WO2023223972A1 - Conductor - Google Patents

Conductor Download PDF

Info

Publication number
WO2023223972A1
WO2023223972A1 PCT/JP2023/017946 JP2023017946W WO2023223972A1 WO 2023223972 A1 WO2023223972 A1 WO 2023223972A1 JP 2023017946 W JP2023017946 W JP 2023017946W WO 2023223972 A1 WO2023223972 A1 WO 2023223972A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
plating
layer
concentration
lead
Prior art date
Application number
PCT/JP2023/017946
Other languages
French (fr)
Japanese (ja)
Inventor
竜 村上
燎平 大澤
晃一 片山
淳雄 大江
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2023223972A1 publication Critical patent/WO2023223972A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductor, a lead conductor for a nonaqueous electrolyte battery tab lead, a tab lead equipped with the lead conductor, and a nonaqueous electrolyte battery using the tab lead.
  • the structure of a nonaqueous electrolyte battery is such that a stacked electrode group in which a positive electrode plate and a negative electrode plate are laminated via a separator and an electrolyte are housed in an exterior case made of a multilayer film, etc., and connected to the positive electrode plate and the negative electrode plate.
  • a structure in which each tab lead is hermetically sealed and taken out to the outside is known.
  • the exterior case is hermetically sealed by, for example, sealing the peripheral seal portions of two laminate films cut into rectangular shapes by thermal welding.
  • a tab lead is composed of a lead conductor and a sealing material.
  • the lead conductor is a conductor that is connected to the positive electrode plate or the negative electrode plate to extract current to the outside of the sealed battery.
  • the sealing material is an insulating resin portion provided on the lead conductor, and is provided in order to prevent short circuit between the lead conductor and the multilayer film and ensure the sealing performance of the battery.
  • a sealing material is applied to the part taken out from the outer case by thermal welding, etc. to ensure the airtightness of the battery, and at the same time, electrical connections from the laminated electrode group housed inside the outer case to the outside are made using lead conductors. It is secured.
  • Patent Document 1 discloses a lithium ion battery in which the tab of the lithium ion battery is treated with phosphoric acid chromate so that the tab of the lithium ion battery is not corroded by hydrofluoric acid generated by electrolyte and moisture at the part where the tab is adhered to the seal. tab is disclosed.
  • a pouch-type non-aqueous electrolyte battery it is particularly strongly required from the viewpoint of maintaining battery performance that the electrolyte within the pouch does not leak out of the pouch. Furthermore, leakage of electrolyte may cause fire or failure of the battery. Therefore, it is required that the lead conductor has high corrosion resistance against electrolyte.
  • chromate treatment containing Cr has a large burden on the environment and is therefore unfavorable from the viewpoint of sustainability.
  • the present inventors have discovered that the above problems can be solved by a conductor provided with a plating layer, which will be described later, on the surface of the conductor, and have arrived at the present invention.
  • the present invention includes the following (1): (1) A metal conductor, The conductor has a base material and a surface treatment layer formed on the base material, A conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
  • FIG. 1 shows the results of examining the electrolyte resistance of Ni--P plating, and is a graph showing the weight change ratio when Ni--P plating with different P contents is provided.
  • the conductor of the present invention is a metal conductor,
  • the conductor has a base material and a surface treatment layer formed on the base material, It is a conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
  • the conductor of the present invention When the conductor of the present invention is used as a lead conductor of a tab lead for an electrochemical device, by having the above-mentioned surface, it can be made resistant to electrolyte. This maintains the functionality of the tab lead over long periods of use, resulting in a durable electrochemical device, especially a durable non-aqueous electrolyte battery.
  • the conductor of the present invention can be a lead conductor made of metal.
  • the metal of the metal lead conductor can be, for example, copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, titanium, or titanium alloy.
  • the metal lead conductor can have a structure including the above metal as a base material and a surface treatment layer formed on the base material.
  • a metal lead conductor can be used as a tab lead for an electrochemical device by bonding a sealing material made of insulating resin.
  • insulating resin of the insulating resin sealing material an insulating resin selected from thermoplastic polyolefins such as polypropylene, acid-modified polypropylene, polyethylene, and acid-modified polyethylene can be used.
  • a single-layer or multi-layer sealing material containing these insulating resins can be used.
  • a multilayer sealing material in which a heat-resistant resin is sandwiched between maleic acid-modified polypropylene layers with high adhesiveness can be used.
  • a crosslinked polyolefin can be used as the heat-resistant resin. A known method can be used for crosslinking the polyolefin.
  • the metal lead conductor is a metal lead conductor used as a tab lead for an electrochemical device.
  • An electrochemical device is a device that supplies an electrical signal or electrical energy through an electrochemical reaction, and includes, for example, a non-aqueous electrolyte battery such as a lithium ion battery. Electrochemical devices are equipped with conductive terminals for outputting potential or current to the outside.
  • a tab lead is a member used as a conductive terminal of a laminated battery.
  • the tab lead includes a lead conductor for conductivity and a sealing material for sealing by being welded to the inside of the packaging material of the electrochemical device.
  • a sealing material is adhered to a portion of the surface of the lead conductor constituting the tab lead that is to be sealed by welding to the inside of the packaging material.
  • the surface of the lead conductor that comes into contact with the electrolyte has the surface treatment layer according to the present invention, thereby increasing resistance to the electrolyte.
  • the lead conductor includes a base material and a surface treatment layer formed on the base material.
  • the conductor of the present invention has excellent durability against corrosive environments, not limited to electrolytes, by having the surface treatment layer.
  • the surface treatment layer according to the present invention can be provided at least on the surface of the surface treatment layer that comes into contact with the electrolyte. That is, in a preferred embodiment, the surface treatment layer according to the present invention can be provided on a part of the surface of the lead conductor, or can be provided over the entire surface of the lead conductor.
  • the surface treatment layer can be a layer consisting of a single layer or multiple plating layers.
  • the surface treatment layer may include a Ni--P plating layer.
  • the surface treatment layer according to the present invention may be provided with a Ni--P plating layer with a specific P concentration on at least the surface thereof, and a Ni--P plating layer with a specific P concentration as a layer below the surface.
  • a layer other than the P-concentrated Ni--P plating layer may be provided.
  • the electrolyte is in direct contact with a Ni--P plating layer with a specific P concentration that has excellent durability against electrolytes. can do.
  • Ni plating exhibits ferromagnetism
  • the inclusion of P weakens the magnetism.
  • conductors with a Ni-P plating layer with a specific P concentration on their surfaces can be used in high-frequency materials (for example, connectors) that are strongly affected by the skin effect to achieve low transmission loss. obtain.
  • the surface treatment layer may include a Ni--P plating layer with a specific P concentration, and a layer above the Ni--P plating layer with a specific P concentration, that is, a layer with a specific P concentration.
  • a layer closer to the surface than the Ni--P plating layer can be provided, for example, a layer on the surface of the surface treatment layer can be provided as a layer on the Ni--P plating layer.
  • the surface layer of the surface treatment layer provided as a layer on the Ni--P plating layer may be, for example, an acid-resistant treatment layer.
  • such an acid-resistant treatment layer can be provided by, for example, immersing it in a solution containing a water-soluble resin and a crosslinking agent and then drying it.
  • crosslinking agents include, for example, organic or inorganic crosslinking agents.
  • the thickness of such an acid-resistant treatment layer can be, for example, in the range of 1 to 10 nm, preferably in the range of 1 to 5 nm.
  • the Ni--P plating layer can be provided by a known method, and specifically, by the method described later in the Examples.
  • the Ni--P plating layer has a P content of, for example, 4 to 18 wt%, preferably 6 to 18 wt%, more preferably 6 to 15 wt%, even more preferably 6 to 10 wt%, and Preferably, it can be 6.5 to 9.4 wt%, or for example 4 to 15 wt%, preferably 4 to 10 wt%.
  • the P content of the Ni--P plating layer can be measured by the method described below in Examples.
  • the Ni-P plating layer preferably has a thickness of 0.1 to 3.0 [ ⁇ m], preferably 0.3 to 2.0 [ ⁇ m], more preferably 0.5 to 1.5 [ ⁇ m].
