WO2023227058A1 - 一种用于燃料电池的柔性分区特性测试片 - Google Patents

一种用于燃料电池的柔性分区特性测试片 Download PDF

Info

Publication number
WO2023227058A1
WO2023227058A1 PCT/CN2023/096278 CN2023096278W WO2023227058A1 WO 2023227058 A1 WO2023227058 A1 WO 2023227058A1 CN 2023096278 W CN2023096278 W CN 2023096278W WO 2023227058 A1 WO2023227058 A1 WO 2023227058A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
current
layer
distributed
test piece
Prior art date
Application number
PCT/CN2023/096278
Other languages
English (en)
French (fr)
Inventor
张宇洲
邵恒
唐厚闻
Original Assignee
上海氢晨新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海氢晨新能源科技有限公司 filed Critical 上海氢晨新能源科技有限公司
Publication of WO2023227058A1 publication Critical patent/WO2023227058A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of fuel cell testing, and in particular to a flexible partitioning characteristic test piece for fuel cells.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a fuel cell
  • the flexible partitioning characteristic test piece of the battery is simple to process and assemble without changing the internal components of the stack, allowing accurate collection of specific characteristics inside the stack.
  • a flexible partitioning characteristic test piece for fuel cells It is a flexible piece as a whole and includes a current collection layer, a current measurement layer and a current derivation layer that are stacked in sequence.
  • the current collection layer is used to fit the membrane electrode, and the current derivation layer is used to Fitting the bipolar plate, the current collection layer has collection metal sheets distributed according to the fuel cell area, the current measurement layer has shunt resistors with fixed resistance distributed, and the current lead-out layer has lead-out metal sheets distributed, so The distribution positions of the collection metal sheet, the shunt resistor and the lead-out metal sheet correspond to each other, and electrical conduction is achieved through the via holes distributed in the flexible sheet;
  • Hollow grooves are distributed on the flexible sheet, and the shape of the hollow grooves corresponds to the shape of the bipolar plate flow channel;
  • Connectors are provided on both sides of the flexible sheet, and the connectors connect the two ends of each shunt resistor through metal conductive sheets distributed in the flexible sheet.
  • the flexible sheet is made of insulating flexible material.
  • both the lead-out metal sheet and the collection metal sheet are gold-plated metal sheets.
  • At least one positioning hole is provided around the flexible sheet, and a positioning structure connected to the positioning hole is provided on the bipolar plate of the fuel cell.
  • the positioning holes are special-shaped holes.
  • the total thickness of the flexible sheet is 0.1-0.5 mm.
  • sealing strips are provided on both sides of the flexible sheet facing the membrane electrode.
  • a temperature measurement layer is provided between the current measurement layer and the current derivation layer.
  • Thermistors are distributed in the temperature measurement layer.
  • the thermistors are distributed according to fuel cell areas.
  • the connectors are distributed in The metal wire pieces in the test piece connect the two ends of each thermistor.
  • thermistors are connected in series with each other.
  • the actual resistance value of the shunt resistor is re-corrected according to the temperature of the fuel cell area where the shunt resistor is located, and then the current passing through the shunt resistor is calculated based on the actual resistance value.
  • the present invention has the following beneficial effects:
  • the present invention designs a flexible sheet structure that can be directly placed between the bipolar plate and the membrane electrode of the fuel cell. There is no need to change the structure of the battery or replace the existing components in the stack, overcoming the traditional method. The influence of the transverse conductivity of the mid-bipolar plate, the performance parameters of the membrane electrode are directly collected, the measurement is accurate, and the The local reaction conditions of the battery can be restored accurately, so that the current distribution generated by the membrane electrode can be accurately evaluated.
