WO2023223768A1 - Substrate processing method and substrate processing apparatus - Google Patents

Substrate processing method and substrate processing apparatus Download PDF

Info

Publication number
WO2023223768A1
WO2023223768A1 PCT/JP2023/015909 JP2023015909W WO2023223768A1 WO 2023223768 A1 WO2023223768 A1 WO 2023223768A1 JP 2023015909 W JP2023015909 W JP 2023015909W WO 2023223768 A1 WO2023223768 A1 WO 2023223768A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hydrogen peroxide
peroxide solution
resist pattern
ozone gas
Prior art date
Application number
PCT/JP2023/015909
Other languages
French (fr)
Japanese (ja)
Inventor
紘太 谷川
喬 太田
秀一 柴田
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023223768A1 publication Critical patent/WO2023223768A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate.
  • the substrate include semiconductor wafers, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. , ceramic substrates, solar cell substrates, etc.
  • Patent Document 1 discloses that in order to remove a resist having a hardened layer from the surface of the substrate, ozone gas is supplied to the surface of the substrate while heating the substrate at a temperature of 150° C. or higher, and then SPM (sulfuric acid/hydrogen peroxide This disclosure discloses supplying a processing solution containing sulfuric acid, such as a mixture of sulfuric acids, to the surface of a substrate.
  • SPM sulfuric acid/hydrogen peroxide
  • An embodiment of the present invention provides a substrate processing method and a substrate processing apparatus that can more efficiently peel or remove resist from a substrate.
  • One embodiment of the present invention includes a hydrogen peroxide solution supply step for supplying hydrogen peroxide solution to the surface of a substrate on which a resist pattern is formed, and an ozone gas supply step for supplying ozone gas to the hydrogen peroxide solution in contact with the substrate.
  • a substrate processing method comprising:
  • hydrogen peroxide solution is brought into contact with a resist pattern formed on the surface of a substrate. Further, ozone gas is brought into contact with this hydrogen peroxide solution.
  • the reaction between ozone gas and hydrogen peroxide produces hydroxyl radicals. Hydroxyl radicals oxidize and decompose the resist pattern. As a result, at least a portion of the resist pattern is peeled off or removed. Hydroxyl radicals have a higher redox potential than ozone gas and have stronger oxidizing power than ozone gas. Therefore, the resist pattern can be removed more efficiently than when the resist pattern is oxidized and decomposed using ozone gas. As a result, the amount of resist stripping solution containing sulfuric acid used can be reduced or eliminated, so that the environmental load can be reduced.
  • the substrate may be a substrate on which impurity ions are implanted into the portions of the surface of the substrate exposed from the resist pattern, or ion implantation may be performed. It is also possible to use a substrate that has not been subjected to this process. In the former case, the surface layer of the resist pattern may or may not be hardened by ion implantation.
  • Hydrogen peroxide is an aqueous solution of hydrogen peroxide.
  • Hydrogen peroxide solution is a liquid whose main components are hydrogen peroxide (H 2 O 2 ) and water (H 2 O). If hydrogen peroxide and water are the main components (e.g., if the volume percent concentration of hydrogen peroxide and water is 90% or more), then the hydrogen peroxide solution contains substances other than hydrogen peroxide and water. Good too.
  • Ozone gas is an ozone-containing gas that contains ozone at a higher concentration than the concentration of ozone in the air.
  • the ozone-containing gas is a gas in which ozone is uniformly dispersed.
  • the ozone-containing gas may be a gas containing only ozone, or may be a gas containing components other than ozone. In the latter case, components other than ozone, such as oxygen or carbon dioxide, may be included in the ozone-containing gas.
  • At least one of the following features may be added to the substrate processing method.
  • the substrate processing method further includes a hydrogen peroxide heating step of heating the hydrogen peroxide at a peeling promotion temperature higher than room temperature before or after supplying the hydrogen peroxide to the substrate.
  • the hydrogen peroxide solution is heated indirectly or directly after being supplied to the substrate.
  • heated hydrogen peroxide solution is supplied to the substrate.
  • the ozone gas can be brought into contact with the hydrogen peroxide solution at a peeling promotion temperature, that is, a temperature higher than room temperature, and the generation of hydroxyl radicals can be promoted.
  • a peeling promotion temperature that is, a temperature higher than room temperature
  • the hydrogen peroxide water heating step may be any one of an indirect heating step, a direct heating step, and a pre-heating step, or may include two or more of these.
  • the indirect heating step is a step of heating the hydrogen peroxide solution at the peeling promoting temperature by bringing at least one of the heated substrate and the heated gas into contact with the hydrogen peroxide solution that is in contact with the substrate.
  • the direct heating step is a step of heating the hydrogen peroxide solution in contact with the substrate to the exfoliation promoting temperature by irradiating the hydrogen peroxide solution with electromagnetic waves emitted from a heat source such as a lamp.
  • the pre-heating step is a step of heating the hydrogen peroxide solution to be supplied to the substrate at the peeling promotion temperature before supplying the hydrogen peroxide solution to the substrate.
  • the peeling promotion temperature is below the boiling point of the hydrogen peroxide solution.
  • the hydrogen peroxide solution is heated at a temperature lower than the boiling point of the hydrogen peroxide solution.
  • the rate at which the hydrogen peroxide solution evaporates from the substrate can be reduced, and the state in which the hydrogen peroxide solution remains on the substrate can be maintained.
  • the thickness of the hydrogen peroxide droplets or liquid film on the substrate increases, and the number of hydroxyl radicals that reach the surface of the resist pattern decreases.
  • the peeling promotion temperature is below the boiling point of water.
  • hydrogen peroxide solution is heated at a temperature lower than the boiling point of water, that is, 100°C. This reduces the rate at which water evaporates from the hydrogen peroxide solution on the substrate, allowing water to evaporate onto the substrate without forming thick droplets or films of hydrogen peroxide solution on the substrate. It is possible to maintain a state of . Hydroxyl radicals are generated not only by the reaction between ozone gas and hydrogen peroxide, but also by the reaction between ozone gas and water. This makes it possible to increase the number of hydroxyl radicals that react with the resist pattern.
  • the series of steps from resist application to before resist stripping includes steps of heating the substrate, such as pre-bake and post-bake.
  • the maximum temperature of the substrate in this series of steps is defined as the maximum temperature.
  • a hardened layer is formed on the surface layer of the resist pattern, and if the temperature at which the resist pattern is heated is significantly higher than the maximum temperature, the pressure inside the resist pattern tends to increase.
  • the peeling promotion temperature is set to a temperature lower than the boiling point of the hydrogen peroxide solution or lower than the boiling point of water
  • the resist pattern is heated.
  • the temperature can be brought close to the maximum temperature of the substrate in the series of steps described above, that is, the maximum temperature.
  • the temperature at which the resist pattern is heated can be lower than the maximum temperature.
  • the hydrogen peroxide solution supply step includes an initial supply step of supplying the hydrogen peroxide solution to the surface of the substrate, and a step of supplying the hydrogen peroxide solution to the surface of the substrate after stopping the supply of the hydrogen peroxide solution to the surface of the substrate. and re-supplying the surface of the substrate.
  • the step of supplying the hydrogen peroxide solution includes a step of interrupting the supply of the hydrogen peroxide solution at least once.
  • the hydrogen peroxide solution is heated at a peeling promotion temperature higher than room temperature, and the hydrogen peroxide solution is intermittently supplied to the surface of the substrate. That is, hydrogen peroxide solution is supplied to the surface of the substrate and held on the surface of the substrate. While the supply of hydrogen peroxide solution is stopped (while the addition of hydrogen peroxide solution is stopped), the hydrogen peroxide solution on the substrate decreases due to evaporation or reaction with ozone gas. Restart the supply of hydrogen peroxide to the surface of the substrate, and add hydrogen peroxide to the surface of the substrate. This makes it possible to maintain the state in which hydrogen peroxide is on the substrate while reducing the amount of hydrogen peroxide consumed compared to the case where hydrogen peroxide is continuously supplied. In addition, the droplets or liquid film of hydrogen peroxide on the substrate can be made thinner than when hydrogen peroxide is continuously supplied.
  • the ozone gas supply step includes a step of supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate in a state where a plurality of droplets of the hydrogen peroxide solution are dispersed over the entire surface of the substrate.
  • the shape of the hydrogen peroxide droplet when looking at the surface of the substrate from the direction perpendicular to the surface of the substrate may be a circle, an ellipse, a line, or any other shape. There may be.
  • Hydroxyl radicals (OH) supplied to the solid-liquid interface (see Figure 4), which is the interface between the resist pattern and hydrogen peroxide solution, are absorbed by the three-state boundary (see Figure 4), which is the boundary between ozone gas, hydrogen peroxide solution, and the resist pattern. (see 4).
  • hydroxyl radicals return to hydrogen peroxide in a short time, so if the shortest distance from the surface of a hydrogen peroxide droplet or liquid film to the solid-liquid interface is long, the hydroxyl radicals will return to hydrogen peroxide before reaching the solid-liquid interface. This is because it disappears. Therefore, near the three-state boundary, the resist pattern in contact with the hydrogen peroxide solution can be removed more efficiently than at a position farther from the three-state boundary.
  • the total length (total value of the length) of the three-state boundary is such that the entire surface of the substrate is covered with a liquid film of hydrogen peroxide. It is larger than the total length of the three-state boundary when covered.
  • the resist pattern in contact with the hydrogen peroxide solution can be removed more efficiently near the three-state boundary than at a position farther from the three-state boundary. For the above reasons, the resist pattern can be removed more efficiently than when the entire surface of the substrate is covered with a liquid film of hydrogen peroxide.
  • the hydrogen peroxide solution supply step includes a mist supply step of supplying the hydrogen peroxide solution mist to the surface of the substrate.
  • atomized hydrogen peroxide solution is supplied to the surface of the substrate.
  • the hydrogen peroxide mist is composed of a large number of hydrogen peroxide particles.
  • the hydrogen peroxide particles on the substrate combine with other hydrogen peroxide particles, forming hydrogen peroxide droplets (aggregates of hydrogen peroxide with a diameter larger than the hydrogen peroxide particles). is formed on the surface of the substrate.
  • the surface of the resist pattern is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate.
  • the surface of the resist pattern is hydrophilic, a liquid film of hydrogen peroxide solution is formed that covers the entire surface of the substrate. As a result, thinner droplets or a liquid film of hydrogen peroxide can be formed compared to the case where a continuous liquid column of hydrogen peroxide is formed from the liquid column nozzle to the surface of the substrate.
  • the hydrogen peroxide water is supplied to the surface of the substrate by forming a continuous liquid column of hydrogen peroxide water from a liquid column nozzle to the surface of the substrate. Including process.
  • hydrogen peroxide solution is continuously discharged from a liquid column nozzle toward the surface of the substrate, and the hydrogen peroxide solution is caused to collide with the surface of the substrate.
  • the hydrogen peroxide solution discharged from the liquid column nozzle forms a continuous injection of hydrogen peroxide solution from the liquid column nozzle to the surface of the substrate.
  • the surface of the resist pattern is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate.
  • the surface of the resist pattern is hydrophilic, a liquid film of hydrogen peroxide solution is formed that covers the entire surface of the substrate. As a result, droplets or a liquid film of hydrogen peroxide can be formed in a shorter time than when a mist of hydrogen peroxide is supplied to the surface of the substrate.
  • the substrate processing method includes a hydrophilization process in which the contact angle of water with respect to the surface of the resist pattern is reduced by bringing the ozone gas into contact with the surface of the substrate before supplying the hydrogen peroxide solution to the surface of the substrate. It further includes a step.
  • ozone gas is brought into contact with the surface of the substrate to weaken the hydrophobicity of the surface of the resist pattern. This reduces the contact angle of water with the surface of the resist pattern.
  • hydrogen peroxide solution is supplied to the surface of the substrate. If the surface of the resist pattern is hydrophobic, a liquid film of hydrogen peroxide that covers the entire surface of the substrate cannot be formed unless hydrogen peroxide is supplied at a large flow rate. However, in this case, not only the amount of hydrogen peroxide consumed increases, but also a thick film of hydrogen peroxide is formed.
  • ozone gas is used not only to remove the resist pattern, but also to make the surface of the resist pattern hydrophilic, which is more effective than using a liquid or gas other than ozone gas to make the surface of the resist pattern hydrophilic.
  • ozone gas is used not only to remove the resist pattern, but also to make the surface of the resist pattern hydrophilic, which is more effective than using a liquid or gas other than ozone gas to make the surface of the resist pattern hydrophilic.
  • the substrate processing method includes a stripping solution supplying step of supplying a resist stripping solution for stripping the resist pattern from the surface of the substrate to the surface of the substrate, after supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate. Including further.