  • the layer can have a thickness of [ ⁇ m], more preferably 0.8 to 1.2 [ ⁇ m]. If the Ni--P plating layer is too thin, it will be difficult to ensure the necessary electrolyte resistance. On the other hand, if the Ni--P plating layer is too thick, productivity and workability will decrease.
  • the surface treatment layer can be a layer consisting of a single layer or multiple plating layers.
  • a layer below the Ni--P plating layer can be provided as desired.
  • a plating layer containing at least one metal selected from Ni, Cu, Ag, and Co is provided on the base material as a layer below the Ni-P plating layer. be able to.
  • a roughened plating layer can be formed as a layer below the Ni--P plating layer from the viewpoint of improving adhesion with the sealing material.
  • Such a roughening plating layer may include a plating layer containing at least one of Ni, Cu, and Ag.
  • a roughened Ni plating layer can be preferably provided on the base material as a layer below the Ni--P plating layer.
  • the roughened Ni plating layer can be provided by known means, and can be provided by the following plating conditions, for example.
  • Plating bath Roughened Ni plating solution manufactured by JX Kinzoku Shoji Co., Ltd.
  • the roughened Ni plating layer has a thickness of, for example, 0.1 to 3.0 [ ⁇ m], preferably 0.3 to 2.0 [ ⁇ m], more preferably 0.5 to 1.5 [ ⁇ m].
  • the layer can have a thickness of [ ⁇ m], more preferably 0.8 to 1.2 [ ⁇ m]. If the roughened Ni plating layer is too thin, the anchoring effect will be reduced. On the other hand, if the roughened Ni plating layer is too thick, productivity and workability will decrease.
  • Lead conductors are required to have durability against such corrosive properties of electrolyte, that is, to have resistance to electrolyte.
  • the electrolyte resistance of the lead conductor means that the weight change ratio before and after the immersion test is low under the immersion conditions described later in Examples.
  • This weight change ratio is a ratio to the weight change of a Ni-plated Cu base material that is generally used as a lead conductor for tab leads, and specifically, it is calculated as shown in the example below. Can be done.
  • the weight change ratio before and after the immersion test is, for example, 0.5 or less, preferably 0.4 or less, it can be determined that the electrolyte resistance is excellent.
  • the electrolyte resistance of the lead conductor can be referred to as resistance to, for example, a hydrofluoric acid electrolyte.
  • Nonaqueous electrolyte battery also resides in a tab lead comprising the above lead conductor, an electrochemical device including the tab lead, and a non-aqueous electrolyte battery including the tab lead.
  • the nonaqueous electrolyte battery according to the present invention has excellent reliability derived from the tab lead part, that is, stable and high sealing performance and durability, so it can be used in electric transportation equipment, drones, robots, electric vehicles, etc. using nonaqueous electrolyte batteries. Tools and other equipment also have the excellent reliability derived from non-aqueous electrolyte batteries. Therefore, the present invention also applies to these electric transportation devices, drones, robots, power tools, etc.
  • the present invention includes the following (1).
  • a metal conductor The conductor has a base material and a surface treatment layer formed on the base material, A conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
  • a tab lead for an electrochemical device comprising the conductor according to any one of (1) to (5).
  • An electric transportation device comprising the non-aqueous electrolyte battery according to (7).
  • Base material Copper plate (C1020-O) (60 x 45 x 0.2 mm) (oxygen-free copper, purity 99.96% or more)
  • Ni-P plating As an example, a base material was plated with Ni--P to a thickness of 1 ⁇ m. When the current application time was 90 seconds under the following conditions, about 1 ⁇ m of Ni--P plating was formed. The Ni--P plated sample was used as a lead conductor for a tab lead for subsequent testing. Note that the P concentration in Ni--P increases as the current density decreases. Taking advantage of this property, we prepared samples in which Ni—P plating layers with different P concentrations were formed by changing the current density.
  • Ni sulfate bath Ni(II) sulfate hexahydration: 220 to 280 g/L (Ni concentration 4 to 6%)
  • Phosphorous acid 68-92g/L (P concentration 6-8%)
  • Current density 5-17.5A/ dm2 Temperature: 60°C
  • Ni plating As a comparative example, a ready-made product (manufactured by Nikko Metals (Suzhou) Co., Ltd.) with a matte Ni plating of 2 ⁇ m in thickness was used as a base material.
  • the product name is as follows:
  • the plating thickness of Ni plating and Ni-P plating was measured under the following conditions.
  • Measuring device High performance fluorescent X-ray film thickness meter SFT9550X (manufactured by SII Nano Technology Co., Ltd.)
  • Measurement method FP method Measurement location: Center of sample
  • the P concentration was measured using an EPMA electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.) under the following conditions.
  • Standard sample InP wafer (P concentration 50 at%), crystal used: PETH, X-ray used: K ⁇ , acceleration voltage 15 kV, irradiation current 1 ⁇ 10 ⁇ 7 A, beam diameter 10 ⁇ m.
  • the X-ray intensity at the P peak position (197.235 mm) of the standard sample was measured five times, and the average value was calculated.
  • Electrolyte EC (ethylene carbonate): DMC (dimethyl carbonate): DEC (diethyl carbonate) (1:1:1 [v/vol%]) + LiPF 6 (lithium hexafluorophosphate) (1 mol/L) + H 2 O 1000 ppm Temperature: 80°C Soaking time: 1 week Pouch: Yes (resistance in electrolyte sealed in pouch was investigated)
  • FIG. 1 Graphs of the results of studies on electrolyte resistance of Ni--P plating are shown in FIG. 1 and Table 1.
  • the horizontal axis of the graph in FIG. 1 is the average P content of the plating, and the vertical axis is the ratio of weight change of the plating sample before and after immersion in the electrolytic solution. If the electrolyte resistance is low, the surface will be corroded by the electrolyte and the weight will decrease after immersion. Therefore, the lower the weight change ratio, the higher the electrolyte resistance.
  • Weight change ratio (Weight of Ni-P plating sample before immersion” - "Weight of Ni-P plating sample after immersion") / ⁇ ("Weight of Ni-plating sample before immersion” - "Weight of Ni-P plating sample after immersion”) Weight of Ni plating sample”) ⁇ 0.5 ⁇
  • ⁇ 0.5 is added for standardization because the thickness of the Ni plating is 2 ⁇ m and the thickness of the Ni-P plating is 1 ⁇ m.
  • the amount of weight change is smaller than when only Ni plating is performed, that is, the electrolyte resistance is improved. You can read what is going on. Furthermore, as shown in the graph of FIG. 1 and Table 1, the amount of weight change changed in approximately three stages (P concentration less than 6 wt%, 6 to 10 wt%, and more than 10 wt%) depending on the P content.
  • the weight change ratio (that is, electrolyte resistance) was greatly improved compared to when the P content was less than 6 wt%. Furthermore, within the P content range of 6 to 10 wt%, the amount of weight change, that is, the electrolyte resistance was almost constant. In the region where the P content exceeds 10 wt%, the weight change decreases again, that is, the electrolyte resistance improves.
  • Ni--P surface structure observed in the SEM image changed at the above three levels of P concentration. More specifically, the occurrence of pores was confirmed in regions where the average P content was less than 6 wt%. Further, in the region where the average P content was 6 to 10 wt%, some corrosion was observed along the grooves derived from the rolling marks, and in the region where the average P content was higher than 10 wt%, almost no corrosion was observed.
  • the P concentration in the Ni-P plating layer is preferably 4 to 18 wt%. This is because if the P concentration is 4 wt%, the electrolyte resistance may be reduced, and if the P concentration is 18 wt% or more, the current density may be extremely low and productivity may be significantly reduced.
  • the P concentration in the Ni--P plating layer can be more preferably 6 to 10 wt%.
  • the electrolyte resistance is significantly improved, and within this P concentration range, the electrolyte resistance is almost constant and corrosion is almost not observed. This is because lead conductors with excellent quality stability can be provided.
  • the P concentration in the Ni--P plating layer can be set to 6.5 to 9.4 wt%.
  • the P concentration in the Ni--P plating layer is not uniform within the surface and may vary to some extent. Therefore, by setting the P concentration within this range, uniform electrolyte resistance can be achieved within the surface.
  • a conductor can be obtained that has a surface that has a low environmental load and has excellent durability against corrosive environments such as electrolytes.
  • the present invention is an industrially useful invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention provides a metal conductor which comprises a base material and a surface treatment layer that is formed on the base material, wherein the surface treatment layer comprises an Ni-P plating layer that has a P concentration within the range of 4-18 wt%. Consequently, the present invention provides a conductor which is provided with a surface that exhibits excellent durability in a corrosive environment such as an electrolyte solution, while having a low environmental load.

