WO2023226032A1 - 资源确定、多载波调度方法及装置、存储介质 - Google Patents

资源确定、多载波调度方法及装置、存储介质 Download PDF

Info

Publication number
WO2023226032A1
WO2023226032A1 PCT/CN2022/095751 CN2022095751W WO2023226032A1 WO 2023226032 A1 WO2023226032 A1 WO 2023226032A1 CN 2022095751 W CN2022095751 W CN 2022095751W WO 2023226032 A1 WO2023226032 A1 WO 2023226032A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rbs
cells
starting
index value
Prior art date
Application number
PCT/CN2022/095751
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/095751 priority Critical patent/WO2023226032A1/zh
Priority to CN202280001793.1A priority patent/CN115136712A/zh
Publication of WO2023226032A1 publication Critical patent/WO2023226032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communications, and in particular, to resource determination, multi-carrier scheduling methods and devices, and storage media.
  • the 5th Generation Mobile Communication Technology (5G) New Radio (NR) technology works in a relatively wide spectrum range. With the re-cultivation of the frequency domain band (band) corresponding to the existing cellular network (re-farming), the utilization of the corresponding spectrum will steadily increase. But for frequency range 1 (FR1), the available frequency domain resources are gradually fragmented. In order to meet different spectrum needs, these dispersed spectrum resources need to be utilized with higher spectrum, power efficiency and a more flexible way to achieve higher network throughput and good coverage.
  • a downlink control information (DCI) in the existing serving cell only allows scheduling data of one cell.
  • DCI downlink control information
  • a single DCI can schedule 3 or more cells at the same time. If it is still based on the method in the related technology, the frequency domain resource allocation (Frequency Domain Resource Allocation, FDRA) in the DCI Simple expansion of the domain will significantly increase the number of bits occupied by the FDRA domain, increase the bit overhead of DCI, and reduce DCI transmission resources.
  • FDRA Frequency Domain Resource Allocation
  • embodiments of the present disclosure provide a resource determination, multi-carrier scheduling method and device, and a storage medium.
  • a resource determination method is provided, and the method is executed by a terminal, including:
  • frequency domain resources corresponding to other cells in the plurality of cells are determined.
  • the FDRA field is used to indicate:
  • the first resource indication value RIV of the reference cell is the first resource indication value RIV of the reference cell.
  • the allocation of frequency domain resources to the FDRA domain in the DCI and at least determining the frequency domain resources corresponding to the reference cells in the plurality of cells include:
  • Determining frequency domain resources corresponding to other cells in the plurality of cells based on at least the frequency domain resources corresponding to the reference cell includes:
  • the second starting RB index value for data transmission in the first cell; wherein the first cell is any one of the other cells;
  • a second persistent RB number for the first cell data transmission is determined.
  • determining the second starting RB index value for data transmission in the first cell based on the first starting RB index value includes:
  • the first starting RB index value is less than the first RB number, it is determined that the second starting RB index value is equal to the first starting RB index value; wherein the first RB number is the The number of RBs occupied by the BWP configured in the first cell;
  • the first starting RB index value is greater than or equal to the first RB number, it is determined that the second starting RB index value is equal to the first difference value; wherein the first difference value is the The difference between the first RB number and the preset continuing RB number.
  • determining the second number of persistent RBs for data transmission in the first cell based on the second starting RB index value and the first number of persistent RBs includes:
  • the second number of persistent RBs is equal to the first number of persistent RBs; wherein the second difference is the first The difference between the number of RBs and the second starting RB index value;
  • the second number of persistent RBs is equal to the second difference.
  • determining frequency domain resources corresponding to other cells in the plurality of cells based on at least frequency domain resources corresponding to the reference cell includes:
  • the second RIV of the first cell Based on the first RIV and the maximum RIV of the first cell, determine the second RIV of the first cell; wherein the maximum RIV of the first cell is determined based on the number of RBs occupied by the BWP configured in the first cell. , the first cell is any one of the other cells;
  • frequency domain resources for data transmission in the first cell are determined.
  • determining the second RIV of the first cell based on the first RIV and the maximum RIV of the first cell includes:
  • first RIV is less than or equal to the maximum RIV of the first cell, determine that the second RIV is equal to the first RIV
  • first RIV is greater than the maximum RIV of the first cell, it is determined that the second RIV is equal to the preset RIV.
  • the FDRA field is used to indicate:
  • the number of sustained RBs for data transmission in each of the other cells is the number of sustained RBs for data transmission in each of the other cells.
  • the allocation of frequency domain resources to the FDRA domain in the DCI and at least determining the frequency domain resources corresponding to the reference cells in the plurality of cells include:
  • Determining frequency domain resources corresponding to other cells in the plurality of cells based on at least the frequency domain resources corresponding to the reference cell includes:
  • the second starting RB index value for data transmission in the first cell; wherein the first cell is any one of the other cells;
  • the second number of continuous RBs for data transmission of the first cell is determined.
  • determining the second starting RB index value for data transmission in the first cell based on the first starting RB index value includes:
  • the first starting RB index value is less than the first RB number, it is determined that the second starting RB index value is equal to the first starting RB index value; wherein the first RB number is the The number of RBs occupied by the BWP configured in the first cell;
  • the first starting RB index value is greater than or equal to the first RB number, it is determined that the second starting RB index value is equal to the first difference value; wherein the first difference value is the The difference between the first RB number and the preset continuing RB number.
  • the FDRA field is used to indicate:
  • the starting RB index value for data transmission in each of the other cells is the starting RB index value for data transmission in each of the other cells.
  • the allocation of frequency domain resources to the FDRA domain in the DCI and at least determining the frequency domain resources corresponding to the reference cells in the plurality of cells include:
  • Determining frequency domain resources corresponding to other cells in the plurality of cells based on at least the frequency domain resources corresponding to the reference cell includes:
  • the second starting RB index value for data transmission of the first cell is determined.
  • determining the second number of persistent RBs for data transmission in the first cell based on the first number of persistent RBs includes:
  • the second number of persistent RBs is equal to the first number of persistent RBs; wherein the first number of RBs is the first number of persistent RBs.
  • the second number of persistent RBs is equal to the first number of RBs.
  • the first bit interval is before other bit intervals
  • the order of the second bit interval corresponding to the first cell in the FDRA domain relative to the third bit interval corresponding to the second cell is the same as the sequence of the second bit interval corresponding to the first cell in the FDRA domain.
  • the preset arrangement order of the cell index value of the first cell relative to the cell index value of the second cell is the same; wherein the second cell is any one of the other cells that is different from the first cell.
  • the first bit interval occupies a first number of bits
  • the first number of bits is equal to the minimum number of bits required to indicate all optional values of the first RIV.
  • the second bit interval occupies a second number of bits
  • the second number of bits is equal to the minimum number of bits required to indicate all optional values of the second starting RB index value or all optional values of the second continuous RB number.
  • the method also includes any of the following:
  • the cell with the largest number of RBs configured with BWP among the multiple cells is used as the reference cell;
  • the cell with the smallest number of RBs configured with BWP among the multiple cells is used as the reference cell;
  • the cell with the smallest corresponding cell index number among the plurality of cells is used as the reference cell.
  • a multi-carrier scheduling method is provided, and the method is executed by a base station and includes:
  • determining frequency domain resources for data transmission of the terminal in each cell in multiple cells includes:
  • the second starting RB index value for the terminal to transmit data in the first cell; wherein the first cell is any one of other cells;
  • the second number of persistent RBs for data transmission by the terminal in the first cell is determined.
  • determining the second starting RB index value for data transmission by the terminal in the first cell based on the first starting RB index value includes:
  • the first starting RB index value is less than the first RB number, it is determined that the second starting RB index value is equal to the first starting RB index value; wherein the first RB number is the The number of RBs occupied by the BWP configured in the first cell;
  • the first starting RB index value is greater than or equal to the first RB number, it is determined that the second starting RB index value is equal to the first difference value; wherein the first difference value is the The difference between the first RB number and the preset continuing RB number.
  • determining the second number of persistent RBs for data transmission by the terminal in the first cell based on the second starting RB index value and the first number of persistent RBs includes:
  • the second number of persistent RBs is equal to the first number of persistent RBs; wherein the second difference is the first The difference between the number of RBs and the second starting RB index value;
  • the second number of persistent RBs is equal to the second difference.
  • determining frequency domain resources for data transmission of the terminal in each cell in multiple cells includes:
  • the second RIV of the first cell Based on the first RIV and the maximum RIV of the first cell, determine the second RIV of the first cell; wherein the maximum RIV of the first cell is determined based on the number of RBs occupied by the BWP configured in the first cell. , the first cell is any one of the other cells;
  • frequency domain resources for data transmission in the first cell are determined.
  • determining the second RIV of the first cell based on the first RIV and the maximum RIV of the first cell includes:
  • first RIV is less than or equal to the maximum RIV of the first cell, determine that the second RIV is equal to the first RIV
  • first RIV is greater than the maximum RIV of the first cell, it is determined that the second RIV is equal to the preset RIV.
  • the FDRA field is used to indicate:
  • the first RIV of the reference cell is the first RIV of the reference cell
  • a bit value indicated by a bit included in the FDRA domain is determined; wherein the first RIV is associated with a first starting RB index value and a first sustained RB number of the reference cell.
  • determining frequency domain resources for data transmission of the terminal in each cell in multiple cells includes:
  • the second starting RB index value for the terminal to transmit data in the first cell; wherein the first cell is any one of the other cells;
  • determining the second starting RB index value for data transmission by the terminal in the first cell based on the first starting RB index value includes:
  • the first starting RB index value is less than the first RB number, it is determined that the second starting RB index value is equal to the first starting RB index value; wherein the first RB number is the The number of RBs occupied by the BWP configured in the first cell;
  • the first starting RB index value is greater than or equal to the first RB number, it is determined that the second starting RB index value is equal to the first difference value; wherein the first difference value is the The difference between the first RB number and the preset continuing RB number.
  • the FDRA field is used to indicate:
  • a bit value indicated by a bit included in a second bit interval corresponding to the first cell in the FDRA domain is determined.
  • determining frequency domain resources for data transmission of the terminal in each cell in multiple cells includes:
  • the second number of persistent RBs for data transmission by the terminal in the first cell; wherein the first cell is any one of the other cells;
  • determining the second number of persistent RBs for data transmission by the terminal in the first cell based on the first number of persistent RBs includes:
  • the second number of persistent RBs is equal to the first number of persistent RBs; wherein the first number of RBs is the first number of persistent RBs.
  • the second number of persistent RBs is equal to the first number of RBs.
  • the FDRA field is used to indicate:
  • a bit value indicated by a bit included in a second bit interval corresponding to the first cell in the FDRA domain is determined.
  • the first bit interval is before other bit intervals
  • the second bit interval corresponding to the first cell in the FDRA domain is preceded and followed from left to right with respect to the third bit interval corresponding to the second cell.
  • the order is the same as the preset arrangement order of the cell index value of the first cell relative to the cell index value of the second cell; wherein the second cell is different from the first cell among the other cells. any one of.
  • the first bit interval occupies a first number of bits
  • the first number of bits is equal to the minimum number of bits that need to be occupied when indicating the second number of RBs
  • the second number of RBs is the number of RBs occupied by the BWP configured in the reference cell.
  • the second bit interval occupies a second number of bits
  • the second number of bits is equal to the minimum number of bits required to indicate the first number of RBs
  • the first number of RBs is the number of RBs occupied by the BWP configured in the first cell.
  • the method also includes any of the following:
  • the cell with the largest number of RBs configured with BWP among the multiple cells is used as the reference cell;
  • the cell with the smallest number of RBs configured with BWP among the multiple cells is used as the reference cell;
  • the cell with the smallest corresponding cell index number among the plurality of cells is used as the reference cell.
  • a resource determination device is provided, and the device is applied to a terminal and includes:
  • a receiving module configured to receive downlink control information DCI sent by the base station; wherein the DCI is used to schedule data transmission of multiple cells;
  • the first determination module is configured to determine at least the frequency domain resources corresponding to the reference cell in the plurality of cells based on the frequency domain resource allocation FDRA domain in the DCI;
  • the second determination module is configured to determine frequency domain resources corresponding to other cells in the plurality of cells based on at least frequency domain resources corresponding to the reference cell.
  • a multi-carrier scheduling device is provided, and the device is applied to a base station and includes:
  • the third determination module is configured to determine the frequency domain resources for data transmission of the terminal in each cell in the plurality of cells;
  • the fourth determination module is configured to determine, based on at least the frequency domain resources corresponding to the reference cells in the plurality of cells, the bit value indicated by the bit included in the frequency domain resource allocation FDRA field in the downlink control information DCI; wherein, The DCI is used to schedule data transmission of the multiple cells;
  • a sending module configured to send the DCI to the terminal.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any one of the resource determination methods on the terminal side.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any one of the multi-carrier scheduling methods on the base station side.
  • a resource determination device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the resource determination methods described above on the terminal side.
  • a multi-carrier scheduling device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the multi-carrier scheduling methods described above on the base station side.
  • the terminal can receive the DCI sent by the base station for scheduling data transmission of multiple cells, and based on the FDRA domain in the DCI, determine at least the frequency domain resources corresponding to one reference cell in the multiple cells, and further, at least Frequency domain resources corresponding to other cells in the plurality of cells may be determined based on frequency domain resources corresponding to the reference cell.
  • the present disclosure can reduce DCI bit overhead on the basis of ensuring DCI scheduling flexibility, effectively avoid the problem of reduced DCI transmission efficiency, and achieve high availability.
  • FIG. 1A is a schematic diagram illustrating a single DCI scheduling PDSCH of multiple cells according to an exemplary embodiment.
  • FIG. 1B is a schematic diagram of frequency domain resources corresponding to a single DCI scheduling data transmission of three cells according to an exemplary embodiment.
  • Figure 2 is a schematic flowchart of a resource determination method according to an exemplary embodiment.
  • Figure 3A is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 3B is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 4 is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 5A is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 5B is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 6A is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 6B is a schematic flowchart of another resource determination method according to an exemplary embodiment.
  • Figure 7 is a schematic flowchart of a multi-carrier scheduling method according to an exemplary embodiment.
  • Figure 8 is a block diagram of a resource determination device according to an exemplary embodiment.
  • Figure 9 is a block diagram of a multi-carrier scheduling device according to an exemplary embodiment.
  • Figure 10 is a schematic structural diagram of a resource determination device according to an exemplary embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a multi-carrier scheduling device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in this disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • a DCI in the scheduling cell is only allowed to schedule the data transmission of one cell, that is, only the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) or physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) is allowed to be scheduled in one cell. ), with the gradual fragmentation of frequency resources, the need to schedule data from multiple cells at the same time will gradually increase.
  • Rel-18WID supports a single DCI to schedule PDSCH or PUSCH of multiple cells. It should be noted that each cell corresponds to a PDSCH and a PUSCH. Scheduling PDSCHs of multiple cells through one DCI can be, for example, shown in Figure 1A.
  • the FDRA domain is used to indicate frequency domain resources for transmitting data.
  • the DCI FDRA domain can be simply extended, that is, based on different bits, the frequency domain information of the scheduling data of the two cells is indicated. .
  • the number of resource blocks (RBs) occupied by the partial bandwidth (Bandwidth Part, BWP) of each cell is equal to 100. If the three cells correspond to the FDRA domain based on resource type 1 (type1), the number of bits occupied by the corresponding FDRA domain is 39, which greatly increases DCI overhead and reduces DCI transmission resources.
  • the FDRA resource mapping type of type1 is associated with the starting RB (RB start ) and the continuous RB length (L RBs ) of the frequency domain resource corresponding to the transmission data through the resource indication value (RIV) corresponding to the FDRA domain.
  • RIV resource indication value
  • the type1 resource takes Resource Block Group (RBG) as the granularity
  • RBG Resource Block Group
  • L RBGs continuous RB length
  • RIV N RBG (L RBGs -1)+RBG start formula 3
  • RIV N RBG (N RBG -L RBGs +1)+(N RBG -1-RBG start )
  • 1 ⁇ L RBGs ⁇ N RBG -RBG start where N RBG is the number of RBGs occupied by the configured BWP.
  • FIG. 1B a schematic diagram of the corresponding frequency domain resources when a single DCI schedules data transmission of three cells is shown in Figure 1B.
  • the offsets of the starting RBs of the carriers corresponding to the three cells relative to the specified reference point (point A) are offsetToCarrier1, offsetToCarrier2, and offsetToCarrier3 respectively.
  • the configured BWPs of the three cells on the frequency domain resources are respectively BWP1, BWP2, BWP3. If data transmission of three cells is scheduled simultaneously through a single DCI, the frequency domain resources for data transmission of the three cells need to be indicated through the FDRA field in the DCI, that is, the starting RB index value and the number of continuing RBs on the corresponding configured BWP.
  • the corresponding type 1 FDRA domain is simply extended to indicate the frequency domain resources for data transmission in each cell, it will greatly increase the DCI bits overhead and reduce DCI transmission efficiency.
  • the present disclosure provides a resource determination, multi-carrier scheduling method and device, and a storage medium.
  • the DCI bit overhead is reduced, effectively avoiding the problem of reduced DCI transmission efficiency, and achieving high availability.
  • the resource determination method provided by this disclosure is first introduced from the terminal side.
  • FIG. 2 is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal. The method can include the following steps:
  • step 201 downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 202 based on the frequency domain resource allocation FDRA domain in the DCI, at least the frequency domain resources corresponding to the reference cell in the plurality of cells are determined.
  • the reference cell may be indicated by the base station through signaling, or the reference cell may be determined through protocol agreement.
  • a cell that receives DCI among multiple cells may be used as the reference cell.
  • the cell with the largest number of RBs configured with BWP among multiple cells may be used as the reference cell.
  • the cell with the smallest number of RBs configured with BWP among multiple cells may be used as the reference cell.
  • the cell with the largest corresponding cell index number among the plurality of cells may be used as the reference cell.
  • the cell with the smallest corresponding cell index number among the multiple cells may be used as the reference cell.
  • step 203 frequency domain resources corresponding to other cells in the plurality of cells are determined based on at least the frequency domain resources corresponding to the reference cell.
  • other cells among the plurality of cells may refer to cells scheduled by DCI except the reference cell.
  • the number of other cells may be one or more, and this disclosure does not limit this.
  • the DCI bit overhead can be reduced on the basis of ensuring the flexibility of DCI scheduling, effectively avoiding the problem of reduced DCI transmission efficiency, and achieving high availability.
  • the FDRA field in the DCI may be used to indicate: the first resource indication value RIV of the reference cell.
  • Method 1-1 based on the first RIV of the reference cell, determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell (the number of continuous RBs can also be called the number of continuous RBs, that is, starting from the starting RB) number of occupied RBs), further, determine the frequency domain resources of other cells based on the first starting RB index value and the first number of continuing RBs of the reference cell.
  • Figure 3A is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 301 downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 302 determine the first RIV of the reference cell in the plurality of cells based on the frequency domain resource allocation FDRA domain in the DCI.
  • the terminal may determine the first RIV based on bit values indicated by all bits included in the FDRA domain.
  • step 303 based on the first RIV, a first starting resource block RB index value and a first sustained RB number for the reference cell data transmission are determined.
  • the first starting RB index value RB start,ref and the first sustained RB number L RBs for the reference cell data transmission can be determined, ref .
  • a second starting RB index value for data transmission in the first cell is determined based on the first starting RB index value.
  • the first cell is any one of the plurality of cells except the reference cell.
