WO2023226529A1 - 显示面板和立体显示设备 - Google Patents

显示面板和立体显示设备 Download PDF

Info

Publication number
WO2023226529A1
WO2023226529A1 PCT/CN2023/081005 CN2023081005W WO2023226529A1 WO 2023226529 A1 WO2023226529 A1 WO 2023226529A1 CN 2023081005 W CN2023081005 W CN 2023081005W WO 2023226529 A1 WO2023226529 A1 WO 2023226529A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
display panel
transmitting
lens
Prior art date
Application number
PCT/CN2023/081005
Other languages
English (en)
French (fr)
Inventor
王利亮
林科
于洋
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Publication of WO2023226529A1 publication Critical patent/WO2023226529A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/32Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers characterised by the geometry of the parallax barriers, e.g. staggered barriers, slanted parallax arrays or parallax arrays of varying shape or size

Definitions

  • the present application belongs to the field of display technology, and particularly relates to display panels and stereoscopic display devices.
  • 3D (three dimensional) display technology is a new type of display technology. Compared with ordinary 2D (two dimensional) display, 3D display technology can make the picture more three-dimensional. The image is no longer limited to the plane of the screen, but can go out of the screen. Outside the screen, the audience feels immersed in the scene.
  • the display panel outputs a display image to the user through a light beam that passes through the pixel points and then enters the user's eyes.
  • the display image is composed of multiple pixel points, and different pixel points correspond to different light beams of the display panel.
  • the cylindrical lenses deflect different light beams of the display panel to different directions to independently output different display images to the user's left and right eyes.
  • Users can fuse different display images picked up by the left and right eyes to form a 3D image in the brain.
  • part of the light beam that should be deflected by a specific cylindrical lens is likely to be deflected in the wrong direction by another cylindrical lens, causing cross-light problems between different cylindrical lenses, ultimately affecting the 3D display effect.
  • Embodiments of the present application provide a display panel and a display device to reduce the probability of cross-light between cylindrical lenses.
  • a display panel including:
  • the lens layer includes a plurality of cylindrical lenses arranged in an array, and the cylindrical lenses are used to deflect incident light to a preset direction for emission;
  • a light-shielding layer is provided on the light entrance side of the lens layer, and the light-shielding layer is provided with several light-transmitting structures for transmitting light at intervals;
  • each of the light-transmitting structures are provided on the light entrance side of each cylindrical lens, and each of the light-transmitting structures corresponds to one of the cylindrical lenses, so that the light-shielding layer faces away from the cylindrical lens layer.
  • the light from the side can be transmitted from the light-transmitting structure to the corresponding cylindrical lens.
  • embodiments of the present application also provide a stereoscopic display device, including:
  • a display panel such as any of the above.
  • the housing carries the display panel.
  • the light-shielding layer converts the light source of the backlight module into several point light sources, that is, each light-transmitting structure can be regarded as forming a point light source, and the irradiation area that each point light source can cover is larger than that of the surface light source. Smaller, so a beam of light transmitted by each light-transmitting structure is less likely to partially enter the wrong cylindrical lens, thereby reducing the probability of cross-light between different cylindrical lenses.
  • FIG. 1 is a schematic structural diagram of a three-dimensional display device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the lens layer structure of the display panel shown in FIG. 1 .
  • FIG. 3 is a schematic structural diagram of the lens layer, light-shielding layer and light-transmitting layer of the display panel shown in FIG. 2 .
  • FIG. 4 is another structural schematic diagram of the light-transmitting layer shown in FIG. 3 .
  • FIG. 5 is a schematic diagram of the first structure of the light shielding layer shown in FIG. 3 .
  • FIG. 6 is a schematic diagram of the second structure of the light shielding layer shown in FIG. 3 .
  • FIG. 7 is a schematic structural diagram of the liquid crystal display layer of the display panel shown in FIG. 3 .
  • FIG. 8 is a schematic diagram of a light path of the display panel shown in FIG. 7 .
  • FIG. 9 is a schematic diagram of the fully bonded structure of the liquid crystal display layer and the lens layer of the display panel shown in FIG. 7 .
  • FIG. 10 is a schematic structural diagram of a backlight module of the display panel shown in FIG. 7 .
  • FIG. 1 is a schematic structural diagram of a stereoscopic display device provided by an embodiment of the present application.
  • An embodiment of the present application provides a display panel 100 for displaying images in electronic devices.
  • the electronic device may have a housing 200 for carrying and installing the display panel 100 and a display panel 100 .
  • the display device may be an outdoor 3D (three dimensional) display screen, a handheld tablet computer, a television, a mobile phone terminal, etc., which are not limited in the embodiments of the present application.
  • Figure 2 is a schematic structural diagram of the lens layer of the display panel shown in Figure 1.
  • Figure 3 is a schematic structural diagram of the lens layer, light-shielding layer and light-transmitting layer of the display panel shown in Figure 2.
  • the display panel 100 may include a lens layer 11 .
  • the lens layer 11 includes a plurality of cylindrical lenses 111 arranged in an array.
  • the cylindrical lenses 111 are used to deflect incident light to a preset angle and emit it. Then, when the display panel 100 emits light, part of the light from the display panel 100 can be deflected through the cylindrical lenses 111 to It is emitted to the user's left eye to output a left eye display image to the user.
  • Part of the light can be deflected to the user's right eye through the cylindrical lens 111 to form a right eye display image to the user's right eye.
  • the user can use the light picked up by the eye to The left eye display image and the right eye display image are fused in the user's brain to form a three-dimensional image.
  • the display panel 100 may further include a light shielding layer 12 .
  • the light-shielding layer 12 is provided on the light entrance side of the lens layer 11 .
  • the light-shielding layer 12 is provided with a plurality of light-transmitting structures 121 for transmitting light at intervals. At least one light-transmitting structure 121 is provided on the light entrance side of each cylindrical lens 111 , so that light from the side of the light-shielding layer 12 facing away from the lens layer 11 can be transmitted from the light-transmitting structure 121 to the corresponding cylindrical lens 111 .
  • the light-shielding layer 12 converts the light source of the backlight module into several point light sources, that is, each light-transmitting structure 121 can be regarded as forming a point light source, and the irradiation area that each point light source can cover is relatively small.
  • the surface light source is smaller, so all the light transmitted by each light-transmitting structure 121 can be injected into the corresponding cylindrical lens 111 .
  • the light emitted by the backlight module can be divided into multiple beams according to the cylindrical lens that needs to be injected.
  • the light that is likely to cause cross-talk at the edge of each beam of light can be shielded through the light-shielding layer 12 and the part other than the light-transmitting structure 121, and thus can Reduce the probability of cross-light between different cylindrical lenses 111 .
  • a certain light beam in the display panel 100 is deflected by the first cylindrical lens 111 and then directed to the user's left side.
  • the eye displays the image by outputting the left eye. If cross-lighting occurs in the light beam, part of the light beam will mistakenly enter the second cylindrical lens 111 and be deflected to the user's right eye, thus interfering with the display panel 100
  • the right-eye display image that is independently output to the user's right eye ultimately results in a low-quality three-dimensional image formed by the fusion of the user's brain, and even causes discomfort such as dizziness in the user. It can be seen that in the embodiment of the present application, by providing the light-shielding layer 12, the probability of cross-light occurring in the lens layer 11 can be reduced, thereby improving the imaging effect of the display panel 100 and the user's experience effect.
