WO2023226979A1 - 车辆模式的管理方法、装置、汽车及存储介质 - Google Patents

车辆模式的管理方法、装置、汽车及存储介质 Download PDF

Info

Publication number
WO2023226979A1
WO2023226979A1 PCT/CN2023/095780 CN2023095780W WO2023226979A1 WO 2023226979 A1 WO2023226979 A1 WO 2023226979A1 CN 2023095780 W CN2023095780 W CN 2023095780W WO 2023226979 A1 WO2023226979 A1 WO 2023226979A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
signal
mode
status
gear
Prior art date
Application number
PCT/CN2023/095780
Other languages
English (en)
French (fr)
Inventor
伍庆龙
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023226979A1 publication Critical patent/WO2023226979A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • This application relates to the technical field of automobile manufacturing, for example, to vehicle mode management methods, devices, automobiles, and storage media.
  • Hybrid vehicles can be divided into strong hybrid, medium hybrid and light hybrid types according to the degree of mixing.
  • light hybrid vehicles are mainly based on collaborative control of belt-driven motors and engines, which can not only achieve larger driving torque output, but also optimize engine performance.
  • the working area can reduce the fuel consumption and emissions of the entire vehicle and achieve the goal of energy saving and emission reduction.
  • light hybrid vehicles have two power sources, the engine and the motor, to output torque and are equipped with a 48-volt power battery, the driving modes of light hybrid vehicles are more diverse than traditional cars. If vehicle mode management cannot be effectively carried out, it will inevitably affect the vehicle's drivability, power and economical performance.
  • This application provides a vehicle mode management method, device, vehicle and storage medium, which can improve the control effectiveness of the vehicle mode of light hybrid vehicles and improve the stability and reliability of vehicle operation.
  • a vehicle mode management method is provided, which is applied to a vehicle controller of a mild hybrid vehicle power system, including:
  • a vehicle switching mode is obtained, and the current vehicle mode is switched to the vehicle switching mode.
  • a vehicle mode management device which is applied to a vehicle controller of a mild hybrid vehicle power system, including:
  • a vehicle status information acquisition module configured to acquire the current mode of the vehicle, and acquire vehicle status information through at least one controller corresponding to at least one assembly component in the mild hybrid vehicle power system;
  • a vehicle switching mode acquisition module is configured to acquire the vehicle switching mode according to the current vehicle mode and the vehicle status information, and switch the current vehicle mode to the vehicle switching mode.
  • an automobile including:
  • At least one controller corresponding to at least one assembly component is configured to obtain vehicle status information
  • a vehicle controller including at least one processor, and a memory communicatively connected to the at least one processor;
  • the memory stores a computer program that can be executed by the at least one processor, and the computer program is executed by the at least one processor, so that the at least one processor can execute the above-mentioned vehicle mode management method.
  • a computer-readable storage medium stores computer instructions, and the computer instructions are used to implement the above-mentioned vehicle mode management method when executed by a processor.
  • Figure 1A is a flow chart of a vehicle mode management method provided in Embodiment 1 of the present application.
  • Figure 1B is a schematic diagram of vehicle mode management provided by Embodiment 1 of the present application.
  • Figure 1C is a schematic system structure diagram of a mild hybrid vehicle power system provided in Embodiment 1 of the present application;
  • Figure 1D is a schematic diagram of interactive communication between a vehicle controller and multiple controllers provided in Embodiment 1 of the present application;
  • Figure 2A is a flow chart of a vehicle mode management method provided in Embodiment 2 of the present application.
  • Figure 2B is a schematic diagram of the switching relationship between different vehicle modes provided in Embodiment 2 of the present application.
  • FIG. 3 is a schematic structural diagram of a vehicle mode management device provided in Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a car that implements the vehicle mode management method according to the embodiment of the present application.
  • FIG 1A is a flow chart of a vehicle mode management method provided in Embodiment 1 of the present application. This embodiment can be applied to switching the driving mode of a light-hybrid vehicle under different circumstances. This method can be applied to light-hybrid vehicles.
  • the vehicle controller of the hybrid vehicle power system is executed by a vehicle mode management device.
  • the vehicle mode management device can be implemented in the form of hardware and/or software.
  • the vehicle mode management device can be configured in the car. As shown in Figure 1A, the method includes:
  • the current mode of the vehicle can be the current driving mode of the vehicle.
  • the vehicle mode management module can be used to manage the vehicle mode.
  • the vehicle mode management module can be developed and executed by the vehicle controller (Hybrid Control Unit, HCU).
  • HCU Hybrid Control Unit
  • the vehicle mode can include seven categories of modes: initialization mode, startup mode, crawling mode, driving mode, limp mode, parking mode and safety mode.
  • the driving mode can also include shifting mode and non-shifting mode.
  • HCU can achieve management and control between different vehicle modes by setting mode switching conditions or designing control strategies.
  • the system structure of the mild hybrid vehicle power system can be shown in Figure 1C.
  • the power system mainly consists of the engine, belt-driven starter generator (BSG), 48V power battery pack, gearbox, transmission mechanism and other assembly components.
  • the power system can also include components related to each assembly. Controllers corresponding to components; for example, controllers can include Engine Management System (EMS), HCU, Motor Control Unit (MCU), 48V Battery Management System (Battery Management System, BMS), Transmission Control Unit (TCU) and Electronic Stability Program (ESP), etc.
  • EMS Engine Management System
  • HCU Motor Control Unit
  • MCU Motor Control Unit
  • BMS Battery Management System
  • TCU Transmission Control Unit
  • ESP Electronic Stability Program
  • Multiple controllers can communicate through the CAN (Controller Area Network) network.
  • the BSG in the power system of a mild hybrid vehicle can serve as an integrated starter and generator, connected to the engine through a pulley system.
  • BSG can not only provide motor drive, but also jointly drive the vehicle with the engine, making the power transmission capability stronger.
  • the motor can also be used for energy recovery during the vehicle's coasting and braking process.
  • the HCU can obtain vehicle information through interactive communication with each controller. status information.
  • the interactive communication between the HCU and each controller can be shown in Figure 1D.
  • BMS can send battery status signals (for example, voltage, current, etc.) and fault status information to HCU
  • MCU can send motor status signals (for example, motor speed, motor torque, etc.) and fault status information to HCU, and Responds to HCU torque request.
  • the EMS can respond to the fuel supply instructions and torque instructions sent by the HCU and send the engine speed and torque to the CAN network to enable the HCU to obtain the engine speed and torque.
  • the TCU can send the gear signal to the HCU and respond to the HCU's shift control request and clutch disconnection and coupling request.
  • ESP can calculate the vehicle speed and send the vehicle speed signal to the HCU.
  • S120 Obtain the vehicle switching mode according to the current vehicle mode and the vehicle status information, and switch the current vehicle mode to the vehicle switching mode.
  • the HCU can determine the vehicle switching mode corresponding to the current mode of the vehicle based on the vehicle status information and the preset mode switching conditions, and control the vehicle to switch to the vehicle switching mode.
  • the current mode of the vehicle is obtained through the vehicle controller, and the vehicle status information is obtained through at least one controller corresponding to at least one assembly component in the mild hybrid vehicle power system; and then the vehicle status information is obtained according to the current mode of the vehicle and Vehicle status information, obtain the vehicle switching mode, and switch the vehicle's current mode to the vehicle switching mode.
  • the vehicle controller to switch the vehicle mode according to the vehicle status information, the control effectiveness of the vehicle mode of the light hybrid vehicle can be improved. Improve the stability and reliability of vehicle operation.
  • obtaining vehicle status information through at least one controller corresponding to at least one assembly component in the mild hybrid vehicle power system may include:
  • Obtain accelerator pedal signals and brake pedal signals through hard-wired communication with preset sensors; obtain battery status signals and motor status through communication with the hybrid controller area network between the battery management system and motor controller Signal; through communication with the power control area network between the engine management system, transmission controller and electronic stability system, the engine status signal, gear signal and vehicle speed signal are obtained; correspondingly, according to the current mode of the vehicle and the Vehicle status information, obtaining the vehicle switching mode, may include: according to the current mode of the vehicle, the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal, The gear signal and the vehicle speed signal are used to obtain the vehicle switching mode.
  • the HCU, BMS, and MCU can communicate through the hybrid CAN network, and the HCU, EMS, TCU, and ESP can communicate through the power CAN network.
  • the accelerator pedal and brake pedal can be hardened through sensors. line to connect to the HCU.
  • Battery status signal can include Including battery fault information; motor status signal, which can include motor torque and motor fault information; engine status signal, which can include engine torque and engine fault information; gear signal, which can include shift mark information, clutch position information and gear information.
  • the HCU can jointly determine the vehicle switching corresponding to the current mode of the vehicle based on the accelerator pedal signal, brake pedal signal, battery status signal, motor status signal, engine status signal, gear signal and vehicle speed signal. model.
  • Figure 2A is a flow chart of a vehicle mode management method provided in Embodiment 2 of the present application.
  • the example is an illustration of the above technical solution.
  • the technical solution in this embodiment can be combined with one or more of the above embodiments.
  • the method includes:
  • S220 Obtain the accelerator pedal signal and the brake pedal signal through hard-wired communication with the preset sensor.
  • S230 Obtain the battery status signal and the motor status signal through communication with the hybrid controller area network between the battery management system and the motor controller.
  • S240 obtains engine status signals, gear signals and vehicle speed signals through communication with the power control domain network between the engine management system, transmission controller and electronic stability system.
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal, the gear signal and the vehicle speed signal obtain the vehicle switching mode, and switch the current mode of the vehicle to the vehicle switching mode.
  • the mode switching condition may be set in advance.
  • the HCU controls the vehicle to enter the initialization mode when any of the following conditions are met: (1) the vehicle key is KeyOn in the first driving cycle; (2) the vehicle is not powered on; (3) the power system The ready state is 0 (where 0 means that the power system is not ready, and 1 means that the power system is ready).
