WO2023223932A1 - 連続式有機物熱分解装置及び連続式有機物熱分解方法 - Google Patents

連続式有機物熱分解装置及び連続式有機物熱分解方法 Download PDF

Info

Publication number
WO2023223932A1
WO2023223932A1 PCT/JP2023/017714 JP2023017714W WO2023223932A1 WO 2023223932 A1 WO2023223932 A1 WO 2023223932A1 JP 2023017714 W JP2023017714 W JP 2023017714W WO 2023223932 A1 WO2023223932 A1 WO 2023223932A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic matter
continuous
vertical container
pyrolysis
organic
Prior art date
Application number
PCT/JP2023/017714
Other languages
English (en)
French (fr)
Inventor
修嗣 野田
薫 藤元
Original Assignee
環境エネルギー株式会社
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環境エネルギー株式会社, 出光興産株式会社 filed Critical 環境エネルギー株式会社
Publication of WO2023223932A1 publication Critical patent/WO2023223932A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a continuous organic substance pyrolysis device and a continuous organic substance pyrolysis method that continuously pyrolyze organic substances.
  • Equipment for thermally decomposing such petrochemical waste materials includes, for example, a material input device that inputs and melts plastic, and a part of this material input device that is inserted to thermally decompose the molten plastic and generate heat. It is equipped with a rotary kiln-type pyrolysis furnace that recovers cracked gas, and the material input device includes an inner cylinder that extends to the pyrolysis furnace, a material input port provided at one end of the inner cylinder, and a material input device that is connected to the inner cylinder.
  • An apparatus has been proposed that includes rotating blades arranged at intervals gradually narrowing from the material input port side to the material discharge port side (see Patent Document 1).
  • An object of the present invention is to provide a continuous organic substance pyrolysis apparatus and a continuous organic substance pyrolysis method that can efficiently and continuously thermally decompose organic substances while suppressing a decrease in heat conduction efficiency.
  • the present inventors While investigating a method for efficiently thermally decomposing organic substances, the present inventors continuously introduced organic substances into a vertical container filled with a solid heating medium, heated and stirred the organic substances in the vertical container, By collecting pyrolysis gas and continuously discharging organic residue from the vertical container, it prevents caulking caused by organic residue in the vertical container, suppresses the decrease in heat conduction efficiency in the vertical container, and improves efficiency. They discovered that it is possible to thermally decompose organic substances continuously, and have completed the present invention.
  • An input section that continuously inputs organic matter; a vertical container for accommodating organic matter input from the input section; a stirring means provided in the vertical container for stirring the organic matter; a first heating means for heating the vertical container to thermally decompose and gasify the organic substance; a lead-out section connected to the upper part of the vertical container and equipped with a lead-out path for leading out the pyrolysis gas of the organic substance; a discharge section connected to the lower part of the vertical container and equipped with a discharge path for continuously discharging organic residue;
  • a continuous organic matter pyrolysis device characterized by comprising: [2] The continuous organic substance pyrolysis apparatus according to [1] above, further comprising a second heating means for heating the discharge path of the discharge section.
  • the discharge path of the discharge section is The spacer is formed by a gap formed between an inner surface of a cylindrical body connected to the bottom of the vertical container, which decreases toward the bottom, and an outer surface of a spacer provided inside the cylindrical body, which decreases toward the bottom. and
  • the continuous organic substance pyrolysis apparatus according to any one of [1] to [4] above, which communicates with an opening provided on the outer periphery of the bottom of the vertical container.
  • the stirring means is characterized by comprising a rotating shaft provided in the vertical direction in the center of the vertical container, and stirring blades connected to the rotating shaft and rotating around the shaft.
  • the continuous organic substance thermal decomposition apparatus according to any one of [1] to [6] above.
  • a continuous organic substance thermal decomposition method characterized by having the following. [11] The continuous method for thermally decomposing organic matter as described in [10] above, wherein in the continuous discharge step, the discharged organic matter residue and solid heat medium are heated.
  • the continuous organic substance thermal decomposition method according to any one of [10] to [13] above, wherein the solid heat medium is a spherical solid with a diameter of 0.1 ⁇ m to 150 mm.
  • the solid heat medium includes at least one solid selected from the group consisting of alkaline earth metal solids, silica solids, sand, alumina solids, and zeolite solids.
  • the continuous organic substance thermal decomposition method according to any one of [10] to [14] above.
  • the continuous organic matter pyrolysis method according to any one of [10] to [15] above, wherein the organic matter input in the continuous input step is waste plastic or waste rubber.
  • the continuous organic substance pyrolysis method according to any one of the above [10] to [16] characterized in that the continuous organic substance pyrolysis apparatus according to any one of the above [1] to [9] is used. .
  • the continuous organic substance pyrolysis apparatus and continuous organic substance pyrolysis method of the present invention it is possible to efficiently and continuously thermally decompose organic substances while suppressing a decrease in heat conduction efficiency.
  • FIG. 1 is an explanatory diagram of a continuous organic substance pyrolysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a vertical container and a discharge section of the continuous organic matter pyrolysis apparatus shown in FIG. 1.
  • FIG. FIG. 2 is an enlarged view of the discharge section of the continuous organic matter pyrolysis apparatus shown in FIG. 1.
  • FIG. It is an explanatory view of the stirring blade of the continuous organic matter thermal decomposition apparatus concerning other embodiments of the present invention, (a) shows a paddle-type stirring blade, and (b) shows a gate-type stirring blade.
  • 3 is a photograph of organic residue obtained in the continuous discharge test of Example 1.
  • the continuous organic matter pyrolysis apparatus of the present invention includes an input section for continuously charging organic matter, a vertical container for accommodating the organic matter charged from the input section, and a stirring means provided in the vertical container for stirring the organic matter. a first heating means for heating the vertical container to pyrolyze and gasify the organic matter; and a derivation section connected to the upper part of the vertical container and having a derivation path for deriving the pyrolysis gas of the organic matter. , a discharge section connected to the lower part of the vertical container and having a discharge path for continuously discharging organic residue.
  • the continuous organic substance pyrolysis apparatus of the present invention is used in a state filled with a solid heat medium.
  • the continuous organic matter pyrolysis apparatus of the present invention heats and pyrolyzes the organic matter that is continuously input while stirring in a vertical container filled with a solid heat medium, and continuously discharges the organic matter residue. It is possible to prevent caulking caused by organic residues in the mold container, suppress a decrease in heat conduction efficiency, and efficiently and continuously thermally decompose organic substances. That is, by stirring the solid heat medium within the vertical container, organic residues (carbide) are prevented from adhering to the wall surface of the vertical container, and unnecessary organic residues are continuously discharged. Caulking can be prevented.
  • the organic matter to be treated in the present invention is not particularly limited, and examples thereof include waste plastics and waste rubber contained in petrochemical waste materials, and components other than organic matter can be mentioned. It may include. Waste plastics include wastes that are separated from municipal garbage and industrial waste and whose main component is plastic, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). , ABS and other thermoplastic resins as a main component can be exemplified. Further, the waste plastic may include impurities such as polyvinyl chloride (PVC) containing chlorine as a composition component, thermosetting resin, FRP, paper, and the like. Examples of waste rubber include synthetic rubber waste such as waste tires, natural rubber waste, and the like. Examples of the shape of the organic substance include various shapes such as fluff, beads, flakes, chips, granules, and pellets.
  • the input section is a means for continuously inputting the organic matter to be treated, and is usually provided at the upper part of the vertical container and connected to the raw material input device. Specifically, a raw material input hopper can be mentioned.
  • continuous charging in the present invention is a concept that includes not only literally continuous charging but also intermittent charging.
  • the vertical container is a vertically elongated container that stores the organic matter put therein.
  • the cross-sectional shape of the vertical container include a circular shape, an elliptical shape, a polygonal shape, etc., but a circular shape is preferable from the viewpoint of suppressing caulking and facilitating cleaning.
  • L/D which is the ratio of the height and diameter of the container, is about 1 to 5, preferably 1 to 3.
  • the vertical container may be inclined with respect to the vertical direction, and the inclination angle is 0 to 45 degrees, preferably 30 degrees or less, more preferably 15 degrees or less, and even more preferably 5 degrees or less. 0° (vertical) is particularly preferred.
  • this vertical container is filled with a solid heat medium during the thermal decomposition treatment.
  • the filling amount of the solid heat medium in the vertical container is not particularly limited, and is, for example, about 50 to 90% by volume.
  • the solid heat medium will be described later.
  • the stirring means is a means for stirring the organic substance contained in the vertical container together with the solid heat medium.
  • the stirring means is not particularly limited as long as it can stir the contents (organic matter and solid heat medium), and may include a rotating shaft provided in the vertical direction in the center of the vertical container; Examples include means including stirring blades that are connected to a rotating shaft and rotate around the shaft, and preferably those having a configuration that can scrape up the contents from the bottom to the top. By scraping up the contents with the stirring means, the contents can be stirred more efficiently and uniformly.
