電流が流れることで、スピントランスファートルクを用いてデータの書き込みを行う。
 第1スイッチング素子Sw1は、電流の流れを制御する素子である。第1スイッチング素子Sw1は、例えば、トランジスタ、オボニック閾値スイッチ(OTS:Ovonic Threshold Switch)のように結晶層の相変化を利用した素子、金属絶縁体転移(MIT)スイッチのようにバンド構造の変化を利用した素子、ツェナーダイオード及びアバランシェダイオードのように降伏電圧を利用した素子、原子位置の変化に伴い伝導性が変化する素子である。
 図2は、第1実施形態に係る磁気メモリ100の特徴部分の断面図である。図2に示す第1スイッチング素子Sw1は、トランジスタTrである。トランジスタTrは、例えば電界効果型のトランジスタであり、ゲート電極Gとゲート絶縁膜GIと基板Subに形成されたソースS及びドレインDとを有する。ソースSとドレインDは、電流の流れ方向によって既定されるものであり、これらは同一の領域である。ソースSとドレインDの位置関係は、反転していてもよい。基板Subは、例えば、半導体基板である。
 トランジスタTrと磁気抵抗効果素子10とは、ビア配線V、電極11及び電極12を介して、電気的に接続されている。またトランジスタTrとビット線BLとは、ビア配線Vで接続されている。ビア配線Vは、例えば、z方向に延びる。ソース線SLは、電極12を介して磁気抵抗効果素子10に接続されている。ビア配線V、電極11、12は、導電性を有する材料を含む。ビア配線Vと電極11は一体化していてもよい。またソース線SLと電極12とは一体化していてもよい。すなわち、電極11はビア配線Vの一部でもよく、電極12はソース線SLの一部でもよい。
 磁気抵抗効果素子10の周囲は、絶縁層90で覆われている。絶縁層90は、多層配線の配線間や素子間を絶縁する絶縁層である。絶縁層90は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)等である。
 図3は、磁気抵抗効果素子10の断面図である。図3は、磁気抵抗効果素子10の中心を通るxz平面で磁気抵抗効果素子10を切断した断面である。図4は、磁気抵抗効果素子10をz方向から見た平面図である。
 磁気抵抗効果素子10は、データを記録、保存する素子である。磁気抵抗効果素子10は、z方向の抵抗値でデータを記録する。磁気抵抗効果素子10のz方向の抵抗値は、z方向に書き込み電流を印加することで変化する。磁気抵抗効果素子10のz方向の抵抗値は、磁気抵抗効果素子10のz方向に読出し電流を印加することで読み出すことができる。
 磁気抵抗効果素子10は、第1強磁性層1と第2強磁性層2と非磁性層3とを備える。非磁性層3は、第1強磁性層1と第2強磁性層2との間に位置する。磁気抵抗効果素子10は、これらの他に、バッファ層4、シード層5、強磁性層6、スペーサ層7、磁気誘起層8を有してもよい。バッファ層4、シード層5、強磁性層6及びスペーサ層7は、第1強磁性層1と電極11との間に位置し、磁気誘起層8は、第2強磁性層2と電極12との間に位置する。
 磁気抵抗効果素子10は、柱状の積層体である。磁気抵抗効果素子10のz方向から見た平面視形状は、特に問わない。例えば、図2に示すように、x方向の幅W1とy方向の幅W2が一致する円形でもよい。幅W1と幅W2は一致する必要はなく、平面視形状は楕円形、オーバル、矩形でもよい。磁気抵抗効果素子10の幅W1,W2は、例えば、10nm以上2000nm以下であり、好ましくは30nm以上500nm以下である。
 第1強磁性層1及び第2強磁性層2は、例えば、z方向に磁化容易軸を有する垂直磁化膜である。第1強磁性層1及び第2強磁性層2は、xy面内のいずれかの方向に磁化容易軸を有する面内磁化膜でもよい。
 第1強磁性層1と第2強磁性層2はそれぞれ、強磁性体を含む。第1強磁性層1の磁化は、例えば、第2強磁性層2の磁化より動きにくい。所定の外力を加えた場合に、第1強磁性層1の磁化の向きは変化せず(固定され)、第2強磁性層2の磁化の向きは変化する。第1強磁性層1は、磁化固定層と言われる。第2強磁性層2は、磁化自由層と言われる。図3に示す磁気抵抗効果素子10は、磁化固定層が磁化自由層より基板Subの近くにあり、ボトムピン構造と呼ばれる。第1強磁性層1と第2強磁性層2との位置関係は反対でもよい。第1強磁性層1の磁化と第2強磁性層2の磁化との相対角の変化に応じて、磁気抵抗効果素子10の抵抗値は変化する。
