WO2023224058A1 - Catalyst for oxidative dehydrogenation and method for producing propylene - Google Patents

Catalyst for oxidative dehydrogenation and method for producing propylene Download PDF

Info

Publication number
WO2023224058A1
WO2023224058A1 PCT/JP2023/018385 JP2023018385W WO2023224058A1 WO 2023224058 A1 WO2023224058 A1 WO 2023224058A1 JP 2023018385 W JP2023018385 W JP 2023018385W WO 2023224058 A1 WO2023224058 A1 WO 2023224058A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidative dehydrogenation
catalyst
propane
propylene
cobalt
Prior art date
Application number
PCT/JP2023/018385
Other languages
French (fr)
Japanese (ja)
Inventor
森也 古川
飛龍 ▲刑▼
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2023224058A1 publication Critical patent/WO2023224058A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an oxidative dehydrogenation catalyst and a method for producing propylene.
  • This application claims priority based on Japanese Patent Application No. 2022-082775 filed in Japan on May 20, 2022, the contents of which are incorporated herein.
  • Propylene is a key chemical used in the production of various chemicals such as resins, surfactants, dyes, and pharmaceuticals.
  • the supply of propylene has been decreasing as the raw material for steam crackers has shifted from naphtha derived from crude oil to ethane derived from shale gas.
  • the equilibrium In the oxidative dehydrogenation reaction of propane, the equilibrium can be tilted toward the product by oxidizing the hydrogen produced in the dehydrogenation reaction of propane to water with carbon dioxide. As a result, as shown in FIG. 1, the equilibrium conversion rate is improved compared to the simple dehydrogenation reaction of propane.
  • catalysts for propane oxidative dehydrogenation including chromium oxide catalysts, vanadium oxide catalysts, gallium oxide catalysts, indium oxide catalysts, palladium metal catalysts, and iron-nickel alloy catalysts.
  • catalyst is known.
  • Non-Patent Documents 1 and 2 disclose a chromium oxide-based propane oxidative dehydrogenation catalyst in which chromium oxide is supported on a mesoporous silica carrier. It is disclosed that good propylene selectivity (about 80%) was shown by using a chromium oxide-based propane oxidative dehydrogenation catalyst.
  • the present invention has been made in view of the above circumstances, and is an oxidative dehydrogenation device for producing propylene by an oxidative dehydrogenation reaction of propane, which can obtain propylene in a higher yield than conventional catalysts.
  • An object of the present invention is to provide a catalyst and a method for producing propylene using the oxidative dehydrogenation catalyst.
  • An oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane wherein the oxidative dehydrogenation reaction is performed by reacting propane with carbon dioxide, and the oxidative dehydrogenation catalyst comprises: , an active ingredient is supported on a ceria carrier, and the active ingredient contains a platinum element and an M1 element which is a typical metal element, and may also contain an M2 element which is a transition metal element, and the active ingredient contains an M2 element which is a transition metal element.
  • the total number of the M1 elements and the M2 elements included is 2 or more, and the M1 element is one or more typical elements selected from the group consisting of tin element, gallium element, indium element, zinc element, and germanium element.
  • the M2 element is a metal element, and the M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element.
  • the M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, and indium element, and the M2 element is selected from the group consisting of cobalt element and nickel element.
  • [5] The oxidative dehydrogenation catalyst according to any one of [1] to [4], wherein the total number of the M1 element and the M2 element contained in the active component is 3 to 8.
  • [6] The oxidative dehydrogenation according to any one of [1] to [5], wherein the M1 element contains a tin element, a gallium element, and an indium element, and the M2 element contains a cobalt element and a nickel element. Catalyst for use.
  • [7] The oxidative dehydrogenation catalyst according to any one of [1] to [6], wherein the metal elements contained in the active component form an alloy.
  • a method for producing propylene which comprises contacting a raw material gas containing propane and carbon dioxide with the oxidative dehydrogenation catalyst according to any one of [1] to [7].
  • an oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane which has higher activity and longer life than conventional catalysts, and a method using the oxidative dehydrogenation catalyst.
  • a method for producing propylene can be provided.
  • FIG. 2 is a diagram showing the equilibrium conversion rates of a simple dehydrogenation reaction of propane and an oxidative dehydrogenation reaction of propane at normal pressure.
  • FIG. 2 is a diagram showing the crystal structure (unit cell) of a platinum-tin alloy and the crystal structure (unit cell) of a platinum-tin-gallium-indium-cobalt-nickel six-element alloy.
  • FIG. 2 is a diagram showing changes over time in propane conversion rates and propylene selectivity in Examples 1, 3, 5, and 7.
  • FIG. 2 is a diagram showing changes over time in CO 2 conversion rates of Examples 1, 3, 5, and 7.
  • FIG. 3 is a graph showing changes over time in propane conversion rates and propylene selectivity in Examples 8 to 14.
  • FIG. 1 is a diagram showing the equilibrium conversion rates of a simple dehydrogenation reaction of propane and an oxidative dehydrogenation reaction of propane at normal pressure.
  • FIG. 2 is a diagram showing the crystal structure (unit cell) of a platinum-tin alloy and the crystal structure (unit
  • FIG. 3 is a graph showing changes over time in CO 2 conversion rates of Examples 8 to 14.
  • FIG. 3 is a graph showing changes in propane conversion rate and propylene selectivity over time in Example 14 and Comparative Examples 2 to 5.
  • FIG. 3 is a graph showing changes over time in CO 2 conversion rates of Example 14 and Comparative Examples 2 to 5.
  • FIG. 7 is a diagram showing changes over time in propane conversion rates and propylene selectivity in Example 14 and Comparative Examples 6 and 7.
  • FIG. 3 is a diagram showing changes over time in CO 2 conversion rates of Example 14 and Comparative Examples 6 and 7.
  • FIG. 7 is a diagram showing changes over time in propane conversion rate and propylene selectivity in Example 15.
  • FIG. 7 is a diagram showing changes over time in the CO 2 conversion rate of Example 15.
  • the oxidative dehydrogenation catalyst of this embodiment is an oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane.
  • the oxidative dehydrogenation reaction can be performed by reacting propane with carbon dioxide.
  • the active component is supported on a ceria carrier.
  • the oxidative dehydrogenation catalyst contains, as the active component, a platinum element and an M1 element which is a typical metal element, and may also contain an M2 element which is a transition metal element.
  • "may include” means including or not including.
  • the total number of the M1 element and the M2 element contained in the active ingredient is 2 or more.
  • the M1 element is one or more typical metal elements selected from the group consisting of tin, gallium, indium, zinc, and germanium.
  • the M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element.
  • the oxidative dehydrogenation catalyst of this embodiment includes only indium element as M1 element and cobalt element as M2 element, and oxidative dehydrogenation catalyst that contains only indium element as M1 element and nickel as M2 element. Catalysts for oxidative dehydrogenation that contain only the elements, and catalysts for oxidative dehydrogenation that contain only indium as the M1 element and only cobalt and nickel elements as the M2 element are not included.
  • the oxidative dehydrogenation catalyst contains a platinum element and an M1 element, which is a typical metal element, as active components.
  • the oxidative dehydrogenation catalyst may contain M2 element, which is a transition metal element, as an active component.
  • the oxidative dehydrogenation catalyst preferably contains M2 element, which is a transition metal element, as an active component.
  • platinum element When platinum element is included as an active ingredient, propane can be activated and the conversion rate of propane is improved.
  • M1 element is included as an active ingredient, side reactions such as coke formation can be suppressed, and the yield of propylene is improved.
  • M2 element is included as an active ingredient, carbon dioxide can be activated and the conversion rate of carbon dioxide is improved. Further, by suppressing coke formation, a decrease in catalyst activity over time is suppressed.
  • the M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, indium element, zinc element, and germanium element.
  • the M1 element is preferably one or more typical metal elements selected from the group consisting of tin element, gallium element, and indium element, since it is highly effective in suppressing side reactions such as coke formation. .
  • the M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element. Among these, from the viewpoint of high carbon dioxide activation ability, one or more transition metal elements selected from the group consisting of cobalt element and nickel element are preferable.
  • the M2 element is a so-called 3d transition metal element. The mechanism by which the 3d transition metal element activates carbon dioxide is thought to be that the 3d transition metal strongly adsorbs carbon dioxide.
  • the active ingredient may contain other elements such as metal elements or nonmetal elements other than platinum element, M1 element, and M2 element.
  • the ratio of the total number of moles of the other elements to the total number of moles of all the elements contained in the active ingredient is preferably 0.3 or less, and preferably 0.1 or less. It is more preferable that there be.
  • An example of the nonmetallic element is oxygen.
  • the active ingredient preferably does not contain any of the other elements.
  • the forms of the platinum element, the M1 element, and the M2 element are not particularly limited, and examples include simple metals, oxides, and alloys. Among these, it is preferable that the metal elements contained in the active ingredient form an alloy. Specifically, in the active component of the oxidative dehydrogenation catalyst, it is preferable that the platinum element and the M1 element form an alloy. When the active component contains the M2 element, it is preferable that the platinum element, the M1 element, and the M2 element form an alloy in the active component of the oxidative dehydrogenation catalyst.
  • the active ingredient contains the other elements (metallic elements), the platinum element of the oxidative dehydrogenation catalyst, the M1 element, the M2 element (if any), and the other elements (metallic elements) are alloyed. may be formed. Note that all of the platinum element, the M1 element, and the M2 element (if included) do not need to form an alloy, and some of the elements may exist as a single metal or an oxide. That is, the active component preferably includes a platinum-M1 element alloy or a platinum-M1 element-M2 element alloy. The content ratio of the alloy to the total mass of the active ingredients is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, and even more preferably 100% by mass.
  • the total number of M1 elements and M2 elements contained in the active ingredient is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more.
  • the total number of M1 elements and M2 elements contained in the active ingredient is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
  • the total number of M1 elements and M2 elements contained in the active ingredient is preferably 2 to 8, more preferably 3 to 8, even more preferably 4 to 7, and even more preferably 4 to 6. More preferably, the number is 4 to 5, particularly preferably 4 to 5.
  • the number of M1 elements contained in the active ingredient is preferably 1 to 5, more preferably 1 to 4, and even more preferably 1 to 3.
  • the number of M1 elements is at least the lower limit of the above range, the yield of propylene is improved.
  • the number of M1 elements is below the upper limit of the above range, the yield of propylene is improved.
  • the number of M2 elements contained in the active ingredient is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 to 2. preferable.
  • the number of M2 elements is at least the lower limit of the above range, the yield of propylene is improved.
  • the number of M2 elements is below the upper limit of the above range, the yield of propylene is improved.
  • a preferred embodiment includes an oxidative dehydrogenation catalyst containing a tin element as the M1 element and a cobalt element and a nickel element as the M2 element;
  • Examples include catalysts for oxidative dehydrogenation that contain gallium as an element and cobalt and nickel as M2 elements.
  • a preferable embodiment is an oxidative dehydrogenation catalyst containing tin element and indium element as M1 element and cobalt element and nickel element as M2 element.
  • an oxidative dehydrogenation catalyst containing gallium element and indium element as M1 element, cobalt element and nickel element as M2 element, containing tin element, gallium element, and indium element as M1 element, and containing cobalt element as M2 element A catalyst for oxidative dehydrogenation, a catalyst for oxidative dehydrogenation that contains tin, gallium, and indium as the M1 element and a nickel element as the M2 element, and a catalyst that contains tin and gallium as the M1 element and cobalt as the M2 element.
  • Examples include catalysts for oxidative dehydrogenation containing the element and the element nickel.
  • a preferred embodiment is an oxide containing tin element, gallium element, and indium element as M1 element, and cobalt element and nickel element as M2 element.
  • examples include catalysts for dehydrogenation.
  • the inventors of the present application analyzed the crystal structure of an alloy in which the metal elements contained in the active component form an alloy in the active component of an oxidative dehydrogenation catalyst. It turned out to be a type crystal structure. Further investigation by the present inventors revealed that platinum and the M2 element are located at the platinum site in the platinum-tin alloy, and the M1 element is located at the germanium site. Hereinafter, the platinum element and the M2 element are also collectively referred to as the "transition metal group.”
  • the ratio of the total number of moles of the M1 element to the total number of moles of the transition metal group is preferably 0.55 to 1.60, and preferably 0.60 to 1.55. is more preferable, and even more preferably 0.67 to 1.50.
  • M1 element/transition metal group is at least the lower limit of the above range, the yield of propylene is improved.
  • the M1 element/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of platinum element to the total number of moles of the transition metal group is preferably 0.30 to 0.55, more preferably 0.32 to 0.52. It is preferably 0.33 to 0.50, more preferably 0.33 to 0.50.
  • the content of Pt/transition metal group is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of Pt/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of the cobalt element to the total number of moles of the transition metal group is preferably 0.30 to 0.60, It is more preferably from 0.32 to 0.65, and even more preferably from 0.33 to 0.67.
  • Co/transition metal group is equal to or higher than the lower limit of the above range, the yield of propylene is improved.
  • Co/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of the nickel element to the total number of moles of the transition metal group is preferably 0.30 to 0.55, It is more preferably 0.32 to 0.52, and even more preferably 0.33 to 0.50.
  • the ratio of Ni/transition metal group is at least the lower limit of the above range, the yield of propylene is improved.
  • the Ni/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of tin element to the total number of moles of M1 element is preferably 0.30 to 1.10, and 0.30 to 1.10. It is more preferably from 32 to 1.05, and even more preferably from 0.33 to 1.00.
  • the Sn/M1 element is at least the lower limit of the above range, the yield of propylene is improved.
  • the Sn/M1 element is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of gallium element to the total number of moles of M1 element is preferably 0.30 to 1.10, and 0.30 to 1.10. It is more preferably from 32 to 1.05, and even more preferably from 0.33 to 1.00.
  • the Ga/M1 element is at least the lower limit of the above range, the yield of propylene is improved.
  • the Ga/M1 element is below the upper limit of the above range, the yield of propylene is improved.
  • the ratio of the number of moles of gallium element to the total number of moles of M1 element is preferably from 0.30 to 0.55, and preferably from 0.30 to 0.55. It is more preferably from 32 to 0.52, and even more preferably from 0.33 to 0.50.
  • the In/M1 element is at least the lower limit of the above range, the yield of propylene is improved.
  • the In/M1 element is below the upper limit of the above range, the yield of propylene is improved.
  • ⁇ Ceria carrier> In the oxidative dehydrogenation reaction of propane, coke is produced as a side reaction. When the generated coke accumulates on the oxidative dehydrogenation catalyst, the catalyst activity decreases. In the oxidative dehydrogenation catalyst of this embodiment, the lattice carbon of the ceria carrier burns coke, thereby suppressing a decrease in catalyst activity.
  • ceria carrier refers to a carrier in which the content of ceria is 50% by mass or more based on the total mass of the carrier.
  • the ceria content in the ceria carrier is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and even more preferably 100% by mass.
  • the ceria carrier may contain oxides other than ceria.
  • oxides other than ceria include alumina, silica, zirconia, titania, and magnesia. relative to the total mass of ceria carrier.
  • the content of oxides other than ceria is preferably 0 to 50% by mass, preferably 0 to 20% by mass, and more preferably not contained.
  • the BET specific surface area of the ceria carrier due to nitrogen adsorption is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, and even more preferably 100 m 2 /g or more.
  • the upper limit of the BET specific surface area is not particularly limited, but may be 200 m 2 /g or less.
  • the BET specific surface area is preferably 20 to 200 m 2 /g, more preferably 50 to 200 m 2 /g, even more preferably 100 to 200 m 2 /g. In this specification, "BET specific surface area" can be measured by nitrogen adsorption measurement.
  • the content ratio of the active component to the total mass of the oxidative dehydrogenation catalyst is preferably 2.30 to 3.47% by mass, more preferably 2.32 to 3.45% by mass, and 2. More preferably, it is .34 to 3.43% by mass.
  • the content ratio of the active ingredient is at least the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase.
  • the content ratio of the active ingredient is below the upper limit of the above range, the propane conversion rate and the carbon dioxide conversion rate are unlikely to decrease.
  • the content ratio of elemental platinum to the total mass of the oxidative dehydrogenation catalyst is preferably 0.5 to 1.5% by mass, more preferably 0.8 to 1.2% by mass, and 0.5 to 1.5% by mass, more preferably 0.8 to 1.2% by mass. More preferably, it is 9 to 1.1% by mass.
  • the platinum element content is equal to or higher than the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase.
  • the propane conversion rate and the carbon dioxide conversion rate are unlikely to decrease.
  • the total content of the M1 element relative to the total mass of the oxidative dehydrogenation catalyst is preferably 0.90 to 1.90% by mass, more preferably 0.93 to 1.85% by mass, and 0. More preferably, it is .95 to 1.83% by mass.
  • the total content of the M1 element is at least the lower limit of the above range, the yield of propylene is improved.
  • the total content of the M1 element is below the upper limit of the above range, the yield of propylene is improved.
  • the total content of the M2 element relative to the total mass of the oxidative dehydrogenation catalyst is preferably 0.2 to 0.7% by mass, and preferably 0.25 to 0.65% by mass. %, and even more preferably 0.3 to 0.6% by mass.
  • the total content of the M2 element is at least the lower limit of the above range, the yield of propylene is improved.
  • the total content of M2 elements is below the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of tin element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.35 to 1.87% by mass, and preferably 0.38 to 1.87% by mass. It is more preferably 85% by mass, and even more preferably 0.41 to 1.83% by mass.
  • the content of tin element is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of tin element is at most the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of gallium element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.20 to 1.12% by mass, and 0.22 to 1.2% by mass. It is more preferably 10% by mass, and even more preferably 0.24 to 1.07% by mass.
  • the content of the gallium element is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of gallium element is below the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of indium element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.35 to 0.92% by mass, and preferably 0.37 to 0.92% by mass. It is more preferably 90% by mass, and even more preferably 0.39 to 0.88% by mass.
  • the content of the indium element is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of the indium element is at most the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of cobalt element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.26 to 0.64% by mass, and 0.28 to 0.64% by mass. It is more preferably 62% by mass, and even more preferably 0.30 to 0.60% by mass.
  • the content of the cobalt element is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of cobalt element is at most the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of the nickel element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.24 to 0.36% by mass, and preferably 0.26 to 0.26% by mass. It is more preferably 34% by mass, and even more preferably 0.28 to 0.32% by mass.
  • the content of the nickel element is at least the lower limit of the above range, the yield of propylene is improved.
  • the content of the nickel element is at most the upper limit of the above range, the yield of propylene is improved.
  • the content ratio of "platinum element, M1 element, M2 element", the ratio of each element, the number of M1 elements, and the number of M2 elements can be measured by inductively coupled plasma emission spectrometry (ICP).
  • ICP inductively coupled plasma emission spectrometry
  • the amount of each metal can be measured using an inductively coupled plasma emission spectrometer.
  • the BET specific surface area of the oxidative dehydrogenation catalyst due to nitrogen adsorption is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, and even more preferably 100 m 2 /g or more.
  • the upper limit of the BET specific surface area is not particularly limited, but may be 200 m 2 /g or less.
  • the BET specific surface area is preferably 20 to 200 m 2 /g, more preferably 50 to 200 m 2 /g, even more preferably 100 to 200 m 2 /g.
  • the degree of dispersion of platinum element, nickel element, and cobalt element (when nickel element and cobalt element are included as M2 elements) measured by CO adsorption of the oxidative dehydrogenation catalyst is preferably 10% or more, and 15% or more. % or more, and even more preferably 20% or more.
  • the degree of dispersion is at least the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase.
  • the upper limit of the degree of dispersion is not particularly limited, but may be 90% or less, 80% or less, or 70% or less.
  • the degree of dispersion is preferably 10 to 70%, more preferably 15 to 80%, even more preferably 20 to 90%.
  • the degree of dispersion of platinum element, nickel element, and cobalt element is the dispersion degree of platinum element, nickel element, and cobalt element exposed on the surface with respect to the total amount (100%) of platinum element, nickel element, and cobalt element contained in the oxidation dehydrogenation catalyst. element, and the proportion of cobalt element. Specifically, the degree of dispersion can be calculated by the method described in Examples below.
  • the average particle diameter of the active ingredient is preferably 10 nm or less, more preferably 7 nm or less, and even more preferably 5 nm or less.
  • the lower limit of the average particle diameter is not particularly limited, but may be 1 nm or more, 2 nm or more, or 3 nm or more.
  • the average particle diameter is preferably 1 to 10 nm, more preferably 2 to 7 nm, even more preferably 3 to 5 nm.
  • the average particle size of the active ingredient can be measured using a transmission electron microscope (TEM). A specific method for measuring the average particle diameter of the active ingredient will be explained in Examples below.
  • the crystal structure of the alloy is the NiAs type crystal structure, which is the same as that of the platinum-tin alloy.
  • Figure 2 shows the crystal structure (unit cell) of the platinum-tin alloy.
  • platinum and the M2 element are located at the platinum site in the platinum-tin alloy, and the M1 element is located at the germanium site. That is, when the active component does not contain the M2 element, the platinum-tin alloy has a structure in which some or all of the tin sites are substituted with an M1 element other than tin.
  • FIG. 2 shows a platinum-tin-gallium-indium-cobalt-nickel structure in which some of the platinum sites in the platinum-tin alloy are replaced with cobalt and nickel, and some of the tin sites are replaced with gallium and indium.
  • the crystal structure (unit cell) of a six-element alloy is shown.
  • the EXAFS spectrum of the oxidative dehydrogenation catalyst can be obtained by XAFS measurement using synchrotron radiation.
  • an EXAFS spectrum of a powdered oxidative dehydrogenation catalyst can be obtained at a synchrotron radiation facility (eg, SPring-8, BL01B1).
  • the method for producing an oxidative dehydrogenation catalyst of the present embodiment includes an impregnating step of impregnating a ceria carrier with an impregnating liquid containing the raw material compound of the active ingredient to obtain an impregnated body, and reducing and calcining the impregnated body in a reducing gas atmosphere. and a reduction firing step.
  • raw material compounds of active ingredients used in the impregnation process.
  • inorganic salts such as chlorides, sulfides, nitrates, carbonates
  • organic salts such as oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamine acetate
  • chelate compounds carbonyl compounds; cyclopentadienyl Compounds; ammine complexes; alkoxide compounds; alkyl compounds and the like.
  • Examples of the impregnation method include an evaporation to dryness method, an equilibrium adsorption method, and a pore filling method.
  • the ceria carrier is immersed in an excess impregnating liquid with respect to the total pore volume of the ceria carrier, and then all the solvent is dried in the drying step described below, thereby supporting the raw material compound of the active ingredient.
  • This is an impregnation method.
  • the ceria carrier is immersed in an excess impregnating liquid with respect to the total pore volume of the ceria carrier, followed by solid-liquid separation such as filtration, and then the solvent is dried to support the raw material compound of the active ingredient.
  • the pore filling method is an impregnation method in which a ceria carrier is impregnated with an impregnating liquid in an amount approximately equal to the total pore volume of the ceria carrier, and the raw material compound of the active ingredient is supported by drying all the solvent.
  • the method for impregnating the ceria carrier with the raw material compounds of two or more active ingredients may be a batch impregnation method in which these components are simultaneously impregnated, or a sequential impregnation method in which they are impregnated individually.
  • the impregnation liquid can be prepared by dissolving the raw material compound of the active ingredient in a solvent.
  • the solvent is not particularly limited as long as it can dissolve the raw material compound of the active ingredient and is volatilized and removed by drying, and examples thereof include water, ethanol, acetone, and the like.
  • the solvent in the impregnating liquid can be dried by a method known in the art, and the drying temperature, drying time, and drying atmosphere can be adjusted as appropriate depending on the solvent to be removed.
  • Examples of the reducing gas in the reduction firing step include hydrogen, carbon monoxide, and the like, and a gas diluted with an inert gas may also be used.
  • the temperature of the reduction firing is preferably 400 to 700°C, more preferably 500 to 700°C, and preferably 600°C.
  • the reduction firing time may be 1 to 2 hours, 1 to 3 hours, or 1 to 5 hours.
  • an oxidation firing step may be included in which the impregnated body is oxidized and fired in an oxidizing gas atmosphere.
  • the oxidizing gas in the oxidizing firing step include oxygen, and a gas diluted with an inert gas may also be used. Additionally, air may be used as the oxidizing gas.
  • the temperature of the oxidation firing is preferably 400 to 600°C, more preferably 450 to 550°C, and preferably 500°C.
  • the oxidation firing time may be 1 to 3 hours, or 1 to 2 hours.
  • the method for producing propylene of the present embodiment is a method for producing propylene through an oxidative dehydrogenation reaction of propane by contacting a raw material gas containing propane and carbon dioxide with the oxidative dehydrogenation catalyst of the present invention.
  • the method for producing propylene can be carried out, for example, by filling a reactor with the above-mentioned oxidative dehydrogenation catalyst and flowing a raw material gas containing propane and carbon dioxide.
  • the reaction method is not particularly limited as long as the effects of the present invention can be obtained, but examples include a fixed bed method, a fluidized bed method, and a moving bed method, with the fixed bed method being preferred.
  • the propylene production method may be a one-stage propylene production method in which the above-mentioned oxidative dehydrogenation catalyst is charged into a single reaction device, or a multi-stage continuous propylene production method in which the above-mentioned oxidative dehydrogenation catalyst is filled in a plurality of reaction devices. But that's fine.
  • propylene may be produced in some of the reactors, and the oxidative dehydrogenation catalyst described below may be regenerated in the remaining reactors.
  • the content ratio of propane with respect to 100 volume % of the raw material gas is preferably 5 to 50 volume %, more preferably 20 to 30 volume %.
  • the content ratio of carbon dioxide to 100 volume % of the raw material gas is preferably 5 to 50 volume %, more preferably 20 to 30 volume %.
  • the source gas may include gases other than propane and carbon dioxide, and examples of gases other than propane and carbon dioxide include inert gases such as helium and nitrogen.
  • the molar ratio of carbon dioxide to propane in the raw material gas is preferably 0.5 to 2, more preferably 0.75 to 1.25, and 1. It is even more preferable.
  • the conversion rate of carbon dioxide is low, so propylene cannot be efficiently produced unless CO 2 /C 3 H 8 is set high.
  • the oxidative dehydrogenation catalyst of this embodiment has a high carbon dioxide activation ability and a high carbon dioxide conversion rate, so it can efficiently produce propylene even at the above-mentioned low CO 2 /C 3 H 8 . It is possible to do so.
  • the reaction temperature is preferably 500 to 600°C, more preferably 550 to 600°C.
  • the reaction temperature is equal to or higher than the lower limit of the above range, the equilibrium conversion rate increases.
  • the reaction temperature is below the upper limit of the range, sintering of the active ingredient is suppressed and a decrease in activity is suppressed.
  • the reaction pressure is preferably 0.05 to 0.1 MPa, more preferably 0.08 to 0.1 MPa, and even more preferably 0.09 to 0.1 MPa.
  • the reaction pressure is equal to or higher than the lower limit of the above range, the conversion rate of carbon dioxide increases. If the reaction pressure is below the upper limit of the above range, the propane conversion rate will not decrease.
  • the weight hourly space velocity (Weight Hourly Space Velocity) of propane in the raw material gas relative to the oxidative dehydrogenation catalyst is more preferably 3000 to 5000 hr ⁇ 1 , and even more preferably 3500 to 4000 hr ⁇ 1 .
  • Examples of the propane in the raw material gas used in the propylene production method of the present embodiment include shale gas-derived propane, naphtha-derived propane, biomass-derived propane, and the like.
  • the oxidizing gas examples include oxygen, carbon dioxide, and the like.
  • oxygen air can be used as the regeneration gas.
  • the content of the oxidizing gas with respect to 100 volume % of the regeneration gas is preferably 20 to 100 volume %, more preferably 50 to 100 volume %.
  • the gas hourly space velocity (GHSV) of the oxidizing gas in the regeneration gas relative to the oxidative dehydrogenation catalyst is more preferably 6000 to 10000 hr ⁇ 1 , and more preferably 7000 to 8000 hr ⁇ 1 . preferable.
  • the regeneration temperature is preferably 400 to 600°C, more preferably 450 to 550°C.
  • the regeneration temperature is equal to or higher than the lower limit of the range, combustion of coke is promoted.
  • the reaction temperature is below the upper limit of the range, sintering of the active ingredient is suppressed and a decrease in activity is suppressed.
  • the regeneration time can be adjusted as appropriate depending on the type of oxidizing gas, GHSV, regeneration temperature, and regeneration pressure.
  • the playback time may be 1 to 2 hours, 1 to 3 hours, or 1 to 5 hours.
  • the oxidative dehydrogenation catalyst of this embodiment has a high coke combustion ability because it contains a ceria carrier. Therefore, even if carbon dioxide is used as the oxidizing gas, the catalytic activity is sufficiently recovered. That is, by stopping the supply of propane from the raw material gas in the propylene production method, the catalyst can be regenerated, and propylene can be efficiently produced.
  • the catalyst after the regeneration treatment is brought into contact with a reduction treatment gas containing a reducing gas.
  • a reduction treatment gas containing a reducing gas By carrying out the reduction treatment, if the active component is partially oxidized by the regeneration treatment, it can be converted back into an alloy or an elemental metal.
  • Examples of the reducing gas include hydrogen, carbon monoxide, and the like.
  • the content ratio of the reducing gas to 100 volume % of the reduction treatment gas is preferably 20 to 100 volume %, more preferably 30 to 50 volume %.
  • the gas hourly space velocity (GHSV) of the reducing gas in the reduction treatment gas relative to the oxidative dehydrogenation catalyst is more preferably 6000 to 10000 hr ⁇ 1 , and more preferably 7000 to 8000 hr ⁇ 1 . More preferred.
  • the reduction treatment temperature is preferably 400 to 600°C, more preferably 450 to 550°C.
  • the reduction treatment time can be adjusted as appropriate depending on the type of reducing gas, GHSV, regeneration temperature, and regeneration pressure.
  • the reduction treatment time may be 0.5 to 1 hour, 0.5 to 1.5 hours, or 0.5 to 2 hours.
  • the particle size of the active component (alloy) of the oxidative dehydrogenation catalyst in each example was measured using a transmission electron microscope (JOEL JEM-ARM200M) equipped with an energy dispersive X-ray (EDX) analyzer at an accelerating voltage of 200 kV. carried out. After the oxidative dehydrogenation catalysts of each example were subjected to ultrasonic treatment with ethanol, they were dispersed on a Mo grid supported by a carbon membrane and observed. For the particle size distribution, the longest diameter of 126 particles randomly selected in 10 images was observed, and the average of these was taken as the average particle diameter.
  • the degree of dispersion of platinum element, nickel element, and cobalt element in the oxidative dehydrogenation catalyst of each example was measured by CO adsorption measurement of the oxidative dehydrogenation catalyst.
  • the degree of dispersion is the ratio of the platinum element, nickel element, and cobalt element exposed on the surface to the total amount of the platinum element, nickel element, and cobalt element contained in the oxidative dehydrogenation catalyst.
  • a mixed gas of 5% by volume of hydrogen and 95% by volume of air was passed through 40mg of the oxidative dehydrogenation catalyst at 30NmL/min, pretreated at 600°C for 30 minutes, and then heated with liquid nitrogen while purging helium. Cooled.
  • a mixed gas containing 10% by volume of carbon monoxide and 90% by volume of helium was introduced using a pulse method, and the carbon monoxide that was not adsorbed on the catalyst was quantified using a TCD detector.
  • the mixed gas was introduced until it was exhausted.
  • the amount of platinum element, nickel element, and cobalt element is calculated based on the assumption that one molecule of carbon monoxide is adsorbed for each one atom of platinum, one atom of nickel, and one atom of cobalt. The degree of dispersion was calculated.
  • the content ratios of propane, carbon dioxide, and helium to 100 volume % of the raw material gas are 25 volume %, 25 volume %, and 50 volume %, respectively.
  • the gas flowing out from the reactor outlet was analyzed using an online thermal conductivity detection gas chromatograph (Shimadzu Corporation, product name "GC-8A”). Propylene, propane, ethylene, ethane, methane, carbon monoxide, carbon dioxide, water, and hydrogen were detected in the reactor outlet gas.
  • Equation 3 F in C3H8 represents the flow rate (mol/min) of propane flowing into the reactor, and F out C3H8 represents the flow rate (mol/min) of propane discharged from the reactor.
  • the conversion rate of carbon dioxide (X CO2 ) was calculated using the following formula 4.
  • Equation 4 F in CO2 represents the flow rate (mol/min) of carbon dioxide flowing into the reactor, and F out CO2 represents the flow rate (mol/min) of carbon dioxide discharged from the reactor.
  • the selectivity of propylene was calculated using the following formula 5.
  • F out C3H6 indicates the flow rate (mol/min) of propylene discharged from the reactor
  • F out C2H6 indicates the flow rate (mol/min) of ethane discharged from the reactor
  • out C2H4 indicates the flow rate of ethylene discharged from the reactor (mol/min)
  • F out CH4 indicates the flow rate of methane discharged from the reactor (mol/min)
  • F CxHy CO is expressed by the following formula Calculated according to 6.
  • F out CO represents the flow rate (mol/min) of carbon monoxide discharged from the reactor, and F CO2 CO was calculated using Equation 7 below.
  • F in CO2 represents the flow rate (mol/min) of carbon dioxide flowing into the reactor
  • F out CO2 represents the flow rate (mol/min) of carbon dioxide discharged from the reactor.
  • the propylene yield was calculated by propane conversion rate x propylene selectivity/100.
  • Example 1 Ceria (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., reference catalyst "JRC-CEO-2", specific surface area 123.1 m 2 /g), H 2 PtCl 6 as a Pt raw material compound, SnCl 2 as an M1 element raw material compound , an impregnating solution in which Co(NO 3 ) 2.6H 2 O and Ni(NO 3 ) 2.6H 2 O as M2 element raw material compounds are dissolved in ion-exchanged water to have the composition of catalyst A shown in Table 1. was impregnated by evaporation to dryness, and then dried under reduced pressure at 50°C to obtain an impregnated body.
  • Ceria manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., reference catalyst "JRC-CEO-2", specific surface area 123.1 m 2 /g
  • H 2 PtCl 6 as a Pt raw material compound
  • SnCl 2 as an M
  • the impregnated body was fired at 500°C for 1 hour under air flow, and then reduced and fired at 600°C for 1 hour under hydrogen flow to obtain catalyst A in which Pt-Sn-Co-Ni alloy was supported on ceria. .
  • the composition of catalyst A is shown in Table 1.
  • Example 2 Example 1 except that Ga(NO 3 ) 3.6H 2 O was added instead of SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst B listed in Table 1.
  • Example 3 Except that In(NO 3 ) 3.3H 2 O was added in addition to SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst C listed in Table 1.
  • a catalyst C in which a Pt-Sn-In-Co-Ni alloy was supported on ceria was obtained.
  • the composition of catalyst C is shown in Table 1.
  • Example 4 Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as M1 element raw material compounds instead of SnCl 2 and impregnated to have the composition of catalyst D shown in Table 1.
  • the composition of catalyst D is shown in Table 1.
  • Example 5 In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound, and Ni(NO 3 ) 2 . Pt-Sn-Ga-In-Co was added to ceria in the same manner as in Example 1, except that 6H 2 O was not added and the composition of the impregnating liquid was changed to have the composition of catalyst E shown in Table 1. A catalyst E on which an alloy was supported was obtained. The composition of catalyst E is shown in Table 1.
  • Example 6 In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound, and Co(NO 3 ) 2 . Pt-Sn-Ga-In-Ni was added to ceria in the same manner as in Example 1, except that 6H 2 O was not added and the composition of the impregnating liquid was changed to have the composition of catalyst F listed in Table 1. A catalyst F on which an alloy was supported was obtained. The composition of catalyst F is shown in Table 1.
  • Example 7 Except that Ga(NO 3 ) 3.6H 2 O was added in addition to SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst G listed in Table 1.
  • a catalyst G in which a Pt-Sn-Ga-Co-Ni alloy was supported on ceria was obtained.
  • the composition of catalyst G is shown in Table 1.
  • Example 8 Catalyst H in which a Pt-Sn-In-Co-Ni alloy was supported on ceria was prepared in the same manner as in Example 3, except that the composition of the impregnating liquid was changed so that the composition of catalyst H was as shown in Table 1. Obtained. The composition of catalyst H is shown in Table 1.
  • Catalyst I in which a Pt-Ga-In-Co-Ni alloy was supported on ceria, was prepared in the same manner as in Example 4, except that the composition of the impregnating liquid was changed so that the composition of catalyst I was as shown in Table 1. Obtained. The composition of Catalyst I is shown in Table 1.
  • Example 10 Catalyst J in which a Pt-Sn-Ga-In-Co alloy was supported on ceria was prepared in the same manner as in Example 5, except that the composition of the impregnating liquid was changed so that the composition of catalyst J was as shown in Table 1. Obtained. The composition of catalyst J is shown in Table 1.
  • Catalyst K in which a Pt-Sn-Ga-In-Ni alloy was supported on ceria, was prepared in the same manner as in Example 6, except that the composition of the impregnating liquid was changed so that the composition of catalyst K was as shown in Table 1. Obtained. The composition of catalyst K is shown in Table 1.
  • Example 12 Catalyst L in which a Pt-Sn-Ga-Co-Ni alloy was supported on ceria was prepared in the same manner as in Example 7, except that the composition of the impregnating liquid was changed so that the composition of catalyst L was as shown in Table 1. Obtained. The composition of catalyst L is shown in Table 1.
  • Example 13 Catalyst M in which Pt-Sn-Ga-In-Co alloy was supported on ceria was prepared in the same manner as in Example 5, except that the composition of the impregnating liquid was changed so that the composition of catalyst M was as shown in Table 1. Obtained. The composition of catalyst M is shown in Table 1.
  • Example 14 In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound so that the composition of catalyst N was as shown in Table 1.
  • Table 1 shows the composition of catalyst N, the average particle diameter, the degree of dispersion of platinum, cobalt, and nickel, and the amount of carbon after the reaction.
  • the degree of dispersion in parentheses for the degree of dispersion of platinum, cobalt, and nickel is the degree of dispersion of platinum, cobalt, and nickel in the catalyst after 50 hours of reaction.
  • composition of the impregnating liquid was changed to have the composition of catalyst Q shown in Table 1 without adding the M1 element raw material compound and without adding Ni(NO 3 ) 2.6H 2 O as the M2 element raw material compound. Except for this, a catalyst Q in which a Pt--Co alloy was supported on ceria was obtained in the same manner as in Example 1. Table 1 shows the composition, average particle diameter, and degree of dispersion of platinum and cobalt of catalyst Q.
  • a catalyst T in which a Pt-Sn-Ga-In-Co-Ni alloy was supported on silica was obtained in the same manner as in Example 14, except that silica was used instead of ceria as the carrier.
  • Table 1 shows the composition of catalyst T and the degree of dispersion of platinum, cobalt, and nickel.
  • Example 7 A catalyst U in which a Pt--Sn--Ga--In--Co--Ni alloy was supported on alumina was obtained in the same manner as in Example 14, except that alumina was used instead of ceria as the carrier. Table 1 shows the composition of catalyst U and the degree of dispersion of platinum, cobalt, and nickel.
  • FIG. 3 shows the changes over time in the propane conversion rate and propylene selectivity of Examples 1, 3, 5, and 7, and FIG. 4 shows the changes over time in the CO 2 conversion rate.
  • Figure 5 shows the change in propane conversion rate and propylene selectivity over time in Examples 8 to 14, and
  • Figure 6 shows the change in CO 2 conversion rate over time.
  • FIG. 7 shows the changes over time in the propane conversion rate and propylene selectivity of Example 14 and Comparative Examples 2 to 5
  • FIG. 8 shows the changes over time in the CO 2 conversion rate.
  • FIG. 9 shows the time-dependent changes in the propane conversion rate and propylene selectivity of Example 14 and Comparative Examples 6 and 7, and
  • FIG. 10 shows the time-dependent change in the CO 2 conversion rate.
  • Example 15 A catalyst life test was conducted using Catalyst N of Example 14. Specifically, the oxidative dehydrogenation reaction of propane was carried out using Catalyst N for about 60 hours. Thereafter, while maintaining the temperature of the catalyst layer at 600°C, a regeneration gas containing carbon dioxide was passed at a rate of 30 NmL/min (a mixed gas of carbon dioxide: 20 NmL/min and helium: 10 NmL/min) instead of the raw material gas. Regeneration treatment was performed for 5 hours.
  • a reduction treatment gas containing hydrogen is passed at a rate of 20NmL/min (a mixed gas of hydrogen: 10NmL/min, helium: 10NmL/min).
  • a reduction treatment was performed for 30 minutes.
  • the reaction was restarted by flowing the raw material gas again instead of the reduction treatment gas while maintaining the temperature of the catalyst layer at 600°C. Thereafter, the oxidative dehydrogenation reaction of propane was carried out for about 60 hours.
  • FIG. 11 shows the propane conversion rate and propylene selectivity of Example 15 over time
  • FIG. 12 shows the CO 2 conversion rate over time.
  • FIGS. 11 and 12 in the life test using catalyst N of Example 14, it was possible to use carbon dioxide as the oxidizing gas, and by performing regeneration treatment once, the It was possible to continue the reaction while maintaining propane conversion and CO 2 conversion.
  • the oxidative dehydrogenation catalyst according to the present invention is useful because it can efficiently produce propyrene over a long period of time.