  • Thermal decomposition of organic matter mainly occurs in the upper part of the vertical container (in contact with the solid heat medium located at the top), so by efficiently replacing the solid heat medium in the upper part, thermal decomposition can be carried out efficiently. It becomes possible to do so.
  • two or more stirring means may be provided.
  • the types of stirring blades used as the stirring means include, for example, ribbon type, paddle type, propeller type, turbine type, gate type, anchor type, etc., and the single type is used because it can effectively scrape up organic matter. , a double ribbon type is preferred, and a double ribbon type is more preferred.
  • the distance (clearance) between the tip of the stirring blade and the inner surface of the vertical container is not particularly limited as long as it is large enough to allow the scraped up organic matter to fall smoothly, and is, for example, 5 to 50 mm. , 5 to 20 mm is preferred.
  • the circumferential speed of the stirring blade is usually 0.1 m/s or more, preferably 0.5 to 5.0 m/s, and more preferably 0.7 to 4.0 m/s. , more preferably 1.0 to 3.0 m/s.
  • the first heating means is a means for heating the vertical container to thermally decompose and gasify the organic matter.
  • the first heating means may be a direct heating means that directly introduces thermal energy into the interior of the vertical container, or may be an indirect heating means that supplies thermal energy from outside the vertical container.
  • Direct heating means include, for example, a burner provided inside the vertical container.
  • Examples of the indirect heating means include an electric heater or gas burner that heats the peripheral wall of the vertical container from the outside, and a means that introduces hot air or heat medium oil into the external space of the vertical container.
  • the internal temperature of the vertical container is usually about 350 to 550°C, preferably about 400 to 450°C.
  • the outlet section is a means that is connected to the upper part of the vertical container and includes an outlet path for extracting the pyrolysis gas of the organic substance.
  • the outlet path is connected to the lid or upper side of the vertical container, and guides the pyrolysis gas generated within the vertical container to the gas recovery device.
  • the discharge section is a means that is connected to the lower part of the vertical container and includes a discharge path for continuously discharging organic residue.
  • the discharge section is a means that is connected to the lower part of the vertical container and includes a discharge path for continuously discharging organic residue.
  • continuous discharge in the present invention is a concept that includes not only literal continuous discharge but also intermittent discharge. That is, the amount of organic matter (and solid heat medium) to be discharged can be controlled based on the input amount and the like. For example, an on-off valve can be provided in the discharge path to control the discharge amount. Further, the discharge amount can be controlled by the transfer speed of the transfer device, which will be described later.
  • the discharge part is not particularly limited as long as it is connected to the lower part of the vertical container, and is preferably arranged below the lower part or to the side of the lower part of the vertical container. More preferably, it is disposed below the mold container.
  • the input section for organic matter is provided at the top of a vertical container, so by locating the discharge section at a position away from the input section, it is possible to discharge the organic matter residue after the organic matter has been reliably thermally decomposed. Can be done.
  • preferable embodiments of the discharge path include, for example, an inner surface that decreases toward the bottom of a cylindrical body that is connected to the bottom of the vertical container, and a spacer that is provided within the cylindrical body that decreases toward the bottom.
  • a spacer that is provided within the cylindrical body that decreases toward the bottom.
  • One example is one that is formed by a gap formed between the outer surface and the outer surface.
  • the organic residue (and solid heat medium) in the vertical container is discharged through the opening provided on the outer periphery of the bottom of the vertical container, but is stirred by the stirring means provided in the center. After being lifted up, it is smoothly discharged with a flow that descends around the outer periphery.
  • the cross-sectional shape of the cylindrical body connected to the bottom of the vertical container can be, for example, circular, elliptical, polygonal, etc., and circular is preferable.
  • the structure may be such that the inner surface of the cylinder decreases toward the bottom, and the outer shape may be a rectangular parallelepiped, a cylinder, an inverted truncated cone, an inverted cone, or the like.
  • the inclination angle of the inner surface of the cylindrical body (the inclination angle between the bottom surface of the vertical container and the inner surface of the cylindrical body) is preferably 30 to 85 degrees, more preferably 45 to 80 degrees, and 45 to 75 degrees. It is more preferable that the temperature is .degree. By setting the inclination angle within this range, the organic residue can be smoothly guided to the outlet at the bottom.
  • the spacer provided inside the cylinder, which forms the discharge path together with the cylinder, is not particularly limited as long as its outer surface has a shape that decreases toward the bottom, and the spacer has a shape that narrows toward the bottom.
  • the angles of inclination are the same.
  • the outer shape of the spacer may be an inverted truncated cone shape, an inverted cone shape, or the like.
  • the gap formed between the inner surface of the cylinder and the outer surface of the spacer is preferably 1 to 150 mm, more preferably 10 to 80 mm, and even more preferably 10 to 40 mm. By setting the interval between the gaps within this range, the organic residue can be smoothly guided to the outlet at the bottom.
  • the spacer is provided with a discharge passage stirring member on its inclined surface, and is connected to and rotates around the rotating shaft of a stirring means provided vertically in the center of the vertical container.
  • the discharge passage stirring means can include a rod member provided on the inclined surface of the spacer.
  • the organic residue discharged from the discharge section may be discharged by natural falling from the discharge port at the bottom, but from the viewpoint of preventing bridging, it is preferable to discharge the organic residue auxiliary by power. That is, the continuous organic substance pyrolysis apparatus of the present invention preferably includes a transfer device connected to the discharge section. Thereby, the discharge rate of the organic residue can be adjusted and discharged. Examples of the transfer device include a screw conveyor and the like. Further, it is preferable that the transfer device includes a cooling means for cooling the organic residue to be discharged.
  • the continuous organic substance pyrolysis apparatus of the present invention includes a second heating means for heating the discharge path of the discharge section.
  • the second heating means can heat the discharged organic matter residue and reliably thermally decompose the undecomposed organic matter.
  • the discharge path for example, the gap between the cylinder and the spacer
  • the thermal energy of the heating means is sufficiently transmitted to the organic matter passing through the discharge path. , it is possible to more reliably prevent organic matter from being undecomposed.
  • the second heating means may heat the discharge part to the same temperature as the vertical container, but is preferably a means that can heat the discharge part to a higher temperature than the vertical container.
  • the temperature is preferably 5°C or more higher, more preferably 5°C to 100°C higher, even more preferably 8°C to 70°C higher, and even more preferably 10°C to 50°C higher. is most preferable.
  • the second heating means may be a means provided separately from the first heating means, but the first heating means may also serve as the second heating means.
  • the second heating means include an electric heater or a gas burner that heats the peripheral wall of the discharge passage from the outside, a means for introducing hot air into the external space of the discharge passage, and the like.
  • the heating means has a configuration in which a heating medium passage surrounding the vertical container and the discharge part is provided, and a heating medium such as hot air is introduced into the heating medium passage. can be mentioned. At this time, by providing the inlet of the heating medium passage on the discharge part side and the outlet on the vertical container side, the temperature on the discharge part side can be made higher.
  • the continuous organic substance thermal decomposition method of the present invention will be explained. Note that the continuous organic substance pyrolysis method of the present invention can be carried out using the continuous organic substance pyrolysis apparatus described above.
  • the continuous organic substance pyrolysis method of the present invention includes a continuous charging step in which an organic substance and a solid heating medium are continuously charged into a vertical container filled with a solid heating medium; A pyrolysis step in which organic matter and solid heat medium are heated and stirred to thermally decompose the organic matter; and a continuous discharge step in which organic matter residue generated in the pyrolysis step is continuously discharged out of the vertical container along with a portion of the solid heat medium. It is characterized by having the following.
  • the method for thermally decomposing organic substances of the present invention continuously charged organic substances are heated and thermally decomposed with stirring in a vertical container filled with a solid heating medium, and organic substance residues are continuously discharged. It is possible to prevent caulking caused by organic residues in the mold container, suppress a decrease in heat conduction efficiency, and efficiently and continuously thermally decompose organic substances. That is, by stirring the solid heat medium within the vertical container, organic residues (carbide) are prevented from adhering to the wall surface of the vertical container, and unnecessary organic residues are continuously discharged. Caulking can be prevented.
  • organic substance that can be used in the organic substance pyrolysis method of the present invention those similar to those in the continuous organic substance pyrolysis apparatus described above can be used. In other cases similar to the continuous organic substance pyrolysis apparatus, the description will be omitted as appropriate.
  • the continuous charging step is a step of continuously charging an organic substance and a solid heating medium into a vertical container filled with a solid heating medium.