  • the light-transmitting structure 121 may include a first through hole formed on the light-shielding layer 12 , so that light can be transmitted through the first through hole into the cylindrical lens 111 without obstruction.
  • the light-transmitting structure 121 can also be a solid structure made of light-transmitting material.
  • the light-transmitting structure 121 can be an acrylic plate, a transparent glass plate, a transparent PC (Polycarbonate, polycarbonate) plate, etc. This embodiment of the present application is No restrictions.
  • the display panel 100 may further include a light-transmitting layer 13 located between the lens layer 11 and the light-shielding layer 12 .
  • the light-shielding layer 12 is attached to the light-transmitting layer 13 . Therefore, the light-shielding layer 12 and the lens layer 11 can be connected and fixed through the light-transmitting layer 13 .
  • the air gap between the lens layer 11 and the light-shielding layer 12 can also be eliminated through the light-transmitting layer 13 to prevent irregular refraction and reflection of light when passing through the air gap between the light-shielding layer 12 and the lens layer 11 etc., thus affecting the imaging quality of the display panel 100 .
  • the light-transmitting layer 13 may be integrally formed with the lens layer 11 , or may be manufactured separately from the lens layer 11 and then assembled, which is not limited in the embodiments of the present application.
  • the light-transmitting layer 13 has a first smooth surface 131 on a side close to the light-shielding layer 12 .
  • the first smooth surface 131 is used to receive light transmitted by the light-transmitting structure 121 . Furthermore, the light transmitted by the light-transmitting structure 121 can be incident from the first smooth surface 131 into the light-transmitting layer 13 , pass through the light-transmitting layer 13 , and then be incident into the corresponding cylindrical lens 111 .
  • the first smooth surface 131 can reduce the occurrence of irregular refraction or scattering of light when it is incident, thereby making it easier to pass through.
  • the divergence angle of the light passing through the light-transmitting layer 13 is more controllable, and ultimately the probability of cross-talk in the lens layer 11 due to an excessive divergence angle of the light passing through the light-transmitting layer 13 can be avoided.
  • the first smooth surface 131 may be a smooth plane, a smooth convex surface, a smooth concave surface, a smooth conical surface, etc., which is not limited in the embodiment of the present application.
  • the first smooth surface 131 may be a light-condensing structure, so that the light transmitted by the light-transmitting structure 121 has a smaller divergence angle after passing through the light-transmitting layer 13 , thereby further reducing the amount of light transmitted by the light-transmitting structure 121 passing through.
  • the probability of cross-light occurs at the lens layer 11 behind the light-transmitting layer 13 .
  • the first smooth surface 131 may include a smooth curved surface that is concave toward the inside of the light-transmitting layer 13 .
  • the orthographic projection of the light-transmitting structure 121 on the light-transmitting layer 13 may be located within the first smooth surface 131 , so that all the light transmitted by the light-transmitting structure 121 can be incident on the first smooth surface 131 .
  • each light-transmitting structure 121 on the light-transmitting layer 13 may be located in different first smooth surfaces 131 respectively.
  • a surface array on one side of the light-transmitting layer 13 close to the light-shielding layer 12 is provided with a number of smooth curved surfaces that are concave toward the inside of the light-transmitting layer 13 .
  • Several light-transmitting structures 121 are also arranged in an array on the light-shielding layer 12 .
  • Several light-transmitting structures 121 correspond to several smooth curved surfaces.
  • multiple or even all of the light-transmitting structures 121 may be located in the same first smooth surface 131 in the orthographic projection of the light-transmitting layer 13 .
  • the surface of the side of the light-transmitting layer 13 close to the light-shielding layer 12 is a smooth plane, so that the orthographic projection of all the light-transmitting structures 121 on the light-transmitting layer 13 is located in the smooth plane.
  • the side surface of the light-transmitting layer 13 facing the cylindrical lens 111 serves as the light-emitting surface of the light-transmitting layer 13 .
  • the light-emitting surface of the light-transmitting layer 13 can be a smooth plane to prevent the light from entering from the light-transmitting structure 121 .
  • the light from the light-transmitting layer 13 emerges from the light-transmitting layer 13, it will produce irregular refraction, reflection, scattering, etc., thereby reducing the probability of cross-light occurring at the cylindrical lens 111.
  • At least one light-transmitting structure 121 is correspondingly provided between the central axis L1 of the cylindrical lenses 111 and each side edge.
  • cylindrical lens 111 As a reference point as an example, assume that several cylindrical lenses 111 are arranged in a left-right direction.
  • the side of the cylindrical lens 111 facing away from the light-shielding layer 12 is the front side, and the side of the cylindrical lens 111 close to the light-shielding layer 12 is rear side.
  • each cylindrical lens 111 can deflect the light transmitted by the light-transmitting structure 121 located at the rear side of its left half to the right front and out of the display panel 100 , and finally multiple cylindrical lenses 111 deflect to the right front and out of the display panel 100 .
  • the external light collectively outputs a left eye display image to the user's left eye.
  • each cylindrical lens 111 can deflect the light transmitted by the light-transmitting structure 121 located on the back side of its right half to the left front and out of the display panel 100 , and finally multiple cylindrical lenses 111 deflect to the left front and out of the display panel 100 .
  • the external light collectively outputs a right eye display image to the user's right eye.
  • Figure 5 is a schematic diagram of the first structure of the light shielding layer shown in Figure 3.
  • each row of light-transmitting structures 121 is provided on the rear side of the left half of each cylindrical lens 111 , and only one row of light-transmitting structures 121 is provided on the rear side of the right half of each cylindrical lens 111 .
  • Each row of light-transmitting structures 121 is arranged in a direction substantially parallel to the central axis L1 of the cylindrical lens 111 .
  • Figure 6 is a schematic diagram of the second structure of the light shielding layer shown in Figure 3.
  • only one light-transmitting structure 121 may be provided between each side edge of the cylindrical lens 111 along the first direction and the central axis L1.
  • only one light-transmitting structure 121 is provided on the rear side of the left half of each cylindrical lens 111 , and only one light-transmitting structure 121 is provided on the rear side of the right half of each cylindrical lens 111 .
  • the light-transmitting structure 121 may also be elongated, and the length direction of the light-transmitting structure 121 is parallel to the direction of the central axis L1 of the cylindrical lens 111 .
  • the strip-shaped light-transmitting structures 121 can be arranged parallel to the central axis L1 of the cylindrical lens 111
  • the light-transmitting area of the light-shielding layer 12 is increased in the direction, thereby increasing the amount of light transmitted through the light-shielding layer 12 to increase the final light output of the entire display panel 100 and ultimately increase the brightness of the display panel 100 .
  • each light-transmitting structure 121 can be regarded as a point light source when light passes through the light-shielding layer 12 .
  • the light transmitted by each light-transmitting structure 121 has a certain divergence angle and is directed to the cylindrical lens 111 .
  • the edge of each light-transmitting structure 121 is in contact with the corresponding cylindrical lens 111 The edges of have gaps in the first direction.
  • the probability of cross-talk is still low.
  • the edge of each light-transmitting structure 121 and the edge of the corresponding cylindrical lens 111 can be reasonably set in the first direction. There is an upward gap to avoid the cross-light problem between different cylindrical lenses 111 .
  • the light shielding layer 12 also includes a first reflective film. At least one light-transmitting structure 121 is surrounded by a first reflective film. The first reflective film is used to reflect light on the side of the first reflective film facing away from the cylindrical lens 111 . It can be understood that when the light-shielding layer 12 blocks the light incident side of the cylindrical lens 111, only part of the light rays emitted by the backlight module toward the light-shielding layer 12 can be transmitted from the light-transmitting structure 121.