  • a resist stripping solution is supplied to the surface of the substrate. Even if a portion of the resist pattern remains on the surface of the substrate, this resist pattern is peeled off from the surface of the substrate due to contact with the resist stripping solution. Even if the residue of the resist pattern remains on the surface of the substrate, this residue is washed away by the resist stripping solution. This makes it possible to reduce the amount of resist remaining on the surface of the substrate.
  • Another embodiment of the present invention for achieving the above object includes a hydrogen peroxide solution nozzle that supplies hydrogen peroxide solution to the surface of a substrate on which a resist pattern is formed, and a hydrogen peroxide solution nozzle that supplies hydrogen peroxide solution to the surface of the substrate on which a resist pattern is formed.
  • a substrate processing apparatus is provided, including an ozone nozzle that supplies ozone gas. According to this apparatus, the same effects as the above-described substrate processing method can be achieved. At least one of the features described above regarding the substrate processing method may be added to the substrate processing apparatus according to this embodiment.
  • FIG. 3 is a process diagram showing an example of substrate processing including resist stripping according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing an example of a resist pattern according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of resist peeling according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining an example of resist peeling according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining that ozone gas dissolved in droplets of hydrogen peroxide on a substrate reacts with hydrogen peroxide contained in hydrogen peroxide to generate hydroxyl radicals.
  • FIG. 2 is a vertical cross-sectional view showing an example of an image of a resist pattern in which a cavity is formed in a hardened layer.
  • FIG. 7 is a schematic diagram for explaining another example of resist peeling according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram for explaining another example of resist peeling according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining that ozone gas dissolved in a liquid film of hydrogen peroxide on a substrate reacts with hydrogen peroxide contained in hydrogen peroxide to generate hydroxyl radicals.
  • 1 is a schematic plan view showing the layout of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the pretreatment unit.
  • FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the heat treatment unit.
  • FIG. 7 is a cross-sectional view showing another example of a vertical cross section of the heat treatment unit.
  • FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the post-processing unit.
  • FIG. 3 is a process diagram showing an example of substrate processing performed by the substrate processing apparatus.
  • FIG. 1 is a process diagram showing an example of processing of a substrate W including resist stripping according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a resist pattern 100 according to an embodiment of the present invention.
  • resist coating is performed to form a resist film covering the entire surface of the substrate W by applying a photoresist solution containing a resin and a solvent to the surface of the substrate W such as a silicon wafer.
  • prebaking is performed to evaporate the solvent contained in the resist film by heating the substrate W at a prebaking temperature while the entire surface of the substrate W is covered with the resist film (step S2 in FIG. 1).
  • exposure is performed to transfer the circuit pattern formed on the photomask onto the resist film (step S3 in FIG. 1).
  • Step S3 After exposure, a developing solution is supplied to the substrate W to remove unnecessary portions from the resist film, and development is performed to form a resist pattern 100 corresponding to the remaining resist film on the surface of the substrate W (see FIG. 1). Step S3). Thereafter, post-bake is performed to heat the substrate W at a post-bake temperature (step S4 in FIG. 1). Post-exposure baking may be performed to heat the substrate W after exposure and before development. After the post-baking, ion implantation is performed to implant impurity ions into the portions of the surface of the substrate W exposed from the resist pattern 100 (step S5 in FIG. 1). Thereafter, resist stripping is performed to remove the unnecessary resist pattern 100 from the surface of the substrate W (step S6 in FIG. 1).
  • the substrate W represents both the substrate W corresponding to the base material and the resist pattern 100 formed on the base material, and the surface of the substrate W is the surface of the resist pattern 100. and a portion of the surface of the substrate W exposed from the resist pattern 100.
  • FIG. 3A, FIG. 3B, FIG. 3C, FIG. 3D, FIG. 3E, and FIG. 3F are schematic diagrams for explaining an example of resist peeling according to an embodiment of the present invention.
  • 3A to 3F show the substrate W viewed horizontally.
  • FIG. 4 is a schematic diagram for explaining that ozone gas dissolved in droplets of hydrogen peroxide on the substrate W reacts with hydrogen peroxide contained in the hydrogen peroxide to generate hydroxyl radicals. be.
  • the thick line in FIG. 4 indicates the solid-liquid interface 111, which is the interface between the resist pattern 100 and the hydrogen peroxide solution.
  • FIG. 5 is a vertical cross-sectional view showing an example of an image of the resist pattern 100 in which a cavity 103 is formed in the hardened layer 101.
  • the substrate W when removing the resist pattern 100 having the hardened layer 101 from the substrate W, the substrate W is removed at a peeling promotion temperature higher than room temperature (a constant or almost constant temperature within 15 to 30° C.). The entire substrate W is heated uniformly and maintained at a temperature that promotes peeling.
  • the substrate W is placed horizontally on a heat-generating hot plate 30 with the surface of the substrate W on which a resist pattern 100 is formed facing upward, and the bottom surface of the substrate W is in contact with the hot plate 30.
  • An example is shown in which the substrate W is uniformly heated at a peeling promoting temperature.
  • the substrate W may be heated by contact between the substrate W and a heating gas or liquid at a temperature higher than room temperature, or by electromagnetic waves emitted from a heat source such as a lamp.
  • the substrate W may be heated by irradiating the substrate W with the following.
  • a mist of hydrogen peroxide is ejected from the mist nozzle 51A, which is an example of a hydrogen peroxide nozzle. is supplied to the surface of the substrate W to disperse a plurality of droplets of hydrogen peroxide over the entire surface of the substrate W.
  • the hydrogen peroxide mist may be supplied to the substrate W by spraying the hydrogen peroxide mist toward the surface of the substrate W, or by supplying the hydrogen peroxide mist above the substrate W. This may be carried out by diffusing the hydrogen peroxide solution in a space and causing the diffused mist of hydrogen peroxide to fall onto the surface of the substrate W.
  • the hydrogen peroxide mist may be supplied to the surface of the substrate W by methods other than these.
  • the mist of hydrogen peroxide is composed of many particles of hydrogen peroxide.
  • the hydrogen peroxide particles supplied to the substrate W combine with other hydrogen peroxide particles to form hydrogen peroxide droplets on the surface of the substrate W.
  • the hydrogen peroxide droplets on the substrate W gradually become larger.
  • the surface of the resist pattern 100 is hydrophobic, instead of forming a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W, as shown in FIG.
  • the water droplets are dispersed over the entire surface of the substrate W, and only a portion of the surface of the substrate W is covered with the hydrogen peroxide solution.
  • the substrate W in a horizontal position is uniformly heated at a peeling promoting temperature, and a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W.
  • Ozone gas is brought into contact with a plurality of droplets of hydrogen peroxide solution on the substrate W.
  • the state in which the heat treatment chamber 34 is filled with ozone gas can be prevented.
  • new ozone gas is continuously supplied to the substrate W.
  • the supply of ozone gas to the heat treatment chamber 34 may be stopped, and the inside of the heat treatment chamber 34 may be sealed.
  • the ozone gas in the heat treatment chamber 34 may be replaced with new ozone gas every time a certain period of time passes.
  • the ozone gas supplied into the heat treatment chamber 34 may be at room temperature or may be at a higher temperature than room temperature.
  • the ozone gas is dissolved in the hydrogen peroxide solution on the substrate W and reacts with the hydrogen peroxide contained in the hydrogen peroxide solution.
  • hydroxyl radicals (OH) in FIG. 4) and hydroperoxy radicals (“HO 2 " in FIG. 4) are separated by the chemical reaction shown as "O 3 + H 2 O 2 ⁇ OH + HO 2 + O 2 " . generated.
  • a portion of the hydroxyl radicals generated within the droplet of hydrogen peroxide diffuses within the droplet and reaches the solid-liquid interface 111, which is the interface between the resist pattern 100 and the hydrogen peroxide.
  • hydroxyl radicals generated at the solid-liquid interface 111 There are also hydroxyl radicals generated at the solid-liquid interface 111.
  • the hydroxyl radicals react with the hardened layer 101 (see FIG. 5) of the resist pattern 100 at the solid-liquid interface 111 to oxidize and decompose the hardened layer 101.
  • the hydroxyl radicals that reach the non-cured portion 102 (see FIG. 5) oxidize and decompose the non-cured portion 102.
  • at least a portion of the resist pattern 100 is vaporized and removed from the substrate W.
  • the substrate W in the horizontal position is uniformly heated to a peeling promoting temperature
  • a plurality of droplets of hydrogen peroxide solution are dispersed over the entire surface of the substrate W, and the superposition on the substrate W is heated.
  • Ozone gas is brought into contact with multiple droplets of hydrogen oxide water.
  • FIG. 3D shows a state in which the droplets of hydrogen peroxide on the substrate W have become smaller
  • FIG. 3E shows the droplets of hydrogen peroxide on the substrate W due to replenishment of the mist of hydrogen peroxide. It shows that it has become larger.
  • FIG. 4 shows a vertical cross section (a cross section cut along a vertical plane) of a droplet of hydrogen peroxide solution on the substrate W.
  • Reference numeral 112 in FIG. 4 indicates a three-state boundary that is a boundary between ozone gas, hydrogen peroxide solution, and resist pattern 100, and the hatched area in FIG. 4 indicates the relative amount of hydroxyl radicals supplied. It shows areas where there are many areas. The number of hydroxyl radicals supplied to the solid-liquid interface 111 increases as it approaches the three-state boundary 112.
  • FIG. 5 shows an example of a cavity 103 in the hardened layer 101 formed near the three-state boundary 112.
  • the three hydrogen peroxide droplets two on both sides are placed on the two resist patterns 100, and the remaining one is placed between the two resist patterns 100. has been done.
  • Three of the five cavities 103 extend in the thickness direction of the substrate W from near the outer periphery of the two hydrogen peroxide droplets on both sides, and two of the cavities 103 extend in the thickness direction of the substrate W from the sides of the two resist patterns 100. (the direction perpendicular to the thickness direction of the substrate W; in FIG. 5, the left-right direction of the paper surface). Both cavities 103 penetrate the hardened layer 101 and reach the unhardened portion 102 .
  • the number of hydroxyl radicals supplied to the solid-liquid interface 111 increases as it approaches the three-state boundary 112. Therefore, as shown in FIG. 5, a cavity 103 is formed near the outer periphery of the hydrogen peroxide droplet, and then the remaining portion of the cured layer 101 is decomposed by the hydroxyl radicals.
  • the supply of ozone gas to the substrate W may be stopped after the time period for which the cavity 103 is expected to reach the uncured portion 102 has elapsed, or the supply of ozone gas to the substrate W may be stopped after the time elapsed when the cavity 103 is expected to reach the non-cured portion 102, or all portions of the cured layer 101 that are in contact with the hydrogen peroxide solution may be stopped.
  • the reaction may be stopped after a period of time during which it is assumed that the hydroxyl radicals are decomposed by the hydroxyl radicals.
  • the surface of the resist pattern 100 is hydrophobic, when a mist of hydrogen peroxide is supplied to the substrate W, a liquid film of hydrogen peroxide that covers the entire surface of the substrate W is not formed. , a plurality of droplets of hydrogen peroxide solution are dispersed over the entire surface of the substrate W.
  • the hydrophobicity of the portion of the surface of the resist pattern 100 that is in contact with the hydrogen peroxide solution is weakened due to the reaction with the hydrogen peroxide solution and hydroxyl radicals.
  • the hydrophobicity of the surface of the resist pattern 100 that is not in contact with the hydrogen peroxide solution is also weakened due to the reaction with the ozone gas.
  • ozone gas is exhausted from the inside of the heat treatment chamber 34 (see FIGS. 10A and 10B) that accommodates the substrate W. Further, the process waits until all the hydrogen peroxide is removed from the substrate W by evaporation, and then heating of the substrate W is stopped. At this time, the substrate W may be continued to be heated at the peel-promoting temperature, or the time required for the substrate W to dry may be shortened by heating the substrate W at a drying temperature higher than the peel-promoting temperature. After stopping the heating of the substrate W, the substrate W may be forcibly cooled to room temperature or a temperature close thereto. In addition to or instead of heating the substrate W, the hydrogen peroxide solution may be removed from the substrate W by another drying method such as lowering the atmospheric pressure or supplying a gas to the substrate W.
  • FIG. 3F shows an example in which the stripper nozzle 85 discharges SPM (a mixed solution of sulfuric acid and hydrogen peroxide solution), which is an example of a resist stripper, toward the upper surface (front surface) of the rotating substrate W. It shows.
  • the resist stripping solution is a chemical solution containing a compound that chemically reacts with the resist pattern 100.
  • the resist stripping liquid is also called a resist removing liquid.