Description

導体conductor
 本発明は、導体、非水電解質電池タブリード用リード導体、該リード導体を備えたタブリード、該タブリードを使用した非水電解質電池に関する。 The present invention relates to a conductor, a lead conductor for a nonaqueous electrolyte battery tab lead, a tab lead equipped with the lead conductor, and a nonaqueous electrolyte battery using the tab lead.
 近年、電子機器の小型化の要求に伴い、リチウムイオン電池などの非水電解質電池の研究開発が進められている。 In recent years, with the demand for smaller electronic devices, research and development of non-aqueous electrolyte batteries such as lithium ion batteries has been progressing.
 非水電解質電池の構造としては、例えば、セパレータを介して正極板と負極板を積層した積層電極群および電解液を、多層フィルム等からなる外装ケースに収納し、正極板、負極板に接続したそれぞれのタブリードを密封封止して外部に取り出す構造のものが知られている。外装ケースは、例えば、矩形状に裁断された2枚のラミネートフィルムの周辺のシール部を、熱溶着によりシールすることにより密封封止される。 For example, the structure of a nonaqueous electrolyte battery is such that a stacked electrode group in which a positive electrode plate and a negative electrode plate are laminated via a separator and an electrolyte are housed in an exterior case made of a multilayer film, etc., and connected to the positive electrode plate and the negative electrode plate. A structure in which each tab lead is hermetically sealed and taken out to the outside is known. The exterior case is hermetically sealed by, for example, sealing the peripheral seal portions of two laminate films cut into rectangular shapes by thermal welding.
 タブリードは、リード導体とシール材から構成されている。リード導体は、正極板又は負極板に接続して電流を密閉された電池の外部に取り出すための導体である。シール材は、リード導体上に設けられた絶縁性樹脂部分であって、リード導体と上記の多層フィルムとの短絡を防止しつつ電池の密封性を確保するために設けられている。外装ケースからの取り出し部分にシール材が熱溶着等によりシールされることによって電池の密閉性を確保すると同時に、外装ケース内に収納された積層電極群から外部への電気的な接続をリード導体によって確保している。 A tab lead is composed of a lead conductor and a sealing material. The lead conductor is a conductor that is connected to the positive electrode plate or the negative electrode plate to extract current to the outside of the sealed battery. The sealing material is an insulating resin portion provided on the lead conductor, and is provided in order to prevent short circuit between the lead conductor and the multilayer film and ensure the sealing performance of the battery. A sealing material is applied to the part taken out from the outer case by thermal welding, etc. to ensure the airtightness of the battery, and at the same time, electrical connections from the laminated electrode group housed inside the outer case to the outside are made using lead conductors. It is secured.
 特許文献1は、リチウムイオン電池のタブが、シールと接着している部位において、電解質と水分により発生するフッ化水素酸により腐食されることのないように、リン酸クロメート処理されたリチウムイオン電池用タブを開示している。 Patent Document 1 discloses a lithium ion battery in which the tab of the lithium ion battery is treated with phosphoric acid chromate so that the tab of the lithium ion battery is not corroded by hydrofluoric acid generated by electrolyte and moisture at the part where the tab is adhered to the seal. tab is disclosed.
特開2002-216741公開公報Japanese Patent Application Publication No. 2002-216741
 パウチ型の非水電解質電池において、パウチ内の電解液がパウチ外に漏れないことは、電池性能の維持の観点から特に強く求められている。また、電解液の液漏れは、電池の発火や故障を引き起こし得る。そのため、リード導体の電解液に対する耐腐食性が高いことが求められている。しかしながら、Crを含むクロメート処理は環境への負荷が大きいため、持続可能性の観点から好ましくない。 In a pouch-type non-aqueous electrolyte battery, it is particularly strongly required from the viewpoint of maintaining battery performance that the electrolyte within the pouch does not leak out of the pouch. Furthermore, leakage of electrolyte may cause fire or failure of the battery. Therefore, it is required that the lead conductor has high corrosion resistance against electrolyte. However, chromate treatment containing Cr has a large burden on the environment and is therefore unfavorable from the viewpoint of sustainability.
 そこで、本発明の目的は、環境負荷が小さく、電解液に対する優れた耐久性を有する表面を備えた、リード導体を提供することにある。他の局面における本発明の目的は、環境負荷が小さく、電解液などの腐食性環境下に対する優れた耐久性を有する表面を備えた導体を提供することにある。 Therefore, an object of the present invention is to provide a lead conductor that has a surface that has a low environmental load and has excellent durability against electrolyte. Another object of the present invention is to provide a conductor having a surface that has a low environmental impact and has excellent durability against corrosive environments such as electrolytes.
 本発明者は、導体の表面として、後述するめっき層を備えた導体によって、上記課題を解決できることを見いだして、本発明に到達した。 The present inventors have discovered that the above problems can be solved by a conductor provided with a plating layer, which will be described later, on the surface of the conductor, and have arrived at the present invention.
 したがって、本発明は以下の(1)を含む:
(1)
 金属製の導体であって、
 導体が、基材と、基材上に形成された表面処理層とを有し、
 表面処理層に、P濃度が4~18wt%の範囲にあるNi-Pめっき層を含む、導体。
Therefore, the present invention includes the following (1):
(1)
A metal conductor,
The conductor has a base material and a surface treatment layer formed on the base material,
A conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
 本発明によれば、環境負荷が小さく、電解液などの腐食性環境下に対する優れた耐久性を有する表面を備えた、導体を提供することができる。 According to the present invention, it is possible to provide a conductor that has a surface that has a low environmental load and has excellent durability against corrosive environments such as electrolytes.
図1は、Ni-Pめっきの電解液耐性の検討結果であり、P含有率の異なるNi-Pめっきを設けた場合の重量変化量比を表すグラフである。FIG. 1 shows the results of examining the electrolyte resistance of Ni--P plating, and is a graph showing the weight change ratio when Ni--P plating with different P contents is provided.
 本発明を具体的な実施の形態をあげて以下に詳細に説明する。本発明は以下に開示された具体的な実施の形態に限定されるものではない。 The present invention will be described in detail below by citing specific embodiments. The present invention is not limited to the specific embodiments disclosed below.
[導体]
 本発明の導体は、金属製の導体であって、
 導体が、基材と、基材上に形成された表面処理層とを有し、
 表面処理層に、P濃度が4~18wt%の範囲にあるNi-Pめっき層を含む、導体である。
[conductor]
The conductor of the present invention is a metal conductor,
The conductor has a base material and a surface treatment layer formed on the base material,
It is a conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
 本発明の導体は、電気化学デバイス用のタブリードのリード導体に使用された場合に、上記表面を有することによって、電解液に対する耐性を備えたものとすることができる。これによって、タブリードの機能が長期間の使用を通じて維持されて、耐久性のある電気化学デバイス、特に耐久性のある非水電解質電池を実現するものとなっている。好適な実施の態様において、本発明の導体は、金属製のリード導体とすることができる。 When the conductor of the present invention is used as a lead conductor of a tab lead for an electrochemical device, by having the above-mentioned surface, it can be made resistant to electrolyte. This maintains the functionality of the tab lead over long periods of use, resulting in a durable electrochemical device, especially a durable non-aqueous electrolyte battery. In a preferred embodiment, the conductor of the present invention can be a lead conductor made of metal.
[金属製のリード導体]
 好適な実施の態様において、金属製のリード導体の金属は、例えば銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、チタン、チタン合金とすることができる。好適な実施の態様において、金属製のリード導体は、上記の金属を基材として有し、この基材上に形成された表面処理層を有する構造とすることができる。
[Metal lead conductor]
In a preferred embodiment, the metal of the metal lead conductor can be, for example, copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, titanium, or titanium alloy. In a preferred embodiment, the metal lead conductor can have a structure including the above metal as a base material and a surface treatment layer formed on the base material.
[絶縁樹脂製のシール材]
 好適な実施の態様において、金属製のリード導体には、絶縁樹脂製のシール材を接着して、電気化学デバイス用のタブリードとして使用することができる。絶縁樹脂製のシール材の絶縁樹脂としては、例えばポリプロピレン、酸変性ポリプロピレン、ポリエチレン、及び酸変性ポリエチレンなどの熱可塑性ポリオレフィンから選択された絶縁樹脂を使用することができる。これらの絶縁樹脂を有する単層又は多層の形態のシール材とすることができる。好ましくは耐熱性樹脂を接着性の高いマレイン酸変性ポリプロピレン層で挟んだ多層のシール材を使用することができる。耐熱性樹脂としては、ポリオレフィンを架橋したものを用いることができる。ポリオレフィンの架橋方法は公知の方法を用いることが出来る。