Abstract

The present invention relates to a catalyst for oxidative dehydrogenation of propane, the catalyst for oxidative dehydrogenation being obtained by having a ceria carrier support an active component, wherein: platinum element and an M1 element that is a typical metal element are contained in the active component; an M2 element that is a transition metal element may be contained in the active component; the total number of the M1 element and the M2 element contained in the active component is two or more; the M1 element is composed of one or more typical metal elements that are selected from the group consisting of tin element, gallium element, indium element, zinc element and germanium element; and the M2 element is composed of one or more transition metal elements that are selected from the group consisting of cobalt element, nickel element, iron element and copper element.

Description

酸化脱水素用触媒及びプロピレンの製造方法Catalyst for oxidative dehydrogenation and method for producing propylene
 本発明は、酸化脱水素用触媒及びプロピレンの製造方法に関する。
 本願は、2022年5月20日に、日本に出願された特願2022-082775号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an oxidative dehydrogenation catalyst and a method for producing propylene.
This application claims priority based on Japanese Patent Application No. 2022-082775 filed in Japan on May 20, 2022, the contents of which are incorporated herein.
 プロピレンは、樹脂、界面活性剤、染料、医薬品など、様々な化学物質を製造するための基幹化学品である。近年、スチームクラッカーの原料が原油由来のナフサからシェールガス由来のエタンにシフトしているため、プロピレンの供給が減少している。 Propylene is a key chemical used in the production of various chemicals such as resins, surfactants, dyes, and pharmaceuticals. In recent years, the supply of propylene has been decreasing as the raw material for steam crackers has shifted from naphtha derived from crude oil to ethane derived from shale gas.
 このような背景もあり、プロパンの単純脱水素反応によるプロピレンの製造が注目されている。プロパンの単純脱水素反応は下式1で表される反応式により進行する。プロパンの単純脱水素反応は吸熱反応であるため、反応の進行には600℃以上の高温が必要である。
→C+H 式1
Against this background, the production of propylene by simple dehydrogenation of propane is attracting attention. The simple dehydrogenation reaction of propane proceeds according to the reaction formula shown in Formula 1 below. Since the simple dehydrogenation reaction of propane is an endothermic reaction, a high temperature of 600° C. or higher is required for the reaction to proceed.
C 3 H 8 → C 3 H 6 +H 2 Formula 1
 プロパンの脱水素反応の平衡転化率を向上させる試みとして、二酸化炭素を酸化剤として用いるプロパンの酸化脱水素反応が検討されている。プロパンの酸化脱水素反応は下式2で表される反応式により進行する。
+CO→C+HO+CO 式2
As an attempt to improve the equilibrium conversion rate of propane dehydrogenation, oxidative dehydrogenation of propane using carbon dioxide as an oxidizing agent has been studied. The oxidative dehydrogenation reaction of propane proceeds according to the reaction formula shown in Formula 2 below.
C 3 H 8 +CO 2 →C 3 H 6 +H 2 O+CO Formula 2
 プロパンの酸化脱水素反応では、プロパンの脱水素反応で生成した水素を二酸化炭素で酸化して水とすることで平衡を生成物側に傾けることができる。その結果、図1に示すように、プロパンの単純脱水素反応よりも平衡転化率が向上する。 In the oxidative dehydrogenation reaction of propane, the equilibrium can be tilted toward the product by oxidizing the hydrogen produced in the dehydrogenation reaction of propane to water with carbon dioxide. As a result, as shown in FIG. 1, the equilibrium conversion rate is improved compared to the simple dehydrogenation reaction of propane.
 プロパンの酸化脱水素用触媒としては、従来広範な研究が行われており、酸化クロム系触媒、酸化バナジウム系触媒、酸化ガリウム系触媒、酸化インジウム系触媒、パラジウム金属系触媒、鉄-ニッケル合金系触媒が知られている。 Extensive research has been conducted on catalysts for propane oxidative dehydrogenation, including chromium oxide catalysts, vanadium oxide catalysts, gallium oxide catalysts, indium oxide catalysts, palladium metal catalysts, and iron-nickel alloy catalysts. catalyst is known.
 非特許文献1及び2には、メソポーラスシリカ担体に酸化クロムが担持された酸化クロム系のプロパンの酸化脱水素用触媒が開示されている。酸化クロム系のプロパンの酸化脱水素用触媒を用いることで、良好なプロピレン選択率(約80%)を示したことが開示されている。 Non-Patent Documents 1 and 2 disclose a chromium oxide-based propane oxidative dehydrogenation catalyst in which chromium oxide is supported on a mesoporous silica carrier. It is disclosed that good propylene selectivity (about 80%) was shown by using a chromium oxide-based propane oxidative dehydrogenation catalyst.
 しかしながら、非特許文献1及び2に記載のプロパンの酸化脱水素用触媒の活性は充分ではない。さらに、数時間以内で急速に活性が低下するという問題がある。
 本発明は、前記事情に鑑みてなされたものであって、従来の触媒に比べてプロピレンを高い収率で得ることのできる、プロパンの酸化脱水素反応によってプロピレンを製造するための酸化脱水素用触媒、及び前記酸化脱水素用触媒を用いたプロピレンの製造方法を提供することを課題とする。
However, the activity of the propane oxidative dehydrogenation catalysts described in Non-Patent Documents 1 and 2 is not sufficient. Furthermore, there is a problem that the activity rapidly decreases within several hours.
The present invention has been made in view of the above circumstances, and is an oxidative dehydrogenation device for producing propylene by an oxidative dehydrogenation reaction of propane, which can obtain propylene in a higher yield than conventional catalysts. An object of the present invention is to provide a catalyst and a method for producing propylene using the oxidative dehydrogenation catalyst.
 前記課題を解決するため、本発明は、以下の態様を有する。
[1] プロパンの酸化脱水素反応によってプロピレンを製造するための酸化脱水素用触媒であって、前記酸化脱水素反応は、プロパンに二酸化炭素を反応させることにより行い、前記酸化脱水素用触媒は、活性成分がセリア担体に担持されており、前記活性成分として、白金元素と、典型金属元素であるM1元素と、を含み、遷移金属元素であるM2元素を含んでもよく、前記活性成分に含まれる前記M1元素及び前記M2元素の総数は、2個以上であり、前記M1元素は、錫元素、ガリウム元素、インジウム元素、亜鉛元素、及びゲルマニウム元素からなる群から選択される1種以上の典型金属元素であり、前記M2元素は、コバルト元素、ニッケル元素、鉄元素、及び銅元素からなる群から選択される1種以上の遷移金属元素である、酸化脱水素用触媒(但し、前記M1元素としてインジウム元素のみを含み、前記M2元素としてコバルト元素のみを含む酸化脱水素用触媒、前記M1元素としてインジウム元素のみを含み、前記M2元素としてニッケル元素のみを含む酸化脱水素用触媒、並びに前記M1元素としてインジウム元素のみを含み、前記M2元素としてコバルト元素及びニッケル元素のみを含む酸化脱水素用触媒を除く)。
[2] 前記M1元素は、錫元素、ガリウム元素、及びインジウム元素からなる群から選択される1種以上の典型金属元素であり、前記M2元素は、コバルト元素、及びニッケル元素からなる群から選択される1種以上の遷移金属元素である、[1]に記載の酸化脱水素用触媒。
[3] 前記活性成分として、前記M2元素を含む、[1]又は[2]に記載の酸化脱水素用触媒。
[4] 前記活性成分に含まれる前記白金元素及び前記M2元素の総モル数に対する、前記M1元素のモル数の割合が0.8~1.2である、[1]~[3]のいずれかに記載の酸化脱水素用触媒。
[5] 前記活性成分に含まれる前記M1元素及び前記M2元素の総数は、3~8個である、[1]~[4]のいずれかに記載の酸化脱水素用触媒。
[6] 前記M1元素として、錫元素、ガリウム元素、及びインジウム元素を含み、前記M2元素として、コバルト元素、及びニッケル元素を含む、[1]~[5]のいずれかに記載の酸化脱水素用触媒。
[7] 前記活性成分に含まれる金属元素が合金を形成している、[1]~[6]のいずれかに記載の酸化脱水素用触媒。
[8] [1]~[7]のいずれかに記載の酸化脱水素用触媒に、プロパン及び二酸化炭素を含む原料ガスを接触処理させる、プロピレンの製造方法。
In order to solve the above problems, the present invention has the following aspects.
[1] An oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane, wherein the oxidative dehydrogenation reaction is performed by reacting propane with carbon dioxide, and the oxidative dehydrogenation catalyst comprises: , an active ingredient is supported on a ceria carrier, and the active ingredient contains a platinum element and an M1 element which is a typical metal element, and may also contain an M2 element which is a transition metal element, and the active ingredient contains an M2 element which is a transition metal element. The total number of the M1 elements and the M2 elements included is 2 or more, and the M1 element is one or more typical elements selected from the group consisting of tin element, gallium element, indium element, zinc element, and germanium element. The M2 element is a metal element, and the M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element. A catalyst for oxidative dehydrogenation containing only indium as the element and only cobalt as the M2 element, an oxidative dehydrogenation catalyst containing only indium as the M1 element and only nickel as the M2 element, and (excluding catalysts for oxidative dehydrogenation that contain only indium as an element and only cobalt and nickel as M2 elements).
[2] The M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, and indium element, and the M2 element is selected from the group consisting of cobalt element and nickel element. The oxidative dehydrogenation catalyst according to [1], which is one or more transition metal elements.
[3] The oxidative dehydrogenation catalyst according to [1] or [2], which contains the M2 element as the active component.
[4] Any one of [1] to [3], wherein the ratio of the number of moles of the M1 element to the total number of moles of the platinum element and the M2 element contained in the active ingredient is 0.8 to 1.2. The oxidative dehydrogenation catalyst described in Crab.
[5] The oxidative dehydrogenation catalyst according to any one of [1] to [4], wherein the total number of the M1 element and the M2 element contained in the active component is 3 to 8.
[6] The oxidative dehydrogenation according to any one of [1] to [5], wherein the M1 element contains a tin element, a gallium element, and an indium element, and the M2 element contains a cobalt element and a nickel element. Catalyst for use.
[7] The oxidative dehydrogenation catalyst according to any one of [1] to [6], wherein the metal elements contained in the active component form an alloy.
[8] A method for producing propylene, which comprises contacting a raw material gas containing propane and carbon dioxide with the oxidative dehydrogenation catalyst according to any one of [1] to [7].
 本発明によれば、従来の触媒に比べて高活性で、かつ長寿命な、プロパンの酸化脱水素反応によってプロピレンを製造するための酸化脱水素用触媒、及び前記酸化脱水素用触媒を用いたプロピレンの製造方法を提供することができる。 According to the present invention, there is provided an oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane, which has higher activity and longer life than conventional catalysts, and a method using the oxidative dehydrogenation catalyst. A method for producing propylene can be provided.
プロパンの単純脱水素反応とプロパンの酸化脱水素反応の常圧における平衡転化率を示す図である。FIG. 2 is a diagram showing the equilibrium conversion rates of a simple dehydrogenation reaction of propane and an oxidative dehydrogenation reaction of propane at normal pressure. 白金-錫合金の結晶構造(単位格子)及び白金-錫-ガリウム-インジウム-コバルト-ニッケル6元素合金の結晶構造(単位格子)を示す図である。FIG. 2 is a diagram showing the crystal structure (unit cell) of a platinum-tin alloy and the crystal structure (unit cell) of a platinum-tin-gallium-indium-cobalt-nickel six-element alloy. 実施例1、3、5、7のプロパン転化率及びプロピレン選択率の経時変化を示す図である。FIG. 2 is a diagram showing changes over time in propane conversion rates and propylene selectivity in Examples 1, 3, 5, and 7. 実施例1、3、5、7のCO転化率の経時変化を示す図である。FIG. 2 is a diagram showing changes over time in CO 2 conversion rates of Examples 1, 3, 5, and 7. 実施例8~14のプロパン転化率及びプロピレン選択率の経時変化を示す図である。FIG. 3 is a graph showing changes over time in propane conversion rates and propylene selectivity in Examples 8 to 14. 実施例8~14のCO転化率の経時変化を示す図である。FIG. 3 is a graph showing changes over time in CO 2 conversion rates of Examples 8 to 14. 実施例14、比較例2~5のプロパン転化率及びプロピレン選択率の経時変化を示す図である。FIG. 3 is a graph showing changes in propane conversion rate and propylene selectivity over time in Example 14 and Comparative Examples 2 to 5. 実施例14、比較例2~5のCO転化率の経時変化を示す図である。FIG. 3 is a graph showing changes over time in CO 2 conversion rates of Example 14 and Comparative Examples 2 to 5. 実施例14、比較例6、7のプロパン転化率及びプロピレン選択率の経時変化を示す図である。FIG. 7 is a diagram showing changes over time in propane conversion rates and propylene selectivity in Example 14 and Comparative Examples 6 and 7. 実施例14、比較例6、7のCO転化率の経時変化を示す図である。FIG. 3 is a diagram showing changes over time in CO 2 conversion rates of Example 14 and Comparative Examples 6 and 7. 実施例15のプロパン転化率及びプロピレン選択率の経時変化を示す図である。FIG. 7 is a diagram showing changes over time in propane conversion rate and propylene selectivity in Example 15. 実施例15のCO転化率の経時変化を示す図である。FIG. 7 is a diagram showing changes over time in the CO 2 conversion rate of Example 15.
 以下、本発明の実施の形態について詳細に説明するが、以下の記載は本発明の実施態様の一例であり、本発明はこれらの内容に限定されず、その要旨の範囲内で変形して実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. However, the following description is an example of the embodiments of the present invention, and the present invention is not limited to these contents, and may be modified and implemented within the scope of the gist. can do.
≪酸化脱水素用触媒≫
 本実施形態の酸化脱水素用触媒は、プロパンの酸化脱水素反応によってプロピレンを製造するための酸化脱水素用触媒である。酸化脱水素反応は、プロパンに二酸化炭素を反応させることにより行うことができる。酸化脱水素用触媒は、活性成分がセリア担体に担持されている。酸化脱水素用触媒は、前記活性成分として、白金元素と、典型金属元素であるM1元素と、を含み、遷移金属元素であるM2元素を含んでもよい。本明細書において「含んでもよい」とは、含む又は含まないことを意味する。
 前記活性成分に含まれる前記M1元素及び前記M2元素の総数は、2個以上である。
 前記M1元素は、錫元素、ガリウム元素、インジウム元素、亜鉛元素、及びゲルマニウム元素からなる群から選択される1種以上の典型金属元素である。
 前記M2元素は、コバルト元素、ニッケル元素、鉄元素、及び銅元素からなる群から選択される1種以上の遷移金属元素である。
 但し、本実施形態の酸化脱水素用触媒には、M1元素としてインジウム元素のみを含み、M2元素としてコバルト元素のみを含む酸化脱水素用触媒、M1元素としてインジウム元素のみを含み、M2元素としてニッケル元素のみを含む酸化脱水素用触媒、並びにM1元素としてインジウム元素のみを含み、M2元素としてコバルト元素及びニッケル元素のみを含む酸化脱水素用触媒は含まれない。
<<Catalyst for oxidative dehydrogenation>>
The oxidative dehydrogenation catalyst of this embodiment is an oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane. The oxidative dehydrogenation reaction can be performed by reacting propane with carbon dioxide. In the oxidative dehydrogenation catalyst, the active component is supported on a ceria carrier. The oxidative dehydrogenation catalyst contains, as the active component, a platinum element and an M1 element which is a typical metal element, and may also contain an M2 element which is a transition metal element. As used herein, "may include" means including or not including.
The total number of the M1 element and the M2 element contained in the active ingredient is 2 or more.
The M1 element is one or more typical metal elements selected from the group consisting of tin, gallium, indium, zinc, and germanium.
The M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element.
However, the oxidative dehydrogenation catalyst of this embodiment includes only indium element as M1 element and cobalt element as M2 element, and oxidative dehydrogenation catalyst that contains only indium element as M1 element and nickel as M2 element. Catalysts for oxidative dehydrogenation that contain only the elements, and catalysts for oxidative dehydrogenation that contain only indium as the M1 element and only cobalt and nickel elements as the M2 element are not included.
<活性成分>
 酸化脱水素用触媒は、活性成分として、白金元素と、典型金属元素であるM1元素と、を含む。酸化脱水素用触媒は、活性成分として、遷移金属元素であるM2元素を含んでもよい。酸化脱水素用触媒は、活性成分として、遷移金属元素であるM2元素を含むことが好ましい。
<Active ingredient>
The oxidative dehydrogenation catalyst contains a platinum element and an M1 element, which is a typical metal element, as active components. The oxidative dehydrogenation catalyst may contain M2 element, which is a transition metal element, as an active component. The oxidative dehydrogenation catalyst preferably contains M2 element, which is a transition metal element, as an active component.
 活性成分として、白金元素が含まれると、プロパンを活性化することができ、プロパンの転化率が向上する。活性成分として、M1元素が含まれると、コーク生成等の副反応を抑制することができ、プロピレンの収率が向上する。活性成分として、M2元素が含まれると、二酸化炭素を活性化することができ、二酸化炭素の転化率が向上する。また、コーク生成が抑制されることにより、経時の触媒活性の低下が抑制される。 When platinum element is included as an active ingredient, propane can be activated and the conversion rate of propane is improved. When the M1 element is included as an active ingredient, side reactions such as coke formation can be suppressed, and the yield of propylene is improved. When M2 element is included as an active ingredient, carbon dioxide can be activated and the conversion rate of carbon dioxide is improved. Further, by suppressing coke formation, a decrease in catalyst activity over time is suppressed.
 M1元素は、錫元素、ガリウム元素、インジウム元素、亜鉛元素、及びゲルマニウム元素からなる群から選択される1種以上の典型金属元素である。この中でも、コーク生成等の副反応を抑制する効果が高いことから、M1元素は、錫元素、ガリウム元素、及びインジウム元素からなる群から選択される1種以上の典型金属元素であることが好ましい。 The M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, indium element, zinc element, and germanium element. Among these, the M1 element is preferably one or more typical metal elements selected from the group consisting of tin element, gallium element, and indium element, since it is highly effective in suppressing side reactions such as coke formation. .
 M2元素は、コバルト元素、ニッケル元素、鉄元素、及び銅元素からなる群から選択される1種以上の遷移金属元素である。この中でも、二酸化炭素の活性化能が高い観点から、コバルト元素及びニッケル元素からなる群から選択される1種以上の遷移金属元素であることが好ましい。M2元素はいわゆる3d遷移金属元素である。3d遷移金属元素が二酸化炭素を活性化するメカニズムとしては、3d遷移金属が二酸化炭素を強く吸着することによると考えられる。 The M2 element is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element. Among these, from the viewpoint of high carbon dioxide activation ability, one or more transition metal elements selected from the group consisting of cobalt element and nickel element are preferable. The M2 element is a so-called 3d transition metal element. The mechanism by which the 3d transition metal element activates carbon dioxide is thought to be that the 3d transition metal strongly adsorbs carbon dioxide.
 活性成分は、白金元素、M1元素、M2元素以外の金属元素又は非金属元素等のその他元素を含んでいてもよい。活性成分がその他の元素を含む場合、活性成分に含まれる全元素の総モル数に対する、前記その他の元素の総モル数の割合は、0.3以下であることが好ましく、0.1以下であることがより好ましい。非金属元素としては、酸素元素が例として挙げられる。本発明の一つの側面としては、活性成分は前記その他の元素を含まないことが好ましい。 The active ingredient may contain other elements such as metal elements or nonmetal elements other than platinum element, M1 element, and M2 element. When the active ingredient contains other elements, the ratio of the total number of moles of the other elements to the total number of moles of all the elements contained in the active ingredient is preferably 0.3 or less, and preferably 0.1 or less. It is more preferable that there be. An example of the nonmetallic element is oxygen. In one aspect of the present invention, the active ingredient preferably does not contain any of the other elements.