  • Part of the light in the area outside the light-transmitting structure 121 of the layer 12 can be reflected back to the backlight module by the first reflective film for reuse, and then the light reflected back to the backlight module can be emitted into the light-shielding layer again and pass through the light-transmitting structure 121 Transmission; therefore, by providing the first reflective film, the amount of light transmitted through the light shielding layer 12 can be increased to increase the final light output of the entire display panel 100 and ultimately increase the brightness of the display panel 100 .
  • the light emitted by the backlight module toward the first reflective film may be reciprocally reflected between the backlight module and the first reflective film, until the part of the reciprocally reflected light emitted from the light-transmitting structure 121 is emitted from the light-transmitting structure 121 Medium transmission, so that the brightness of the entire display panel 100 is improved.
  • the light-shielding layer 12 may be a reflective film attached to the light-transmitting layer 13.
  • the light-shielding layer 12 is provided with a plurality of first through holes in an array, and each first through hole forms one of the above-mentioned light-transmitting structures 121.
  • the first reflective film may be a silver reflective film, a silver reflective film, a white ink layer, etc., which is not limited in the embodiments of the present application. Since the area of the light-transmitting structure 121 is small, in order to ensure the accuracy of the light-transmitting structure 121, the first reflective film can be processed through nanoimprint technology.
  • the display panel 100 may further include a liquid crystal display layer, and the liquid crystal display layer may be disposed on the light-incoming side of the light-shielding layer. Furthermore, when the light from the backlight module passes through the liquid crystal display layer, it can light up the corresponding sub-pixel on the liquid crystal display layer, and continues to be transmitted through the light-shielding layer 12 and then deflected by the cylindrical lens 111 to independently output the left eye display to the user's left eye. image or output a right-eye display image independently to the user's right eye.
  • FIG. 7 is a schematic structural diagram of the liquid crystal display layer of the display panel shown in FIG. 3 .
  • the liquid crystal display layer 14 may also be provided on the light exit side of the cylindrical lens 111 .
  • part of the light deflected by the cylindrical lens 111 can pass through the area used to form a left eye display image in the liquid crystal display layer 14 to output a left eye display image to the user's left eye; and another part of the light deflected by the cylindrical lens 111 can The right eye display image is output to the user's right eye through the area for forming the right eye display image in the liquid crystal display layer 14 .
  • the liquid crystal display layer 14 includes a first polarizer 144.
  • the first polarizer 144 is used to analyze polarized light electrically modulated by the liquid crystal to produce a contrast between light and dark, thereby generating a display image. It can be understood that the transmission axis of the first polarizer 144 and the transmission axis of the cylindrical lens 111 should be the same, so that the light transmitted by the cylindrical lens 111 can pass through the liquid crystal display layer 14 and ultimately achieve imaging of the entire display panel 100 .
  • the lens layer 11 is usually not disposed on the outermost layer of the display panel 100 .
  • a touch layer, a transparent cover, and other layered structures may be provided outside the lens layer 11 .
  • the light exit surface of the cylindrical lens 111 is a convex curved surface
  • a first cavity is formed between the convex curved surfaces of two adjacent cylindrical lenses 111 and the layered structure on the light exit side thereof.
  • Part of the light emitted from the cylindrical lens 111 is likely to form stray light in the cavity. After this part of the stray light exits the display panel 100 , it is easy to cause moiré patterns in the image picked up by the user's eyes, thereby affecting the display effect of the display panel 100 .
  • the cylindrical lens 111 is disposed on the light entrance side of the liquid crystal display layer 14 , and the above-mentioned first cavity is formed between the light exit surface of the cylindrical lens 111 and the liquid crystal display layer 14 .
  • the polarization direction of the stray light in the first cavity is different from the transmission axis of the first polarizer 144 and therefore cannot pass through the first polarizer 144 . Therefore, this part of the stray light cannot emit out of the display panel 100 to be picked up by the user's eyes, which ultimately prevents the image picked up by the user from having moiré patterns.
  • the display effect of the display panel 100 can be improved by disposing the liquid crystal display layer 14 to the light exit side of the lens layer 11 .
  • the first polarizer 144 of the liquid crystal display layer 14 is reused to prevent stray light at the light exit surface of the cylindrical lens 111 from emitting out of the display panel 100.
  • a layer of other polarizers or functional components is provided outside to solve the problem of moiré.
  • the embodiment of the present application has the advantages of low cost and thinness.
  • the cylindrical lens 111 is disposed on the light entrance side of the liquid crystal display layer 14 as an example to further explain and describe the technical solutions of the embodiments of the present application.
  • the liquid crystal display layer 14 may include a TFT (Thin Film Transistor, thin film transistor) array substrate 141 , a liquid crystal layer 142 , a color filter 143 and a first polarizer 144 .
  • the TFT array substrate 141 is disposed on the light exit side of the cylindrical lens 111
  • the liquid crystal layer 142 is disposed on the light exit side of the TFT array substrate 141
  • the color filter 143 is disposed on the light exit side of the liquid crystal layer 142
  • the first polarizer 144 is disposed on the color filter The light exit side of the piece 143.
  • the light deflected by the cylindrical lens 111 can sequentially pass through the TFT array substrate 141, the liquid crystal layer 142, the color filter 143 and the first polarizer 144 and then exit the display panel 100 to output a display image to the user.
  • the color filter 143 includes several sub-pixels 1431 arranged in an array. Along the direction in which several cylindrical lenses 111 are arranged, a plurality of sub-pixels 1431 are correspondingly provided between the central axis L1 of the cylindrical lenses 111 and the end edges on each side.
  • the sub-pixels 1431 include a first sub-pixel 1431a provided on the left front side of each lenticular lens 111 and a second sub-pixel 1431b provided on the right front side of each lenticular lens 111. Furthermore, the light transmitted by the light-transmitting structure 121 on the right rear side of each cylindrical lens 111 can be deflected to the first sub-pixel 1431a on the left front side of the cylindrical lens 111 to light up the first sub-pixel 1431a and output it to the user's right side. eye, and finally the right-eye display image composed of the plurality of first sub-pixels 1431a can be output to the user's right eye.
  • each cylindrical lens 111 can be deflected to the second sub-pixel 1431b on the right front side of the cylindrical lens 111 to light up the second sub-pixel 1431b and output it to the user's device.
  • the left eye and finally the right eye display image composed of the plurality of first sub-pixels 1431a can be output to the user's right eye.
  • a column of sub-pixels 1431 is disposed between the central axis L1 of the cylindrical lens 111 and each side edge, and each column of sub-pixels 1431 is arranged along a direction parallel to the center of the cylindrical lens 111. arranged in the direction of axis L1.
  • each light-transmitting structure 121 can be deflected by the cylindrical lens 111 to one or more sub-pixels 1431 in the same column.
  • At least one light-transmitting structure 121 is provided correspondingly between each side edge of the cylindrical lens 111 in the first direction and the central axis L1.
  • a long first through hole may be provided on the left rear side of each cylindrical lens 111 as the light-transmitting structure 121.
  • the light transmitted by the light-transmitting structure 121 is deflected by the cylindrical lens 111 and then enters the right side of the cylindrical lens 111.
  • one first light-transmitting structure 121 can light up a column of sub-pixels 1431.
