WO2023226249A1 - 一种朝上土压盾构开挖面稳定性试验装置及其使用方法 - Google Patents

一种朝上土压盾构开挖面稳定性试验装置及其使用方法 Download PDF

Info

Publication number
WO2023226249A1
WO2023226249A1 PCT/CN2022/119298 CN2022119298W WO2023226249A1 WO 2023226249 A1 WO2023226249 A1 WO 2023226249A1 CN 2022119298 W CN2022119298 W CN 2022119298W WO 2023226249 A1 WO2023226249 A1 WO 2023226249A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
excavation
shield
upward
excavation surface
Prior art date
Application number
PCT/CN2022/119298
Other languages
English (en)
French (fr)
Inventor
王霄
林志颖
魏纲
魏新江
朱成伟
刘伟鹏
周彦臣
章丽莎
Original Assignee
浙大城市学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙大城市学院 filed Critical 浙大城市学院
Publication of WO2023226249A1 publication Critical patent/WO2023226249A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Definitions

  • the invention belongs to the technical field of civil engineering, and specifically relates to an upward earth pressure shield excavation surface stability test device and a method of using it.
  • the urban underground comprehensive pipe corridor is a public channel built underground in the city for the centralized laying of municipal pipelines such as drainage, electricity, and communications. It can be used as a public space for multiple types of pipelines to solve problems such as "road zippers.”
  • the existing shaft construction method is generally the open-cut method.
  • the open-cut method has shortcomings such as damaging the surrounding environment, causing inconvenience to residents' lives, and high construction risks. It has a greater impact on the environment, surrounding traffic, and residents' lives.
  • the upward earth pressure shield method is widely used in shaft construction because it can be constructed in bustling urban areas and does not require large-scale excavation and large-scale road damage.
  • the upward earth pressure shield technology has developed rapidly.
  • the upward earth pressure shield technology refers to opening above the comprehensive pipe gallery, and the shield machine excavates the soil vertically upward, while continuously discharging the soil.
  • the transportation and supply of materials are carried out in underground tunnels. Therefore, the above-ground construction operation only requires the recycling of shield machines, which has little impact on the surrounding environment. It can be used between train tracks, high-rise areas in busy cities, and large-scale Shaft construction is carried out in difficult construction sites such as mountain tops that are inaccessible to vehicles. Compared with open-cut construction, it can greatly save the construction period, reduce the time cost and economic cost caused by ground traffic control, and has good development and application prospects.
  • the upward earth pressure shield technology has few existing results at home and abroad, and is still in the exploratory stage. There is no experimental study on the stability of the excavation surface of the upward earth pressure shield.
  • the present invention provides an upward earth pressure shield excavation surface stability test device and its use method to simulate the instability of the excavation surface during the upward earth pressure shield excavation process in actual projects. It provides certain ideas and reference for better application of this technology in actual projects.
  • An upward earth pressure shield excavation surface stability test device including a model main structure, a propulsion control system, a data acquisition system, and a water level control system, including:
  • the main structure of the model includes a model box, a horizontal tunnel model and an upward shield model.
  • the horizontal tunnel model is composed of multiple 1/4 cylindrical profiles and is placed at the bottom of the model box.
  • the horizontal tunnel model is at the center and at the bottom of the model box.
  • a first through hole and a second through hole are respectively opened in the center;
  • the upward shield model is composed of a plurality of semicircular shield rings spliced in sequence in the vertical direction and penetrates the first through hole and the second through hole, with its top Equipped with excavation panels;
  • the propulsion control system includes a transmission rod and a hydraulic servo device.
  • the transmission rod is connected to the excavation panel.
  • the hydraulic servo device controls the transmission rod to drive the upward shield model forward and backward and adjust its traveling speed;
  • the data acquisition system includes a camera, LED light, axial force meter, earth pressure meter, piezometer, LVDT displacement meter and strain gauge; the camera and LED light are used for image acquisition during the excavation surface instability process; the earth pressure meter The piezometer and piezometer are installed on the excavation panel to collect the earth pressure and pore water pressure of the excavation surface during the instability process; the axial force meter is installed on the transmission rod in the uppermost shield ring for The supporting force of the excavation surface is collected during the instability process of the excavation surface; the LVDT displacement meter is placed on the surface to collect the deformation of the surface soil when the excavation surface is unstable; the strain gauge is attached to the inside of the horizontal tunnel model;
  • the water level control system includes a water supply tank, a water storage tank, a water injection pipe, an internal drainage pipe, and an external drainage pipe.
  • the water injection pipe is connected to the water supply tank for injecting water into the soil in the model box.
  • One end of the internal drainage pipe is connected to the water storage tank, and the other end of the internal drainage pipe is connected to the water storage tank.
  • One end extends from the bottom into the upward shield model; one end of the external drainage pipe is connected to the water storage tank, and the other end is connected to the overflow hole opened on the side wall of the model box.
  • model box is a rectangular box with no cover on the top, which is made of tempered glass and is fixed on the model bracket.
  • the excavation panel has a detachable porous structure, and a PVD water filter membrane is attached to the panel.
  • a groove is provided around the top of the model box, and a cross beam is set up in the groove, and the LVDT displacement meter is placed on the cross beam.
  • the 1/4 cylindrical outline used in the horizontal tunnel model is made of organic glass
  • the upward shield model is a detachable structure
  • the shield ring used is made of stainless steel.
  • the method of using the above-mentioned upward earth pressure shield excavation surface stability test device includes:
  • Test preparation stage Prepare the materials required for the test. First, attach the strain gauge to the inside of the bottom of the horizontal tunnel model, place the model box on the model bracket, and make corresponding fixing measures; then pass the upward shield model through After reaching the designated position, fix the second through hole at the bottom of the model box and the first through hole of the horizontal tunnel model and fix the upward shield model.