  • the flexible sheet is small in thickness and light in weight. When placed in the stack, it has little impact on the overall mass and volume of the stack. At the same time, its overall structure is a flat plate without protruding channels, so the structure will not be damaged due to the influence of assembly force. damage.
  • the flexible sheet can be bent and deformed to fit the deformed bipolar plate or membrane electrode, without affecting the stress distribution and reflecting the true current distribution.
  • Figure 1 is a schematic structural diagram of the present invention.
  • Figure 2 is a partial side cross-sectional schematic view of the present invention.
  • Figure 3 is a schematic diagram of the test installation of the present invention.
  • Figure 4 is a schematic diagram of the testing principle of the present invention.
  • this embodiment provides a flexible partitioning characteristic test piece for a fuel cell, which is made entirely of a flexible piece.
  • the flexible sheet includes a current collection layer 1, a current measurement layer 2, a temperature measurement layer 14 and a current derivation layer 3 that are stacked in sequence.
  • the current collection layer 1 is used to adhere to the membrane electrode 4 of the fuel cell, and the current derivation layer 3 is used to adhere to the bipolar plate 5 of the fuel cell.
  • collection metal sheets 6 distributed on the current collection layer 1.
  • the distribution pattern is divided according to the fuel cell reaction area, and a collection metal sheet 6 is provided in each area.
  • the collecting metal sheet 6 is made of gold-plated copper sheet, which has the advantage of corrosion resistance.
  • the collection metal sheet 6 is also provided with a through hole 16 .
  • Shunt resistors 7 with fixed resistance are distributed in the current measurement layer 2 , and the distribution positions of the shunt resistors 7 correspond to the positions of the collecting metal sheets 6 up and down.
  • Thermistors 15 are distributed in the temperature measurement layer 14, and the thermistors 15 are also distributed according to the fuel cell area, that is, corresponding to the upper and lower positions of the collecting metal piece 6 and the shunt resistor 7.
  • the thermal Resistors 15 are connected in series with each other.
  • lead-out metal sheets 8 distributed on the outside of the current lead-out layer 3.
  • the structure of the lead-out metal sheets 8 is consistent with that of the collection metal sheet 6, and their positions correspond to each other up and down.
  • the lead-out metal sheet 8 is also provided with a through hole 16
  • Through holes 9 are distributed in the flexible sheet. Each through hole 9 is used to connect the corresponding collection metal sheet 6, shunt resistor 7 and lead-out metal sheet 8 to each other. Specifically, the through holes 16 of the metal sheet are connected to the through holes. 9. Therefore, the current generated by the membrane electrode 4 can flow into the shunt resistor 7 through the collection metal piece 6 and the conduction hole 9 , and finally flow out through the conduction hole 9 and the lead-out metal piece 8 .
  • Hollow grooves 10 are also distributed on the flexible sheet.
  • the shape of the hollow groove 10 corresponds to the shape of the flow channel of the bipolar plate 5, so that the arrangement of the flexible sheet will not affect the gas reaction in the flow channel of the bipolar plate 5.
  • a hollow part with the same shape as the flow channel is formed on the flexible sheet by laser or mechanical cutting to ensure that the flexible sheet does not hinder the migration of the reactive gas from the flow channel of the bipolar plate 5 to the surface of the membrane electrode 4 .
  • Connectors 11 are provided on both sides of the flexible piece.