 第1強磁性層1と第2強磁性層2それぞれは、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等である。第1強磁性層1と第2強磁性層2それぞれは、例えば、Co-Fe、Co-Fe-B、Ni-Fe、Co-Ho合金、Sm-Fe合金、Fe-Pt合金、Co-Pt合金、CoCrPt合金である。また、第1強磁性層1と第2強磁性層2それぞれは、例えば、CoとPtやCoとNiを複数回積層した多層膜を含んでもよい。
 第1強磁性層1及び第2強磁性層2は、ホイスラー合金を含んでもよい。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含む。Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等である。ホイスラー合金は高いスピン分極率を有する。
 非磁性層3は、非磁性体を含む。非磁性層3が絶縁体の場合(トンネルバリア層である場合)、その材料としては、例えば、Al、SiO、MgO、及び、MgAl等を用いることができる。また、これらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。非磁性層3が金属の場合、その材料としては、Cu、Au、Ag等を用いることができる。さらに、非磁性層3が半導体の場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。
 図5は、第1実施形態にかかる磁気抵抗効果素子10の特徴部分の拡大図である。非磁性層3は、基準面S1に対してうねっている。基準面S1は、非磁性層3のz方向の最高点と最低点との間の中点を通り、積層方向と直交するxy面内に広がる面である。基準面S1に対してうねっているとは、基準面S1に対して上に凸の部分と下に凸の部分とが一方向に交互に並ぶことをいう。
 非磁性層3は、例えば、基準面S1に対して上に凸の部分と下に凸の部分とが一方向に周期的に配列する。非磁性層3のうねりの周期pは、非磁性層3の幅W1の30%以下であることが好ましい。非磁性層3のうねりの周期pは、例えば、30nm以下であることが好ましい。当該条件を満たすと、第2強磁性層2の磁化を反転させるために必要な反転電流密度を特に下げることができる。
 周期pは、基準面S1に対して上方に突出する凸部の頂点間距離の平均値として求めることができる。凸部の頂点間距離の平均値は、隣接する凸部の頂点2Tの距離のそれぞれを求め、その平均値を算出することで求められる。隣接する凸部の頂点2Tの距離は、例えば、走査型電子顕微鏡で測定できる。周期pは、基準面S1に対して下方に突出する凸部の頂点間距離の平均値として求めてもよい。
 非磁性層3は、例えば、xy面内のいずれかの方向に2周期分以上のうねりを有する。例えば、非磁性層3の幅W1又は幅W2が、うねりの2周期分(2p)以上であることが好ましい。非磁性層3の長軸方向の幅は、例えば、うねりの2周期分(2p)以上であることが好ましい。当該条件を満たすと、第2強磁性層2の磁化を反転させるために必要な反転電流密度を特に下げることができる。
 非磁性層3の最高点と最低点との高さの差hは、例えば、非磁性層3の膜厚tの2倍以下である。非磁性層3の最高点と最低点との高さの差hは、z方向の最高点から、z方向の最低点を通りxy面内に広がる面に下した垂線の高さである。非磁性層3の膜厚tは、xy面内の異なる10点で測定した非磁性層3の膜厚の平均値である。非磁性層3の最高点と最低点との高さの差h及び非磁性層3の膜厚tは、走査型電子顕微鏡で測定できる。非磁性層3の膜厚tは、例えば、0.5nm以上10.0nm以下であり、1.0nm以上5.0nm以下である。
 非磁性層3のうねりの高さが上記範囲であると、第2強磁性層2の磁化M2がz方向に対する傾きの程度が所定の範囲内となる。第2強磁性層2の磁化M2が傾きが所定の範囲内であれば、磁気抵抗効果素子10のMR比の低下を抑制できる。