  • Excavation surface moving stage Turn on the hydraulic servo device to drive the excavation panel back through the transmission rod at a constant speed, causing it to actively destabilize. Then use the camera to continuously capture the displacement field image of the soil above the excavation surface; After the body becomes unstable, stop moving the excavation panel;
  • Data processing stage Process the images collected by the camera to obtain the changes in the displacement field of the soil above the excavation surface during the excavation surface instability process.
  • excavation Change images of surface soil pressure, pore water pressure, and horizontal tunnel model bending moment to analyze their respective changing rules during the excavation surface instability process; draw the surface soil displacement map after the excavation surface becomes unstable, and conclude that the excavation surface is unstable. The displacement of surface soil and the scope of influence.
  • the number of shield rings of the upward shield model can be disassembled to change the thickness of the covering soil and conduct stability tests on the excavation surface under different covering soil thicknesses to study the effect of covering soil thickness on the upward shield Effect of excavation surface stability.
  • a removable non-porous excavation panel can be used, without the need to install a piezometer, and dry sand can be used without adding water.
  • overflow holes of different heights can be opened to control the water level of the test and study the stability test of the excavation surface with different water head differences.
  • the test can be carried out by filling soil with other properties such as clay, silt sand, etc. to study the stability test of the excavation surface under different soil conditions.
  • the present invention has the following beneficial technical effects:
  • the upward shield is made into multiple upward shield rings, and the influence of different covering soil thicknesses on the instability of the upward shield excavation surface can be studied by disassembling the number of shield rings.
  • This invention simultaneously studies horizontal tunnels and upward shield tunnels.
  • the impact of upward shield excavation on the horizontal tunnel can also be simultaneously studied.
  • the present invention provides supporting devices and test methods for the study of the stability of the upward earth pressure shield excavation surface, which is conducive to promoting the research on the stability of the upward shield excavation surface.
  • the influencing factors of the test of the present invention are controllable; compared with field tests, the present invention can simulate different burial depth ratios by adjusting the height of the filled soil, and simulate the retreat and advancement of the upward shield method through the excavation surface to simulate active and Passive instability, by adjusting the water level height and different head differences, and by using different soil materials to simulate the influence of different soil properties and other factors on the stability of the upward shield excavation surface; this invention can control various tests based on different research variables conditions to achieve the research purpose.
  • Figure 1 is a front view of the overall structure of the upward earth pressure shield excavation surface stability test device of the present invention.
  • Figure 2 is a top view of the horizontal tunnel model.
  • Figure 3 is a side view of the horizontal tunnel model.
  • Figure 4 shows the layout of the LVDT displacement meter on the soil surface.
  • Figure 5 shows the layout of the strain gauges on the inside of the horizontal tunnel model.
  • Figure 6 shows the layout of the earth pressure gauge and piezometer on the excavation surface.
  • Figure 7 is a side view of the upward earth pressure shield excavation surface stability testing device of the present invention.
  • Figure 8 is a schematic diagram of a detachable excavation panel with holes and a detachable excavation panel without holes.
  • Figure 9 is a schematic structural diagram of the model box.
  • Figure 10 is a schematic structural diagram of the model bracket.
  • the upward earth pressure shield excavation surface stability test device of the present invention includes a model main structure, a propulsion control system, a data acquisition system and a water level control system, wherein:
  • the main structure of the model includes a tempered glass model box 14, a plexiglass horizontal tunnel model 11 and a stainless steel detachable upward shield model 21.
  • the upward shield model 21 consists of five 1/2 shield rings 1 ⁇ 5 splicing structure, the influence of covering soil thickness on the instability mode of the excavation surface can be studied by disassembling the number of shield rings.
  • the model box 14 is a rectangular box with no cover on the top and is placed and fixed on the model bracket 20.
  • the structure of the model bracket 20 is shown in Figure 10. It is connected by a horizontal and longitudinal beam support 35 and an angle steel 36. The front side is facing Upper shield test position 37.
  • the horizontal tunnel model 11 is composed of multiple plexiglass 1/4 cylinder profiles connected in sequence, and is placed at the bottom of the model box 14; as shown in Figure 2, a first passage is left at the center of the horizontal tunnel model 11. hole 22, and a second through hole 34 is left at the bottom of the model box 14; the upward shield model 21 passes through the second through hole 34 and the first through hole 22, and a detachable perforated excavation panel 13 is provided at the top, which is removable
  • the PVD water filter membrane 33 is pasted on the perforated excavation panel 13 to prevent soil from penetrating into the detachable upward shield model 21 and causing loss and affecting the test results during the test.
  • the propulsion control system includes a length-adjustable transmission rod 6 and a hydraulic servo device 10, which can be used to automatically adjust the forward, backward and traveling speed of the detachable upward shield model machine 21.
  • the data acquisition system includes a camera 32, an LED light 31, an axial force meter 9, an earth pressure meter 24, a piezometer 23, an LVDT displacement meter 16 and a strain gauge 25.
  • the camera 32 and the LED light 31 are used in the excavation surface instability process.
  • the axial force meter 9 is used to collect the changes in the supporting force of the excavation surface during the instability process of the excavation surface
  • the piezometer 23 is used to collect the changes in pore water pressure at the excavation surface
  • the LVDT displacement meter 16 is used to collect the displacement of the surface soil when the excavation surface becomes unstable
  • the strain gauge 25 is attached to the inside of the lower horizontal tunnel model 11 to measure the strain inside the horizontal tunnel model 11, as shown in Figure 5.