  • the first starting RB index value RB start,ref and the first sustained RB number L RBs,ref of the reference cell may be used as references for determining the starting RB index value and the number of continuing RBs of other cells respectively.
  • the first starting RB index value RB start,ref satisfies the following conditions: Then it can be determined that the second starting RB index value RB start, c1 of the first cell is equal to the first starting RB index value RB start, ref .
  • the first cell is any one of the other cells.
  • the first starting RB index value does not meet the above conditions, then it can be determined that the second starting RB index value RB start,c1 of the first cell is equal to the first difference value, where the first difference value is the first RB number The difference from the default number of continuous RBs N, that is,
  • the number of RBs occupied by the configured BWP of the first cell The optional RB index value range of the first cell is If the first starting RB index value RB start,ref of the reference cell belongs to the above optional RB index value range, that is to say, the first starting RB index value RB start,ref is less than the first RB number That is, RB start,ref satisfies: Then the second starting RB index value RB start,c1 of the first cell data transmission can directly use the first starting RB index value RB start,ref of the reference cell, and the terminal can determine the second starting point of the first cell data transmission.
  • the second starting RB index value RB start,c1 is equal to the first starting RB index value RB start,ref , also 2.
  • the terminal can determine the second starting RB index value RB start ,c1 is equal to the first difference, where the first difference is the first RB number The difference from the default number of continuous RBs N, that is,
  • the preset number of persistent RBs N may be indicated by the base station or agreed by the protocol.
  • the default number of continuous RBs N is a positive integer.
  • the preset number of persistent RBs may be 1, thereby ensuring that the preset number of persistent RBs does not exceed the first number of RBs.
  • the first RB number is 4, the first starting RB index value RB start,ref is 4. At this time, the first starting RB index value RB start,ref is equal to the first RB number.
  • the preset RB number is 1, then the terminal can determine the second starting RB number.
  • a second number of persistent RBs for data transmission in the first cell is determined based on the second starting RB index value and the first number of persistent RBs.
  • the first number of persistent RBs is a positive integer.
  • the second starting RB index value RB start, c1 of the first cell is determined, the second starting RB index value RB start, c1 and the first continuous RB number L RBs of the reference cell can be determined.
  • ref is used as a reference to jointly determine the second persistent RB number L RBs,ref of the first cell.
  • L RBs,ref L RBs,ref .
  • the terminal will The difference between the second start RB index value RB start,c1 and the second start RB index value RB start,c1 can determine the second difference.
  • the second difference is 3
  • the first continuous RB number L RBs,ref is 2
  • the first continuous RB number L L RBs,ref satisfies:
  • the second number of persistent RBs L RBs,c1 is equal to the first number of persistent RBs L RBs,ref
  • the terminal may determine that the second number of persistent RBs L RBs,c1 is equal to the second difference calculated above, that is,
  • the second starting RB index value RB start,c1 has been determined before. According to the first RB number The difference between the second starting RB index value RB start,c1 and the second starting RB index value RB start,c1 can determine the second difference. Assuming that the second difference is 1 and the first continuous RB number L RBs,ref is 2, then the second continuous RB The number L RBs,c1 is equal to said second difference,
  • the terminal can determine the first RIV of the reference cell based on the FDRA domain, and can determine the first starting RB index value and the first number of persistent RBs of the reference cell based on the first RIV. Further, the terminal can determine the first starting RB based on the first RIV. index value, determine a second starting RB index value of the first cell data transmission, and determine a second continuing RB index value of the first cell data transmission based on the second starting RB index value and the first sustained RB number. Number of RBs.
  • the FDRA domain in DCI is only used to indicate the first RIV of the reference cell, which reduces DCI bit overhead, effectively avoids the problem of reduced DCI transmission efficiency, and achieves high availability.
  • the above method is used to design rules for the FDRA domain in DCI, so that the RB starting positions and the number of continuous RBs of other cells are determined based on the reference cell.
  • the following will provide another method so that the frequency domain starting positions and sustained frequency domain range sizes of other cells are determined based on the reference cell.
  • Method 1-2 The terminal can determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell based on the first RIV of the reference cell (the number of continuous RBs can also be called the number of continuous RBs, that is, from the starting RB The number of RBs that start to be continuously occupied), further, the terminal can be based on the first starting RB index value and the first continuous number of RBs of the reference cell, the sub-carrier space (Sub-Carrier Space, SCS) of the reference cell and the SCS of other cells. to determine the frequency domain resources of other cells.
  • SCS Sub-Carrier Space
  • Figure 3B is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 301' downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 302' determine the first RIV of the reference cell in the plurality of cells based on the frequency domain resource allocation FDRA domain in the DCI.
  • the terminal may determine the first RIV based on bit values indicated by all bits included in the FDRA domain.
  • step 303' based on the first RIV, determine the first starting resource block RB index value and the first sustained RB number of the reference cell data transmission.
  • Step 303' is similar to the implementation of step 303 above, and will not be described again here.
  • a second starting RB index value for data transmission in the first cell is determined based on the SCS of the reference cell, the SCS of the first cell and the first starting RB index value.
  • the first cell is any one of the other cells.
  • the method of determining the second starting RB index value is similar to step 304.
  • the impact of SCS is also considered.
  • the specific implementation method is as follows:
  • the first RB number The number of RBs occupied by the BWP that can be configured for the first cell
  • ⁇ ref is the SCS of the reference cell
  • ⁇ c1 is the SCS of the first cell.
  • the terminal may determine the second starting RB index value Among them, N is the preset number of continuous RBs, ⁇ ref is the SCS of the reference cell, and ⁇ c1 is the SCS of the first cell.
  • step 305' based on the SCS of the reference cell, the SCS of the first cell, the second starting RB index value and the first sustained RB number, determine the first cell data transmission time. 2. Number of continuous RBs.
  • the first number of persistent RBs is a positive integer.
  • the method of determining the number of second continuous RBs for data transmission in the first cell is similar to step 305.
  • the impact of SCS is also considered.
  • the specific implementation method is as follows:
  • the terminal may determine the second number of persistent RBs Among them, ⁇ ref is the SCS of the reference cell, and ⁇ c1 is the SCS of the first cell.
  • the terminal can determine the frequency domain resources corresponding to other cells based on the above method.
  • the FDRA domain in DCI is only used to indicate the first RIV of the reference cell, which reduces DCI bit overhead, effectively avoids the problem of reduced DCI transmission efficiency, and achieves high availability.
  • Method 2 Determine the RIV of other cells based on the first RIV of the reference cell and the maximum RIV of other cells, and then determine the frequency domain resources of data transmission in other cells based on the RIV of other cells.
  • Figure 4 is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal. The method can include the following steps:
  • step 401 downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 402 determine the first RIV of the reference cell in the plurality of cells based on the frequency domain resource allocation FDRA domain in the DCI.
  • the terminal may determine the first RIV based on bit values indicated by all bits included in the FDRA domain.
  • a second RIV of the first cell is determined based on the first RIV and the maximum RIV of the first cell.
  • the maximum RIV of the first cell is determined based on the number of RBs occupied by the BWP configured in the first cell, that is, the maximum RIV of the first cell is based on the first number of RBs.
  • the first cell is any one of the plurality of cells that is different from the reference cell.
  • the preset RIV may be indicated by the base station through signaling, or may be determined by protocol agreement, which is not limited by the present disclosure. Specifically, the preset RIV may be less than or equal to the maximum RIV of the first cell. For example, the preset RIV may be equal to the maximum RIV of the first cell.
  • step 404 frequency domain resources for data transmission in the first cell are determined based on the second RIV.
  • the second starting RB index value RB start, c1 and the second continuing RB of the first cell data transmission can be determined based on the corresponding relationship between the second RIV of the first cell and the above-mentioned formula 1 and formula 2.
  • Number L RBs, c1 (the number of continuous RBs can also be called the number of consecutive RBs, that is, the number of RBs occupied continuously starting from the starting RB).
  • the terminal can determine the first RIV of the reference cell according to the FDRA domain, and can determine the second RIV of the first cell based on the first RIV and the maximum RIV of the first cell. Further, the terminal can determine the second RIV of the reference cell based on the second RIV. Determine frequency domain resources for data transmission in the first cell.
  • the FDRA domain in DCI is only used to indicate the first RIV of the reference cell, which reduces DCI bit overhead, effectively avoids the problem of reduced DCI transmission efficiency, and achieves high availability.
  • the FDRA field may be used to indicate: the first RIV of the reference cell; and the number of sustained RBs for data transmission in each of the other cells.
  • the method of determining the frequency domain resources corresponding to other cells is as follows:
  • Method 3-1 Based on the first RIV of the reference cell, determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell (the number of continuous RBs can also be called the number of continuous RBs, that is, starting from the starting RB Number of occupied RBs), further, the starting RB index value of other cells can be determined based on the first starting RB index value, and the number of continuing RBs of other cells is determined based on the bit value indicated by the bit included in the FDRA domain.
  • the number of continuous RBs can also be called the number of continuous RBs, that is, starting from the starting RB Number of occupied RBs
  • the starting RB index value of other cells can be determined based on the first starting RB index value
  • the number of continuing RBs of other cells is determined based on the bit value indicated by the bit included in the FDRA domain.
  • Figure 5A is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 501 downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 502 the first RIV of the reference cell in the plurality of cells is determined based on the bit value indicated by the bit included in the first bit interval in the FDRA domain.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the first bit interval occupies a first number of bits.
  • the first number of bits is equal to the minimum number of bits required to indicate all optional values of the first RIV.
  • all optional values of the first RIV of the reference cell are determined based on the number of RBs occupied by the BWP configured in the reference cell.
  • the first number of bits N1 can be determined using the following formula:
  • all optional values of the first RIV of the first bit number reference cell can also be determined based on the number of RBGs occupied by the reference cell configuration BWP, which is not limited in this disclosure.
  • the first number of bits N1 can be determined using the following formula:
  • N RBG is the number of RBGs occupied by the reference cell configuration BWP, is the rounding-up function.
  • step 503 based on the first RIV, the first starting RB index value and the first sustained RB number of the reference cell are determined.
  • the terminal can determine the first starting RB index value RB start,ref and the first continuous RB number L RBs of the reference cell data transmission based on the corresponding relationship between the first RIV, the above formula 1 and formula 2. ,ref .
  • a second starting RB index value for data transmission in the first cell is determined based on the first starting RB index value.
  • the first cell is any one of the plurality of cells that is different from the reference cell.
  • the specific implementation manner of step 504 is similar to the implementation manner of step 304, and will not be described again here.
  • step 505 based on the bit value indicated by the bit included in the second bit interval corresponding to the first cell in the FDRA domain, the second number of continuous RBs for data transmission of the first cell is determined.
  • the second bit interval corresponding to the first cell in the FDRA domain is relative to the third bit interval corresponding to the second cell.
  • the order of the intervals is the same as the preset arrangement order of the cell index value of the first cell relative to the cell index value of the second cell; wherein the second cell is different from the other cells in the Any one of the first cells.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the second bit interval is used to indicate the second continuous RB number of data transmission in the first cell
  • the third bit interval is used to indicate the third continuous RB number of data transmission in the second cell.
  • the preset arrangement order may be the order of cell index values from large to small or the order of cell index values from small to large.
  • the first bit interval corresponds to the reference cell and is located before other bit intervals such as the second bit interval and the third bit interval.
  • the second bit interval, the third bit interval and other bit intervals and the cell index value are based on the order from large to small.
  • the order or the order from smallest to largest corresponds one to one.
  • the second bit interval is located before the third bit interval.
  • the first bit interval precedes the second bit interval.
  • from left to right are the first bit interval corresponding to the reference cell, the second bit interval corresponding to the first cell, and the third bit interval corresponding to the second cell.
  • the second bit interval occupies a second number of bits.
  • the second number of bits is equal to the minimum number of bits required to indicate all optional values of the second starting RB index value.
  • all optional values of the second starting RB index value may be determined based on the first RB number, that is, may be determined based on the number of RBs occupied by the first cell configuration BWP.
  • the second number of bits N2 can be determined using the following formula:
  • the number of RBs occupied by the BWP configured for the first cell is the rounding-up function.
  • the FDRA field may be used to indicate: the first RIV of the reference cell; and the number of sustained RBGs for data transmission for each of the other cells.
  • the number of second bits is equal to the minimum number of bits that need to be occupied when indicating all optional values of the second starting RBG index value. All optional values of the second starting RBG index value are the second bits. The number may be determined based on the number of RBGs occupied by the first cell configuration BWP.
  • the second number of bits N2 can be determined using the following formula:
  • It can be configured by the base station through signaling or agreed by the protocol.
  • the terminal can determine based on the agreement It is a preset value, and the preset value can be a positive integer, such as 1 or 6, which is not limited in this disclosure.
  • the FDRA field in the DCI is used to indicate the first RIV of the reference cell and the number of continuous RBs or RBGs of other cells, thereby reducing the DCI bit overhead and effectively avoiding The problem of reduced DCI transmission efficiency and high availability.
  • Method 3-2 based on the first RIV of the reference cell, determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell (the number of continuous RBs can also be called the number of continuous RBs, that is, starting from the starting RB number of occupied RBs), further, the starting RB index value of other cells can be determined based on the SCS of the reference cell, the SCS of other cells and the first starting RB index value, and the number of continuous RBs of other cells can be based on the FDRA domain included. Determined by the bit value indicated by the bit.
  • Figure 5B is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 501' receive downlink control information DCI sent by the base station; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 502' the first RIV of the reference cell in the plurality of cells is determined based on the bit value indicated by the bit included in the first bit interval in the FDRA domain.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the first bit interval occupies a first number of bits.
  • the first number of bits is equal to the minimum number of bits required to indicate all optional values of the first RIV.
  • all optional values of the first RIV of the reference cell are determined based on the number of RBs occupied by the BWP configured in the reference cell.
  • the first number of bits N1 may be determined using Formula 5.
  • all optional values of the first RIV of the reference cell may also be determined based on the number of RBGs occupied by the BWP configured in the reference cell. For details, please refer to the above formula 6 and will not be repeated here.
  • step 503' based on the first RIV, determine the first starting RB index value and the first sustained RB number for the reference cell data transmission.
  • the first starting RB index value RB start,ref and the first sustained RB number L RBs for the reference cell data transmission can be determined, ref .
  • a second starting RB index value for data transmission in the first cell is determined based on the SCS of the reference cell, the SCS of the first cell and the first starting RB index value.
  • the first RB number The number of RBs occupied by the BWP that can be configured for the first cell
  • ⁇ ref is the SCS of the reference cell
  • ⁇ c1 is the SCS of the first cell
  • RB start,ref ⁇ ref / ⁇ c1 is greater than or equal to
  • the second starting RB index value I won’t go into details here.
  • step 505' determine the second number of continuous RBs for data transmission of the first cell based on the bit value indicated by the bits included in the second bit interval corresponding to the first cell in the FDRA domain.
  • step 505' is similar to the above-mentioned step 505, and will not be described again here.
  • the FDRA field in DCI is used to indicate the first RIV of the reference cell and the number of continuous RBs of other cells, thereby reducing DCI bit overhead and effectively avoiding DCI transmission efficiency. Reduced problems and high availability.
  • the FDRA field may be used to indicate: the first RIV of the reference cell; and the starting RB index value of each of the other cells for data transmission.
  • the method of determining the frequency domain resources corresponding to other cells is as follows:
  • Method 4-1 when the SCS of multiple cells scheduled by DCI are the same, based on the first RIV of the reference cell, determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell (the number of continuous RBs is also It can be called the number of continuous RBs, that is, the number of RBs occupied continuously starting from the starting RB). Furthermore, the number of continuous RBs of other cells is determined based on the first number of continuous RBs. The starting RB index values of other cells can be based on the FDRA domain. Determined by the bit value indicated by the included bits.
  • Figure 6A is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 601 downlink control information DCI sent by the base station is received; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • step 602 the first RIV of the reference cell in the plurality of cells is determined based on the bit value indicated by the bit included in the first bit interval in the FDRA domain.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the first bit interval occupies a first number of bits.
  • the first number of bits is equal to the minimum number of bits required to indicate all optional values of the first RIV.
  • all optional values of the first RIV of the reference cell are determined based on the number of RBs occupied by the reference cell configuration BWP.
  • the first number of bits N1 may be determined using Formula 5.
  • all optional values of the first RIV of the reference cell may also be determined based on the number of RBGs occupied by the BWP configured in the reference cell. For details, please refer to the above formula 6 and will not be repeated here.
  • step 603 based on the first RIV, a first starting RB index value and a first sustained RB number for the reference cell data transmission are determined.
  • the terminal may determine the first starting RB index value and the first number of sustained RBs based on the corresponding relationship between the first RIV and the above-mentioned Formula 1 and Formula 2.
  • a second number of persistent RBs for data transmission in the first cell is determined based on the first number of persistent RBs.
  • the first cell is any one of the other cells.
  • the first RB number The number of RBs occupied by the BWP configured for the first cell.
  • the terminal can determine the second number of persistent RBs L RBs, c1 and the first number of RBs equal, that is
  • the second number of persistent RBs L RBs, c1 may be equal to the first number of RBs
  • the difference from the preset difference value M may be configured by the base station through signaling, or may be agreed upon by a protocol, which is not limited in this disclosure.
  • the preset difference value M may be an integer greater than or equal to zero. For example, the preset difference value M is 0, then
  • a second starting RB index value for data transmission of the first cell is determined based on the bit value indicated by the bit included in the second bit interval corresponding to the first cell in the FDRA domain.
  • the second bit interval corresponding to the first cell in the FDRA domain is relative to the third bit interval corresponding to the second cell.
  • the sequence of intervals is the same as the preset arrangement sequence of the cell index value of the first cell relative to the cell index value of the second cell; wherein the second cell is different from the other cells among the other cells. Any one of the first cells.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the second bit interval is used to indicate the second starting RB index value of data transmission in the first cell
  • the third bit interval is used to indicate the third starting RB index value of data transmission in the second cell.
  • the preset arrangement order may be the order of cell index values from large to small or the order of cell index values from small to large.
  • the first bit interval corresponds to the reference cell and is located before other bit intervals such as the second bit interval and the third bit interval.
  • the second bit interval, the third bit interval and other bit intervals are related to the cell index value in descending order. order or from smallest to largest.
  • the third bit interval is located before the second bit interval.
  • the first bit interval precedes the second bit interval.
  • from left to right are the first bit interval corresponding to the reference cell, the third bit interval corresponding to the second cell, and the second bit interval corresponding to the first cell.
  • the second bit interval occupies a second number of bits.
  • the second number of bits is equal to the minimum number of bits required to indicate all optional values of the second starting RB index value. All optional values of the second starting RB index value may be determined based on the first RB number, that is, may be determined based on the number of RBs occupied by the first cell configuration BWP.
  • the second number of bits N2 can be determined using the following formula:
  • the number of RBs occupied by the BWP configured for the first cell is the rounding-up function.
  • the FDRA field may be used to indicate: the first RIV of the reference cell; and the starting RBG index value of data transmission for each of the other cells.
  • the second number of bits is equal to the minimum number of bits required to indicate all optional values of the second starting RBG index value, and all optional values of the second starting RBG index value may be based on the first The number of RBGs occupied by the BWP configured in a cell is determined.
  • the second number of bits N2 can be determined using the following formula:
  • It can be configured by the base station through signaling or agreed by the protocol.
  • the terminal can determine based on the agreement It is a preset value, and the preset value can be a positive integer, such as 1 or 6, which is not limited in this disclosure.