 酸化脱水素用触媒の活性成分において、白金元素、M1元素、M2元素の形態は、特に限定されず、単体金属、酸化物、合金が例として挙げられる。なかでも、活性成分に含まれる金属元素が合金を形成していることが好ましい。具体的には、酸化脱水素用触媒の活性成分において、白金元素と、M1元素と、が合金を形成していることが好ましい。活性成分がM2元素を含む場合は、酸化脱水素用触媒の活性成分において、白金元素と、M1元素と、M2元素と、が合金を形成していることが好ましい。活性成分が前記その他の元素(金属元素)を含む場合は、酸化脱水素用触媒の白金元素と、M1元素と、M2元素(含まれる場合)と、その他の元素(金属元素)と、が合金を形成していてもよい。なお白金元素、M1元素、M2元素(含まれる場合)の全てが合金を形成していなくてもよく、一部の元素は単体金属、酸化物として存在していてもよい。
 すなわち、前記活性成分は、白金-M1元素合金又は白金-M1元素-M2元素合金を含むことが好ましい。活性成分の総質量に対する前記合金の含有割合は、50~100質量%であることが好ましく、75~100質量%であることがより好ましく、100質量%であることがさらに好ましい。
In the active components of the oxidative dehydrogenation catalyst, the forms of the platinum element, the M1 element, and the M2 element are not particularly limited, and examples include simple metals, oxides, and alloys. Among these, it is preferable that the metal elements contained in the active ingredient form an alloy. Specifically, in the active component of the oxidative dehydrogenation catalyst, it is preferable that the platinum element and the M1 element form an alloy. When the active component contains the M2 element, it is preferable that the platinum element, the M1 element, and the M2 element form an alloy in the active component of the oxidative dehydrogenation catalyst. When the active ingredient contains the other elements (metallic elements), the platinum element of the oxidative dehydrogenation catalyst, the M1 element, the M2 element (if any), and the other elements (metallic elements) are alloyed. may be formed. Note that all of the platinum element, the M1 element, and the M2 element (if included) do not need to form an alloy, and some of the elements may exist as a single metal or an oxide.
That is, the active component preferably includes a platinum-M1 element alloy or a platinum-M1 element-M2 element alloy. The content ratio of the alloy to the total mass of the active ingredients is preferably 50 to 100% by mass, more preferably 75 to 100% by mass, and even more preferably 100% by mass.
 活性成分に含まれるM1元素及びM2元素の総数は、2個以上であることが好ましく、3個以上であることがより好ましく、4個以上であることがさらに好ましい。活性成分に含まれるM1元素及びM2元素の総数は、8個以下であることが好ましく、7個以下であることがより好ましく、6個以下であることがさらに好ましい。
 活性成分に含まれるM1元素及びM2元素の総数は、2~8個であることが好ましく、3~8個であることがより好ましく、4~7個であることがさらに好ましく、4~6個であることがさらに好ましく、4~5個であることが特に好ましい。
 M1元素及びM2元素の総数が前記範囲の下限値以上であると、プロピレンの収率が向上する。M1元素及びM2元素の総数が前記範囲の上限値以下であると、プロピレンの収率が向上する。
The total number of M1 elements and M2 elements contained in the active ingredient is preferably 2 or more, more preferably 3 or more, and even more preferably 4 or more. The total number of M1 elements and M2 elements contained in the active ingredient is preferably 8 or less, more preferably 7 or less, and even more preferably 6 or less.
The total number of M1 elements and M2 elements contained in the active ingredient is preferably 2 to 8, more preferably 3 to 8, even more preferably 4 to 7, and even more preferably 4 to 6. More preferably, the number is 4 to 5, particularly preferably 4 to 5.
When the total number of M1 elements and M2 elements is at least the lower limit of the above range, the yield of propylene is improved. When the total number of M1 elements and M2 elements is below the upper limit of the above range, the yield of propylene is improved.
 活性成分に含まれるM1元素の数は、1~5個であることが好ましく、1~4個であることがより好ましく、1~3個であることがさらに好ましい。
 M1元素の数が前記範囲の下限値以上であると、プロピレンの収率が向上する。M1元素の数が前記範囲の上限値以下であると、プロピレンの収率が向上する。
The number of M1 elements contained in the active ingredient is preferably 1 to 5, more preferably 1 to 4, and even more preferably 1 to 3.
When the number of M1 elements is at least the lower limit of the above range, the yield of propylene is improved. When the number of M1 elements is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素を含む場合、活性成分に含まれるM2元素の数は、1~4個であることが好ましく、1~3個であることがより好ましく、1~2個であることがさらに好ましい。
 M2元素の数が前記範囲の下限値以上であると、プロピレンの収率が向上する。M2元素の数が前記範囲の上限値以下であると、プロピレンの収率が向上する。
When the active ingredient contains an M2 element, the number of M2 elements contained in the active ingredient is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 to 2. preferable.
When the number of M2 elements is at least the lower limit of the above range, the yield of propylene is improved. When the number of M2 elements is below the upper limit of the above range, the yield of propylene is improved.
 活性成分に含まれるM1元素及びM2元素の総数が3個であるときの好ましい態様としては、M1元素として錫元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒、並びにM1元素としてガリウム元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒が例として挙げられる。 When the total number of M1 elements and M2 elements contained in the active ingredient is 3, a preferred embodiment includes an oxidative dehydrogenation catalyst containing a tin element as the M1 element and a cobalt element and a nickel element as the M2 element; Examples include catalysts for oxidative dehydrogenation that contain gallium as an element and cobalt and nickel as M2 elements.
 活性成分に含まれるM1元素及びM2元素の総数が4個であるときの好ましい態様としては、M1元素として錫元素及びインジウム元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒、M1元素としてガリウム元素及びインジウム元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒、M1元素として錫元素、ガリウム元素、及びインジウム元素を含み、M2元素としてコバルト元素を含む酸化脱水素用触媒、M1元素として錫元素、ガリウム元素、及びインジウム元素を含み、M2元素としてニッケル元素を含む酸化脱水素用触媒、並びにM1元素として錫元素及びガリウム元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒が例として挙げられる。 When the total number of M1 elements and M2 elements contained in the active ingredient is 4, a preferable embodiment is an oxidative dehydrogenation catalyst containing tin element and indium element as M1 element and cobalt element and nickel element as M2 element. , an oxidative dehydrogenation catalyst containing gallium element and indium element as M1 element, cobalt element and nickel element as M2 element, containing tin element, gallium element, and indium element as M1 element, and containing cobalt element as M2 element A catalyst for oxidative dehydrogenation, a catalyst for oxidative dehydrogenation that contains tin, gallium, and indium as the M1 element and a nickel element as the M2 element, and a catalyst that contains tin and gallium as the M1 element and cobalt as the M2 element. Examples include catalysts for oxidative dehydrogenation containing the element and the element nickel.
 活性成分に含まれるM1元素及びM2元素の総数が5個であるときの好ましい態様としては、M1元素として錫元素、ガリウム元素、及びインジウム元素を含み、M2元素としてコバルト元素及びニッケル元素を含む酸化脱水素用触媒が例として挙げられる。 When the total number of M1 elements and M2 elements contained in the active ingredient is 5, a preferred embodiment is an oxide containing tin element, gallium element, and indium element as M1 element, and cobalt element and nickel element as M2 element. Examples include catalysts for dehydrogenation.
 本願の発明者らが、酸化脱水素用触媒の活性成分において、活性成分に含まれる金属元素が合金を形成している場合の合金の結晶構造を解析した所、白金-錫合金と同じ、NiAs型結晶構造であることが判明した。本発明者らがさらに検討を進めた所、白金-錫合金中の白金のサイトには、白金、M2元素が位置し、ゲルマニウムのサイトには、M1元素が位置することが判明した。以下、白金元素及びM2元素を総称して、「遷移金属群」ともいう。 The inventors of the present application analyzed the crystal structure of an alloy in which the metal elements contained in the active component form an alloy in the active component of an oxidative dehydrogenation catalyst. It turned out to be a type crystal structure. Further investigation by the present inventors revealed that platinum and the M2 element are located at the platinum site in the platinum-tin alloy, and the M1 element is located at the germanium site. Hereinafter, the platinum element and the M2 element are also collectively referred to as the "transition metal group."
 遷移金属群の総モル数に対する、M1元素の総モル数の割合(M1元素/遷移金属群)は、0.55~1.60であることが好ましく、0.60~1.55であることがより好ましく、0.67~1.50であることがさらに好ましい。M1元素/遷移金属群が前記範囲の下限値以上であると、プロピレンの収率が向上する。M1元素/遷移金属群が前記範囲の上限値以下であると、プロピレンの収率が向上する。 The ratio of the total number of moles of the M1 element to the total number of moles of the transition metal group (M1 element/transition metal group) is preferably 0.55 to 1.60, and preferably 0.60 to 1.55. is more preferable, and even more preferably 0.67 to 1.50. When the M1 element/transition metal group is at least the lower limit of the above range, the yield of propylene is improved. When the M1 element/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
 遷移金属群の総モル数に対する、白金元素のモル数の割合(Pt/遷移金属群)は、0.30~0.55であることが好ましく、0.32~0.52であることがより好ましく、0.33~0.50であることがさらに好ましい。Pt/遷移金属群が前記範囲の下限値以上であると、プロピレンの収率が向上する。Pt/遷移金属群が前記範囲の上限値以下であると、プロピレンの収率が向上する。 The ratio of the number of moles of platinum element to the total number of moles of the transition metal group (Pt/transition metal group) is preferably 0.30 to 0.55, more preferably 0.32 to 0.52. It is preferably 0.33 to 0.50, more preferably 0.33 to 0.50. When the content of Pt/transition metal group is at least the lower limit of the above range, the yield of propylene is improved. When the content of Pt/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素としてコバルト元素を含む場合、遷移金属群の総モル数に対する、コバルト元素のモル数の割合(Co/遷移金属群)は、0.30~0.60であることが好ましく、0.32~0.65であることがより好ましく、0.33~0.67であることがさらに好ましい。Co/遷移金属群が前記範囲の下限値以上であると、プロピレンの収率が向上する。Co/遷移金属群が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active ingredient contains a cobalt element as the M2 element, the ratio of the number of moles of the cobalt element to the total number of moles of the transition metal group (Co/transition metal group) is preferably 0.30 to 0.60, It is more preferably from 0.32 to 0.65, and even more preferably from 0.33 to 0.67. When Co/transition metal group is equal to or higher than the lower limit of the above range, the yield of propylene is improved. When Co/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素としてニッケル元素を含む場合、遷移金属群の総モル数に対する、ニッケル元素のモル数の割合(Ni/遷移金属群)は、0.30~0.55であることが好ましく、0.32~0.52であることがより好ましく、0.33~0.50であることがさらに好ましい。Ni/遷移金属群が前記範囲の下限値以上であると、プロピレンの収率が向上する。Ni/遷移金属群が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains a nickel element as the M2 element, the ratio of the number of moles of the nickel element to the total number of moles of the transition metal group (Ni/transition metal group) is preferably 0.30 to 0.55, It is more preferably 0.32 to 0.52, and even more preferably 0.33 to 0.50. When the ratio of Ni/transition metal group is at least the lower limit of the above range, the yield of propylene is improved. When the Ni/transition metal group is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素として錫元素を含む場合、M1元素の総モル数に対する、錫元素のモル数の割合(Sn/M1元素)は、0.30~1.10であることが好ましく、0.32~1.05であることがより好ましく、0.33~1.00であることがさらに好ましい。Sn/M1元素が前記範囲の下限値以上であると、プロピレンの収率が向上する。Sn/M1元素が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active ingredient contains tin element as M1 element, the ratio of the number of moles of tin element to the total number of moles of M1 element (Sn/M1 element) is preferably 0.30 to 1.10, and 0.30 to 1.10. It is more preferably from 32 to 1.05, and even more preferably from 0.33 to 1.00. When the Sn/M1 element is at least the lower limit of the above range, the yield of propylene is improved. When the Sn/M1 element is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素としてガリウム元素を含む場合、M1元素の総モル数に対する、ガリウム元素のモル数の割合(Ga/M1元素)は、0.30~1.10であることが好ましく、0.32~1.05であることがより好ましく、0.33~1.00であることがさらに好ましい。Ga/M1元素が前記範囲の下限値以上であると、プロピレンの収率が向上する。Ga/M1元素が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active ingredient contains gallium element as M1 element, the ratio of the number of moles of gallium element to the total number of moles of M1 element (Ga/M1 element) is preferably 0.30 to 1.10, and 0.30 to 1.10. It is more preferably from 32 to 1.05, and even more preferably from 0.33 to 1.00. When the Ga/M1 element is at least the lower limit of the above range, the yield of propylene is improved. When the Ga/M1 element is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素としてインジウム元素を含む場合、M1元素の総モル数に対する、ガリウム元素のモル数の割合(In/M1元素)は、0.30~0.55であることが好ましく、0.32~0.52であることがより好ましく、0.33~0.50であることがさらに好ましい。In/M1元素が前記範囲の下限値以上であると、プロピレンの収率が向上する。In/M1元素が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active ingredient contains indium element as M1 element, the ratio of the number of moles of gallium element to the total number of moles of M1 element (In/M1 element) is preferably from 0.30 to 0.55, and preferably from 0.30 to 0.55. It is more preferably from 32 to 0.52, and even more preferably from 0.33 to 0.50. When the In/M1 element is at least the lower limit of the above range, the yield of propylene is improved. When the In/M1 element is below the upper limit of the above range, the yield of propylene is improved.
<セリア担体>
 プロパンの酸化脱水素反応においては、副反応によりコークが生成する。酸化脱水素用触媒上に生成したコークが堆積すると、触媒活性が低下する。本実施形態の酸化脱水素用触媒では、セリア担体の格子炭素がコークを燃焼することにより、触媒活性の低下が抑制される。
<Ceria carrier>
In the oxidative dehydrogenation reaction of propane, coke is produced as a side reaction. When the generated coke accumulates on the oxidative dehydrogenation catalyst, the catalyst activity decreases. In the oxidative dehydrogenation catalyst of this embodiment, the lattice carbon of the ceria carrier burns coke, thereby suppressing a decrease in catalyst activity.
 本明細書において「セリア担体」とは、担体の総質量に対するセリアの含有割合が50質量%以上である担体を意味する。セリア担体中のセリアの含有割合は、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、100質量%であることがさらに好ましい。 As used herein, the term "ceria carrier" refers to a carrier in which the content of ceria is 50% by mass or more based on the total mass of the carrier. The ceria content in the ceria carrier is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and even more preferably 100% by mass.
 セリア担体は、セリア以外の酸化物を含んでいてもよい。セリア以外の酸化物としては、アルミナ、シリカ、ジルコニア、チタニア、マグネシア等が例として挙げられる。セリア担体の総質量に対する。セリア以外の酸化物の含有割合は、0~50質量%であることが好ましく、0~20質量%であることが好ましく、含まれないことがさらに好ましい。 The ceria carrier may contain oxides other than ceria. Examples of oxides other than ceria include alumina, silica, zirconia, titania, and magnesia. relative to the total mass of ceria carrier. The content of oxides other than ceria is preferably 0 to 50% by mass, preferably 0 to 20% by mass, and more preferably not contained.
 セリア担体の窒素吸着によるBET比表面積は、20m/g以上であることが好ましく、50m/g以上であることがより好ましく、100m/g以上であることがさらに好ましい。セリア担体の比表面積が前記下限値以上であると、後述の酸化脱水素用触媒の物性値となりやすい。BET比表面積の上限は特に限定されないが、200m/g以下でもよい。BET比表面積は、20~200m/gであることが好ましく、50~200m/gであることがより好ましく、100~200m/gであることがさらに好ましい。
 本明細書において、「BET比表面積」は、窒素吸着測定により測定することができる。
The BET specific surface area of the ceria carrier due to nitrogen adsorption is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, and even more preferably 100 m 2 /g or more. When the specific surface area of the ceria carrier is equal to or larger than the lower limit, the physical properties of the oxidative dehydrogenation catalyst described below are likely to be obtained. The upper limit of the BET specific surface area is not particularly limited, but may be 200 m 2 /g or less. The BET specific surface area is preferably 20 to 200 m 2 /g, more preferably 50 to 200 m 2 /g, even more preferably 100 to 200 m 2 /g.
In this specification, "BET specific surface area" can be measured by nitrogen adsorption measurement.
(活性成分の担持量)
 酸化脱水素用触媒の総質量に対する、前記活性成分の含有割合は、2.30~3.47質量%であることが好ましく、2.32~3.45質量%であることがより好ましく、2.34~3.43質量%であることがさらに好ましい。活性成分の含有割合が前記範囲の下限値以上であると、プロパン転化率及び二酸化炭素の転化率が増加する。活性成分の含有割合が前記範囲の上限値以下であると、プロパン転化率及び二酸化炭素の転化率が低下しにくい。
(Amount of active ingredient supported)
The content ratio of the active component to the total mass of the oxidative dehydrogenation catalyst is preferably 2.30 to 3.47% by mass, more preferably 2.32 to 3.45% by mass, and 2. More preferably, it is .34 to 3.43% by mass. When the content ratio of the active ingredient is at least the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase. When the content ratio of the active ingredient is below the upper limit of the above range, the propane conversion rate and the carbon dioxide conversion rate are unlikely to decrease.
 酸化脱水素用触媒の総質量に対する、白金元素の含有割合は、0.5~1.5質量%であることが好ましく、0.8~1.2質量%であることがより好ましく、0.9~1.1質量%であることがさらに好ましい。白金元素の含有割合が前記範囲の下限値以上であると、プロパン転化率及び二酸化炭素の転化率が増加する。白金元素の含有割合が前記範囲の上限値以下であると、プロパン転化率及び二酸化炭素の転化率が低下しにくい。 The content ratio of elemental platinum to the total mass of the oxidative dehydrogenation catalyst is preferably 0.5 to 1.5% by mass, more preferably 0.8 to 1.2% by mass, and 0.5 to 1.5% by mass, more preferably 0.8 to 1.2% by mass. More preferably, it is 9 to 1.1% by mass. When the platinum element content is equal to or higher than the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase. When the platinum element content is less than or equal to the upper limit of the above range, the propane conversion rate and the carbon dioxide conversion rate are unlikely to decrease.