  • the resist stripping solution may be SPM or SC1 (a mixed solution of ammonia water, hydrogen peroxide solution, and water), or may be a chemical solution other than these.
  • the resist stripping solution adhering to the substrate W is washed away with a rinsing solution such as pure water, and then the substrate W is dried.
  • the resist stripping solution is supplied to the substrate W by discharging the resist stripping solution toward the top or bottom surface of the substrate W while rotating the substrate W in a horizontal plane around a vertical straight line passing through the center of the substrate W.
  • the substrate W may be immersed in a resist stripping solution.
  • the substrate W may be dried by spin drying, in which the liquid adhering to the substrate W is scattered by high-speed rotation of the substrate W, or by a drying method other than spin drying, such as vacuum drying.
  • the substrate W is uniformly heated at a peeling promotion temperature higher than room temperature.
  • the peel-off promoting temperature may be equal to the pre-bake temperature, or may be higher or lower than the pre-bake temperature.
  • the peel promoting temperature may be equal to the post-bake temperature, or may be higher or lower than the post-bake temperature.
  • the peeling promotion temperature may be lower than the boiling point of hydrogen peroxide solution or lower than the boiling point of water.
  • the boiling point of hydrogen peroxide is 150.2°C. Therefore, the peel promoting temperature may be less than 150.2°C or less than 100°C.
  • the concentration of the hydrogen peroxide solution may be 30 to 40 wt% (mass percent concentration) or may be outside this range.
  • the boiling point of 30 wt% hydrogen peroxide solution is 106°C, and the boiling point of 35 wt% hydrogen peroxide solution is 108°C.
  • FIGS. 6A, 6B, 6C, and 6D are schematic diagrams for explaining other examples of resist peeling according to an embodiment of the present invention.
  • 6A to 6D show the substrate W viewed horizontally.
  • FIG. 7 is a schematic diagram for explaining that ozone gas dissolved in a liquid film of hydrogen peroxide on the substrate W reacts with hydrogen peroxide contained in the hydrogen peroxide to generate hydroxyl radicals. be.
  • the substrate W in a horizontal position is uniformly heated at a temperature that promotes peeling. Thereafter, instead of supplying a mist of hydrogen peroxide to the substrate W, ozone gas is brought into contact with the entire surface of the substrate W, as shown in FIG. 6A.
  • the contacting method is the same as an example of resist peeling.
  • the ozone gas reacts with the surface of the resist pattern 100, the contact angle of water with the surface of the resist pattern 100 decreases, and the hydrophobicity of the surface of the resist pattern 100 weakens. This changes the surface of the resist pattern 100 to be hydrophilic.
  • hydrogen peroxide is supplied to the substrate W to form a liquid film of hydrogen peroxide that covers the entire surface of the substrate W.
  • a mist of hydrogen peroxide solution is supplied to the surface of the substrate W, similar to the above-described example of resist stripping.
  • a plurality of droplets of hydrogen peroxide are formed on the substrate W and gradually become larger.
  • the hydrogen peroxide is continuously discharged toward the surface of the substrate W.
  • the hydrogen peroxide that forms a continuous liquid column of hydrogen peroxide water that has a diameter similar to that of the liquid column nozzle 51B (for example, within a diameter range of 5 to 20 mm) flows toward the liquid column nozzle 51B.
  • the water may be caused to collide with the center of the surface of the substrate W that is stationary in a horizontal position.
  • the discharged hydrogen peroxide solution collides with the center of the surface of the substrate W. Then, it flows radially along the surface of the substrate W from the center of the surface of the substrate W. The hydrogen peroxide solution on the substrate W is swept outward by the subsequent hydrogen peroxide solution, and is discharged outward from the outer periphery of the surface of the substrate W. As a result, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed.
  • the hydrogen peroxide solution may be supplied to the substrate W while the substrate W is rotated in a horizontal position, instead of while the substrate W is held still in a horizontal position.
  • the hydrogen peroxide solution may be continuously discharged toward the upper surface (front surface) of the substrate W while rotating the substrate W in a horizontal plane around a vertical straight line passing through the center of the substrate W.
  • centrifugal force due to the rotation of the substrate W is applied to the hydrogen peroxide solution on the substrate W, so that the time required to form a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W can be shortened.
  • the entire surface of the substrate W can be covered in a shorter time than when only a mist of hydrogen peroxide solution is supplied to the surface of the substrate W.
  • a covering liquid film of hydrogen peroxide can be formed.
  • the substrate W in a horizontal position is heated uniformly at a peeling promoting temperature, and the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide solution.
  • ozone gas is brought into contact with a liquid film of hydrogen peroxide solution.
  • the supply of ozone gas to the substrate W may be continued from the time when the surface of the resist pattern 100 is made hydrophilic, or may be restarted after forming a liquid film of hydrogen peroxide solution. In the latter case, ozone gas may be exhausted from the inside of the heat treatment chamber 34 before forming the hydrogen peroxide solution film.
  • hydroxyl radicals are generated by the reaction between the ozone gas and hydrogen peroxide, similar to an example of resist peeling, and the cured layer 101 of the resist pattern 100 (see FIG. 5) is generated. Disassemble. As a result, a cavity 103 (see FIG. 5) reaching the uncured portion 102 (see FIG. 5) is formed in the hardened layer 101.
  • the supply of ozone gas to the substrate W may be stopped when a cavity 103 reaching the uncured portion 102 is formed in the cured layer 101, or until all or almost all of the cured layer 101 is decomposed by hydroxyl radicals. You may continue.
  • the hydrogen peroxide solution film is constant or nearly constant except for the outer periphery. Therefore, hydroxyl radicals can be uniformly supplied to the solid-liquid interface 111, and the resist pattern 100 can be uniformly peeled off over the entire surface of the substrate W.
  • the thickness of the hydrogen peroxide solution film is large, the number of hydroxyl radicals that reach the solid-liquid interface 111 is reduced. Therefore, it is preferable to reduce the thickness (film thickness) of the hydrogen peroxide solution as much as possible.
  • FIG. 6D shows an example in which the stripping liquid nozzle 85 discharges SPM, which is an example of a resist stripping liquid, toward the upper surface (front surface) of the rotating substrate W.
  • a resist stripping step is performed in which at least a portion of the resist pattern 100 is stripped from the surface of the substrate W by supplying ozone gas and hydrogen peroxide solution to the surface of the substrate W. Thereafter, a residual resist stripping step is performed in which a resist stripping solution is supplied to the surface of the substrate W. Even if the resist remains on the surface of the substrate W after performing the resist stripping process, the remaining resist can be stripped from the surface of the substrate W with the resist stripping liquid. Thereby, all the resist can be removed from the substrate W. Alternatively, the amount of resist remaining on the substrate W can be reduced.
  • FIG. 8 is a schematic plan view showing the layout of the substrate processing apparatus 1 according to an embodiment of the present invention.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates W one by one.
  • the substrate W is, for example, a semiconductor wafer.
  • the substrate processing apparatus 1 includes a plurality of load ports LP each holding a plurality of carriers C for accommodating substrates W, and processes the substrates W transported from the plurality of load ports LP with a processing fluid such as a processing liquid or a processing gas. and a plurality of processing units 2.
  • the substrate processing apparatus 1 further includes a transport unit (IR, SH, CR) that transports the substrate W, and a control device (controller) 3 that controls the substrate processing apparatus 1.
  • the control device 3 is typically a computer, and includes a memory 3m that stores information such as programs, and a processor 3p that controls the substrate processing apparatus 1 according to the information stored in the memory 3m.
  • the transport units include an indexer robot IR, a shuttle SH, and a center robot CR arranged on a transport path extending from the plurality of load ports LP to the plurality of processing units 2.
  • the indexer robot IR transports the substrate W between the plurality of load ports LP and the shuttle SH.
  • the shuttle SH transports the substrate W by reciprocating between the indexer robot IR and the center robot CR.
  • the center robot CR transports the substrate W between the shuttle SH and the plurality of processing units 2.
  • the central robot CR further transports the substrate W between the plurality of processing units 2.
  • the thick arrows shown in FIG. 8 indicate the moving directions of the indexer robot IR and shuttle SH.
  • the plurality of processing units 2 form four towers arranged at four horizontally spaced positions. Each tower includes a plurality of processing units 2 stacked vertically. The four towers are placed two on each side of the conveyance path.
  • the plurality of processing units 2 include a plurality of pre-processing units 2D that process the substrates W while heating or cooling them, and a plurality of post-processing units 2W that process the substrates W processed by the plurality of pre-processing units 2D with a processing liquid. including.
  • the two towers on the load port LP side are formed by a plurality of pre-processing units 2D, and the remaining two towers are formed by a plurality of post-processing units 2W.
  • FIG. 9 is a sectional view showing an example of a vertical cross section of the preprocessing unit 2D.
  • FIG. 10A is a cross-sectional view showing an example of a vertical cross section of the heat treatment unit 8.
  • FIG. 10B is a sectional view showing another example of a vertical section of the heat treatment unit 8.
  • line means a flow path formed by fluid devices such as piping and valves.
  • the gas supply line 49 corresponds to a flow path for gas supply.
  • the preprocessing unit 2D includes a chamber 4 provided with a loading/unloading port 4a through which the substrate W passes, a shutter 5 for opening/closing the loading/unloading port 4a of the chamber 4, and a processing liquid or the like while heating the substrate W in the chamber 4.
  • a heat treatment unit 8 that supplies a processing fluid such as a processing gas to the substrate W, a cooling unit 7 that cools the substrate W heated by the heat treatment unit 8 within the chamber 4, and an indoor transport mechanism that transports the substrate W within the chamber 4. 6.
  • the central robot CR takes substrates W into and out of the chamber 4 via the loading/unloading port 4a.
  • a cooling unit 7 is arranged within the chamber 4 near the loading/unloading port 4a.
  • the cooling unit 7 includes a cool plate 20, a lift pin 22 that passes through the cool plate 20 and moves up and down, and a pin elevation drive mechanism 23 that moves the lift pin 22 up and down.
  • the cool plate 20 includes a cooling surface 20a on which the substrate W is placed.
  • a refrigerant path (not shown) through which a refrigerant (typically cooling water) circulates is formed inside the cool plate 20 .
  • the lift pins 22 are moved up and down between an upper position where the substrate W is supported above the cooling surface 20a and a lower position where the tips thereof are recessed below the cooling surface 20a.
  • the heat treatment unit 8 includes a heater 33. More specifically, the heat treatment unit 8 includes a hot plate 30, a heat treatment chamber 34 that accommodates the hot plate 30, a lift pin 38 that moves up and down through the hot plate 30, and a pin lifting drive that moves the lift pin 38 up and down. mechanism 39.
  • the hot plate 30 includes a heating surface 30a on which the substrate W is placed, and has a built-in heater 33.
  • the heater 33 is configured to be able to heat the substrate W placed on the heating surface 30a at a constant temperature higher than room temperature, and may be configured to be able to heat the substrate W to 250° C., for example.
  • the heating surface 30a follows the shape of the substrate W and has a planar shape that is one size larger than the substrate W. Specifically, if the substrate W is circular, the heating surface 30a is formed into a circle that is slightly larger than the substrate W.
  • the heat treatment chamber 34 includes a chamber body 35 and a lid 36 that moves up and down above the chamber body 35.
  • the heat treatment unit 8 includes a lid lifting mechanism 37 that raises and lowers the lid 36.
  • the chamber body 35 has an opening 35a that opens upward, and a lid 36 opens and closes this opening 35a.
  • the lid 36 is located between a closed position (lower position) in which it closes the opening 35a of the chamber body 35 and forms a sealed processing space inside the heat treatment chamber 34, and an upper position in which it is retracted upward so as to open the opening 35a.
  • Moved up and down The lift pins 38 are moved up and down between an upper position where the substrate W is supported above the heating surface 30a and a lower position where the tips thereof are recessed below the heating surface 30a.
  • An exhaust port 41 is formed at the bottom of the chamber body 35. It is preferable that the exhaust ports 41 are arranged at a plurality of locations (for example, three locations) at intervals in the circumferential direction. Exhaust port 41 is coupled to exhaust equipment via exhaust line 42 .
  • the lid 36 includes a plate portion 45 extending parallel to the heating surface 30a, and a cylindrical portion 46 extending downward from the periphery of the plate portion 45.
  • the plate portion 45 has a substantially circular shape
  • the tube portion 46 has a cylindrical shape.
  • the lower end of the cylindrical portion 46 faces the upper end of the chamber body 35. Thereby, the opening 35a of the chamber body 35 can be opened and closed by moving the lid 36 up and down.
  • FIG. 10A shows a mist nozzle 51A that sprays a mist of hydrogen peroxide solution toward the top surface of the substrate W, and an ozone nozzle 55 that sprays ozone gas toward the top surface of the substrate W.