  • the connector 11 connects both ends of each shunt resistor 7 and both ends of the thermistor 15 through metal wires distributed in the test piece to perform circuit connections for testing.
  • the flexible sheet is made of insulating flexible material.
  • the specific material is not limited, and polyimide is preferably used.
  • At least one positioning hole 12 is provided around the flexible sheet, and the bipolar plate 5 of the fuel cell is provided with a positioning structure connecting the positioning hole 12 .
  • the positioning hole 12 can be a special-shaped hole to ensure the stability of the connection.
  • the total thickness of the flexible sheet is 0.1 to 0.5 mm, and the thickness is uniform at each position on the plane, and the thickness error at each position does not exceed 0.01 mm.
  • the flexible sheet is small in thickness and light in weight. When placed in the stack, it has little impact on the overall mass and volume of the stack.
  • the overall structure is a flat plate without protruding channels, so there will be no structural damage due to the influence of assembly force. .
  • the flexible sheet can be bent and deformed to fit the deformed plate or membrane electrode 4 without affecting the stress distribution and reflecting the true current distribution.
  • a sealing strip 13 is provided on the side of the flexible sheet facing the membrane electrode 4 to achieve sealing between the flexible sheet and the frame of the membrane electrode 4 .
  • This embodiment can simultaneously test several characteristics of the fuel cell, such as current density distribution, potential distribution, impedance distribution and temperature distribution.
  • the thermistor 15 in series is connected to both ends of the external excitation power supply through the connector 11; at the same time, each thermistor 15 and each shunt resistor 7 are connected to the external data sampling line through the connector 11 and data acquisition equipment, specific tests for each characteristic are as follows:
  • the resistance value of the thermistor 15 in each partition changes. Measuring the resistance value of the thermistor 15 through the four-wire method can accurately reflect the temperature of each partition.
  • the four-wire method resistance measurement can be obtained by using an excitation power supply to apply an excitation current to the thermistor 15 connected in series, measuring the voltage across the thermistor 15, and then calculating it through Ohm's law.
  • the current generated by the membrane electrode 4 passes through the gold-plated metal sheets in each zone on the current collection layer 1, and then flows through the fixed-value shunt resistor 7 in the current measurement layer 2.
  • the current flowing through each partition can be calculated.
  • the current is then introduced into the metal plate through the gold-plated metal sheet of the current lead-out layer 3 .
  • the actual resistance value of the shunt resistor 7 can be re-corrected according to the temperature of the fuel cell area where the shunt resistor 7 is located, and then the current passing through the shunt resistor 7 can be calculated based on the actual resistance value, thereby obtaining a more accurate the result of. Divide the current in each partition by the area to get the current density.
  • an external AC disturbance signal is superimposed on the fuel cell.
  • the waveform of this signal can be a sine wave or a square wave with a frequency of 10-2000Hz.
  • the AC component Ia of the current in each zone and the AC component Va of the response voltage on both sides of the zone measurement board are measured through the current measurement layer 2, and then the AC impedance is obtained through Va/Ia.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种用于燃料电池的柔性分区特性测试片,整体为柔性片,包括依次层叠设置的电流收集层、电流测量层和电流导出层,电流收集层用于贴合膜电极,电流导出层用于贴合双极板,电流收集层上按燃料电池区域分布有收集金属片,电流测量层内分布有阻值固定的分流电阻,电流导出层上分布有导出金属片,收集金属片、分流电阻和导出金属片的分布位置互相对应,并且通过柔性片内分布的导通孔实现电气导通;柔性片上分布有镂空槽;柔性片的两侧设有接插件。与现有技术相比,本发明具有不需要改变电池的结构,也不需要替换电堆中现有的零部件,直接采集膜电极处的性能参数,测量准确等优点。