  • continuous feeding is a concept that includes not only literally continuous feeding but also intermittent feeding. Further, the organic matter and the solid heat medium may be added at the same time or separately. By this continuous inputting process and continuous discharging process, the organic matter and solid heat medium in the vertical container can be maintained at a constant ratio.
  • the thermal decomposition process is a process of heating and stirring the organic matter and the solid heat medium charged into the vertical container in the continuous charging process to thermally decompose the organic matter.
  • heat can be efficiently conducted to the organic matter, and caulking due to organic matter residue in the vertical container can be prevented, and high heat transfer efficiency can be maintained.
  • organic matter can be efficiently thermally decomposed.
  • it is preferable to scrape up the organic matter and the solid heat medium from the bottom to the top and stir and mix.
  • the amount of organic matter (undecomposed organic matter) to be added to the solid heat medium housed in the vertical container is 200 kg/h or less per 100 L of volume of the solid heat medium housed in the vertical vessel, It is preferably 1 to 100 kg/h, more preferably 1 to 50 kg/h, and particularly preferably 30 kg/h. By being within this range, it is possible to thermally decompose organic substances efficiently and prevent the generation of undecomposed organic substances. Additionally, thermal decomposition can be carried out while keeping the inside of the vertical container dry.
  • the proportion of organic matter (undecomposed organic matter) to the solid heat medium discharged from the vertical container is preferably 5% by mass or less, more preferably 3% by mass or less, and 1% by mass or less. It is even more preferable.
  • thermal decomposition gas can be efficiently recovered.
  • the size of the solid heat medium can be set as appropriate depending on the type of organic matter to be added, and for example, the diameter is about 0.1 ⁇ m to 150 mm.
  • the solid heat medium may be a powder or granule with a diameter of 0.1 ⁇ m to 1 mm, or a lump with a diameter of more than 1 mm to about 15 mm.
  • the shape of the solid heat medium is not particularly limited, but from the viewpoint of improving fluidity, a spherical shape is preferable, a spherical shape close to a perfect sphere is more preferable, and a perfect sphere is particularly preferable.
  • the solid heat medium can be set as appropriate depending on the type of organic material to be added, but for example, solids such as alkaline earth metal solids, silica solids, alumina solids, sand, zeolite solids, etc. I can name things.
  • the alkaline earth metal solids include calcium-based solids such as calcium hydroxide and calcium carbonate, and magnesium-based solids such as magnesium hydroxide and magnesium carbonate.
  • the zeolite solids include zeolites, FCC catalysts (catalysts used in fluid catalytic cracking in petroleum refining), and waste FCC catalysts (used FCC catalysts).
  • the thermal decomposition temperature in the thermal decomposition step is not particularly limited, and is preferably 350 to 550°C.
  • the pressure inside the vertical container in the pyrolysis step is not particularly limited, and is preferably, for example, 100 kPa (atmospheric pressure) or less.
  • the recovery process is a process of recovering the pyrolysis gas generated in the pyrolysis process.
  • the pyrolysis gas recovered in this step is separated into light hydrocarbon gas such as methane and other oil components and used.
  • the continuous discharge step is a step in which the organic residue generated in the pyrolysis step is continuously discharged out of the vertical container together with a portion of the solid heat medium. In this step, it is preferable to heat the discharged organic residue and solid heat medium. Further, the heating temperature in this step is preferably higher than the heating temperature in the pyrolysis step.
  • the residence time of the organic residue in the discharge section is preferably 10 minutes or more, more preferably 30 minutes or more, and even more preferably 60 minutes or more.
  • the proportion of undecomposed organic matter in the organic matter residue to be discharged can be made 5% by mass or less.
  • the recycled organic matter recovery system of the present invention includes the above-mentioned continuous organic matter pyrolysis device, an organic matter input device that continuously feeds organic matter into the continuous organic matter pyrolysis device, and a system for recovering organic matter that is thermally decomposed in the continuous organic matter pyrolysis device.
  • the present invention is characterized by comprising a gas recovery device for recovering decomposed gas.
  • recycled organic matter recovery system of the present invention useful recycled organic matter can be efficiently recovered from waste organic matter and the like.
  • FIG. 1 is an explanatory diagram of a continuous organic matter pyrolysis apparatus according to an embodiment of the present invention
  • FIG. 2 is an illustration of a vertical container and a discharge section of the continuous organic matter pyrolysis apparatus shown in FIG.
  • FIG. 3 is an enlarged view of the discharge section of the continuous organic matter pyrolysis apparatus shown in FIG. 1.
  • FIG. 4 is an explanatory diagram of stirring blades of a continuous organic material pyrolysis apparatus according to another embodiment of the present invention, in which (a) shows a paddle-type stirring blade, and (b) shows a gate-type stirring blade.
  • a continuous organic material pyrolysis apparatus 1 includes an input section 10 for continuously introducing organic materials, a vertical container 12 for storing organic materials, and a stirring system for stirring organic materials. a first heating means 16 that heats the vertical container 12 to pyrolyze and gasify the organic matter; a discharge section 18 that derives the pyrolysis gas of the organic matter; and a discharge section that continuously discharges the organic matter residue. 20.
  • the charging section 10 is provided at the upper part of the vertical container 12, and is connected to the raw material charging device.
  • the derivation section 18 includes a derivation path 22 connected to the upper part of the vertical container 12 for deriving the pyrolysis gas of the organic substance.
  • the outlet path 22 is connected to the lid of the vertical container 12 and guides the pyrolysis gas generated within the vertical container 12 to the gas recovery device.
  • the vertical container 12 is a vertically long container that can hold approximately 200 L of organic matter such as waste plastic or waste rubber introduced from the input section 10. Further, the vertical container 12 is filled with about 70% by volume of solid heat medium during the thermal decomposition process.
  • the stirring means 14 includes a rotating shaft 24 provided vertically in the center of the vertical container 12, and a double ribbon type that is connected to the rotating shaft 24 and rotates around the shaft. It is equipped with stirring blades 26 and is configured to be able to scrape up the contents from the bottom to the top.
  • the discharge section 20 is equipped with a discharge path 28 connected to the lower part of the vertical container 12 for continuously discharging organic residues.
  • the discharge path 28 is formed between an inner surface of a cylinder 30 connected to the lower part of the vertical container 12 that decreases toward the bottom, and an outer surface of a spacer 32 provided inside the cylinder 30 that decreases toward the bottom. It is constituted by a gap of about 40 mm formed in the vertical container 12, and communicates with an opening provided on the bottom outer periphery of the vertical container 12.
  • the cylinder 30 is formed into an inverted truncated cone shape with a circular cross-sectional shape.
  • the spacer 32 is formed in the shape of an inverted truncated cone with an inclination angle of 60°, which is the same as the inclination angle of the inner surface of the cylindrical body 30. Further, the spacer 32 is provided with a rod member 34 as a discharge passage stirring member on its inclined surface, and is connected to a rotating shaft 24 of a stirring means 14 provided vertically in the center of the vertical container 12. rotate around.
  • the continuous organic substance pyrolysis apparatus 1 is equipped with a first heating means 16 that heats the vertical container 12 to thermally decompose and gasify the organic substance.
  • the first heating means 16 is a means for introducing hot air generated by a hot air generator 38 into a heating medium passage 36 surrounding the vertical container 12 and the discharge section 20 .
  • the first heating means 16 also serves as a second heating means for heating the discharge passage 28 of the discharge section 20.
  • the heating medium passage 36 has an inlet provided on the side of the discharge section 20 and an outlet provided on the side of the vertical container 12, and partitions the outside of the vertical container 12 and the outside of the discharge section 20 between the inlet and the outlet. Since the baffle plate 40 is provided, the temperature on the discharge part 20 side can be made higher.
  • the continuous organic matter pyrolysis apparatus 1 includes a conveying device connected to the discharge section 20 and a cooling screw conveyor 42 as a cooling means.
  • the cooling screw conveyor 42 can cool the organic matter discharged from the discharge section 20 while transporting it.
  • a double ribbon type stirring blade 26 was used as the stirring blade of the stirring means 14, but a paddle type stirring blade (a) or a gate type stirring blade ( Other stirring blades such as b) may also be used.
  • Example 1 Continuous discharge test
  • the organic residue continuously discharged using the continuous organic substance pyrolysis apparatus and continuous organic substance pyrolysis method of the present invention was analyzed.
  • a vertical container with a capacity of 100 L was filled with 70 L of waste FCC catalyst powder, and the inside of the vertical container was heated at 450° C., and the discharge path of the discharge section was heated at 480° C. After the heat was transmitted throughout the vertical container and stabilized, discharge was started by being transported by a cooling screw conveyor connected to the discharge section, and continuous processing was started. Waste plastic was continuously introduced at a rate of 30L/h, and waste FCC catalyst was continuously introduced into a vertical container at a volume of 70L, so that undecomposed waste plastics accounted for 3% of the waste FCC catalyst. processed. 10 g was obtained from the organic residue discharged 1 hour after the start of continuous treatment (Figure 5). Next, 10 g of the organic residue was calcined at 450° C. for 1 hour. The mass of each organic residue after firing was measured. The results are shown in Table 1.
  • the organic material thermal decomposition apparatus of the present invention is industrially useful because it can be used to recover oil from organic materials such as waste plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Coke Industry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