  • FIG. 10A shows an example in which a mist nozzle 51A and an ozone nozzle 55 are inserted into two holes vertically penetrating the plate portion 45 of the lid 36.
  • the positions of the mist nozzle 51A and the ozone nozzle 55 with respect to the lid 36 are not limited to this example.
  • the mist nozzle 51A is connected to a hydrogen peroxide line 52 that guides hydrogen peroxide from a hydrogen peroxide supply source 54 to the mist nozzle 51A.
  • the hydrogen peroxide water valve 53 is arranged on the hydrogen peroxide water line 52.
  • the control device 3 opens the hydrogen peroxide water valve 53, the hydrogen peroxide water is supplied to the mist nozzle 51A, and the mist nozzle 51A spouts the hydrogen peroxide water mist.
  • the control device 3 closes the hydrogen peroxide water valve 53, the supply of hydrogen peroxide water to the mist nozzle 51A is stopped, and the ejection of the hydrogen peroxide water mist from the mist nozzle 51A is stopped.
  • the ozone nozzle 55 is connected to an ozone line 56 that guides ozone gas from the ozone generator 58 to the ozone nozzle 55.
  • Ozone valve 57 is placed on ozone line 56.
  • the control device 3 opens the ozone valve 57, ozone gas is supplied to the ozone nozzle 55, and the ozone nozzle 55 spouts the ozone gas.
  • the control device 3 closes the ozone valve 57, the supply of ozone gas to the ozone nozzle 55 is stopped, and the ejection of ozone gas from the ozone nozzle 55 is stopped.
  • a shower plate 59 is arranged between the mist nozzle 51A and the ozone nozzle 55 and the substrate W on the hot plate 30.
  • the mist of hydrogen peroxide ejected from the mist nozzle 51A diffuses through the space between the shower plate 59 and the lid 36, and passes through a plurality of holes penetrating the shower plate 59. Thereby, the mist of hydrogen peroxide solution is uniformly supplied to the upper surface of the substrate W on the hot plate 30.
  • ozone gas ejected from the ozone nozzle 55 diffuses through the space between the shower plate 59 and the lid 36 and passes through a plurality of holes penetrating the shower plate 59. Thereby, ozone gas is uniformly supplied to the upper surface of the substrate W on the hot plate 30.
  • the heat treatment unit 8 may include a liquid column nozzle 51B that continuously discharges hydrogen peroxide solution instead of or in addition to the mist nozzle 51A. In this case, it is preferable to omit the shower plate 59. Furthermore, it is preferable that the liquid column nozzle 51B discharges the hydrogen peroxide solution toward the center of the upper surface of the substrate W on the hot plate 30.
  • a gas-liquid separator 60 that separates liquid from the exhaust gas in the exhaust line 42 may be placed upstream of the exhaust equipment.
  • the indoor transport mechanism 6 transports the substrate W inside the chamber 4. More specifically, the indoor transport mechanism 6 includes an indoor transport hand 6H that transports the substrate W between the cooling unit 7 and the heat treatment unit 8.
  • the indoor transfer hand 6H is configured to be able to transfer the substrate W to and from the lift pins 22 of the cooling unit 7 and to transfer the substrate W to and from the lift pins 38 of the heat treatment unit 8.
  • the indoor transfer hand 6H receives the substrate W from the lift pin 22 of the cooling unit 7 and transfers the substrate W to the lift pin 38 of the heat treatment unit 8.
  • the indoor transfer hand 6H receives the substrate W from the lift pin 38 of the heat treatment unit 8 and transfers the substrate W to the lift pin 22 of the cooling unit 7.
  • a typical operation of the preprocessing unit 2D is as follows.
  • the shutter 5 is controlled to the open position to open the carry-in/out port 4a.
  • the hand H of the central robot CR enters the chamber 4 and places the substrate W above the cool plate 20.
  • the lift pin 22 rises to the upper position and receives the substrate W from the hand H of the central robot CR.
  • the hand H of the center robot CR retreats to the outside of the chamber 4.
  • the indoor transport hand 6H of the indoor transport mechanism 6 receives the substrate W from the lift pin 22 and transports the substrate W to the lift pin 38 of the heat treatment unit 8.
  • the lid 36 is in the open position (upper position), and the lift pins 38 support the received substrate W in the upper position.
  • the lift pins 38 descend to the lower position and place the substrate W on the heating surface 30a.
  • the lid 36 is lowered to the closed position (lower position) and forms a sealed processing space in which the hot plate 30 is accommodated. In this state, heat treatment is performed on the substrate W.
  • the lid 36 is raised to the open position (upper position) and the heat treatment chamber 34 is opened. Further, the lift pins 38 rise to the upper position, pushing the substrate W upwards above the heating surface 30a.
  • the indoor transport hand 6H of the indoor transport mechanism 6 receives the substrate W from the lift pin 38 and transports the substrate W to the lift pin 22 of the cooling unit 7.
  • the lift pins 22 support the received substrate W at the upper position. After the indoor transfer hand 6H is retracted, the lift pins 22 are lowered to the lower position, whereby the substrate W is placed on the cooling surface 20a of the cool plate 20. Thereby, the substrate W is cooled.
  • the lift pins 22 rise to the upper position, thereby pushing the substrate W above the cooling surface 20a.
  • the shutter 5 is opened, and the hand H of the central robot CR enters the chamber 4 and is placed below the substrate W supported by the lift pin 22 located at the upper position.
  • the lift pins 22 are lowered to transfer the substrate W to the hand H of the central robot CR.
  • the hand H holding the substrate W retreats to the outside of the chamber 4, and then the shutter 5 closes the loading/unloading port 4a.
  • FIG. 11 is a sectional view showing an example of a vertical section of the post-processing unit 2W.
  • the post-processing unit 2W is a single-wafer type liquid processing unit that processes the substrates W one by one.
  • the post-processing unit 2W includes a box-shaped chamber 9 (see FIG. 8) that partitions an internal space, and holds a single substrate W in a horizontal position within the chamber 9, and performs vertical rotation passing through the center of the substrate W.
  • a spin chuck 70 (substrate holding means, substrate holder) that rotates the substrate W around the axis A1
  • a stripping liquid supply unit 71 that supplies SPM, which is an example of a resist stripping liquid, to the substrate W held on the spin chuck 70.
  • a rinsing liquid supply unit 72 and a cylindrical cup 73 surrounding the spin chuck 70. As shown in FIG.
  • the chamber 9 is formed with a loading/unloading port 9a through which the substrate W passes, and is provided with a shutter 10 for opening/closing this loading/unloading port 9a.
  • the chamber 9 is an example of a liquid processing chamber in which substrate processing using a processing liquid is performed.
  • the spin chuck 70 includes a disk-shaped spin base 74 held in a horizontal position, a plurality of chuck pins 75 that hold the substrate W in a horizontal position above the spin base 74, and It includes a rotation shaft 76 that extends downward, and a spin motor 77 that rotates the substrate W and the spin base 74 around the rotation axis A1 by rotating the rotation shaft 76.
  • the spin chuck 70 is not limited to a clamping type chuck in which a plurality of chuck pins 75 are brought into contact with the peripheral end surface of the substrate W, but can also be used to attract the back surface (lower surface) of the substrate W, which is a non-device forming surface, to the upper surface of the spin base 74.
  • a vacuum type chuck that holds the substrate W horizontally may be used.
  • the cup 73 is arranged outward (in the direction away from the rotation axis A1) from the substrate W held by the spin chuck 70.
  • the cup 73 surrounds the spin base 74.
  • the cup 73 receives the processing liquid discharged around the substrate W when the processing liquid is supplied to the substrate W while the spin chuck 70 is rotating the substrate W.
  • the processing liquid received in the cup 73 is sent to a recovery device or a drainage device (not shown).
  • the rinsing liquid supply unit 72 includes a rinsing liquid nozzle 80 that discharges rinsing liquid toward the substrate W held by the spin chuck 70, a rinsing liquid pipe 81 that supplies the rinsing liquid to the rinsing liquid nozzle 80, and a rinsing liquid pipe. 81 to the rinse liquid nozzle 80 and a rinse liquid valve 82 that switches between supplying and stopping the supply of the rinse liquid from 81 to the rinse liquid nozzle 80.
  • the rinse liquid nozzle 80 may be a fixed nozzle that discharges the rinse liquid while the discharge port of the rinse liquid nozzle 80 remains stationary.
  • the rinsing liquid supply unit 72 may include a rinsing liquid nozzle moving unit that moves the position of the rinsing liquid on the upper surface of the substrate W by moving the rinsing liquid nozzle 80.
  • the rinsing liquid is, for example, pure water (DIW).
  • the rinsing liquid is not limited to pure water, and may be carbonated water, electrolyzed ionized water, hydrogen water, ozone water, or hydrochloric acid water with a diluted concentration (for example, about 10 to 100 ppm).
  • the temperature of the rinsing liquid may be room temperature or a temperature higher than room temperature (for example, 70 to 90° C.).
  • the stripping liquid supply unit 71 performs stripping by moving a stripping liquid nozzle 85 that discharges SPM toward the upper surface of the substrate W, a nozzle arm 86 to which the stripping liquid nozzle 85 is attached to the tip, and the nozzle arm 86.
  • a nozzle moving unit 87 that moves the liquid nozzle 85 is included.
  • the stripping liquid nozzle 85 is, for example, a straight nozzle that discharges SPM in a continuous flow state, and is attached to the nozzle arm 86 in a vertical position to discharge the processing liquid in a direction perpendicular to the upper surface of the substrate W, for example.
  • the nozzle arm 86 extends in the horizontal direction and is provided so as to be pivotable about a swing axis (not shown) that extends in the vertical direction around the spin chuck 70 .
  • the nozzle moving unit 87 moves the stripping liquid nozzle 85 horizontally along a trajectory passing through the center of the upper surface of the substrate W in plan view by rotating the nozzle arm 86 around the swing axis.
  • the nozzle moving unit 87 moves between a processing position where the SPM discharged from the stripping liquid nozzle 85 lands on the upper surface of the substrate W and a home position where the stripping liquid nozzle 85 is located around the spin chuck 70 in plan view. , move the stripping liquid nozzle 85 horizontally.
  • the processing positions include a central position where the SPM discharged from the stripping liquid nozzle 85 lands on the center of the upper surface of the substrate W, and a peripheral position where the SPM discharged from the stripping liquid nozzle 85 lands on the periphery of the upper surface of the substrate W. including.
  • the stripping solution supply unit 71 is connected to a stripping solution nozzle 85, a sulfuric acid pipe 89 to which sulfuric acid (H 2 SO 4 ) is supplied from a sulfuric acid supply source 88, and a hydrogen peroxide solution supply source.
  • Hydrogen peroxide water piping 95 is supplied with hydrogen peroxide water (H 2 O 2 ) from 94 .
  • the sulfuric acid supplied from the sulfuric acid supply source 88 and the hydrogen peroxide solution supplied from the hydrogen peroxide supply source 94 are both aqueous solutions.
  • the concentration of sulfuric acid is, for example, 90 to 98%, and the concentration of hydrogen peroxide solution is, for example, 30 to 50%.
  • a sulfuric acid valve 90 that opens and closes the flow path of the sulfuric acid piping 89, a sulfuric acid flow rate adjustment valve 91 that changes the flow rate of sulfuric acid, and a heater 92 that heats the sulfuric acid are installed in this order from the stripping liquid nozzle 85 side. It has been intervened.
  • the heater 92 heats the sulfuric acid to a temperature higher than room temperature (a constant temperature within the range of 70 to 190°C, for example 90°C).
  • the hydrogen peroxide water pipe 95 has a hydrogen peroxide water valve 96 that opens and closes the flow path of the hydrogen peroxide water pipe 95, and a hydrogen peroxide water flow rate adjustment valve 97 that changes the flow rate of the hydrogen peroxide water. They are interposed in this order from the liquid nozzle 85 side.
  • the hydrogen peroxide water valve 96 is supplied with hydrogen peroxide water at room temperature (for example, about 23° C.) whose temperature is not adjusted through the hydrogen peroxide water piping 95 .
  • the stripping liquid nozzle 85 has, for example, a substantially cylindrical casing. A mixing chamber is formed inside this casing.
  • the sulfuric acid pipe 89 is connected to a sulfuric acid inlet arranged on the side wall of the casing of the stripper nozzle 85.
  • the hydrogen peroxide water piping 95 is connected to a hydrogen peroxide water inlet arranged on the side wall of the casing of the stripper nozzle 85 .
  • sulfuric acid high temperature sulfuric acid
  • Hydrogen peroxide water from the hydrogen oxide water pipe 95 is supplied from the hydrogen peroxide water inlet of the stripper nozzle 85 to the mixing chamber therein.