  • SysReady is a signal formed by the HCU based on the comprehensive judgment of vehicle status information and multiple powertrain statuses. It is used to indicate whether the vehicle is allowed to drive.
  • the HCU controls the vehicle to enter startup mode.
  • (1) HCU is in initialization mode or parking mode; (2) Key status is KeyStart.
  • the HCU controls the vehicle to exit the startup mode.
  • (1) The shift lever position is switched from parking gear or neutral position (P/N gear) to other gears (for example, forward gear or reverse gear); (2) The key status is not KeyStart.
  • the HCU controls the vehicle to enter crawling mode.
  • the vehicle is in startup mode or parking mode, the power system ready state is 1, and the gear is in forward or reverse gear, then the HCU controls the vehicle to enter crawl mode;
  • the vehicle is in drive mode, and the vehicle power system
  • the ready state is 1, the accelerator pedal opening is less than 8% (preset value), the brake pedal switch signal is 0, and the vehicle speed is less than 7km/h (preset value), the HCU controls the vehicle to enter crawling mode from drive mode.
  • the HCU controls the vehicle to exit crawling mode.
  • the vehicle power system ready state is 1, the vehicle speed is less than 5km/h (can be calibrated), and the gear is neutral, then the HCU controls the vehicle to enter the parking mode from crawling mode;
  • the vehicle power system ready state is 1 , the accelerator pedal opening is greater than 5% (can be calibrated), the driver's demand torque is greater than the sum of the BSG motor torque and the engine torque at the current moment, the vehicle speed is greater than 8km/h (can be calibrated), and the clutch position is in the combined state, then HCU control The vehicle enters drive mode from crawl mode.
  • the HCU controls the vehicle to enter the driving mode.
  • the ready state of the vehicle power system is 1;
  • the current mode of the vehicle is crawl mode;
  • the accelerator pedal opening is greater than 8% (can be calibrated);
  • the driver's demand torque is greater than the current BSG motor torque and The sum of the engine torque;
  • the vehicle speed is greater than 8km/h (can be calibrated);
  • the clutch position is in the combined state.
  • the HCU controls the vehicle to exit the driving mode.
  • the vehicle power system ready state is 1, the accelerator pedal opening is less than 5% (can be calibrated), the brake switch signal is 0, and the vehicle speed is less than 7km/h (can be calibrated), then the HCU controls the vehicle to enter the drive mode Crawl mode;
  • the vehicle power system ready state is 1, the vehicle gear is neutral, and the vehicle speed is less than 3km/h (can be calibrated), then the HCU controls the vehicle to enter the parking mode from the drive mode.
  • the HCU controls the vehicle to enter the shift mode in the drive mode.
  • (1) The vehicle enters the drive mode for the first time in the first driving cycle, and the gearbox shift flag is 1; (2)
  • the vehicle is in the drive mode, enters the shift mode from the non-shift mode, and the gearbox shifts The block flag is 1.
  • the HCU controls the vehicle to exit the shifting mode in the driving mode.
  • the HCU controls the vehicle to enter the non-shifting mode in the driving mode.
  • the gearbox shift flag is 1, the HCU controls the vehicle to exit the non-shifting mode in the driving mode.
  • the HCU controls the vehicle to enter limp mode from initialization mode or driving mode.
  • the HCU controls the vehicle to exit limp mode and enter safe mode.
  • the HCU controls the vehicle to enter parking mode.
  • the HCU controls the vehicle to exit parking mode.
  • the HCU controls the vehicle to enter safe mode.
  • Motor failure and battery failure occur in the power system, and the engine also fails;
  • the HCU can control the vehicle to exit safe mode and enter other modes.
  • the technical solution of the embodiment of the present application obtains the current mode of the vehicle and obtains the accelerator pedal signal and brake pedal signal through hard-wired communication with the preset sensor; through the hybrid communication with the battery management system and the motor controller, Through the power control area network communication with the engine management system, transmission controller and electronic stability system, the engine status signal, gear signal and vehicle speed are obtained. signal; and then obtain the vehicle switching mode based on the vehicle's current mode, accelerator pedal signal, brake pedal signal, battery status signal, motor status signal, engine status signal, gear signal and vehicle speed signal, and switch the vehicle's current mode to vehicle switching Mode; by using the vehicle controller to switch vehicle modes according to vehicle status information, the effectiveness of controlling the vehicle mode of light hybrid vehicles can be improved, and the stability and reliability of vehicle operation can be improved.
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal , the gear signal and the vehicle speed signal, and obtaining the vehicle switching mode may include:
  • the vehicle switching mode is the starting mode; if it is detected that the vehicle gear is the parking gear according to the gear signal. or neutral position, the vehicle switching mode is determined to be the parking mode; if a battery failure or motor failure is detected according to the battery status signal and the motor status signal, the vehicle switching mode is determined to be the limp mode.
  • the current mode of the vehicle is the initialization mode
  • the vehicle key status is the preset startup status (for example, KeyStart)
  • the vehicle switching mode is determined to be the startup mode.
  • the vehicle gear is the parking gear or the neutral gear (P gear or N gear)
  • P gear or N gear it is determined that the vehicle switching mode is the parking mode. If a battery failure or a motor failure is detected, it is determined that the vehicle switching mode is a limp mode.
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal, the The gear signal and the vehicle speed signal are used to obtain the vehicle switching mode, which may also include:
  • the accelerator pedal signal When the current mode of the vehicle is the start mode, according to the accelerator pedal signal, the brake pedal The board signal, the battery status signal, the motor status signal, the engine status signal, the gear signal and the vehicle speed signal are used to obtain the vehicle power system ready state;
  • the vehicle power system ready state is a preset state value
  • the vehicle gear is a forward gear or a reverse gear according to the gear signal
  • the preset status value is a preset value used to indicate that the vehicle power system is in a ready state.
  • the preset status value may be 1.
  • the vehicle gear is forward gear or reverse gear (D gear or R gear)
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal, the Using the gear signal and the vehicle speed signal to obtain the vehicle switching mode may also include: when the current mode of the vehicle is a crawl mode, based on the accelerator pedal signal, the brake pedal signal, the battery status signal, The motor status signal, the engine status signal, the gear signal and the vehicle speed signal obtain the vehicle power system ready state; when it is detected that the vehicle power system ready state is a preset state value, if according to the If the accelerator pedal signal detects that the accelerator pedal opening is greater than the first preset opening threshold, the driver's required torque is obtained, and the motor torque and engine torque are obtained according to the motor status signal and the engine status signal; if it is detected If the driver's required torque is greater than the sum of the motor torque and the engine torque, the vehicle speed is obtained according to the vehicle speed signal; if it is detected that the vehicle speed is greater than the first preset speed threshold, the vehicle speed
  • the vehicle switching mode is determined to be the driving mode.
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal may also include: when the current mode of the vehicle is the driving mode, based on the accelerator pedal signal, the brake pedal signal, the battery status signal, The motor status signal, the engine status signal, the gear signal and the vehicle speed signal obtain the vehicle power system ready state; when the vehicle power system is detected When the system ready state is the preset state value, if it is detected that the accelerator pedal opening is less than the second preset opening threshold according to the accelerator pedal signal, the vehicle speed is obtained according to the vehicle speed signal; if the vehicle speed is detected is less than the second preset speed threshold, when it is detected that the brake pedal signal is a preset value, it is determined that the vehicle switching mode is a crawling mode.
  • the accelerator pedal opening is less than the second preset opening threshold (for example, 5%), and the vehicle speed is less than With a second preset speed threshold (for example, 7km/h) and the brake pedal signal is a preset value (for example, 0), it can be determined that the vehicle switching mode is the crawling mode.
  • the accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal may also include: when the current mode of the vehicle is the driving mode, if it is detected that the vehicle gear is neutral according to the gear signal, vehicle speed signal to obtain the vehicle speed; if it is detected that the vehicle speed is less than the third preset speed threshold, it is determined that the vehicle switching mode is the parking mode; if a battery failure is detected according to the battery status signal and the motor status signal Or the motor fails, then it is determined that the vehicle switching mode is the limp mode; if battery failure, motor failure and engine failure are detected simultaneously according to the battery status signal, the motor status signal and the engine status signal, it is determined that the The vehicle switches mode to safe mode.
  • the vehicle switching mode is the parking mode. if it is detected that the vehicle gear is neutral and the vehicle speed is less than the third preset speed threshold (for example, 3km/h), it is determined that the vehicle switching mode is the parking mode. if a battery failure or a motor failure is detected, it is determined that the vehicle switching mode is a limp mode. In addition, if battery failure, motor failure and engine failure are detected at the same time, it is determined that the vehicle switching mode is a safe mode.
  • the third preset speed threshold for example, 3km/h
  • the switching relationship between different vehicle modes may be as shown in Figure 2B.
  • the current mode of the vehicle is the crawling mode
  • the vehicle gear is neutral and the vehicle speed is lower than 3km/h (can be calibrated)
  • the current mode of the vehicle is parking mode
  • it can be determined that the vehicle switching mode is crawling mode.
  • the current mode of the vehicle is the limp mode, if an engine failure is detected, it can be determined that the vehicle switches mode to the safe mode.
  • FIG. 3 is a schematic structural diagram of a vehicle mode management device provided in Embodiment 3 of the present application.
  • the device is applied to the vehicle controller of the mild hybrid vehicle power system and includes: a vehicle status information acquisition module 310 and a vehicle switching mode acquisition module 320; wherein the vehicle status information acquisition module 310 is set to Obtain the current mode of the vehicle, and obtain vehicle status information through at least one controller corresponding to at least one assembly component in the mild hybrid vehicle power system; the vehicle switching mode acquisition module 320 is configured to operate according to the current mode of the vehicle and the The vehicle status information is obtained, the vehicle switching mode is obtained, and the current mode of the vehicle is switched to the vehicle switching mode.
  • the current mode of the vehicle is obtained through the vehicle controller, and the vehicle status information is obtained through at least one controller corresponding to at least one assembly component in the mild hybrid vehicle power system; and then the vehicle status information is obtained according to the current mode of the vehicle and Vehicle status information, obtain the vehicle switching mode, and switch the vehicle's current mode to the vehicle switching mode.