  • the FDRA field in the DCI is used to indicate the first RIV of the reference cell and the starting RB index value or starting RBG index value of other cells, thereby reducing the DCI Bit overhead effectively avoids the problem of reduced DCI transmission efficiency and has high availability.
  • Method 4-2 based on the first RIV of the reference cell, determine the first starting RB index value and the first number of continuous RBs for data transmission in the reference cell (the number of continuous RBs can also be called the number of continuous RBs, that is, starting from the starting RB number of occupied RBs), further, the number of persistent RBs of other cells can be determined based on the SCS of the reference cell, the SCS of other cells and the first number of persistent RBs, and the starting RB index value of other cells can be based on the bits included in the FDRA domain. Determined by the indicated bit value.
  • Figure 6B is a flow chart of a resource determination method according to an embodiment, which can be used in a terminal.
  • the method can include the following steps:
  • step 601' receive downlink control information DCI sent by the base station; wherein the DCI is used to schedule data transmission of multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Among them, each cell corresponds to a PDSCH and/or each cell corresponds to a PUSCH.
  • step 602' the first RIV of the reference cell in the plurality of cells is determined based on the bit value indicated by the bit included in the first bit interval in the FDRA domain.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the first bit interval occupies a first number of bits.
  • the first number of bits is equal to the minimum number of bits required to indicate all optional values of the first RIV.
  • all optional values of the first RIV of the reference cell are determined based on the number of RBs occupied by the BWP configured in the reference cell.
  • the first number of bits N1 may be determined using Formula 5.
  • all optional values of the first RIV of the reference cell may also be determined based on the number of RBGs occupied by the BWP configured in the reference cell. For details, please refer to the above formula 6 and will not be repeated here.
  • step 603' based on the first RIV, determine the first starting RB index value and the first sustained RB number for the reference cell data transmission.
  • the terminal may determine the first starting RB index value and the first number of sustained RBs based on the corresponding relationship between the first RIV and the above-mentioned Formula 1 and Formula 2.
  • a second number of persistent RBs for data transmission in the first cell is determined based on the first number of persistent RBs, the SCS of the reference cell, and the SCS of the first cell.
  • the first cell is any one of the other cells.
  • the frequency point size L RBs, ref ⁇ ref / ⁇ c1 corresponding to the first number of persistent RBs is less than or equal to the first number of RBs.
  • ⁇ ref is the SCS of the reference cell
  • ⁇ c1 is the SCS of the first cell.
  • the frequency point size L RBs,ref ⁇ ref / ⁇ c1 corresponding to the first number of persistent RBs is greater than the first number of RBs.
  • the terminal can determine the second number of persistent RBs L RBs, c1 and the first number of RBs equal, that is
  • the second number of persistent RBs L RBs, c1 may be equal to the first number of RBs
  • the difference from the preset difference value M may be configured by the base station through signaling, or may be agreed upon by a protocol, which is not limited in this disclosure.
  • the preset difference value M may be an integer greater than or equal to zero.
  • step 605' determine the second starting RB index value of the first cell data transmission based on the bit value indicated by the bit included in the second bit interval corresponding to the first cell in the FDRA domain.
  • step 605' is similar to the implementation of step 605, and will not be described again here.
  • the FDRA domain in DCI is used to indicate the first RIV of the reference cell and the starting RB index values of other cells. Or the starting RBG index value, thus reducing the DCI bit overhead, effectively avoiding the problem of reduced DCI transmission efficiency, and achieving high availability.
  • the multi-carrier scheduling method provided by the present disclosure will be introduced from the base station side.
  • Embodiments of the present disclosure provide a multi-carrier scheduling method.
  • Figure 7 is a flow chart of a multi-carrier scheduling method according to an embodiment, which can be used in base stations. The method can include the following steps:
  • step 701 frequency domain resources for data transmission of the terminal in each cell in multiple cells are determined.
  • step 702 based on at least the frequency domain resources corresponding to the reference cells in the plurality of cells, determine the bit value indicated by the bit included in the frequency domain resource allocation FDRA field in the downlink control information DCI; wherein the DCI uses For scheduling data transmission of the multiple cells.
  • DCI used to schedule data transmission of multiple cells may include, but is not limited to, scheduling PDSCH of multiple cells and/or PUSCH of multiple cells. Wherein, each cell corresponds to one PDSCH and/or each cell corresponds to one PUSCH.
  • the base station needs to first determine the frequency domain resources for the terminal's data transmission in each of the multiple cells before performing step 702. This can be based on at least the frequency domain resources corresponding to the reference cell. , to determine the bit value indicated by the bit included in the FDRA field in the DCI. In step 703, the DCI is sent to the terminal.
  • the DCI is sent to the terminal, so that the terminal determines at least the frequency domain resources corresponding to the reference cell based on the FDRA field in the DCI, and then Based on at least the frequency domain resources corresponding to the reference cell, frequency domain resources corresponding to other cells are determined.
  • the DCI bit overhead can be reduced on the basis of ensuring the flexibility of DCI scheduling, effectively avoiding the problem of reduced DCI transmission efficiency, and achieving high availability.
  • the base station may first determine the first starting resource block RB index value and the first sustained RB number for the terminal to transmit data in the reference cell, and further, based on the first starting RB index value, determine the The second starting RB index value for data transmission by the terminal in the first cell; wherein the first cell is any one of other cells.
  • the other cells here refer to cells other than the reference cell among the multiple cells scheduled by DCI. Based on the second starting RB index value and the first number of persistent RBs, the second number of persistent RBs for data transmission by the terminal in the first cell is determined.
  • the specific determination method is similar to the above-mentioned method 1-1 and method 1-2, and will not be described again here.
  • the base station may determine the first RIV based on the first starting RB index value and the first number of persistent RBs of the reference cell and according to the corresponding relationship between Formula 1 and Formula 2 above. That is, the first RIV is associated with the first starting RB index value and the first continuing RB number. Further, based on the first RIV, the base station determines the bit value indicated by the bit included in the FDRA field in the DCI. That is, the FDRA field is used to indicate: the first RIV of the reference cell.
  • the base station may first determine the first resource indication value RIV of the terminal in the reference cell. Further, the base station determines the second RIV of the first cell based on the first RIV and the maximum RIV of the first cell, and determines the frequency domain resource for data transmission of the terminal in the first cell based on the second RIV.
  • the specific determination method is similar to the above-mentioned method 2, and will not be described again here.
  • the base station may directly determine the bit value indicated by the bit included in the FDRA domain in the DCI based on the first RIV of the reference cell. That is, the FDRA field is used to indicate: the first RIV of the reference cell.
  • the base station may determine the first starting resource block RB index value and the first sustained RB number for data transmission by the terminal in the reference cell. Further, the base station determines based on the first starting RB index value, determine the The second starting RB index value of the terminal's data transmission in the first cell, wherein the first cell is any one of the other cells. The base station may also determine the second continuous RB number for data transmission by the terminal in the first cell.
  • the specific determination method is similar to the above-mentioned method 3-1 and method 3-2, and will not be described again here.
  • the base station may first determine the first RIV of the reference cell based on the first starting RB index value and the first sustained RB number and according to the corresponding relationship between the above formula 1 and formula 2. That is, the first RIV is associated with the first starting RB index value and the first continuing RB number.
  • the base station may determine, based on the first RIV, the bit value indicated by the bits included in the first bit interval in the FDRA domain.
  • the base station may determine the bit value indicated by the bits included in the second bit interval corresponding to the first cell in the FDRA domain based on the second continuous RB number of data transmission in the first cell.
  • the FDRA field is used to indicate: the first RIV of the reference cell; wherein the first RIV is associated with the first starting RB index value and the first sustained RB number; and the number of sustained RBs for data transmission in each of the other cells.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the second bit interval corresponding to the first cell in the FDRA domain is preceded and followed from left to right with respect to the third bit interval corresponding to the second cell.
  • the order is the same as the preset arrangement order of the cell index value of the first cell relative to the cell index value of the second cell; wherein the second cell is different from the first cell among the other cells. any one of.
  • the first bit interval corresponds to the reference cell and is located before other bit intervals such as the second bit interval and the third bit interval.
  • the second bit interval, the third bit interval and other bit intervals are related to the cell index value in descending order. order or from smallest to largest.
  • the first bit interval occupies a first number of bits
  • the second bit interval occupies a second number of bits.
  • the first number of bits and the second number of bits are determined in the same manner as the terminal side determines the first number of bits and the second number of bits. The number method is similar and will not be described again here.
  • the base station may determine the first starting resource block RB index value and the first number of persistent RBs for data transmission by the terminal in the reference cell. Further, the base station determines the first number of persistent RBs based on the first number of persistent RBs. The second continuous RB number for data transmission by the terminal in the first cell, where the first cell is any one of the other cells. The base station may also determine the second starting RB index value for data transmission by the terminal in the first cell.
  • the specific determination method is similar to the above-mentioned method 4-1 and method 4-2, and will not be described again here.
  • the base station may first determine the first RIV of the reference cell based on the first starting RB index value and the first sustained RB number and according to the corresponding relationship between the above formula 1 and formula 2. That is, the first RIV is associated with the first starting RB index value and the first continuing RB number.
  • the base station may determine, based on the first RIV, the bit value indicated by the bits included in the first bit interval in the FDRA domain.
  • the base station may determine the bit value indicated by the bits included in the second bit interval corresponding to the first cell in the FDRA domain based on the second starting RB index value of the first cell data transmission.
  • the FDRA field is used to indicate: the first RIV of the reference cell; wherein the first RIV is associated with the first starting RB index value and the first sustained RB number; and the starting RB index value for data transmission in each of the other cells.
  • the first bit interval is before other bit intervals.
  • the order is determined from left to right.
  • the front and back order can also be one-to-one correspondence from right to left, and this disclosure does not limit this.
  • the second bit interval corresponding to the first cell in the FDRA domain is preceded and followed from left to right with respect to the third bit interval corresponding to the second cell.
  • the order is the same as the preset arrangement order of the cell index value of the first cell relative to the cell index value of the second cell; wherein the second cell is different from the first cell among the other cells. any one of.
  • the first bit interval corresponds to the reference cell and is located before other bit intervals such as the second bit interval and the third bit interval.
  • the second bit interval, the third bit interval and other bit intervals are related to the cell index value in descending order. order or from smallest to largest.
  • the first bit interval occupies a first number of bits
  • the second bit interval occupies a second number of bits.
  • the first number of bits and the second number of bits are determined in the same manner as the terminal side determines the first number of bits and the second number of bits. The number method is similar and will not be described again here.
  • the DCI bit overhead can be reduced on the basis of ensuring the flexibility of DCI scheduling, effectively avoiding the problem of reduced DCI transmission efficiency, and achieving high availability.
  • the way in which the base station determines the reference cell is similar to the way in which the terminal determines the reference cell, which will not be described again here.
  • Embodiment 1 Assume that the terminal is a Rel-18 and subsequent version terminal, and the terminal receives DCI for scheduling multi-cell data transmission. Based on the indication information corresponding to the DCI, it receives PDSCH of multiple cells or transmits multiple Community PUSCH.
  • This embodiment will later use multi-cell DCI to refer to the DCI used to schedule multi-cell data transmission.
  • the frequency domain resource information of different scheduled cells indicated by the FDRA domain of multi-cell DCI is based on the type 1 resource type scenario, by designing the corresponding FDRA domain indication method, a single DCI can provide multi-cell PDSCH/PUSCH frequency domain resource information. instructions.
  • the reference cell can be determined based on a base station signaling indication. For example, the reference cell indicates a cell identity of the reference cell.
  • the reference cell can also be determined in a predefined manner. For example, the cell where the multi-cell DCI is received is the reference cell, or the cell corresponding to the largest number of RBs occupied by the BWP configured in the scheduled cell is the reference cell. Alternatively, the cell corresponding to the smallest number of RBs occupied by the BWP configuration of the scheduled cell is used as the reference cell, or the cell with the largest or smallest cell index value of the scheduled cell is used as the reference cell. The present invention does not limit this.
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell corresponding to the FDRA domain.
  • the first RIV is represented by n, where n is the number of RBs occupied by the configured BWP of the reference cell, that is,
  • the first starting RB index value RB start,ref of the reference cell is associated with the first continuous RB number L RBs,ref of the reference cell.
  • n is the number of RBs occupied by the configured BWP of the reference cell, that is,
  • the first starting RB index value RB start,ref of the reference cell is associated with the first continuous RB number L RBs,ref of the reference cell.
  • n is the number of RBGs occupied by the BWP configured in the reference cell.
  • the first starting RBG index value of the reference cell is associated with the first number of sustained RBGs.
  • the frequency domain information of other cells (such as the first cell c1), the second starting RB index value RB start,c1 and the second continuous RB number L RBs,c1 are determined based on the following method, defining the BWP configuration of cell c1
  • the number of occupied RBs, that is, the number of first RBs is
  • first starting RB index value RB start,ref and the first continuous RB number L RBs,ref configured in the reference cell meet the following restrictions:
  • the second starting RB index value L RBs, c1 N; where N is the preset number of continuous RBs, and N may be 1 in this disclosure.
  • Table 1 and Table 2 show the number of RBs occupied by BWP in the reference cell configuration.
  • the number of RBs occupied by the configured BWP of the first cell c1 As an example, describe the above solution:
  • RB start,ref 5 does not meet the following restrictions:
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell corresponding to the FDRA domain, and the number of RBs occupied by the first RIV and the configured BWP of the reference cell.
  • the first starting RB index value RB start,ref of the reference cell is associated with the first continuous RB number L RBs,ref of the reference cell.
  • the frequency domain information of other cells (for example, the first cell c1), the second starting RB index value RB start, c1 and the second sustained RB number L RBs, c1 are determined based on the following method, defining the BWP configuration of cell c1
  • the number of occupied RBs, that is, the number of first RBs is
  • the subcarrier spacing SCS corresponding to the carrier where the reference cell is located is ⁇ ref
  • the subcarrier spacing SCS corresponding to the carrier where cell c1 is located is ⁇ c1 :
  • L RBs,c1 L RBs,ref ⁇ ref / ⁇ c1 ;
  • N the preset number of continuous RBs, and in this disclosure, N is 1.
  • This embodiment uses joint instructions to determine the FDRA resources of different scheduled cell data, which can effectively reduce multi-cell DCI bits overhead, avoid multi-cell DCI transmission code rate being too high, and loss of DCI transmission performance, thereby reducing cell scheduling. performance.
  • the terminal is a Rel-18 and subsequent version terminal, and the terminal receives DCI for multi-cell scheduling. Based on the indication information corresponding to the DCI, it receives PDSCH of multiple cells or transmits PUSCH of multiple cells. .
  • This embodiment will later use multi-cell DCI to refer to the DCI used to schedule multi-cell data transmission.
  • the frequency domain resource information of different scheduled cells indicated by the FDRA domain of multi-cell DCI is based on the type 1 resource type scenario, by designing the corresponding FDRA domain indication method, a single DCI can provide multi-cell PDSCH/PUSCH frequency domain resource information. instructions.
  • the reference cell can be determined based on a signaling indication, for example, indicating the cell identity of the reference cell; the reference cell can also be determined by predetermined signaling.
  • the way of definition is determined, for example, the cell where the multi-cell DCI is received is used as the reference cell, or the cell corresponding to the largest number of RBs occupied by the scheduled cell configured with BWP is used as the reference cell, or the scheduled cell is configured with BWP
  • the cell corresponding to the smallest number of occupied RBs is the reference cell, or the cell with the largest or smallest cell index value of the scheduled cell is the reference cell.
  • the present invention does not limit this.
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell corresponding to the FDRA domain, the first starting RB index value RB start,ref of the reference cell and the first persistence of the reference cell.
  • the number of RBs occupied by the configured BWP of the first RIV and the reference cell RB RB start,ref is related to L RBs,ref . Please refer to Formula 1 and Formula 2 for the specific correlation method.
  • the frequency domain information RB start,c1 and L RBs,c1 of other cells are determined based on the following method. Define the number of RBs occupied by the BWP configuration of cell c1, that is, the number of first RBs is
  • the second RIV corresponding to the first cell c1 is equal to the preset RIV, where the preset RIV is less than or equal to RIV c1,max .
  • the preset RIV may be equal to RIV c1,max .
  • the frequency domain information RB start, c1 and L RBs of the first cell c1 corresponding to the transmitted data, c1 is configured by the first RIV and the number of RBs occupied by the BWP of cell c1 Sure.
  • This embodiment indicates the FDRA information of different scheduled cells by sharing RIV, which can effectively reduce multi-cell DCI bits overhead, avoid multi-cell DCI transmission code rate being too high, and loss of DCI transmission performance, thereby reducing cell scheduling performance.
  • the terminal is a Rel-18 and subsequent version terminal, and the terminal receives DCI for multi-cell scheduling. Based on the indication information corresponding to the DCI, it receives PDSCH of multiple cells or transmits PUSCH of multiple cells. .
  • This embodiment considers that the frequency domain resource information of different scheduled cells indicated by the FDRA domain of multi-cell DCI is based on the type 1 resource type scenario.
  • a single DCI can realize the multi-cell PDSCH/PUSCH frequency An indication of domain resource information.
  • the reference cell can be determined based on a signaling indication, for example, indicating the cell identity of the reference cell; the reference cell can also be determined by predetermined signaling.
  • the way of definition is determined, for example, the cell where the multi-cell DCI is received is used as the reference cell, or the cell corresponding to the largest number of RBs occupied by the scheduled cell configured with BWP is used as the reference cell, or the scheduled cell is configured with BWP
  • the cell corresponding to the smallest number of occupied RBs is the reference cell, or the cell with the largest or smallest cell index value of the scheduled cell is the reference cell.
  • the present invention does not limit this.
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell indicated by the first N1 bits of the corresponding FDRA domain. is the number of RBs occupied by the configured BWP of the reference cell.
  • the first RIV is represented by n, n and the number of RBs occupied by the configured BWP of the reference cell.
  • RB start,ref is related to L RBs,ref .
  • For specific correlation methods refer to Formula 1 and Formula 2. Based on the above correlation method, the RB start,ref and L RBs,ref corresponding to the reference cell are determined.
  • the frequency domain information RB start, c1 and L RBs, c1 of other cells are determined based on the following method. It is defined that the number of RBs occupied by the BWP configuration of the first cell c1 is equal to
  • RB start,c1 RB start,ref .
  • N is the default number of continuous RBs, which can be 1.
  • c1 is indicated by the FDRA field corresponding to the n c0 +1 to n c1th bits.
  • the number of continuous RBs for cell ci data transmission L RBs, ci is indicated by the FDRA field corresponding to the n c (i-1) +1 to n ci bits indicate that, except for the reference cell, other cells c0, c1,...,ci are arranged in ascending order based on the cell index value, that is: if ci corresponds to the cell index value, Then c0 ⁇ c1,..., ⁇ ci.
  • the terminal receives multi-cell DCI and parses the first RIV n indicated by the first N1 bits of the corresponding FDRA domain, is the number of RBs occupied by the configured BWP of the reference cell, so n and the number of RBs occupied by the configured BWP of the reference cell RB start,ref is related to L RBs,ref .
  • the specific correlation method is determined by referring to Formula 1 and Formula 2. Based on the above correlation method, the frequency domain information RB start,ref and L RBs,ref corresponding to the reference cell are determined.
  • the frequency domain information RB start, c1 and L RBs, c1 of other cells are determined based on the following method. It is defined that the number of RBs occupied by the BWP configuration of cell c1 is equal to
  • RB start,c1 RB start,ref ⁇ ref / ⁇ c1 .
  • N is the default number of continuous RBs, which can be 1.