有機物を連続投入する投入部10と、投入部10より投入された有機物を収容する縦型容器12と、縦型容器12内に設けられた、有機物を撹拌する撹拌手段14と、縦型容器12を加熱し、有機物を熱分解してガス化する第1加熱手段16と、縦型容器12の上部に接続された、有機物の熱分解ガスを導出する導出路22を具備する導出部18と、縦型容器12の下部に接続された、有機物残渣を連続排出する排出路28を具備する排出部20とを備えている連続式有機物熱分解装置1である。

Description

連続式有機物熱分解装置及び連続式有機物熱分解方法
 本発明は、連続して有機物を熱分解する連続式有機物熱分解装置及び連続式有機物熱分解方法に関する。
 従来、有機物を熱分解する熱分解装置は多くの分野で用いられている。とりわけ、廃プラスチック(プラスチックを主成分とする廃棄物)や廃ゴムなどに代表される石油化学製品廃材を熱分解して、有用成分を回収する技術が知られている。
 このような石油化学製品廃材を熱分解する装置としては、例えば、プラスチックを投入し、溶融する材料投入装置と、この材料投入装置の一部が挿着され、溶融したプラスチックを熱分解して熱分解ガスを回収するロータリーキルン型の熱分解炉を備え、材料投入装置は、熱分解炉まで延出した内筒と、この内筒の一端側に設けられた材料投入口と、内筒の内部に配置された、材料投入口側から材料排出口側にかけて徐々に間隔が狭くなる回転羽根とを備えている装置が提案されている(特許文献1参照)。
特開2009-249576号公報
 従来の単純熱分解炉を用いた石油化学製品廃材の熱分解装置においては、石油化学製品廃材の熱分解時に生成する炭化物などの分解残渣が、次第に反応炉内で増加し、反応炉内をコーキングすることにより、熱伝導効率が低下し、処理能力が低下する。したがって、所定の処理後に反応炉を冷却して清掃する必要があり、連続運転ができないという問題があった。
 また、上記特許文献1記載のような横型の反応炉を用いるロータリーキルン型の熱分解装置においては、コーキング対策として反応炉内に複数の鉄球などを投入するが、反応炉の下部を中心に熱分解が行われるため、十分にコーキングを防止することができず、やはり長期的な連続運転は困難であった。また、横型の反応炉を用いるため、装置が大型になるという問題があった。
 本発明の課題は、熱伝導効率の低下を抑制して効率的に連続して有機物を熱分解できる連続式有機物熱分解装置及び連続式有機物熱分解方法を提供することにある。
 本発明者らは、効率的に有機物を熱分解する方法を検討する中で、固形熱媒体が充填された縦型容器内に有機物を連続投入し、縦型容器内で有機物を加熱撹拌し、熱分解ガスを回収すると共に、縦型容器より有機物残渣を連続排出することにより、縦型容器内の有機物残渣によるコーキングを防止し、縦型容器内の熱伝導効率の低下を抑制して、効率的に連続して有機物を熱分解できることを見いだし、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
[1]有機物を連続投入する投入部と、
 前記投入部より投入された有機物を収容する縦型容器と、
 前記縦型容器内に設けられた、有機物を撹拌する撹拌手段と、
 前記縦型容器を加熱し、前記有機物を熱分解してガス化する第1加熱手段と、
 前記縦型容器の上部に接続された、有機物の熱分解ガスを導出する導出路を具備する導出部と、
 前記縦型容器の下部に接続された、有機物残渣を連続排出する排出路を具備する排出部と、
を備えていることを特徴とする連続式有機物熱分解装置。
[2]前記排出部の排出路を加熱する第2加熱手段を備えていることを特徴とする上記[1]記載の連続式有機物熱分解装置。
[3]前記第2加熱手段が、前記排出部を前記縦型容器よりも高温で加熱する手段であることを特徴とする上記[2]記載の連続式有機物熱分解装置。
[4]前記排出部の排出路が、前記縦型容器の下部下方に配置されていることを特徴とする上記[1]~[3]のいずれか記載の連続式有機物熱分解装置。
[5]前記排出部の排出路が、前記縦型容器の下部側方に配置されていることを特徴とする上記[1]~[3]のいずれか記載の連続式有機物熱分解装置。
[6]前記排出部の排出路は、
 前記縦型容器の下方に連設された筒体の底部に向かって縮小する内面と、前記筒体内に設けられた底部に向かって縮小するスペーサの外面との間に形成された隙間により構成されており、
 前記縦型容器の底部外周に設けられた開口と連通している
ことを特徴とする上記[1]~[4]のいずれか記載の連続式有機物熱分解装置。
[7]前記撹拌手段が、縦型容器の中心部に上下方向に設けられた回転軸と、該回転軸に接続されてその軸周りに回転する撹拌翼を具備していることを特徴とする上記[1]~[6]のいずれか記載の連続式有機物熱分解装置。
[8]前記撹拌手段が、有機物を下から上へ掻き上げ可能な手段であることを特徴とする上記[7]記載の連続式有機物熱分解装置。
[9]前記スペーサが、その傾斜面に排出路撹拌部材を備えると共に、前記縦型容器の中心部に上下方向に設けられた前記撹拌手段の回転軸に接続されてその軸周りに回転することを特徴とする上記[7]又は[8]記載の連続式有機物熱分解装置。
[10]固形熱媒体が充填された縦型容器内に、有機物及び固形熱媒体を連続投入する連続投入工程と、
 前記連続投入工程で縦型容器内に投入された有機物及び前記固形熱媒体を加熱撹拌して、前記有機物を熱分解する熱分解工程と、
 前記熱分解工程で発生した熱分解ガスを回収する回収工程と、
 前記熱分解工程で発生した有機物残渣を、前記固形熱媒体の一部と共に、前記縦型容器外へ連続排出する連続排出工程と、
を有することを特徴とする連続式有機物熱分解方法。
[11]前記連続排出工程において、排出される有機物残渣及び固形熱媒体を加熱することを特徴とする上記[10]記載の連続式有機物熱分解方法。
[12]前記連続排出工程において、排出される有機物残渣及び固形熱媒体を、前記熱分解工程の加熱温度よりも高い温度で加熱することを特徴とする上記[11]記載の連続式有機物熱分解方法。
[13]前記縦型容器内における前記固形熱媒体100Lに対する有機物の投入量が1~50kg/hの範囲となるよう有機物及び固形熱媒体を連続投入することを特徴とする上記[10]~[12]のいずれか記載の連続式有機物熱分解方法。
[14]前記固形熱媒体が、直径0.1μm~150mmの球状固形物であることを特徴とする上記[10]~[13]のいずれか記載の連続式有機物熱分解方法。
[15]前記固形熱媒体が、アルカリ土類金属系固形物、シリカ系固形物、砂、アルミナ系固形物、及びゼオライト系固形物からなる群より選ばれる少なくとも1種の固形物あることを特徴とする上記[10]~[14]のいずれか記載の連続式有機物熱分解方法。
[16]前記連続投入工程で投入される有機物が、廃プラスチック又は廃ゴムであることを特徴とする上記[10]~[15]のいずれか記載の連続式有機物熱分解方法。
[17]上記[1]~[9]のいずれか記載の連続式有機物熱分解装置を用いることを特徴とする請求項上記[10]~[16]のいずれか記載の連続式有機物熱分解方法。
[18]上記[1]~[9]のいずれか記載の連続式有機物熱分解装置と、
 前記連続式有機物熱分解装置に有機物を連続投入する有機物投入装置と、
 前記連続式有機物熱分解装置で熱分解された有機物の熱分解ガスを回収するガス回収装置と、
を備えていることを特徴とする再生有機物回収システム。
 本発明の連続式有機物熱分解装置及び連続式有機物熱分解方法によれば、熱伝導効率の低下を抑制して効率的に連続して有機物を熱分解できる。
本発明の一実施形態に係る連続式有機物熱分解装置の説明図である。 図1に示す連続式有機物熱分解装置の縦型容器及び排出部の説明図である。 図1に示す連続式有機物熱分解装置の排出部の拡大図である。 本発明のその他の実施形態に係る連続式有機物熱分解装置の撹拌翼の説明図であり、(a)はパドル型撹拌翼を示し、(b)はゲート型撹拌翼を示す。 実施例1の連続排出試験で得られた有機物残渣の写真である。