 バッファ層4及びシード層5は、下地層と言われる。バッファ層4は、異なる結晶間の格子不整合を緩和する層である。バッファ層4は、例えば、Ta、Ti、Zr及びCrからなる群から選択される少なくとも一種の元素を含む金属又は、Ta、Ti、Zr及びCuからなる群から選択される少なくとも一種の元素を含む窒化物である。より具体的には、バッファ層4は、例えば、Ta(単体)、TaN(窒化タンタル)、CuN(窒化銅)、TiN(窒化チタン)、NiAl(ニッケルアルミニウム)である。バッファ層4の膜厚は、例えば、1nm以上5nm以下である。バッファ層4は、例えば、非晶質である。バッファ層4は、例えば、シード層5と電極11との間に位置し、電極11に接する。バッファ層4は、電極11の結晶構造が第1強磁性層1の結晶構造に影響を及ぼすことを抑制する。
 シード層5は、シード層5上に積層される層の結晶性を高める。シード層5は、例えば、バッファ層4と強磁性層6との間に位置し、バッファ層4上にある。シード層5は、例えば、例えば、(001)配向したNaCl構造を有する化合物である。シード層5は、例えば、Pt、Ru、Zr、NiCr合金、NiFeCrである。シード層5の膜厚は、例えば、1nm以上5nm以下である。
 強磁性層6は、例えば、第1強磁性層1と磁気結合する。磁気結合は、例えば、反強磁性的な結合であり、RKKY相互作用により生じる。第1強磁性層1の磁化の向きと強磁性層6の磁化の向きとは反平行の関係である。強磁性層6を構成する材料は、例えば、第1強磁性層1と同様である。強磁性層6、スペーサ層7、第1強磁性層1は、シンセティック反強磁性構造(SAF構造)となる。シンセティック反強磁性構造は、非磁性層を挟む二つの磁性層からなる。第1強磁性層1と強磁性層6とが反強磁性カップリングすることで、強磁性層6を有さない場合より第1強磁性層1の保磁力が大きくなる。
 スペーサ層7は、第2強磁性層2と強磁性層6との間に位置する。スペーサ層7は、磁気結合層とも呼ばれる。スペーサ層7は、例えば、Ru、Ir等である。
 磁気誘起層8は、例えば、第2強磁性層2の磁気異方性を強める。磁気誘起層8は、例えば、第2強磁性層2の垂直磁気異方性を強める。磁気誘起層8は、例えば酸化マグネシウム、W、Ta、Mo等である。磁気誘起層8が酸化マグネシウムの場合は、導電性を高めるために、酸化マグネシウムが酸素欠損していることが好ましい。磁気誘起層8の膜厚は、例えば、0.5nm以上5.0nm以下である。
 磁気抵抗効果素子10において、非磁性層3以外の各層は、非磁性層3と同様に、基準面S1と平行な面に対してうねっていてもよい。
 例えば、第1強磁性層1と第2強磁性層2のそれぞれは、基準面S1と平行な面に対してうねっていてもよい。第1強磁性層1と第2強磁性層2のうねりの周期は、非磁性層3のうねりの周期と略一致する。第1強磁性層1と第2強磁性層2のうねりの高さは、非磁性層3のうねりの高さと略一致する。第1強磁性層1と第2強磁性層2のそれぞれは、例えば、非磁性層3の形状を反映している。
 また例えば、下地層(バッファ層4及びシード層5)と第1強磁性層1との間にある層(例えば、強磁性層6、スペーサ層7)は、基準面S1と平行な面に対してうねっていてもよい。これらの層のうねりの周期は、非磁性層3のうねりの周期と略一致する。これらの層のそれぞれは、例えば、非磁性層3の形状を反映している。
 次いで、磁気抵抗効果素子10の製造方法について説明する。磁気抵抗効果素子10は、各層の積層工程と、各層の一部を所定の形状に加工する加工工程により形成される。各層の積層は、スパッタリング法、化学気相成長(CVD)法、電子ビーム蒸着法(EB蒸着法)、原子レーザデポジッション法等を用いることができる。各層の加工は、フォトリソグラフィー等を用いて行うことができる。
 まず電極11上にバッファ層4を形成し、バッファ層4を所定の形状に加工する。そして、バッファ層4の周囲を絶縁層90で覆う。
 次いで、バッファ層4の表面が露出するまで、化学機械研磨(CMP)を行う。化学機械研磨の条件によって、バッファ層4の表面に凹凸が形成される。化学機械研磨の条件は、化学機械研磨の圧力、化学機械研磨の時間、研磨剤の種類、バッファ層4を構成する材料、絶縁層90を構成する材料によって異なる。バッファ層4に形成される凹凸の周期、高さ等は、これらの条件を変化させることで調整できる。
 CMP研磨の条件は、装置依存、研磨剤の種類、バッファ層4を構成する材料、絶縁層90を構成する材料、研磨圧力、研磨時間によって変動する。そのため、CMP研磨の条件は、複数回の条件出しを行い、フィードバックを複数回行い、事前に決定する。同じ条件で作製したサンプルを用いてこれらのパラメータを変更した事前検討を行うことで、CMP研磨の条件は求められる。同条件で作製したサンプルに対して同条件でCMP研磨を行うと、再現性よくバッファ層4の表面状態を制御できる。