  • the vehicle controller to switch the vehicle mode according to the vehicle status information, the control effectiveness of the vehicle mode of the light hybrid vehicle can be improved. Improve the stability and reliability of vehicle operation.
  • the vehicle status information acquisition module 310 includes: a first signal acquisition unit configured to acquire accelerator pedal signals and brake pedal signals through hard-wired communication with preset sensors; a second signal acquisition unit , is set to obtain the battery status signal and the motor status signal through the hybrid controller area network communication with the battery management system and the motor controller; the third signal acquisition unit is set to communicate with the engine management system and the gearbox controller through communicates with the power control area network between the electronic stability system and the electronic stability system to obtain the engine status signal, gear signal and vehicle speed signal; the vehicle switching mode acquisition module 320 includes: a vehicle switching mode acquisition unit, which is configured to obtain the vehicle switching mode according to the current mode of the vehicle, The accelerator pedal signal, the brake pedal signal, the battery status signal, the motor status signal, the engine status signal, the gear signal and the vehicle speed signal are used to obtain the vehicle switching mode.
  • the vehicle switching mode acquisition unit includes: a startup mode determination subunit, configured to determine the vehicle switching mode if the vehicle key status is detected to be a preset startup state when the current mode of the vehicle is the initialization mode.
  • the mode is the start mode;
  • the parking mode determination subunit is configured to determine that the vehicle switching mode is the parking mode if the vehicle gear is detected to be the parking gear or the neutral gear according to the gear signal;
  • the limp mode determination subunit is , is configured to determine that the vehicle switching mode is a limp mode if a battery failure or a motor failure is detected according to the battery status signal and the motor status signal.
  • the vehicle switching mode acquisition unit includes: a system ready state acquisition subunit, configured to: when the current mode of the vehicle is the startup mode, according to the accelerator pedal signal, the brake pedal signal, and the battery status signal, the motor status signal, the engine status signal, the gear signal and the vehicle speed signal to obtain the vehicle power system ready status; crawl mode determination sub-unit element, set to when it is detected that the ready state of the vehicle power system is a preset state value, and if it is detected that the vehicle gear is a forward gear or a reverse gear according to the gear signal, it is determined that the vehicle switching mode is Crawl mode.
  • a system ready state acquisition subunit configured to: when the current mode of the vehicle is the startup mode, according to the accelerator pedal signal, the brake pedal signal, and the battery status signal, the motor status signal, the engine status signal, the gear signal and the vehicle speed signal to obtain the vehicle power system ready status
  • crawl mode determination sub-unit element set to when it is detected that the ready state of the vehicle power system is a preset state value, and if it is
  • the system readiness status acquisition subunit is further configured to: when the current mode of the vehicle is crawl mode, the system readiness status acquisition subunit is configured to obtain the system readiness status according to the accelerator pedal signal, the brake pedal signal, the battery status signal, and the motor status. signal, the engine status signal, the gear signal and the vehicle speed signal to obtain the vehicle power system readiness state;
  • the vehicle switching mode acquisition unit includes: a torque acquisition subunit, which is configured to detect that the vehicle power system is ready When the state is the preset state value, if it is detected that the accelerator pedal opening is greater than the first preset opening threshold according to the accelerator pedal signal, the driver's required torque is obtained, and the driver's required torque is obtained according to the motor state signal and the engine state signal.
  • the vehicle speed acquisition subunit is configured to obtain the vehicle speed according to the vehicle speed signal if it is detected that the driver's demand torque is greater than the sum of the motor torque and the engine torque;
  • clutch The position status acquisition subunit is configured to acquire the clutch position status according to the gear signal if the vehicle speed is detected to be greater than the first preset speed threshold;
  • the driving mode determination subunit is configured to acquire the clutch position status when the vehicle speed is detected to be greater than the first preset speed threshold.
  • the system readiness status acquisition subunit is further configured to: when the current mode of the vehicle is the driving mode, based on the accelerator pedal signal, the brake pedal signal, the battery status signal, and the motor status signal, the engine status signal, the gear signal and the vehicle speed signal to obtain the vehicle power system ready state; the vehicle speed acquisition subunit is also set to be a preset state value when the vehicle power system ready state is detected When, if it is detected that the accelerator pedal opening is less than the second preset opening threshold according to the accelerator pedal signal, the vehicle speed is obtained according to the vehicle speed signal; the crawl mode determination subunit is also set to if the vehicle is detected If the speed is less than the second preset speed threshold, when it is detected that the brake pedal signal is a preset value, it is determined that the vehicle switching mode is a crawling mode.
  • the vehicle speed acquisition subunit is further configured to obtain the vehicle speed according to the vehicle speed signal if it is detected that the vehicle gear is neutral according to the gear signal when the current mode of the vehicle is the driving mode. speed; the parking mode determination subunit is further configured to determine that the vehicle switching mode is the parking mode if it is detected that the vehicle speed is less than the third preset speed threshold; the limp mode determination subunit is also configured to determine if the vehicle speed is less than the third preset speed threshold; the limp mode determination subunit is also configured to determine if the vehicle speed is less than the third preset speed threshold.
  • the vehicle switching mode acquisition unit includes: a safety mode determination subunit, which is set to If the signal, the motor status signal and the engine status signal detect battery failure, motor failure and engine failure at the same time, it is determined that the vehicle switching mode is a safe mode.
  • the vehicle mode management device provided by the embodiments of the present application can execute the vehicle mode management method provided by any embodiment of the present application, and has functional modules and effects corresponding to the execution method.
  • the acquisition, storage and application of the user's personal information are in compliance with relevant laws and regulations and do not violate public order and good customs.
  • FIG. 4 shows a schematic structural diagram of an automobile that can be used to implement embodiments of the present application.
  • the car 400 may include at least one controller 401 corresponding to the assembly component and a complete vehicle controller 402, wherein the controller 401 corresponding to at least one assembly component is configured to obtain vehicle status information.
  • the vehicle controller 402 includes at least one processor 403, and a memory communicatively connected to the at least one processor 403, such as a read-only memory (Read-Only Memory, ROM) 404, a random access memory (Random Access Memory, RAM) 405, etc., wherein the memory stores a computer program that can be executed by at least one processor.
  • the processor 403 can be based on the computer program stored in the ROM 404 or the computer program loaded from the storage unit 410 into the RAM 405, to perform a variety of appropriate actions and processing. In the RAM 405, various programs and data required for the operation of the vehicle controller 402 can also be stored.
  • the processor 403, ROM 404 and RAM 405 are connected to each other through a bus 406.
  • An input/output (I/O) interface 407 is also connected to bus 406.
  • the vehicle controller 402 Multiple components in the vehicle controller 402 are connected to the I/O interface 407, including: input unit 408; output unit 409, such as various types of displays, speakers, etc.; storage unit 410, such as magnetic disks, optical disks, etc.; and communication Unit 411, such as a network card, modem, wireless communication transceiver, etc.
  • the communication unit 411 allows the vehicle controller 402 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunications networks.
  • Processor 403 may be a variety of general and/or special purpose processing components having processing and computing capabilities. Some examples of the processor 403 include, but are not limited to, a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), a variety of specialized artificial intelligence (Artificial Intelligence, AI) computing chips, a variety of running Machine learning model algorithm processor, digital signal processor (Digital Signal Processor, DSP), and any appropriate processor, controller, microcontroller, etc.
  • the processor 403 performs a plurality of methods and processes described above, such as a vehicle mode management method.
  • the vehicle mode management method may be implemented as a computer program, which is tangibly included in a computer-readable storage medium, such as the storage unit 410 .
  • part or all of the computer program may be loaded and/or installed on the vehicle controller 402 via the ROM 404 and/or the communication unit 411 .
  • processor 403 When a computer program is loaded into RAM 405 and executed by processor 403, it may Perform one or more steps of the vehicle mode management method described above.
  • the processor 403 may be configured to perform the vehicle mode management method in any other suitable manner (eg, by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSP Application Specific Standard Parts
  • SOC System on Chip
  • CPLD Complex Programming Logic Device
  • These various embodiments may include implementation in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor
  • the processor which may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • An output device may be a special purpose or general purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device.
  • Computer programs for implementing the methods of the present application may be written in any combination of one or more programming languages. These computer programs may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing device, such that the computer program, when executed by the processor, causes the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • a computer program may execute entirely on the machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a computer-readable storage medium may be a tangible medium that may contain or store a computer program for use by or in connection with an instruction execution system, apparatus, or device.
  • Computer-readable storage media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • the computer-readable storage medium may be a machine-readable signal medium.
  • machine-readable storage media examples include one or more wire-based electrical connections, laptop disks, hard drives, RAM, ROM, Erasable Programmable Read-Only Memory (EPROM), or flash memory ), optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • Steps can be reordered, added, or removed using various forms of the process shown above.
  • multiple steps described in this application can be executed in parallel, sequentially, or in different orders.
  • the desired results of the technical solution of this application can be achieved, there is no limitation here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请公开了车辆模式的管理方法、装置、汽车及存储介质。该车辆模式的管理方法包括:通过整车控制器获取车辆当前模式,并通过轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;之后根据车辆当前模式和车辆状态信息,获取车辆切换模式,并将车辆当前模式切换至车辆切换模式。