  • the corresponding L RBs, c1 are indicated by the n c0 +1 to n c1 -th bits included in the second bit interval corresponding to the first cell c1 in the FDRA domain.
  • the cells ci L RBs, ci is indicated by the FDRA domain corresponding to the nth c(i-1) +1 to nth ci bits.
  • other cells c0, c1,..., ci are arranged in order from small to large based on the cell index value, that is : If ci corresponds to the cell index value, then c0 ⁇ c1,..., ⁇ ci;
  • the number of continuous RBs L RBs,c1 is is the granularity. described It can be determined in a predefined way, for example, For example, It is equal to the RBG size configured in cell c1, as described It can be determined through signaling configuration. If signaling is not configured, or
  • This embodiment uses separate indication methods and limits the frequency domain RB starting positions of different cells or the frequency domain starting positions corresponding to the same frequency domain length.
  • the corresponding indication method is designed to ensure a certain degree of scheduling flexibility. Basically, it effectively reduces multi-cell DCI bits overhead, avoids multi-cell DCI transmission code rate being too high, and degrading DCI transmission performance, thus reducing cell scheduling performance.
  • the terminal is a Rel-18 and subsequent version terminal, and the terminal receives DCI for multi-cell scheduling. Based on the indication information corresponding to the DCI, it receives PDSCH of multiple cells or transmits PUSCH of multiple cells. .
  • This embodiment will later use multi-cell DCI to refer to the DCI used to schedule multi-cell data transmission.
  • the frequency domain resource information of different scheduled cells indicated by the FDRA domain of multi-cell DCI is based on the type 1 resource type scenario, by designing the corresponding FDRA domain indication method, a single DCI can provide multi-cell PDSCH/PUSCH frequency domain resource information. instructions.
  • the reference cell can be determined based on a signaling indication, for example, indicating the cell identity of the reference cell; the reference cell can also be determined by predetermined signaling.
  • the way of definition is determined, for example, the cell where the multi-cell DCI is received is used as the reference cell, or the cell corresponding to the largest number of RBs occupied by the scheduled cell configured with BWP is used as the reference cell, or the scheduled cell is configured with BWP
  • the cell corresponding to the smallest number of occupied RBs is the reference cell, or the cell with the largest or smallest cell index value of the scheduled cell is the reference cell.
  • the present invention does not limit this.
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell indicated by the first N1 bits of the corresponding FDRA domain.
  • the first RIV can be represented by n, n and the number of RBs occupied by the configured BWP of the reference cell.
  • RB start,ref is related to L RBs,ref .
  • the frequency domain information RB start,ref and L RBs,ref corresponding to the reference cell are determined.
  • the frequency domain information RB start, c1 and L RBs, c1 of other cells are determined based on the following method. It is defined that the number of RBs occupied by the BWP configuration of cell c1 is equal to
  • L RBs,c1 L RBs,ref .
  • the corresponding RB start, c1 is indicated by the FDRA domain corresponding to the n c0 +1 to n c1th bits.
  • the cell ci RB start, ci is indicated by the FDRA domain corresponding to the n c(i-1) + Bits 1 to n ci indicate that, except for the reference cell, other cells c0, c1,...,ci are arranged in ascending order based on the cell index value, that is: if ci corresponds to the cell index value, then c0 ⁇ c1,... , ⁇ ci;
  • other cells c0, c1,...,ci are arranged in descending order based on the cell index value, that is: if ci corresponds to the cell index value, then c0>c1,...,>ci.
  • the number of bits of c1 is equal to The RB starting position RB start,ref is represented by In terms of granularity, the second cell among other cells is similar to the first cell c1 and will not be described again here.
  • the described It can be determined in a predefined way, for example, For example, It is equal to the RBG size configured in cell c1, as described It can be determined through signaling configuration. If signaling is not configured, or
  • the terminal receives the multi-cell DCI and parses the first RIV of the reference cell indicated by the first N1 bits of the corresponding FDRA domain.
  • the first RIV value is represented by n, n and the number of RBs occupied by the configured BWP of the reference cell.
  • RB start,ref is related to L RBs,ref .
  • the frequency domain information RB start,ref and L RBs,ref corresponding to the reference cell are determined.
  • the frequency domain information RB start, c1 and L RBs, c1 of other cells are determined based on the following method. It is defined that the number of RBs occupied by the BWP configuration of cell c1 is equal to
  • L RBs,c1 L RBs,ref ⁇ ref / ⁇ c1 .
  • the corresponding RB start, c1 is indicated by the FDRA domain corresponding to the n c0 +1 to n c1th bits.
  • the cell ci RB start, ci is indicated by the FDRA domain corresponding to the n c(i-1) + Bits 1 to n ci indicate that, except for the reference cell, other cells c0, c1,...,ci are arranged in ascending order based on the cell index value, that is: if ci corresponds to the cell index value, then c0 ⁇ c1,... , ⁇ ci;
  • cells c0, c1,...,ci are arranged in descending order based on the cell index value, that is: if ci corresponds to the cell index value, then c0>c1,...,>ci.
  • the number of bits of c1 is equal to
  • the RB starting position RB start,ref is represented by is the granularity, other cells are similar to cell c1, and will not be described again here.
  • the described It can be determined in a predefined way, for example, For example, It is equal to the RBG size configured in cell c1, as described It can be determined through signaling configuration. If signaling is not configured, or
  • This embodiment uses separate indication methods and limits the number of RBs occupied by the frequency domains of different cells or the same frequency domain range length in scenarios where the corresponding indication method is designed, which can effectively reduce the cost of scheduling while ensuring a certain degree of scheduling flexibility.
  • Multi-cell DCI bits overhead prevents the multi-cell DCI transmission code rate from being too high and degrading DCI transmission performance, thereby reducing cell scheduling performance.
  • the present disclosure also provides an application function implementation device embodiment.
  • Figure 8 is a block diagram of a resource determination device according to an exemplary embodiment.
  • the device is applied to a terminal and includes:
  • the receiving module 801 is configured to receive downlink control information DCI sent by the base station; wherein the DCI is used to schedule data transmission of multiple cells;
  • the first determination module 802 is configured to determine at least the frequency domain resources corresponding to the reference cells in the plurality of cells based on the frequency domain resource allocation FDRA domain in the DCI;
  • the second determination module 803 is configured to determine frequency domain resources corresponding to other cells in the plurality of cells based on at least the frequency domain resources corresponding to the reference cell.
  • Figure 9 illustrates a multi-carrier scheduling device according to an exemplary embodiment.
  • the device is applied to a base station and includes:
  • the third determination module 901 is configured to determine the frequency domain resources for data transmission of the terminal in each cell in multiple cells;
  • the fourth determination module 902 is configured to determine the bit value of the bit indication included in the frequency domain resource allocation FDRA field in the downlink control information DCI based on at least the frequency domain resources corresponding to the reference cells in the plurality of cells; wherein, The DCI is used to schedule data transmission of the multiple cells;
  • the sending module 903 is configured to send the DCI to the terminal.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in a place, or can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and the computer program is used to execute any of the above resource determination methods on the terminal side.
  • the present disclosure also provides a computer-readable storage medium, the storage medium stores a computer program, and the computer program is used to execute any of the above-mentioned multi-carrier scheduling methods on the base station side.
  • the present disclosure also provides a multi-carrier scheduling device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the resource determination methods described above on the terminal side.
  • FIG. 10 is a block diagram of a resource determination device 1000 according to an exemplary embodiment.
  • the device 1000 can be a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle-mounted user equipment, an iPad, a smart TV and other terminals.
  • device 1000 may include one or more of the following components: processing component 1002, memory 1004, power supply component 1006, multimedia component 1008, audio component 1010, input/output (I/O) interface 1012, sensor component 1016, and Communication component 1018.
  • Processing component 1002 generally controls the overall operations of device 1000, such as operations associated with display, phone calls, random access of data, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1020 to execute instructions to complete all or part of the steps of the resource determination method described above.
  • processing component 1002 may include one or more modules that facilitate interaction between processing component 1002 and other components.
  • processing component 1002 may include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002.
  • the processing component 1002 can read executable instructions from the memory to implement the steps of a resource determination method provided by the above embodiments.
  • Memory 1004 is configured to store various types of data to support operations at device 1000 . Examples of such data include instructions for any application or method operating on device 1000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 1006 provides power to various components of device 1000.
  • Power supply components 1006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1000 .
  • Multimedia component 1008 includes a display screen that provides an output interface between the device 1000 and the user.
  • multimedia component 1008 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1010 is configured to output and/or input audio signals.
  • audio component 1010 includes a microphone (MIC) configured to receive external audio signals when device 1000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1004 or sent via communications component 1018 .
  • audio component 1010 also includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1016 includes one or more sensors for providing various aspects of status assessment for device 1000 .
  • the sensor component 1016 can detect the open/closed state of the device 1000, the relative positioning of components, such as the display and keypad of the device 1000, and the sensor component 1016 can also detect a change in position of the device 1000 or a component of the device 1000. , the presence or absence of user contact with the device 1000 , device 1000 orientation or acceleration/deceleration and temperature changes of the device 1000 .
  • Sensor assembly 1016 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1016 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1016 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1018 is configured to facilitate wired or wireless communication between apparatus 1000 and other devices.
  • Device 1000 may access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the communication component 1018 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1018 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented and used to execute any one of the above resource determination methods on the terminal side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented and used to execute any one of the above resource determination methods on the terminal side.
  • a non-transitory machine-readable storage medium including instructions such as a memory 1004 including instructions, which can be executed by the processor 1020 of the device 1000 to complete the above resource determination method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the present disclosure also provides a multi-carrier scheduling device, including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute any one of the above multi-carrier scheduling methods on the base station side.
  • Figure 11 is a schematic structural diagram of a multi-carrier scheduling device 1100 according to an exemplary embodiment.
  • Apparatus 1100 may be provided as a base station.
  • the apparatus 1100 includes a processing component 1122 , a wireless transmit/receive component 1124 , an antenna component 1126 , and a wireless interface-specific signal processing portion.
  • the processing component 1122 may further include at least one processor.