  • the number of light-transmitting structures 121 on the right rear side of each cylindrical lens 111 can also be equal to the number of sub-pixels 1431 located on the left front, so that each light-transmitting structure 121 on the right rear side of each cylindrical lens 111 The transmitted light can only be incident on one sub-pixel 1431 on the front left side after being deflected by the cylindrical lens 111, and each light-transmitting structure 121 can light up one sub-pixel 1431.
  • the number of light-transmitting structures 121 on the right rear side of the cylindrical lens 111 is less than the number of sub-pixels 1431 on the left front, so that the light transmitted by a light-transmitting structure 121 on the right rear side of the cylindrical lens 111 can be incident on the left side.
  • one light-transmitting structure 121 can light up two, three, four or even five sub-pixels.
  • FIG. 8 is a schematic diagram of the light path of the display panel shown in FIG. 7 . It can be understood that since the light beam transmitted by the light-transmitting structure 121 has a certain divergence angle, when the light beam transmitted by the light-transmitting structure 121 hits the layer where the sub-pixel 1431 is located, the coverage area of the light beam will be larger than that of the light beam in the light-transmitting structure. Coverage area of 121 locations.
  • the single light-transmitting structure 121 transmits the light beam.
  • the light beam transmitted by the first light-transmitting structure 121 may be incident into the adjacent first sub-pixel 1431a and the second sub-pixel 1431b at the same time, so that the adjacent first sub-pixel 1431a and the second sub-pixel 1431b are One sub-pixel 1431a and the second sub-pixel 1431b are illuminated by light beams in the same direction and then output to the same eye of the user.
  • the adjacent first sub-pixel 1431a and the second sub-pixel 1431b should be illuminated by light from different directions and output to different eyes of the user to form a left eye display image or a right eye display image.
  • the user's left eye may simultaneously see the sub-pixel 1431 that should be seen by the left eye and part of the sub-pixel that should be seen by the left eye.
  • the sub-pixels 1431 seen by the right eye, and the user's right eye may simultaneously see the sub-pixels 1431 that should be seen by the right eye and part of the sub-pixels 1431 that should be seen by the left eye, ultimately resulting in a reduction in the display effect of the stereoscopic image seen by the user.
  • the width of the light-transmitting structure 121 in the first direction is smaller than the width of the sub-pixel 1431 in the first direction.
  • the width of the light-transmitting structure 121 in the first direction is three-sevenths, one-half, or four-sevenths of the width of the sub-pixel 1431 in the first direction. This is not the case in the embodiment of the present application. Make limitations.
  • the curvature radius of the light exit surface of the cylindrical lens 111 is R.
  • the maximum distance between the light-transmitting structure 121 and the light-emitting surface of the cylindrical lens 111 is D1, and D1 is less than or equal to 2R and greater than or equal to 1/4R.
  • D1 is equal to 2R, 3/2R, 5/4R, R, 3/4R or 1/4R.
  • the divergence angle of the light emitted from the cylindrical lens 111 gradually increases as D1 decreases. At this time, if the divergence angle of the emitted light from the cylindrical lens 111 is too large, it may also cause the light beam emitted in a single direction to light up the first sub-pixel 1431a and the second sub-pixel 1431b adjacent along the first direction at the same time, thereby causing the display panel to 100's of crosstalk.
  • the emitted light from the cylindrical lens 111 is parallel light with a small divergence angle, and is less likely to light up the first sub-pixel 1431a and the second sub-pixel 1431b adjacent along the first direction, so the display can be reduced.
  • the probability of crosstalk occurring in panel 100 when D1 is greater than 1/4R, the divergence angle of the emitted light from the cylindrical lens 111 is too large, which easily causes crosstalk.
  • the cylindrical lens 111 is frame-bonded to the liquid crystal display layer 14 , that is, the four sides of the lens layer 11 are bonded and fixed to the four sides of the liquid crystal display layer 14 through the annular second optical adhesive layer.
  • the second optical glue layer may be OCA (Optically Clear Adhesive) optical glue or other types of optical glue, which is not limited in the embodiments of the present application.
  • FIG. 9 is a schematic diagram of the fully bonded structure of the liquid crystal display layer and the lens layer of the display panel shown in FIG. 7 .
  • the cylindrical lens 111 and the liquid crystal display layer 14 can also be fully bonded, that is, the first optical adhesive layer 15 is filled everywhere between the cylindrical lens 111 and the liquid crystal display layer 14 .
  • the full lamination method can eliminate the air between the lens layer 11 and the liquid crystal display layer 14, thereby greatly reducing the reflection of light and reducing the loss of transmitted light, thereby improving brightness and enhancing The display effect of the screen makes the picture more transparent.
  • the first optical glue layer 15 may be OCA (Optically Clear Adhesive) optical glue or other types of optical glue, which is not limited in the embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a backlight module of the display panel shown in FIG. 7 .
  • the display panel 100 may further include a backlight module 16 .
  • the backlight module 16 is disposed on a side of the light-shielding layer 12 facing away from the lens layer 11 . Furthermore, part of the light emitted by the backlight module 16 can be transmitted from the light-transmitting structure 121 of the light-shielding layer 12 into the lens layer 11 .
  • the backlight module 16 may be a direct-type backlight module or an edge-type backlight module, which is not limited in the embodiments of the present application.
  • the backlight module 16 is a direct-type backlight module.
  • the direct backlight module may include an LED light source 161, a light guide plate 162 and a second polarizer 163.
  • the second polarizer 163 is disposed on the light entrance side of the light shielding layer 12
  • the light guide plate 162 is disposed on the light entrance side of the second polarizer 163 .
  • the LED light source 161 is disposed on one side of the light guide plate 162 along the first direction. Furthermore, the light emitted by the LED light source 161 can form a surface light source in the direction of the light-shielding layer 12 through the light guide plate 162.
  • the surface light source passes through the second polarizer 163, the first polarizer 144, and the column when it is directed to the light-shielding layer 12.
  • the transmission axes of the lens 111 and the second polarizer 163 are the same, so that the light emitted from the light guide plate 162 can eventually light up the entire display panel 100 to form a display image.
  • the second polarizer 163 may be a reflective polarizer. Furthermore, the part of the light emitted by the light guide plate 162 toward the lens layer 11 with a polarization direction parallel to the transmission axis of the second polarizer 163 can pass through the second polarizer 163 , while the polarization direction is different from the transmission axis of the second polarizer 163 . The parallel parts are reflected back to the light guide plate 162 for reuse to improve the brightness of the entire display panel 100 .
  • the direct backlight module may also include a second reflective film 164.
  • the second reflective film 164 is disposed on the side of the light guide plate 162 facing away from the second polarizer 163 to prevent part of the light propagating in the light guide plate 162 from passing behind the light guide plate 162. Emitting to one side of the second polarizer 163 causes loss. Therefore, the second reflective film 164 can improve the brightness of the entire display panel 100 .
  • each embodiment is described with its own emphasis. For parts that are not described in detail in a certain embodiment, please refer to the relevant descriptions of other embodiments.
  • the display panel 100 and the three-dimensional display device provided by the embodiments of the present application have been introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of the present application. The description of the above embodiments is only used to help understand the present application. The method and its core idea; at the same time, for those skilled in the art, there will be changes in the specific implementation and scope of application based on the ideas of this application. In summary, the content of this specification should not be understood as a reference to this application. limit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种显示面板(100)和立体显示设备,显示面板(100)包括透镜层(11)和遮光层(12),透镜层(11)包括若干个排列设置的柱透镜(111);遮光层(12)设于透镜层(11)的进光侧,遮光层(12)间隔设置有若干个用于透射光线的透光结构(121);其中,每个柱透镜(111)的进光侧对应设置有若干个透光结构(121),每个透光结构(121)与一个柱透镜(111)对应,以降低透镜层(11)中相邻柱透镜(111)发生串光的概率。