 本発明の連続式有機物熱分解装置は、有機物を連続投入する投入部と、投入部より投入された有機物を収容する縦型容器と、縦型容器内に設けられた、有機物を撹拌する撹拌手段と、縦型容器を加熱し、有機物を熱分解してガス化する第1加熱手段と、縦型容器の上部に接続された、有機物の熱分解ガスを導出する導出路を具備する導出部と、縦型容器の下部に接続された、有機物残渣を連続排出する排出路を具備する排出部とを備えていることを特徴とする。本発明の連続式有機物熱分解装置は、固形熱媒体が充填された状態で使用される。
 本発明の連続式有機物熱分解装置は、連続投入される有機物を、固形熱媒体が充填された縦型容器内で撹拌しながら加熱し熱分解すると共に、有機物残渣を連続排出することから、縦型容器の有機物残渣によるコーキングを防止し、熱伝導効率の低下を抑制して効率的に連続して有機物を熱分解することができる。すなわち、縦型容器内で固形熱媒体が撹拌されることにより、縦型容器壁面への有機物残渣(炭化物)の付着が防止され、また、不要な有機物残渣が連続的に排出されることにより、コーキングを防止することができる。
 本発明の処理対象である有機物(投入される有機物)としては、特に制限されるものではなく、例えば、石油化学製品廃材に含まれる廃プラスチックや廃ゴムを挙げることができ、有機物以外の成分を含むものであってもよい。廃プラスチックとしては、都市ゴミや産業廃棄物から分別された、プラスチックを主成分とする廃棄物が挙げられ、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ABS等の熱可塑性樹脂を主成分とするものを例示することができる。また、廃プラスチックは、塩素を組成成分として含有するポリ塩化ビニル(PVC)や熱硬化性樹脂、FRP、紙等の夾雑物等を含むものであってもよい。また、廃ゴムとしては、例えば、廃タイヤなどの合成ゴム廃棄物、天然ゴム廃棄物等を挙げることができる。有機物の形状としては、例えば、フラフ状、ビーズ状、フレーク状、チップ状、粒状、ペレット状等の各種形状を挙げることができる。
 以下、本発明の連続式有機物熱分解装置の構成について詳細に説明する。
[投入部]
 投入部は、処理対象となる有機物を連続投入する手段であり、通常、縦型容器の上部に設けられ、原料投入装置に接続されている。具体的には、原料投入ホッパーを挙げることができる。なお、本発明の連続投入とは、文字通り連続的に投入する場合のみならず、断続的に投入する態様も含む概念である。
[縦型容器]
 縦型容器は、その内部に投入された有機物を収容する縦長の容器である。縦型容器の横断面形状としては、例えば、円形状、楕円形状、多角形状等を挙げることができるが、コーキングの抑制や清掃の容易さ等の点から、円形状が好ましい。また、例えば、容器の高さと直径の比であるL/Dは、1~5程度であり、1~3であることが好ましい。縦型容器は、垂直方向に対して傾斜していてもよく、その傾斜角度としては、0~45°であり、30°以下が好ましく、15°以下がより好ましく、5°以下がさらに好ましく、0°(垂直)が特に好ましい。
 なお、上記のように、この縦型容器には、熱分解処理時には、固体熱媒体が充填されている。縦型容器内の固形熱媒体の充填量としては、特に制限されるものではなく、例えば50~90体積%程度である。固体熱媒体については後述する。
[撹拌手段]
 撹拌手段は、縦型容器に収容された有機物を、固体熱媒体と共に撹拌する手段である。撹拌手段としては、具体的に、収容物(有機物及び固体熱媒体)を撹拌できるものであれば特に制限されるものではなく、縦型容器の中心部に上下方向に設けられた回転軸と、回転軸に接続されてその軸周りに回転する撹拌翼を具備している手段を挙げることができ、収容物を下から上へ掻き上げ可能な構成のものが好ましい。撹拌手段で掻き上げることにより、収容物がより効率的に均一に撹拌される。縦型容器内の上部で(上部に位置する固形熱媒体が接触して)主として有機物の熱分解が行われることから、上部の固形熱媒体を効率的に入れ替えることにより、効率的に熱分解を行うことが可能となる。なお、撹拌手段は、2以上設けられていてもよい。
 撹拌手段の撹拌翼の型式としては、例えば、リボン型、パドル型、プロペラ型、タービン型、ゲート型、アンカー型等を挙げることができ、有機物を効果的に掻き上げることができることから、シングル型、ダブルリボン型が好ましく、ダブルリボン型がより好ましい。
 撹拌翼の先端部と上記縦型容器の内面との間隔(クリアランス)としては、掻き上げられた有機物がスムーズに落下できる大きさであれば特に制限されるものではなく、例えば5~50mmであり、5~20mmが好ましい。
 また、撹拌翼の周速としては、通常0.1m/s以上であり、0.5~5.0m/sであることが好ましく、0.7~4.0m/sであることがより好ましく、1.0~3.0m/sであることがさらに好ましい。このような速度で撹拌することにより、縦型容器内が十分に撹拌され、効率的に有機物の熱分解処理を行うことができる。
[第1加熱手段]
 第1加熱手段は、上記縦型容器を加熱して、有機物を熱分解してガス化する手段である。第1加熱手段は、縦型容器の内部に直接熱エネルギーを導入する直接加熱手段であってもよいし、縦型容器の外部から熱エネルギーを供給する間接加熱手段であってもよい。直接加熱手段としては、例えば、縦型容器の内部に設けられたバーナを挙げることができる。また、間接加熱手段としては、例えば、縦型容器の周壁を外部から加熱する電気ヒータやガスバーナ、縦型容器の外部空間に熱風もしくは熱媒体油等を導入する手段などを挙げることができる。
 縦型容器の内部温度としては、通常、350~550℃程度であり、400~450℃程度であることが好ましい。
[導出部]
 導出部は、縦型容器の上部に接続された、有機物の熱分解ガスを導出する導出路を具備する手段である。導出路は、縦型容器の蓋部や上部側方に接続され、縦型容器内で発生した熱分解ガスをガス回収装置に導く。
[排出部]
 排出部は、縦型容器の下部に接続された、有機物残渣を連続排出する排出路を具備する手段である。有機物残渣を連続排出することにより、縦型容器内に蓄積する有機物残渣を低減し、縦型容器内に有機物残渣が増加して撹拌状態が悪くなることを抑制することができる。この有機物残渣は、主として固形熱媒体に付着した状態もしくは粉末状の炭化物として固形熱媒体と共に排出される。
 なお、本発明の連続排出とは、文字通り連続的に排出する場合のみならず、断続的に排出する態様も含む概念である。すなわち、有機物(及び固形熱媒体)の投入量等の関係から排出量を制御して排出することができる。例えば、排出路に開閉弁を設け、その排出量を制御することができる。また、後述する移送装置の移送速度により、その排出量を制御することができる。
 従来の石油化学製品廃材の熱分解装置においては、熱分解時に生成する炭化物などの有機物残渣の他に、石油化学製品の製造時などに含まれる混入物及び添加物、石油化学製品廃材に混入する金属やガラスなどの無機物が、装置内で次第に増加し、処理能力を低下させる要因となっていたが、本発明装置では、これらを連続的に排出することにより、処理能力を維持することができる。
 排出部(排出路)は、縦型容器の下部に接続されているものであれば特に制限されるものではなく、縦型容器の下部下方又は下部側方に配置されていることが好ましく、縦型容器の下部下方に配置されていることがより好ましい。通常、縦型容器の上部に有機物の投入部が設けられていることから、投入部から離れた位置に排出部を配置することにより、有機物を確実に熱分解した状態で有機物残渣を排出することができる。
 具体的に、排出路の好ましい態様としては、例えば、縦型容器の下方に連設された筒体の底部に向かって縮小する内面と、筒体内に設けられた底部に向かって縮小するスペーサの外面との間に形成された隙間により構成されるものを挙げることができる。本態様の場合、縦型容器内の有機物残渣(及び固形熱媒体)は、縦型容器の底部外周に設けられた開口を通じて排出されることになるが、中心部に設けられた撹拌手段で掻き上げられた後に、外周部を下降する流れでスムーズに排出される。