 次いで、CMP研磨を行ったバッファ層4上に、シード層5、強磁性層6、スペーサ層7、第1強磁性層1、非磁性層3、第2強磁性層2、磁気誘起層8を順に成膜する。これらの各層は、バッファ層4の表面形状を追従し、湾曲する。その結果、これらの各層は、面内方向に広がる平坦面に対してうねる形状となる。
 次いで、成膜した各層を所定の形状に加工し、その周囲を絶縁層90で覆う。そして、磁気誘起層8の表面が露出するまで、絶縁層90を除去する。その後、磁気誘起層8上に、電極12を形成する。
 磁気抵抗効果素子10は、非磁性層3がうねっているため、第2強磁性層2の磁化を反転させるために必要な反転電流密度を下げることができる。これは、第2強磁性層2の磁化が非磁性層3の表面に沿って僅かに傾くためと考えられる。
 図5に示すように、第2強磁性層2の磁化M2は、非磁性層3の表面に対して直交するように配向する。磁化M2は、z方向に対して傾斜している。磁化M2は、第1強磁性層1からスピンが注入されると、歳差運動を行いながら反転する。磁化M2が初期状態で傾いていると、磁化M2が磁化反転のための歳差運動を行いやすくなり、磁化反転に必要なエネルギーが小さくなる。その結果、本実施形態に係る磁気抵抗効果素子10は、第2強磁性層2の磁化を反転させるために必要な反転電流密度を小さくできると考えられる。
 以上、第1実施形態に係る磁気抵抗効果素子10の一例を示したが、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
 ここでは磁気抵抗効果素子10を磁気メモリ100に適用する例を示したが、この例に限られるものではない。例えば、磁気抵抗効果素子10を磁気ヘッド、磁気センサ等に用いてもよい。この場合、磁気抵抗効果素子10の幅W1,W2は、例えば、0.01μm以上10μm以下であり、好ましくは0.06μm以上10μm以下である。この場合のうねりの周期は、例えば、5nm以上300nm以下であり、好ましくは10nm以上150nm以下である。また磁気ヘッドの場合は、好ましくは0.01μm以上1μm以下である。
「実施例1」
 直径100nmの磁気抵抗効果素子を作製した。磁気抵抗効果素子は、基板に近い側から順に、バッファ層(TiN)、シード層(NiCr合金)、強磁性層(CoFe合金)、磁気結合層(Ru)、第1強磁性層(CoFe合金)、非磁性層(MgO)、第2強磁性層(CoFe合金)、磁気誘起層(MgO)を有する。バッファ層を成膜後に、表面をCMP研磨し、バッファ層の表面に凹凸を作製した。非磁性層は、バッファ層の凹凸に応じて、うねっていた。非磁性層のうねりの周期は、20nmであった。
 作製した実施例1の磁気抵抗効果素子を用いて反転電流密度を測定した。実施例1の反転電流密度は、5.15MA/cmであった。
「実施例2~4」
 実施例2~4は、非磁性層のうねりの周期を変えた点が実施例1と異なる。非磁性層のうねりの周期は、バッファ層をCMP研磨する際の条件を変えて変更した。実施例2のうねりの周期は30nm、実施例3のうねりの周期は40nm、実施例4のうねりの周期は60nmとした。そして、実施例2~4のそれぞれの磁気抵抗効果素子を用いて反転電流密度を測定した。
「比較例1」
 比較例1は、非磁性層が平坦である点が実施例1と異なる。バッファ層をCMP研磨する際の条件を変えて、バッファ層の表面を平坦にすることで、非磁性層は平坦になった。比較例1の磁気抵抗効果素子を用いて反転電流密度を測定した。
 実施例1~4及び比較例1の結果を図6にまとめた。図6において、比較例1はうねりがないため、凸部の距離を磁気抵抗効果素子の幅(100nm)として表記した。図6に示すように、非磁性層3がうねっていると、磁気抵抗効果素子の反転電流密度が小さくなった。またうねりの周期が、磁気抵抗効果素子の幅の30%以下となると、特に磁気抵抗効果素子の反転電流密度が小さくなった。
1…第1強磁性層、2…第2強磁性層、2T…頂点、3…非磁性層、4…バッファ層、5…シード層、6…強磁性層、7…スペーサ層、8…磁気誘起層、10…磁気抵抗効果素子、11,12…電極、90…絶縁層、100…磁気メモリ、S1…基準面