[Insulating resin sealing material]
In a preferred embodiment, a metal lead conductor can be used as a tab lead for an electrochemical device by bonding a sealing material made of insulating resin. As the insulating resin of the insulating resin sealing material, an insulating resin selected from thermoplastic polyolefins such as polypropylene, acid-modified polypropylene, polyethylene, and acid-modified polyethylene can be used. A single-layer or multi-layer sealing material containing these insulating resins can be used. Preferably, a multilayer sealing material in which a heat-resistant resin is sandwiched between maleic acid-modified polypropylene layers with high adhesiveness can be used. As the heat-resistant resin, a crosslinked polyolefin can be used. A known method can be used for crosslinking the polyolefin.
[電気化学デバイス用のタブリード]
 好適な実施の態様において、金属製のリード導体は、電気化学デバイス用のタブリードとして使用される金属製のリード導体である。電気化学デバイスとは、電気化学反応によって電気的信号あるいは電気的エネルギーを供給するデバイスであって、例えばリチウムイオン電池などの非水電解質電池をあげることができる。電気化学デバイスは、外部へと電位あるいは電流を出力するための導電性の端子を備えている。電気化学デバイスのうちラミネート型電池の導電性の端子として使用される部材が、タブリードである。
[Tab leads for electrochemical devices]
In a preferred embodiment, the metal lead conductor is a metal lead conductor used as a tab lead for an electrochemical device. An electrochemical device is a device that supplies an electrical signal or electrical energy through an electrochemical reaction, and includes, for example, a non-aqueous electrolyte battery such as a lithium ion battery. Electrochemical devices are equipped with conductive terminals for outputting potential or current to the outside. Among electrochemical devices, a tab lead is a member used as a conductive terminal of a laminated battery.
 好適な実施の態様において、タブリードは、導電性を担うためのリード導体と、電気化学デバイスの包装材の内側と溶着されて、密封性を担うためのシール材とを備える。好適な実施の態様において、タブリードを構成するリード導体の表面のうち、包装材の内側との溶着による封止がなされる部分に、シール材が密着されている。 In a preferred embodiment, the tab lead includes a lead conductor for conductivity and a sealing material for sealing by being welded to the inside of the packaging material of the electrochemical device. In a preferred embodiment, a sealing material is adhered to a portion of the surface of the lead conductor constituting the tab lead that is to be sealed by welding to the inside of the packaging material.
[表面処理層]
 好適な実施の態様において、電気化学デバイス用のタブリードに使用された場合に、リード導体の表面の電解液と接触する表面として、本発明に係る表面処理層を有することによって、電解液に対する耐性を備えたものとすることができる。すなわち、好適な実施の態様において、リード導体が、基材と、基材上に形成された表面処理層とを有するものとなっている。なお、本発明の導体は、当該表面処理層を有することによって、電解液に限られず腐食性環境下に対する優れた耐久性を有する。
[Surface treatment layer]
In a preferred embodiment, when used in a tab lead for an electrochemical device, the surface of the lead conductor that comes into contact with the electrolyte has the surface treatment layer according to the present invention, thereby increasing resistance to the electrolyte. It can be prepared as follows. That is, in a preferred embodiment, the lead conductor includes a base material and a surface treatment layer formed on the base material. In addition, the conductor of the present invention has excellent durability against corrosive environments, not limited to electrolytes, by having the surface treatment layer.
 好適な実施の態様において、本発明に係る表面処理層は、少なくとも表面処理層の電解液と接触する表面に設けられたものとすることができる。すなわち、好適な実施の態様において、本発明に係る表面処理層は、リード導体の表面の一部に設けることができ、あるいは、リード導体の表面の全面にわたって設けることができる。 In a preferred embodiment, the surface treatment layer according to the present invention can be provided at least on the surface of the surface treatment layer that comes into contact with the electrolyte. That is, in a preferred embodiment, the surface treatment layer according to the present invention can be provided on a part of the surface of the lead conductor, or can be provided over the entire surface of the lead conductor.
 好適な実施の態様において、表面処理層は、単層又は複数層のめっきの層からなる層とすることができる。 In a preferred embodiment, the surface treatment layer can be a layer consisting of a single layer or multiple plating layers.
[Ni-Pめっき層]
 好適な実施の態様において、表面処理層は、Ni-Pめっき層を含むものとすることができる。好適な実施の態様において、本発明に係る表面処理層は、少なくともその表面に特定のP濃度のNi-Pめっき層を設けるものとすることができ、その表面よりも下の層として、特定のP濃度のNi-Pめっき層ではない層が設けられていてもよい。好適な実施の態様において、そのような導体をタブリード用のリード導体として用いた場合、電解液に対する耐久性に優れた特定のP濃度のNi-Pめっき層に直接に電解液が接触する態様とすることができる。また、Niめっきは強磁性を示すところ、Pを含有することでその磁性が弱まる。この特性を利用して、その表面に特定のP濃度のNi-Pめっき層を有する導体を、表皮効果の影響を強く受ける高周波向けの材料(例えばコネクタ)に用いることで低伝送損失を実現し得る。
[Ni-P plating layer]
In a preferred embodiment, the surface treatment layer may include a Ni--P plating layer. In a preferred embodiment, the surface treatment layer according to the present invention may be provided with a Ni--P plating layer with a specific P concentration on at least the surface thereof, and a Ni--P plating layer with a specific P concentration as a layer below the surface. A layer other than the P-concentrated Ni--P plating layer may be provided. In a preferred embodiment, when such a conductor is used as a lead conductor for a tab lead, the electrolyte is in direct contact with a Ni--P plating layer with a specific P concentration that has excellent durability against electrolytes. can do. Furthermore, although Ni plating exhibits ferromagnetism, the inclusion of P weakens the magnetism. Taking advantage of this property, conductors with a Ni-P plating layer with a specific P concentration on their surfaces can be used in high-frequency materials (for example, connectors) that are strongly affected by the skin effect to achieve low transmission loss. obtain.
 好適な実施の態様において、表面処理層は、特定のP濃度のNi-Pめっき層を含むものとすることができ、特定のP濃度のNi-Pめっき層よりも上の層、すなわち特定のP濃度のNi-Pめっき層よりも表面に近い層を設けることができ、例えばNi-Pめっき層の上の層として表面処理層の表面の層を設けることができる。好適な実施の態様において、Ni-Pめっき層の上の層として設けられた表面処理層の表面の層としては、例えば耐酸処理層をあげることができる。好適な実施の態様において、このような耐酸処理層を、例えば、水溶性樹脂と架橋剤とを含む溶液に浸漬した後に乾燥させて設けることができる。好適な実施の態様において、このような架橋剤として、例えば有機物あるいは無機物の架橋剤をあげることができる。好適な実施の態様において、このような耐酸処理層の厚みは、例えば1~10nmの範囲、好ましくは1~5nmの範囲とすることができる。 In a preferred embodiment, the surface treatment layer may include a Ni--P plating layer with a specific P concentration, and a layer above the Ni--P plating layer with a specific P concentration, that is, a layer with a specific P concentration. A layer closer to the surface than the Ni--P plating layer can be provided, for example, a layer on the surface of the surface treatment layer can be provided as a layer on the Ni--P plating layer. In a preferred embodiment, the surface layer of the surface treatment layer provided as a layer on the Ni--P plating layer may be, for example, an acid-resistant treatment layer. In a preferred embodiment, such an acid-resistant treatment layer can be provided by, for example, immersing it in a solution containing a water-soluble resin and a crosslinking agent and then drying it. In a preferred embodiment, such crosslinking agents include, for example, organic or inorganic crosslinking agents. In a preferred embodiment, the thickness of such an acid-resistant treatment layer can be, for example, in the range of 1 to 10 nm, preferably in the range of 1 to 5 nm.
 好適な実施の態様において、Ni-Pめっき層は、公知の手段によって設けることができ、具体的には、実施例において後述する手段によって設けることができる。 In a preferred embodiment, the Ni--P plating layer can be provided by a known method, and specifically, by the method described later in the Examples.