 縦型容器の下方に連設された筒体としては、縦型容器と同様に、横断面形状としては、例えば、円形状、楕円形状、多角形状等を挙げることができ、円形状が好ましい。また、筒体の内面が底部に向かって縮小する構造であればよく、その外形は、直方体状、円柱状、逆円錐台状、逆円錐状等とすることができる。
 筒体の内面の傾斜角度(縦型容器の底面と筒体の内面との傾斜角度)としては、30~85°であることが好ましく、45~80°であることがより好ましく、45~75°であることがさらに好ましい。傾斜角度がこの範囲であることにより、有機物残渣をスムーズに底部の排出口まで導くことができる。
 筒体と共に排出路を形成する、筒体内に設けられたスペーサは、その外面が底部に向かって縮小する形状を有するものであれば特に制限されるものではなく、筒体の内面の傾斜角度と同じ傾斜角度であることが好ましい。具体的に、スペーサの外形としては、逆円錐台状、逆円錐状等を挙げることができる。
 筒体の内面とスペーサの外面との間に形成される隙間の間隔としては、1~150mmであることが好ましく、10~80mmであることがより好ましく、10~40mmであることがさらに好ましい。この隙間の間隔がこの範囲であることにより、有機物残渣をスムーズに底部の排出口まで導くことができる。
 また、スペーサは、その傾斜面に排出路撹拌部材を備えると共に、縦型容器の中心部に上下方向に設けられた撹拌手段の回転軸に接続されてその軸周りに回転することが好ましい。これにより、排出路における有機物残渣の詰まりや滞留を防止でき、安定した排出が可能となる。具体的に、排出路撹拌手段は、スペーサの傾斜面に設けられた棒部材を挙げることができる。
 排出部から排出される有機物残渣は、底部の排出口から自然落下等により排出されるものであってもよいが、ブリッジ防止の点から、動力により補助的に排出されることが好ましい。すなわち、本発明の連続式有機物熱分解装置は、排出部と接続された移送装置を備えていることが好ましい。これにより、有機物残渣の排出速度を調整して排出することができる。移送装置としては、例えば、スクリューコンベア等を挙げることができる。また、移送装置は、排出される有機物残渣を冷却する冷却手段を具備していることが好ましい。
[第2加熱手段]
 本発明の連続式有機物熱分解装置は、排出部の排出路を加熱する第2加熱手段を備えていることが好ましい。第2加熱手段により、排出される有機物残渣を加熱し、未分解の有機物を確実に熱分解することができる。特に、排出路(例えば、筒体とスペーサの隙間)は、縦型容器の断面積よりも小さい断面積であるため、排出路を通過する有機物に対して加熱手段の熱エネルギーが十分に伝わるため、より確実に有機物の未分解を防止することができる。
 第2加熱手段は、排出部を縦型容器と同じ温度に加熱するものであってもよいが、排出部を縦型容器よりも高温に加熱できる手段であることが好ましい。例えば、5℃以上高い温度であることが好ましく、5℃~100℃高い温度であることがより好ましく、8℃~70℃高い温度であることがさらに好ましく、10℃~50℃高い温度であることが最も好ましい。
 また、第2加熱手段は、第1加熱手段と別に設けられた手段であってもよいが、第1加熱手段が、第2加熱手段を兼ねていてもよい。第2加熱手段としては、排出路の周壁を外部から加熱する電気ヒータやガスバーナ、排出路の外部空間に熱風を導入する手段等を挙げることができる。
 第1加熱手段が、第2加熱手段を兼ねる場合、加熱手段としては、縦型容器及び排出部を包囲する加熱媒体通路を設け、該加熱媒体通路に、熱風等の加熱媒体を導入する構成を挙げることができる。この際、加熱媒体通路の入口を排出部側に設け、出口を縦型容器側に設けることにより、排出部側をより高温にすることができる。
 続いて、本発明の連続式有機物熱分解方法について説明する。なお、本発明の連続式有機物熱分解方法は、上記連続式有機物熱分解装置を用いて実施することができる。
 本発明の連続式有機物熱分解方法は、固形熱媒体が充填された縦型容器内に、有機物及び固形熱媒体を連続投入する連続投入工程と、連続投入工程で縦型容器内に投入された有機物及び固形熱媒体を加熱撹拌して、有機物を熱分解する熱分解工程と、熱分解工程で発生した有機物残渣を、固形熱媒体の一部と共に、縦型容器外へ連続排出する連続排出工程と、を有することを特徴とする。
 本発明の有機物熱分解方法によれば、連続投入される有機物を、固形熱媒体が充填された縦型容器内で撹拌しながら加熱し熱分解すると共に、有機物残渣を連続排出することから、縦型容器の有機物残渣によるコーキングを防止し、熱伝導効率の低下を抑制して効率的に連続して有機物を熱分解することができる。すなわち、縦型容器内で固形熱媒体が撹拌されることにより、縦型容器壁面への有機物残渣(炭化物)の付着が防止され、また、不要な有機物残渣が連続的に排出されることにより、コーキングを防止することができる。
 本発明の有機物熱分解方法に用いることができる有機物としては、上記連続式有機物熱分解装置と同様のものを用いることができる。その他、連続式有機物熱分解装置と同様の場合は、適宜説明を省略する。
[連続投入工程]
 連続投入工程は、固形熱媒体が充填された縦型容器内に、有機物及び固形熱媒体を連続投入する工程である。なお、連続投入とは、文字通り連続的に投入する場合のみならず、断続的に投入する態様も含む概念である。また、有機物及び固形熱媒体は、同時に投入してもよいし、別々に投入してもよい。この連続投入工程及び連続排出工程により、縦型容器内の有機物及び固形熱媒体を一定の割合に保持することができる。
[熱分解工程]
 熱分解工程は、連続投入工程で縦型容器内に投入された有機物及び固形熱媒体を加熱撹拌して、有機物を熱分解する工程である。有機物及び固形熱媒体を加熱撹拌することにより、有機物へ効率的に熱を伝導させることができると共に、縦型容器内の有機物残渣によるコーキングを防止し、高い熱伝導効率を維持することができることから、有機物を効率よく熱分解することができる。また、より効率的に熱分解を行うことができる点から、有機物及び固形熱媒体を下から上へ掻き上げて撹拌混合することが好ましい。
 縦型容器内に収容される固形熱媒体に対する有機物(未分解の有機物)の投入量としては、縦型容器内に収容される固形熱媒体の体積100Lに対して、200kg/h以下であり、1~100kg/hであることが好ましく、1~50kg/hであることがより好ましく、30kg/hであることが特に好ましい。この範囲であることにより、有機物を効率よく熱分解し、未分解の有機物の発生を防止することができる。また、縦型容器内をドライの状態に保持して熱分解ができる。
 縦型容器から排出される固形熱媒体に対する有機物(未分解の有機物)の割合としては、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。本発明の有機物熱分解方法では、排出物に未分解の有機物が含まれないことから、効率的に熱分解ガスを回収することができる。
 固形熱媒体の大きさとしては、投入される有機物の種類によって適宜設定できるものであるが、例えば、直径が0.1μm~150mm程度である。具体的には、固形熱媒体が直径0.1μm~1mmの粉粒体や、直径1mm超~15mm程度の塊状物を挙げることができる。また、固形熱媒体の形状としては、特に制限されるものではないが、流動性向上の点から、球状が好ましく、真球に近い球状がより好ましく、真球が特に好ましい。これにより、固形熱媒体による撹拌抵抗や、固形熱媒体同士の摩耗による微粉の析出による撹拌抵抗を抑制することができ、撹拌モータや撹拌翼をコンパクトにすることができる。固形熱媒体の大きさを有機物の種類によって変更することにより、排出される固形熱媒体及び有機物残渣の分離が容易となる。具体的には、有機物が廃プラスチックの場合には直径0.1μm~1mm程度の粉粒体を好適に用いることができ、有機物が廃タイヤなど炭化物の析出が多く、その後炭化物と固形熱媒体を分離したい場合には直径1mm超~150mm程度の塊状物を好適に用いることができる。