Description

一种用于燃料电池的柔性分区特性测试片 技术领域
本发明涉及燃料电池测试领域,尤其是涉及一种用于燃料电池的柔性分区特性测试片。
背景技术
燃料电池在实际运行过程中,由于传质传热不均匀,导致局部反应不一致,从而引起内部不同区域的电流分布,温度分布,水含量分布不均匀,使得燃料电池总体性能下降。分区性能测量技术可以直观地测得燃料电池内部不同区域的性能分布,包括电流、阻抗、温度分布等,对于了解燃料电池内部反应情况,优化流场设计有很重要的意义。现有的分区测试技术大致可以分为以下两种:
1)在相邻电池单元的两块双极板之间设置分区测试PCB板,即为MEA(膜电极)和分区板分别置于双极板的两侧。这种方法不改变电堆内部本身所含的部件,但由于双极板的横向导电性,MEA所产生的电流会先经过双极板再被分区板所采集到,所采集到的电流受到双极板横向导电性的影响,使得本身可能分布不均匀的电流密度被均匀化,无法准确地评估膜电极所产生的电流分布。
2)在分区测试PCB板上刻有阴极或阳极的气体流道,用分区测试PCB板直接替代双极板置于MEA的一侧。该方法克服了前一种方法的短板,所采集到的信息更加准确。但是需要改变电堆的双极板。但是,其主要也有以下缺点:一、机械性能改变,通常分区测试板都为印刷电路板技术制作的,机械强度相较于金属类双极板强度较低,容易在装配层压过程中受到装配力而导致流道变形。二、燃料电池电堆的首尾部分,极板弯曲变形严重,PCB电路板弯曲半径较小,容易损害开裂;或者接触不良,导致接触电阻增加,影响测试结果。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用于燃料电 池的柔性分区特性测试片,加工装配简单,不改变电堆内部零部件,实现精确采集电堆内部的具体特性。
本发明的目的可以通过以下技术方案来实现:
一种用于燃料电池的柔性分区特性测试片,整体为柔性片,包括依次层叠设置的电流收集层、电流测量层和电流导出层,电流收集层用于贴合膜电极,电流导出层用于贴合双极板,所述电流收集层上按燃料电池区域分布有收集金属片,所述电流测量层内分布有阻值固定的分流电阻,所述电流导出层上分布有导出金属片,所述收集金属片、分流电阻和导出金属片的分布位置互相对应,并且通过柔性片内分布的导通孔实现电气导通;
所述柔性片上分布有镂空槽,所述镂空槽的形状和双极板流道的形状相对应;
所述柔性片的两侧设有接插件,所述接插件通过分布在柔性片内的金属导线片连接各个分流电阻的两端。
进一步地,所述的柔性片为绝缘柔性材料制成。
进一步地,所述导出金属片和收集金属片均采用镀金金属片。
进一步地,所述柔性片的四周设有至少一个定位孔,燃料电池的双极板上设有连接定位孔的定位结构。
进一步地,所述定位孔为异形孔。
进一步地,所述柔性片的总厚度为0.1~0.5mm。
进一步地,所述柔性片面向膜电极的两侧均设有密封条。
进一步地,所述电流测量层和电流导出层之间设有温度测量层,所述温度测量层中分布有热敏电阻,所述热敏电阻按燃料电池区域分布,所述接插件通过分布在测试片内的金属导线片连接各个热敏电阻的两端。
进一步地,所述热敏电阻互相串联。
进一步地,进行燃料电池的电流密度测试时,根据分流电阻所在燃料电池区域的温度重新修正分流电阻的实际阻值,然后根据实际阻值计算经过该分流电阻的电流。
与现有技术相比,本发明具有以下有益效果:
1、本发明设计了柔性片结构,可以直接设置在燃料电池的双极板和膜电极之间,不需要改变电池的结构,也不需要替换电堆中现有的零部件,克服了传统方式中双极板横向导电性的影响,直接采集膜电极处的性能参数,测量准确,可以准确 地还原电池局部的反应情况,从而可以准确地评估膜电极所产生的电流分布。
2、柔性片厚度小、重量轻,置入电堆中对电堆整体的质量体积影响较小,同时,其整体为平板结构,不带突起的沟道,不会因为装配力的影响导致结构损伤。
3、柔性片可以弯曲变形,使其贴合变形的双极板或膜电极,不影响应力分布,反应真实电流分布。
附图说明
图1为本发明的结构示意图。
图2为本发明的局部侧面剖视示意图。
图3为本发明的测试安装示意图。
图4为本发明的测试原理示意图。