  • the water level control system includes a water supply tank 18, a water storage tank 19, a water injection pipe 17, an internal drainage pipe 8-1, an external drainage pipe 8-2 and an overflow hole 15, which are used to control the adjustment and stability of the water level during the test.
  • a groove 27 is opened on the top of the model box 14.
  • a cross beam 28 is placed in the groove 27, and an LVDT displacement meter 16 is placed on the cross beam 28. Its distribution on the soil surface is shown in Figure 4.
  • the method of using the upward earth pressure shield excavation surface stability test device of the present invention is as follows:
  • Test preparation stage Prepare the materials needed for the test, first attach the strain gauge 25 to the inside of the lower horizontal tunnel model 11; place the model box 14 on the model bracket 20, and take appropriate fixing measures to prevent the model box 14 from collapsing Displacement during the test will have an impact on the test results; then the detachable upward shield model 21 is passed through the model box 14 to leave a second through hole 34 at the bottom and a first through hole 22 at the center of the horizontal tunnel model 11 , reach the designated position and fix it, and seal the first through hole 22 and the second through hole 34; then place the detachable holed excavation panel 13 above the detachable upward shield model 21, and seal it with waterproof glue Fill the pores, stick the PVD water filter membrane 33 on the detachable perforated excavation panel 13, and then install the earth pressure gauge 24 and the piezometer 23 on the detachable perforated excavation panel 13; after the installation is completed, in the model box 14
  • the sand rain method is used to fill the sand 26 in layers to the surface of the soil layer
  • Excavation surface moving stage After the preparation stage is completed, the hydraulic servo device 10 is turned on, and the removable holed excavation surface 13 is retreated at a constant speed to cause active instability, and then the camera 32 is used to continuously capture the soil displacement field above the excavation surface. The image is used to obtain the changes in the soil displacement field during the movement of the excavation surface; after the soil above the excavation surface becomes unstable, the movement of the excavation surface is stopped.
  • Data processing stage After the test is completed, the data needs to be processed.
  • Use MatPIV 1.7 software to process the images taken by the camera 32 to obtain the changes in the soil displacement field above the excavation surface during the instability process of the excavation surface; by drawing During the process of excavation surface instability, the change images of the excavation surface support force, the excavation surface soil pressure, and the pore water pressure and the bending moment diagram of the horizontal tunnel were used to study the respective change patterns during the excavation surface instability process; draw the excavation The surface soil displacement diagram after the surface becomes unstable is used to obtain the displacement of the surface soil after the excavation surface becomes unstable and the scope of influence.
  • the present invention can disassemble the number of shield rings of the upward shield model 21, and conduct stability tests on the excavation surface under different covering soil thicknesses by changing the covering soil thickness to study the influence of the covering soil thickness on the stability of the upward shield excavation surface; Adjust the moving direction of the removable perforated excavation panel 13 to move upward to analyze the passive instability mode of the soil; you can open overflow holes 15 at different heights to control the experimental groundwater level 30 and study the stability of the excavation surface with different water head differences.
  • the test can use clay, silt and other soil properties to conduct tests to study the stability test of the excavation surface under different soil conditions.
  • the detachable non-porous excavation panel 12 can be used to replace the detachable perforated excavation panel 13. There is no need to install a piezometer 23 and use dry sand without water injection. Other steps are the same as above. .
  • This embodiment uses a reduced-size model test.
  • the length of the model box 14 is 1m, the width is 1m, and the height is 1.25m.
  • the detachable upward shield model 21 is a 1/2 ring, the inner diameter is 0.1m, and the outer diameter is 0.11 m, divided into 5 shield rings, in which the first shield ring 1 of the upward shield and the second shield ring 2 of the upward shield are 0.2m long (separated by a partition 7 in the middle).
  • the length of the third shield ring 3 of the shield, the fourth shield ring 4 of the upward shield, and the fifth shield ring 5 of the upward shield are 0.1m;
  • the horizontal tunnel model 11 is a 1/4 ring, and the outer The diameter is 0.169m and the inner diameter is 0.159m;
  • the detachable holed excavation panel 13 is slightly smaller than the inner diameter of the detachable upward shield model 21, so that it can be placed inside the detachable upward shield model 21, and the corresponding waterproof work;
  • the first through hole 22 in the middle of the horizontal tunnel model 11 is slightly larger than the outer diameter of the detachable upward shield model 21, so that the detachable upward shield model 21 can pass through the first through hole 22 smoothly. out, and take appropriate waterproofing measures.
  • Step 1 Test preparation stage.
  • the number of 21 shield rings of the upward shield model can be disassembled to realize the stability test of the excavation surface under different covering soil thicknesses of 0.8m, 0.6m, 0.5m, 0.4m, and 0.3m; also Overflow holes 15 at different heights can be opened to control the water level in the test and study the stability test of the excavation surface with different water head differences.
  • the detachable non-porous excavation panel 12 can be used without installing the piezometer 23.
  • dry sand can be used directly without water injection. Other steps are the same as above.
  • Step 2 Excavation surface moving stage.
  • the hydraulic servo device 10 is turned on, and the detachable holed excavation surface 13 is retreated at a constant speed, causing active instability of the soil in front of the excavation surface (the moving direction of the detachable holed excavation surface 13 can also be adjusted to upward).
  • Move forward and analyze the passive instability mode of the soil and then use the camera 32 to continuously capture the displacement field images of the soil above the excavation surface to obtain the changes in the soil displacement field during the movement of the excavation surface; in the soil above the excavation surface After instability, stop moving the excavation surface.
  • Step 3 Data processing stage.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种朝上土压盾构开挖面稳定性试验装置及其使用方法,装置包括模型主体结构、推进控制***、数据采集***以及水位控制***,模型主体结构包括模型箱(14)、水平隧道模型(11)以及朝上盾构模型(21);使用方法包括试验准备阶段、开挖面移动阶段以及数据处理阶段。该装置及方法可以研究朝上盾构的开挖面失稳过程,观测失稳过程中地表位移、开挖面土压力、开挖面支护力、开挖面孔隙水压力、水平隧道应变的变化和开挖面上方土***移场的变化以及失稳过程中各类数据的变化规律,同时可以通过调整试验条件或试验参数改变工况,研究不同工况对于开挖面失稳的影响。