  • the sulfuric acid and hydrogen peroxide solution that have flowed into the mixing chamber of the stripper nozzle 85 are sufficiently stirred and mixed in the mixing chamber. Through this mixing, the sulfuric acid and the hydrogen peroxide solution are mixed uniformly, and SPM is produced by their reaction.
  • SPM contains peroxymonosulfuric acid (H 2 SO 5 ), which has strong oxidizing power. Since sulfuric acid heated to a high temperature is supplied and the mixing of sulfuric acid and hydrogen peroxide is an exothermic reaction, high temperature SPM is generated. Specifically, SPM is generated at a temperature higher than the temperature of either the sulfuric acid or the hydrogen peroxide solution before mixing (100° C. or higher, for example, 160° C.).
  • the high temperature SPM generated in the mixing chamber of the stripping liquid nozzle 85 is discharged toward the substrate W from a discharge port opened at the tip (lower end) of the casing.
  • FIG. 12 is a process diagram showing an example of processing of the substrate W performed by the substrate processing apparatus 1. In the following, reference is made to FIGS. 8, 9, 11, and 12.
  • the control device 3 is programmed to cause the substrate processing apparatus 1 to perform the following operations.
  • the indexer robot IR, shuttle SH, and center robot CR transport the substrate W in the carrier C placed on the load port LP to the preprocessing unit 2D (Fig. 12 step S11).
  • the pretreatment unit 2D one of the two examples of resist stripping described above is performed, and at least a portion of the resist pattern 100 (see FIG. 5) is removed (step S12 in FIG. 12).
  • the central robot CR carries the substrate W into the preprocessing unit 2D, and the indoor transport mechanism 6 transports the substrate W to the heat processing unit 8. Thereafter, the steps of evaporating the hydrogen peroxide solution on the substrate W and drying the substrate W are performed in the heat treatment unit 8. After the substrate W is dried, the indoor transport mechanism 6 transports the substrate W from the hot plate 30 to the cool plate 20 as required. As a result, the substrate W is cooled by the cool plate 20 to a temperature at or near room temperature. After the substrate W is dried or cooled, the center robot CR carries out the substrate W from the pre-processing unit 2D, and carries the carried-out substrate W into the post-processing unit 2W (step S13 in FIG. 12).
  • a wet process is performed in which a processing liquid such as a resist stripping liquid is supplied to the upper surface of the substrate W while rotating the substrate W (step S14 in FIG. 12).
  • a resist stripping liquid supply step is performed in which the resist stripping liquid is discharged from the stripping liquid nozzle 85 toward the upper surface of the substrate W.
  • a rinsing liquid supply step is performed in which the rinsing liquid is discharged from the rinsing liquid nozzle 80 toward the upper surface of the substrate W.
  • a drying process is performed in which the substrate W is dried by rotating the substrate W at high speed.
  • the indexer robot IR, shuttle SH, and center robot CR transport the substrate W in the post-processing unit 2W to the carrier C placed in the load port LP (step S15 in FIG. 12).
  • the resist pattern 100 formed on the surface of the substrate W is brought into contact with hydrogen peroxide solution. Further, ozone gas is brought into contact with this hydrogen peroxide solution. The reaction between ozone gas and hydrogen peroxide produces hydroxyl radicals. The hydroxyl radicals oxidize and decompose the resist pattern 100. As a result, at least a portion of the resist pattern 100 is peeled off or removed. Hydroxyl radicals have a higher redox potential than ozone gas and have stronger oxidizing power than ozone gas. Therefore, the resist pattern 100 can be removed more efficiently than when the resist pattern 100 is oxidized and decomposed using ozone gas. As a result, the amount of resist stripping solution containing sulfuric acid used can be reduced or eliminated, so that the environmental load can be reduced.
  • the hydrogen peroxide solution is heated indirectly or directly after being supplied to the substrate W.
  • heated hydrogen peroxide solution is supplied to the substrate W.
  • the ozone gas can be brought into contact with the hydrogen peroxide solution at a peeling promotion temperature, that is, a temperature higher than room temperature, and the generation of hydroxyl radicals can be promoted.
  • a peeling promotion temperature that is, a temperature higher than room temperature
  • the hydrogen peroxide solution is heated at a temperature lower than the boiling point of the hydrogen peroxide solution.
  • the speed at which the hydrogen peroxide solution evaporates from the substrate W can be reduced, and the state in which the hydrogen peroxide solution is on the substrate W can be maintained.
  • the hydrogen peroxide solution can be maintained on the substrate W for a relatively long time even if the hydrogen peroxide solution is heated to a temperature above the boiling point. Can be done.
  • the thickness of the hydrogen peroxide droplets or liquid film on the substrate W increases, and the number of hydroxyl radicals that reach the surface of the resist pattern 100 decreases.
  • the hydrogen peroxide solution By heating the hydrogen peroxide solution at a temperature lower than the boiling point of the hydrogen peroxide solution, the hydrogen peroxide solution can be heated without forming large droplets or liquid films of the hydrogen peroxide solution on the substrate W. The state on the substrate W can be maintained.
  • the hydrogen peroxide solution is heated at a temperature lower than the boiling point of water, that is, 100°C.
  • the speed at which water evaporates from the hydrogen peroxide solution on the substrate W can be reduced, and even without forming thick droplets or liquid films of hydrogen peroxide solution on the substrate W, the water evaporates from the hydrogen peroxide solution on the substrate W.
  • the state on the substrate W can be maintained. Hydroxyl radicals are generated not only by the reaction between ozone gas and hydrogen peroxide, but also by the reaction between ozone gas and water. Thereby, the number of hydroxyl radicals that react with the resist pattern 100 can be increased.
  • the series of steps from resist application to before resist peeling includes steps of heating the substrate W, such as pre-bake and post-bake.
  • the maximum value of the temperature of the substrate W in this series of steps is defined as the maximum temperature.
  • a hardened layer 101 is formed on the surface layer of the resist pattern 100, and if the temperature at which the resist pattern 100 is heated is significantly higher than the maximum temperature, the pressure inside the resist pattern 100 tends to increase.
  • the peeling-promoting temperature When heating the hydrogen peroxide solution at a peeling-promoting temperature higher than room temperature, if the peeling-promoting temperature is set to a temperature lower than the boiling point of the hydrogen peroxide solution or lower than the boiling point of water, the resist pattern 100 is heated.
  • the temperature of the substrate W can be brought close to the maximum temperature of the substrate W in the series of steps described above, that is, the maximum temperature.
  • the temperature at which resist pattern 100 is heated can be lower than the maximum temperature.
  • the hydrogen peroxide solution is heated at a peeling promotion temperature higher than room temperature, and the hydrogen peroxide solution is intermittently supplied to the surface of the substrate W. That is, hydrogen peroxide solution is supplied to the surface of the substrate W and held on the surface of the substrate W. While the supply of hydrogen peroxide solution is stopped (interrupted) (while the addition of hydrogen peroxide solution is stopped), the hydrogen peroxide solution on the substrate W decreases due to evaporation or reaction with ozone gas. The supply of hydrogen peroxide to the surface of the substrate W is restarted, and hydrogen peroxide is added to the surface of the substrate W.
  • the entire surface of the substrate W is not covered with a liquid film of hydrogen peroxide, but a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W. Then, ozone gas is brought into contact with the hydrogen peroxide solution that is in contact with the substrate W. Thereby, the resist pattern 100 can be removed more efficiently than when the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide. The reason is as follows.
  • Hydroxyl radicals (OH) supplied to the solid-liquid interface 111 which is the interface between the resist pattern 100 and the hydrogen peroxide solution, are in three states, which is the interface between the ozone gas, the hydrogen peroxide solution, and the resist pattern 100. It increases as the boundary 112 (see FIG. 4) is approached. This is because hydroxyl radicals return to hydrogen peroxide in a short time, so if the shortest distance from the surface of the hydrogen peroxide droplet or liquid film to the solid-liquid interface 111 is long, the hydroxyl radicals return to hydrogen peroxide before reaching the solid-liquid interface 111. This is because hydroxyl radicals disappear. Therefore, in the vicinity of the three-state boundary 112, the resist pattern 100 in contact with the hydrogen peroxide solution can be removed more efficiently than in a position farther from the three-state boundary 112.
  • the total length (total value of lengths) of the three-state boundary 112 when a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W is as follows: It is larger than the total length of the three-state boundary 112 when covered with a liquid film.
  • the resist pattern 100 in contact with the hydrogen peroxide solution can be removed more efficiently near the three-state boundary 112 than at a position farther from the three-state boundary 112. For the above reasons, the resist pattern 100 can be removed more efficiently than when the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide.
  • atomized hydrogen peroxide water is supplied to the surface of the substrate W.
  • the hydrogen peroxide mist is composed of a large number of hydrogen peroxide particles.
  • the hydrogen peroxide particles on the substrate W combine with other hydrogen peroxide particles to form hydrogen peroxide droplets (aggregations of hydrogen peroxide with a diameter larger than the hydrogen peroxide particles). ) is formed on the surface of the substrate W.
  • the surface of the resist pattern 100 is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate W.
  • the surface of the resist pattern 100 is hydrophilic, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed. Thereby, thin droplets or a liquid film of hydrogen peroxide can be formed compared to the case where a continuous liquid column of hydrogen peroxide is formed from the liquid column nozzle 51B to the surface of the substrate W.
  • hydrogen peroxide solution is continuously discharged from the liquid column nozzle 51B toward the surface of the substrate W, and the hydrogen peroxide solution is caused to collide with the surface of the substrate W.
  • the hydrogen peroxide solution discharged from the liquid column nozzle 51B forms a continuous injection of hydrogen peroxide solution from the liquid column nozzle 51B to the surface of the substrate W.
  • the surface of the resist pattern 100 is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate W.
  • the surface of the resist pattern 100 is hydrophilic, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed. Thereby, droplets or a liquid film of hydrogen peroxide can be formed in a shorter time than when a mist of hydrogen peroxide is supplied to the surface of the substrate W.
  • ozone gas is brought into contact with the surface of the substrate W to weaken the hydrophobicity of the surface of the resist pattern 100. This reduces the contact angle of water with the surface of the resist pattern 100.
  • hydrogen peroxide solution is supplied to the surface of the substrate W.
  • a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W cannot be formed unless the hydrogen peroxide solution is supplied at a large flow rate.
  • the hydrogen peroxide solution is supplied at a large flow rate.
  • not only the amount of hydrogen peroxide consumed increases, but also a thick film of hydrogen peroxide is formed.
  • a thin hydrogen peroxide liquid film covering the entire surface of the substrate W can be formed while reducing the amount of hydrogen peroxide consumed. be able to.
  • a liquid or gas other than ozone gas is used to make the surface of the resist pattern 100 hydrophilic.
  • the number of fluid devices used to process the substrate W such as piping and valves, can be reduced compared to the case in which the number of fluid devices, such as piping and valves, is used to process the substrate W.
  • a resist stripping solution is supplied to the surface of the substrate W after all or part of the resist pattern 100 is stripped or removed using hydroxyl radicals generated by the reaction between ozone gas and hydrogen peroxide. Even if a portion of the resist pattern 100 remains on the surface of the substrate W, this resist pattern 100 is peeled off from the surface of the substrate W due to contact with the resist stripping liquid. Even if the residue of the resist pattern 100 remains on the surface of the substrate W, this residue is washed away by the resist stripping liquid. Thereby, the amount of resist remaining on the surface of the substrate W can be reduced.
  • the supply of ozone gas to the substrate W may be stopped. Even in this case, the time required to peel all the resist patterns 100 from the substrate W can be shortened compared to the case where the resist stripping liquid is supplied to the substrate W without removing a part of the cured layer 101 of the resist pattern 100. .
  • the hydrogen peroxide solution may be heated at a temperature higher than the boiling point of the hydrogen peroxide solution.
  • the substrate W may be heated at a temperature of 150° C. or higher.
  • ozone gas can be heated through the substrate W to a temperature of 150° C. or higher.
  • the activity of ozone gas can be increased, and the resist pattern 100 can be oxidized and decomposed not only by hydroxyl radicals generated by the reaction between ozone gas and hydrogen peroxide but also by ozone gas.
  • ozone gas may be brought into contact with hydrogen peroxide solution at room temperature. That is, it is not necessary to heat the substrate W or to supply hydrogen peroxide solution at a temperature higher than room temperature to the substrate W.