  • One of the processors in the processing component 1122 may be configured to perform any of the above-described multi-carrier scheduling methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种资源确定、多载波调度方法及装置、存储介质,其中,资源确定方法包括:接收基站发送的下行控制信息DCI;其中,DCI用于调度多个小区的数据传输(201);基于DCI中频域资源分配FDRA域,至少确定多个小区中的参考小区对应的频域资源(202);至少基于参考小区对应的频域资源,确定多个小区中的其他小区对应的频域资源(203)。本公开可以在保证DCI调度灵活性的基础上,减少DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。

Description

资源确定、多载波调度方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及资源确定、多载波调度方法及装置、存储介质。
背景技术
第5代移动通信(5th Generation Mobile Communication Technology,5G)新空口(New Radio,NR)技术工作在一个相对广泛的频谱范围内,随着对现有蜂窝网对应频域频带(band)的重耕(re-farming),对应频谱的利用率将会稳步提升。但对频率范围1(Frequency Range1,FR1)来说,可用的频域资源逐步碎片化。为了满足不同的频谱需求,需要以更高的频谱、功率效率和更为灵活的方式利用这些分散的频谱资源,从而实现更高的网络吞吐量以及良好的覆盖范围。
基于相关机制,现有服务小区内的一个下行控制信息(Downlink Control Information,DCI)只允许调度一个小区的数据。而随着频率资源的逐步碎片化,同时调度多个小区数据的需求将逐步提升,因此,需要引入调度多个小区数据的DCI。
在Release-18(Rel-18)场景下,单个DCI可同时调度3个或3个以上小区,若仍基于相关技术中的方法,将DCI中的频域资源分配(Frequency Domain Resource Allocation,FDRA)域做简单的扩展,会明显增加FDRA域所占比特(bits)数,增加了DCI的比特开销,降低了DCI传输资源。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种资源确定、多载波调度方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种资源确定方法,所述方法被终端执行,包括:
基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源;
至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
可选地,所述FDRA域用于指示:
所述参考小区的第一资源指示值RIV。
可选地,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
基于所述第一RIV,确定所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值;其中,所述第一小区是所述其他小区中的任意一个;
基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目。
可选地,所述基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值,包括:
在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
可选地,所述基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目,包括:
在所述第一持续RB数目小于或等于第二差值的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第二差值为所述第一RB数目与所述第二起始RB索引值的差值;
在所述第一持续RB数目大于所述第二差值的情况下,确定所述第二持续RB数目与所述第二差值相等。
可选地,所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV;其中,所述第一小区的最大RIV是基于所述第一小区配置的BWP所占的RB数目确定的,所述第一小区是所述其他小区中的任意一个;
基于所述第二RIV,确定所述第一小区数据传输的频域资源。
可选地,所述基于所述第一RIV和第一小区的最大RIV,确定所述第一小区的第二RIV,包括:
在所述第一RIV小于或等于所述第一小区的最大RIV的情况下,确定所述第二RIV与所述第一RIV相等;
在所述第一RIV大于所述第一小区的最大RIV的情况下,确定所述第二RIV与预设RIV相等。
可选地,所述FDRA域用于指示:
所述参考小区的第一RIV;以及
每个所述其他小区数据传输的持续RB数目。
可选地,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述第一RIV;
基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目;
所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值;其中,所述第一小区是所述其他小区中的任意一个;
基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二持续RB数目。
可选地,所述基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值,包括:
在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
可选地,所述FDRA域用于指示:
所述参考小区的第一RIV;以及
每个所述其他小区数据传输的起始RB索引值。
可选地,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述第一RIV;
基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目;
所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
基于所述第一持续RB数目,确定第一小区数据传输的第二持续RB数目;其中,所述第一小区是所述其他小区中的任意一个;
基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二起始RB索引值。
可选地,所述基于所述第一持续RB数目,确定第一小区数据传输的第二持续RB数目,包括:
在所述第一持续RB数目小于或等于第一RB数目的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
在所述第一持续RB数目大于所述第一RB数目的情况下,确定所述第二持续RB数目与所述第一RB数目相等。
可选地,所述FDRA域中,所述第一比特区间处于其他比特区间之前;
在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
可选地,所述第一比特区间占用第一比特数目的比特位;
其中,所述第一比特数目与指示所述第一RIV的所有可选值时需要占用的最少比特数目相等。
可选地,所述第二比特区间占用第二比特数目的比特位;
其中,所述第二比特数目与指示所述第二起始RB索引值的所有可选值或所述第二持续RB数目的所有可选值时需要所占的最少比特位数目相等。
可选地,所述方法还包括以下任一项:
将所述多个小区中接收所述DCI的小区作为所述参考小区;
将所述多个小区中配置BWP所占的RB数目最多的小区,作为所述参考小区;
将所述多个小区中配置BWP所占RB数目最少的小区,作为所述参考小区;
将所述多个小区中对应小区索引号最大的小区,作为所述参考小区;
将所述多个小区中对应小区索引号最小的小区,作为所述参考小区。
根据本公开实施例的第二方面,提供一种多载波调度方法,所述方法被基站执行,包括:
确定终端在多个小区中的每个小区数据传输的频域资源;
至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;其中,所述DCI用于调度所述多个小区的数据传输;
向所述终端发送所述DCI。
可选地,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值;其中,所述第一小区是其他小区中的任意一个;
基于所述第二起始RB索引值和所述第一持续RB数目,确定所述终端在所述第一小区数据传输的第二持续RB数目。
可选地,所述基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值,包括:
在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始 RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
可选地,所述基于所述第二起始RB索引值和所述第一持续RB数目,确定所述终端在所述第一小区数据传输的第二持续RB数目,包括:
在所述第一持续RB数目小于或等于第二差值的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第二差值为所述第一RB数目与所述第二起始RB索引值的差值;
在所述第一持续RB数目大于所述第二差值的情况下,确定所述第二持续RB数目与所述第二差值相等。
可选地,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
确定所述终端在所述参考小区的第一资源指示值RIV;
基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV;其中,所述第一小区的最大RIV是基于所述第一小区配置的BWP所占的RB数目确定的,所述第一小区是所述其他小区中的任意一个;
基于所述第二RIV,确定所述第一小区数据传输的频域资源。
可选地,所述基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV,包括:
在所述第一RIV小于或等于所述第一小区的最大RIV的情况下,确定所述第二RIV与所述第一RIV相等;
在所述第一RIV大于所述第一小区的最大RIV的情况下,确定所述第二RIV与预设RIV相等。
可选地,所述FDRA域用于指示:
所述参考小区的第一RIV;
所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:
基于所述第一RIV,确定所述FDRA域所包括的比特指示的比特值;其中,所述第一RIV与所述参考小区的第一起始RB索引值和第一持续RB数目相关联。
可选地,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值;其中,所述第一小区是所述其他小区中的任意一个;
确定所述终端在所述第一小区数据传输的第二持续RB数目。
可选地,所述基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值,包括:
在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所 占的RB数目;
在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
可选地,所述FDRA域用于指示:
所述参考小区的第一RIV;以及
每个所述其他小区数据传输的持续RB数目;
所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:
基于所述第一RIV,确定所述FDRA域中第一比特区间所包括的比特指示的比特值;其中,所述第一RIV与所述参考小区的第一起始RB索引值和第一持续RB数目相关联;
基于所述第二持续RB数目,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。
可选地,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
基于所述第一持续RB数目,确定所述终端在第一小区数据传输的第二持续RB数目;其中,所述第一小区是所述其他小区中的任意一个;
确定所述终端在所述第一小区数据传输的第二起始RB索引值。
可选地,所述基于所述第一持续RB数目,确定所述终端在第一小区数据传输的第二持续RB数目,包括:
在所述第一持续RB数目小于或等于第一RB数目的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
在所述第一持续RB数目大于所述第一RB数目的情况下,确定所述第二持续RB数目与所述第一RB数目相等。
可选地,所述FDRA域用于指示:
所述参考小区的第一RIV;以及
每个所述其他小区数据传输的起始RB索引值;
所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:
基于所述第一RIV,确定所述FDRA域中第一比特区间所包括的比特指示的比特值;其中,所述第一RIV与所述参考小区的第一起始RB索引值和第一持续RB数目相关联;
基于所述第二起始RB索引值,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。
可选地,所述FDRA域中按照从左到右的顺序,所述第一比特区间处于其他比特区间之前;
在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的从左到右的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
可选地,所述第一比特区间占用第一比特数目的比特位;
其中,所述第一比特数目与指示第二RB数目时需要占用的最少比特位数目相等,所述第二RB数目为所述参考小区配置的BWP所占的RB数目。
可选地,所述第二比特区间占用第二比特数目的比特位;
其中,所述第二比特数目与指示第一RB数目时需要所占的最少比特位数目相等,所述第一RB数目为所述第一小区配置的BWP所占的RB数目。
可选地,所述方法还包括以下任一项:
将所述多个小区中接收所述DCI的小区作为所述参考小区;
将所述多个小区中配置BWP所占RB数目最多的小区,作为所述参考小区;
将所述多个小区中配置BWP所占RB数目最少的小区,作为所述参考小区;
将所述多个小区中对应小区索引号最大的小区,作为所述参考小区;
将所述多个小区中对应小区索引号最小的小区,作为所述参考小区。
根据本公开实施例的第三方面,提供一种资源确定装置,所述装置应用于终端,包括:
接收模块,被配置为接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输;
第一确定模块,被配置为基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源;
第二确定模块,被配置为至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
根据本公开实施例的第四方面,提供一种多载波调度装置,所述装置应用于基站,包括:
第三确定模块,被配置为确定终端在多个小区中的每个小区数据传输的频域资源;
第四确定模块,被配置为至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;其中,所述DCI用于调度所述多个小区的数据传输;
发送模块,被配置为向所述终端发送所述DCI。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一项所述的资源确定方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站侧任一项所述的多载波调度方法。
根据本公开实施例的第七方面,提供一种资源确定装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一项所述的资源确定方法。
根据本公开实施例的第八方面,提供一种多载波调度装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一项所述的多载波调度方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,终端可以接收基站发送的用于调度多个小区的数据传输的DCI,基于DCI中FDRA域,至少确定多个小区中一个参考小区对应的频域资源,进一步地,至少可以基于参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。本公开可以在保证DCI调度灵活性的基础上,减少DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种单个DCI调度多个小区的PDSCH的示意图。
图1B是根据一示例性实施例示出的一种单DCI调度3个小区的数据传输时对应的频域资源示意图。
图2是根据一示例性实施例示出的一种资源确定方法流程示意图。
图3A是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图3B是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图4是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图5A是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图5B是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图6A是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图6B是根据一示例性实施例示出的另一种资源确定方法流程示意图。
图7是根据一示例性实施例示出的一种多载波调度方法流程示意图。
图8是根据一示例性实施例示出的一种资源确定装置框图。
图9是根据一示例性实施例示出的一种多载波调度装置框图。
图10是本公开根据一示例性实施例示出的一种资源确定装置的一结构示意图。
图11是本公开根据一示例性实施例示出的一种多载波调度装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中 所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
基于相关机制,调度小区内的一个DCI只允许调度一个小区的数据传输,即只允许调度一个小区的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)或物理下行共享信道(Physical Downlink Shared Channel,PDSCH),随着频率资源的逐步碎片化,同时调度多个小区数据的需求将逐步提升。同时,为降低控制信令开销,Rel-18WID支持单个DCI调度多个小区的PDSCH或PUSCH。需要说明的是每个小区对应一个PDSCH和一个PUSCH。通过一个DCI调度多个小区的PDSCH可以例如图1A所示。
在单DCI调度多小区数据传输的场景下,在保证调度灵活性的基础上,尽可能降低DCI开销是亟待解决的问题。FDRA域用于指示传输数据的频域资源,在单DCI调度两个小区场景设计中提出,可以将DCI FDRA域做简单的扩展,即基于不同bits指示所述2个小区调度数据的频域信息。
若单个DCI可同时调度3个或3个以上小区,且仍基于上述方法将FDRA域做简单的扩展,会明显增加FDRA域所占bits数,增加DCI bits开销。
以单DCI调度3个小区,且每个小区配置部分带宽(Bandwidth Part,BWP)所占资源块(Resource Block,RB)数目等于100为例,若所述3个小区对应FDRA域基于资源类型1(type1),则对应FDRA域所占bits数为39,极大增加了DCI开销,降低了DCI传输资源。
type1的FDRA资源映射类型,即通过FDRA域所对应的资源指示值(resource indication value,RIV)与传输数据对应频域资源的起始RB(RB start)和持续RB长度(L RBs)相关联,对于除公共搜索空间(Common Search Space,CSS)下的DCI格式(format)1_0和DCI format 1_2以外的type 1下行资源分配,FDRA指示的RIV与RB start和L RBs之间的关系如以下公式所示:
Figure PCTCN2022095751-appb-000001
Figure PCTCN2022095751-appb-000002
否则,
Figure PCTCN2022095751-appb-000003
其中,
Figure PCTCN2022095751-appb-000004
其中,
Figure PCTCN2022095751-appb-000005
为配置BWP所占RB数。
若type1资源以资源块组(Resource Block Group,RBG)为粒度,FDRA域所对应的RIV与传输数据对应频域资源的起始RBG(RBG start)和持续RB长度(L RBGs)之间的关联关系如下所示:
Figure PCTCN2022095751-appb-000006
RIV=N RBG(L RBGs-1)+RBG start               公式3
否则,
RIV=N RBG(N RBG-L RBGs+1)+(N RBG-1-RBG start)    公式4
其中,1≤L RBGs≤N RBG-RBG start,其中,N RBG为配置BWP所占RBG数。
在本公开实施例中,单DCI调度3个小区的数据传输时对应的频域资源示意图参照图1B所示。在图1B中,3个小区分别对应的载波的起始RB相对于指定参考点(point A)的偏移量分别为offsetToCarrier1、offsetToCarrier2、offsetToCarrier3,3个小区在频域资源上的配置BWP分别为BWP1、BWP2、BWP3。如果通过单个DCI同时调度3个小区的数据传输,则需要通过DCI中的FDRA域指示3个小区数据传输的频域资源,即:在对应配置BWP上的起始RB索引值、持续RB数目。针对调度多小区的DCI,若对应type 1 FDRA域若通过简单的扩展,分别指示每个小区数据传输的频域资源,将会极大增大DCI bits开销,降低DCI传输效率。
为了解决上述技术问题,本公开提供了一种资源确定、多载波调度方法及装置、存储介质。在保证DCI调度灵活性的基础上,减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
下面先从终端侧介绍一下本公开提供的资源确定方法。
本公开实施例提供了一种资源确定方法,参照图2所示,图2是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤201中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤202中,基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源。
参考小区可以由基站通过信令进行指示,或者参考小区可以通过协议约定方式来确定。
在一个可能的实现方式中,可以将多个小区中接收DCI的小区作为该参考小区。
在另一个可能的实现方式中,可以将多个小区中配置BWP所占RB数目最多的小区,作为所述参考小区。
在另一个可能的实现方式中,可以将多个小区中配置BWP所占RB数目最少的小区,作为所述参考小区。
在另一个可能的实现方式中,可以将所述多个小区中对应小区索引号最大的小区,作为所述参考小区。
在另一个可能的实现方式中,可以将所述多个小区中对应小区索引号最小的小区,作为所述参考小区。
以上仅为示例性说明,实际应用中在多个小区中确定参考小区的方式均应属于本公开的保护范围。
在步骤203中,至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
在本公开实施例中,多个小区中的其他小区可以指除了参考小区之外的其他被DCI调度的小区。其他小区的数目可以为一个或多个,本公开对此不作限定。
上述实施例中,可以在保证DCI调度灵活性的基础上,减少DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
在一些可选实施例中,DCI中的FDRA域可以用于指示:所述参考小区的第一资源指示值RIV。
相应地,其他小区对应的频域资源的具体确定方式如下:
方法1-1,基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,基于参考小区的第一起始RB索引值和第一持续RB数目来确定其他小区的频域资源。
参照图3A所示,图3A是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤301中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤302中,基于所述DCI中频域资源分配FDRA域,确定所述多个小区中参考小区的第一RIV。
在本公开实施例中,终端可以基于FDRA域所包括的所有比特指示的比特值,确定第一RIV。
在步骤303中,基于所述第一RIV,确定所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目。
在本公开实施例中,可以基于第一RIV、上述公式1和公式2的对应关系,可以确定出参考小区数据传输的第一起始RB索引值RB start,ref和第一持续RB数目L RBs,ref
在步骤304中,基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值。
在本公开实施例中,所述第一小区是所述多个小区中除了所述参考小区之外的其他小 区中的任意一个。
在本公开实施例中,可以将参考小区的第一起始RB索引值RB start,ref、第一持续RB数目L RBs,ref分别作为确定其他小区的起始RB索引值、持续RB数目的参考。
如果第一起始RB索引值RB start,ref满足以下条件:
Figure PCTCN2022095751-appb-000007
那么可以确定第一小区的第二起始RB索引值RB start,c1与第一起始RB索引值RB start,ref相等。其中,第一小区是其他小区中的任意一个。
如果第一起始RB索引值不满上述条件,那么可以确定第一小区的第二起始RB索引值RB start,c1与第一差值相等,其中,第一差值为所述第一RB数目
Figure PCTCN2022095751-appb-000008
与预设持续RB数目N的差值,即
Figure PCTCN2022095751-appb-000009
具体实现方式如下:
在一个可能的实现方式中,第一小区的配置BWP所占RB的数目
Figure PCTCN2022095751-appb-000010
第一小区的可选RB索引值范围是
Figure PCTCN2022095751-appb-000011
如果参考小区的第一起始RB索引值RB start,ref属于上述可选RB索引值范围,也就是说第一起始RB索引值RB start,ref小于第一RB数目
Figure PCTCN2022095751-appb-000012
即RB start,ref满足:
Figure PCTCN2022095751-appb-000013
那么第一小区数据传输的第二起始RB索引值RB start,c1可以直接使用参考小区的第一起始RB索引值RB start,ref,终端可以确定所述第一小区数据传输的第二起始RB索引值RB start,c1与所述第一起始RB索引值RB start,ref相等,即RB start,c1=RB start,ref
例如,第一RB数目
Figure PCTCN2022095751-appb-000014
为4,第一起始RB索引值RB start,ref为2,第一起始RB索引值RB start,ref小于第一RB数目
Figure PCTCN2022095751-appb-000015
即RB start,ref满足以下条件:RB start,ref=0,1,2,3,此时,第二起始RB索引值RB start,c1与所述第一起始RB索引值RB start,ref相等,也为2。
在另一个可能的实现方式中,如果所述第一起始RB索引值RB start,ref大于或等于所述第一RB数目
Figure PCTCN2022095751-appb-000016
也就是说,参考小区的第一起始RB索引值RB start,ref不属于上述可选RB索引值范围,RB start,ref不满足:
Figure PCTCN2022095751-appb-000017
第一小区数据传输的第二起始RB索引值RB start,c1无法直接使用参考小区的第一起始RB索引值RB start,ref,此时终端可以确定所述第二起始RB索引值RB start,c1与第一差值相等,其中,第一差值为所述第一RB数目
Figure PCTCN2022095751-appb-000018
与预设持续RB数目N的差值,即
Figure PCTCN2022095751-appb-000019
其中,预设持续RB数目N可以由基站指示,也可以由协议约定。预设持续RB数目N为正整数。
在一个可能的实现方式中,预设持续RB数目可以为1,从而确保预设持续RB数目不会超出第一RB数目
Figure PCTCN2022095751-appb-000020
例如,第一RB数目
Figure PCTCN2022095751-appb-000021
为4,第一起始RB索引值RB start,ref为4,此时第一起始RB索引值RB start,ref等于所述第一RB数目,预设RB数目为1,则终端可以确定第二起始RB索引值
Figure PCTCN2022095751-appb-000022
在步骤305中,基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目。
在本公开实施例中,第一持续RB数目为正整数。
在本公开实施例中,确定了第一小区的第二起始RB索引值RB start,c1之后,可以基于第二起始RB索引值RB start,c1和参考小区的第一持续RB数目L RBs,ref作为参考,共同确定第一小区的第二持续RB数目L RBs,ref
若L RBs,ref满足以下条件:
Figure PCTCN2022095751-appb-000023
终端可以直接确定第二持续RB数目L RBs,ref=L RBs,ref
若L RBs,ref不满足上述条件,终端可以确定
Figure PCTCN2022095751-appb-000024
具体实现方式如下:
在一个可能的实现方式中,如果第一持续RB数目L RBs,ref小于或等于第二差值,其中,第二差值为所述第一RB数目
Figure PCTCN2022095751-appb-000025
与所述第二起始RB索引值RB start,c1的差值,即第一持续RB数目L RBs,ref满足:
Figure PCTCN2022095751-appb-000026
此时终端可以确定第二持续RB数目L RBs,c1与所述第一持续RB数目L RBs,ref相等,L RBs,c1=L RBs,ref