 酸化脱水素用触媒の総質量に対する、M1元素の合計含有割合は、0.90~1.90質量%であることが好ましく、0.93~1.85質量%であることがより好ましく、0.95~1.83質量%であることがさらに好ましい。M1元素の合計含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。M1元素の合計含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 The total content of the M1 element relative to the total mass of the oxidative dehydrogenation catalyst is preferably 0.90 to 1.90% by mass, more preferably 0.93 to 1.85% by mass, and 0. More preferably, it is .95 to 1.83% by mass. When the total content of the M1 element is at least the lower limit of the above range, the yield of propylene is improved. When the total content of the M1 element is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素を含む場合、酸化脱水素用触媒の総質量に対する、M2元素の合計含有割合は、0.2~0.7質量%であることが好ましく、0.25~0.65質量%であることがより好ましく、0.3~0.6質量%であることがさらに好ましい。M2元素の合計含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。M2元素の合計含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains the M2 element, the total content of the M2 element relative to the total mass of the oxidative dehydrogenation catalyst is preferably 0.2 to 0.7% by mass, and preferably 0.25 to 0.65% by mass. %, and even more preferably 0.3 to 0.6% by mass. When the total content of the M2 element is at least the lower limit of the above range, the yield of propylene is improved. When the total content of M2 elements is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素として錫元素を含む場合、酸化脱水素用触媒の総質量に対する、錫元素の含有割合は、0.35~1.87質量%であることが好ましく、0.38~1.85質量%であることがより好ましく、0.41~1.83質量%であることがさらに好ましい。錫元素の含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。錫元素の含有割合が前記範囲の上限値以下であるとプロピレンの収率が向上する。 When the active component contains tin element as M1 element, the content ratio of tin element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.35 to 1.87% by mass, and preferably 0.38 to 1.87% by mass. It is more preferably 85% by mass, and even more preferably 0.41 to 1.83% by mass. When the content of tin element is at least the lower limit of the above range, the yield of propylene is improved. When the content of tin element is at most the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素としてガリウム元素を含む場合、酸化脱水素用触媒の総質量に対する、ガリウム元素の含有割合は、0.20~1.12質量%であることが好ましく、0.22~1.10質量%であることがより好ましく、0.24~1.07質量%であることがさらに好ましい。ガリウム元素の含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。ガリウム元素の含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains gallium element as M1 element, the content ratio of gallium element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.20 to 1.12% by mass, and 0.22 to 1.2% by mass. It is more preferably 10% by mass, and even more preferably 0.24 to 1.07% by mass. When the content of the gallium element is at least the lower limit of the above range, the yield of propylene is improved. When the content of gallium element is below the upper limit of the above range, the yield of propylene is improved.
 活性成分がM1元素としてインジウム元素を含む場合、酸化脱水素用触媒の総質量に対する、インジウム元素の含有割合は、0.35~0.92質量%であることが好ましく、0.37~0.90質量%であることがより好ましく、0.39~0.88質量%であることがさらに好ましい。インジウム元素の含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。インジウム元素の含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains indium element as M1 element, the content ratio of indium element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.35 to 0.92% by mass, and preferably 0.37 to 0.92% by mass. It is more preferably 90% by mass, and even more preferably 0.39 to 0.88% by mass. When the content of the indium element is at least the lower limit of the above range, the yield of propylene is improved. When the content of the indium element is at most the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素としてコバルト元素を含む場合、酸化脱水素用触媒の総質量に対する、コバルト元素の含有割合は、0.26~0.64質量%であることが好ましく、0.28~0.62質量%であることがより好ましく、0.30~0.60質量%であることがさらに好ましい。コバルト元素の含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。コバルト元素の含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains cobalt element as M2 element, the content ratio of cobalt element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.26 to 0.64% by mass, and 0.28 to 0.64% by mass. It is more preferably 62% by mass, and even more preferably 0.30 to 0.60% by mass. When the content of the cobalt element is at least the lower limit of the above range, the yield of propylene is improved. When the content of cobalt element is at most the upper limit of the above range, the yield of propylene is improved.
 活性成分がM2元素としてニッケル元素を含む場合、酸化脱水素用触媒の総質量に対する、ニッケル元素の含有割合は、0.24~0.36質量%であることが好ましく、0.26~0.34質量%であることがより好ましく、0.28~0.32質量%であることがさらに好ましい。ニッケル元素の含有割合が前記範囲の下限値以上であると、プロピレンの収率が向上する。ニッケル元素の含有割合が前記範囲の上限値以下であると、プロピレンの収率が向上する。 When the active component contains a nickel element as the M2 element, the content ratio of the nickel element to the total mass of the oxidative dehydrogenation catalyst is preferably 0.24 to 0.36% by mass, and preferably 0.26 to 0.26% by mass. It is more preferably 34% by mass, and even more preferably 0.28 to 0.32% by mass. When the content of the nickel element is at least the lower limit of the above range, the yield of propylene is improved. When the content of the nickel element is at most the upper limit of the above range, the yield of propylene is improved.
 本明細書において、「白金元素、M1元素、M2元素」の含有割合、各元素の比率、M1元素の数、M2元素の数は、誘導結合プラズマ発光分析法(ICP)により測定することができる。例えば、酸化脱水素用触媒を王水に溶解させた後に、誘導結合プラズマ発光分析装置を用いて各金属量の測定を行うことができる。 In this specification, the content ratio of "platinum element, M1 element, M2 element", the ratio of each element, the number of M1 elements, and the number of M2 elements can be measured by inductively coupled plasma emission spectrometry (ICP). . For example, after dissolving the oxidative dehydrogenation catalyst in aqua regia, the amount of each metal can be measured using an inductively coupled plasma emission spectrometer.
(酸化脱水素用触媒の物性)
 酸化脱水素用触媒の窒素吸着によるBET比表面積は、20m/g以上であることが好ましく、50m/g以上であることがより好ましく、100m/g以上であることがさらに好ましい。酸化脱水素用触媒の比表面積が前記範囲の下限値以上であると、プロパン転化率及び二酸化炭素の転化率が増加する。BET比表面積の上限は特に限定されないが、200m/g以下でもよい。BET比表面積は、20~200m/gであることが好ましく、50~200m/gであることがより好ましく、100~200m/gであることがさらに好ましい。
(Physical properties of oxidative dehydrogenation catalyst)
The BET specific surface area of the oxidative dehydrogenation catalyst due to nitrogen adsorption is preferably 20 m 2 /g or more, more preferably 50 m 2 /g or more, and even more preferably 100 m 2 /g or more. When the specific surface area of the oxidative dehydrogenation catalyst is at least the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase. The upper limit of the BET specific surface area is not particularly limited, but may be 200 m 2 /g or less. The BET specific surface area is preferably 20 to 200 m 2 /g, more preferably 50 to 200 m 2 /g, even more preferably 100 to 200 m 2 /g.
 酸化脱水素用触媒のCO吸着により測定される白金元素、ニッケル元素、及びコバルト元素(ニッケル元素及びコバルト元素がM2元素として含まれる場合)の分散度は、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。分散度が前記範囲の下限値以上であると、プロパン転化率及び二酸化炭素の転化率が増加する。分散度の上限は特に限定されないが、90%以下でもよく、80%以下でもよく、70%以下でもよい。分散度は、10~70%であることが好ましく、15~80%であることがより好ましく、20~90%であることがさらに好ましい。白金元素、ニッケル元素、及びコバルト元素の分散度とは、酸化脱水素用触媒に含まれる白金元素、ニッケル元素、及びコバルト元素の総量(100%)に対する、表面に露出している白金元素、ニッケル元素、及びコバルト元素の割合である。
 分散度は、具体的には、後述の実施例に記載の方法により算出することができる。
The degree of dispersion of platinum element, nickel element, and cobalt element (when nickel element and cobalt element are included as M2 elements) measured by CO adsorption of the oxidative dehydrogenation catalyst is preferably 10% or more, and 15% or more. % or more, and even more preferably 20% or more. When the degree of dispersion is at least the lower limit of the above range, the propane conversion rate and the carbon dioxide conversion rate increase. The upper limit of the degree of dispersion is not particularly limited, but may be 90% or less, 80% or less, or 70% or less. The degree of dispersion is preferably 10 to 70%, more preferably 15 to 80%, even more preferably 20 to 90%. The degree of dispersion of platinum element, nickel element, and cobalt element is the dispersion degree of platinum element, nickel element, and cobalt element exposed on the surface with respect to the total amount (100%) of platinum element, nickel element, and cobalt element contained in the oxidation dehydrogenation catalyst. element, and the proportion of cobalt element.
Specifically, the degree of dispersion can be calculated by the method described in Examples below.
 活性成分(合金粒子、単体金属粒子、酸化物粒子等)の平均粒子径は、10nm以下であることが好ましく、7nm以下であることがより好ましく、5nm以下であることがさらに好ましい。活性成分の平均粒子径が前記範囲の上限値以下であると、プロパン及び二酸化炭素の転化率が増加する。平均粒子径の下限は特に限定されないが、1nm以上でもよく、2nm以上でもよく、3nm以上でもよい。平均粒子径は、1~10nmであることが好ましく、2~7nmであることがより好ましく、3~5nmであることがさらに好ましい。活性成分の平均粒子径は、透過型電子顕微鏡(TEM)により測定することができる。具体的な活性成分の平均粒子径の測定方法は、後述の実施例において説明する。 The average particle diameter of the active ingredient (alloy particles, single metal particles, oxide particles, etc.) is preferably 10 nm or less, more preferably 7 nm or less, and even more preferably 5 nm or less. When the average particle size of the active ingredient is below the upper limit of the above range, the conversion rates of propane and carbon dioxide increase. The lower limit of the average particle diameter is not particularly limited, but may be 1 nm or more, 2 nm or more, or 3 nm or more. The average particle diameter is preferably 1 to 10 nm, more preferably 2 to 7 nm, even more preferably 3 to 5 nm. The average particle size of the active ingredient can be measured using a transmission electron microscope (TEM). A specific method for measuring the average particle diameter of the active ingredient will be explained in Examples below.
 上述した通り、酸化脱水素用触媒の活性成分において、活性成分に含まれる金属元素が合金を形成している場合の合金の結晶構造は、白金-錫合金と同じ、NiAs型結晶構造である。図2に白金-錫合金の結晶構造(単位格子)を示す。本実施形態の合金は、白金-錫合金中の白金のサイトに白金、M2元素が位置し、ゲルマニウムのサイトにM1元素が位置する。すなわち、活性成分がM2元素を含まない場合は、白金-錫合金中の錫のサイトの一部又は全部が錫以外のM1元素で置換された構造となる。また、活性成分がM2元素を含む場合は、白金-錫合金中の白金サイトの一部がM2元素で置換され、錫のサイトの一部又は全部が錫以外のM1元素で置換された構造となる。図2に白金-錫合金中の白金サイトの一部がコバルト及びニッケルで置換され、錫のサイトの一部がガリウム及びインジウムで置換された構造を有する白金-錫-ガリウム-インジウム-コバルト-ニッケル6元素合金の結晶構造(単位格子)を示す。 As mentioned above, in the active component of the oxidative dehydrogenation catalyst, when the metal elements contained in the active component form an alloy, the crystal structure of the alloy is the NiAs type crystal structure, which is the same as that of the platinum-tin alloy. Figure 2 shows the crystal structure (unit cell) of the platinum-tin alloy. In the alloy of this embodiment, platinum and the M2 element are located at the platinum site in the platinum-tin alloy, and the M1 element is located at the germanium site. That is, when the active component does not contain the M2 element, the platinum-tin alloy has a structure in which some or all of the tin sites are substituted with an M1 element other than tin. In addition, when the active ingredient contains the M2 element, a part of the platinum sites in the platinum-tin alloy are substituted with the M2 element, and a part or all of the tin sites are substituted with the M1 element other than tin. Become. Figure 2 shows a platinum-tin-gallium-indium-cobalt-nickel structure in which some of the platinum sites in the platinum-tin alloy are replaced with cobalt and nickel, and some of the tin sites are replaced with gallium and indium. The crystal structure (unit cell) of a six-element alloy is shown.
 図2に示される結晶構造を有する場合、EXAFSスペクトルにおいて、k=3~11A-1の位置に、NiAs型構造由来の振動パターンが確認される。
 酸化脱水素用触媒のEXAFSスペクトルは、放射光を用いたXAFS測定により得ることができる。例えば、粉末状の酸化脱水素用触媒について、放射光施設(例えば、SPring-8、BL01B1)にて、EXAFSスペクトルを得ることができる。
In the case of having the crystal structure shown in FIG. 2, a vibration pattern derived from the NiAs type structure is confirmed at the position of k=3 to 11A −1 in the EXAFS spectrum.
The EXAFS spectrum of the oxidative dehydrogenation catalyst can be obtained by XAFS measurement using synchrotron radiation. For example, an EXAFS spectrum of a powdered oxidative dehydrogenation catalyst can be obtained at a synchrotron radiation facility (eg, SPring-8, BL01B1).
≪酸化脱水素用触媒の製造方法≫
 本実施形態の酸化脱水素用触媒の製造方法は、セリア担体に、前記活性成分の原料化合物を含む含浸液を含浸して含浸体を得る含浸工程と、前記含浸体を還元ガス雰囲気で還元焼成する還元焼成工程と、を含む。
≪Method for producing oxidative dehydrogenation catalyst≫
The method for producing an oxidative dehydrogenation catalyst of the present embodiment includes an impregnating step of impregnating a ceria carrier with an impregnating liquid containing the raw material compound of the active ingredient to obtain an impregnated body, and reducing and calcining the impregnated body in a reducing gas atmosphere. and a reduction firing step.
<含浸工程>
 含浸工程において使用される白金元素原料化合物、M1元素原料化合物、M2元素原料化合物(以下、全ての原料化合物を総称して「活性成分の原料化合物」ともいう。)としては、特に制限はないが、例えば、塩化物、硫化物、硝酸塩、炭酸塩等の無機塩;シュウ酸塩、アセチルアセトナート塩、ジメチルグリオキシム塩、エチレンジアミン酢酸塩等の有機塩;キレート化合物;カルボニル化合物;シクロペンタジエニル化合物;アンミン錯体;アルコキシド化合物;アルキル化合物等が挙げられる。
<Impregnation process>
There are no particular restrictions on the platinum element raw material compound, M1 element raw material compound, and M2 element raw material compound (hereinafter, all raw material compounds are also collectively referred to as "raw material compounds of active ingredients") used in the impregnation process. For example, inorganic salts such as chlorides, sulfides, nitrates, carbonates; organic salts such as oxalates, acetylacetonate salts, dimethylglyoxime salts, ethylenediamine acetate; chelate compounds; carbonyl compounds; cyclopentadienyl Compounds; ammine complexes; alkoxide compounds; alkyl compounds and the like.
 含浸方法としては、蒸発乾固法、平衡吸着法、細孔充填法が例として挙げられる。蒸発乾固法は、セリア担体を、前記セリア担体の全細孔容積に対して過剰の含浸液に浸した後に後述の乾燥工程において溶媒を全て乾燥させることにより、活性成分の原料化合物を担持する含浸方法である。平衡吸着法は、セリア担体を、前記セリア担体の全細孔容積に対して過剰の含浸液に浸した後に濾過等の固液分離し、その後溶媒を乾燥させることにより活性成分の原料化合物を担持する含浸方法である。細孔充填法は、セリア担体に、前記セリア担体の全細孔容積とほぼ等量の含浸液を含浸し、溶媒を全て乾燥させることにより、活性成分の原料化合物を担持する含浸方法である。。なお、セリア担体に、2種類以上の活性成分の原料化合物を含浸させる方法としては、これら各成分を同時に含浸させる一括含浸法でもよく、個別に含浸させる逐次含浸法でもよい。 Examples of the impregnation method include an evaporation to dryness method, an equilibrium adsorption method, and a pore filling method. In the evaporation to dryness method, the ceria carrier is immersed in an excess impregnating liquid with respect to the total pore volume of the ceria carrier, and then all the solvent is dried in the drying step described below, thereby supporting the raw material compound of the active ingredient. This is an impregnation method. In the equilibrium adsorption method, the ceria carrier is immersed in an excess impregnating liquid with respect to the total pore volume of the ceria carrier, followed by solid-liquid separation such as filtration, and then the solvent is dried to support the raw material compound of the active ingredient. This is an impregnation method. The pore filling method is an impregnation method in which a ceria carrier is impregnated with an impregnating liquid in an amount approximately equal to the total pore volume of the ceria carrier, and the raw material compound of the active ingredient is supported by drying all the solvent. . Note that the method for impregnating the ceria carrier with the raw material compounds of two or more active ingredients may be a batch impregnation method in which these components are simultaneously impregnated, or a sequential impregnation method in which they are impregnated individually.
 含浸液は、活性成分の原料化合物を溶媒に溶解することにより調製することができる。溶媒としては、活性成分の原料化合物を溶解可能であり、かつ、乾燥により揮発除去される溶媒であれば特に限定されないが、例えば、水、エタノール、アセトン等が挙げられる。 The impregnation liquid can be prepared by dissolving the raw material compound of the active ingredient in a solvent. The solvent is not particularly limited as long as it can dissolve the raw material compound of the active ingredient and is volatilized and removed by drying, and examples thereof include water, ethanol, acetone, and the like.
 含浸液中の溶媒の乾燥は、本分野で公知の方法により行うことができ、乾燥温度、乾燥時間、乾燥雰囲気は、除去する溶媒により適宜調整することができる。 The solvent in the impregnating liquid can be dried by a method known in the art, and the drying temperature, drying time, and drying atmosphere can be adjusted as appropriate depending on the solvent to be removed.
 還元焼成工程における還元ガスとしては水素、一酸化炭素等が挙げられ、不活性ガスで希釈したガスを用いてもよい。還元焼成の温度は、400~700℃であることが好ましく、500~700℃であることがより好ましく、600℃であることが好ましい。
 還元焼成の時間は、1~2時間でもよく、1~3時間でもよく、1~5時間でもよい。
Examples of the reducing gas in the reduction firing step include hydrogen, carbon monoxide, and the like, and a gas diluted with an inert gas may also be used. The temperature of the reduction firing is preferably 400 to 700°C, more preferably 500 to 700°C, and preferably 600°C.
The reduction firing time may be 1 to 2 hours, 1 to 3 hours, or 1 to 5 hours.
 含浸工程と還元焼成工程の間に、含浸体を酸化ガス雰囲気で酸化焼成する酸化焼成工程を有していてもよい。
 酸化焼成工程における酸化ガスとしては酸素等が挙げられ、不活性ガスで希釈したガスを用いてもよい。また、空気を酸化ガスとして使用してもよい。
 酸化焼成の温度は、400~600℃であることが好ましく、450~550℃であることがより好ましく、500℃であることが好ましい。
 酸化焼成の時間は、1~3時間でもよく、1~2時間でもよい。
Between the impregnation step and the reduction firing step, an oxidation firing step may be included in which the impregnated body is oxidized and fired in an oxidizing gas atmosphere.
Examples of the oxidizing gas in the oxidizing firing step include oxygen, and a gas diluted with an inert gas may also be used. Additionally, air may be used as the oxidizing gas.
The temperature of the oxidation firing is preferably 400 to 600°C, more preferably 450 to 550°C, and preferably 500°C.
The oxidation firing time may be 1 to 3 hours, or 1 to 2 hours.
≪プロピレンの製造方法≫
 本実施形態のプロピレンの製造方法は、本発明の酸化脱水素用触媒に、プロパン及び二酸化炭素を含む原料ガスを接触処理させ、プロパンの酸化脱水素反応によりプロピレンを製造する方法である。