Description

显示面板和立体显示设备
本申请要求于2022年05月25日提交中国专利局、申请号为202210583582.5、发明名称为“显示面板和立体显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于显示技术领域,尤其涉及显示面板和立体显示设备。
背景技术
3D(three dimensional)显示技术是一种新型显示技术,与普通2D(two dimensional)显示相比,3D显示技术可以使画面变得更立体,图像不再局限于屏幕的平面上,而是能走出屏幕外面,让观众身临其境的感觉。
相关技术中,显示面板通过穿过像素点后射入用户眼睛的光束对用户输出显示图像,显示图像是多个像素点组成的,而不同的像素点对应显示面板的不同光束。此时,通过在显示面板中增加一层由柱透镜组成的透镜层,由柱透镜将显示面板的不同光束分别偏转至不同方向,以对用户的左、右眼独立输出不同的显示图像,最终用户可以将左、右眼拾取的不同显示图像在大脑中融合形成3D图像。
然而,在实际使用中,应当通过特定柱透镜进行偏转的光束中容易有一部分光线被另外一个柱透镜偏转至错误的方向,进而造成不同柱透镜之间串光的问题,最终影响3D显示效果。
技术问题
本申请实施例提供一种显示面板和显示设备,以降低柱透镜之间串光的概率。
技术解决方案
第一方面,本申请实施例提供一种显示面板,包括:
透镜层,包括若干个排列设置的柱透镜,所述柱透镜用于将入射光线偏转至预设方向射出;和
遮光层,所述遮光层设于所述透镜层的进光侧,所述遮光层间隔设置有若干个用于透射光线的透光结构;
其中,每个柱透镜的进光侧对应设置有若干个所述透光结构,每个所述透光结构与一个所述柱透镜对应,以使所述遮光层背向所述柱透镜层一侧的光线能够从所述透光结构透射至对应的所述柱透镜。
第二方面,本申请实施例还提供一种立体显示设备,包括:
显示面板,如上述任一项的显示面板;和
壳体,承载所述显示面板。
有益效果
本申请实施例中,当背光模组从遮光层背向透镜层的一侧发光时,背光模组发射的部分光线被遮光层透光结构以外的区域所遮挡,以及背光模组发射的部分光线穿过透光结构。因此,可以看作遮光层将背光模组的光源转化形成了若干个点光源,即每个透光结构可视作形成了一个点光源,每个点光源所能覆盖的照射区域相对于面光源更小,因此每个透光结构透射的一束光线更不易于部分射入错误的柱透镜内,进而可降低不同柱透镜之间发生串光的概率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其有益效果显而易见。
图1为本申请实施例提供的立体显示设备的一种结构示意图。
图2为图1所示显示面板的透镜层结构示意图。
图3为图2所示显示面板的透镜层、遮光层与透光层的结构示意图。
图4为图3所示透光层的另一种结构示意图。
图5为图3所示遮光层的第一种结构示意图。
图6为图3所示遮光层的第二种结构示意图。
图7为图3所示显示面板的液晶显示层的结构示意图。
图8为图7所示显示面板的光线路径示意图。
图9为图7所示显示面板的液晶显示层与透镜层全贴合结构示意图。
图10为图7所示显示面板的一种背光模组的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1为本申请实施例提供的立体显示设备的一种结构示意图。本申请实施例提供一种显示面板100,运用于电子设备中显示图像。电子设备可以具有壳体200以及显示面板100,壳体200用于承载和安装显示面板100。显示设备可以是室外3D(three dimensional)显示屏、掌上平板电脑、电视、手机终端等等,本申请实施例对此不做限定。
请继续参考图2和图3,图2为图1所示显示面板的透镜层结构示意图,图3为图2所示显示面板的透镜层、遮光层与透光层的结构示意图。显示面板100可以包括透镜层11。透镜层11包括若干排列设置的柱透镜111,柱透镜111用于将入射光偏转至预设的角度射出,进而当显示面板100发光时,显示面板100的部分光线能够透过柱透镜111偏转至射向用户的左眼以对用户输出左眼显示图像、部分光线能够通过柱透镜111偏转至射向用户的右眼以对用户的右眼形成右眼显示图像,最后用户可以通过眼睛所拾取的左眼显示图像和右眼显示图像在用户的大脑中融合形成三维立体影像。
显示面板100还可以包括遮光层12。遮光层12设于透镜层11的进光侧,遮光层12间隔设置有若干个用于透射光线的透光结构121。其中,每个柱透镜111的进光侧对应设置有至少一个透光结构121,以使遮光层12背向透镜层11一侧的光线能够从透光结构121透射至对应的柱透镜111。
进而,当背光模组设置在遮光层12背向透镜层11的一侧时,背光模组发射的光线能够部分被遮光层12的透光结构以外的部分遮挡、部分穿过透光结构121。因此,可以看作遮光层12将背光模组的光源转化形成了若干个点光源,即每个透光结构121可视作形成了一个点光源,每个点光源所述能覆盖的照射区域相对于面光源更小,因此每个透光结构121透射的光线可以全部射入对应的一个柱透镜111内。或者说是,背光模组发射的光线可以按照需要射入的柱透镜分为多束,通过遮光层12透光结构121以外部分可以每束光边缘处容易导致串光的光线进行屏蔽,进而可以降低不同柱透镜111之间发生串光的概率。
示例性的,以柱透镜111上包括相邻第一个柱透镜111和第二个柱透镜111为例,显示面板100内某一光束是用于被第一柱透镜111偏转后射向用户左眼以输出左眼显示图像,若该光束发生串光时该光束会有部分光线错误地射入了第二个柱透镜111中并被偏转至射向用户的右眼中,进而干扰了显示面板100对用户右眼独立输出的右眼显示图像,最终导致了用户大脑融合形成的三维立体图像成像质量较低,甚至于引起用户的眩晕等不适。由此可见,本申请实施例中通过设置遮光层12可以降低透镜层11中发生串光的概率,进而提高显示面板100的成像效果以及用户的体验效果。
在一些实施方式中,透光结构121可以包括形成在遮光层12上的第一通孔,进而光线可以无遮挡地通过第一通孔透射至柱透镜111中。
可替换的,透光结构121也可是透光材质制成的实体结构,诸如透光结构121是亚克力板、透明玻璃板、透明PC(Polycarbonate,聚碳酸酯)板等,本申请实施例对此不做限定。
在一些实施方式中,显示面板100还可以包括透光层13,透光层13位于透镜层11与遮光层12之间。遮光层12贴附于透光层13。故而,通过透光层13可以将遮光层12与透镜层11进行连接固定。
此外,还可以通过透光层13消除透镜层11与遮光层12之间的空气间隙,以使防止光线在穿过遮光层12与透镜层11之间的空气间隙时发生不规则的折射、反射等,进而影响显示面板100的成像质量。
透光层13可以是和透镜层11一体成型的,也可以是和透镜层11分别制造后进行组装的,本申请实施例对此不做限定。
透光层13靠近遮光层12的一侧具有第一光滑表面131。第一光滑表面131用于接收透光结构121透射的光线。进而,透光结构121透射的光线能够从第一光滑表面131入射至透光层13内,并穿过透光层13后射入对应的柱透镜111中。
可以理解的是,相较于透光层13由粗糙的表面供透光结构121透射的光线入射,第一光滑表面131可以减少光线在入射时发生无规则的折射或者散射等情况,进而使穿过透光层13的光线的发散角度更加可控,最终可以避免穿过透光层13的光线因发散角度过大而在透镜层11中发生串光的概率。
第一光滑表面131可以是光滑平面、光滑凸面、光滑凹面或者光滑的圆锥面等,本申请实施例对此不做限定。
请继续参考图4,图4为图3所示透光层的另一种结构示意图。在一些实施方式中,第一光滑表面131可以是聚光结构,以使透光结构121透射的光线穿过透光层13后发散角度更小,进而进一步降低透光结构121透射的光线穿过透光层13后在透镜层11处产生串光的概率。诸如第一光滑表面131可以包括朝透光层13内部凹陷的光滑曲面等。
在一些实施方式中,可以是透光结构121在透光层13的正投影位于第一光滑表面131内,以使透光结构121透射的光线能够全部射入向第一光滑表面131。
具体而言,可以是每个透光结构121在透光层13的正投影分别位于不同的第一光滑表面131内。例如,透光层13靠近遮光层12的一侧表面阵列设置有若干个朝透光层13内部凹陷的光滑曲面。遮光层12上也阵列设置有若干个透光结构121。若干个透光结构121和若干个光滑曲面一一对应。当然,还可以是若干个光滑凸面或者光滑圆锥面与若干个透光结构121一一对应,本申请实施例对此不做限定。
可选的,也可以是多个甚至于全部的透光结构121在透光层13的正投影位于同一个第一光滑表面131内。例如,透光层13靠近遮光层12的一侧表面为光滑平面,以使所有透光结构121在透光层13的正投影均位于该光滑平面内。
在一些实施方式中,透光层13的朝向柱透镜111的一侧表面作为透光层13的出光面,透光层13的出光面可以为光滑平面,以防止从透光结构121透射进入的透光层13的光线从透光层13出射时产生无规则的折射、反射、散射等,进而可以降低柱透镜111处产生串光的概率。
在一些实施方式中,沿若干个柱透镜111排列设置的方向,柱透镜111的中轴线L1与每侧端缘之间均对应设置有至少一个透光结构121。
下面,用柱透镜111做参考点为例,设若干个柱透镜111沿左右方向排列设置,柱透镜111背向遮光层12的一侧为前侧,柱透镜111靠近遮光层12的一侧为后侧。