 好適な実施の態様において、Ni-Pめっきの層は、P含有量を、例えば4~18wt%、好ましくは6~18wt%、さらに好ましくは6~15wt%、さらに好ましくは6~10wt%、さらに好ましくは6.5~9.4wt%とすることができ、あるいは例えば4~15wt%、好ましくは4~10wt%とすることができる。Ni-Pめっきの層は、P含有量は、実施例において後述する手段で測定することができる。 In a preferred embodiment, the Ni--P plating layer has a P content of, for example, 4 to 18 wt%, preferably 6 to 18 wt%, more preferably 6 to 15 wt%, even more preferably 6 to 10 wt%, and Preferably, it can be 6.5 to 9.4 wt%, or for example 4 to 15 wt%, preferably 4 to 10 wt%. The P content of the Ni--P plating layer can be measured by the method described below in Examples.
 好適な実施の態様において、Ni-Pめっき層は、好ましくは0.1~3.0[μm]、好ましくは0.3~2.0[μm]、さらに好ましくは0.5~1.5[μm]、さらに好ましくは0.8~1.2[μm]の厚みの層とすることができる。Ni-Pめっき層が薄すぎると必要な耐電解液性を確保するのが難しくなる。一方、Ni-Pめっき層が厚すぎると、生産性や加工性が低下してしまう。 In a preferred embodiment, the Ni-P plating layer preferably has a thickness of 0.1 to 3.0 [μm], preferably 0.3 to 2.0 [μm], more preferably 0.5 to 1.5 [μm]. The layer can have a thickness of [μm], more preferably 0.8 to 1.2 [μm]. If the Ni--P plating layer is too thin, it will be difficult to ensure the necessary electrolyte resistance. On the other hand, if the Ni--P plating layer is too thick, productivity and workability will decrease.
[Ni-Pめっき層の下層]
 好適な実施の態様において、表面処理層は、単層又は複数層のめっきの層からなる層とすることができる。好適な実施の態様において、一例として、Ni-Pめっき層の下層となる層を所望により設けることができる。
[Lower layer of Ni-P plating layer]
In a preferred embodiment, the surface treatment layer can be a layer consisting of a single layer or multiple plating layers. In a preferred embodiment, for example, a layer below the Ni--P plating layer can be provided as desired.
 好適な実施の態様において、Ni-Pめっき層の下層となる層として、例えばNi、Cu、Ag及びCoから選択された金属の少なくともいずれか1種を含むめっきの層を、基材上に設けることができる。好適な実施の態様において、シール材との密着力を向上させる観点から、Ni-Pめっき層の下層となる層として、粗化めっき層を形成することができる。このような粗化めっき層としては、Ni、Cu、およびAgのうち少なくとも1つを含むめっきの層をあげることができる。 In a preferred embodiment, a plating layer containing at least one metal selected from Ni, Cu, Ag, and Co is provided on the base material as a layer below the Ni-P plating layer. be able to. In a preferred embodiment, a roughened plating layer can be formed as a layer below the Ni--P plating layer from the viewpoint of improving adhesion with the sealing material. Such a roughening plating layer may include a plating layer containing at least one of Ni, Cu, and Ag.
 好適な実施の態様において、Ni-Pめっき層の下層となる層として、好ましくは粗化Niめっきの層を基材上に設けることができる。粗化Niめっきの層は、公知の手段によって設けることができ、一例として以下のめっき条件によって設けることができる。
 めっき浴:JX金属商事製粗化Niめっき液(製品名「粗化Niめっき液」)
 スルファミン酸Ni(II)4水和物300~400g/L(Ni濃度4.0~5.4wt%)
 塩化Ni(II)6水和物240~320g/L(Ni濃度4.4~5.9wt%)
 ホウ酸30~40g/L、
 pH:3.5
 電流密度:10A/dm
 温度:60℃
In a preferred embodiment, a roughened Ni plating layer can be preferably provided on the base material as a layer below the Ni--P plating layer. The roughened Ni plating layer can be provided by known means, and can be provided by the following plating conditions, for example.
Plating bath: Roughened Ni plating solution manufactured by JX Kinzoku Shoji Co., Ltd. (Product name: "Roughened Ni plating solution")
Ni(II) sulfamate tetrahydrate 300-400g/L (Ni concentration 4.0-5.4wt%)
Ni(II) chloride hexahydrate 240-320g/L (Ni concentration 4.4-5.9wt%)
Boric acid 30-40g/L,
pH: 3.5
Current density: 10A/ dm2
Temperature: 60℃
 好適な実施の態様において、粗化Niめっきの層は、例えば0.1~3.0[μm]、好ましくは0.3~2.0[μm]、さらに好ましくは0.5~1.5[μm]、さらに好ましくは0.8~1.2[μm]の厚みの層とすることができる。粗化Niめっきの層が薄すぎるとアンカー効果が低くなる。一方、粗化Niめっきの層が厚すぎると生産性や加工性が低下してしまう。 In a preferred embodiment, the roughened Ni plating layer has a thickness of, for example, 0.1 to 3.0 [μm], preferably 0.3 to 2.0 [μm], more preferably 0.5 to 1.5 [μm]. The layer can have a thickness of [μm], more preferably 0.8 to 1.2 [μm]. If the roughened Ni plating layer is too thin, the anchoring effect will be reduced. On the other hand, if the roughened Ni plating layer is too thick, productivity and workability will decrease.
[電解液耐性]
 電気化学デバイス、特に非水電解質電池に使用される電解液は、タブリードのリード導体に対して、長期にわたって接触することによって、金属製のリード導体を侵してゆく。このような電解液の侵食性に対して、耐久性を備えていること、すなわち電解液耐性を備えていることが、リード導体に対して求められている。本発明において、リード導体の備える電解液耐性とは、実施例において後述する浸漬条件において、浸漬試験の前後の重量変化量比が低いことをいう。この重量変化量比は、タブリードのリード導体として一般的に用いられているNiめっきされたCu基材の重量変化量に対する比率であり、具体的には後述する実施例において示すように算出することができる。
[Electrolyte resistance]
Electrolytic solutions used in electrochemical devices, particularly non-aqueous electrolyte batteries, attack the metal lead conductors of tab leads by coming into contact with them over a long period of time. Lead conductors are required to have durability against such corrosive properties of electrolyte, that is, to have resistance to electrolyte. In the present invention, the electrolyte resistance of the lead conductor means that the weight change ratio before and after the immersion test is low under the immersion conditions described later in Examples. This weight change ratio is a ratio to the weight change of a Ni-plated Cu base material that is generally used as a lead conductor for tab leads, and specifically, it is calculated as shown in the example below. Can be done.
 好適な実施の態様において、浸漬試験の前後の重量変化量比が、例えば0.5以下、好ましくは0.4以下である場合に、電解液耐性に優れると判定することができる。 In a preferred embodiment, when the weight change ratio before and after the immersion test is, for example, 0.5 or less, preferably 0.4 or less, it can be determined that the electrolyte resistance is excellent.
 好適な実施の態様において、リード導体の備える電解液耐性は、例えばフッ酸系電解液に対する耐性ということができる。 In a preferred embodiment, the electrolyte resistance of the lead conductor can be referred to as resistance to, for example, a hydrofluoric acid electrolyte.
[非水電解質電池]
 本発明は、上記リード導体を含んでなるタブリードにもあり、該タブリードを備えた電気化学デバイスにもあり、該タブリードを備えた非水電解質電池にもある。本発明による非水電解質電池は、タブリード部分に由来する優れた信頼性、すなわち安定した高い密閉性と耐久性を備えているので、非水電解質電池を使用した電動輸送機器、ドローン、ロボット、電動工具なども、非水電解質電池に由来する優れた信頼性を備えたものとなっている。したがって、本発明は、これらの電動輸送機器、ドローン、ロボット、電動工具などにもある。
[Nonaqueous electrolyte battery]
The present invention also resides in a tab lead comprising the above lead conductor, an electrochemical device including the tab lead, and a non-aqueous electrolyte battery including the tab lead. The nonaqueous electrolyte battery according to the present invention has excellent reliability derived from the tab lead part, that is, stable and high sealing performance and durability, so it can be used in electric transportation equipment, drones, robots, electric vehicles, etc. using nonaqueous electrolyte batteries. Tools and other equipment also have the excellent reliability derived from non-aqueous electrolyte batteries. Therefore, the present invention also applies to these electric transportation devices, drones, robots, power tools, etc.
[本発明の好適な態様]
 好適な実施の態様として、本発明は、次の(1)以下を含む。
(1)
 金属製の導体であって、
 導体が、基材と、基材上に形成された表面処理層とを有し、
 表面処理層に、P濃度が4~18wt%の範囲にあるNi-Pめっき層を含む、導体。
(2)
 P濃度が6~10wt%の範囲にある、(1)に記載の導体。
(3)
 基材が、銅又は銅合金である、(1)に記載の導体。
(4)
 電気化学デバイス用のタブリードに使用されるリード導体である、(1)に記載の導体。
(5)
 Ni-Pめっき層が、少なくとも、表面処理層の電解液と接触する表面に設けられた、(4)に記載の導体。
(6)
 (1)~(5)のいずれかに記載の導体を備える電気化学デバイス用のタブリード。
(7)
 (6)に記載のタブリードを有する、非水電解質電池。
(8)
 (7)に記載の非水電解質電池を有する、電動輸送機器。
[Preferred embodiment of the present invention]
As a preferred embodiment, the present invention includes the following (1).
(1)
A metal conductor,
The conductor has a base material and a surface treatment layer formed on the base material,
A conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
(2)
The conductor according to (1), wherein the P concentration is in the range of 6 to 10 wt%.
(3)
The conductor according to (1), wherein the base material is copper or a copper alloy.