例如,按照之前的步骤303已经确定了第二起始RB索引值RB start,c1,则终端根据第一RB数目
Figure PCTCN2022095751-appb-000027
与所述第二起始RB索引值RB start,c1的差值可以确定出第二差值,假设第二差值为3,第一持续RB数目L RBs,ref为2,第一持续RB数目L RBs,ref满足:
Figure PCTCN2022095751-appb-000028
Figure PCTCN2022095751-appb-000029
则第二持续RB数目L RBs,c1与所述第一持续RB数目L RBs,ref相等,L RBs,c1=L RBs,ref=2。
在另一个可能的实现方式中,如果第一持续RB数目L RBs,ref大于第二差值,则终端可以确定第二持续RB数目L RBs,c1与上述计算得到的第二差值相等,即
Figure PCTCN2022095751-appb-000030
Figure PCTCN2022095751-appb-000031
例如,之前已经确定了第二起始RB索引值RB start,c1,根据第一RB数目
Figure PCTCN2022095751-appb-000032
与所述第二起始RB索引值RB start,c1的差值可以确定出第二差值,假设第二差值为1,第一持续RB数目L RBs,ref为2,则第二持续RB数目L RBs,c1与所述第二差值相等,
Figure PCTCN2022095751-appb-000033
Figure PCTCN2022095751-appb-000034
上述实施例中,终端可以根据FDRA域确定参考小区的第一RIV,基于第一RIV可以确定参考小区的第一起始RB索引值和第一持续RB数目,进一步地,终端可以基于第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值,以及基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目。在保证DCI调度灵活性的基础上,让DCI中的FDRA域只用于指示参考小区的第一RIV,减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
通过上述方法对DCI中的FDRA域设计规则,使得其他小区的RB起始位置和持续RB数目基于参考小区确定。下述将提供另外一种方法,使得其他小区的频域起始位置和持续频域范围大小基于参考小区确定。
方法1-2,终端可以基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,终端可以基于参考小区的第一起始RB索引值和第一持续RB 数目、参考小区的子载波间隔(Sub-Carrier Space,SCS)和其他小区的SCS共同来确定其他小区的频域资源。
参照图3B所示,图3B是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤301’中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤302’中,基于所述DCI中频域资源分配FDRA域,确定所述多个小区中参考小区的第一RIV。
在本公开实施例中,终端可以基于FDRA域所包括的所有比特指示的比特值,确定第一RIV。
在步骤303’中,基于所述第一RIV,确定所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目。
步骤303’与上述步骤303的实现方式类似,在此不再赘述。
在步骤304’中,基于所述参考小区的SCS、第一小区的SCS和所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值。
在本公开实施例中,所述第一小区是所述其他小区中的任意一个。确定第二起始RB索引值的方式与步骤304类似,此外,本公开实施例中,还考虑了SCS的影响,具体实现方式如下:
在一个可能的实现方式中,如果第一起始RB索引值对应的频点大小RB start,refμ refc1小于第一RB数目
Figure PCTCN2022095751-appb-000035
对应的频点大小,即
Figure PCTCN2022095751-appb-000036
那么终端可以确定所述第一小区数据传输的第二起始RB索引值RB start,c1=RB start,refμ refc1。其中,第一RB数目
Figure PCTCN2022095751-appb-000037
可以为第一小区配置的BWP所占的RB数目,μ ref为参考小区的SCS,μ c1为第一小区的SCS。
在另一个可能的实现方式中,如果所述第一起始RB索引值对应的频点大小RB start,refμ refc1大于或等于所述第一RB数目
Figure PCTCN2022095751-appb-000038
终端可以确定所述第二起始RB索引值
Figure PCTCN2022095751-appb-000039
其中,N为预设持续RB数目,μ ref为参考小区的SCS,μ c1为第一小区的SCS。
在步骤305’中,基于所述参考小区的SCS、所述第一小区的SCS、所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目。
在本公开实施例中,第一持续RB数目为正整数。确定第一小区数据传输的第二持续RB数目的方式与步骤305类似,此外,本公开实施例中,还考虑了SCS的影响,具体实现方式如下:
在一个可能的实现方式中,如果第一持续RB数目对应的频域范围大小L RBs,refμ refc1 小于或等于第二差值,即
Figure PCTCN2022095751-appb-000040
其中,第二差值为所述第一RB数目
Figure PCTCN2022095751-appb-000041
与所述第二起始RB索引值RB start,c1的差值,此时终端可以确定第二持续RB数目L RBs,c1=L RBs,refμ refc1,其中,μ ref为参考小区的SCS,μ c1为第一小区的SCS。
在另一个可能的实现方式中,如果第一持续RB数目对应的频域范围大小L RBs,refμ refc1大于第二差值,则终端可以确定第二持续RB数目
Figure PCTCN2022095751-appb-000042
其中,μ ref为参考小区的SCS,μ c1为第一小区的SCS。
上述实施例中,终端可以基于上述方式确定其他小区对应的频域资源。在保证DCI调度灵活性的基础上,让DCI中的FDRA域只用于指示参考小区的第一RIV,减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
方法2,基于参考小区的第一RIV和其他小区的最大RIV,确定其他小区的RIV,进而基于其他小区的RIV确定其他小区数据传输的频域资源。
参照图4所示,图4是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤401中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤402中,基于所述DCI中频域资源分配FDRA域,确定所述多个小区中参考小区的第一RIV。
在本公开实施例中,终端可以基于FDRA域所包括的所有比特指示的比特值,确定第一RIV。
在步骤403中,基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV。
在本公开实施例中,所述第一小区的最大RIV是基于所述第一小区配置的BWP所占的RB数目确定的,即第一小区的最大RIV是基于第一RB数目
Figure PCTCN2022095751-appb-000043
确定的。所述第一小区是所述多个小区中不同于参考小区的其他小区中的任意一个。
在一个可能的实现方式中,在所述第一RIV小于或等于所述第一小区的最大RIV的情况下,确定所述第一小区的第二RIV与所述第一RIV相等。
在另一个可能的实现方式中,在所述第一RIV大于所述第一小区的最大RIV的情况下,确定所述第二RIV与预设RIV相等。
在本公开实施例中,预设RIV可以由基站通过信令指示,也可以由协议约定来确定,本公开对此不作限定。具体地,预设RIV可以小于或等于第一小区的最大RIV。示例性的,所述预设RIV可以等于第一小区的最大RIV。
在步骤404中,基于所述第二RIV,确定所述第一小区数据传输的频域资源。
在本公开实施例中,可以基于第一小区的第二RIV和上述公式1、公式2的对应关系,确定第一小区数据传输的第二起始RB索引值RB start,c1和第二持续RB数目L RBs,c1(持续RB 数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目)。
上述实施例中,终端可以根据FDRA域确定参考小区的第一RIV,基于第一RIV和第一小区的最大RIV,可以确定第一小区的第二RIV,进一步地,终端可以基于第二RIV来确定第一小区数据传输的频域资源。在保证DCI调度灵活性的基础上,让DCI中的FDRA域只用于指示参考小区的第一RIV,减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
在一些可选实施例中,FDRA域可以用于指示:所述参考小区的第一RIV;以及每个所述其他小区数据传输的持续RB数目。
相应地,确定其他小区对应的频域资源的方式具体如下:
方法3-1,基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,其他小区的起始RB索引值可以基于第一起始RB索引值确定,其他小区的持续RB数目基于FDRA域所包括的比特指示的比特值来确定。
参照图5A所示,图5A是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤501中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤502中,基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述多个小区中参考小区的第一RIV。
在一个可能的实现方式中,在FDRA域中,第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在一个可能的实现方式中,第一比特区间占用第一比特数目的比特位。其中,所述第一比特数目与指示所述第一RIV的所有可选值时需要占用的最少比特数目相等。其中,参考小区的第一RIV的所有可选值是基于参考小区配置BWP所占RB数目确定的。
在本公开实施例中,第一比特数目N1可以采用以下公式确定:
Figure PCTCN2022095751-appb-000044
其中,
Figure PCTCN2022095751-appb-000045
为参考小区配置BWP所占的RB数目,
Figure PCTCN2022095751-appb-000046
为向上取整函数。
当然,第一比特数目参考小区的第一RIV的所有可选值也可以基于所述参考小区配置BWP所占的RBG数目来确定,本公开对此不作限定。
相应地,第一比特数目N1可以采用以下公式确定:
Figure PCTCN2022095751-appb-000047
其中,N RBG为参考小区配置BWP所占的RBG数目,
Figure PCTCN2022095751-appb-000048
为向上取整函数。
在步骤503中,基于所述第一RIV,确定所述参考小区的第一起始RB索引值和第一 持续RB数目。
在本公开实施例中,终端可以基于第一RIV、上述公式1和公式2的对应关系,可以确定出参考小区数据传输的第一起始RB索引值RB start,ref和第一持续RB数目L RBs,ref
在步骤504中,基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值。
在本公开实施例中,所述第一小区是所述多个小区中不同于参考小区的其他小区中的任意一个。步骤504的具体实现方式与步骤304的实现方式类似,在此不再赘述。
在步骤505中,基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二持续RB数目。
在一个可能的实现方式中,在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在本公开实施例中,第二比特区间用于指示第一小区数据传输的第二持续RB数目,第三比特区间用于指示第二小区数据传输的第三持续RB数目。
其中,预设排列顺序可以是小区索引值由大到小的顺序或者可以是小区索引值由小到大的顺序。
也就是说,第一比特区间对应参考小区,位于第二比特区间、第三比特区间等其他比特区间之前,第二比特区间、第三比特区间等其他比特区间与小区索引值基于由大到小的顺序或由小到大的顺序一一对应。
例如,第二小区的小区索引值小于第一小区的小区索引值,预设排列顺序是小区索引值由大到小的顺序,则在FDRA域中,第二比特区间位于第三比特区间之前。第一比特区间位于第二比特区间之前。在FDRA域内,从左到右依次是对应参考小区的第一比特区间、对应第一小区的第二比特区间、对应第二小区的第三比特区间。
在另一个可能的实现方式中,第二比特区间占用第二比特数目的比特位。
其中,所述第二比特数目与指示所述第二起始RB索引值的所有可选值时需要占用的最少比特位数目相等。其中,第二起始RB索引值的所有可选值可以基于第一RB数目确定,即可以基于第一小区配置BWP所占的RB数目确定。
在本公开实施例中,第二比特数目N2可以采用以下公式确定:
Figure PCTCN2022095751-appb-000049
其中,
Figure PCTCN2022095751-appb-000050
为第一小区配置的BWP所占的RB数目,
Figure PCTCN2022095751-appb-000051
为向上取整函数。
或者,FDRA域可以用于指示:参考小区的第一RIV;以及每个所述其他小区数据传输的持续RBG数目。
相应地,所述第二比特数目与指示所述第二起始RBG索引值的所有可选值时需要占用的最少比特位数目相等,第二起始RBG索引值的所有可选值第二比特数目可以基于第一小 区配置BWP所占的RBG数目确定。
在本公开实施例中,第二比特数目N2可以采用以下公式确定:
Figure PCTCN2022095751-appb-000052
其中,
Figure PCTCN2022095751-appb-000053
为第一小区配置的BWP所占的RB数目,
Figure PCTCN2022095751-appb-000054
可以为第一小区配置的BWP占用的RBG数目。
在本公开实施例中,
Figure PCTCN2022095751-appb-000055
可以由基站通过信令进行配置,也可以由协议约定。
可选地,如果基站未通过信令配置
Figure PCTCN2022095751-appb-000056
终端可以基于协议约定,确定
Figure PCTCN2022095751-appb-000057
为预设值,预设值可以为正整数,例如为1或6,本公开对此不作限定。
上述实施例中,在保证DCI调度灵活性的基础上,让DCI中的FDRA域用于指示参考小区的第一RIV和其他小区的持续RB数目或RBG数目,从而减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
方法3-2,基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,其他小区的起始RB索引值可以基于参考小区的SCS、其他小区的SCS以及第一起始RB索引值确定,其他小区的持续RB数目可以基于FDRA域所包括的比特指示的比特值来确定。
参照图5B所示,图5B是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤501’中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤502’中,基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述多个小区中参考小区的第一RIV。
在一个可能的实现方式中,在FDRA域中,第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在一个可能的实现方式中,第一比特区间占用第一比特数目的比特位。其中,所述第一比特数目与指示第一RIV的所有可选值时需要占用的最少比特数目相等。其中,参考小区的第一RIV的所有可选值是基于参考小区配置BWP所占RB数目确定的。
在本公开实施例中,第一比特数目N1可以采用公式5确定。
当然,参考小区的第一RIV的所有可选值也可以基于所述参考小区配置BWP所占的RBG数目来确定。具体可以参照上述公式6,在此不再赘述。
在步骤503’中,基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目。
在本公开实施例中,可以基于第一RIV、上述公式1和公式2的对应关系,可以确定 出参考小区数据传输的第一起始RB索引值RB start,ref和第一持续RB数目L RBs,ref
在步骤504’中,基于所述参考小区的SCS、第一小区的SCS和所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值。
在本公开实施例中,步骤504’的实现方式与步骤304’的实现方式类似,即
Figure PCTCN2022095751-appb-000058
则第一小区数据传输的第二起始RB索引值RB start,c1=RB start,refμ refc1。其中,第一RB数目
Figure PCTCN2022095751-appb-000059
可以为第一小区配置的BWP所占的RB数目,μ ref为参考小区的SCS,μ c1为第一小区的SCS,如果RB start,refμ refc1大于或等于
Figure PCTCN2022095751-appb-000060
则第二起始RB索引值
Figure PCTCN2022095751-appb-000061
在此不再赘述。
在步骤505’中,基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二持续RB数目。
步骤505’的实现方式与上述步骤505类似,在此不再赘述。
上述实施例中,在保证DCI调度灵活性的基础上,让DCI中的FDRA域用于指示参考小区的第一RIV和其他小区的持续RB数目,从而减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
在一些可选实施例中,FDRA域可以用于指示:所述参考小区的第一RIV;以及每个所述其他小区数据传输的起始RB索引值。
相应地,确定其他小区对应的频域资源的方式具体如下:
方法4-1,DCI调度的多个小区的SCS均相同的情况下,基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,其他小区的持续RB数目基于第一持续RB数目来确定,其他小区的起始RB索引值可以基于FDRA域所包括的比特指示的比特值来确定。
参照图6A所示,图6A是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤601中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
在步骤602中,基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述多个小区中参考小区的第一RIV。
在一个可能的实现方式中,在FDRA域中,第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在一个可能的实现方式中,第一比特区间占用第一比特数目的比特位。其中,所述第一比特数目与指示所述第一RIV的所有可选值时需要占用的最少比特数目相等。其中,参 考小区的第一RIV的所有可选值是基于参考小区配置BWP所占RB数目确定的。
在本公开实施例中,第一比特数目N1可以采用公式5确定。
当然,参考小区的第一RIV的所有可选值也可以基于所述参考小区配置BWP所占的RBG数目来确定。具体可以参照上述公式6,在此不再赘述。
在步骤603中,基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目。
在本公开实施例中,终端可以基于第一RIV和上述公式1、公式2的对应关系,确定第一起始RB索引值和第一持续RB数目。
在步骤604中,基于所述第一持续RB数目,确定第一小区数据传输的第二持续RB数目。
在本公开实施例中,第一小区是其他小区中的任意一个。
在一个可能的实现方式中,在所述第一持续RB数目L RBs,ref小于或等于第一RB数目
Figure PCTCN2022095751-appb-000062
的情况下,即
Figure PCTCN2022095751-appb-000063
终端可以确定所述第二持续RB数目L RBs,c1与所述第一持续RB数目L RBs,ref相等,即L RBs,c1=L RBs,ref。其中,第一RB数目
Figure PCTCN2022095751-appb-000064
为第一小区配置的BWP所占的RB数目。
在另一个可能的实现方式中,在所述第一持续RB数目L RBs,ref大于所述第一RB数目
Figure PCTCN2022095751-appb-000065
的情况下,即
Figure PCTCN2022095751-appb-000066
则终端可以确定所述第二持续RB数目L RBs,c1与所述第一RB数目
Figure PCTCN2022095751-appb-000067
相等,即
Figure PCTCN2022095751-appb-000068
或者,此时第二持续RB数目L RBs,c1可以等于第一RB数目
Figure PCTCN2022095751-appb-000069
与预设差值M的差值。其中,预设差值M可以由基站通过信令来配置,也可以由协议约定,本公开对此不作限定。预设差值M可以为大于或等于零的整数。示例性的,预设差值M为0,则
Figure PCTCN2022095751-appb-000070
在步骤605中,基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二起始RB索引值。
在一个可能的实现方式中,在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
第二比特区间用于指示第一小区数据传输的第二起始RB索引值,第三比特区间用于指示第二小区数据传输的第三起始RB索引值。
其中,预设排列顺序可以是小区索引值由大到小的顺序或者可以是小区索引值由小到大的顺序。
也就是说,第一比特区间对应参考小区,位于第二比特区间、第三比特区间等其他比特区间之前,第二比特区间、第三比特区间等其他比特区间与小区索引值由大到小的顺序或由小到大的顺序相对应。
例如,第二小区的小区索引值大于第一小区的小区索引值,预设排列顺序是小区索引值由大到小的顺序,则在FDRA域中,第三比特区间位于第二比特区间之前。第一比特区间位于第二比特区间之前。在FDRA域内,从左到右依次是对应参考小区的第一比特区间、对应第二小区的第三比特区间、对应第一小区的第二比特区间。
在另一个可能的实现方式中,第二比特区间占用第二比特数目的比特位。其中,所述第二比特数目与指示所述第二起始RB索引值的所有可选值时需要占用的最少比特位数目相等。第二起始RB索引值的所有可选值可以基于第一RB数目确定,即可以基于第一小区配置BWP所占的RB数目确定。
第二比特数目在本公开实施例中,第二比特数目N2可以采用以下公式确定:
Figure PCTCN2022095751-appb-000071
其中,
Figure PCTCN2022095751-appb-000072
为第一小区配置的BWP所占的RB数目,
Figure PCTCN2022095751-appb-000073
为向上取整函数。
或者,FDRA域可以用于指示:参考小区的第一RIV;以及每个所述其他小区数据传输的起始RBG索引值。
相应地,所述第二比特数目与指示所述第二起始RBG索引值的所有可选值时需要占用的最少比特位数目相等,第二起始RBG索引值的所有可选值可以基于第一小区配置BWP所占的RBG数目确定。
第二比特数目在本公开实施例中,第二比特数目N2可以采用以下公式确定:
Figure PCTCN2022095751-appb-000074
其中,
Figure PCTCN2022095751-appb-000075
为第一小区配置的BWP所占的RB数目,
Figure PCTCN2022095751-appb-000076
可以为第一小区配置的BWP占用的RBG数目。
在本公开实施例中,
Figure PCTCN2022095751-appb-000077
可以由基站通过信令进行配置,也可以由协议约定。
可选地,如果基站未通过信令配置
Figure PCTCN2022095751-appb-000078
终端可以基于协议约定,确定
Figure PCTCN2022095751-appb-000079
为预设值,预设值可以为正整数,例如为1或6,本公开对此不作限定。
上述实施例中,在保证DCI调度灵活性的基础上,让DCI中的FDRA域用于指示参考小区的第一RIV和其他小区的起始RB索引值或起始RBG索引值,从而减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
方法4-2,基于参考小区的第一RIV,确定参考小区数据传输的第一起始RB索引值和第一持续RB数目(持续RB数目也可称为连续RB数目,即从起始RB开始连续占用的RB数目),进一步地,其他小区的持续RB数目可以基于参考小区的SCS、其他小区的SCS以及第一持续RB数目确定,其他小区的起始RB索引值可以基于FDRA域所包括的比特指示的比特值来确定。
参照图6B所示,图6B是根据一实施例示出的一种资源确定方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤601’中,接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对 应一个PUSCH。
在步骤602’中,基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述多个小区中参考小区的第一RIV。
在一个可能的实现方式中,在FDRA域中,第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在一个可能的实现方式中,第一比特区间占用第一比特数目的比特位。其中,所述第一比特数目与指示第一RIV的所有可选值时需要占用的最少比特数目相等。其中,参考小区的第一RIV的所有可选值是基于参考小区配置BWP所占RB数目确定的。在本公开实施例中,第一比特数目N1可以采用公式5确定。当然,参考小区的第一RIV的所有可选值也可以基于所述参考小区配置BWP所占的RBG数目来确定。具体可以参照上述公式6,在此不再赘述。
在步骤603’中,基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目。
在本公开实施例中,终端可以基于第一RIV和上述公式1、公式2的对应关系,确定第一起始RB索引值和第一持续RB数目。
在步骤604’中,基于所述第一持续RB数目、所述参考小区的SCS和第一小区的SCS,确定所述第一小区数据传输的第二持续RB数目。
在本公开实施例中,第一小区是其他小区中的任意一个。
在一个可能的实现方式中,在所述第一持续RB数目对应的频点大小L RBs,refμ refc1小于或等于第一RB数目
Figure PCTCN2022095751-appb-000080
的情况下,其中,第一RB数目
Figure PCTCN2022095751-appb-000081
为第一小区配置的BWP所占的RB数目,即
Figure PCTCN2022095751-appb-000082
终端可以确定所述第二持续RB数目L RBs,c1=L RBs,refμ refc1。其中,μ ref为参考小区的SCS,μ c1为第一小区的SCS。
在另一个可能的实现方式中,在所述第一持续RB数目对应的频点大小L RBs,refμ refc1大于所述第一RB数目
Figure PCTCN2022095751-appb-000083
的情况下,即
Figure PCTCN2022095751-appb-000084
则终端可以确定所述第二持续RB数目L RBs,c1与所述第一RB数目
Figure PCTCN2022095751-appb-000085
相等,即
Figure PCTCN2022095751-appb-000086
或者,此时第二持续RB数目L RBs,c1可以等于第一RB数目
Figure PCTCN2022095751-appb-000087
与预设差值M的差值。其中,预设差值M可以由基站通过信令来配置,也可以由协议约定,本公开对此不作限定。预设差值M可以为大于或等于零的整数。
在步骤605’中,基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二起始RB索引值。
步骤605’的实现方式与步骤605的实现方式类似,在此不再赘述。
上述实施例中,在保证DCI调度灵活性和考虑DCI调度的多个小区的SCS不同的基础上,让DCI中的FDRA域用于指示参考小区的第一RIV和其他小区的起始RB索引值或起始RBG索引值,从而减少了DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
下面再从基站侧介绍一下本公开提供的多载波调度方法。
本公开实施例提供了一种多载波调度方法,参照图7所示,图7是根据一实施例示出的一种多载波调度方法流程图,可以用于基站,该方法可以包括以下步骤:
在步骤701中,确定终端在多个小区中的每个小区数据传输的频域资源。
在步骤702中,至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;其中,所述DCI用于调度所述多个小区的数据传输。
在本公开实施例中,DCI用于调度多个小区的数据传输可以包括但不限于调度多个小区的PDSCH和/或多个小区的PUSCH。其中,每个小区对应一个PDSCH和/或每个小区对应一个PUSCH。
需要说明的是,在本公开实施例中,基站需要先确定了终端在多个小区中的每个小区数据传输的频域资源后,再执行步骤702,至少可以基于参考小区对应的频域资源,来确定DCI中FDRA域所包括的比特指示的比特值。在步骤703中,向所述终端发送所述DCI。
在本公开实施例中,在确定了DCI中FDRA域所包括的比特指示的比特值后,将该DCI发送给终端,以便终端基于DCI中FDRA域,至少确定参考小区对应的频域资源,进而至少基于参考小区对应的频域资源,确定其他小区对应的频域资源。
上述实施例中,可以在保证DCI调度灵活性的基础上,减少DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
在一些可选实施例中,基站可以先确定终端在参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目,进一步地,基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值;其中,所述第一小区是其他小区中的任意一个。这里的其他小区是指DCI调度的多个小区中除了参考小区之外的其他小区。基于第二起始RB索引值和所述第一持续RB数目,确定所述终端在所述第一小区数据传输的第二持续RB数目。