此时,一方面,可以理解为每个柱透镜111的左半部的后侧对应设置有至少一个透光结构121。进而,每个柱透镜111可以将位于其左半部后侧的透光结构121透射的光线偏转至朝右前方射出显示面板100外,最终多个柱透镜111偏转至朝右前方射出显示面板100外的光线共同对用户的左眼输出左眼显示图像。
另一方面,可以理解为每个柱透镜111的右半部的后侧对应设置有至少一个透光结构121。进而,每个柱透镜111可以将位于其右半部后侧的透光结构121透射的光线偏转至朝左前方射出显示面板100外,最终多个柱透镜111偏转至朝左前方射出显示面板100外的光线共同对用户的右眼输出右眼显示图像。
请结合图4和图5,图5为图3所示遮光层的第一种结构示意图。在一些实施方式中,可以是柱透镜111沿第一方向的每侧端缘与中轴线L1之间均多个透光结构121。
示例性的,每个柱透镜111的左半部后侧仅设置有一列透光结构121,以及每个柱透镜111的右半部后侧也仅设置有一列透光结构121。每列透光结构121均是沿大致平行于柱透镜111的中轴线L1方向排列的。
请结合图4和图6,图6为图3所示遮光层的第二种结构示意图。可选的,可以是柱透镜111沿第一方向的每侧端缘与中轴线L1之间均仅对应设置有一个透光结构121。
示例性的,每个柱透镜111的左半部后侧仅设置有一个透光结构121,以及每个柱透镜111的右半部后侧也仅设置有一个透光结构121。具体而言,由于柱透镜111整体为长条形的柱状结构,透光结构121也可以是长条状,透光结构121的长度方向与柱透镜111的中轴线L1方向平行。
可以理解的是,相较于柱透镜111的左半部后侧或者右半部后侧间隔设置一列的透光结构121,长条状的透光结构121可以在平行于柱透镜111中轴线L1的方向上增大遮光层12的透光面积,进而提高遮光层12透射的光线的透光量,以提高整个显示面板100最终的出光量,最终提高显示面板100的亮度。
还可以理解的是,由于光线穿过遮光层12时每个透光结构121可以看做一个点光源。此时每个透光结构121透射的光线是具备一定的发散角度射向柱透镜111的。此时,为了避免透光结构121透射的光线在第一方向上发散时与其自身对应的柱透镜111旁侧的另一个柱透镜111中,每一透光结构121的边缘与对应的柱透镜111的边缘在第一方向上具有间隙。进而,每个透光结构121透射的光束以一定的发散角度传播一定距离至透镜层11时,发生串光的概率依旧较低。
此时,根据透光结构121透射的光束的发散角度以及透光结构121与柱透镜111的距离,可以合理地设置每一透光结构121的边缘与对应的柱透镜111的边缘在第一方向上的间隙,以进而避免不同的柱透镜111之间发生串光的问题。
遮光层12还包括第一反射膜。至少一个透光结构121的周侧环绕有第一反射膜。第一反射膜用于反射位于第一反射膜背向柱透镜111一侧的光线。可以理解的是,当遮光层12遮挡住柱透镜111的入光面一侧时,背光模组射向遮光层12的光线中仅部分光线可以从透光结构121处透射,此时射向遮光层12的透光结构121以外区域的部分光线可以被第一反射膜反射回背光模组中重复利用,进而被反射回背光模组中的光线可以再次射向遮光层中并从透光结构121透射;因此,通过设置第一反射膜可以提高遮光层12透射的光线的透光量,以提高整个显示面板100最终的出光量,最终提高显示面板100的亮度。
具体而言,可以是背光模组射向第一反射膜的光线在背光模组和第一反射膜之间往复反射,直至该部分往复反射的光线射向透光结构121时从透光结构121中透射,以使整个显示面板100的亮度得到提高。
在一些实施方式中,遮光层12可以是贴附于透光层13的反射膜,遮光层12阵列设置若干第一通孔,每个第一通孔形成一个上述的透光结构121。
具体而言,第一反射膜可以是银反射膜、银反射膜或者白色油墨层等,本申请实施例对此不做限定。由于透光结构121的面积较小,为了保证透光结构121的精度,可以是通过纳米压印技术加工第一反射膜。
显示面板100还可以包括液晶显示层,液晶显示层可以是设置于遮光层的进光侧。进而,背光模组的光线穿过液晶显示层时可以点亮液晶显示层上对应的子像素,并继续从遮光层12透射后被柱透镜111偏转,以对用户的左眼独立输出左眼显示图像或者对用户的右眼独立输出右眼显示图像。
请继续参考图7,图7为图3所示显示面板的液晶显示层的结构示意图。可替换的,液晶显示层14还可以是设于柱透镜111的出光侧。进而,柱透镜111偏转的部分光线可以穿过液晶显示层14中用于形成左眼显示图像的区域,以对用户的左眼输出左眼显示图像;以及,柱透镜111偏转的另一部分光线可以穿过液晶显示层14中用于形成右眼显示图像的区域,以对用户的右眼输出右眼显示图像。
液晶显示层14包括第一偏光片144,第一偏光片144用于解析经液晶电调制后的偏振光以产生明暗对比,从而生成显示图像。可以理解的是,第一偏光片144的透射轴与柱透镜111的透射轴应当相同,以使柱透镜111透射的光线可以穿过液晶显示层14,最终实现整个显示面板100的成像。
还可以理解的是,相关技术中,透镜层11通常不是设置在显示面板100的最外层的。诸如,透镜层11的外侧可能还设置有触控层、透明盖板等等层状结构。此时由于柱透镜111的出光面为凸曲面,相邻两个柱透镜111的凸曲面与其出光侧的层状结构之间围设形成一个第一空腔。从柱透镜111出射的部分光线容易在该空腔中形成杂散光,该部分杂散光射出显示面板100后容易导致用户眼睛所拾取的图像存在摩尔纹,进而影响显示面板100的显示效果。
而在本申请实施例中,柱透镜111设置在液晶显示层14的进光侧,由柱透镜111的出光面和液晶显示层14之间围设形成上述的第一空腔。此时,第一空腔中的杂散光的偏振方向与第一偏光片144的透射轴不同故而无法穿过第一偏光片144。因此,该部分杂散光无法射出显示面板100外部以被用户的眼睛所拾取,最终可以避免用户所拾取的图像存在摩尔纹。由此可见,本申请实施例通过液晶显示层14设置到透镜层11的出光侧,可以提高显示面板100的显示效果。
还可以理解的是,本申请实施例将液晶显示层14的第一偏光片144复用于防止柱透镜111出光面处的杂散光射出显示面板100外,相较于在柱透镜111的出光面处而外设置一层其他的偏光片或者功能元器件以解决摩尔纹的问题,本申请实施例具有成本低以及轻薄的优点。
下面,柱透镜111设置在液晶显示层14的进光侧为例,对本申请实施例的技术方案做进一步的解释和说明。
示例性的,液晶显示层14可以包括TFT(Thin Film Transistor,薄膜晶体管)阵列基板141、液晶层142、彩色滤光片143以及第一偏光片144。TFT阵列基板141设于柱透镜111的出光侧,液晶层142设于TFT阵列基板141的出光侧,彩色滤光片143设置于液晶层142的出光侧,第一偏光片144设置于彩色滤光片143的出光侧。进而,通过柱透镜111偏转后的光线可以依次透过TFT阵列基板141、液晶层142、彩色滤光片143以及第一偏光片144后射出显示面板100外部,以对用户输出显示图像。
在一些实施方式中,彩色滤光片143包括若干阵列设置的子像素1431。沿若干个柱透镜111排列设置的方向,柱透镜111的中轴线L1与每侧端缘之间均对应设置有多个子像素1431。
示例性的,子像素1431包括设于每个柱透镜111左前侧的第一子像素1431a以及设于每个柱透镜111右前侧的第二子像素1431b。进而,每个柱透镜111右后侧的透光结构121透射的光线能够偏转至射向该柱透镜111左前侧的第一子像素1431a,以点亮第一子像素1431a并输出到用户的右眼,最终多个第一子像素1431a组成的右眼显示图像可以输出到用户的右眼。相应的,每个柱透镜111左后侧的透光结构121透射的光线能够偏转至射向该柱透镜111右前侧的第二子像素1431b,以点亮第二子像素1431b并输出到用户的左眼,最终多个第一子像素1431a组成的右眼显示图像可以输出到用户的右眼。
在一些实施方式中,沿若干个柱透镜111排列设置的方向,柱透镜111的中轴线L1与每侧端缘之间均设置有一列子像素1431,每列子像素1431沿平行于柱透镜111的中轴线L1方向排列。
每个透光结构121透射的光线能够经柱透镜111偏转至射向同一列中的一个或者多个子像素1431。
示例性的,请结合上述的柱透镜111沿第一方向的每侧端缘与中轴线L1之间均对应设置有至少一个透光结构121。可以是每个柱透镜111的左后侧设置有一个长条状的第一通孔作为透光结构121,该透光结构121透射的光线经过该柱透镜111偏转后射入该柱透镜111右前方的第二子像素1431b中的所有子像素1431中,进而一个第一透光结构121能够点亮一列子像素1431。
可选的,还可以每个柱透镜111右后侧的透光结构121的数量与位于左前方的子像素1431的数量相等,以使每个柱透镜111右后侧的每个透光结构121透射的光线经过该柱透镜111偏转后可以仅射入左前侧的一个子像素1431中,进而每个透光结构121能够点亮一个子像素1431。
当然,还可以是柱透镜111右后侧的透光结构121的数量少于左前方的子像素1431的数量,以使柱透镜111右后方的一个透光结构121透射的光线后可以射入左前方的两个、三个、四个甚至五个子像素1431中,进而一个透光结构121可以点亮两个、三个、四个甚至五个子像素。