(4)
The conductor according to (1), which is a lead conductor used for a tab lead for an electrochemical device.
(5)
The conductor according to (4), wherein the Ni--P plating layer is provided at least on the surface of the surface treatment layer that comes into contact with the electrolytic solution.
(6)
A tab lead for an electrochemical device comprising the conductor according to any one of (1) to (5).
(7)
A non-aqueous electrolyte battery having the tab lead according to (6).
(8)
An electric transportation device comprising the non-aqueous electrolyte battery according to (7).
 以下に、実施例を挙げて、本発明を詳細に説明する。本発明は、以下に例示する実施例に限定されるものではない。 The present invention will be described in detail below with reference to Examples. The present invention is not limited to the examples illustrated below.
[実験例1]
[導体の製造]
[基材]
 導体の製造のための材料として、次の基材を用意した。
 基材:銅板(C1020-O)(60×45×0.2mm)(無酸素銅、純度99.96%以上)
[Experiment example 1]
[Manufacture of conductor]
[Base material]
The following base materials were prepared as materials for manufacturing the conductor.
Base material: Copper plate (C1020-O) (60 x 45 x 0.2 mm) (oxygen-free copper, purity 99.96% or more)
[Ni-Pめっき]
 実施例として、基材に、厚さ1μmのNi-Pめっきを施した。次の条件で電流印加時間を90秒とした場合に、約1μmのNi-Pめっきが形成された。Ni-Pめっきされた試料をタブリード用のリード導体として使用して、後の試験に供した。なお、Ni-PにおけるP濃度は電流密度を下げるほど高くなる。この性質を利用して、電流密度を変更して異なるP濃度のNi-Pめっき層が形成されたサンプルを準備した。
 めっき浴:硫酸Ni浴
 硫酸Ni(II)6水和:220~280g/L(Ni濃度4~6%)
 亜りん酸:68~92g/L(P濃度6~8%)
 電流密度:5~17.5A/dm 
 温度: 60℃
[Ni-P plating]
As an example, a base material was plated with Ni--P to a thickness of 1 μm. When the current application time was 90 seconds under the following conditions, about 1 μm of Ni--P plating was formed. The Ni--P plated sample was used as a lead conductor for a tab lead for subsequent testing. Note that the P concentration in Ni--P increases as the current density decreases. Taking advantage of this property, we prepared samples in which Ni—P plating layers with different P concentrations were formed by changing the current density.
Plating bath: Ni sulfate bath Ni(II) sulfate hexahydration: 220 to 280 g/L (Ni concentration 4 to 6%)
Phosphorous acid: 68-92g/L (P concentration 6-8%)
Current density: 5-17.5A/ dm2
Temperature: 60℃
[Niめっき]
 比較例として、基材に、厚さ2μmの無光沢Niめっきが施された既製品(日鉱金属(蘇州)有限公司製)を使用した。製品名は以下の通りである:
[Ni plating]
As a comparative example, a ready-made product (manufactured by Nikko Metals (Suzhou) Co., Ltd.) with a matte Ni plating of 2 μm in thickness was used as a base material. The product name is as follows:
[めっき厚みの測定]
 Niめっき及びNi-Pめっきのめっき厚みを、次の条件で測定した。
 測定装置: 高性能蛍光X線膜厚計SFT9550X(エスアイアイナノテクノロジー株式会社製)
 測定方法: FP法
 測定箇所: サンプル中央部 
[Measurement of plating thickness]
The plating thickness of Ni plating and Ni-P plating was measured under the following conditions.
Measuring device: High performance fluorescent X-ray film thickness meter SFT9550X (manufactured by SII Nano Technology Co., Ltd.)
Measurement method: FP method Measurement location: Center of sample
[P濃度の測定]
 P濃度はEPMA 電子プローブマイクロアナライザー(JXA-8500F、日本電子株式会社製)を使用して、次の条件で測定した。
(標準試料測定)
 標準試料:InPウェハー(P濃度50at%)、使用結晶:PETH、使用X線:Kα、加速電圧15kV、照射電流1×10-7A、ビーム径10μm。この測定条件で、標準試料のPのピーク位置(197.235mm)のX線強度を5回測定し、その平均値を算出した。
(サンプル測定)
 上記作成した異なるP濃度のNi-Pめっき層が形成されたサンプルの各々について、標準試料測定と同様の測定条件でサンプル中央部を5回測定し、Pのピーク位置(197.235mm)のX線強度の平均値を算出した。
 サンプルのP濃度[at%]は、以下の計算式で算出し、その後にwt%に変換した。
 サンプルのP濃度[at%]=(サンプルのX線強度の平均値を標準試料)÷(標準試料のX線強度の平均値)×50
[Measurement of P concentration]
The P concentration was measured using an EPMA electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.) under the following conditions.
(Standard sample measurement)
Standard sample: InP wafer (P concentration 50 at%), crystal used: PETH, X-ray used: Kα, acceleration voltage 15 kV, irradiation current 1×10 −7 A, beam diameter 10 μm. Under these measurement conditions, the X-ray intensity at the P peak position (197.235 mm) of the standard sample was measured five times, and the average value was calculated.
(sample measurement)
For each of the samples on which Ni-P plating layers with different P concentrations were formed, the central part of the sample was measured five times under the same measurement conditions as the standard sample measurement, and the X of the P peak position (197.235 mm) was measured. The average value of line intensity was calculated.
The P concentration [at%] of the sample was calculated using the following formula, and then converted to wt%.
P concentration of sample [at%] = (average value of X-ray intensity of sample as standard sample) ÷ (average value of X-ray intensity of standard sample) x 50
[実験例2]
[Ni-Pめっきの電解液耐性の検討]
 Ni-Pめっきの電解液耐性を、以下の実験によって検討した。
 上記実施例として製造したP含有率の異なるNi-Pめっきを厚さ1μm設けた試料を、電解液に浸漬して、浸漬前後の重量変化を測定した。また、上記比較例として製造した、Ni-Pめっきではなく厚さ2μmのNiめっきを設けた試料を、電解液に浸漬して、浸漬前後の重量変化を測定した。
[Experiment example 2]
[Study of electrolyte resistance of Ni-P plating]
The electrolyte resistance of Ni--P plating was investigated through the following experiment.
Samples prepared as the above examples and provided with Ni--P plating with different P contents to a thickness of 1 μm were immersed in an electrolytic solution, and weight changes before and after immersion were measured. In addition, a sample manufactured as the above-mentioned comparative example with a 2 μm thick Ni plating instead of the Ni-P plating was immersed in the electrolytic solution, and the weight change before and after immersion was measured.
 浸漬条件
  電解液:
   EC(エチレンカーボネート):DMC(ジメチルカーボネート):DEC(ジエチルカーボネート)(1:1:1[v/vol%])+LiPF(ヘキサフルオロリン酸リチウム)(1mol/L)+HO 1000ppm
  温度:80℃
  浸漬時間:1週間
  パウチ:あり (パウチ内に密閉された電解液中での耐性を検討した)
Immersion conditions Electrolyte:
EC (ethylene carbonate): DMC (dimethyl carbonate): DEC (diethyl carbonate) (1:1:1 [v/vol%]) + LiPF 6 (lithium hexafluorophosphate) (1 mol/L) + H 2 O 1000 ppm
Temperature: 80℃
Soaking time: 1 week Pouch: Yes (resistance in electrolyte sealed in pouch was investigated)
[Ni-Pめっきの電解液耐性の検討結果]
 Ni-Pめっきの電解液耐性の検討結果のグラフを、図1及び表1に示す。図1のグラフの横軸は、めっきの平均P含有量であり、縦軸は電解液に浸漬前後のめっき試料の重量変化量の比率である。電解液耐性が低い場合、電解液によって表面を腐食されて浸漬後の重量が減少する。そのため、重量変化量比が低いほど、耐電解液性が高いことを表す。
[Study results of electrolyte resistance of Ni-P plating]
Graphs of the results of studies on electrolyte resistance of Ni--P plating are shown in FIG. 1 and Table 1. The horizontal axis of the graph in FIG. 1 is the average P content of the plating, and the vertical axis is the ratio of weight change of the plating sample before and after immersion in the electrolytic solution. If the electrolyte resistance is low, the surface will be corroded by the electrolyte and the weight will decrease after immersion. Therefore, the lower the weight change ratio, the higher the electrolyte resistance.
 重量変化量比は、以下の式で算出することが出来る。
 重量変化量比=(「浸漬前のNi-Pめっき試料の重量」-「浸漬後のNi-Pめっき試料の重量」)/{(「浸漬前のNiめっき試料の重量」-「浸漬後のNiめっき試料の重量」)×0.5}
The weight change ratio can be calculated using the following formula.
Weight change ratio = ("Weight of Ni-P plating sample before immersion" - "Weight of Ni-P plating sample after immersion") / {("Weight of Ni-plating sample before immersion" - "Weight of Ni-P plating sample after immersion") Weight of Ni plating sample”)×0.5}
 上記式において、「×0.5」はNiめっきの厚みが2μmで、Ni-Pめっきの厚みが1μmであるため、規格化のために追加した。 In the above formula, "×0.5" is added for standardization because the thickness of the Ni plating is 2 μm and the thickness of the Ni-P plating is 1 μm.