Claims (8)

  1.  第1強磁性層と第2強磁性層と非磁性層とを備え、
     前記非磁性層は、前記第1強磁性層と前記第2強磁性層との間に有り、
     前記非磁性層は、積層方向と直交する基準面に対してうねっている、磁気抵抗効果素子。
  2.  前記基準面に対して上方に突出する凸部の頂点間距離の平均値が、前記非磁性層の幅の30%以下である、請求項1に記載の磁気抵抗効果素子。
  3.  前記基準面に対して上方に突出する凸部の頂点間距離の平均値が、30nm以下である、請求項1に記載の磁気抵抗効果素子。
  4.  前記非磁性層の幅が、前記非磁性層のうねりの2周期分以上である、請求項1に記載の磁気抵抗効果素子。
  5.  前記非磁性層の最高点と最低点との差が、前記非磁性層の膜厚の2倍以下である、請求項1に記載の磁気抵抗効果素子。
  6.  磁気誘起層をさらに備え、
     前記磁気誘起層と前記非磁性層とは、前記第2強磁性層を挟む、請求項1に記載の磁気抵抗効果素子。
  7.  スペーサ層と第3強磁性層とをさらに備え、
     前記スペーサ層は、前記第1強磁性層に接し、
     前記第1強磁性層と前記第3強磁性層とは、前記スペーサ層を挟む、請求項1に記載の磁気抵抗効果素子。
  8.  下地層をさらに備え、
     前記下地層と前記非磁性層との間にある層が、前記積層方向と直交する基準面に対してうねっている、請求項1に記載の磁気抵抗効果素子。
PCT/JP2022/021362 2022-05-25 2022-05-25 磁気抵抗効果素子 WO2023228308A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/021362 WO2023228308A1 (ja) 2022-05-25 2022-05-25 磁気抵抗効果素子
US17/971,775 US20230389444A1 (en) 2022-05-25 2022-10-24 Magneto-resistive element and method of manufacturing the magneto-resistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021362 WO2023228308A1 (ja) 2022-05-25 2022-05-25 磁気抵抗効果素子