≪Propylene production method≫
The method for producing propylene of the present embodiment is a method for producing propylene through an oxidative dehydrogenation reaction of propane by contacting a raw material gas containing propane and carbon dioxide with the oxidative dehydrogenation catalyst of the present invention.
 プロピレン製造方法は、例えば、上述の酸化脱水素用触媒を反応器に充填し、プロパン及び二酸化炭素を含む原料ガスを流通させることにより実施することができる。反応方式は、本発明の効果が得られる限り特に限定されないが、例えば、固定床式、流動床式、移動床式が挙げられ、固定床式が好ましい。 The method for producing propylene can be carried out, for example, by filling a reactor with the above-mentioned oxidative dehydrogenation catalyst and flowing a raw material gas containing propane and carbon dioxide. The reaction method is not particularly limited as long as the effects of the present invention can be obtained, but examples include a fixed bed method, a fluidized bed method, and a moving bed method, with the fixed bed method being preferred.
 プロピレンの製造方法は、上述の酸化脱水素用触媒を、単独の反応装置に充填して行う一段のプロピレンの製造方法でもよく、複数の反応装置に充填して行う多段連続方式のプロピレンの製造方法でもよい。多段連続方式の場合、一部の反応装置においてプロピレンの製造を行い、残りの反応装置において後述の酸化脱水素用触媒の再生を行ってもよい。 The propylene production method may be a one-stage propylene production method in which the above-mentioned oxidative dehydrogenation catalyst is charged into a single reaction device, or a multi-stage continuous propylene production method in which the above-mentioned oxidative dehydrogenation catalyst is filled in a plurality of reaction devices. But that's fine. In the case of a multi-stage continuous system, propylene may be produced in some of the reactors, and the oxidative dehydrogenation catalyst described below may be regenerated in the remaining reactors.
 原料ガス100体積%に対するプロパンの含有割合は、5~50体積%であることが好ましく、20~30体積%であることがより好ましい。 The content ratio of propane with respect to 100 volume % of the raw material gas is preferably 5 to 50 volume %, more preferably 20 to 30 volume %.
 原料ガス100体積%に対する二酸化炭素の含有割合は、5~50体積%であることが好ましく、20~30体積%であることがより好ましい。 The content ratio of carbon dioxide to 100 volume % of the raw material gas is preferably 5 to 50 volume %, more preferably 20 to 30 volume %.
 原料ガスは、プロパン及び二酸化炭素以外のガスを含んでもよく、プロパン及び二酸化炭素以外のガスとしては、例えば、ヘリウム、窒素等の不活性ガスが挙げられる。 The source gas may include gases other than propane and carbon dioxide, and examples of gases other than propane and carbon dioxide include inert gases such as helium and nitrogen.
 原料ガス中のプロパンに対する二酸化炭素のモル比(CO/C)は、0.5~2であることが好ましく、0.75~1.25であることがより好ましく、1であることがさらに好ましい。上述の従来の酸化脱水素用触媒を用いた場合、二酸化炭素の転化率が低いため、CO/Cを高く設定しないとプロピレンを効率的に製造することができなかった。一方、本実施形態の酸化脱水素用触媒は二酸化炭素の活性化能が高く、二酸化炭素の転化率が高いため、上述のような低いCO/Cにおいても効率的にプロピレンを製造することが可能である。 The molar ratio of carbon dioxide to propane in the raw material gas (CO 2 /C 3 H 8 ) is preferably 0.5 to 2, more preferably 0.75 to 1.25, and 1. It is even more preferable. When the conventional oxidative dehydrogenation catalyst described above is used, the conversion rate of carbon dioxide is low, so propylene cannot be efficiently produced unless CO 2 /C 3 H 8 is set high. On the other hand, the oxidative dehydrogenation catalyst of this embodiment has a high carbon dioxide activation ability and a high carbon dioxide conversion rate, so it can efficiently produce propylene even at the above-mentioned low CO 2 /C 3 H 8 . It is possible to do so.
 反応温度は、500~600℃であることが好ましく、550~600℃であることがより好ましい。反応温度が前記範囲の下限値以上であると、平衡転化率が上がる。反応温度が前記範囲の上限値以下であると、活性成分のシンタリングが抑制され、活性の低下が抑制される。 The reaction temperature is preferably 500 to 600°C, more preferably 550 to 600°C. When the reaction temperature is equal to or higher than the lower limit of the above range, the equilibrium conversion rate increases. When the reaction temperature is below the upper limit of the range, sintering of the active ingredient is suppressed and a decrease in activity is suppressed.
 反応圧力は、0.05~0.1MPaであることが好ましく、0.08~0.1MPaであることがより好ましく、0.09~0.1MPaであることがさらに好ましい。反応圧力が前記範囲の下限値以上であると、二酸化炭素の転化率が増加する。反応圧力が前記範囲の上限値以下であると、プロパン転化率が低下しない。 The reaction pressure is preferably 0.05 to 0.1 MPa, more preferably 0.08 to 0.1 MPa, and even more preferably 0.09 to 0.1 MPa. When the reaction pressure is equal to or higher than the lower limit of the above range, the conversion rate of carbon dioxide increases. If the reaction pressure is below the upper limit of the above range, the propane conversion rate will not decrease.
 酸化脱水素用触媒に対する、原料ガス中のプロパンの重量空間速度(Weight Hourly Space Velocity)は、3000~5000hr-1であることがより好ましく、3500~4000hr-1であることがさらに好ましい。 The weight hourly space velocity (Weight Hourly Space Velocity) of propane in the raw material gas relative to the oxidative dehydrogenation catalyst is more preferably 3000 to 5000 hr −1 , and even more preferably 3500 to 4000 hr −1 .
 本実施形態のプロピレンの製造方法に供される原料ガス中のプロパンとしては、シェールガス由来のプロパン、ナフサ由来のプロパン、バイオマス由来のプロパン等が例として挙げられる。 Examples of the propane in the raw material gas used in the propylene production method of the present embodiment include shale gas-derived propane, naphtha-derived propane, biomass-derived propane, and the like.
 本実施形態のプロピレンの製造方法では、長時間反応する場合、酸化脱水素用触媒上にコークが堆積して、触媒活性が低下することがある。活性が低下した触媒は酸化性ガスを含む再生ガスを接触処理することにより再生することができる。 In the method for producing propylene of this embodiment, when the reaction is carried out for a long time, coke may accumulate on the oxidative dehydrogenation catalyst and the catalyst activity may decrease. A catalyst whose activity has decreased can be regenerated by contact treatment with a regeneration gas containing an oxidizing gas.
 酸化性ガスとしては、酸素、二酸化炭素等が挙げられる。酸化性ガスが酸素の場合、再生ガスとして空気を用いることができる。
 再生ガス100体積%に対する酸化性ガスの含有割合は、20~100体積%であることが好ましく、50~100体積%であることがより好ましい。
Examples of the oxidizing gas include oxygen, carbon dioxide, and the like. When the oxidizing gas is oxygen, air can be used as the regeneration gas.
The content of the oxidizing gas with respect to 100 volume % of the regeneration gas is preferably 20 to 100 volume %, more preferably 50 to 100 volume %.
 酸化脱水素用触媒に対する、再生ガス中の酸化性ガスのガス空間速度(Gas Hourly Space Velocoty:GHSV)は、6000~10000hr-1であることがより好ましく、7000~8000hr-1であることがさらに好ましい。 The gas hourly space velocity (GHSV) of the oxidizing gas in the regeneration gas relative to the oxidative dehydrogenation catalyst is more preferably 6000 to 10000 hr −1 , and more preferably 7000 to 8000 hr −1 . preferable.
 再生温度は、400~600℃であることが好ましく、450~550℃であることがより好ましい。再生温度が前記範囲の下限値以上であると、コークの燃焼が促進される。反応温度が前記範囲の上限値以下であると、活性成分のシンタリングが抑制され、活性の低下が抑制される。 The regeneration temperature is preferably 400 to 600°C, more preferably 450 to 550°C. When the regeneration temperature is equal to or higher than the lower limit of the range, combustion of coke is promoted. When the reaction temperature is below the upper limit of the range, sintering of the active ingredient is suppressed and a decrease in activity is suppressed.
 再生時間は、酸化性ガスの種類及びGHSV、再生温度、再生圧力に応じて、適宜調整することができる。再生時間は、1~2時間でもよく、1~3時間でもよく、1~5時間でもよい。 The regeneration time can be adjusted as appropriate depending on the type of oxidizing gas, GHSV, regeneration temperature, and regeneration pressure. The playback time may be 1 to 2 hours, 1 to 3 hours, or 1 to 5 hours.
 本実施形態の酸化脱水素用触媒は、セリア担体を含むことにより、コークの燃焼能力が高い。したがって、酸化性ガスとして二酸化炭素を使用しても充分に触媒活性が回復する。すなわち、プロピレンの製造方法における原料ガスから、プロパンの供給を停止することにより、触媒の再生を行うことが可能であり、効率的にプロピレンを製造することができる。 The oxidative dehydrogenation catalyst of this embodiment has a high coke combustion ability because it contains a ceria carrier. Therefore, even if carbon dioxide is used as the oxidizing gas, the catalytic activity is sufficiently recovered. That is, by stopping the supply of propane from the raw material gas in the propylene production method, the catalyst can be regenerated, and propylene can be efficiently produced.
 本実施形態においては、再生処理後の触媒に、還元性ガスを含む還元処理ガスを接触する還元処理を行うことが好ましい。還元処理を行うことによって、再生処理により活性成分が部分的に酸化された場合、再度合金又は単体金属に変換することができる。 In this embodiment, it is preferable to perform a reduction treatment in which the catalyst after the regeneration treatment is brought into contact with a reduction treatment gas containing a reducing gas. By carrying out the reduction treatment, if the active component is partially oxidized by the regeneration treatment, it can be converted back into an alloy or an elemental metal.
 還元性ガスとしては、水素、一酸化炭素等が挙げられる。
 還元処理ガス100体積%に対する還元性ガスの含有割合は、20~100体積%であることが好ましく、30~50体積%であることがより好ましい。
Examples of the reducing gas include hydrogen, carbon monoxide, and the like.
The content ratio of the reducing gas to 100 volume % of the reduction treatment gas is preferably 20 to 100 volume %, more preferably 30 to 50 volume %.
 酸化脱水素用触媒に対する、還元処理ガス中の還元性ガスのガス空間速度(Gas Hourly Space Velocoty:GHSV)は、6000~10000hr-1であることがより好ましく、7000~8000hr-1であることがさらに好ましい。 The gas hourly space velocity (GHSV) of the reducing gas in the reduction treatment gas relative to the oxidative dehydrogenation catalyst is more preferably 6000 to 10000 hr −1 , and more preferably 7000 to 8000 hr −1 . More preferred.
 還元処理温度は、400~600℃であることが好ましく、450~550℃であることがより好ましい。 The reduction treatment temperature is preferably 400 to 600°C, more preferably 450 to 550°C.
 還元処理時間は、還元性ガスの種類及びGHSV、再生温度、再生圧力に応じて、適宜調整することができる。還元処理時間は、0.5~1時間でもよく、0.5~1.5時間でもよく、0.5~2時間でもよい。 The reduction treatment time can be adjusted as appropriate depending on the type of reducing gas, GHSV, regeneration temperature, and regeneration pressure. The reduction treatment time may be 0.5 to 1 hour, 0.5 to 1.5 hours, or 0.5 to 2 hours.
 本発明の酸化脱水素用触媒を用いることにより、効率的に、かつより長期にわたりプロピレンを製造することが可能となる。また、二酸化炭素を有効活用することができる。 By using the oxidative dehydrogenation catalyst of the present invention, it becomes possible to produce propylene efficiently and over a longer period of time. Moreover, carbon dioxide can be effectively utilized.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
<酸化脱水素用触媒のキャラクタリゼーション>
 酸化脱水素用触媒のキャラクタリゼーションとして、透過電子顕微鏡観察、CO吸着を行った。
<Characterization of catalyst for oxidative dehydrogenation>
Transmission electron microscopy and CO adsorption were performed to characterize the oxidative dehydrogenation catalyst.
(透過電子顕微鏡観察)
 各例の酸化脱水素用触媒の活性成分(合金)の粒子径の測定はエネルギー分散型X線(EDX)分析装置を備えた透過型電子顕微鏡(JOEL JEM-ARM200M)により、200kVの加速電圧で実施した。各例の酸化脱水素用触媒をエタノールで超音波処理した後、炭素膜で支持されたMoグリッド上に分散して観察を行った。粒度分布は、10枚の画像で無作為に選択した126個の粒子の最長径を観察し、これらの平均を平均粒子径とした。
(Transmission electron microscopy observation)
The particle size of the active component (alloy) of the oxidative dehydrogenation catalyst in each example was measured using a transmission electron microscope (JOEL JEM-ARM200M) equipped with an energy dispersive X-ray (EDX) analyzer at an accelerating voltage of 200 kV. carried out. After the oxidative dehydrogenation catalysts of each example were subjected to ultrasonic treatment with ethanol, they were dispersed on a Mo grid supported by a carbon membrane and observed. For the particle size distribution, the longest diameter of 126 particles randomly selected in 10 images was observed, and the average of these was taken as the average particle diameter.
(CO吸着)
 各例の酸化脱水素用触媒のCO吸着測定により、酸化脱水素用触媒の白金元素、ニッケル元素、及びコバルト元素の分散度を測定した。分散度とは、酸化脱水素用触媒に含まれる白金元素、ニッケル元素、及びコバルト元素の総量に対する、表面に露出している白金元素、ニッケル元素、及びコバルト元素の割合である。酸化脱水素用触媒40mgに水素が5体積%、空気が95体積%の混合ガスを30NmL/minで流通させ、600℃で30分間前処理を行い、その後、ヘリウムをパージしながら、液体窒素で冷却した。次に一酸化炭素が10体積%、ヘリウムが90体積%の混合ガスをパルス法で導入し、触媒に吸着しなかった一酸化炭素をTCD検出器により定量し、一酸化炭素が触媒に吸着しなくなるまで混合ガスの導入を行った。酸化脱水素用触媒に吸着した一酸化炭素量から、白金1原子、ニッケル1原子、コバルト1原子に対してそれぞれ一酸化炭素1分子が吸着するという前提で白金元素、ニッケル元素、及びコバルト元素の分散度を計算した。
(CO adsorption)
The degree of dispersion of platinum element, nickel element, and cobalt element in the oxidative dehydrogenation catalyst of each example was measured by CO adsorption measurement of the oxidative dehydrogenation catalyst. The degree of dispersion is the ratio of the platinum element, nickel element, and cobalt element exposed on the surface to the total amount of the platinum element, nickel element, and cobalt element contained in the oxidative dehydrogenation catalyst. A mixed gas of 5% by volume of hydrogen and 95% by volume of air was passed through 40mg of the oxidative dehydrogenation catalyst at 30NmL/min, pretreated at 600°C for 30 minutes, and then heated with liquid nitrogen while purging helium. Cooled. Next, a mixed gas containing 10% by volume of carbon monoxide and 90% by volume of helium was introduced using a pulse method, and the carbon monoxide that was not adsorbed on the catalyst was quantified using a TCD detector. The mixed gas was introduced until it was exhausted. Based on the amount of carbon monoxide adsorbed on the oxidation-dehydrogenation catalyst, the amount of platinum element, nickel element, and cobalt element is calculated based on the assumption that one molecule of carbon monoxide is adsorbed for each one atom of platinum, one atom of nickel, and one atom of cobalt. The degree of dispersion was calculated.
<プロパンの酸化脱水素反応>
 各例の酸化脱水素用触媒0.10gを海砂(宮崎化学薬品株式会社製)0.90gで希釈して、直径6mm、長さ20cmの石英製の円筒型の固定床反応管に充填して触媒層を形成した。次いで、触媒層の温度を600℃に加熱し、水素を10NmL/minで流通させ、30分間前処理を行った。その後、水素に代えてプロパン及び二酸化炭素を含む原料ガスを20NmL/minで触媒層に流通させてプロパンの酸化脱水素反応を行った。原料ガス100体積%に対するプロパン、二酸化炭素、ヘリウムの含有割合はそれぞれ、25体積%、25体積%、50体積%である。
<Oxidative dehydrogenation reaction of propane>
0.10 g of the oxidative dehydrogenation catalyst of each example was diluted with 0.90 g of sea sand (manufactured by Miyazaki Chemical Co., Ltd.) and packed into a cylindrical fixed bed reaction tube made of quartz with a diameter of 6 mm and a length of 20 cm. A catalyst layer was formed. Next, the temperature of the catalyst layer was heated to 600° C., hydrogen was passed through the catalyst layer at a rate of 10 NmL/min, and pretreatment was performed for 30 minutes. Thereafter, a raw material gas containing propane and carbon dioxide instead of hydrogen was passed through the catalyst layer at 20 NmL/min to perform an oxidative dehydrogenation reaction of propane. The content ratios of propane, carbon dioxide, and helium to 100 volume % of the raw material gas are 25 volume %, 25 volume %, and 50 volume %, respectively.
 反応器出口から流出したガスをオンライン熱伝導度検出ガスクロマトグラフ(株式会社島津製作所、製品名「GC-8A」)で分析した。反応器出口ガスには、プロピレン、プロパン、エチレン、エタン、メタン、一酸化炭素、二酸化炭素、水、及び水素が検出された。 The gas flowing out from the reactor outlet was analyzed using an online thermal conductivity detection gas chromatograph (Shimadzu Corporation, product name "GC-8A"). Propylene, propane, ethylene, ethane, methane, carbon monoxide, carbon dioxide, water, and hydrogen were detected in the reactor outlet gas.
 プロパンの転化率(XC3H8)は下式3により計算した。 The conversion rate of propane (X C3H8 ) was calculated using the following formula 3.
Figure JPOXMLDOC01-appb-M000001
 前記式3中、Fin C3H8は、反応器に流入したプロパンの流量(mol/min)を示し、Fout C3H8は反応器から排出されたプロパンの流量(mol/min)を示す。
Figure JPOXMLDOC01-appb-M000001
In Equation 3, F in C3H8 represents the flow rate (mol/min) of propane flowing into the reactor, and F out C3H8 represents the flow rate (mol/min) of propane discharged from the reactor.
 二酸化炭素の転化率(XCO2)は下式4により計算した。 The conversion rate of carbon dioxide (X CO2 ) was calculated using the following formula 4.
Figure JPOXMLDOC01-appb-M000002
 前記式4中、Fin CO2は、反応器に流入した二酸化炭素の流量(mol/min)を示し、Fout CO2は反応器から排出された二酸化炭素の流量(mol/min)を示す。
Figure JPOXMLDOC01-appb-M000002
In Equation 4, F in CO2 represents the flow rate (mol/min) of carbon dioxide flowing into the reactor, and F out CO2 represents the flow rate (mol/min) of carbon dioxide discharged from the reactor.
 プロピレンの選択率は下式5により計算した。 The selectivity of propylene was calculated using the following formula 5.
Figure JPOXMLDOC01-appb-M000003
 前記式5中、Fout C3H6は、反応器から排出されたプロピレンの流量(mol/min)を示し、Fout C2H6は、反応器から排出されたエタンの流量(mol/min)を示し、Fout C2H4は、反応器から排出されたエチレンの流量(mol/min)を示し、Fout CH4は、反応器から排出されたメタンの流量(mol/min)を示し、FCxHy COは、下式6により計算した。
Figure JPOXMLDOC01-appb-M000003
In the above formula 5, F out C3H6 indicates the flow rate (mol/min) of propylene discharged from the reactor, F out C2H6 indicates the flow rate (mol/min) of ethane discharged from the reactor, out C2H4 indicates the flow rate of ethylene discharged from the reactor (mol/min), F out CH4 indicates the flow rate of methane discharged from the reactor (mol/min), and F CxHy CO is expressed by the following formula Calculated according to 6.
Figure JPOXMLDOC01-appb-M000004
 前記式6中、Fout COは、反応器から排出された一酸化炭素の流量(mol/min)を示し、FCO2 COは、下式7により計算した。
Figure JPOXMLDOC01-appb-M000004
In Equation 6, F out CO represents the flow rate (mol/min) of carbon monoxide discharged from the reactor, and F CO2 CO was calculated using Equation 7 below.
Figure JPOXMLDOC01-appb-M000005
 前記式7中、Fin CO2は、反応器に流入した二酸化炭素の流量(mol/min)を示し、Fout CO2は反応器から排出された二酸化炭素の流量(mol/min)を示す。
Figure JPOXMLDOC01-appb-M000005
In Equation 7, F in CO2 represents the flow rate (mol/min) of carbon dioxide flowing into the reactor, and F out CO2 represents the flow rate (mol/min) of carbon dioxide discharged from the reactor.
 プロピレンの収率は、プロパンの転化率×プロピレンの選択率/100により計算した。 The propylene yield was calculated by propane conversion rate x propylene selectivity/100.
<反応後の酸化脱水素用触媒の炭素量の測定>