Description

车辆模式的管理方法、装置、汽车及存储介质
本申请要求在2022年05月27日提交中国专利局、申请号为202210592580.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车制造技术领域,例如涉及车辆模式的管理方法、装置、汽车及存储介质。
背景技术
混合动力汽车按照混合度可以划分为强混、中混和轻混等类型,其中,轻混汽车主要基于皮带驱动电机和发动机进行协同控制,不仅能实现较大的驱动扭矩输出,还可以优化发动机的工作区域,从而可以降低整车的油耗和排放,达到节能减排的目标。
由于轻混汽车具有发动机和电机两个动力源输出扭矩,同时搭载有48伏特动力电池,故相较于传统汽车,轻混汽车的行驶模式更为多样化。如果不能有效地进行车辆模式管理,势必会影响到车辆的驾驶性、动力性和经济性表现。
发明内容
本申请提供了车辆模式的管理方法、装置、汽车及存储介质,可以提升对轻混车辆的车辆模式的控制有效性,可以提升车辆运行的稳定性和可靠性。
根据本申请的一方面,提供了一种车辆模式的管理方法,应用于轻度混合动力汽车动力***的整车控制器,包括:
获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;
根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
根据本申请的另一方面,提供了一种车辆模式的管理装置,应用于轻度混合动力汽车动力***的整车控制器,包括:
车辆状态信息获取模块,设置为获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;
车辆切换模式获取模块,设置为根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
根据本申请的另一方面,提供了一种汽车,所述汽车包括:
至少一个总成部件对应的至少一个控制器,设置为获取车辆状态信息;
整车控制器,包括至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的车辆模式的管理方法。
根据本申请的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现上述的车辆模式的管理方法。
附图说明
图1A是本申请实施例一提供的一种车辆模式的管理方法的流程图;
图1B是本申请实施例一提供的一种车辆模式管理示意图;
图1C是本申请实施例一提供的一种轻度混合动力汽车动力***的***结构示意图;
图1D是本申请实施例一提供的一种整车控制器与多个控制器之间的交互通信示意图;
图2A是本申请实施例二提供的一种车辆模式的管理方法的流程图;
图2B是本申请实施例二提供的一种不同车辆模式之间的切换关系示意图;
图3是本申请实施例三提供的一种车辆模式的管理装置的结构示意图;
图4是实现本申请实施例的车辆模式的管理方法的汽车的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例仅仅是本申请一部分的实施例。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“目标”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实 施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1A为本申请实施例一提供的一种车辆模式的管理方法的流程图,本实施例可适用于在不同情况下对轻混车辆的行驶模式进行切换的情况,该方法可以应用于轻度混合动力汽车动力***的整车控制器,并由车辆模式的管理装置来执行,该车辆模式的管理装置可以采用硬件和/或软件的形式实现,该车辆模式的管理装置可配置于汽车中。如图1A所示,该方法包括:
S110、获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息。
车辆当前模式,可以是车辆当前的行驶模式。如图1B所示,可以采用车辆模式管理模块对车辆模式进行管理,车辆模式管理模块可以由整车控制器(Hybrid Control Unit,HCU)开发并执行。其中,车辆模式可以包括初始化模式、启动模式、爬行模式、驱动模式、跛行模式、停车模式和安全模式共7大类模式,驱动模式又可以包括换挡模式和非换挡模式。HCU可以通过设置模式切换条件,或者设计控制策略方法,实现不同车辆模式之间的管理和控制。
在本实施例中,轻度混合动力汽车动力***的***结构可以如图1C所示。其中,动力***主要由发动机、皮带驱动起动发电机(Belt-Driven Starter Generator,BSG)、48V动力电池组、变速箱、传动机构等总成部件构成,此外,动力***还可以包括与每个总成部件相对应的控制器;例如,控制器可以包括发动机管理***(Engine Management System,EMS)、HCU、电机控制器(Motor Control Unit,MCU)、48V电池管理***(Battery Management System,BMS)、变速箱控制器(Transmission Control Unit,TCU)和电子稳定***(Electronic Stability Program,ESP)等。多个控制器之间可以通过CAN(Controller Area Network,控制器域网)网络进行通信。
轻度混合动力汽车动力***中的BSG可以作为启动和发电一体机,与发动机通过皮带轮系相连。BSG不仅能够提供电机驱动,还能与发动机联合共同驱动车辆,使得动力传输能力更强,同时在车辆滑行和制动过程中还可以利用电机进行能量回收。
在本实施例中,HCU可以通过与每个控制器之间的交互通信,以获取车辆 状态信息。HCU与每个控制器之间的交互通信可以如图1D所示。其中,BMS可以将电池状态信号(例如,电压、电流等)以及故障状态等信息发送至HCU,MCU可以将电机状态信号(例如,电机转速、电机扭矩等)以及故障状态信息发送至HCU,并响应HCU的扭矩请求。
此外,EMS可以响应HCU发送的供油指令和扭矩指令,将发动机转速和扭矩发送到CAN网络,以实现HCU对发动机转速和扭矩的获取。TCU可以将挡位信号发送至HCU,并响应HCU的换挡控制请求和离合器断开、结合请求。ESP可以计算车辆速度,并发送车辆速度信号给HCU。
S120、根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
在本实施例中,HCU可以根据车辆状态信息,以及预先设置的模式切换条件,确定与该车辆当前模式所对应的车辆切换模式,并控制车辆切换至该车辆切换模式。
本申请实施例的技术方案,通过整车控制器获取车辆当前模式,并通过轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;之后根据车辆当前模式和车辆状态信息,获取车辆切换模式,并将车辆当前模式切换至车辆切换模式,通过采用整车控制器根据车辆状态信息进行车辆模式切换,可以提升对轻混车辆的车辆模式的控制有效性,可以提升车辆运行的稳定性和可靠性。
在本实施例的一个实施方式中,通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息,可以包括:
通过与预设传感器之间的硬线连接通信,获取油门踏板信号和制动踏板信号;通过与电池管理***和电机控制器之间的混动控制器域网通信,获取电池状态信号和电机状态信号;通过与发动机管理***、变速箱控制器和电子稳定***之间的动力控制器域网通信,获取发动机状态信号、挡位信号和车速信号;对应的,根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,可以包括:根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式。
在本实施例中,HCU与BMS、MCU之间可以通过混动CAN网络进行通信,HCU与EMS、TCU和ESP之间可以通过动力CAN网络进行通信,同时油门踏板和制动踏板可以通过传感器硬线与HCU进行连接。
HCU与多个控制器之间的信号交互可以如表1所示。电池状态信号,可以包 括电池故障信息;电机状态信号,可以包括电机扭矩和电机故障信息;发动机状态信号可以包括发动机扭矩和发动机故障信息;挡位信号,可以包括换挡标志位信息、离合器位置信息和挡位信息。
表1 HCU与多个控制器之间的信号交互说明
HCU在确定车辆切换模式时,可以根据油门踏板信号、制动踏板信号、电池状态信号、电机状态信号、发动机状态信号、挡位信号和车速信号,共同确定与该车辆当前模式所对应的车辆切换模式。
实施例二
图2A为本申请实施例二提供的一种车辆模式的管理方法的流程图,本实施 例是对上述技术方案的说明,本实施例中的技术方案可以与上述一个或者多个实施方式结合。如图2A所示,该方法包括:
S210、获取车辆当前模式。
S220、通过与预设传感器之间的硬线连接通信,获取油门踏板信号和制动踏板信号。
S230、通过与电池管理***和电机控制器之间的混动控制器域网通信,获取电池状态信号和电机状态信号。
S240、通过与发动机管理***、变速箱控制器和电子稳定***之间的动力控制器域网通信,获取发动机状态信号、挡位信号和车速信号。