 図1のグラフ及び表1に示されるように、Ni-Pめっきを設けることによって、Niめっきだけを行った場合に比べて重量変化量が小さくなっていること、即ち耐電解液性が向上していることが読み取れる。また、図1のグラフ及び表1に示されるように、P含有量に応じて、ほぼ3段階(P濃度が6wt%未満、6~10wt%、10wt%超え)に重量変化量が変化した。 As shown in the graph of Figure 1 and Table 1, by providing Ni-P plating, the amount of weight change is smaller than when only Ni plating is performed, that is, the electrolyte resistance is improved. You can read what is going on. Furthermore, as shown in the graph of FIG. 1 and Table 1, the amount of weight change changed in approximately three stages (P concentration less than 6 wt%, 6 to 10 wt%, and more than 10 wt%) depending on the P content.
 具体的には、P含有量6wt%以上とすることで、重量変化量比(即ち耐電解液性)が、P含有量6wt%未満に比べて大きく向上した。
 また、P含有量6~10wt%の範囲では、重量変化量、即ち耐電解液性がほぼ一定であった。P含有量10wt%を超える領域では、重量変化量、が再び減少、即ち耐電解液性が向上していった。
Specifically, by setting the P content to 6 wt% or more, the weight change ratio (that is, electrolyte resistance) was greatly improved compared to when the P content was less than 6 wt%.
Furthermore, within the P content range of 6 to 10 wt%, the amount of weight change, that is, the electrolyte resistance was almost constant. In the region where the P content exceeds 10 wt%, the weight change decreases again, that is, the electrolyte resistance improves.
 この傾向は、別途行ったSEM像での観察の結果と同じ傾向を示した。具体的には、SEM像で観察されたNi-P表面構造が上記の3段階のP濃度で変化した。より具体的には、平均P含有率6wt%未満の領域では、ポアの発生が確認された。また、平均P含有率6~10wt%の領域では、圧延痕由来の溝に沿って若干の腐食が確認され、平均P含有率10wt%より高い領域では、腐食はほぼ確認されなかった。 This tendency showed the same tendency as the results of observation using SEM images conducted separately. Specifically, the Ni--P surface structure observed in the SEM image changed at the above three levels of P concentration. More specifically, the occurrence of pores was confirmed in regions where the average P content was less than 6 wt%. Further, in the region where the average P content was 6 to 10 wt%, some corrosion was observed along the grooves derived from the rolling marks, and in the region where the average P content was higher than 10 wt%, almost no corrosion was observed.
 これらの結果から、Ni-Pめっき層におけるP濃度は4~18wt%とすることが好ましいことがわかった。P濃度4wt%とすると、耐電解液性が低下する可能性があり、また、P濃度18wt%以上とすると、電流密度が極端に低くなり生産性が著しく低下する可能性があるためである。 From these results, it was found that the P concentration in the Ni-P plating layer is preferably 4 to 18 wt%. This is because if the P concentration is 4 wt%, the electrolyte resistance may be reduced, and if the P concentration is 18 wt% or more, the current density may be extremely low and productivity may be significantly reduced.
 より好ましくは、Ni-Pめっき層におけるP濃度は6~10wt%とできることがわかった。P濃度6wt%以上とすることで顕著に耐電解液性が向上するとともに、このP濃度範囲内では、耐電解液性がほぼ一定であって、かつ、腐食がほぼ確認されないという高い耐電解液性を誇るため、品質安定性に優れたリード導体を提供し得るためである。 It has been found that the P concentration in the Ni--P plating layer can be more preferably 6 to 10 wt%. By setting the P concentration to 6 wt% or more, the electrolyte resistance is significantly improved, and within this P concentration range, the electrolyte resistance is almost constant and corrosion is almost not observed. This is because lead conductors with excellent quality stability can be provided.
 より一層好ましくは、Ni-Pめっき層におけるP濃度は6.5~9.4wt%とできることがわかった。Ni-Pめっき層におけるP濃度は、面内で均一ではなくある程度のバラつきが生じ得る。そのため、このP濃度範囲とすることで、面内で均一な耐電解液性を実現できるからである。 It has been found that even more preferably, the P concentration in the Ni--P plating layer can be set to 6.5 to 9.4 wt%. The P concentration in the Ni--P plating layer is not uniform within the surface and may vary to some extent. Therefore, by setting the P concentration within this range, uniform electrolyte resistance can be achieved within the surface.
 本発明によれば、環境負荷が小さく、電解液などの腐食性環境下に対する優れた耐久性を有する表面を備えた、導体を得ることができる。本発明は産業上有用な発明である。 According to the present invention, a conductor can be obtained that has a surface that has a low environmental load and has excellent durability against corrosive environments such as electrolytes. The present invention is an industrially useful invention.