  • the supply of ozone gas and hydrogen peroxide solution to the surface of the substrate W and the supply of the resist stripping liquid to the surface of the substrate W may be performed by separate substrate processing apparatuses 1. More specifically, after ozone gas and hydrogen peroxide solution are supplied to the substrate W, the substrate W is transported to another substrate processing apparatus 1, and a resist stripping liquid is supplied to the surface of the substrate W within the substrate processing apparatus 1. It's okay. Alternatively, after ozone gas and hydrogen peroxide solution are supplied to the substrate W, the resist stripping liquid may be supplied to the surface of the substrate W without transporting the substrate W. For example, ozone gas and hydrogen peroxide solution may be supplied to the surface of the substrate W held by the spin chuck 70, and then a resist stripping liquid may be supplied to the surface of the substrate W held by the spin chuck 70. .
  • the substrate processing apparatus 1 is not limited to an apparatus that processes a disk-shaped substrate W, but may be an apparatus that processes a polygonal substrate W.
  • Substrate processing apparatus 20 Cool plate 30: Hot plate 34: Heat treatment chamber 35: Chamber body 36: Lid 51A: Mist nozzle 51B: Liquid column nozzle 55: Ozone nozzle 85: Stripper nozzle 100: Resist pattern 101: Hardened layer 102 : Uncured part 103 : Cavity 111 : Solid-liquid interface 112 : Three-state boundary W : Substrate

Abstract

The purpose of the present invention is to provide a substrate processing method capable of more efficiently detaching or removing a resist from a substrate. This substrate processing method comprises: a step for supplying hydrogen peroxide to the surface of a substrate W on which a resist pattern has been formed (fig. 3B); and a step for supplying ozone gas to the hydrogen peroxide that is in contact with the substrate W (fig. 3C to 3E).

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus 関連出願Related applications
 この出願は、2022年5月17日提出の日本国特許出願2022-080693号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2022-080693 filed on May 17, 2022, and the entire contents of this application are incorporated herein by reference.
 本発明は、基板を処理する基板処理方法および基板処理装置に関する。基板には、例えば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate. Examples of the substrate include semiconductor wafers, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. , ceramic substrates, solar cell substrates, etc.
 特許文献1は、硬化層を有するレジストを基板の表面から除去するために、基板を150℃以上の温度で加熱しながら、基板の表面にオゾンガスを供給し、その後、SPM(sulfuric acid/hydrogen peroxide mixture)などの硫酸を含む処理液を基板の表面に供給することを開示している。 Patent Document 1 discloses that in order to remove a resist having a hardened layer from the surface of the substrate, ozone gas is supplied to the surface of the substrate while heating the substrate at a temperature of 150° C. or higher, and then SPM (sulfuric acid/hydrogen peroxide This disclosure discloses supplying a processing solution containing sulfuric acid, such as a mixture of sulfuric acids, to the surface of a substrate.
特開2022-41077号公報JP 2022-41077 Publication
 本発明の一実施形態は、より効率的にレジストを基板から剥離または除去することができる基板処理方法および基板処理装置を提供する。 An embodiment of the present invention provides a substrate processing method and a substrate processing apparatus that can more efficiently peel or remove resist from a substrate.
 本発明の一実施形態は、レジストパターンが形成された基板の表面に過酸化水素水を供給する過酸化水素水供給工程と、前記基板に接する前記過酸化水素水にオゾンガスを供給するオゾンガス供給工程と、を含む、基板処理方法を提供する。 One embodiment of the present invention includes a hydrogen peroxide solution supply step for supplying hydrogen peroxide solution to the surface of a substrate on which a resist pattern is formed, and an ozone gas supply step for supplying ozone gas to the hydrogen peroxide solution in contact with the substrate. Provided is a substrate processing method comprising:
 この方法によれば、基板の表面に形成されたレジストパターンに過酸化水素水を接触させる。さらに、この過酸化水素水にオゾンガスを接触させる。オゾンガスと過酸化水素との反応により、ヒドロキシルラジカルが生成される。ヒドロキシルラジカルは、レジストパターンを酸化し分解する。これにより、レジストパターンの少なくとも一部が剥離または除去される。ヒドロキシルラジカルは、オゾンガスよりも酸化還元電位が高く、オゾンガスよりも酸化力が強い。したがって、オゾンガスでレジストパターンを酸化および分解する場合に比べて、レジストパターンを効率的に除去できる。それにより、硫酸を含有するレジスト剥離液の使用量を削減したり、その使用を省いたりすることができるので、環境負荷を低減できる。 According to this method, hydrogen peroxide solution is brought into contact with a resist pattern formed on the surface of a substrate. Further, ozone gas is brought into contact with this hydrogen peroxide solution. The reaction between ozone gas and hydrogen peroxide produces hydroxyl radicals. Hydroxyl radicals oxidize and decompose the resist pattern. As a result, at least a portion of the resist pattern is peeled off or removed. Hydroxyl radicals have a higher redox potential than ozone gas and have stronger oxidizing power than ozone gas. Therefore, the resist pattern can be removed more efficiently than when the resist pattern is oxidized and decomposed using ozone gas. As a result, the amount of resist stripping solution containing sulfuric acid used can be reduced or eliminated, so that the environmental load can be reduced.
 レジストパターンが基板の表面に形成されているのであれば、基板は、基板の表面においてレジストパターンから露出した部分に不純物イオンを注入するイオン注入が行われた基板であってもよいし、イオン注入が行われていない基板であってもよい。前者の場合、レジストパターンの表層は、イオン注入によって硬化していてもよいし、硬化していなくてもよい。 If the resist pattern is formed on the surface of the substrate, the substrate may be a substrate on which impurity ions are implanted into the portions of the surface of the substrate exposed from the resist pattern, or ion implantation may be performed. It is also possible to use a substrate that has not been subjected to this process. In the former case, the surface layer of the resist pattern may or may not be hardened by ion implantation.
 過酸化水素水は、過酸化水素の水溶液である。過酸化水素水は、過酸化水素(H)と水(HO)とを主成分とする液体である。過酸化水素および水が主成分であれば(例えば、過酸化水素および水の体積パーセント濃度が90%以上であれば)、過酸化水素水は、過酸化水素および水以外の物質を含んでいてもよい。 Hydrogen peroxide is an aqueous solution of hydrogen peroxide. Hydrogen peroxide solution is a liquid whose main components are hydrogen peroxide (H 2 O 2 ) and water (H 2 O). If hydrogen peroxide and water are the main components (e.g., if the volume percent concentration of hydrogen peroxide and water is 90% or more), then the hydrogen peroxide solution contains substances other than hydrogen peroxide and water. Good too.
 オゾンガスは、空気中のオゾンの濃度よりも高い濃度でオゾンを含むオゾン含有ガスである。オゾン含有ガスは、オゾンが均一に分散したガスである。オゾン含有ガスは、オゾンだけを含むガスであってもよいし、オゾン以外の成分も含むガスであってもよい。後者の場合、酸素、または二酸化炭素などのオゾン以外の成分が、オゾン含有ガスに含まれていてもよい。 Ozone gas is an ozone-containing gas that contains ozone at a higher concentration than the concentration of ozone in the air. The ozone-containing gas is a gas in which ozone is uniformly dispersed. The ozone-containing gas may be a gas containing only ozone, or may be a gas containing components other than ozone. In the latter case, components other than ozone, such as oxygen or carbon dioxide, may be included in the ozone-containing gas.
 前記実施形態において、以下の特徴の少なくとも1つを、前記基板処理方法に加えてもよい。 In the embodiment, at least one of the following features may be added to the substrate processing method.
 前記基板処理方法は、前記過酸化水素水を前記基板に供給する前または後に前記過酸化水素水を室温よりも高い剥離促進温度で加熱する過酸化水素水加熱工程をさらに含む。 The substrate processing method further includes a hydrogen peroxide heating step of heating the hydrogen peroxide at a peeling promotion temperature higher than room temperature before or after supplying the hydrogen peroxide to the substrate.
 この方法によれば、基板に供給した後に過酸化水素水を間接的または直接的に加熱する。もしくは、加熱した過酸化水素水を基板に供給する。これにより、剥離促進温度、つまり、室温よりも高温の過酸化水素水にオゾンガスを接触させることができ、ヒドロキシルラジカルの生成を促進することができる。その結果、レジストパターンと反応するヒドロキシルラジカルを増やすことができ、より効率的にレジストパターンを除去できる。 According to this method, the hydrogen peroxide solution is heated indirectly or directly after being supplied to the substrate. Alternatively, heated hydrogen peroxide solution is supplied to the substrate. Thereby, the ozone gas can be brought into contact with the hydrogen peroxide solution at a peeling promotion temperature, that is, a temperature higher than room temperature, and the generation of hydroxyl radicals can be promoted. As a result, the number of hydroxyl radicals that react with the resist pattern can be increased, and the resist pattern can be removed more efficiently.
 前記過酸化水素水加熱工程は、間接加熱工程、直接加熱工程、および事前加熱工程のいずれかであってもよいし、これらのうちの2つ以上を含んでいてもよい。前記間接加熱工程は、前記基板に接する前記過酸化水素水に、加熱した前記基板および加熱した気体の少なくとも一方を接触させることにより、前記過酸化水素水を前記剥離促進温度で加熱する工程である。直接加熱工程は、前記基板に接する前記過酸化水素水に、ランプなどの熱源から放出された電磁波を照射することにより、前記過酸化水素水を前記剥離促進温度で加熱する工程である。事前加熱工程は、前記過酸化水素水を前記基板に供給する前に前記基板に供給すべき前記過酸化水素水を前記剥離促進温度で加熱する工程である。 The hydrogen peroxide water heating step may be any one of an indirect heating step, a direct heating step, and a pre-heating step, or may include two or more of these. The indirect heating step is a step of heating the hydrogen peroxide solution at the peeling promoting temperature by bringing at least one of the heated substrate and the heated gas into contact with the hydrogen peroxide solution that is in contact with the substrate. . The direct heating step is a step of heating the hydrogen peroxide solution in contact with the substrate to the exfoliation promoting temperature by irradiating the hydrogen peroxide solution with electromagnetic waves emitted from a heat source such as a lamp. The pre-heating step is a step of heating the hydrogen peroxide solution to be supplied to the substrate at the peeling promotion temperature before supplying the hydrogen peroxide solution to the substrate.
 前記剥離促進温度は、前記過酸化水素水の沸点未満である。 The peeling promotion temperature is below the boiling point of the hydrogen peroxide solution.
 この方法によれば、過酸化水素水の沸点よりも低い温度で過酸化水素水を加熱する。これにより、過酸化水素水が基板から蒸発する速度を低下させることができ、過酸化水素水が基板上にある状態を維持することができる。多量の過酸化水素水を基板に保持させれば、過酸化水素水を沸点以上の温度で加熱しても、比較的長い時間、過酸化水素水が基板上にある状態を維持することができる。しかしながら、この場合、基板上の過酸化水素水の液滴または液膜の厚みが大きくなり、レジストパターンの表面まで到達するヒドロキシルラジカルが減少する。過酸化水素水の沸点よりも低い温度で過酸化水素水を加熱することにより、厚みの大きな過酸化水素水の液滴または液膜を基板上に形成しなくても、過酸化水素水が基板上にある状態を維持することができる。 According to this method, the hydrogen peroxide solution is heated at a temperature lower than the boiling point of the hydrogen peroxide solution. Thereby, the rate at which the hydrogen peroxide solution evaporates from the substrate can be reduced, and the state in which the hydrogen peroxide solution remains on the substrate can be maintained. By holding a large amount of hydrogen peroxide on the substrate, it is possible to maintain the hydrogen peroxide on the substrate for a relatively long time even if the hydrogen peroxide is heated to a temperature above its boiling point. . However, in this case, the thickness of the hydrogen peroxide droplets or liquid film on the substrate increases, and the number of hydroxyl radicals that reach the surface of the resist pattern decreases. By heating the hydrogen peroxide solution at a temperature lower than the boiling point of the hydrogen peroxide solution, the hydrogen peroxide solution can be heated to a temperature lower than the boiling point of the hydrogen peroxide solution. can be maintained at the top.
 前記剥離促進温度は、水の沸点未満である。 The peeling promotion temperature is below the boiling point of water.
 この方法によれば、水の沸点、つまり、100℃よりも低い温度で過酸化水素水を加熱する。これにより、基板上の過酸化水素水から水が蒸発する速度を低下させることができ、厚みの大きな過酸化水素水の液滴または液膜を基板上に形成しなくても、水が基板上にある状態を維持することができる。ヒドロキシルラジカルは、オゾンガスと過酸化水素との反応だけでなく、オゾンガスと水との反応によっても生成される。これにより、レジストパターンと反応するヒドロキシルラジカルを増やすことができる。 According to this method, hydrogen peroxide solution is heated at a temperature lower than the boiling point of water, that is, 100°C. This reduces the rate at which water evaporates from the hydrogen peroxide solution on the substrate, allowing water to evaporate onto the substrate without forming thick droplets or films of hydrogen peroxide solution on the substrate. It is possible to maintain a state of . Hydroxyl radicals are generated not only by the reaction between ozone gas and hydrogen peroxide, but also by the reaction between ozone gas and water. This makes it possible to increase the number of hydroxyl radicals that react with the resist pattern.