 各例の酸化脱水素用触媒の反応後の炭素量はMicrotracBEL社製のBELCAT IIにより測定した。50時間反応後の酸化脱水素用触媒(海砂を含む)にヘリウムを30NmL/minで流通させ、150℃で30分間前処理を行い、その後室温に降温した。次に酸素が50体積%、ヘリウムが50体積%の混合ガスを40NmL/minで流通させながら、40~900℃まで昇温速度5℃/minで加熱した。出口ガスの二酸化炭素の量をオンライン質量計により定量した。
<Measurement of carbon content of oxidative dehydrogenation catalyst after reaction>
The amount of carbon after the reaction of the oxidative dehydrogenation catalyst in each example was measured using BELCAT II manufactured by Microtrac BEL. After 50 hours of reaction, helium was passed through the oxidative dehydrogenation catalyst (containing sea sand) at a rate of 30 NmL/min, pretreatment was performed at 150° C. for 30 minutes, and then the temperature was lowered to room temperature. Next, while flowing a mixed gas containing 50% by volume of oxygen and 50% by volume of helium at a rate of 40 NmL/min, it was heated from 40 to 900°C at a temperature increase rate of 5°C/min. The amount of carbon dioxide in the outlet gas was determined using an online mass meter.
[実施例1]
 セリア(第一稀元素化学工業株式会社製、参照触媒「JRC-CEO-2」、比表面積123.1m/g)に、Pt原料化合物としてHPtCl、M1元素原料化合物として、SnCl、M2元素原料化合物としてCo(NO・6HO及びNi(NO・6HOを表1に記載の触媒Aの組成になるようにイオン交換水に溶解させた含浸液を蒸発乾固法で含浸し、その後、50℃で減圧乾燥を行い、含浸体を得た。含浸体を空気流通下、500℃で1時間焼成し、その後、水素流通下、600℃で1時間還元焼成を行い、セリアにPt-Sn-Co-Ni合金が担持された触媒Aを得た。触媒Aの組成を表1に示す。
[Example 1]
Ceria (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., reference catalyst "JRC-CEO-2", specific surface area 123.1 m 2 /g), H 2 PtCl 6 as a Pt raw material compound, SnCl 2 as an M1 element raw material compound , an impregnating solution in which Co(NO 3 ) 2.6H 2 O and Ni(NO 3 ) 2.6H 2 O as M2 element raw material compounds are dissolved in ion-exchanged water to have the composition of catalyst A shown in Table 1. was impregnated by evaporation to dryness, and then dried under reduced pressure at 50°C to obtain an impregnated body. The impregnated body was fired at 500°C for 1 hour under air flow, and then reduced and fired at 600°C for 1 hour under hydrogen flow to obtain catalyst A in which Pt-Sn-Co-Ni alloy was supported on ceria. . The composition of catalyst A is shown in Table 1.
[実施例2]
 M1元素原料化合物として、SnClに代えてGa(NO・6HOを添加し、表1に記載の触媒Bの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Ga-Co-Ni合金が担持された触媒Bを得た。触媒Bの組成を表1に示す。
[Example 2]
Example 1 except that Ga(NO 3 ) 3.6H 2 O was added instead of SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst B listed in Table 1. Catalyst B in which a Pt-Ga-Co-Ni alloy was supported on ceria was obtained in the same manner as in Example 1. The composition of catalyst B is shown in Table 1.
[実施例3]
 M1元素原料化合物として、SnClに加えて、In(NO・3HOを添加し、表1に記載の触媒Cの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn-In-Co-Ni合金が担持された触媒Cを得た。触媒Cの組成を表1に示す。
[Example 3]
Except that In(NO 3 ) 3.3H 2 O was added in addition to SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst C listed in Table 1. In the same manner as in Example 1, a catalyst C in which a Pt-Sn-In-Co-Ni alloy was supported on ceria was obtained. The composition of catalyst C is shown in Table 1.
[実施例4]
 M1元素原料化合物として、SnClに代えてGa(NO・6HO及びIn(NO・3HOを添加し、表1に記載の触媒Dの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Ga-In-Co-Ni合金が担持された触媒Dを得た。触媒Dの組成を表1に示す。
[Example 4]
Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as M1 element raw material compounds instead of SnCl 2 and impregnated to have the composition of catalyst D shown in Table 1. Catalyst D in which a Pt-Ga-In-Co-Ni alloy was supported on ceria was obtained in the same manner as in Example 1 except that the composition of the liquid was changed. The composition of catalyst D is shown in Table 1.
[実施例5]
 M1元素原料化合物として、SnClに加えて、Ga(NO・6HO及びIn(NO・3HOを添加し、M2元素原料化合物として、Ni(NO・6HOを添加せず、表1に記載の触媒Eの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn-Ga-In-Co合金が担持された触媒Eを得た。触媒Eの組成を表1に示す。
[Example 5]
In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound, and Ni(NO 3 ) 2 . Pt-Sn-Ga-In-Co was added to ceria in the same manner as in Example 1, except that 6H 2 O was not added and the composition of the impregnating liquid was changed to have the composition of catalyst E shown in Table 1. A catalyst E on which an alloy was supported was obtained. The composition of catalyst E is shown in Table 1.
[実施例6]
 M1元素原料化合物として、SnClに加えて、Ga(NO・6HO及びIn(NO・3HOを添加し、M2元素原料化合物として、Co(NO・6HOを添加せず、表1に記載の触媒Fの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn-Ga-In-Ni合金が担持された触媒Fを得た。触媒Fの組成を表1に示す。
[Example 6]
In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound, and Co(NO 3 ) 2 . Pt-Sn-Ga-In-Ni was added to ceria in the same manner as in Example 1, except that 6H 2 O was not added and the composition of the impregnating liquid was changed to have the composition of catalyst F listed in Table 1. A catalyst F on which an alloy was supported was obtained. The composition of catalyst F is shown in Table 1.
[実施例7]
 M1元素原料化合物として、SnClに加えて、Ga(NO・6HOを添加し、表1に記載の触媒Gの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn-Ga-Co-Ni合金が担持された触媒Gを得た。触媒Gの組成を表1に示す。
[Example 7]
Except that Ga(NO 3 ) 3.6H 2 O was added in addition to SnCl 2 as the M1 element raw material compound, and the composition of the impregnating liquid was changed to have the composition of catalyst G listed in Table 1. In the same manner as in Example 1, a catalyst G in which a Pt-Sn-Ga-Co-Ni alloy was supported on ceria was obtained. The composition of catalyst G is shown in Table 1.
[実施例8]
 表1に記載の触媒Hの組成になるように含浸液の組成を変更した以外は、実施例3と同様にして、セリアにPt-Sn-In-Co-Ni合金が担持された触媒Hを得た。触媒Hの組成を表1に示す。
[Example 8]
Catalyst H in which a Pt-Sn-In-Co-Ni alloy was supported on ceria was prepared in the same manner as in Example 3, except that the composition of the impregnating liquid was changed so that the composition of catalyst H was as shown in Table 1. Obtained. The composition of catalyst H is shown in Table 1.
[実施例9]
 表1に記載の触媒Iの組成になるように含浸液の組成を変更した以外は、実施例4と同様にして、セリアにPt-Ga-In-Co-Ni合金が担持された触媒Iを得た。触媒Iの組成を表1に示す。
[Example 9]
Catalyst I, in which a Pt-Ga-In-Co-Ni alloy was supported on ceria, was prepared in the same manner as in Example 4, except that the composition of the impregnating liquid was changed so that the composition of catalyst I was as shown in Table 1. Obtained. The composition of Catalyst I is shown in Table 1.
[実施例10]
 表1に記載の触媒Jの組成になるように含浸液の組成を変更した以外は、実施例5と同様にして、セリアにPt-Sn-Ga-In-Co合金が担持された触媒Jを得た。触媒Jの組成を表1に示す。
[Example 10]
Catalyst J in which a Pt-Sn-Ga-In-Co alloy was supported on ceria was prepared in the same manner as in Example 5, except that the composition of the impregnating liquid was changed so that the composition of catalyst J was as shown in Table 1. Obtained. The composition of catalyst J is shown in Table 1.
[実施例11]
 表1に記載の触媒Kの組成になるように含浸液の組成を変更した以外は、実施例6と同様にして、セリアにPt-Sn-Ga-In-Ni合金が担持された触媒Kを得た。触媒Kの組成を表1に示す。
[Example 11]
Catalyst K, in which a Pt-Sn-Ga-In-Ni alloy was supported on ceria, was prepared in the same manner as in Example 6, except that the composition of the impregnating liquid was changed so that the composition of catalyst K was as shown in Table 1. Obtained. The composition of catalyst K is shown in Table 1.
[実施例12]
 表1に記載の触媒Lの組成になるように含浸液の組成を変更した以外は、実施例7と同様にして、セリアにPt-Sn-Ga-Co-Ni合金が担持された触媒Lを得た。触媒Lの組成を表1に示す。
[Example 12]
Catalyst L in which a Pt-Sn-Ga-Co-Ni alloy was supported on ceria was prepared in the same manner as in Example 7, except that the composition of the impregnating liquid was changed so that the composition of catalyst L was as shown in Table 1. Obtained. The composition of catalyst L is shown in Table 1.
[実施例13]
 表1に記載の触媒Mの組成になるように含浸液の組成を変更した以外は、実施例5と同様にして、セリアにPt-Sn-Ga-In-Co合金が担持された触媒Mを得た。触媒Mの組成を表1に示す。
[Example 13]
Catalyst M in which Pt-Sn-Ga-In-Co alloy was supported on ceria was prepared in the same manner as in Example 5, except that the composition of the impregnating liquid was changed so that the composition of catalyst M was as shown in Table 1. Obtained. The composition of catalyst M is shown in Table 1.
[実施例14]
 M1元素原料化合物として、SnClに加えて、Ga(NO・6HO及びIn(NO・3HOを添加し、表1に記載の触媒Nの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn-Ga-In-Co-Ni合金が担持された触媒Nを得た。触媒Nの組成、平均粒子径、白金、コバルト、及びニッケルの分散度、及び反応後の炭素量の結果を表1に示す。なお、表1中の白金、コバルト、及びニッケルの分散度の()内の分散度は、50時間反応後の触媒の白金、コバルト、及びニッケルの分散度である。
[Example 14]
In addition to SnCl 2 , Ga( NO 3 ) 3.6H 2 O and In(NO 3 ) 3.3H 2 O were added as the M1 element raw material compound so that the composition of catalyst N was as shown in Table 1. A catalyst N in which a Pt-Sn-Ga-In-Co-Ni alloy was supported on ceria was obtained in the same manner as in Example 1 except that the composition of the impregnating liquid was changed. Table 1 shows the composition of catalyst N, the average particle diameter, the degree of dispersion of platinum, cobalt, and nickel, and the amount of carbon after the reaction. In Table 1, the degree of dispersion in parentheses for the degree of dispersion of platinum, cobalt, and nickel is the degree of dispersion of platinum, cobalt, and nickel in the catalyst after 50 hours of reaction.
[比較例1]
 M1元素原料化合物及びM2元素原料化合物を添加せず、表1に記載の触媒Oの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt金属が担持された触媒Oを得た。触媒Oの組成、平均粒子径、白金の分散度、及び反応後の炭素量の結果を表1に示す。
[Comparative example 1]
Pt metal was added to ceria in the same manner as in Example 1, except that the M1 element raw material compound and the M2 element raw material compound were not added, and the composition of the impregnation liquid was changed to have the composition of catalyst O listed in Table 1. A supported catalyst O was obtained. Table 1 shows the results of the composition of catalyst O, average particle diameter, degree of dispersion of platinum, and amount of carbon after reaction.
[比較例2]
 M1元素原料化合物として、SnClに代えて、In(NO・3HOを添加し、M2元素原料化合物を添加せず、表1に記載の触媒Pの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-In合金が担持された触媒Pを得た。触媒Pの組成、平均粒子径、及び白金の分散度を表1に示す。
[Comparative example 2]
As the M1 element raw material compound, In( NO3 ) 3.3H2O was added instead of SnCl2, the M2 element raw material compound was not added, and the impregnation liquid was adjusted to have the composition of catalyst P shown in Table 1. A catalyst P in which a Pt--In alloy was supported on ceria was obtained in the same manner as in Example 1, except that the composition was changed. Table 1 shows the composition, average particle diameter, and platinum dispersion of catalyst P.
[比較例3]
 M1元素原料化合物を添加せず、M2元素原料化合物として、Ni(NO・6HOを添加せず、表1に記載の触媒Qの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Co合金が担持された触媒Qを得た。触媒Qの組成、平均粒子径、及び白金及びコバルトの分散度を表1に示す。
[Comparative example 3]
The composition of the impregnating liquid was changed to have the composition of catalyst Q shown in Table 1 without adding the M1 element raw material compound and without adding Ni(NO 3 ) 2.6H 2 O as the M2 element raw material compound. Except for this, a catalyst Q in which a Pt--Co alloy was supported on ceria was obtained in the same manner as in Example 1. Table 1 shows the composition, average particle diameter, and degree of dispersion of platinum and cobalt of catalyst Q.
[比較例4]
 M2元素原料化合物を添加せず、表1に記載の触媒Rの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Sn合金が担持された触媒Rを得た。触媒Rの組成を表1に示す。
[Comparative example 4]
A Pt-Sn alloy was supported on ceria in the same manner as in Example 1, except that the M2 element raw material compound was not added and the composition of the impregnating liquid was changed to have the composition of catalyst R listed in Table 1. Catalyst R was obtained. The composition of catalyst R is shown in Table 1.
[比較例5]
 M1元素原料化合物として、SnClに代えて、Ga(NO・6HOを添加し、M2元素原料化合物を添加せず、表1に記載の触媒Sの組成になるように含浸液の組成を変更した以外は、実施例1と同様にして、セリアにPt-Ga合金が担持された触媒Sを得た。触媒Sの組成を表1に示す。
[Comparative example 5]
Instead of SnCl 2 , Ga(NO 3 ) 3.6H 2 O was added as the M1 element raw material compound, and the M2 element raw material compound was not added, and the impregnation liquid was adjusted to have the composition of catalyst S shown in Table 1. A catalyst S in which a Pt--Ga alloy was supported on ceria was obtained in the same manner as in Example 1, except that the composition was changed. The composition of catalyst S is shown in Table 1.
 [比較例6]
 担体として、セリアに代えてシリカを使用した以外は、実施例14と同様にして、シリカにPt-Sn-Ga-In-Co-Ni合金が担持された触媒Tを得た。触媒Tの組成、及び白金、コバルト、及びニッケルの分散度を表1に示す。
[Comparative example 6]
A catalyst T in which a Pt-Sn-Ga-In-Co-Ni alloy was supported on silica was obtained in the same manner as in Example 14, except that silica was used instead of ceria as the carrier. Table 1 shows the composition of catalyst T and the degree of dispersion of platinum, cobalt, and nickel.
 [比較例7]
 担体として、セリアに代えてアルミナを使用した以外は、実施例14と同様にして、アルミナにPt-Sn-Ga-In-Co-Ni合金が担持された触媒Uを得た。触媒Uの組成、及び白金、コバルト、及びニッケルの分散度を表1に示す。
[Comparative Example 7]
A catalyst U in which a Pt--Sn--Ga--In--Co--Ni alloy was supported on alumina was obtained in the same manner as in Example 14, except that alumina was used instead of ceria as the carrier. Table 1 shows the composition of catalyst U and the degree of dispersion of platinum, cobalt, and nickel.
 得られた触媒を用いて、プロパンの酸化脱水素反応を行った。反応10時間経過時のプロピレンの収率を表1に示す。なお、比較例6に関しては反応9時間経過時のプロピレンの収率である。 Using the obtained catalyst, an oxidative dehydrogenation reaction of propane was performed. Table 1 shows the propylene yield after 10 hours of reaction. Regarding Comparative Example 6, this is the propylene yield after 9 hours of reaction.
 実施例1、3、5、7のプロパン転化率及びプロピレン選択率の経時変化を図3に、CO転化率の経時変化を図4に示す。実施例8~14のプロパン転化率及びプロピレン選択率の経時変化を図5に、CO転化率の経時変化を図6に示す。実施例14、比較例2~5のプロパン転化率及びプロピレン選択率の経時変化を図7に、CO転化率の経時変化を図8に示す。実施例14、比較例6、7のプロパン転化率及びプロピレン選択率の経時変化を図9に、CO転化率の経時変化を図10に示す。 FIG. 3 shows the changes over time in the propane conversion rate and propylene selectivity of Examples 1, 3, 5, and 7, and FIG. 4 shows the changes over time in the CO 2 conversion rate. Figure 5 shows the change in propane conversion rate and propylene selectivity over time in Examples 8 to 14, and Figure 6 shows the change in CO 2 conversion rate over time. FIG. 7 shows the changes over time in the propane conversion rate and propylene selectivity of Example 14 and Comparative Examples 2 to 5, and FIG. 8 shows the changes over time in the CO 2 conversion rate. FIG. 9 shows the time-dependent changes in the propane conversion rate and propylene selectivity of Example 14 and Comparative Examples 6 and 7, and FIG. 10 shows the time-dependent change in the CO 2 conversion rate.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の実施例1~14の触媒は、比較例1~7の触媒と比較して、反応10時間経過時のプロピレンの収率が高いことがわかった。 It was found that the catalysts of Examples 1 to 14 of the present invention had higher propylene yields after 10 hours of reaction than the catalysts of Comparative Examples 1 to 7.
[実施例15]
 実施例14の触媒Nを用いて触媒の寿命試験を行った。具体的には、触媒Nを用いて、約60時間プロパンの酸化脱水素反応を行った。その後、触媒層の温度を600℃に保ったまま、原料ガスに代えて、二酸化炭素を含む再生ガスを30NmL/min(二酸化炭素:20NmL/min、ヘリウム:10NmL/minの混合ガス)で流通させ5時間再生処理を行った。再生処理後、触媒層の温度を600℃に保ったまま、再生ガスに代えて、水素を含む還元処理ガスを20NmL/min(水素:10NmL/min、ヘリウム:10Nml/minの混合ガス)で流通させ30分間還元処理を行った。還元処理後、触媒層の温度を600℃に保ったまま、還元処理ガスに代えて、原料ガスを再度流通させ、反応を再スタートした。その後、約60時間プロパンの酸化脱水素反応を行った。
[Example 15]
A catalyst life test was conducted using Catalyst N of Example 14. Specifically, the oxidative dehydrogenation reaction of propane was carried out using Catalyst N for about 60 hours. Thereafter, while maintaining the temperature of the catalyst layer at 600°C, a regeneration gas containing carbon dioxide was passed at a rate of 30 NmL/min (a mixed gas of carbon dioxide: 20 NmL/min and helium: 10 NmL/min) instead of the raw material gas. Regeneration treatment was performed for 5 hours. After the regeneration treatment, while maintaining the temperature of the catalyst layer at 600°C, instead of the regeneration gas, a reduction treatment gas containing hydrogen is passed at a rate of 20NmL/min (a mixed gas of hydrogen: 10NmL/min, helium: 10NmL/min). A reduction treatment was performed for 30 minutes. After the reduction treatment, the reaction was restarted by flowing the raw material gas again instead of the reduction treatment gas while maintaining the temperature of the catalyst layer at 600°C. Thereafter, the oxidative dehydrogenation reaction of propane was carried out for about 60 hours.
 実施例15のプロパン転化率及びプロピレン選択率の経時変化を図11に、CO転化率の経時変化を図12に示す。図11、12に示されるように、実施例14の触媒Nを使用した寿命試験では、酸化性ガスとして二酸化炭素の使用が可能であり、1回再生処理を行うことにより、約120時間、高いプロパン転化率及びCO転化率を維持したまま、反応を継続することが可能であった。 FIG. 11 shows the propane conversion rate and propylene selectivity of Example 15 over time, and FIG. 12 shows the CO 2 conversion rate over time. As shown in FIGS. 11 and 12, in the life test using catalyst N of Example 14, it was possible to use carbon dioxide as the oxidizing gas, and by performing regeneration treatment once, the It was possible to continue the reaction while maintaining propane conversion and CO 2 conversion.
 本発明に係る酸化脱水素用触媒は、長期にわたりピロピレンを効率よく製造することができるため有用である。 The oxidative dehydrogenation catalyst according to the present invention is useful because it can efficiently produce propyrene over a long period of time.