附图标记:1、电流收集层,2、电流测量层,3、电流导出层,4、膜电极,5、双极板,6、收集金属片,7、分流电阻,8、导出金属片,9、导通孔,10、镂空槽,11、接插件,12、定位孔,13、密封条,14、温度测量层,15、热敏电阻,16、通孔。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1~图3所示,本实施例提供了一种用于燃料电池的柔性分区特性测试片,整体采用柔性片制成。柔性片包括依次层叠设置的电流收集层1、电流测量层2、温度测量层14和电流导出层3。电流收集层1用于贴合燃料电池的膜电极4,电流导出层3用于贴合燃料电池的双极板5。
在电流收集层1的分布有收集金属片6,分布的形式为按照燃料电池反应区域进行划分,每个区域内设置一个收集金属片6。收集金属片6采用镀金的铜片,具有耐腐蚀的优点。在收集金属片6上还设有通孔16。电流测量层2内分布有阻值固定的分流电阻7,分流电阻7的分布位置和收集金属片6的位置上下对应。温度测量层14中分布有热敏电阻15,热敏电阻15同样按燃料电池区域分布,即为和收集金属片6、分流电阻7的位置上下对应。为了提高后续温度测试的效率,热敏 电阻15互相串联。电流导出层3的外侧分布有导出金属片8,导出金属片8的结构和收集金属片6一致,同时位置也是上下互相对应。在导出金属片8上也设有通孔16
在柔性片内分布的导通孔9,各个导通孔9用于使位置对应的收集金属片6、分流电阻7和导出金属片8互相连接,具体是金属片的通孔16连接导通孔9。由此,膜电极4产生的电流可以经过收集金属片6和导通孔9流进分流电阻7,最后再经过导通孔9和导出金属片8流出。
在柔性片上还分布有镂空槽10,镂空槽10的形状和双极板5流道的形状相对应,使柔性片的设置不会影响到双极板5流道内的气体反应。具体为在柔性片上通过激光或机械切割形成和流道形状相同的镂空部分,以保证柔性片不会阻碍反应气体从双极板5流道中迁移到膜电极4的表面。
在柔性片的两侧设有接插件11,接插件11通过分布在测试片内的金属导线片连接各个分流电阻7的两端和热敏电阻15的两端,进行测试的电路连接。
本实施例中,柔性片为绝缘柔性材料制成,具体材料不限,优选采用聚酰亚胺。在柔性片的四周设有至少一个定位孔12,燃料电池的双极板5上设有连接定位孔12的定位结构。在安装柔性片时,通过定位孔12和定位结构的连接,保证双极板5的流道与柔性片的镂空槽10可以完全对齐。定位孔12可以采用异形孔,确保连接的稳定。
本实施例中,柔性片的总厚度为0.1~0.5mm,在平面上各个位置厚度均匀,各个位置厚度误差不超过0.01mm。在安装后柔性片厚度小、重量轻,置入电堆中对电堆整体的质量体积影响较小,其整体为平板结构,不带突起的沟道,不会因为装配力的影响导致结构损伤。同时,柔性片可以弯曲变形,使其贴合变形的极板或膜电极4,不影响应力分布,反应真实电流分布。
本实施例中,柔性片面向膜电极4的一侧设有密封条13,用以实现柔性片和膜电极4边框之间的密封。
本实施例可以同时测试燃料电池的数个特性,例如:电流密度分布,电位分布,阻抗分布和温度分布。如图4所示,测试时,将串联的热敏电阻15通过接插件11外接激励电源两端;同时,将各个热敏电阻15和各个分流电阻7通过接插件11连接外置的数据采样线和数据采集设备,每个特性的具体测试如下:
一、温度测量:
温度变化时,各个分区中的热敏电阻15阻值产生变化,通过四线法测量热敏电阻15的阻值,可以准确地反应处各个分区的温度大小。四线法电阻测量可以通过使用激励电源对串联的热敏电阻15施加激励电流,测量热敏电阻15两端的电压,再通过欧姆定律计算得到。
二、电流密度测量:
燃料电池运行时,膜电极4产生的电流通过电流收集层1上各个分区的镀金金属片后,流过电流测量层2中的定值分流电阻7,通过采集分流电阻7两端的电压和欧姆定律,计算的得到每一个分区流过的电流大小。电流再通过电流导出层3的镀金金属片导入金属极板。由于燃料电池运行时温度会产生变化,因此可以根据分流电阻7所在燃料电池区域的温度重新修正分流电阻7的实际阻值,然后根据实际阻值计算经过该分流电阻7的电流,从而获得更加准确的结果。将每个分区的电流除以面积即可得到电流密度。