具体确定方式与上述方法1-1、方法1-2类似,在此不再赘述。
在本公开实施例中,基站可以基于参考小区的第一起始RB索引值和第一持续RB数目,按照上述公式1、公式2的对应关系,确定第一RIV。即第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联。进一步地,基站基于第一RIV,确定DCI中FDRA域所包括的比特指示的比特值。即FDRA域用于指示:所述参考小区的第一RIV。
在一些可选实施例中,基站可以先确定终端在所述参考小区的第一资源指示值RIV。进一步地,基站基于第一RIV和第一小区的最大RIV,确定第一小区的第二RIV,并基于第二RIV来确定所述终端在第一小区数据传输的频域资源。具体确定方式与上述方法2类似,在此不再赘述。
在本公开实施例中,基站可以直接基于参考小区的第一RIV,确定DCI中FDRA域所包括的比特指示的比特值。即FDRA域用于指示:所述参考小区的第一RIV。
在一些可选实施例中,基站可以确定终端在参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目,进一步地,基站确定基于所述第一起始RB索引值,确定所述 终端在第一小区数据传输的第二起始RB索引值,其中,所述第一小区是所述其他小区中的任意一个。基站还可以确定终端在所述第一小区数据传输的第二持续RB数目。
具体确定方式与上述方法3-1、方法3-2类似,在此不再赘述。
在本公开实施例中,基站可以先基于所述第一起始RB索引值和所述第一持续RB数目,按照上述公式1、公式2的对应关系,确定所述参考小区的第一RIV。即第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联。基站可以基于第一RIV,确定FDRA域中第一比特区间所包括的比特指示的比特值。另外,基站可以基于第一小区数据传输的第二持续RB数目,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。即在本公开实施例中,FDRA域用于指示:所述参考小区的第一RIV;其中,所述第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联;以及每个所述其他小区数据传输的持续RB数目。
其中,所述FDRA域中,所述第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的从左到右的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
也就是说,第一比特区间对应参考小区,位于第二比特区间、第三比特区间等其他比特区间之前,第二比特区间、第三比特区间等其他比特区间与小区索引值由大到小的顺序或由小到大的顺序相对应。
第一比特区间占用第一比特数目的比特位,第二比特区间占用第二比特数目的比特位,第一比特数目和第二比特数目的确定方式与终端侧确定第一比特数目和第二比特数目的方式类似,在此不再赘述。
在一些可选实施例中,基站可以确定终端在参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目,进一步地,基站确定基于所述第一持续RB数目,确定所述终端在第一小区数据传输的第二持续RB数目,其中,所述第一小区是所述其他小区中的任意一个。基站还可以确定终端在所述第一小区数据传输的第二起始RB索引值。
具体确定方式与上述方法4-1、方法4-2类似,在此不再赘述。
在本公开实施例中,基站可以先基于所述第一起始RB索引值和所述第一持续RB数目,按照上述公式1、公式2的对应关系,确定所述参考小区的第一RIV。即第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联。基站可以基于第一RIV,确定FDRA域中第一比特区间所包括的比特指示的比特值。另外,基站可以基于第一小区数据传输的第二起始RB索引值,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。即在本公开实施例中,FDRA域用于指示:所述参考小区的第一RIV;其中,所述第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联;以及每个所述其他小区数据传输的起始RB索引值。
其中,所述FDRA域中,所述第一比特区间处于其他比特区间之前。需要说明的是,在FDRA域内,本实施例中,前后顺序是按照从左到右来确定的。进一步的,前后顺序也可以按照从右往左的顺序一一对应,本公开对此不作限制。
在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的从左到右的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
也就是说,第一比特区间对应参考小区,位于第二比特区间、第三比特区间等其他比特区间之前,第二比特区间、第三比特区间等其他比特区间与小区索引值由大到小的顺序或由小到大的顺序相对应。
第一比特区间占用第一比特数目的比特位,第二比特区间占用第二比特数目的比特位,第一比特数目和第二比特数目的确定方式与终端侧确定第一比特数目和第二比特数目的方式类似,在此不再赘述。
上述实施例中,可以在保证DCI调度灵活性的基础上,减少DCI比特开销,有效避免DCI传输效率降低的问题,可用性高。
在一些可选实施例中,基站确定参考小区的方式与终端确定参考小区的方式类似,在此不再赘述。
下面对上述资源确定、多载波调度方法进一步举例说明如下。
实施例1:假设终端为Rel-18及后续版本终端,且终端接收用于调度多小区(multi-cell)数据传输的DCI,基于DCI对应的指示信息,接收多个小区的PDSCH或传输多个小区的PUSCH。
本实施例后续用multi-cell DCI指代用于调度多小区数据传输的DCI。考虑multi-cell DCI的FDRA域指示的不同被调度小区的频域资源信息均基于type 1资源类型场景下,通过设计对应的FDRA域指示方式,实现单DCI对多小区PDSCH/PUSCH频域资源信息的指示。
一种可能的实施方式,确定multi-cell调度(scheduling)场景中的参考小区,所述参考小区可以基于基站信令指示的方式确定,示例性的,指示参考小区的小区标识。所述参考小区还可以通过预定义的方式确定,示例性地,以接收multi-cell DCI所在小区为参考小区,或者,以被调度小区配置BWP所占RB数最大所对应的小区为参考小区,或者,以被调度小区配置BWP所占RB数最小所对应的小区为参考小区,或者,以被调度小区的小区索引值最大或最小的小区为参考小区,本发明对此不作限制。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域所指示的参考小区的第一RIV,所述第一RIV用n表示,n与参考小区的配置BWP所占RB数,即
Figure PCTCN2022095751-appb-000088
参考小区的第一起始RB索引值RB start,ref和参考小区的第一持续RB数目L RBs,ref相关联,具体关联方式参考公式1和公式2。
或者,n为参考小区配置的BWP所占的RBG数目,相应地,参考小区的第一起始RBG索引值和第一持续RBG数目相关联。
除参考小区外,其他小区(例如第一小区c1)的频域信息,第二起始RB索引值RB start,c1和第二持续RB数目L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数,即第一RB数目为
Figure PCTCN2022095751-appb-000089
若参考小区配置的第一起始RB索引值RB start,ref和第一持续RB数目L RBs,ref满足如下限制条件:
Figure PCTCN2022095751-appb-000090
则其他小区(例如,第一小区c1)数据传输的第二起始RB索引值RB start,c1和第二持续RB数目L RBs,c1与参考小区相同:RB start,c1=RB start,ref
Figure PCTCN2022095751-appb-000091
则第一小区传输的第二持续RB数目L RBs,c1与参考小区的第一持续RB数目L RBs,ref相同,即L RBs,c1=L RBs,ref
若参考小区配置的第一起始RB索引值RB start,ref不满足下述限制条件:
Figure PCTCN2022095751-appb-000092
则第二起始RB索引值
Figure PCTCN2022095751-appb-000093
L RBs,c1=N;其中,N为预设持续RB数目,本公开中N可以为1。
若参考小区配置的第二起始RB索引值RB start,c1满足下述限制条件:
Figure PCTCN2022095751-appb-000094
则RB start,c1=RB start,ref
若第二持续RB数目L RBs,c1不满足下述限制条件:
Figure PCTCN2022095751-appb-000095
Figure PCTCN2022095751-appb-000096
表1和表2以参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000097
第一小区c1的配置BWP所占RB数
Figure PCTCN2022095751-appb-000098
为例,阐述上述方案:
表1
Figure PCTCN2022095751-appb-000099
条件下RIV与RB start,ref和L RBs,ref的映射关系
Figure PCTCN2022095751-appb-000100
表2
Figure PCTCN2022095751-appb-000101
条件下RIV与RB start,c1和L RBs,c1的映射关系
Figure PCTCN2022095751-appb-000102
基于上述方案,若multi-cell DCI FDRA域指示RIV值等于8,则RB start,ref=0和L RBs,ref=2。
其中,参考小区的
Figure PCTCN2022095751-appb-000103
则被调度小区c1对应频域信息RB start,c1=RB start,ref=0,且由于
Figure PCTCN2022095751-appb-000104
则L RBs,c1=L RBs,ref=2。
若multi-cell DCI FDRA域指示RIV值等于5,则RB start,ref=5不满足如下限制条件:
Figure PCTCN2022095751-appb-000105
预设RB持续数目为N,且N为1,则
Figure PCTCN2022095751-appb-000106
L RBs,c1=1。
若multi-cell DCI FDRA域指示的第一RIV等于25,则RB start,ref=1满足如下限制条件:
Figure PCTCN2022095751-appb-000107
则RB start,c1=RB start,ref=1,
且L RBs,ref=4不满足如下限制条件,
Figure PCTCN2022095751-appb-000108
Figure PCTCN2022095751-appb-000109
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域所指示的参考小区的第一RIV,第一RIV与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000110
参考小区的第一起始RB索引值RB start,ref和参考小区的第一持续RB数目L RBs,ref相关联,具体关联方式参考公式1和公式2。除参考小区外,其他小区(例如,第一小区c1)的频域信息第二起始RB索引值RB start,c1和第二持续RB数目L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数,即第一RB数目为
Figure PCTCN2022095751-appb-000111
参考小区所在载波对应子载波间隔SCS为μ ref,小区c1所在载波对应子载波间隔SCS为μ c1
若RB start,ref对应频点大小满足如下限制条件:
Figure PCTCN2022095751-appb-000112
则RB start,c1=RB start,refμ refc1
若L RBs,ref对应频点大小如下限制条件:
Figure PCTCN2022095751-appb-000113
则L RBs,c1=L RBs,refμ refc1
若RB start,ref对应频点大小不满足下述限制条件:
Figure PCTCN2022095751-appb-000114
Figure PCTCN2022095751-appb-000115
L RBs,c1=N;其中,N为预设持续RB数目,本公开中,N为1。
若RB start,ref对应频点大小满足下述限制条件:
Figure PCTCN2022095751-appb-000116
则RB start,c1=RB start,refμ refc1
若L RBs,ref对应频点大小不满足下述限制条件:
Figure PCTCN2022095751-appb-000117
Figure PCTCN2022095751-appb-000118
所述方案的示例性描述可参考表1、表2的相关机制,并引入SCS的影响,在此不再赘述。
本实施例通过采用联合指示的方式,确定不同被调度小区数据的FDRA资源,可以有效降低multi-cell DCI bits开销,避免multi-cell DCI传输码率过高,损耗DCI传输性能,从而降低小区调度性能。
实施例2:
如实施例1所述,假设终端为Rel-18及后续版本终端,且终端接收用于multi-cell调度的DCI,基于DCI对应的指示信息,接收多个小区的PDSCH或传输多个小区的PUSCH。
本实施例后续用multi-cell DCI指代用于调度多小区数据传输的DCI。考虑multi-cell DCI的FDRA域指示的不同被调度小区的频域资源信息均基于type 1资源类型场景下,通过设计对应的FDRA域指示方式,实现单DCI对多小区PDSCH/PUSCH频域资源信息的指示。
一种可能的实施方式,确定multi-cell scheduling场景中的参考小区,所述参考小区可以基于信令指示的方式确定,示例性的,指示参考小区的小区标识;所述参考小区还可以通过预定义的方式确定,示例性地,以接收multi-cell DCI所在小区为参考小区,或者,以被调度小区配置BWP所占RB数最大所对应的小区为参考小区,或者,以被调度小区配置BWP所占RB数最小所对应的小区为参考小区,或者,以被调度小区的小区索引值最大或最小的小区为参考小区,本发明对此不作限制。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域所指示的参考小区的第一RIV,所述参考小区的第一起始RB索引值RB start,ref和参考小区的第一持续RB数目L RBs,ref基于第一RIV和参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000119
确定,所述确定方式与相关机制相同,对应参考小区之外的其他被调度小区的任意一个小区c1,即第一小区c1,对应传输数据的频域信息,即第二起始RB索引值RB start,c1和第二持续RB数目L RBs,c1基于如下方式确定:
所述第一RIV与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000120
RB RB start,ref和L RBs,ref相关联,具体关联方式参考公式1和公式2。除参考小区外,其他小区(例如,第一小区c1)的频域信息RB start,c1和L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数,即第一RB数目为
Figure PCTCN2022095751-appb-000121
确定小区c1基于相关机制对应FDRA域所能支持的最大RIV值RIV c1,max,若multi-cell DCI对应FDRA域所指示的第一RIV小于等于RIV c1,max则第一小区c1对应的第二RIV与第一RIV相等。
若第一RIV值大于RIV c1,max,则第一小区c1对应的第二RIV与预设RIV相等,其中预设RIV小于或等于RIV c1,max。可选地,预设RIV可以等于RIV c1,max
第一小区c1对应传输数据的频域信息RB start,c1和L RBs,c1由第一RIV和小区c1配 置BWP所占RB数
Figure PCTCN2022095751-appb-000122
确定。
以表1和表2为例,小区c1基于相关机制对应FDRA域所能支持的最大RIV值RIV c1,max=9,
若multi-cell DCI对应FDRA域所指示的第一RIV用n表示,且n=6,对应RIV c1=6,RB start,c1=2,L RBs,c1=2,其中RIV c1为所述第二RIV;
若所述RIV值n=24,则对应RIV c1=9,对应RB start,c1=1,L RBs,c1=3;
对于所述第一RIV,即n大于RIV c1,max,另一种可能的实施方式,RB start,c1=0,L RBs,c1=4。
本实施例通过共享RIV的方式指示不同被调度小区的FDRA信息,可以有效降低multi-cell DCI bits开销,避免multi-cell DCI传输码率过高,损耗DCI传输性能,从而降低小区调度性能。
实施例3:
如实施例1所述,假设终端为Rel-18及后续版本终端,且终端接收用于multi-cell调度的DCI,基于DCI对应的指示信息,接收多个小区的PDSCH或传输多个小区的PUSCH。
本实施例考虑multi-cell DCI的FDRA域指示的不同被调度小区的频域资源信息均基于type 1资源类型场景下,通过设计对应的FDRA域指示方式,实现单DCI对多小区PDSCH/PUSCH频域资源信息的指示。
一种可能的实施方式,确定multi-cell scheduling场景中的参考小区,所述参考小区可以基于信令指示的方式确定,示例性的,指示参考小区的小区标识;所述参考小区还可以通过预定义的方式确定,示例性地,以接收multi-cell DCI所在小区为参考小区,或者,以被调度小区配置BWP所占RB数最大所对应的小区为参考小区,或者,以被调度小区配置BWP所占RB数最小所对应的小区为参考小区,或者,以被调度小区的小区索引值最大或最小的小区为参考小区,本发明对此不作限制。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域前N1bits所指示的参考小区的第一RIV,所述
Figure PCTCN2022095751-appb-000123
Figure PCTCN2022095751-appb-000124
为参考小区的配置BWP所占RB数,所述第一RIV用n表示,n与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000125
RB start,ref和L RBs,ref相关联,具体关联方式参考公式1和公式2,基于上述关联方式确定参考小区对应的RB start,ref和L RBs,ref
除参考小区外,其他小区(例如,第一小区c1)的频域信息RB start,c1和L RBs,c1基于如下方式确定,定义第一小区c1配置BWP所占RB数等于
Figure PCTCN2022095751-appb-000126
若RB start,ref满足如下限制条件:
Figure PCTCN2022095751-appb-000127
则RB start,c1与参考小区相同:RB start,c1=RB start,ref
若RB start,ref不满足如下限制条件:
Figure PCTCN2022095751-appb-000128
Figure PCTCN2022095751-appb-000129
其中,N为预设持续RB数目,可以为1。
对应L RBs,c1由FDRA域对应第n c0+1至第n c1个bits指示,相对应的,除参考小区 外,小区ci数据传输的持续RB数目L RBs,ci由FDRA域对应第n c(i-1)+1至第n ci个bits指示,除参考小区外,其他小区c0,c1,…,ci基于小区索引值由小到大的顺序排列,即:若ci对应小区索引值,则c0<c1,…,<ci。
或者,其他小区c0,c1,…,ci基于小区索引值由大到小的顺序排列,即:若ci对应小区索引值,则c0>c1,…,>ci。对应指示小区c1的L RBs,c1的bits数目
Figure PCTCN2022095751-appb-000130
Figure PCTCN2022095751-appb-000131
所述持续RB数L RBs,c1
Figure PCTCN2022095751-appb-000132
为粒度,其他小区中的第二小区与第一小区c1类似,在此不再赘述。
其中,
Figure PCTCN2022095751-appb-000133
为被调度小区c1配置BWP所占RB数。所述
Figure PCTCN2022095751-appb-000134
可以通过预定义方式确定,示例性地,
Figure PCTCN2022095751-appb-000135
示例性地,
Figure PCTCN2022095751-appb-000136
等于小区c1配置RBG size,所述
Figure PCTCN2022095751-appb-000137
可以通过信令配置的方式确定。若信令未配置,
Figure PCTCN2022095751-appb-000138
Figure PCTCN2022095751-appb-000139
以表1和表2为例,FDRA域前
Figure PCTCN2022095751-appb-000140
指示参考小区的第一RIV,示例性地,指示第一RIV值n=17,对应RB start,ref=1,L RBs,ref=3,
Figure PCTCN2022095751-appb-000141
考虑到RB start,ref=1
满足下述条件:
Figure PCTCN2022095751-appb-000142
则FDRA后
Figure PCTCN2022095751-appb-000143
中的前3个状态指示L RBs,c1对应1,2,3中的一种,最后1个状态可以预留。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域前N1bits所指示的第一RIV n,
Figure PCTCN2022095751-appb-000144
Figure PCTCN2022095751-appb-000145
为参考小区的配置BWP所占RB数,所,n与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000146
RB start,ref和L RBs,ref相关联,具体关联方式由参考公式1和公式2,基于上述关联方式确定参考小区对应的频域信息RB start,ref和L RBs,ref
除参考小区外,其他小区(例如,第一小区c1)的频域信息RB start,c1和L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数等于
Figure PCTCN2022095751-appb-000147
若参考小区配置的RB start,ref对应频点大小满足如下限制条件:
Figure PCTCN2022095751-appb-000148
则RB start,c1=RB start,refμ refc1
若RB start,ref对应频点大小不满足如下限制条件:
Figure PCTCN2022095751-appb-000149
Figure PCTCN2022095751-appb-000150
N为预设持续RB数目,可以为1。
对应L RBs,c1由FDRA域中与第一小区c1对应的第二比特区间所包括的第n c0+1至第n c1个bits指示,相对应的,除参考小区外,小区ci L RBs,ci由FDRA域对应第n c(i-1)+1至第n ci个bits指示,除参考小区外,其他小区c0,c1,…,ci基于小区索引值由小到大的顺序排列,即:若ci对应小区索引值,则c0<c1,…,<ci;
或者,其他小区c0,c1,…,ci基于小区索引值由大到小的顺序排列,即:若ci对应 小区索引值,则c0>c1,…,>ci。对应指示小区c1的L RBs,c1的bits数目等于
Figure PCTCN2022095751-appb-000151
其他小区中的第二小区与第一小区c1类似,在此不再赘述。
其中,
Figure PCTCN2022095751-appb-000152
为被调度小区c1配置BWP所占RB数。所述持续RB数L RBs,c1
Figure PCTCN2022095751-appb-000153
为粒度。所述
Figure PCTCN2022095751-appb-000154
可以通过预定义方式确定,示例性地,
Figure PCTCN2022095751-appb-000155
示例性地,
Figure PCTCN2022095751-appb-000156
等于小区c1配置RBG size,所述
Figure PCTCN2022095751-appb-000157
可以通过信令配置的方式确定。若信令未配置,
Figure PCTCN2022095751-appb-000158
Figure PCTCN2022095751-appb-000159
所述方案的示例性描述可参考表1、表2的机制,并引入SCS的影响,在此不再赘述。
本实施例通过采用分别指示的方式,且限定不同小区的频域RB起始位置或频域起始位置对应频域长度相同的场景下,设计对应的指示方式,可以在保证一定调度灵活性的基础上,有效降低multi-cell DCI bits开销,避免multi-cell DCI传输码率过高,损耗DCI传输性能,从而降低小区调度性能。
实施例4:
如实施例1所述,假设终端为Rel-18及后续版本终端,且终端接收用于multi-cell调度的DCI,基于DCI对应的指示信息,接收多个小区的PDSCH或传输多个小区的PUSCH。
本实施例后续用multi-cell DCI指代用于调度多小区数据传输的DCI。考虑multi-cell DCI的FDRA域指示的不同被调度小区的频域资源信息均基于type 1资源类型场景下,通过设计对应的FDRA域指示方式,实现单DCI对多小区PDSCH/PUSCH频域资源信息的指示。
一种可能的实施方式,确定multi-cell scheduling场景中的参考小区,所述参考小区可以基于信令指示的方式确定,示例性的,指示参考小区的小区标识;所述参考小区还可以通过预定义的方式确定,示例性地,以接收multi-cell DCI所在小区为参考小区,或者,以被调度小区配置BWP所占RB数最大所对应的小区为参考小区,或者,以被调度小区配置BWP所占RB数最小所对应的小区为参考小区,或者,以被调度小区的小区索引值最大或最小的小区为参考小区,本发明对此不作限制。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域前N1bits所指示的参考小区的第一RIV,所述
Figure PCTCN2022095751-appb-000160
Figure PCTCN2022095751-appb-000161
为参考小区的配置BWP所占RB数,第一RIV可以用n表示,n与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000162
RB start,ref和L RBs,ref相关联,具体关联方式参考公式1和公式2,基于上述关联方式确定参考小区对应的频域信息RB start,ref和L RBs,ref
除参考小区外,其他小区(例如,第一小区c1)的频域信息RB start,c1和L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数等于
Figure PCTCN2022095751-appb-000163
若L RBs,ref满足如下限制条件:
Figure PCTCN2022095751-appb-000164
则L RBs,c1与参考小区相同:L RBs,c1=L RBs,ref
若L RBs,ref不满足如下限制条件:
Figure PCTCN2022095751-appb-000165
Figure PCTCN2022095751-appb-000166
对应RB start,c1由FDRA域对应第n c0+1至第n c1个bits指示,相对应的,除参考小区外,小区ci RB start,ci由FDRA域对应第n c(i-1)+1至第n ci个bits指示,除参考小区外,其他小区c0,c1,…,ci基于小区索引值由小到大的顺序排列,即:若ci对应小区索引值,则c0<c1,…,<ci;
或者,其他小区c0,c1,…,ci基于小区索引值由大到小的顺序排列,即:若ci对应小区索引值,则c0>c1,…,>ci。对应指示小区c1的RB start,c1的bits数目等于
Figure PCTCN2022095751-appb-000167
所述RB起始位置RB start,ref
Figure PCTCN2022095751-appb-000168
为粒度,其他小区中的第二小区与第一小区c1类似,在此不再赘述。
所述
Figure PCTCN2022095751-appb-000169
可以通过预定义方式确定,示例性地,
Figure PCTCN2022095751-appb-000170
示例性地,
Figure PCTCN2022095751-appb-000171
等于小区c1配置RBG size,所述
Figure PCTCN2022095751-appb-000172
可以通过信令配置的方式确定。若信令未配置,
Figure PCTCN2022095751-appb-000173
Figure PCTCN2022095751-appb-000174
以表1、表2为例,FDRA域前
Figure PCTCN2022095751-appb-000175
指示参考小区对应的第一RIV,示例性地,指示n=17,对应RB start,ref=1,L RBs,ref=3,考虑到L RBs,ref=3
满足下述条件:
Figure PCTCN2022095751-appb-000176
则FDRA后
Figure PCTCN2022095751-appb-000177
中的2个状态指示RB start,c1对应0,1中的一种。
一种可能的实施方式,终端接收multi-cell DCI并解析对应FDRA域前N1bits所指示的参考小区的第一RIV,所述
Figure PCTCN2022095751-appb-000178
Figure PCTCN2022095751-appb-000179
为参考小区的配置BWP所占RB数,所述第一RIV值用n表示,n与参考小区的配置BWP所占RB数
Figure PCTCN2022095751-appb-000180
RB start,ref和L RBs,ref相关联,具体关联方式参考公式1和公式2,基于上述关联方式确定参考小区对应的频域信息RB start,ref和L RBs,ref
除参考小区外,其他小区(例如,第一小区c1)的频域信息RB start,c1和L RBs,c1基于如下方式确定,定义小区c1配置BWP所占RB数等于