S250、根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
一实施例中,在获取车辆切换模式之前,可以预先设置模式切换条件。在一个例子中,当满足以下任一条件时,HCU控制车辆进入初始化模式,(1)车辆钥匙在第1个驾驶循环中状态为KeyOn;(2)车辆上电未完成;(3)动力***就绪状态为0(其中,0表示动力***未准备好,1表示动力***已准备好)。而当车辆动力***就绪状态为1(SysReady=1)时,HCU控制车辆退出初始化模式。
1个驾驶循环表示钥匙状态从KeyOff、KeyAcc、KeyOn到KeyStart。SysReady=1表示动力***准备就绪,车辆可以行驶;SysReady=0表示动力***准备未就绪,车辆无法行驶。SysReady是HCU根据车辆状态信息和多个动力总成状态综合判断形成的信号,用于表示车辆的一种是否允许行驶的状态。
对于启动模式,当满足以下全部条件时,HCU控制车辆进入启动模式。(1)HCU处于初始化模式或停车模式;(2)钥匙状态为KeyStart。而当满足以下任一条件时,HCU控制车辆退出启动模式。(1)换挡杆位置从驻车挡位或者空挡位(P/N挡)切换为其他挡位(例如,前进挡位或倒车挡位);(2)钥匙状态为非KeyStart。
对于爬行模式,当满足以下任一条件时,HCU控制车辆进入爬行模式。(1)车辆处于启动模式或停车模式,动力***就绪状态为1,且挡位挂入前进挡位或倒车挡位,则HCU控制车辆进入爬行模式;(2)车辆处于驱动模式,车辆动力***就绪状态为1,油门踏板开度小于8%(预设值),制动踏板开关信号为0,车辆速度小于7km/h(预设值),则HCU控制车辆从驱动模式进入爬行模式。
当满足以下任一条件时,HCU控制车辆退出爬行模式。(1)车辆动力***就绪状态为1,车辆速度小于5km/h(可标定),且挡位为空挡位,则HCU控制车辆从爬行模式进入停车模式;(2)车辆动力***就绪状态为1,油门踏板开度大于5%(可标定),驾驶员需求扭矩大于当前时刻BSG电机扭矩与发动机扭矩之和,车辆速度大于8km/h(可标定),且离合器位置处于结合状态,则HCU控制车辆从爬行模式进入驱动模式。
对于驱动模式,当满足以下全部条件时,HCU控制车辆进入驱动模式。(1)车辆动力***就绪状态为1;(2)车辆当前模式为爬行模式;(3)油门踏板开度大于8%(可标定);(4)驾驶员需求扭矩大于当前时刻BSG电机扭矩与发动机扭矩之和;(5)车辆速度大于8km/h(可标定);(6)离合器位置处于结合状态。
当满足以下任一条件时,HCU控制车辆退出驱动模式。(1)车辆动力***就绪状态为1,油门踏板开度小于5%(可标定),制动开关信号为0,且车辆速度小于7km/h(可标定),则HCU控制车辆从驱动模式进入爬行模式;(2)车辆动力***就绪状态为1,车辆挡位为空挡位,车辆速度小于3km/h(可标定),则HCU控制车辆从驱动模式进入停车模式。
对于换挡模式,当满足以下任一条件时,HCU控制车辆进入驱动模式中的换挡模式。(1)车辆在第1个驾驶循环中第1次进入驱动模式,且变速箱换挡标志位为1;(2)车辆处于驱动模式,由非换挡模式进入换挡模式,且变速箱换挡标志位为1。而当车辆处于驱动模式时,由换挡模式进入非换挡模式,且变速箱换挡标志位为0,则HCU控制车辆退出驱动模式中的换挡模式。
对于非换挡模式,当车辆处于驱动模式时,由换挡模式进入非换挡模式,且变速箱换挡标志位为0,则HCU控制车辆进入驱动模式中的非换挡模式。而当车辆处于驱动模式,由非换挡模式进入换挡模式,且变速箱换挡标志位为1,则HCU控制车辆退出驱动模式中的非换挡模式。
对于跛行模式,当满足以下任一条件时,HCU控制车辆从初始化模式或者驱动模式进入跛行模式。(1)动力***出现电机故障;(2)动力***出现电池故障。当满足以下全部条件时,HCU控制车辆退出跛行模式,并进入安全模式。(1)动力***出现电机故障;(2)动力***出现电池故障;(3)动力***出现发动机故障。
对于停车模式,当满足以下任一条件时,HCU控制车辆进入停车模式。(1)在第1个驾驶循环中车辆第1次进入初始化模式,且车辆挡位为空挡位或者驻车挡位,则HCU控制车辆从初始化模式进入停车模式;(2)当车辆速度小于3km/h(可标定),且车辆挡位为空挡位,则HCU控制车辆从爬行模式进入停车模式。 而当车辆已处于动力***就绪状态,且驾驶员操作挡位挂入前进挡位或者倒车挡位,则HCU控制车辆退出停车模式。
对于安全模式,当满足以下任一条件时,HCU控制车辆进入安全模式。(1)动力***出现电机故障和电池故障,且发动机也出现了故障;(2)车辆出现了碰撞,例如,安全气囊触发了碰撞信号VehCrash=1;其中,VehCrash=1,表示车辆出现了碰撞,VehCrash=0,表示车辆正常无碰撞。而当车辆经售后维修且故障码清除之后,HCU可以控制车辆退出安全模式,并进入其他模式。
本申请实施例的技术方案,获取车辆当前模式,并通过与预设传感器之间的硬线连接通信,获取油门踏板信号和制动踏板信号;通过与电池管理***和电机控制器之间的混动控制器域网通信,获取电池状态信号和电机状态信号;通过与发动机管理***、变速箱控制器和电子稳定***之间的动力控制器域网通信,获取发动机状态信号、挡位信号和车速信号;进而根据车辆当前模式、油门踏板信号、制动踏板信号、电池状态信号、电机状态信号、发动机状态信号、挡位信号和车速信号,获取车辆切换模式,并将车辆当前模式切换至车辆切换模式;通过采用整车控制器根据车辆状态信息进行车辆模式切换,可以提升对轻混车辆的车辆模式的控制有效性,可以提升车辆运行的稳定性和可靠性。
在本实施例的一个可选的实施方式中,根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,可以包括:
当所述车辆当前模式为初始化模式时,若检测到车辆钥匙状态为预设启动状态,则确定所述车辆切换模式为启动模式;若根据所述挡位信号检测到车辆挡位为驻车挡位或者空挡位,则确定所述车辆切换模式为停车模式;若根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障,则确定所述车辆切换模式为跛行模式。
在一个例子中,车辆当前模式为初始化模式,若车辆钥匙状态为预设启动状态(例如,KeyStart),则确定车辆切换模式为启动模式。而若车辆挡位为驻车挡位或者空挡位(P挡或者N挡),则确定车辆切换模式为停车模式。而若检测到存在电池故障或者电机故障,则确定车辆切换模式为跛行模式。
在本实施例的另一个实施方式中,根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,还可以包括:
当所述车辆当前模式为启动模式时,根据所述油门踏板信号、所述制动踏 板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;
当检测到所述车辆动力***就绪状态为预设状态值时,若根据所述挡位信号检测到车辆挡位为前进挡位或者倒车挡位,则确定所述车辆切换模式为爬行模式。
预设状态值,为预先设置的用于表示车辆动力***就绪状态为准备就绪状态的数值,例如,预设状态值可以为1。
在一个例子中,当车辆当前模式为启动模式时,若检测到车辆动力***就绪状态为预设状态值(SysReady=1),且车辆挡位为前进挡位或者倒车挡位(D挡或者R挡),则确定车辆切换模式为爬行模式。
在本实施例的另一个实施方式中,根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,还可以包括:当所述车辆当前模式为爬行模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;当检测到所述车辆动力***就绪状态为预设状态值时,若根据所述油门踏板信号检测到油门踏板开度大于第一预设开度阈值,则获取驾驶员需求扭矩,并根据所述电机状态信号和所述发动机状态信号,获取电机扭矩和发动机扭矩;若检测到所述驾驶员需求扭矩大于所述电机扭矩和所述发动机扭矩之和,则根据所述车速信号,获取车辆速度;若检测到所述车辆速度大于第一预设速度阈值,则根据所述挡位信号,获取离合器位置状态;当检测到所述离合器位置状态为结合状态时,确定所述车辆切换模式为驱动模式。
在一个例子中,当车辆当前模式为爬行模式时,若检测到车辆动力***就绪状态为预设状态值,油门踏板开度大于第一预设开度阈值(例如,8%),驾驶员需求扭矩大于电机扭矩和发动机扭矩之和,车辆速度大于第一预设速度阈值(例如,8km/h),且离合器位置状态为结合状态,则确定车辆切换模式为驱动模式。
在本实施例的另一个实施方式中,根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,还可以包括:当所述车辆当前模式为驱动模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;当检测到所述车辆动力系 统就绪状态为预设状态值时,若根据所述油门踏板信号检测到油门踏板开度小于第二预设开度阈值,则根据所述车速信号,获取车辆速度;若检测到所述车辆速度小于第二预设速度阈值,则在检测到所述制动踏板信号为预设数值时,确定所述车辆切换模式为爬行模式。