三、阻抗测量
燃料电池运行时,外部对燃料电池叠加交流扰动信号,该信号的波形可以是正弦波或者方波,频率为10-2000Hz。通过电流测量层2测得各个分区上电流的交流分量Ia和分区测量板两侧的响应电压的交流分量Va,再通过Va/Ia获得交流阻抗的大小。
四、电位分布测量
燃料电池运行时,通过测量双极板5侧与分流电阻7电流测量层2一端的电压差,可以测试获得每一个分区上的电压值,获得膜电极4上的电位分布。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种用于燃料电池的柔性分区特性测试片,其特征在于,整体为柔性片,包括依次层叠设置的电流收集层(1)、电流测量层(2)和电流导出层(3),电流收集层(1)用于贴合膜电极(4),电流导出层(3)用于贴合双极板(5),所述电流收集层(1)上按燃料电池区域分布有收集金属片(6),所述电流测量层(2)内分布有阻值固定的分流电阻(7),所述电流导出层(3)上分布有导出金属片(8),所述收集金属片(6)、分流电阻(7)和导出金属片(8)的分布位置互相对应,并且通过柔性片内分布的导通孔(9)实现电气导通;
    所述柔性片上分布有镂空槽(10),所述镂空槽(10)的形状和双极板(5)流道的形状相对应;
    所述柔性片的两侧设有接插件(11),所述接插件(11)通过分布在柔性片内的金属导线片连接各个分流电阻(7)的两端。
  2. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述的柔性片为绝缘柔性材料制成。
  3. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述导出金属片(8)和收集金属片(6)均采用镀金金属片。
  4. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述柔性片的四周设有至少一个定位孔(12),燃料电池的双极板(5)上设有连接定位孔(12)的定位结构。
  5. 根据权利要求4所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述定位孔(12)为异形孔。
  6. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述柔性片的总厚度为0.1~0.5mm。
  7. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述柔性片面向膜电极(4)的两侧均设有密封条(13)。
  8. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述电流测量层(2)和电流导出层(3)之间设有温度测量层(14),所述温度测量层(14)中分布有热敏电阻(15),所述热敏电阻(15)按燃料电池区域 分布,所述接插件(11)通过分布在测试片内的金属导线片连接各个热敏电阻(15)的两端。
  9. 根据权利要求8所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,所述热敏电阻(15)互相串联。
  10. 根据权利要求1所述的一种用于燃料电池的柔性分区特性测试片,其特征在于,进行燃料电池的电流密度测试时,根据分流电阻(7)所在燃料电池区域的温度重新修正分流电阻(7)的实际阻值,然后根据实际阻值计算经过该分流电阻(7)的电流。
PCT/CN2023/096278 2022-05-25 2023-05-25 一种用于燃料电池的柔性分区特性测试片 WO2023227058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210583513.4 2022-05-25
CN202210583513.4A CN114976137B (zh) 2022-05-25 2022-05-25 一种用于燃料电池的柔性分区特性测试片