Figure PCTCN2022095751-appb-000181
若L RBs,ref对应频点大小满足如下限制条件:
Figure PCTCN2022095751-appb-000182
则L RBs,c1=L RBs,refμ refc1
若L RBs,ref对应频点大小不满足如下限制条件:
Figure PCTCN2022095751-appb-000183
Figure PCTCN2022095751-appb-000184
对应RB start,c1由FDRA域对应第n c0+1至第n c1个bits指示,相对应的,除参考小区外,小区ci RB start,ci由FDRA域对应第n c(i-1)+1至第n ci个bits指示,除参考小区外,其他小区c0,c1,…,ci基于小区索引值由小到大的顺序排列,即:若ci对应小区索引值,则c0<c1,…,<ci;
或者,其他小区c0,c1,…,ci基于小区索引值由大到小的顺序排列,即:若ci对 应小区索引值,则c0>c1,…,>ci。对应指示小区c1的RB start,c1的bits数目等于
Figure PCTCN2022095751-appb-000185
所述RB起始位置RB start,ref
Figure PCTCN2022095751-appb-000186
为粒度,其他小区与小区c1类似,在此不再赘述。
所述
Figure PCTCN2022095751-appb-000187
可以通过预定义方式确定,示例性地,
Figure PCTCN2022095751-appb-000188
示例性地,
Figure PCTCN2022095751-appb-000189
等于小区c1配置RBG size,所述
Figure PCTCN2022095751-appb-000190
可以通过信令配置的方式确定。若信令未配置,
Figure PCTCN2022095751-appb-000191
Figure PCTCN2022095751-appb-000192
所述方案的示例性描述可参考表1、表2的机制,并引入SCS的影响,在此不再赘述。
本实施例通过采用分别指示的方式,且限定不同小区的频域所占RB数或频域范围长度相同的场景下,设计对应的指示方式,可以在保证一定调度灵活性的基础上,有效降低multi-cell DCI bits开销,避免multi-cell DCI传输码率过高,损耗DCI传输性能,从而降低小区调度性能。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图8,图8是根据一示例性实施例示出的一种资源确定装置框图,所述装置应用于终端,包括:
接收模块801,被配置为接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输;
第一确定模块802,被配置为基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源;
第二确定模块803,被配置为至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
参照图9,图9是根据一示例性实施例示出的一种多载波调度装置,所述装置应用于基站,包括:
第三确定模块901,被配置为确定终端在多个小区中的每个小区数据传输的频域资源;
第四确定模块902,被配置为至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;其中,所述DCI用于调度所述多个小区的数据传输;
发送模块903,被配置为向所述终端发送所述DCI。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一所述的资源确定方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站侧任一所述的多载波调度方法。
相应地,本公开还提供了一种多载波调度装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的资源确定方法。
图10是根据一示例性实施例示出的一种资源确定装置1000的框图。例如装置1000可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载用户设备、ipad、智能电视等终端。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)接口1012,传感器组件1016,以及通信组件1018。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据随机接入,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1020来执行指令,以完成上述的资源确定方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。又如,处理组件1002可以从存储器读取可执行指令,以实现上述各实施例提供的一种资源确定方法的步骤。
存储器1004被配置为存储各种类型的数据以支持在装置1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理***,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述装置1000和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当装置1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1018发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮 和锁定按钮。
传感器组件1016包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1016可以检测到装置1000的打开/关闭状态,组件的相对定位,例如所述组件为装置1000的显示器和小键盘,传感器组件1016还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1016可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1016还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1016还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1018被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件1018经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1018还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述终端侧任一所述的资源确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述资源确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种多载波调度装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的多载波调度方法。
如图11所示,图11是根据一示例性实施例示出的一种多载波调度装置1100的一结构示意图。装置1100可以被提供为基站。参照图11,装置1100包括处理组件1122、无线发射/接收组件1124、天线组件1126、以及无线接口特有的信号处理部分,处理组件1122可进一步包括至少一个处理器。
处理组件1122中的其中一个处理器可以被配置为用于执行上述任一所述的多载波调度方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权 利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (40)

  1. 一种资源确定方法,其特征在于,所述方法被终端执行,包括:
    接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输;
    基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源;
    至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一资源指示值RIV。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
    基于所述第一RIV,确定所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
    所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
    基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值;其中,所述第一小区是所述其他小区中的任意一个;
    基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值,包括:
    在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
  5. 根据权利要求3或4所述的方法,其特征在于,所述基于所述第二起始RB索引值和所述第一持续RB数目,确定所述第一小区数据传输的第二持续RB数目,包括:
    在所述第一持续RB数目小于或等于第二差值的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第二差值为所述第一RB数目与所述第二起始RB索引值的差值;
    在所述第一持续RB数目大于所述第二差值的情况下,确定所述第二持续RB数目与所述第二差值相等。
  6. 根据权利要求2所述的方法,其特征在于,所述至少基于所述参考小区对应的 频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
    基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV;其中,所述第一小区的最大RIV是基于所述第一小区配置的BWP所占的RB数目确定的,所述第一小区是所述其他小区中的任意一个;
    基于所述第二RIV,确定所述第一小区数据传输的频域资源。
  7. 根据权利要求6所述的方法,其特征在于,所述基于所述第一RIV和第一小区的最大RIV,确定所述第一小区的第二RIV,包括:
    在所述第一RIV小于或等于所述第一小区的最大RIV的情况下,确定所述第二RIV与所述第一RIV相等;
    在所述第一RIV大于所述第一小区的最大RIV的情况下,确定所述第二RIV与预设RIV相等。
  8. 根据权利要求1所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一RIV;以及
    每个所述其他小区数据传输的持续RB数目。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
    基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述第一RIV;
    基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目;
    所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
    基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值;其中,所述第一小区是所述其他小区中的任意一个;
    基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二持续RB数目。
  10. 根据权利要求9所述的方法,其特征在于,所述基于所述第一起始RB索引值,确定第一小区数据传输的第二起始RB索引值,包括:
    在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
  11. 根据权利要求1所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一RIV;以及
    每个所述其他小区数据传输的起始RB索引值。
  12. 根据权利要求11所述的方法,其特征在于,所述基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源,包括:
    基于所述FDRA域中第一比特区间所包括的比特指示的比特值,确定所述第一RIV;
    基于所述第一RIV,确定所述参考小区数据传输的第一起始RB索引值和第一持续RB数目;
    所述至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源,包括:
    基于所述第一持续RB数目,确定第一小区数据传输的第二持续RB数目;其中,所述第一小区是所述其他小区中的任意一个;
    基于所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值,确定所述第一小区数据传输的第二起始RB索引值。
  13. 根据权利要求12所述的方法,其特征在于,所述基于所述第一持续RB数目,确定第一小区数据传输的第二持续RB数目,包括:
    在所述第一持续RB数目小于或等于第一RB数目的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一持续RB数目大于所述第一RB数目的情况下,确定所述第二持续RB数目与所述第一RB数目相等。
  14. 根据权利要求9或12所述的方法,其特征在于,所述FDRA域中,所述第一比特区间处于其他比特区间之前;
    在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
  15. 根据权利要求14所述的方法,其特征在于,所述第一比特区间占用第一比特数目的比特位;
    其中,所述第一比特数目与指示所述第一RIV的所有可选值时需要占用的最少比特数目相等。
  16. 根据权利要求14所述的方法,其特征在于,所述第二比特区间占用第二比特数目的比特位;
    其中,所述第二比特数目与指示所述第二起始RB索引值的所有可选值或所述第二持续RB数目的所有可选值时需要占用的最少比特位数目相等。
  17. 根据权利要求1所述的方法,其特征在于,所述方法还包括以下任一项:
    将所述多个小区中接收所述DCI的小区作为所述参考小区;
    将所述多个小区中配置BWP所占RB数目最多的小区,作为所述参考小区;
    将所述多个小区中配置BWP所占RB数目最少的小区,作为所述参考小区;
    将所述多个小区中对应小区索引号最大的小区,作为所述参考小区;
    将所述多个小区中对应小区索引号最小的小区,作为所述参考小区。
  18. 一种多载波调度方法,其特征在于,所述方法被基站执行,包括:
    确定终端在多个小区中的每个小区数据传输的频域资源;
    至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;
    向所述终端发送所述DCI。
  19. 根据权利要求18所述的方法,其特征在于,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
    确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
    基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值;其中,所述第一小区是其他小区中的任意一个;
    基于所述第二起始RB索引值和所述第一持续RB数目,确定所述终端在所述第一小区数据传输的第二持续RB数目。
  20. 根据权利要求19所述的方法,其特征在于,所述基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值,包括:
    在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
  21. 根据权利要求20所述的方法,其特征在于,所述基于所述第二起始RB索引值和所述第一持续RB数目,确定所述终端在所述第一小区数据传输的第二持续RB数目,包括:
    在所述第一持续RB数目小于或等于第二差值的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第二差值为所述第一RB数目与所述第二起始RB索引值的差值;
    在所述第一持续RB数目大于所述第二差值的情况下,确定所述第二持续RB数目与所述第二差值相等。
  22. 根据权利要求18所述的方法,其特征在于,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
    确定所述终端在所述参考小区的第一资源指示值RIV;
    基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV;其中,所述第一小区的最大RIV是基于所述第一小区配置的BWP所占的RB数目确定的,所述第一小区是其他小区中的任意一个;
    基于所述第二RIV,确定所述第一小区数据传输的频域资源。
  23. 根据权利要求22所述的方法,其特征在于,所述基于所述第一RIV和第一小区的最大RIV,确定第一小区的第二RIV,包括:
    在所述第一RIV小于或等于所述第一小区的最大RIV的情况下,确定所述第二RIV与所述第一RIV相等;
    在所述第一RIV大于所述第一小区的最大RIV的情况下,确定所述第二RIV与预设RIV相等。
  24. 根据权利要求19-23任一项所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一RIV;
    所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:
    基于所述第一RIV,确定所述FDRA域所包括的比特指示的比特值;其中,所述第一RIV与所述参考小区的第一起始RB索引值和第一持续RB数目相关联。
  25. 根据权利要求18所述的方法,其特征在于,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
    确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
    基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值;其中,所述第一小区是其他小区中的任意一个;
    确定所述终端在所述第一小区数据传输的第二持续RB数目。
  26. 根据权利要求25所述的方法,其特征在于,所述基于所述第一起始RB索引值,确定所述终端在第一小区数据传输的第二起始RB索引值,包括:
    在所述第一起始RB索引值小于第一RB数目的情况下,确定所述第二起始RB索引值与所述第一起始RB索引值相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一起始RB索引值大于或等于所述第一RB数目的情况下,确定所述第二起始RB索引值与第一差值相等;其中,所述第一差值为所述第一RB数目与预设持续RB数目的差值。
  27. 根据权利要求26所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一RIV;以及
    每个所述其他小区数据传输的持续RB数目;
    所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:基于所述第一RIV,确定所述FDRA域中第一比特区间所包括的比特指示的比特值;其中,所述第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联;
    基于所述第二持续RB数目,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。
  28. 根据权利要求18所述的方法,其特征在于,所述确定终端在多个小区中的每个小区数据传输的频域资源,包括:
    确定所述终端在所述参考小区数据传输的第一起始资源块RB索引值和第一持续RB数目;
    基于所述第一持续RB数目,确定所述终端在第一小区数据传输的第二持续RB数目;其中,所述第一小区是其他小区中的任意一个;
    确定所述终端在所述第一小区数据传输的第二起始RB索引值。
  29. 根据权利要求28所述的方法,其特征在于,所述基于所述第一持续RB数目,确定所述终端在第一小区数据传输的第二持续RB数目,包括:
    在所述第一持续RB数目小于或等于第一RB数目的情况下,确定所述第二持续RB数目与所述第一持续RB数目相等;其中,所述第一RB数目为所述第一小区配置的BWP所占的RB数目;
    在所述第一持续RB数目大于所述第一RB数目的情况下,确定所述第二持续RB数目与所述第一RB数目相等。
  30. 根据权利要求29所述的方法,其特征在于,所述FDRA域用于指示:
    所述参考小区的第一RIV;以及
    每个所述其他小区数据传输的起始RB索引值;
    所述至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值,包括:基于所述第一RIV,确定所述FDRA域中第一比特区间所包括的比特指示的比特值;其中,所述第一RIV与所述第一起始RB索引值和所述第一持续RB数目相关联;
    基于所述第二起始RB索引值,确定所述FDRA域中所述第一小区对应的第二比特区间所包括的比特指示的比特值。
  31. 根据权利要求27或30所述的方法,其特征在于,所述FDRA域中,所述第一比特区间处于其他比特区间之前;
    在所述其他小区的数目为多个的情况下,所述FDRA域中所述第一小区对应的所述第二比特区间相对于第二小区对应的第三比特区间的前后顺序,与所述第一小区的小区索引值相对于所述第二小区的小区索引值的预设排列顺序相同;其中,所述第二小区是所述其他小区中不同于所述第一小区的任意一个。
  32. 根据权利要求31所述的方法,其特征在于,所述第一比特区间占用第一比特数目的比特位;
    其中,所述第一比特数目与指示所述第一RIV的所有可选值时需要占用的最少比特位数目相等。
  33. 根据权利要求31所述的方法,其特征在于,所述第二比特区间占用第二比特数目的比特位;
    其中,所述第二比特数目与指示所述第二起始RB索引值的所有可选值或所述第二持续RB数目的所有可选值时需要占用的最少比特位数目相等。
  34. 根据权利要求18所述的方法,其特征在于,所述方法还包括以下任一项:
    将所述多个小区中接收所述DCI的小区作为所述参考小区;
    将所述多个小区中配置BWP所占RB数目最多的小区,作为所述参考小区;
    将所述多个小区中配置BWP所占RB数目最少的小区,作为所述参考小区;
    将所述多个小区中对应小区索引号最大的小区,作为所述参考小区;
    将所述多个小区中对应小区索引号最小的小区,作为所述参考小区。
  35. 一种资源确定装置,其特征在于,所述装置应用于终端,包括:
    接收模块,被配置为接收基站发送的下行控制信息DCI;其中,所述DCI用于调度多个小区的数据传输;
    第一确定模块,被配置为基于所述DCI中频域资源分配FDRA域,至少确定所述多个小区中的参考小区对应的频域资源;
    第二确定模块,被配置为至少基于所述参考小区对应的频域资源,确定所述多个小区中的其他小区对应的频域资源。
  36. 一种多载波调度装置,其特征在于,所述装置应用于基站,包括:
    第三确定模块,被配置为确定终端在多个小区中的每个小区数据传输的频域资源;
    第四确定模块,被配置为至少基于所述多个小区中的参考小区对应的频域资源,确定下行控制信息DCI中的频域资源分配FDRA域所包括的比特指示的比特值;
    发送模块,被配置为向所述终端发送所述DCI。
  37. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-17任一项所述的资源确定方法。
  38. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求18-34任一项所述的多载波调度方法。
  39. 一种资源确定装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-17任一项所述的资源确定方法。
  40. 一种多载波调度装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求18-34任一项所述的多载波调度方法。
PCT/CN2022/095751 2022-05-27 2022-05-27 资源确定、多载波调度方法及装置、存储介质 WO2023226032A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/095751 WO2023226032A1 (zh) 2022-05-27 2022-05-27 资源确定、多载波调度方法及装置、存储介质
CN202280001793.1A CN115136712A (zh) 2022-05-27 2022-05-27 资源确定、多载波调度方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095751 WO2023226032A1 (zh) 2022-05-27 2022-05-27 资源确定、多载波调度方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023226032A1 true WO2023226032A1 (zh) 2023-11-30

Family

ID=83387912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095751 WO2023226032A1 (zh) 2022-05-27 2022-05-27 资源确定、多载波调度方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN115136712A (zh)
WO (1) WO2023226032A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818646A (zh) * 2019-07-30 2020-10-23 维沃移动通信有限公司 一种dci传输方法和通信设备
CN112787781A (zh) * 2019-11-08 2021-05-11 ***通信有限公司研究院 资源分配方法、资源的确定方法、网络设备及终端
US20210321400A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Dci design for multi-cross carrier scheduling
CN113630873A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备
CN113630874A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818646A (zh) * 2019-07-30 2020-10-23 维沃移动通信有限公司 一种dci传输方法和通信设备
CN112787781A (zh) * 2019-11-08 2021-05-11 ***通信有限公司研究院 资源分配方法、资源的确定方法、网络设备及终端
US20210321400A1 (en) * 2020-04-10 2021-10-14 Qualcomm Incorporated Dci design for multi-cross carrier scheduling
CN113630873A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备
CN113630874A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备

Also Published As

Publication number Publication date
CN115136712A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
WO2021087786A1 (zh) 波束失败请求资源分配方法、装置及存储介质
WO2023206540A1 (zh) 上行传输方法及装置、存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2022236626A1 (zh) ***消息的传输方法、装置及通信设备
WO2021253240A1 (zh) 无线通信方法及装置、终端及存储介质
WO2018098623A1 (zh) 确定传输时间间隔的方法、装置及基站、用户设备
CN112514316B (zh) 联合调度多个传输块的方法、装置、通信设备及存储介质
WO2024000541A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2023226032A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2022067740A1 (zh) 信道传输方法及装置、存储介质
WO2022126576A1 (zh) 无线通信方法及装置、通信设备及存储介质
CN113632571A (zh) 一种消息配置方法、消息配置装置及存储介质
WO2024000551A1 (zh) 资源确定、多载波调度方法及装置、存储介质
US20230011663A1 (en) Information processing method and apparatus, base station, ue, and storage medium
WO2024020886A1 (zh) 信息监听、信息发送方法及装置、存储介质
WO2024021122A1 (zh) 下行控制信息dci接收、发送方法及装置、存储介质
WO2024065220A1 (zh) 跳频处理方法及装置
WO2024065219A1 (zh) 跳频处理方法及装置
WO2024050837A1 (zh) 下行控制信息dci接收、发送方法及装置、存储介质
WO2024059978A1 (zh) 信息传输方法及装置
WO2024060235A1 (zh) 资源配置方法及装置
WO2024031690A1 (zh) 随机接入方法及装置、存储介质
WO2023159466A1 (zh) 映射关系的确定方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943230

Country of ref document: EP

Kind code of ref document: A1