请继续参考图8,图8为图7所示显示面板的光线路径示意图。可以理解的是,由于透光结构121透射的光束是具有一定的发散角度的,当透光结构121透射的光束射到子像素1431所在层时,光束的覆盖面积会大于该光束在透光结构121处的覆盖面积。因此,假设多个柱透镜111是沿第一方向排列设置的,若是透光结构121在第一方向上的宽度大于或者等于子像素1431在第一方向上的宽度,单一透光结构121透射光束被柱透镜111偏转至朝沿特定方向传播过程中,第一透光结构121透射的光束可能同时射入了相邻的第一子像素1431a和第二子像素1431b中,以使相邻的第一子像素1431a和第二子像素1431b被同一方向的光束点亮以后输出到用户的同一个眼睛中。然而,相邻的第一子像素1431a和第二子像素1431b又是应当被不同方向的光线点亮并输出至用户的不同眼睛中,以形成左眼显示图像或者右眼显示图像的。由此可见,若是透光结构121在第一方向上的宽度大于或者等于子像素1431在第一方向上的宽度时,用户的左眼可能同时看见理应被左眼看见的子像素1431以及部分理应被右眼看见的子像素1431,以及用户的右眼可能同时看见理应被右眼看见的子像素1431以及部分理应被左眼看见的子像素1431,最终导致用户看见的立体图像显示效果降低。
基于此,透光结构121在第一方向上的宽度小于子像素1431在第一方向上的宽度。
示例性的,透光结构121在第一方向上的宽度为子像素1431在第一方向上的宽度的七分之三、二分之一或者七分之四等,本申请实施例对此不做限定。
在一些实施方式中,柱透镜111的出光面的曲率半径为R。透光结构121与柱透镜111的出光面的最大间距为D1,D1小于等于2R且大于等于1/4R。示例性的,D1等于2R、3/2R、5/4R、R、3/4R或者1/4R。
可以理解的是,由于柱透镜111的出光面为一个凸起面,随着D1的减小柱透镜111的出射光的发散角度是逐渐增大的。此时,若柱透镜111的出射光发散角度过大同样可能造成沿单一方向射出的光束同时点亮了沿第一方向相邻的第一子像素1431a和第二子像素1431b,进而导致显示面板100的串扰。而当D1等于2R时,柱透镜111的出射光为平行光,发散角度较小,更不易于点亮沿第一方向相邻的第一子像素1431a和第二子像素1431b,因此可以降低显示面板100发生串扰的概率。相应的,当D1大于1/4R,柱透镜111的出射光发散角度过大,容易造成串扰。
在一些实施方式中,柱透镜111与液晶显示层14框贴合,即透镜层11的四条边通过环形的第二光学胶层与液晶显示层14的四条边贴合固定。
第二光学胶层可以为OCA(Optically Clear Adhesive)光学胶,也可以是其他种类的光学胶,本申请实施例对此不做限定。
请继续参考图9,图9为图7所示显示面板的液晶显示层与透镜层全贴合结构示意图。可选的,柱透镜111与液晶显示层14还可以是全贴合,即柱透镜111与液晶显示层14之间各处均填充有第一光学胶层15。可以理解的是,全贴合的方式相较于框贴合的方式可以消除透镜层11与液晶显示层14之间的空气,进而大幅降低光线的反射、减少透出光线损耗从而提升亮度,增强屏幕的显示效果,让画面更通透。
第一光学胶层15可以为OCA(Optically Clear Adhesive)光学胶,也可以是其他种类的光学胶,本申请实施例对此不做限定。
请继续参考图10,图10为图7所示显示面板的一种背光模组的结构示意图。显示面板100还可以包括背光模组16,背光模组16设于遮光层12背向透镜层11的一侧。进而,背光模组16发射的部分光线能够从遮光层12的透光结构121中透射至透镜层11中。背光模组16可以是直下式背光模组,也可以是侧入式背光模组,本申请实施例对此不做限定。
示例性的,背光模组16为直下式背光模组。直下式背光模组可以包括LED光源161、导光板162和第二偏光片163。第二偏光片163设于遮光层12的进光侧,导光板162设置于第二偏光片163的进光侧。LED光源161设于导光板162沿第一方向一侧。进而LED光源161发射的光线可以通过导光板162形成射向遮光层12方向的面光源,该面光源在射向遮光层12的过程中穿过第二偏光片163,第一偏光片144、柱透镜111和第二偏光片163的透射轴相同,以使导光板162出射的光线最终能够点亮整个显示面板100形成显示图像。
第二偏光片163可以为反射型偏光片。进而,导光板162朝透镜层11方向发射的光线中偏振方向与第二偏光片163透射轴相平行的部分可以穿过第二偏光片163,而偏振方向与第二偏光片163的透射轴不平行的部分则被反射回导光板162中重复利用,以提高整个显示面板100的亮度。
直下式背光模组还可以包括第二反射膜164,第二反射膜164设于导光板162背向第二偏光片163的一侧,以避免导光板162内传播的部分光线从导光板162背向第二偏光片163的一侧射出造成损耗。因此,第二反射膜164可以提高整个显示面板100的亮度。在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的显示面板100和立体显示设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其中,包括:
    透镜层,包括若干个排列设置的柱透镜,所述柱透镜用于将入射光线偏转至预设方向射出;和
    遮光层,所述遮光层设于所述透镜层的进光侧,所述遮光层间隔设置有若干个用于透射光线的透光结构;
    其中,每个柱透镜的进光侧对应设置有若干个所述透光结构,每个所述透光结构与一个所述柱透镜对应,以使所述遮光层背向所述柱透镜层一侧的光线能够从所述透光结构透射至对应的所述柱透镜。
  2. 根据权利要求1所述的显示面板,其中,所述透光结构包括设置于所述遮光层的第一通孔。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板还包括位于所述透镜层与所述遮光层之间透光层,所述遮光层贴附于所述透光层。
  4. 根据权利要求3所述的显示面板,其中,所述透光层靠近所述遮光层的一侧具有第一光滑表面,所述透光结构透射的光线能够经所述第一光滑表面穿过所述透光层。
  5. 根据权利要求4所述的显示面板,其中,所述第一光滑表面为聚光结构。
  6. 根据权利要求4所述的显示面板,其中,所述透光结构在所述透光层的正投影位于所述第一光滑表面内。
  7. 根据权利要求1所述的显示面板,其中,沿所述若干个柱透镜排列设置的方向,所述柱透镜的中轴线与每侧端缘之间均对应设置有至少一个所述透光结构。
  8. 根据权利要求7所述的显示面板,其中,沿所述若干个柱透镜排列设置的方向,每一所述透光结构的边缘与对应的所述柱透镜的边缘具有间隙。
  9. 根据权利要求1所述的显示面板,其中,所述遮光层还包括第一反射膜,至少一个所述透光结构的周侧环绕有所述第一反射膜,所述第一反射膜用于反射所述第一反射膜背向所述柱透镜一侧的光线。
  10. 根据权利要求1所述的显示面板,其中,所述显示面板还包括液晶显示层,所述液晶显示层设于所述柱透镜的出光侧,所述液晶显示层包括第一偏光片,所述第一偏光片的透射轴与所述柱透镜的透射轴相同。
  11. 根据权利要求10所述的显示面板,其中,所述液晶显示层还包括彩色滤光片,所述彩色滤光片阵列设置有若干子像素;
    其中,沿所述若干个柱透镜排列设置的方向,所述柱透镜的中轴线与每侧端缘之间均对应设置有多个所述子像素。
  12. 根据权利要求11所述的显示面板,其中,沿所述若干个柱透镜排列设置的方向,所述柱透镜的中轴线与每侧端缘之间均设置有一列所述子像素,每列所述子像素沿平行于所述柱透镜的中轴线方向排列;
    其中,每个所述透光结构透射的光线能够经所述柱透镜偏转至射向同一列中的一个或者多个所述子像素。
  13. 根据权利要求11所述的显示面板,其中,沿所述若干个柱透镜的排列方向,所述透光结构的宽度小于所述子像素的宽度。
  14. 根据权利要求10所述的显示面板,其中,所述柱透镜的出光面的曲率半径为R,所述透光结构与所述柱透镜的出光面的最大间距小于等于2R且大于等于1/4R。
  15. 根据权利要求10所述的显示面板,其中,所述透镜层与所述液晶显示层框贴合。
  16. 根据权利要求10所述的显示面板,其中,所述透镜层与所述液晶显示层全贴合。
  17. 根据权利要求1所述的显示面板,其中,所述显示面板还包括液晶显示层,所述液晶显示层设于所述遮光层的进光侧。
  18. 根据权利要求1所述的显示面板,其中,所述显示面板还包括背光模组,所述背光模组设于所述遮光层背向所述透镜层的一侧,所述背光模组为直下式背光模组。
  19. 根据权利要求1所述的显示面板,其中,所述显示面板还包括背光模组,所述背光模组设于所述遮光层背向所述透镜层的一侧,所述背光模组为侧入式背光模组。
  20. 一种立体显示设备,其中,包括:
    显示面板,如权利要求1至19任一项所述的显示面板;和
    壳体,承载所述显示面板。
PCT/CN2023/081005 2022-05-25 2023-03-13 显示面板和立体显示设备 WO2023226529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210583582.5 2022-05-25
CN202210583582.5A CN117111327A (zh) 2022-05-25 2022-05-25 显示面板和立体显示设备