Claims (8)

  1.  プロパンの酸化脱水素反応によってプロピレンを製造するための酸化脱水素用触媒であって、
     前記酸化脱水素反応は、プロパンに二酸化炭素を反応させることにより行い、
     前記酸化脱水素用触媒は、活性成分がセリア担体に担持されており、
     前記活性成分として、白金元素と、典型金属元素であるM1元素と、を含み、遷移金属元素であるM2元素を含んでもよく、前記活性成分に含まれる前記M1元素及び前記M2元素の総数は、2個以上であり、
     前記M1元素は、錫元素、ガリウム元素、インジウム元素、亜鉛元素、及びゲルマニウム元素からなる群から選択される1種以上の典型金属元素であり、
     前記M2元素は、コバルト元素、ニッケル元素、鉄元素、及び銅元素からなる群から選択される1種以上の遷移金属元素である、酸化脱水素用触媒(但し、前記M1元素としてインジウム元素のみを含み、前記M2元素としてコバルト元素のみを含む酸化脱水素用触媒、前記M1元素としてインジウム元素のみを含み、前記M2元素としてニッケル元素のみを含む酸化脱水素用触媒、並びに前記M1元素としてインジウム元素のみを含み、前記M2元素としてコバルト元素及びニッケル元素のみを含む酸化脱水素用触媒を除く)。
    An oxidative dehydrogenation catalyst for producing propylene by an oxidative dehydrogenation reaction of propane, the catalyst comprising:
    The oxidative dehydrogenation reaction is performed by reacting propane with carbon dioxide,
    The oxidative dehydrogenation catalyst has an active component supported on a ceria carrier,
    The active component includes a platinum element and an M1 element which is a typical metal element, and may also include an M2 element which is a transition metal element, and the total number of the M1 element and the M2 element contained in the active component is: 2 or more,
    The M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, indium element, zinc element, and germanium element,
    The M2 element is a catalyst for oxidative dehydrogenation, which is one or more transition metal elements selected from the group consisting of cobalt element, nickel element, iron element, and copper element (however, if only indium element is used as the M1 element) a catalyst for oxidative dehydrogenation containing only a cobalt element as the M2 element, an oxidative dehydrogenation catalyst containing only an indium element as the M1 element and only a nickel element as the M2 element, and only an indium element as the M1 element. (excluding oxidative dehydrogenation catalysts containing only cobalt element and nickel element as the M2 element).
  2.  前記M1元素は、錫元素、ガリウム元素、及びインジウム元素からなる群から選択される1種以上の典型金属元素であり、前記M2元素は、コバルト元素、及びニッケル元素からなる群から選択される1種以上の遷移金属元素である、請求項1に記載の酸化脱水素用触媒。 The M1 element is one or more typical metal elements selected from the group consisting of tin element, gallium element, and indium element, and the M2 element is one selected from the group consisting of cobalt element and nickel element. The oxidative dehydrogenation catalyst according to claim 1, which is one or more transition metal elements.
  3.  前記活性成分として、前記M2元素を含む、請求項1又は2に記載の酸化脱水素用触媒。 The oxidative dehydrogenation catalyst according to claim 1 or 2, comprising the M2 element as the active component.
  4.  前記活性成分に含まれる前記白金元素及び前記M2元素の総モル数に対する、前記M1元素のモル数の割合が0.8~1.2である、請求項1又は2に記載の酸化脱水素用触媒。 The method for oxidative dehydrogenation according to claim 1 or 2, wherein the ratio of the number of moles of the M1 element to the total number of moles of the platinum element and the M2 element contained in the active ingredient is 0.8 to 1.2. catalyst.
  5.  前記活性成分に含まれる前記M1元素及び前記M2元素の総数は、3~8個である、請求項1又は2に記載の酸化脱水素用触媒。 The oxidative dehydrogenation catalyst according to claim 1 or 2, wherein the total number of the M1 element and the M2 element contained in the active component is 3 to 8.
  6.  前記M1元素として、錫元素、ガリウム元素、及びインジウム元素を含み、前記M2元素として、コバルト元素、及びニッケル元素を含む、請求項1又は2に記載の酸化脱水素用触媒。 The catalyst for oxidative dehydrogenation according to claim 1 or 2, wherein the M1 element contains a tin element, a gallium element, and an indium element, and the M2 element contains a cobalt element and a nickel element.
  7.  前記活性成分に含まれる金属元素が合金を形成している、請求項1又は2に記載の酸化脱水素用触媒。 The oxidative dehydrogenation catalyst according to claim 1 or 2, wherein the metal elements contained in the active component form an alloy.
  8.  請求項1又は2に記載の酸化脱水素用触媒に、プロパン及び二酸化炭素を含む原料ガスを接触処理させる、プロピレンの製造方法。 A method for producing propylene, which comprises contacting a raw material gas containing propane and carbon dioxide with the oxidative dehydrogenation catalyst according to claim 1 or 2.
PCT/JP2023/018385 2022-05-20 2023-05-17 Catalyst for oxidative dehydrogenation and method for producing propylene WO2023224058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082775 2022-05-20
JP2022-082775 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023224058A1 true WO2023224058A1 (en) 2023-11-23