Description

一种朝上土压盾构开挖面稳定性试验装置及其使用方法 技术领域
本发明属于土木工程技术领域,具体涉及一种朝上土压盾构开挖面稳定性试验装置及其使用方法。
背景技术
随着城市化进程的推进,城市中的多种管道,诸如排水、电力、通信、燃气管道等错综复杂,往往需要反复开挖路面进行抢修、维护、扩容改造等,经济成本很高。城市地下综合管廊是建设在城市地下,用于集中敷设排水、电力、通信等市政管道的公共通道,可以作为多类管道的公共空间,解决“马路拉链”等问题。在城市综合管廊的建设中,为了满足管廊内部的通风、人防等需要,竖井的建设往往是技术重点之一。现有竖井施工方法一般为明挖法,明挖法施工存在破坏周边环境、对居民生活造成不便、施工风险较大等缺点,对环境、周边交通及居民的生活的影响较大。
相比较而言,朝上土压盾构法由于具有可在繁华市区施工,不需大面积开挖及大面积破坏道路等优点而被广泛运用于竖井建设中。在此背景下,朝上土压盾构技术得到了快速的发展,朝上土压盾构技术是指在综合管廊上方开口,盾构机竖直向上开挖土体,在不断排土的过程中完成竖井施工的方法,其材料的搬运和供给都在地下隧道中进行,因此地上施工作业只有盾构机的回收,对周边环境影响较小,可以在列车轨道间、闹市高层区、大型车辆无法进入的山顶等困难施工场所进行竖井施工。相比明挖法施工,可以大大节约施工周期,减少地面交通管制带来的时间成本和经济成本,拥有良好的发展及运用前景。
朝上土压盾构技术作为一种全新的施工方法,国内外现有成果较少,仍处于探索阶段,而且尚未发现有朝上土压盾构的开挖面稳定性试验研究。
发明内容
鉴于上述,本发明提供了一种朝上土压盾构开挖面稳定性试验装置及其使用方法,用以模拟实际工程中朝上土压盾构掘进过程中开挖面失稳的情况,为该项技术更好地应用于实际工程提供一定的思路与借鉴。
一种朝上土压盾构开挖面稳定性试验装置,包括模型主体结构、推进控制***、数据采集***、水位控制***,其中:
所述模型主体结构包括模型箱、水平隧道模型以及朝上盾构模型,水平隧道模型由多个1/4圆柱轮廓依次拼接而成且放置于模型箱底部,水平隧道模型中心处以及模型箱底部中心处分别开有第一通孔和第二通孔;朝上盾构模型由多个半圆状的盾构环沿竖直向依次拼接构成并贯穿第一通孔和第二通孔,其顶部设有开挖面板;
所述推进控制***包括传动杆以及液压伺服装置,传动杆与开挖面板连接,液压伺服装置通过控制传动杆带动朝上盾构模型前进、后退并调节其行进速度;
所述数据采集***包括相机、LED灯、轴力计、土压力计、渗压计、LVDT位移计以及应变片;相机和LED灯用于开挖面失稳过程中的图像采集;土压力计和渗压计安装在开挖面板上,用于采集开挖面失稳过程中开挖面的土压力和孔隙水压力;轴力计安装在最上方盾构环内的传动杆上,用于采集开挖面失稳过程中开挖面的支护力;LVDT位移计放置在地表,用于采集开挖面失稳时地表土体的变形量;应变片贴合在水平隧道模型内侧;
所述水位控制***包含有供水箱、储水箱、注水管、内排水管以及外排水管,注水管与供水箱连接用于向模型箱内的土体注水,内排水管一端接储水箱,另一端从底部伸入至朝上盾构模型内;外排水管一端接储水箱,另一端与模型箱侧壁上开设的溢流孔对接。
进一步地,所述模型箱为顶部不加盖的矩形箱体,其采用钢化玻璃制成,且安置固定在模型支架上。
进一步地,所述开挖面板为可拆卸有孔结构,面板上贴有PVD滤水薄膜。
进一步地,所述模型箱顶部周边开设有凹槽,凹槽内架设有横梁,所述LVDT位移计即放置于该横梁上。
进一步地,所述水平隧道模型采用的1/4圆柱轮廓为有机玻璃制成,所述朝 上盾构模型为可拆卸结构,其采用的盾构环为不锈钢制成。
上述朝上土压盾构开挖面稳定性试验装置的使用方法,包括:
试验准备阶段:准备好试验需要使用的材料,先将应变片贴在水平隧道模型底部内侧,将模型箱放置在模型支架上,并做好相应的固定措施;再将朝上盾构模型穿过模型箱底部第二通孔以及水平隧道模型的第一通孔,到达指定位置后固定朝上盾构模型,做好第一通孔和第二通孔处的密封工作;将开挖面板放置在朝上盾构模型顶部,用防水胶填充开挖面板上的孔隙,并在开挖面板上贴上PVD滤水薄膜,之后在开挖面板上安装土压力计和渗压计;安装完成之后,在模型箱内用砂雨法分层填筑砂土至土层表面,在填筑的过程中不断夯实洒水,使其达到饱和;砂土填筑完成之后,在模型箱顶部周边的凹槽内架设横梁,在横梁上安装LVDT位移计;之后架设相机并打开LED灯,打开注水管、内排水管/外排水管,使模型箱内的水位保持恒定;检测数据采集***的各部分测量设备是否正常,将这些测量设备连接到电脑中,之后完善整个试验装置的密封和防水工作,准备开始试验;
开挖面移动阶段:打开液压伺服装置使其通过传动杆匀速带动开挖面板后退,使其发生主动失稳,之后使用相机不断拍摄开挖面上方土***移场图像;在开挖面上方土体失稳之后,停止移动开挖面板;
数据处理阶段:对相机采集的图像进行处理,得到开挖面失稳过程中开挖面上方土***移场的变化情况,通过绘制开挖面失稳过程中开挖面支护力、开挖面土压力、孔隙水压力、水平隧道模型弯矩的变化图像,分析开挖面失稳过程中各自的变化规律;绘制开挖面失稳后地表土***移图,得出开挖面失稳后地表土体的位移情况以及影响范围。
进一步地,在试验准备阶段,可通过拆卸朝上盾构模型的盾构环数量,达到改变覆土厚度的目的并进行不同覆土厚度下的开挖面稳定性试验,研究覆土厚度对朝上盾构开挖面稳定性的影响。