Publications (1)

Publication Number Publication Date
WO2023226529A1 true WO2023226529A1 (zh) 2023-11-30

Family

ID=88800757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081005 WO2023226529A1 (zh) 2022-05-25 2023-03-13 显示面板和立体显示设备

Country Status (2)

Country Link
CN (1) CN117111327A (zh)
WO (1) WO2023226529A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175547A1 (ko) * 2013-04-26 2014-10-30 한화첨단소재 주식회사 다인시점 무안경 입체영상 디스플레이 장치
WO2014189198A1 (ko) * 2013-05-20 2014-11-27 한화첨단소재 주식회사 무안경 입체영상 디스플레이 장치
CN108319030A (zh) * 2017-12-27 2018-07-24 北京邮电大学 一种自由立体显示***
CN108490624A (zh) * 2018-02-07 2018-09-04 华侨大学 侧面发光光纤定向背光裸眼3d显示屏
CN110133781A (zh) * 2019-05-29 2019-08-16 京东方科技集团股份有限公司 一种柱透镜光栅和显示装置
CN113160711A (zh) * 2021-04-29 2021-07-23 厦门天马微电子有限公司 显示面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175547A1 (ko) * 2013-04-26 2014-10-30 한화첨단소재 주식회사 다인시점 무안경 입체영상 디스플레이 장치
WO2014189198A1 (ko) * 2013-05-20 2014-11-27 한화첨단소재 주식회사 무안경 입체영상 디스플레이 장치
CN108319030A (zh) * 2017-12-27 2018-07-24 北京邮电大学 一种自由立体显示***
CN108490624A (zh) * 2018-02-07 2018-09-04 华侨大学 侧面发光光纤定向背光裸眼3d显示屏
CN110133781A (zh) * 2019-05-29 2019-08-16 京东方科技集团股份有限公司 一种柱透镜光栅和显示装置
CN113160711A (zh) * 2021-04-29 2021-07-23 厦门天马微电子有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN117111327A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US11194088B2 (en) Fill-in light unit, display screen, display apparatus, and terminal
KR101751996B1 (ko) 디스플레이 장치
EP2788809B1 (en) Compact illumination module for head mounted display
JP6852896B2 (ja) 3d表示パネル、それを含む3d表示機器、及びその製造方法
WO2019179136A1 (zh) 显示装置及显示方法
US20140146271A1 (en) Backlight module and display device including the same
JP2010510639A (ja) 照明システム及びディスプレイ装置
CN105324605A (zh) 定向背光源
US20120306861A1 (en) Light source device and display
US10120200B2 (en) Display apparatus
JP2023155273A (ja) 表示パネル、表示装置及び表示方法
US11287683B2 (en) Display panel and display apparatus having the same
KR101258584B1 (ko) 부피표현방식 3차원 영상표시장치
CN104049374A (zh) 一种可实现面发光的led屏及其裸眼立体显示装置
JP2013044899A (ja) 液晶表示装置
CN107290865B (zh) 3d眼镜及3d显示***
CN104345462B (zh) 显示装置、3d膜及其控制方法
WO2023226529A1 (zh) 显示面板和立体显示设备
WO2022080117A1 (ja) 空間浮遊映像表示装置および光源装置
US11307459B2 (en) Display device comprising a switchable diffuser and a backlight module having a first region and a second region, and a mobile device comprising the same
JP2009047952A (ja) 画像投影用スクリーン及び三次元画像表示装置
CN113219672A (zh) 一种ar眼镜
WO2014112258A1 (ja) 表示装置および電子機器
US10429573B2 (en) Glassless three-dimensional display apparatus including single backlight unit
CN109471259B (zh) 近眼显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810604

Country of ref document: EP

Kind code of ref document: A1