Family

ID=88835566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018385 WO2023224058A1 (en) 2022-05-20 2023-05-17 Catalyst for oxidative dehydrogenation and method for producing propylene

Country Status (1)

Country Link
WO (1) WO2023224058A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525196A (en) * 2014-12-11 2015-04-22 天津大学 Platinum-gallium catalyst loaded on double-oxide composite carrier as well as preparation method and application of platinum-gallium catalyst
WO2021002477A1 (en) * 2019-07-04 2021-01-07 国立大学法人 東京大学 Method for oxidizing hydrocarbon to oxygen compound
CN113651671A (en) * 2021-07-29 2021-11-16 陕西师范大学 Method for simultaneously preparing propylene and synthesis gas by carbon dioxide propane oxide hydrodehydrogenation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525196A (en) * 2014-12-11 2015-04-22 天津大学 Platinum-gallium catalyst loaded on double-oxide composite carrier as well as preparation method and application of platinum-gallium catalyst
WO2021002477A1 (en) * 2019-07-04 2021-01-07 国立大学法人 東京大学 Method for oxidizing hydrocarbon to oxygen compound
CN113651671A (en) * 2021-07-29 2021-11-16 陕西师范大学 Method for simultaneously preparing propylene and synthesis gas by carbon dioxide propane oxide hydrodehydrogenation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XING FEILONG, NAKAYA YUKI, YASUMURA SHUNSAKU, SHIMIZU KEN-ICHI, FURUKAWA SHINYA: "Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2", NATURE CATALYSIS, vol. 5, no. 1, pages 55 - 65, XP093109413, ISSN: 2520-1158, DOI: 10.1038/s41929-021-00730-x *

Similar Documents

Publication Publication Date Title
Udani et al. Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts
Choudhary et al. Acetylene hydrogenation on Au-based catalysts
Guo et al. CO methanation over ZrO2/Al2O3 supported Ni catalysts: A comprehensive study
Choudhary et al. Oxidation catalysis by supported gold nano-clusters
Profeti et al. Production of hydrogen via steam reforming of biofuels on Ni/CeO2–Al2O3 catalysts promoted by noble metals
JP7462768B2 (en) Catalytic composition for ammonia decomposition
Khajenoori et al. Characterization of CeO2 promoter of a nanocrystalline Ni/MgO catalyst in dry reforming of methane
US20130045865A1 (en) High activity early transition metal carbide and nitride based catalysts
Evin et al. Low temperature water–gas shift/methanol steam reforming: Alkali doping to facilitate the scission of formate and methoxy C–H bonds over Pt/ceria catalyst
JP6541339B2 (en) Steam reforming catalyst for hydrocarbon-containing gas, hydrogen production apparatus, and hydrogen production method
Singha et al. Pt–CeO 2 nanoporous spheres–an excellent catalyst for partial oxidation of methane: effect of the bimodal pore structure
JPH0768171A (en) Catalyst for reduction reaction of carbon dioxide
WO2005094988A1 (en) Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
Liu et al. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La 2 O 3 metal–support interactions
Fiuza et al. Supported AuCu alloy nanoparticles for the preferential oxidation of CO (CO-PROX)
Gao et al. Active surface RuOx species originating from size-driving self-dispersion process for toluene catalytic combustion
KR102170320B1 (en) Low temperature oxidative coupling method of methane using oxidized palladium catalyst supported on cerium oxide
JP4222839B2 (en) Hydrocarbon reforming method
Yamamuro et al. Hydrogen production by water gas shift reaction over Pd–K impregnated Co oxide catalyst
WO2023224058A1 (en) Catalyst for oxidative dehydrogenation and method for producing propylene
WO2022249616A1 (en) Oxidative dehydrogenation catalyst
JP7067696B2 (en) A catalyst for the oxychlorolation process of hydrocarbons, a method for producing the same, and a method for producing an oxychloroization compound for hydrocarbons using the same.
JP3834621B2 (en) Catalyst for water gas shift reaction
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
JP5107046B2 (en) Hydrocarbon steam reforming catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807659

Country of ref document: EP

Kind code of ref document: A1