在一个例子中,当车辆当前模式为驱动模式时,若检测到车辆动力***就绪状态为预设状态值,油门踏板开度小于第二预设开度阈值(例如,5%),车辆速度小于第二预设速度阈值(例如,7km/h),且制动踏板信号为预设数值(例如,0),则可以确定车辆切换模式为爬行模式。
在本实施例的另一个实施方式中,根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式,还可以包括:当所述车辆当前模式为驱动模式时,若根据所述挡位信号检测到车辆挡位为空挡位,则根据所述车速信号,获取车辆速度;若检测到所述车辆速度小于第三预设速度阈值,则确定所述车辆切换模式为停车模式;若根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障,则确定所述车辆切换模式为跛行模式;若根据所述电池状态信号、所述电机状态信号和所述发动机状态信号同时检测到电池故障、电机故障和发动机故障,则确定所述车辆切换模式为安全模式。
在一个例子中,当车辆当前模式为驱动模式时,若检测到车辆挡位为空挡位,且车辆速度小于第三预设速度阈值(例如,3km/h),则确定车辆切换模式为停车模式。而若检测到电池故障或者电机故障,则确定车辆切换模式为跛行模式。此外,若同时检测到电池故障、电机故障和发动机故障,则确定车辆切换模式为安全模式。
在本实施例的一个实施方式中,不同车辆模式之间的切换关系可以如图2B所示。其中,当车辆当前模式为爬行模式时,若检测到车辆挡位为空挡位,且车速低于3km/h(可标定),则可以确定车辆切换模式为停车模式。其次,当车辆当前模式为停车模式时,若检测到SysReady=1,且车辆挡位为前进挡位或者倒车挡位,则可以确定车辆切换模式为爬行模式。而当车辆当前模式为跛行模式时,若检测到发动机故障,则可以确定车辆切换模式为安全模式。
在本实施例中,通过设置轻混汽车在不同车辆模式下的切换条件,并设计不同车辆模式的切换控制策略,实现了对车辆不同模式的有效切换和控制,提升了车辆运行的稳定性和可靠性。
实施例三
图3为本申请实施例三提供的一种车辆模式的管理装置的结构示意图。如图3所示,该装置应用于轻度混合动力汽车动力***的整车控制器,包括:车辆状态信息获取模块310和车辆切换模式获取模块320;其中,车辆状态信息获取模块310,设置为获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;车辆切换模式获取模块320,设置为根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
本申请实施例的技术方案,通过整车控制器获取车辆当前模式,并通过轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;之后根据车辆当前模式和车辆状态信息,获取车辆切换模式,并将车辆当前模式切换至车辆切换模式,通过采用整车控制器根据车辆状态信息进行车辆模式切换,可以提升对轻混车辆的车辆模式的控制有效性,可以提升车辆运行的稳定性和可靠性。
一实施例中,车辆状态信息获取模块310,包括:第一信号获取单元,设置为通过与预设传感器之间的硬线连接通信,获取油门踏板信号和制动踏板信号;第二信号获取单元,设置为通过与电池管理***和电机控制器之间的混动控制器域网通信,获取电池状态信号和电机状态信号;第三信号获取单元,设置为通过与发动机管理***、变速箱控制器和电子稳定***之间的动力控制器域网通信,获取发动机状态信号、挡位信号和车速信号;车辆切换模式获取模块320,包括:车辆切换模式获取单元,设置为根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆切换模式。
一实施例中,车辆切换模式获取单元,包括:启动模式确定子单元,设置为当所述车辆当前模式为初始化模式时,若检测到车辆钥匙状态为预设启动状态,则确定所述车辆切换模式为启动模式;停车模式确定子单元,设置为若根据所述挡位信号检测到车辆挡位为驻车挡位或者空挡位,则确定所述车辆切换模式为停车模式;跛行模式确定子单元,设置为若根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障,则确定所述车辆切换模式为跛行模式。
一实施例中,车辆切换模式获取单元,包括:***就绪状态获取子单元,设置为当所述车辆当前模式为启动模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;爬行模式确定子单 元,设置为当检测到所述车辆动力***就绪状态为预设状态值时,若根据所述挡位信号检测到车辆挡位为前进挡位或者倒车挡位,则确定所述车辆切换模式为爬行模式。
一实施例中,***就绪状态获取子单元,还设置为当所述车辆当前模式为爬行模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;车辆切换模式获取单元,包括:扭矩获取子单元,设置为当检测到所述车辆动力***就绪状态为预设状态值时,若根据所述油门踏板信号检测到油门踏板开度大于第一预设开度阈值,则获取驾驶员需求扭矩,并根据所述电机状态信号和所述发动机状态信号,获取电机扭矩和发动机扭矩;车辆速度获取子单元,设置为若检测到所述驾驶员需求扭矩大于所述电机扭矩和所述发动机扭矩之和,则根据所述车速信号,获取车辆速度;离合器位置状态获取子单元,设置为若检测到所述车辆速度大于第一预设速度阈值,则根据所述挡位信号,获取离合器位置状态;驱动模式确定子单元,设置为当检测到所述离合器位置状态为结合状态时,确定所述车辆切换模式为驱动模式。
一实施例中,***就绪状态获取子单元,还设置为当所述车辆当前模式为驱动模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;车辆速度获取子单元,还设置为当检测到所述车辆动力***就绪状态为预设状态值时,若根据所述油门踏板信号检测到油门踏板开度小于第二预设开度阈值,则根据所述车速信号,获取车辆速度;爬行模式确定子单元,还设置为若检测到所述车辆速度小于第二预设速度阈值,则在检测到所述制动踏板信号为预设数值时,确定所述车辆切换模式为爬行模式。
一实施例中,车辆速度获取子单元,还设置为当所述车辆当前模式为驱动模式时,若根据所述挡位信号检测到车辆挡位为空挡位,则根据所述车速信号,获取车辆速度;停车模式确定子单元,还设置为若检测到所述车辆速度小于第三预设速度阈值,则确定所述车辆切换模式为停车模式;跛行模式确定子单元,还设置为若根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障,则确定所述车辆切换模式为跛行模式;车辆切换模式获取单元,包括:安全模式确定子单元,设置为若根据所述电池状态信号、所述电机状态信号和所述发动机状态信号同时检测到电池故障、电机故障和发动机故障,则确定所述车辆切换模式为安全模式。
本申请实施例所提供的车辆模式的管理装置可执行本申请任意实施例所提供的车辆模式的管理方法,具备执行方法相应的功能模块和效果。
本实施例的技术方案中,所涉及的用户个人信息的获取、存储和应用等,均符合相关法律法规的规定,且不违背公序良俗。
实施例四
图4示出了可以用来实施本申请的实施例的汽车的结构示意图。汽车400可以包括至少一个总成部件对应的控制器401和整车控制器402,其中,至少一个总成部件对应的控制器401,设置为获取车辆状态信息。
本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本申请的实现。
如图4所示,整车控制器402包括至少一个处理器403,以及与至少一个处理器403通信连接的存储器,如只读存储器(Read-Only Memory,ROM)404、随机访问存储器(Random Access Memory,RAM)405等,其中,存储器存储有可被至少一个处理器执行的计算机程序,处理器403可以根据存储在ROM 404中的计算机程序或者从存储单元410加载到RAM 405中的计算机程序,来执行多种适当的动作和处理。在RAM 405中,还可存储整车控制器402操作所需的多种程序和数据。处理器403、ROM 404以及RAM 405通过总线406彼此相连。输入/输出(Input/Output,I/O)接口407也连接至总线406。
整车控制器402中的多个部件连接至I/O接口407,包括:输入单元408;输出单元409,例如多种类型的显示器、扬声器等;存储单元410,例如磁盘、光盘等;以及通信单元411,例如网卡、调制解调器、无线通信收发机等。通信单元411允许整车控制器402通过诸如因特网的计算机网络和/或多种电信网络与其他设备交换信息/数据。
处理器403可以是多种具有处理和计算能力的通用和/或专用处理组件。处理器403的一些示例包括但不限于中央处理单元(Central Processing Unit,CPU)、图形处理单元(Graphics Processing Unit,GPU)、多种专用的人工智能(Artificial Intelligence,AI)计算芯片、多种运行机器学习模型算法的处理器、数字信号处理器(Digital Signal Processor,DSP)、以及任何适当的处理器、控制器、微控制器等。处理器403执行上文所描述的多个方法和处理,例如车辆模式的管理方法。