Publications (1)

Publication Number Publication Date
WO2023227058A1 true WO2023227058A1 (zh) 2023-11-30

Family

ID=82956604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096278 WO2023227058A1 (zh) 2022-05-25 2023-05-25 一种用于燃料电池的柔性分区特性测试片

Country Status (2)

Country Link
CN (1) CN114976137B (zh)
WO (1) WO2023227058A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976137B (zh) * 2022-05-25 2023-12-08 上海氢晨新能源科技有限公司 一种用于燃料电池的柔性分区特性测试片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243488A (zh) * 2019-06-25 2019-09-17 西安交通大学 实时测量氢燃料电池内部温度的***式薄膜热电偶及其制作方法
CN113075444A (zh) * 2021-03-26 2021-07-06 电子科技大学 一种燃料电池内部电流走线式分布在线检测装置
CN213988951U (zh) * 2020-12-01 2021-08-17 中国科学院大连化学物理研究所 一种平板型固体氧化物燃料电池测试装置
CN114976137A (zh) * 2022-05-25 2022-08-30 上海氢晨新能源科技有限公司 一种用于燃料电池的柔性分区特性测试片

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151601B4 (de) * 2001-10-15 2005-03-10 Deutsch Zentr Luft & Raumfahrt Gasverteilungselement, Kontaktplatte und Brennstoffzellenstapel
KR100980995B1 (ko) * 2007-06-19 2010-09-07 현대자동차주식회사 연료전지용 지능형 전극막
KR20120065824A (ko) * 2010-12-13 2012-06-21 (주)청파이엠티 연료전지 성능 측정장치 및 이를 이용한 연료전지 성능측정방법
CN103675694B (zh) * 2012-09-26 2016-11-02 同济大学 一种燃料电池电堆的在线分区检测***及检测方法
CN103245920B (zh) * 2013-04-10 2015-08-19 同济大学 一种燃料电池多功能在线测试印刷电路板
DE102015223040A1 (de) * 2015-11-23 2017-05-24 Volkswagen Ag Brennstoffzelle sowie Brennstoffzellensystem mit einer solchen
EP3435048A1 (de) * 2017-07-25 2019-01-30 Heraeus Sensor Technology GmbH Sensor zur erfassung eines räumlichen temperaturprofils und verfahren zur herstellung einer sensoreinheit
DE102020006353A1 (de) * 2020-10-15 2022-04-21 Cellcentric Gmbh & Co. Kg Vorrichtung zur Überwachung der Zellspannung
CN113030736B (zh) * 2021-03-02 2022-10-11 上海交通大学 一种集成式燃料电池多功能在线测试装置
CN113363539B (zh) * 2021-05-28 2023-03-21 电子科技大学 一种燃料电池堆内部电流高分辨率分区检测***
CN113701824B (zh) * 2021-09-29 2022-09-02 中国科学院大连化学物理研究所 一种燃料电池局部电流密度-温度分布测试装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243488A (zh) * 2019-06-25 2019-09-17 西安交通大学 实时测量氢燃料电池内部温度的***式薄膜热电偶及其制作方法
CN213988951U (zh) * 2020-12-01 2021-08-17 中国科学院大连化学物理研究所 一种平板型固体氧化物燃料电池测试装置
CN113075444A (zh) * 2021-03-26 2021-07-06 电子科技大学 一种燃料电池内部电流走线式分布在线检测装置
CN114976137A (zh) * 2022-05-25 2022-08-30 上海氢晨新能源科技有限公司 一种用于燃料电池的柔性分区特性测试片

Also Published As

Publication number Publication date
CN114976137B (zh) 2023-12-08
CN114976137A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN110061269B (zh) 燃料电池堆内部电流密度及气体压强分布在线测量装置
WO2023227058A1 (zh) 一种用于燃料电池的柔性分区特性测试片
EP1851817B1 (en) Fuel cell stack with and integrated current collector and electrical component plate
CN110061242B (zh) 燃料电池电流密度测试双极板及其加工方法
CN112234233A (zh) 一种燃料电池内部电流分布在线检测装置
CN110061268B (zh) 燃料电池内部分区检测双极板
CN112068019B (zh) 一种平板型sofc电流密度分布式端板测试结构及测试方法
CN110780213A (zh) 电流密度检测复合板及电池内电流密度在线检测装置
CN111525160A (zh) 一种燃料电池电流密度分区测试***和方法
CN108562783A (zh) 一种燃料电池冷启动电流密度和温度的分区测试***和方法
CN103245920A (zh) 一种燃料电池多功能在线测试印刷电路板
CN113030736B (zh) 一种集成式燃料电池多功能在线测试装置
CN113701824B (zh) 一种燃料电池局部电流密度-温度分布测试装置及方法
CN113363539B (zh) 一种燃料电池堆内部电流高分辨率分区检测***
CN112216850B (zh) 一种燃料电池内部温度分布在线检测装置及其电堆
CN104111425A (zh) 一种燃料电池冷启动分区性能测试***及测试方法
CN112229537B (zh) 一种检测燃料电池电流和温度分布的分区测试***
CN113075444A (zh) 一种燃料电池内部电流走线式分布在线检测装置
CN114944501B (zh) 板式sofc电池的分区性能测试装置及其装配方法、测试方法
CN112904205A (zh) 一种燃料电池测量装置
CN106802395A (zh) 一种锂离子电池内部电池热测试装置
CN211577362U (zh) 电流密度检测复合板及电池内电流密度在线检测装置
CN113777536B (zh) 电极贴片的测试治具、测试装置及其测试方法
CN210604880U (zh) 测试极小间距及触点芯片的金手指
CN210401520U (zh) 贴片产品直流电阻测试治具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811128

Country of ref document: EP

Kind code of ref document: A1