Claims (8)

  1.  金属製の導体であって、
     導体が、基材と、基材上に形成された表面処理層とを有し、
     表面処理層に、P濃度が4~18wt%の範囲にあるNi-Pめっき層を含む、導体。
    A metal conductor,
    The conductor has a base material and a surface treatment layer formed on the base material,
    A conductor whose surface treatment layer includes a Ni--P plating layer with a P concentration in the range of 4 to 18 wt%.
  2.  P濃度が6~10wt%の範囲にある、請求項1に記載の導体。 The conductor according to claim 1, wherein the P concentration is in the range of 6 to 10 wt%.
  3.  前記基材が、銅又は銅合金である、請求項1に記載の導体。 The conductor according to claim 1, wherein the base material is copper or a copper alloy.
  4.  電気化学デバイス用のタブリードに使用されるリード導体である、請求項1に記載の導体。 The conductor according to claim 1, which is a lead conductor used in a tab lead for an electrochemical device.
  5.  Ni-Pめっき層が、少なくとも、表面処理層の電解液と接触する表面に設けられた、請求項4に記載の導体。 The conductor according to claim 4, wherein the Ni-P plating layer is provided at least on the surface of the surface treatment layer that comes into contact with the electrolyte.
  6.  請求項1~5のいずれかに記載の導体を備える電気化学デバイス用のタブリード。 A tab lead for an electrochemical device comprising the conductor according to any one of claims 1 to 5.
  7.  請求項6に記載のタブリードを有する、非水電解質電池。 A non-aqueous electrolyte battery comprising the tab lead according to claim 6.
  8.  請求項7に記載の非水電解質電池を有する、電動輸送機器。 An electric transportation device comprising the non-aqueous electrolyte battery according to claim 7.
PCT/JP2023/017946 2022-05-16 2023-05-12 Conductor WO2023223972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-080044 2022-05-16
JP2022080044A JP7354349B1 (en) 2022-05-16 2022-05-16 conductor

Publications (1)

Publication Number Publication Date
WO2023223972A1 true WO2023223972A1 (en) 2023-11-23

Family

ID=88198138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017946 WO2023223972A1 (en) 2022-05-16 2023-05-12 Conductor

Country Status (2)

Country Link
JP (2) JP7354349B1 (en)
WO (1) WO2023223972A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302755A (en) * 1997-04-24 1998-11-13 Sanyo Electric Co Ltd Pole plate of alkaline storage battery
JP2002304980A (en) * 2001-04-06 2002-10-18 Taiho Kogyo Co Ltd Collector plate for nickel hydrogen battery
JP2009099527A (en) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd Battery tab and lithium ion battery using the same
JP2010186691A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Electrochemical cell
JP2011204487A (en) * 2010-03-25 2011-10-13 Seiko Instruments Inc Electrochemical device
JP2014220202A (en) * 2013-05-10 2014-11-20 東洋鋼鈑株式会社 Base plate for dye-sensitized solar cell, and method of manufacturing dye-sensitized solar cell
CN108823622A (en) * 2018-06-29 2018-11-16 桑顿新能源科技有限公司 A kind of negative lug material and its manufacturing method for lithium battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210328227A1 (en) 2020-04-16 2021-10-21 TPS, Inc Electrode terminal having high corrosion resistance for secondary battery and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302755A (en) * 1997-04-24 1998-11-13 Sanyo Electric Co Ltd Pole plate of alkaline storage battery
JP2002304980A (en) * 2001-04-06 2002-10-18 Taiho Kogyo Co Ltd Collector plate for nickel hydrogen battery
JP2009099527A (en) * 2007-09-28 2009-05-07 Dainippon Printing Co Ltd Battery tab and lithium ion battery using the same
JP2010186691A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Electrochemical cell
JP2011204487A (en) * 2010-03-25 2011-10-13 Seiko Instruments Inc Electrochemical device
JP2014220202A (en) * 2013-05-10 2014-11-20 東洋鋼鈑株式会社 Base plate for dye-sensitized solar cell, and method of manufacturing dye-sensitized solar cell
CN108823622A (en) * 2018-06-29 2018-11-16 桑顿新能源科技有限公司 A kind of negative lug material and its manufacturing method for lithium battery

Also Published As

Publication number Publication date
JP2023171407A (en) 2023-12-01
JP7354349B1 (en) 2023-10-02
JP2023168756A (en) 2023-11-29

Similar Documents

Publication Publication Date Title
TWI295119B (en) Lead line for non-aqueous electrolyte cell and non-aqueous electrolyte cell
US9070919B2 (en) Positive electrode tab lead, negative electrode tab lead, and battery
JP4784236B2 (en) Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery
KR101782737B1 (en) Electrolytic copper foil, the negative electrode for a lithium ion secondary battery and a lithium ion secondary battery, printed circuit board and an electromagnetic shielding material
KR20140003511A (en) Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
JP2011134623A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
CN111279511A (en) Film for tab lead wire and tab lead wire using the same
US10587000B2 (en) Non-aqueous electrolyte secondary battery
CN104241581A (en) Lead component
KR100871917B1 (en) A positive tab with a good solder ability and a good corrosion-resistance to salt water for a secondary battery and the fabrication method thereof, and a secondary battery and a secondary battery module using the same
JP2006286344A (en) Lithium nonaqueous electrolyte battery and its manufacturing method
CA2810458A1 (en) Electrical conductor for electrochemical cells
JP7354349B1 (en) conductor
KR20140116795A (en) Tab lead
CN106469803A (en) Electrode terminal, electrochemical appliance and the electrochemical appliance module containing electrochemical appliance
TW201947041A (en) Electrolytic copper foil and secondary battery using the same
WO2023223970A1 (en) Tab lead for non-aqueous electrolyte battery
WO2023223968A1 (en) Non-aqueous electrolyte battery tab lead
WO2023223971A1 (en) Tab lead for nonaqueous electrolyte batteries
WO2023223969A1 (en) Tab lead for nonaqueous electrolyte batteries
JP5873711B2 (en) Copper foil, secondary battery electrode, secondary battery, and printed circuit board
KR100739431B1 (en) Secondary battery improved in electric conductivity and electrical conductor plate electrically connecting electronic parts
TW202228327A (en) Electrode tab and non-aqueous electrolyte device characterized by having the high adhesion between the lead terminal and the film portion so as to ensure the long-term resistance to electrolyte
KR200396176Y1 (en) Secondary battery improved in electric conductivity
JPS5842164A (en) Hermetic alkaline battery and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807575

Country of ref document: EP

Kind code of ref document: A1