 固形熱媒体としては、投入される有機物の種類によって適宜設定できるものであるが、例えば、アルカリ土類金属系固形物、シリカ系固形物、アルミナ系固形物、砂、ゼオライト系固形物等の固形物を挙げることができる。アルカリ土類金属系固形物としては、例えば、水酸化カルシウム、炭酸カルシウム等のカルシウム系固形物や、水酸化マグネシウム、炭酸マグネシウム等のマグネシウム系固形物を挙げることができる。また、ゼオライト系固形物としては、例えば、ゼオライト、FCC触媒(石油精製の流動接触分解に用いる触媒)、FCC廃触媒(使用済みFCC触媒)等を挙げることができる。
 熱分解工程における熱分解温度としては、特に制限されるものではなく、350~550℃であることが好ましい。また、熱分解工程における縦型容器内の圧力としては、特に制限されるものではなく、例えば、100kPa(大気圧)以下であることが好ましい。
[回収工程]
 回収工程は、熱分解工程で発生した熱分解ガスを回収する工程である。本工程で回収された熱分解ガスは、例えば、メタンなどの軽質の炭化水素ガスと、それ以外の油分に分離され、利用される。
[連続排出工程]
 連続排出工程は、熱分解工程で発生した有機物残渣を、固形熱媒体の一部と共に、縦型容器外へ連続排出する工程である。本工程においては、排出される有機物残渣及び固形熱媒体を加熱することが好ましい。また、本工程における加熱温度は、熱分解工程における加熱温度よりも高温とすることが好ましい。
 排出部が加熱される場合、排出部での有機物残渣の滞留時間が10分以上であることが好ましく、30分以上であることがより好ましく、60分以上であることがさらに好ましい。これにより、排出される有機物残渣中の未分解有機物の割合を5質量%以下とすることができる。
 続いて、上述した本発明の連続式有機物熱分解装置を用いた再生有機物回収システムについて説明する。
 本発明の再生有機物回収システムは、上述した連続式有機物熱分解装置と、連続式有機物熱分解装置に有機物を連続投入する有機物投入装置と、連続式有機物熱分解装置で熱分解された有機物の熱分解ガスを回収するガス回収装置とを備えていることを特徴とする。
 本発明の再生有機物回収システムによれば、廃有機物等から有用な再生有機物を効率よく回収することができる。
 以下、図面を参照しつつ、本発明の連続式有機物熱分解装置の一実施形態を詳細に説明する。
 ここで、図1は、本発明の一実施形態に係る連続式有機物熱分解装置の説明図であり、図2は、図1に示す連続式有機物熱分解装置の縦型容器及び排出部の説明図であり、図3は図1に示す連続式有機物熱分解装置の排出部の拡大図である。図4は、本発明のその他の実施形態に係る連続式有機物熱分解装置の撹拌翼の説明図であり、(a)はパドル型撹拌翼を示し、(b)はゲート型撹拌翼を示す。
 図1及び図2に示すように、本発明の一実施形態に係る連続式有機物熱分解装置1は、有機物を連続投入する投入部10と、有機物を収容する縦型容器12と、有機物を撹拌する撹拌手段14と、縦型容器12を加熱し、有機物を熱分解してガス化する第1加熱手段16と、有機物の熱分解ガスを導出する導出部18と、有機物残渣を連続排出する排出部20を備えている。
 図1に示すように、投入部10は、縦型容器12の上部に設けられ、原料投入機装置に接続されている。また、導出部18は、縦型容器12の上部に接続された、有機物の熱分解ガスを導出する導出路22を具備している。導出路22は、縦型容器12の蓋部に接続され、縦型容器12内で発生した熱分解ガスをガス回収装置に導く。
 図1及び図2に示すように、縦型容器12は、投入部10より投入された廃プラスチックや廃ゴムなどの有機物を、その内部に200L程度保持可能な縦長の容器である。また、縦型容器12には、熱分解処理時には、固体熱媒体が70体積%程度充填される。
 図1及び図2に示すように、撹拌手段14は、縦型容器12の中心部に上下方向に設けられた回転軸24と、回転軸24に接続されてその軸周りに回転するダブルリボン型撹拌翼26を具備しており、収容物を下から上へ掻き上げ可能に構成されている。
 図3に示すように、排出部20は、縦型容器12の下部に接続された、有機物残渣を連続排出する排出路28を具備している。排出路28は、縦型容器12の下方に連設された筒体30の底部に向かって縮小する内面と、筒体30内に設けられた底部に向かって縮小するスペーサ32の外面との間に形成された40mm程度の隙間により構成されており、縦型容器12の底部外周に設けられた開口と連通している。筒体30は、横断面形状が円形状の逆円錐台状に形成されている。また、スペーサ32は、筒体30の内面の傾斜角度と同じ傾斜角度60°の逆円錐台状に形成されている。また、スペーサ32は、その傾斜面に排出路撹拌部材としての棒部材34を備えると共に、縦型容器12の中心部に上下方向に設けられた撹拌手段14の回転軸24に接続されてその軸周りに回転する。
 また、図1に示すように、連続式有機物熱分解装置1は、縦型容器12を加熱し、有機物を熱分解してガス化する第1加熱手段16を備えている。第1加熱手段16は、縦型容器12及び排出部20を包囲する加熱媒体通路36に、熱風発生器38によって発生する熱風を導入する手段である。また、第1加熱手段16は、排出部20の排出路28を加熱する第2加熱手段を兼ねている。加熱媒体通路36は、その入口が排出部20側に設けられ、その出口が縦型容器12側に設けられ、入口と出口の間に縦型容器12の外部と排出部20の外部とを仕切る邪魔板40が設けられているため、排出部20側をより高温にすることができる。
 また、図1に示すように、連続式有機物熱分解装置1は、排出部20と接続された運搬装置及び冷却手段としての冷却スクリューコンベア42を備えている。冷却スクリューコンベア42は、排出部20から排出される有機物を輸送しながら冷却することができる。
 なお、図4に示すように、連続式有機物熱分解装置1においては、撹拌手段14の撹拌翼としてダブルリボン型撹拌翼26を用いたが、パドル型撹拌翼(a)やゲート型撹拌翼(b)等のその他の撹拌翼を用いてもよい。
(実施例1)[連続排出試験]
 本発明の連続式有機物熱分解装置及び連続式有機物熱分解方法を用いて連続排出される有機物残渣の分析を行った。
 まず、容量100Lの縦型容器内に70Lの廃FCC触媒の粉粒体を充填し、縦型容器内を450℃で加熱すると共に、排出部の排出路を480℃で加熱した。縦型容器内全体に熱が伝わり安定した後に、排出部と接続された冷却スクリューコンベアにより運搬することで排出を開始し、連続処理を開始した。廃プラスチックは、30L/hの速度で連続投入し、廃FCC触媒は、縦型容器内に70Lとなるように連続投入し、廃FCC触媒に対する未分解の廃プラが3%を保持するように処理を行った。連続処理の開始から1時間後に排出される有機物残渣から10gを取得した(図5)。
 次に、有機物残渣10gを、450℃で1時間焼成した。焼成後のそれぞれの有機物残渣の質量を測定した。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、450℃で1時間焼成を行う前と後では、質量に差が見られなかった。450℃は油分が気化する温度であるが、質量変化がなかったことから、油分となる有機物は、有機物残渣として残らず、すべて熱分解されたことがわかる。
 本発明の有機物の熱分解装置は、廃プラスチック等の有機物からの油分の回収に用いることができるから、産業上有用である。
 1  連続式有機物熱分解装置
10  投入部
12  縦型容器
14  撹拌手段
16  第1加熱手段(第2加熱手段)
18  導出部
20  排出部
22  導出路
24  回転軸
26  ダブルリボン型撹拌翼
28  排出路
30  筒体
32  スペーサ
34  棒部材(排出路撹拌部材)
36  加熱媒体通路
38  熱風発生器
40  邪魔板
42  冷却スクリューコンベア