 レジストパターンが加熱されると、レジストパターンに含まれる溶剤が気化する。レジストパターンの表層に硬化層が形成されている場合、気化した溶剤が排出され難いので、レジストパターンの内部の圧力が上昇する。レジスト塗布からレジスト剥離の前までの一連の工程には、プリベークやポストベークなどの基板を加熱する工程が含まれる。この一連の工程における基板の温度の最大値を最高温度と定義する。レジストパターンの表層に硬化層が形成されており、レジストパターンが加熱される温度が最高温度よりも大幅に高いと、レジストパターンの内部の圧力が高くなり易い。 When the resist pattern is heated, the solvent contained in the resist pattern evaporates. When a hardened layer is formed on the surface layer of a resist pattern, the vaporized solvent is difficult to be discharged, so that the pressure inside the resist pattern increases. The series of steps from resist application to before resist stripping includes steps of heating the substrate, such as pre-bake and post-bake. The maximum temperature of the substrate in this series of steps is defined as the maximum temperature. A hardened layer is formed on the surface layer of the resist pattern, and if the temperature at which the resist pattern is heated is significantly higher than the maximum temperature, the pressure inside the resist pattern tends to increase.
 過酸化水素水を室温よりも高い剥離促進温度で加熱するとき、当該剥離促進温度を過酸化水素水の沸点よりも低い温度または水の沸点よりも低い温度にすれば、レジストパターンが加熱される温度を、前述の一連の工程における基板の温度の最大値、つまり、最高温度に近づけることができる。もしくは、レジストパターンが加熱される温度を、最高温度以下にすることができる。これにより、レジストパターンの表層に硬化層が形成されている場合であっても、レジストパターンの内部の圧力が高くなることを防止できる。 When heating the hydrogen peroxide solution at a peeling promotion temperature higher than room temperature, if the peeling promotion temperature is set to a temperature lower than the boiling point of the hydrogen peroxide solution or lower than the boiling point of water, the resist pattern is heated. The temperature can be brought close to the maximum temperature of the substrate in the series of steps described above, that is, the maximum temperature. Alternatively, the temperature at which the resist pattern is heated can be lower than the maximum temperature. Thereby, even if a hardened layer is formed on the surface layer of the resist pattern, the pressure inside the resist pattern can be prevented from increasing.
 前記過酸化水素水供給工程は、前記過酸化水素水を前記基板の表面に供給する初回供給工程と、前記基板の表面への前記過酸化水素水の供給を停止した後に前記過酸化水素水を前記基板の表面に供給する再供給工程とを含む。換言すれば、前記過酸化水素水供給工程は、過酸化水素水の供給を少なくとも1回途中で中断する工程を含む。 The hydrogen peroxide solution supply step includes an initial supply step of supplying the hydrogen peroxide solution to the surface of the substrate, and a step of supplying the hydrogen peroxide solution to the surface of the substrate after stopping the supply of the hydrogen peroxide solution to the surface of the substrate. and re-supplying the surface of the substrate. In other words, the step of supplying the hydrogen peroxide solution includes a step of interrupting the supply of the hydrogen peroxide solution at least once.
 この方法によれば、過酸化水素水を室温よりも高い剥離促進温度で加熱すると共に、過酸化水素水を基板の表面に断続的に供給する。つまり、過酸化水素水を基板の表面に供給し、基板の表面に保持させる。過酸化水素水の供給が停止されている間(過酸化水素水の追加が停止されている間)、基板上の過酸化水素水は、蒸発やオゾンガスとの反応により減少する。基板の表面への過酸化水素水の供給を再開し、基板の表面に過酸化水素水を追加する。これにより、過酸化水素水を供給し続ける場合に比べて過酸化水素水の消費量を削減しながら、過酸化水素水が基板上にある状態を維持することができる。加えて、過酸化水素水を供給し続ける場合に比べて基板上の過酸化水素水の液滴または液膜を薄くできる。 According to this method, the hydrogen peroxide solution is heated at a peeling promotion temperature higher than room temperature, and the hydrogen peroxide solution is intermittently supplied to the surface of the substrate. That is, hydrogen peroxide solution is supplied to the surface of the substrate and held on the surface of the substrate. While the supply of hydrogen peroxide solution is stopped (while the addition of hydrogen peroxide solution is stopped), the hydrogen peroxide solution on the substrate decreases due to evaporation or reaction with ozone gas. Restart the supply of hydrogen peroxide to the surface of the substrate, and add hydrogen peroxide to the surface of the substrate. This makes it possible to maintain the state in which hydrogen peroxide is on the substrate while reducing the amount of hydrogen peroxide consumed compared to the case where hydrogen peroxide is continuously supplied. In addition, the droplets or liquid film of hydrogen peroxide on the substrate can be made thinner than when hydrogen peroxide is continuously supplied.
 前記オゾンガス供給工程は、前記過酸化水素水の複数の液滴が前記基板の表面の全域に分散している状態で、前記基板に接する前記過酸化水素水に前記オゾンガスを供給する工程を含む。基板の表面に対して垂直な方向から基板の表面を見たときの過酸化水素水の液滴の形状は、円、楕円、および線のいずれかであってもよいし、これら以外の形状であってもよい。 The ozone gas supply step includes a step of supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate in a state where a plurality of droplets of the hydrogen peroxide solution are dispersed over the entire surface of the substrate. The shape of the hydrogen peroxide droplet when looking at the surface of the substrate from the direction perpendicular to the surface of the substrate may be a circle, an ellipse, a line, or any other shape. There may be.
 この方法によれば、基板の表面の全域が過酸化水素水の液膜で覆われている状態ではなく、過酸化水素水の複数の液滴が基板の表面の全域に分散している状態で、基板に接する過酸化水素水にオゾンガスを接触させる。これにより、基板の表面の全域が過酸化水素水の液膜で覆われている場合に比べて、効率的にレジストパターンを除去することができる。理由は、以下の通りである。 According to this method, instead of the entire surface of the substrate being covered with a liquid film of hydrogen peroxide, multiple droplets of hydrogen peroxide are dispersed over the entire surface of the substrate. , ozone gas is brought into contact with the hydrogen peroxide solution that is in contact with the substrate. Thereby, the resist pattern can be removed more efficiently than when the entire surface of the substrate is covered with a liquid film of hydrogen peroxide. The reason is as follows.
 レジストパターンと過酸化水素水との界面である固液界面(図4参照)に供給されるヒドロキシルラジカル(OH)は、オゾンガスと過酸化水素水とレジストパターンとの境界である三態境界(図4参照)に近づくにしたがって増加する。これは、ヒドロキシルラジカルが短時間で過酸化水素に戻るので、過酸化水素水の液滴または液膜の表面から固液界面までの最短距離が長いと、固液界面に到達する前にヒドロキシルラジカルが消滅するからである。したがって、三態境界付近では、三態境界から遠い位置に比べて、過酸化水素水に接するレジストパターンを効率的に除去することができる。 Hydroxyl radicals (OH) supplied to the solid-liquid interface (see Figure 4), which is the interface between the resist pattern and hydrogen peroxide solution, are absorbed by the three-state boundary (see Figure 4), which is the boundary between ozone gas, hydrogen peroxide solution, and the resist pattern. (see 4). This is because hydroxyl radicals return to hydrogen peroxide in a short time, so if the shortest distance from the surface of a hydrogen peroxide droplet or liquid film to the solid-liquid interface is long, the hydroxyl radicals will return to hydrogen peroxide before reaching the solid-liquid interface. This is because it disappears. Therefore, near the three-state boundary, the resist pattern in contact with the hydrogen peroxide solution can be removed more efficiently than at a position farther from the three-state boundary.
 過酸化水素水の複数の液滴が基板の表面の全域に分散しているときの三態境界の全長(長さの合計値)は、基板の表面の全域が過酸化水素水の液膜で覆われているときの三態境界の全長よりも大きい。前述のように、三態境界付近では、三態境界から遠い位置に比べて、過酸化水素水に接するレジストパターンを効率的に除去することができる。以上の理由により、基板の表面の全域が過酸化水素水の液膜で覆われている場合に比べて、効率的にレジストパターンを除去することができる。 When multiple droplets of hydrogen peroxide are dispersed over the entire surface of the substrate, the total length (total value of the length) of the three-state boundary is such that the entire surface of the substrate is covered with a liquid film of hydrogen peroxide. It is larger than the total length of the three-state boundary when covered. As described above, the resist pattern in contact with the hydrogen peroxide solution can be removed more efficiently near the three-state boundary than at a position farther from the three-state boundary. For the above reasons, the resist pattern can be removed more efficiently than when the entire surface of the substrate is covered with a liquid film of hydrogen peroxide.
 前記過酸化水素水供給工程は、前記過酸化水素水のミストを前記基板の表面に供給するミスト供給工程を含む。 The hydrogen peroxide solution supply step includes a mist supply step of supplying the hydrogen peroxide solution mist to the surface of the substrate.
 この方法によれば、霧状の過酸化水素水を基板の表面に供給する。過酸化水素水のミストは、多数の過酸化水素水の粒子によって構成されている。基板上の過酸化水素水の粒子は、別の過酸化水素水の粒子と結合し、過酸化水素水の液滴(過酸化水素水の粒子よりも直径が大きい過酸化水素水の集合体)を基板の表面に形成する。レジストパターンの表面が疎水性の場合、過酸化水素水の複数の液滴が形成され、基板の表面の全域に分散する。レジストパターンの表面が親水性の場合、基板の表面の全域を覆う過酸化水素水の液膜が形成される。これにより、液柱ノズルから基板の表面まで連続した過酸化水素水の液柱を形成する場合に比べて、薄い過酸化水素水の液滴または液膜を形成できる。 According to this method, atomized hydrogen peroxide solution is supplied to the surface of the substrate. The hydrogen peroxide mist is composed of a large number of hydrogen peroxide particles. The hydrogen peroxide particles on the substrate combine with other hydrogen peroxide particles, forming hydrogen peroxide droplets (aggregates of hydrogen peroxide with a diameter larger than the hydrogen peroxide particles). is formed on the surface of the substrate. When the surface of the resist pattern is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate. When the surface of the resist pattern is hydrophilic, a liquid film of hydrogen peroxide solution is formed that covers the entire surface of the substrate. As a result, thinner droplets or a liquid film of hydrogen peroxide can be formed compared to the case where a continuous liquid column of hydrogen peroxide is formed from the liquid column nozzle to the surface of the substrate.
 前記過酸化水素水供給工程は、液柱ノズルから前記基板の表面まで連続した前記過酸化水素水の液柱を形成することにより、前記過酸化水素水を前記基板の表面に供給する液柱供給工程を含む。 In the hydrogen peroxide water supply step, the hydrogen peroxide water is supplied to the surface of the substrate by forming a continuous liquid column of hydrogen peroxide water from a liquid column nozzle to the surface of the substrate. Including process.
 この方法によれば、過酸化水素水を基板の表面に向けて液柱ノズルから連続的に吐出し、過酸化水素水を基板の表面に衝突させる。液柱ノズルから吐出された過酸化水素水は、液柱ノズルから基板の表面まで連続した過酸化水素水の液注を形成する。レジストパターンの表面が疎水性の場合、過酸化水素水の複数の液滴が形成され、基板の表面の全域に分散する。レジストパターンの表面が親水性の場合、基板の表面の全域を覆う過酸化水素水の液膜が形成される。これにより、過酸化水素水のミストを基板の表面に供給する場合に比べて、短時間で過酸化水素水の液滴または液膜を形成できる。 According to this method, hydrogen peroxide solution is continuously discharged from a liquid column nozzle toward the surface of the substrate, and the hydrogen peroxide solution is caused to collide with the surface of the substrate. The hydrogen peroxide solution discharged from the liquid column nozzle forms a continuous injection of hydrogen peroxide solution from the liquid column nozzle to the surface of the substrate. When the surface of the resist pattern is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate. When the surface of the resist pattern is hydrophilic, a liquid film of hydrogen peroxide solution is formed that covers the entire surface of the substrate. As a result, droplets or a liquid film of hydrogen peroxide can be formed in a shorter time than when a mist of hydrogen peroxide is supplied to the surface of the substrate.