在一些实施例中,车辆模式的管理方法可被实现为计算机程序,其被有形地包含于计算机可读存储介质,例如存储单元410。在一些实施例中,计算机程序的部分或者全部可以经由ROM 404和/或通信单元411而被载入和/或安装到整车控制器402上。当计算机程序加载到RAM 405并由处理器403执行时,可以执 行上文描述的车辆模式的管理方法的一个或多个步骤。在其他实施例中,处理器403可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行车辆模式的管理方法。
本文中以上描述的***和技术的多种实施方式可以在数字电子电路***、集成电路***、场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、芯片上的***(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programming Logic Device,CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些多种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程***上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储***、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储***、该至少一个输入装置、和该至少一个输出装置。
用于实施本申请的方法的计算机程序可以采用一个或多个编程语言的任何组合来编写。这些计算机程序可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器,使得计算机程序当由处理器执行时使流程图和/或框图中所规定的功能/操作被实施。计算机程序可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,计算机可读存储介质可以是有形的介质,其可以包含或存储以供指令执行***、装置或设备使用或与指令执行***、装置或设备结合地使用的计算机程序。计算机可读存储介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体***、装置或设备,或者上述内容的任何合适组合。备选地,计算机可读存储介质可以是机器可读信号介质。机器可读存储介质的示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、RAM、ROM、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种车辆模式的管理方法,应用于轻度混合动力汽车动力***的整车控制器,包括:
    获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;
    根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
  2. 根据权利要求1所述的方法,其中,所述通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息,包括:
    通过与预设传感器之间的硬线连接通信,获取油门踏板信号和制动踏板信号;
    通过与电池管理***和电机控制器之间的混动控制器域网通信,获取电池状态信号和电机状态信号;
    通过与发动机管理***、变速箱控制器和电子稳定***之间的动力控制器域网通信,获取发动机状态信号、挡位信号和车速信号;
    所述根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,包括:
    根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式。
  3. 根据权利要求2所述的方法,其中,所述根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式,包括:
    当所述车辆当前模式为初始化模式时,在检测到车辆钥匙状态为预设启动状态的情况下,确定所述车辆切换模式为启动模式;
    在根据所述挡位信号检测到车辆挡位为驻车挡位或者空挡位的情况下,确定所述车辆切换模式为停车模式;
    在根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障的情况下,确定所述车辆切换模式为跛行模式。
  4. 根据权利要求2所述的方法,其中,所述根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、 所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式,包括:
    当所述车辆当前模式为启动模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;
    当检测到所述车辆动力***就绪状态为预设状态值时,在根据所述挡位信号检测到车辆挡位为前进挡位或者倒车挡位的情况下,确定所述车辆切换模式为爬行模式。
  5. 根据权利要求2所述的方法,其中,所述根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式,包括:
    当所述车辆当前模式为爬行模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;
    当检测到所述车辆动力***就绪状态为预设状态值时,在根据所述油门踏板信号检测到油门踏板开度大于第一预设开度阈值的情况下,获取驾驶员需求扭矩,并根据所述电机状态信号和所述发动机状态信号,获取电机扭矩和发动机扭矩;
    在检测到所述驾驶员需求扭矩大于所述电机扭矩和所述发动机扭矩之和的情况下,根据所述车速信号,获取车辆速度;
    在检测到所述车辆速度大于第一预设速度阈值的情况下,根据所述挡位信号,获取离合器位置状态;
    当检测到所述离合器位置状态为结合状态时,确定所述车辆切换模式为驱动模式。
  6. 根据权利要求2所述的方法,其中,所述根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式,包括:
    当所述车辆当前模式为驱动模式时,根据所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取车辆动力***就绪状态;
    当检测到所述车辆动力***就绪状态为预设状态值时,在根据所述油门踏板信号检测到油门踏板开度小于第二预设开度阈值的情况下,根据所述车速信号,获取车辆速度;
    在检测到所述车辆速度小于第二预设速度阈值后,在检测到所述制动踏板信号为预设数值的情况下,确定所述车辆切换模式为爬行模式。
  7. 根据权利要求6所述的方法,其中,所述根据所述车辆当前模式、所述油门踏板信号、所述制动踏板信号、所述电池状态信号、所述电机状态信号、所述发动机状态信号、所述挡位信号和所述车速信号,获取所述车辆切换模式,包括:
    当所述车辆当前模式为驱动模式时,在根据所述挡位信号检测到车辆挡位为空挡位的情况下,根据所述车速信号,获取车辆速度;
    在检测到所述车辆速度小于第三预设速度阈值的情况下,确定所述车辆切换模式为停车模式;
    在根据所述电池状态信号和所述电机状态信号检测到电池故障或者电机故障的情况下,确定所述车辆切换模式为跛行模式;
    在根据所述电池状态信号、所述电机状态信号和所述发动机状态信号同时检测到电池故障、电机故障和发动机故障的情况下,确定所述车辆切换模式为安全模式。
  8. 一种车辆模式的管理装置,应用于轻度混合动力汽车动力***的整车控制器,包括:
    车辆状态信息获取模块,设置为获取车辆当前模式,并通过所述轻度混合动力汽车动力***中至少一个总成部件对应的至少一个控制器获取车辆状态信息;
    车辆切换模式获取模块,设置为根据所述车辆当前模式和所述车辆状态信息,获取车辆切换模式,并将所述车辆当前模式切换至所述车辆切换模式。
  9. 一种汽车,包括:
    至少一个总成部件对应的至少一个控制器,设置为获取车辆状态信息;
    整车控制器,包括至少一个处理器,以及与所述至少一个处理器通信连接的存储器;
    所述存储器存储有可被所述至少一个处理器执行的计算机程序,所述计算机程序被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要 求1-7中任一项所述的车辆模式的管理方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使处理器执行时实现权利要求1-7中任一项所述的车辆模式的管理方法。
PCT/CN2023/095780 2022-05-27 2023-05-23 车辆模式的管理方法、装置、汽车及存储介质 WO2023226979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210592580.2 2022-05-27
CN202210592580.2A CN114852042A (zh) 2022-05-27 2022-05-27 一种车辆模式的管理方法、装置、汽车及存储介质