进一步地,在开挖面移动阶段,可调整为带动开挖面板向上前进,研究土体的被动失稳模式。
进一步地,在进行无渗透试验过程时,可采用可拆卸无孔的开挖面板,不必安装渗压计,使用干砂不必加水。
进一步地,在试验准备阶段,可打开不同高度的溢流孔来控制试验的水位,研究不同水头差的开挖面稳定性试验。
进一步地,在试验准备阶段,可采用填筑黏土、粉砂等其他性质的土体进行试验,研究不同土质条件下的开挖面稳定性试验。
基于上述技术方案,本发明具有以下有益技术效果:
1.本发明将朝上盾构制作为多个朝上盾构环,可以通过拆卸盾构环数量来研究不同覆土厚度对朝上盾构开挖面失稳的影响。
2.本发明同时研究水平隧道和朝上盾构隧道,在进行朝上盾构开挖面稳定性研究时,还可以同步研究朝上盾构掘进对水平隧道的影响。
3.本发明为朝上土压盾构开挖面稳定性研究提供了配套装置和试验方法,有利于推进朝上盾构开挖面稳定性的研究。
4.本发明试验影响因素可控;相比于现场试验,本发明可以通过调整填筑土体高度模拟不同埋深比,模拟朝上盾构法的通过开挖面的后退和前进模拟主动和被动失稳,通过调整水位高度不同水头差,通过使用不同土质材料模拟不同土体性质等因素对朝上盾构开挖面稳定性的影响;本发明可以根据研究变量的不同,控制各种试验条件,达到研究目的。
附图说明
图1为本发明朝上土压盾构开挖面稳定性试验装置的整体结构正视图。
图2为水平隧道模型的俯视图。
图3为水平隧道模型的侧视图。
图4为LVDT位移计在土层表面的布置图。
图5为水平隧道模型内侧应变片的布置图。
图6为开挖面上土压力计和渗压计的布置图。
图7为本发明朝上土压盾构开挖面稳定性试验装置的侧视图。
图8为可拆卸有孔开挖面板和可拆卸无孔开挖面板的示意图。
图9为模型箱的结构示意图。
图10为模型支架的结构示意图。
图中:1—第一盾构环,2—第二盾构环,3—第三盾构环,4—第四盾构环,5—第五盾构环,6—长度可调节的传动杆,7—隔板,8-1—内排水管,8-2—外排水管,9—轴力计,10—液压伺服装置,11—水平隧道模型,12—可拆卸无孔开挖面板,13—可拆卸有孔开挖面板,14—模型箱,15—溢流孔,16—LVDT位移计,17—注水管,18—供水箱,19—储水箱,20—模型支架,21—可拆卸式朝上盾构模型,22—第一通孔,23—渗压计,24—土压力计,25—应变片,26—砂土,27—凹槽,28—横梁,29—土层表面,30—地下水位面,31—LED灯,32—相机,33—PVD滤水薄膜,34—第二通孔,35—横纵梁支撑,36—角钢,37—朝上盾构试验位置。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图1所示,本发明朝上土压盾构开挖面稳定性试验装置,包括模型主体结构、推进控制***、数据采集***和水位控制***,其中:
模型主体结构包括钢化玻璃制的模型箱14、有机玻璃制的水平隧道模型11以及不锈钢制可拆卸式的朝上盾构模型21,朝上盾构模型21由5个1/2盾构环1~5拼接构成,可以通过拆卸盾构环个数研究覆土厚度对开挖面失稳模式的影响。模型箱14为顶部不加盖的矩形箱体且放置于模型支架20上固定,模型支架20结构如图10所示,其由横纵梁支撑35以及角钢36连接而成,前侧即为朝上盾构试验位置37处。
如图3所示,水平隧道模型11由多个有机玻璃制1/4圆柱轮廓依次连接而成,放置于模型箱14底部;如图2所示,水平隧道模型11中心处留有第一通孔22,模型箱14底部留有第二通孔34;朝上盾构模型21穿过第二通孔34和第一通孔22,其顶部设置了可拆卸有孔开挖面板13,可拆卸有孔开挖面板13上贴上PVD滤水薄膜33,防止在试验过程中土体渗透到可拆卸朝上盾构模型21中产生流失和影响试验结果。
如图7所示,推进控制***包括长度可调节的传动杆6和液压伺服装置10,可用于自动化调节可拆卸式朝上盾构模型机21的前进、后退以及行进速度。
数据采集***包括相机32、LED灯31、轴力计9、土压力计24、渗压计23、LVDT位移计16以及应变片25,其中相机32和LED灯31用于开挖面失稳过程中的图像的采集,土压力计24和渗流计23安装在可拆卸有孔开挖面板13上,具体布置如图6所示,土压力计24用于采集开挖面失稳过程中开挖面的土压力变化,轴力计9用于采集开挖面失稳过程中开挖面支护力的变化,渗压计23用于采集开挖面处的孔隙水压力的变化,LVDT位移计16用于采集开挖面失稳时地表土体的位移;应变片25贴在下侧水平隧道模型11的内侧用于测量水平隧道模型11内侧应变,如图5所示。
水位控制***包含有供水箱18、储水箱19、注水管17、内排水管8-1、外排水管8-2以及溢流孔15,用于控制试验过程中水位的调整及稳定。
如图9所示,模型箱14顶部开设凹槽27,在凹槽内27放置横梁28,横梁28上放置LVDT位移计16,其在土层表面的分布如图4所示。
本发明朝上土压盾构开挖面稳定性试验装置的使用方法如下:
试验准备阶段:准备好试验需要使用的材料,先将应变片25贴在下侧水平隧道模型11的内侧;将模型箱14放置在模型支架20上,并做好相应的固定措施,防止模型箱14在试验过程中发生位移对试验结果产生影响;再将可拆卸式朝上盾构模型21穿过模型箱14底部留有第二通孔34和水平隧道模型11中心处留有第一通孔22,到达指定位置固定,做好第一通孔22和第二通孔34处的密封工作;再将可拆卸有孔开挖面板13放置在可拆卸式朝上盾构模型21上方,用防水胶填充孔隙,在可拆卸有孔开挖面板13上贴PVD滤水薄膜33,之后安装土压力计24和渗压计23在可拆卸有孔开挖面板13上;安装完成之后,在模型箱14内用砂雨法分层填筑砂土26到土层表面29,在填筑的过程中不断夯实洒水,使其达到饱和;砂土26填筑完成之后,在模型箱14的凹槽27内放置横梁28,在横梁28上安装LVDT位移计16;之后架设相机32和打开LED灯31,打开注水管17和内排水管8-1、外排水管8-2,使其水位保持恒定;检测各部分仪器是否正常,将各部分测量设备连接到电脑中,之后完善试验模型的密封和防水工作,准备开始试验。
开挖面移动阶段:在准备阶段完成之后,打开液压伺服装置10,匀速后退可拆卸有孔开挖面13,使其发生主动失稳,之后使用相机32不断拍摄开挖面上 方土***移场图像,得到开挖面移动过程中土***移场的变化情况;在开挖面上方土体失稳之后,停止移动开挖面。
数据处理阶段:在试验完成之后,需要对数据进行处理,使用MatPIV 1.7软件对相机32拍摄的图像进行处理,得到开挖面失稳过程中开挖面上方土***移场的变化情况;通过绘制开挖面失稳过程中开挖面支护力、开挖面土压力、孔隙水压力的变化图像和水平隧道的弯矩图,研究开挖面失稳过程中各自的变化规律;绘制开挖面失稳后地表土***移图,得出开挖面失稳后地表土体的位移情况以及影响范围。
本发明可以拆卸朝上盾构模型21盾构环数量,通过改变覆土厚度进行不同覆土厚度下的开挖面稳定性试验,以研究覆土厚度对朝上盾构开挖面稳定性的影响;可以调整可拆卸有孔开挖面板13移动方向为向上前进,分析土体被动失稳模式;可以打开不同高度的溢流孔15来控制试验的地下水位面30,研究不同水头差的开挖面稳定性试验,试验可以使用黏土、粉砂等其他性质的土体进行试验,研究不同土质条件下的开挖面稳定性试验。
在进行无渗透试验过程时,如图8所示,可以使用可拆卸无孔开挖面板12取代可拆卸有孔开挖面板13,不必安装渗压计23和使用干砂不用注水,其他步骤同上。
实施例:
本实施方式采用缩尺寸模型试验,模型箱14长度为1m,宽度为1m,高度为1.25m,可拆卸式朝上盾构模型21为1/2圆环,内径为0.1m,外径为0.11m,分为5节盾构环,其中朝上盾构的第一盾构环1和朝上盾构的第二盾构环2长为0.2m(中间由隔板7隔开),朝上盾构的第三盾构环3、朝上盾构的第四盾构环4、朝上盾构的第五盾构环5长为0.1m;水平隧道模型11为1/4圆环,外径为0.169m,内径为0.159m;可拆卸有孔开挖面板13略小于可拆卸式朝上盾构模型21内径,使其可以放入可拆卸式朝上盾构模型21内部,做好相应的防水工作;水平隧道模型11中间的第一通孔22略大于可拆卸式朝上盾构模型21的外径,使得可拆卸式朝上盾构模型21可以顺利从第一通孔22中穿出,并做好相应的防水措施。
步骤一:试验准备阶段。
准备好试验需要使用的材料,先将应变片25贴在下侧水平隧道模型11的内侧;将模型箱14放置在模型支架20上,并做好相应的固定措施,防止模型箱14在试验过程中发生位移对试验结果产生影响;再将可拆卸式朝上盾构模型21穿过模型箱14底部留有第二通孔34和水平隧道模型11中心处留有第一通孔22,到达指定位置固定可拆卸式朝上盾构模型21,做好第一通孔22和第二通孔34处的防水密封工作;再将可拆卸有孔开挖面板13放置在可拆卸式朝上盾构模型21上方,用防水胶填充孔隙,在可拆卸有孔开挖面板13上贴PVD滤水薄膜33,做好相应的防水密封工作,之后安装土压力计24和渗流计23在可拆卸有孔开挖面板13上;安装完成之后,在模型箱14内用砂雨法分层填筑砂土26到土层表面29(也可以使用黏土、粉砂等其他性质的土体进行试验,研究不同土质条件下的开挖面稳定性试验),在填筑的过程中不断夯实洒水,使其达到饱和;砂土26填筑完成之后,在模型箱14的凹槽27内放置横梁28,在横梁28上安装LVDT位移计16;之后架设相机32和打开LED灯31,打开注水管17和内排水管8-1、外排水管8-2,使其水位保持恒定;检测各部分仪器是否正常,将各部分测量设备连接到电脑中,之后完善试验模型的密封和防水工作,准备开始试验。
实验过程中,可以拆卸朝上盾构模型21盾构环数量,实现覆土厚度分别为0.8m、0.6m、0.5m、0.4m、0.3m的不同覆土厚度下的开挖面稳定性试验;也可以打开不同高度的溢流孔15来控制试验的水位,研究不同水头差的开挖面稳定性试验。在进行无渗透试验过程时,可以使用可拆卸无孔开挖面板12,不必安装渗压计23,同时,直接使用干砂,不用注水,其他步骤同上。
步骤二:开挖面移动阶段。
在准备阶段完成之后,打开液压伺服装置10,匀速后退可拆卸有孔开挖面13,使开挖面前方土体发生主动失稳(也可调整可拆卸有孔开挖面13移动方向为向上前进,分析土体的被动失稳模式),之后使用相机32不断拍摄开挖面上方土***移场图像,得到开挖面移动过程中土***移场的变化情况;在开挖面上方土体失稳之后,停止移动开挖面。
步骤三:数据处理阶段。
在试验完成之后,需要对数据进行处理,使用MatPIV 1.7软件对相机32拍摄的图像进行处理,得到开挖面失稳过程中开挖面上方土***移场的变化情况;通过绘制开挖面失稳过程中开挖面支护力、开挖面土压力、孔隙水压力的变化图像和水平隧道的弯矩图,研究开挖面失稳过程中各自的变化规律;绘制开挖面失稳后地表土***移图,得出开挖面失稳后地表土体的位移情况以及影响范围。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明,熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种朝上土压盾构开挖面稳定性试验装置,其特征在于,包括模型主体结构、推进控制***、数据采集***、水位控制***,其中:
    所述模型主体结构包括模型箱、水平隧道模型以及朝上盾构模型,水平隧道模型由多个1/4圆柱轮廓依次拼接而成且放置于模型箱底部,水平隧道模型中心处以及模型箱底部中心处分别开有第一通孔和第二通孔;朝上盾构模型由多个半圆状的盾构环沿竖直向依次拼接构成并贯穿第一通孔和第二通孔,其顶部设有开挖面板;
    所述推进控制***包括传动杆以及液压伺服装置,传动杆与开挖面板连接,液压伺服装置通过控制传动杆带动朝上盾构模型前进、后退并调节其行进速度;
    所述数据采集***包括相机、LED灯、轴力计、土压力计、渗压计、LVDT位移计以及应变片;相机和LED灯用于开挖面失稳过程中的图像采集;土压力计和渗压计安装在开挖面板上,用于采集开挖面失稳过程中开挖面的土压力和孔隙水压力;轴力计安装在最上方盾构环内的传动杆上,用于采集开挖面失稳过程中开挖面的支护力;LVDT位移计放置在地表,用于采集开挖面失稳时地表土体的变形量;应变片贴合在水平隧道模型内侧;
    所述水位控制***包含有供水箱、储水箱、注水管、内排水管以及外排水管,注水管与供水箱连接用于向模型箱内的土体注水,内排水管一端接储水箱,另一端从底部伸入至朝上盾构模型内;外排水管一端接储水箱,另一端与模型箱侧壁上开设的溢流孔对接。
  2. 根据权利要求1所述的朝上土压盾构开挖面稳定性试验装置,其特征在于:所述模型箱为顶部不加盖的矩形箱体,其采用钢化玻璃制成,且安置固定在模型支架上。
  3. 根据权利要求1所述的朝上土压盾构开挖面稳定性试验装置,其特征在于:所述开挖面板为可拆卸有孔结构,面板上贴有PVD滤水薄膜。
  4. 根据权利要求1所述的朝上土压盾构开挖面稳定性试验装置,其特征在于:所述模型箱顶部周边开设有凹槽,凹槽内架设有横梁,所述LVDT位移计即放置于该横梁上。
  5. 根据权利要求1所述的朝上土压盾构开挖面稳定性试验装置,其特征在于:所述水平隧道模型采用的1/4圆柱轮廓为有机玻璃制成,所述朝上盾构模型为可拆卸结构,其采用的盾构环为不锈钢制成。
  6. 一种如权利要求1~5任一权利要求所述朝上土压盾构开挖面稳定性试验装置的使用方法,包括:
    试验准备阶段:准备好试验需要使用的材料,先将应变片贴在水平隧道模型底部内侧,将模型箱放置在模型支架上,并做好相应的固定措施;再将朝上盾构模型穿过模型箱底部第二通孔以及水平隧道模型的第一通孔,到达指定位置后固定朝上盾构模型,做好第一通孔和第二通孔处的密封工作;将开挖面板放置在朝上盾构模型顶部,用防水胶填充开挖面板上的孔隙,并在开挖面板上贴上PVD滤水薄膜,之后在开挖面板上安装土压力计和渗压计;安装完成之后,在模型箱内用砂雨法分层填筑砂土至土层表面,在填筑的过程中不断夯实洒水,使其达到饱和;砂土填筑完成之后,在模型箱顶部周边的凹槽内架设横梁,在横梁上安装LVDT位移计;之后架设相机并打开LED灯,打开注水管、内排水管和外排水管,使模型箱内的水位保持恒定;检测数据采集***的各部分测量设备是否正常,将这些测量设备连接到电脑中,之后完善整个试验装置的密封和防水工作,准备开始试验;
    开挖面移动阶段:打开液压伺服装置使其通过传动杆匀速带动开挖面板后退,使开挖面上方土体发生主动失稳,之后使用相机不断拍摄开挖面上方土***移场图像;在开挖面上方土体失稳之后,停止移动开挖面板;
    数据处理阶段:对相机采集的图像进行处理,得到开挖面失稳过程中开挖面上方土***移场的变化情况,通过绘制开挖面失稳过程中开挖面支护力、开挖面土压力、孔隙水压力、水平隧道模型弯矩的变化图像,分析开挖面失稳过程中各自的变化规律;绘制开挖面失稳后地表土***移图,得出开挖面失稳后地表土体的位移情况以及影响范围。
  7. 根据权利要求6所述的使用方法,其特征在于:在试验准备阶段,可通过拆卸朝上盾构模型的盾构环数量,达到改变覆土厚度的目的并进行不同覆土厚度下的开挖面稳定性试验,研究覆土厚度对朝上盾构开挖面稳定性的影响。
  8. 根据权利要求6所述的使用方法,其特征在于:在开挖面移动阶段,可 调整为带动开挖面板向上前进,研究土体的被动失稳模式。
  9. 根据权利要求6所述的使用方法,其特征在于:在进行无渗透试验过程时,可采用可拆卸无孔的开挖面板,不必安装渗压计,使用干砂不必加水。
  10. 根据权利要求6所述的使用方法,其特征在于:在试验准备阶段,可打开不同高度的溢流孔来控制试验的水位,研究不同水头差的开挖面稳定性试验,也可采用填筑黏土、粉砂等其他性质的土体进行试验,研究不同土质条件下的开挖面稳定性试验。
PCT/CN2022/119298 2022-05-26 2022-09-16 一种朝上土压盾构开挖面稳定性试验装置及其使用方法 WO2023226249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210599948.8 2022-05-26
CN202210599948.8A CN114878298A (zh) 2022-05-26 2022-05-26 一种朝上土压盾构开挖面稳定性试验装置及其使用方法