Publications (1)

Publication Number Publication Date
WO2023228308A1 true WO2023228308A1 (ja) 2023-11-30

Family

ID=88918666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021362 WO2023228308A1 (ja) 2022-05-25 2022-05-25 磁気抵抗効果素子

Country Status (1)

Country Link
WO (1) WO2023228308A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006630A1 (ja) * 2004-07-14 2006-01-19 Nec Corporation 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法、磁気ランダムアクセスメモリ
JP2013016644A (ja) * 2011-07-04 2013-01-24 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2016219698A (ja) * 2015-05-25 2016-12-22 富士通株式会社 磁気抵抗メモリ及び磁気抵抗メモリの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006630A1 (ja) * 2004-07-14 2006-01-19 Nec Corporation 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法、磁気ランダムアクセスメモリ
JP2013016644A (ja) * 2011-07-04 2013-01-24 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2016219698A (ja) * 2015-05-25 2016-12-22 富士通株式会社 磁気抵抗メモリ及び磁気抵抗メモリの製造方法

Similar Documents

Publication Publication Date Title
US8830735B2 (en) Magnetic memory including memory cells incorporating data recording layer with perpendicular magnetic anisotropy film
JP6642680B2 (ja) スピン流磁化回転素子、磁気抵抗効果素子及び磁気メモリ
US6831312B2 (en) Amorphous alloys for magnetic devices
CN109427964B (zh) 自旋流磁化反转元件及自旋轨道转矩型磁阻效应元件
US11211547B2 (en) Spin-orbit-torque type magnetization rotating element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
CN112349831B (zh) 磁阻效应元件以及惠斯勒合金
JP3699954B2 (ja) 磁気メモリ
CN112349833B (zh) 磁阻效应元件以及惠斯勒合金
US11790967B2 (en) Magnetic domain wall displacement element, magnetic recording array, and semiconductor device
CN108701721B (zh) 自旋流磁化反转元件及其制造方法、磁阻效应元件、磁存储器
US11145345B2 (en) Storage element, semiconductor device, magnetic recording array, and method of producing storage element
JP3836779B2 (ja) 磁気抵抗効果素子及び磁気メモリ
WO2019139029A1 (ja) 磁壁移動型磁気記録素子
WO2021245768A1 (ja) 磁気抵抗効果素子及び磁気記録アレイ
WO2023228308A1 (ja) 磁気抵抗効果素子
WO2023228389A1 (ja) 磁気抵抗効果素子及び磁気抵抗効果素子の製造方法
JP7520651B2 (ja) 磁気抵抗効果素子および磁気メモリ
US20230389444A1 (en) Magneto-resistive element and method of manufacturing the magneto-resistive element
JP6750770B1 (ja) スピン素子及びリザボア素子
WO2024069733A1 (ja) 磁気抵抗効果素子の製造方法及び磁気抵抗効果素子
WO2023162121A1 (ja) 磁化回転素子、磁気抵抗効果素子及び磁気メモリ
WO2022070378A1 (ja) 磁壁移動素子および磁気アレイ
WO2023026481A1 (ja) 磁気抵抗効果素子及び磁気メモリ
WO2024009417A1 (ja) 磁化回転素子、磁気抵抗効果素子、磁気メモリ及び磁化回転素子の製造方法
JP3813920B2 (ja) 磁気デバイス及び磁気メモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943712

Country of ref document: EP

Kind code of ref document: A1