 

Claims (18)

  1.  有機物を連続投入する投入部と、
     前記投入部より投入された有機物を収容する縦型容器と、
     前記縦型容器内に設けられた、有機物を撹拌する撹拌手段と、
     前記縦型容器を加熱し、前記有機物を熱分解してガス化する第1加熱手段と、
     前記縦型容器の上部に接続された、有機物の熱分解ガスを導出する導出路を具備する導出部と、
     前記縦型容器の下部に接続された、有機物残渣を連続排出する排出路を具備する排出部と、
    を備えていることを特徴とする連続式有機物熱分解装置。
  2.  前記排出部の排出路を加熱する第2加熱手段を備えていることを特徴とする請求項1記載の連続式有機物熱分解装置。
  3.  前記第2加熱手段が、前記排出部を前記縦型容器よりも高温に加熱する手段であることを特徴とする請求項2記載の連続式有機物熱分解装置。
  4.  前記排出部の排出路が、前記縦型容器の下部下方に配置されていることを特徴とする請求項1~3のいずれか記載の連続式有機物熱分解装置。
  5.  前記排出部の排出路が、前記縦型容器の下部側方に配置されていることを特徴とする請求項1~3のいずれか記載の連続式有機物熱分解装置。
  6.  前記排出部の排出路は、
     前記縦型容器の下方に連設された筒体の底部に向かって縮小する内面と、前記筒体内に設けられた底部に向かって縮小するスペーサの外面との間に形成された隙間により構成されており、
     前記縦型容器の底部外周に設けられた開口と連通している
    ことを特徴とする請求項1~3のいずれか記載の連続式有機物熱分解装置。
  7.  前記撹拌手段が、縦型容器の中心部に上下方向に設けられた回転軸と、該回転軸に接続されてその軸周りに回転する撹拌翼を具備していることを特徴とする請求項1~3のいずれか記載の連続式有機物熱分解装置。
  8.  前記撹拌手段が、有機物を下から上へ掻き上げ可能な手段であることを特徴とする請求項7記載の連続式有機物熱分解装置。
  9.  前記スペーサが、その傾斜面に排出路撹拌部材を備えると共に、前記縦型容器の中心部に上下方向に設けられた前記撹拌手段の回転軸に接続されてその軸周りに回転することを特徴とする請求項6記載の連続式有機物熱分解装置。
  10.  固形熱媒体が充填された縦型容器内に、有機物及び固形熱媒体を連続投入する連続投入工程と、
     前記連続投入工程で縦型容器内に投入された有機物及び前記固形熱媒体を加熱撹拌して、前記有機物を熱分解する熱分解工程と、
     前記熱分解工程で発生した熱分解ガスを回収する回収工程と、
     前記熱分解工程で発生した有機物残渣を、前記固形熱媒体の一部と共に、前記縦型容器外へ連続排出する連続排出工程と、
    を有することを特徴とする連続式有機物熱分解方法。
  11.  前記連続排出工程において、排出される有機物残渣及び固形熱媒体を加熱することを特徴とする請求項10記載の連続式有機物熱分解方法。
  12.  前記連続排出工程において、排出される有機物残渣及び固形熱媒体を、前記熱分解工程の加熱温度よりも高い温度で加熱することを特徴とする請求項11記載の連続式有機物熱分解方法。
  13.  前記縦型容器内における前記固形熱媒体100Lに対する有機物の投入量が1~50kg/hの範囲となるよう有機物及び固形熱媒体を連続投入することを特徴とする請求項10~12のいずれか記載の連続式有機物熱分解方法。
  14.  前記固形熱媒体が、直径0.1μm~150mmの球状固形物であることを特徴とする請求項10~12のいずれか記載の連続式有機物熱分解方法。
  15.  前記固形熱媒体が、アルカリ土類金属系固形物、シリカ系固形物、砂、アルミナ系固形物、及びゼオライト系固形物からなる群より選ばれる少なくとも1種の固形物あることを特徴とする請求項10~12のいずれか記載の連続式有機物熱分解方法。
  16.  前記連続投入工程で投入される有機物が、廃プラスチック又は廃ゴムであることを特徴とする請求項10~12のいずれか記載の連続式有機物熱分解方法。
  17.  請求項1記載の連続式有機物熱分解装置を用いることを特徴とする請求項10~12のいずれか記載の連続式有機物熱分解方法。
  18.  請求項1~3のいずれか記載の連続式有機物熱分解装置と、
     前記連続式有機物熱分解装置に有機物を連続投入する有機物投入装置と、
     前記連続式有機物熱分解装置で熱分解された有機物の熱分解ガスを回収するガス回収装置と、
    を備えていることを特徴とする再生有機物回収システム。

     
PCT/JP2023/017714 2022-05-16 2023-05-11 連続式有機物熱分解装置及び連続式有機物熱分解方法 WO2023223932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022080437A JP7178680B1 (ja) 2022-05-16 2022-05-16 連続式有機物熱分解方法
JP2022-080437 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023223932A1 true WO2023223932A1 (ja) 2023-11-23

Family

ID=84227619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017714 WO2023223932A1 (ja) 2022-05-16 2023-05-11 連続式有機物熱分解装置及び連続式有機物熱分解方法

Country Status (2)

Country Link
JP (2) JP7178680B1 (ja)
WO (1) WO2023223932A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102657430B1 (ko) * 2023-07-18 2024-04-15 주식회사 블루플래닛 다단 분리형 폐플라스틱 열분해 반응로의 반응로 단위체
KR102657428B1 (ko) * 2023-07-18 2024-04-15 주식회사 블루플래닛 다단 분리형 폐플라스틱 열분해 시스템

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010377A (ja) * 1973-05-30 1975-02-03
JPH0913045A (ja) * 1995-07-04 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd プラスチック廃棄物の油化装置
JPH0913043A (ja) * 1995-07-01 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd 廃プラスチック油化装置の分解槽
JPH1088147A (ja) * 1996-09-11 1998-04-07 Densen Sogo Gijutsu Center 熱分解装置
JPH1190387A (ja) * 1997-09-25 1999-04-06 Kubota Corp 廃プラスチックの脱塩素方法および脱塩素装置
JPH11140225A (ja) * 1997-11-10 1999-05-25 Takeshi Kuroki 廃棄プラスチックの分解装置
JPH11193384A (ja) * 1997-12-27 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd プラスチック熱分解装置の熱分解残渣抜出装置
JP2005111437A (ja) * 2003-10-10 2005-04-28 Sanki Eng Co Ltd 縦形撹拌加熱反応装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5010377A (ja) * 1973-05-30 1975-02-03
JPH0913043A (ja) * 1995-07-01 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd 廃プラスチック油化装置の分解槽
JPH0913045A (ja) * 1995-07-04 1997-01-14 Nippon Furnace Kogyo Kaisha Ltd プラスチック廃棄物の油化装置
JPH1088147A (ja) * 1996-09-11 1998-04-07 Densen Sogo Gijutsu Center 熱分解装置
JPH1190387A (ja) * 1997-09-25 1999-04-06 Kubota Corp 廃プラスチックの脱塩素方法および脱塩素装置
JPH11140225A (ja) * 1997-11-10 1999-05-25 Takeshi Kuroki 廃棄プラスチックの分解装置
JPH11193384A (ja) * 1997-12-27 1999-07-21 Ishikawajima Harima Heavy Ind Co Ltd プラスチック熱分解装置の熱分解残渣抜出装置
JP2005111437A (ja) * 2003-10-10 2005-04-28 Sanki Eng Co Ltd 縦形撹拌加熱反応装置

Also Published As

Publication number Publication date
JP7178680B1 (ja) 2022-11-28
JP2023169094A (ja) 2023-11-29
JP2023169001A (ja) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2023223932A1 (ja) 連続式有機物熱分解装置及び連続式有機物熱分解方法
JP5819607B2 (ja) 減圧熱分解処理装置及び連続油化炭化設備
AU2009295361B2 (en) Process and apparatus for decomposition of polymer products including those containing sulphur such as vulcanised rubber tyres and recovery of resources therefrom
US5387321A (en) Apparatus for waste pyrolysis
US11773268B2 (en) System and method for refinement of char and manufacture of regenerated carbon black through waste tire pyrolysis
EP1964876A1 (en) Waste plastic liquefaction plant and waste plastic liquefaction process
KR20180135808A (ko) 폐타이어 열분해를 통한 챠르의 정제 및 재생 카본블랙 제조 시스템 및 방법
Zinchik et al. Evaluation of fast pyrolysis feedstock conversion with a mixing paddle reactor
JPH09268293A (ja) 合成重合体の接触分解装置及びそれを用いる油状物の製造方法
KR100245040B1 (ko) 합성수지류의 처리방법 및 그 장치
WO2011028515A2 (en) Methods and apparatus for pyrolyzing material
JP2004035851A (ja) 油化装置
TW202409170A (zh) 連續式有機物熱分解裝置及連續式有機物熱分解方法
HU2291U (en) Pirtolisating apparatus for processing coarse chips produced from plastic and rubber waste
RU2744225C1 (ru) Способ низкотемпературной переработки органических твердых коммунальных отходов и установка для его реализации
JP2023540691A (ja) プラスチック変換供給システム
JPH11235561A (ja) 連続式油化装置
JPH1190387A (ja) 廃プラスチックの脱塩素方法および脱塩素装置
JP2013103998A (ja) 廃プラスチック接触分解油化装置及び接触分解油化方法
JP2012188663A (ja) プラスチックの接触分解油化装置及びその接触分解油化方法
JP3771847B2 (ja) 廃棄プラスチックの成形方法
JP3959009B2 (ja) 有機物の熱分解リサイクル方法
JP2008266394A (ja) 廃プラスチック処理システム
CN217368414U (zh) 用于有机材料热分解的反应器
JP2005162881A (ja) 廃プラスチックの処理方法及びその処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807536

Country of ref document: EP

Kind code of ref document: A1