Publications (1)

Publication Number Publication Date
WO2023226249A1 true WO2023226249A1 (zh) 2023-11-30

Family

ID=82679897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119298 WO2023226249A1 (zh) 2022-05-26 2022-09-16 一种朝上土压盾构开挖面稳定性试验装置及其使用方法

Country Status (2)

Country Link
CN (1) CN114878298A (zh)
WO (1) WO2023226249A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538509A (zh) * 2024-01-10 2024-02-09 北京交通大学 一种模拟富水地层中地下水渗流的隧道开挖试验装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878298A (zh) * 2022-05-26 2022-08-09 浙大城市学院 一种朝上土压盾构开挖面稳定性试验装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278376A (zh) * 2013-05-29 2013-09-04 浙江大学 土压平衡盾构开挖面稳定性控制模型试验装置
CN110554165A (zh) * 2019-07-31 2019-12-10 浙江杭海城际铁路有限公司 一种盾构下穿施工对既有地铁隧道影响的试验装置及方法
CN110954676A (zh) * 2019-12-03 2020-04-03 同济大学 用于模拟盾构下穿既有隧道施工可视化试验装置
AU2021104053A4 (en) * 2021-07-12 2021-09-09 Tongji University Visual simulator for the progressive destruction of a shield tunnel excavation face under seepage conditions
CN113418691A (zh) * 2021-07-16 2021-09-21 浙大城市学院 一种可排土的竖向顶管室内模型试验装置及试验方法
CN114878298A (zh) * 2022-05-26 2022-08-09 浙大城市学院 一种朝上土压盾构开挖面稳定性试验装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278376A (zh) * 2013-05-29 2013-09-04 浙江大学 土压平衡盾构开挖面稳定性控制模型试验装置
CN110554165A (zh) * 2019-07-31 2019-12-10 浙江杭海城际铁路有限公司 一种盾构下穿施工对既有地铁隧道影响的试验装置及方法
CN110954676A (zh) * 2019-12-03 2020-04-03 同济大学 用于模拟盾构下穿既有隧道施工可视化试验装置
AU2021104053A4 (en) * 2021-07-12 2021-09-09 Tongji University Visual simulator for the progressive destruction of a shield tunnel excavation face under seepage conditions
CN113418691A (zh) * 2021-07-16 2021-09-21 浙大城市学院 一种可排土的竖向顶管室内模型试验装置及试验方法
CN114878298A (zh) * 2022-05-26 2022-08-09 浙大城市学院 一种朝上土压盾构开挖面稳定性试验装置及其使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117538509A (zh) * 2024-01-10 2024-02-09 北京交通大学 一种模拟富水地层中地下水渗流的隧道开挖试验装置
CN117538509B (zh) * 2024-01-10 2024-03-12 北京交通大学 一种模拟富水地层中地下水渗流的隧道开挖试验装置

Also Published As

Publication number Publication date
CN114878298A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
WO2023226249A1 (zh) 一种朝上土压盾构开挖面稳定性试验装置及其使用方法
CN107179396B (zh) 多功能拼装式岩土工程物理相似试验***
CN105040754B (zh) 有限土体刚性挡墙土压力模型试验装置
CN100390357C (zh) 隧道结构、围岩及地下水相互作用的模拟试验台
CN103996348B (zh) 上下交叠隧道施工对运营隧道影响的室内模型试验装置
CN106596268B (zh) 一种多浸水工况模拟试验模型箱及试验方法
CN105137048A (zh) 一种地层注浆模拟***
CN103452144A (zh) 岩土工程大型立体综合模拟试验台
CN102707034A (zh) 气压劈裂真空预压法室内模型试验装置及试验方法
CN113586069A (zh) 一种模拟盾构富水地层同步注浆施工技术室内试验装置及其使用方法
CN205263089U (zh) 一种地层注浆模拟***
CN213875269U (zh) 一种多功能隧道模型试验装置
WO2021139063A1 (zh) 一种注浆管及地表注浆的隧道加固施工方法
AU2021104053A4 (en) Visual simulator for the progressive destruction of a shield tunnel excavation face under seepage conditions
CN112229981A (zh) 一种模拟基坑开挖及多梯次降水对隧道综合影响的装置
CN102162246A (zh) 湿陷性黄土地基的无振动挤密处理方法
CN108362856B (zh) 模拟城市高密集区地面长期沉降的模型实验装置
CN217820364U (zh) 一种地下水渗流隧道施工诱发地表变形的模型试验装置
CN105257318B (zh) 一种衬砌局部渗漏引起隧道结构变形的安全保护方法
CN109406759B (zh) 一种装配式多功能岩土工程试验模型箱
CN208902713U (zh) 地面堆载影响既有地铁隧道的室内模型试验装置
CN206906136U (zh) 考虑承压水作用下单桩水平承载特性的测试装置
CN219455806U (zh) 一种模拟道路塌陷的试验装置
CN209742911U (zh) 盾构同步注浆中浆液损失量的模拟试验装置
CN113281079B (zh) 明挖公路隧道与邻接双线隧道协同施工的模型试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943437

Country of ref document: EP

Kind code of ref document: A1