Publications (1)

Publication Number Publication Date
WO2023226979A1 true WO2023226979A1 (zh) 2023-11-30

Family

ID=82641586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095780 WO2023226979A1 (zh) 2022-05-27 2023-05-23 车辆模式的管理方法、装置、汽车及存储介质

Country Status (2)

Country Link
CN (1) CN114852042A (zh)
WO (1) WO2023226979A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114852042A (zh) * 2022-05-27 2022-08-05 中国第一汽车股份有限公司 一种车辆模式的管理方法、装置、汽车及存储介质
CN118254758A (zh) * 2022-12-28 2024-06-28 广州汽车集团股份有限公司 车辆工作状态切换方法、装置、可读介质及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492046A (zh) * 2008-11-25 2009-07-29 吉林大学 并联式混合动力车辆整车能量管理与总成协调控制方法
CN105599758A (zh) * 2016-03-04 2016-05-25 智车优行科技(北京)有限公司 车辆控制方法、装置及车辆
CN105966226A (zh) * 2016-06-14 2016-09-28 中国第汽车股份有限公司 一种插电式气电混合动力客车整车控制***及其控制方法
CN107628023A (zh) * 2017-10-11 2018-01-26 奇瑞汽车股份有限公司 混合动力汽车传动***的控制方法
CN110949368A (zh) * 2019-12-06 2020-04-03 中国第一汽车股份有限公司 混合动力车辆的控制方法、装置、存储介质及车辆
US20200355261A1 (en) * 2019-05-08 2020-11-12 Hyundai Motor Gompany Apparatus and method for controlling starting of vehicle engine
CN114852042A (zh) * 2022-05-27 2022-08-05 中国第一汽车股份有限公司 一种车辆模式的管理方法、装置、汽车及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492046A (zh) * 2008-11-25 2009-07-29 吉林大学 并联式混合动力车辆整车能量管理与总成协调控制方法
CN105599758A (zh) * 2016-03-04 2016-05-25 智车优行科技(北京)有限公司 车辆控制方法、装置及车辆
CN105966226A (zh) * 2016-06-14 2016-09-28 中国第汽车股份有限公司 一种插电式气电混合动力客车整车控制***及其控制方法
CN107628023A (zh) * 2017-10-11 2018-01-26 奇瑞汽车股份有限公司 混合动力汽车传动***的控制方法
US20200355261A1 (en) * 2019-05-08 2020-11-12 Hyundai Motor Gompany Apparatus and method for controlling starting of vehicle engine
CN110949368A (zh) * 2019-12-06 2020-04-03 中国第一汽车股份有限公司 混合动力车辆的控制方法、装置、存储介质及车辆
CN114852042A (zh) * 2022-05-27 2022-08-05 中国第一汽车股份有限公司 一种车辆模式的管理方法、装置、汽车及存储介质

Also Published As

Publication number Publication date
CN114852042A (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
WO2023226979A1 (zh) 车辆模式的管理方法、装置、汽车及存储介质
JP3542932B2 (ja) ハイブリッド車両の減速回生/充電の許可判定方法および装置
CN103025558B (zh) 混合动力车辆的控制设备和控制方法
JP5420154B2 (ja) 電子吸気量制御装置が搭載されたハイブリッド電気自動車のエンジントルク制御方法
US9789867B2 (en) Method for learning the kisspoint of an engine clutch in a hybrid vehicle
CN103863302A (zh) 起动电机故障时控制混合动力车发动机起动的方法和***
CN103661358A (zh) 学习和控制发动机离合器的扭矩传送吻合点的方法和***
CA2722467A1 (en) System and method for displaying power status of hybrid vehicle
GB2484803A (en) Method and control system for opening the drive train of a motor vehicle
CN1986307A (zh) 一种用于混合动力汽车的发动机起停控制方法
CN103707879A (zh) 用于控制混合动力车辆的发动机起动的方法和***
KR101836289B1 (ko) 친환경 차량용 엔진 클러치 제어 장치 및 방법
CN101624053B (zh) 一种插电式混合动力汽车挡位信号安全的控制方法
JP2023522728A (ja) 診断試験をサポートする電気機械の制御
US9862372B2 (en) Method and apparatus for controlling engine start for hybrid electric vehicle
JP2002235597A (ja) クランクシャフト速度を用いたエンジン動作検出
CN111098841A (zh) 车辆停机滑行控制方法、存储介质及车辆
JP2016144977A (ja) 車両制御装置
CN103299053B (zh) 用以起动设置于车辆中的内燃机的装置和方法
CN114212091A (zh) 一种电动汽车动力传动装置控制方法、车辆及计算机可读存储介质
US10124803B2 (en) Vehicle control apparatus
CN103826954B (zh) 在混合动力机动车辆中电动模式下的扭矩控制方法
CN112606815B (zh) 一种混合动力车辆电机储备扭矩的确定方法、装置及车辆
JP2003040054A (ja) 車両仕様識別装置
KR101976858B1 (ko) 유단 변속기를 장착한 하이브리드 자동차의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811050

Country of ref document: EP

Kind code of ref document: A1