 前記基板処理方法は、前記過酸化水素水を前記基板の表面に供給する前に、前記オゾンガスを前記基板の表面に接触させることにより、前記レジストパターンの表面に対する水の接触角を減少させる親水化工程をさらに含む。 The substrate processing method includes a hydrophilization process in which the contact angle of water with respect to the surface of the resist pattern is reduced by bringing the ozone gas into contact with the surface of the substrate before supplying the hydrogen peroxide solution to the surface of the substrate. It further includes a step.
 この方法によれば、オゾンガスを基板の表面に接触させ、レジストパターンの表面の疎水性を弱める。これにより、レジストパターンの表面に対する水の接触角が減少する。この状態で、過酸化水素水を基板の表面に供給する。レジストパターンの表面が疎水性の場合、大きな流量で過酸化水素水を供給しなければ、基板の表面の全域を覆う過酸化水素水の液膜を形成することができない。しかしながら、この場合、過酸化水素水の消費量が増加する上に、分厚い過酸化水素水の液膜が形成される。レジストパターンの表面を親水化した後に過酸化水素水を供給すれば、過酸化水素水の消費量を削減しながら、基板の表面の全域を覆う薄い過酸化水素水の液膜を形成することができる。加えて、オゾンガスを用いてレジストパターンを除去するだけでなく、オゾンガスを用いてレジストパターンの表面を親水化するので、オゾンガス以外の液体または気体を用いてレジストパターンの表面を親水化する場合に比べて、配管やバルブなどの基板の処理に用いる流体機器の数を減らすことができる。 According to this method, ozone gas is brought into contact with the surface of the substrate to weaken the hydrophobicity of the surface of the resist pattern. This reduces the contact angle of water with the surface of the resist pattern. In this state, hydrogen peroxide solution is supplied to the surface of the substrate. If the surface of the resist pattern is hydrophobic, a liquid film of hydrogen peroxide that covers the entire surface of the substrate cannot be formed unless hydrogen peroxide is supplied at a large flow rate. However, in this case, not only the amount of hydrogen peroxide consumed increases, but also a thick film of hydrogen peroxide is formed. By supplying hydrogen peroxide after making the surface of the resist pattern hydrophilic, it is possible to reduce the consumption of hydrogen peroxide and form a thin film of hydrogen peroxide that covers the entire surface of the substrate. can. In addition, ozone gas is used not only to remove the resist pattern, but also to make the surface of the resist pattern hydrophilic, which is more effective than using a liquid or gas other than ozone gas to make the surface of the resist pattern hydrophilic. As a result, the number of fluidic devices such as piping and valves used to process the substrate can be reduced.
 前記基板処理方法は、前記基板に接する前記過酸化水素水に前記オゾンガスを供給した後に、前記レジストパターンを前記基板の表面から剥離するレジスト剥離液を前記基板の表面に供給する剥離液供給工程をさらに含む。 The substrate processing method includes a stripping solution supplying step of supplying a resist stripping solution for stripping the resist pattern from the surface of the substrate to the surface of the substrate, after supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate. Including further.
 この方法によれば、オゾンガスと過酸化水素との反応により生成されたヒドロキシルラジカルを用いてレジストパターンの全部または一部を剥離または除去した後に、レジスト剥離液を基板の表面に供給する。レジストパターンの一部が基板の表面に残っていたとしても、このレジストパターンは、レジスト剥離液との接触により、基板の表面から剥がれる。レジストパターンの残渣が基板の表面に残っていたとしても、この残渣は、レジスト剥離液によって洗い流される。これにより、基板の表面に残留するレジストを減らすことができる。 According to this method, after all or part of the resist pattern is peeled off or removed using hydroxyl radicals generated by the reaction between ozone gas and hydrogen peroxide, a resist stripping solution is supplied to the surface of the substrate. Even if a portion of the resist pattern remains on the surface of the substrate, this resist pattern is peeled off from the surface of the substrate due to contact with the resist stripping solution. Even if the residue of the resist pattern remains on the surface of the substrate, this residue is washed away by the resist stripping solution. This makes it possible to reduce the amount of resist remaining on the surface of the substrate.
 前記目的を達成するための本発明の他の実施形態は、レジストパターンが形成された基板の表面に過酸化水素水を供給する過酸化水素水ノズルと、前記基板に接する前記過酸化水素水にオゾンガスを供給するオゾンノズルと、を含む、基板処理装置を提供する。この装置によれば、前述の基板処理方法と同様の効果を奏することができる。基板処理方法に関する前述の特徴の少なくとも1つを、この実施形態に係る基板処理装置に加えてもよい。 Another embodiment of the present invention for achieving the above object includes a hydrogen peroxide solution nozzle that supplies hydrogen peroxide solution to the surface of a substrate on which a resist pattern is formed, and a hydrogen peroxide solution nozzle that supplies hydrogen peroxide solution to the surface of the substrate on which a resist pattern is formed. A substrate processing apparatus is provided, including an ozone nozzle that supplies ozone gas. According to this apparatus, the same effects as the above-described substrate processing method can be achieved. At least one of the features described above regarding the substrate processing method may be added to the substrate processing apparatus according to this embodiment.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-mentioned and other objects, features, and effects of the present invention will be made clear by the following description of the embodiments with reference to the accompanying drawings.
本発明の一実施形態に係るレジスト剥離を含む基板の処理の一例を示す工程図である。FIG. 3 is a process diagram showing an example of substrate processing including resist stripping according to an embodiment of the present invention. 本発明の一実施形態に係るレジストパターンの一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a resist pattern according to an embodiment of the present invention. 本発明の一実施形態に係るレジスト剥離の一例について説明するための概略図である。FIG. 2 is a schematic diagram for explaining an example of resist peeling according to an embodiment of the present invention. 本発明の一実施形態に係るレジスト剥離の一例について説明するための概略図である。FIG. 2 is a schematic diagram for explaining an example of resist peeling according to an embodiment of the present invention. 基板上の過酸化水素水の液滴に溶け込んだオゾンガスが過酸化水素水に含まれる過酸化水素と反応して、ヒドロキシルラジカルが生成されることを説明するための概略図である。FIG. 2 is a schematic diagram for explaining that ozone gas dissolved in droplets of hydrogen peroxide on a substrate reacts with hydrogen peroxide contained in hydrogen peroxide to generate hydroxyl radicals. 硬化層に空洞が形成されたレジストパターンのイメージの一例を示す鉛直断面図である。FIG. 2 is a vertical cross-sectional view showing an example of an image of a resist pattern in which a cavity is formed in a hardened layer. 本発明の一実施形態に係るレジスト剥離の他の例について説明するための概略図である。FIG. 7 is a schematic diagram for explaining another example of resist peeling according to an embodiment of the present invention. 本発明の一実施形態に係るレジスト剥離の他の例について説明するための概略図である。FIG. 7 is a schematic diagram for explaining another example of resist peeling according to an embodiment of the present invention. 基板上の過酸化水素水の液膜に溶け込んだオゾンガスが過酸化水素水に含まれる過酸化水素と反応して、ヒドロキシルラジカルが生成されることを説明するための概略図である。FIG. 2 is a schematic diagram for explaining that ozone gas dissolved in a liquid film of hydrogen peroxide on a substrate reacts with hydrogen peroxide contained in hydrogen peroxide to generate hydroxyl radicals. 本発明の一実施形態に係る基板処理装置のレイアウトを示す概略平面図である。1 is a schematic plan view showing the layout of a substrate processing apparatus according to an embodiment of the present invention. 前処理ユニットの鉛直断面の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the pretreatment unit. 熱処理ユニットの鉛直断面の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the heat treatment unit. 熱処理ユニットの鉛直断面の他の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of a vertical cross section of the heat treatment unit. 後処理ユニットの鉛直断面の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a vertical cross section of the post-processing unit. 基板処理装置によって実行される基板の処理の一例を示す工程図である。FIG. 3 is a process diagram showing an example of substrate processing performed by the substrate processing apparatus.
 図1は、本発明の一実施形態に係るレジスト剥離を含む基板Wの処理の一例を示す工程図である。図2は、本発明の一実施形態に係るレジストパターン100の一例を示す概略断面図である。 FIG. 1 is a process diagram showing an example of processing of a substrate W including resist stripping according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing an example of a resist pattern 100 according to an embodiment of the present invention.
 図1に示す基板Wの処理では、シリコンウエハなどの基板Wの表面に樹脂および溶剤を含むフォトレジスト液を塗布することにより、基板Wの表面の全域を覆うレジスト膜を形成するレジスト塗布を行う(図1のステップS1)。その後、基板Wの表面の全域がレジスト膜で覆われた状態で基板Wをプリベーク温度で加熱することにより、レジスト膜に含まれる溶剤を蒸発させるプリベークを行う(図1のステップS2)。その後、紫外線などの光をフォトマスクを介して基板W上のレジスト膜に照射することにより、フォトマスクに形成された回路パターンをレジスト膜に転写する露光を行う(図1のステップS3)。 In the processing of the substrate W shown in FIG. 1, resist coating is performed to form a resist film covering the entire surface of the substrate W by applying a photoresist solution containing a resin and a solvent to the surface of the substrate W such as a silicon wafer. (Step S1 in FIG. 1). After that, prebaking is performed to evaporate the solvent contained in the resist film by heating the substrate W at a prebaking temperature while the entire surface of the substrate W is covered with the resist film (step S2 in FIG. 1). Thereafter, by irradiating the resist film on the substrate W with light such as ultraviolet rays through the photomask, exposure is performed to transfer the circuit pattern formed on the photomask onto the resist film (step S3 in FIG. 1).
 露光後は、現像液を基板Wに供給することにより、レジスト膜から不要な部分を除去し、残ったレジスト膜に相当するレジストパターン100を基板Wの表面に形成する現像を行う(図1のステップS3)。その後、基板Wをポストベーク温度で加熱するポストベークを行う(図1のステップS4)。露光後、現像前に、基板Wを加熱するポストエクスポージャーベークを行ってもよい。ポストベークの後は、基板Wの表面においてレジストパターン100から露出した部分に不純物イオンを注入するイオン注入を行う(図1のステップS5)。その後、不要になったレジストパターン100を基板Wの表面から除去するレジスト剥離を行う(図1のステップS6)。 After exposure, a developing solution is supplied to the substrate W to remove unnecessary portions from the resist film, and development is performed to form a resist pattern 100 corresponding to the remaining resist film on the surface of the substrate W (see FIG. 1). Step S3). Thereafter, post-bake is performed to heat the substrate W at a post-bake temperature (step S4 in FIG. 1). Post-exposure baking may be performed to heat the substrate W after exposure and before development. After the post-baking, ion implantation is performed to implant impurity ions into the portions of the surface of the substrate W exposed from the resist pattern 100 (step S5 in FIG. 1). Thereafter, resist stripping is performed to remove the unnecessary resist pattern 100 from the surface of the substrate W (step S6 in FIG. 1).
 イオン注入では、基板Wの表面の一部だけでなく、レジストマスクに相当するレジストパターン100にも、不純物イオンが衝突する。そのため、レジストパターン100の表層の全域または大部分が、炭化等の変質によって硬化層101に変化する。その一方で、レジストパターン100の内部は、硬化しないまま硬化層101の内側に残る。図2は、レジストパターン100のうち硬化しなかった部分に相当する非硬化部102が基板Wの表面に接しており、非硬化部102の先端面および両方の側面が硬化層101で覆われた例を示している。以下では、このようなレジストパターン100を基板Wの表面から除去するレジスト剥離について説明する。 In the ion implantation, impurity ions collide not only with a part of the surface of the substrate W but also with the resist pattern 100 corresponding to a resist mask. Therefore, the entire area or most of the surface layer of the resist pattern 100 changes into a hardened layer 101 due to deterioration such as carbonization. On the other hand, the inside of the resist pattern 100 remains inside the cured layer 101 without being cured. In FIG. 2, a non-cured portion 102 corresponding to a portion of the resist pattern 100 that has not been cured is in contact with the surface of the substrate W, and the tip surface and both side surfaces of the non-cured portion 102 are covered with a cured layer 101. An example is shown. In the following, resist peeling for removing such a resist pattern 100 from the surface of the substrate W will be described.
 以下では、本発明の一実施形態に係るレジスト剥離の2つの例について説明する。 Two examples of resist peeling according to an embodiment of the present invention will be described below.
 以下の説明において、特に断りがない限り、基板Wは、母材に相当する基板Wと母材上に形成されたレジストパターン100との両方を表し、基板Wの表面は、レジストパターン100の表面と、基板Wの表面のうちレジストパターン100から露出した部分と、の両方を表すものとする。 In the following description, unless otherwise specified, the substrate W represents both the substrate W corresponding to the base material and the resist pattern 100 formed on the base material, and the surface of the substrate W is the surface of the resist pattern 100. and a portion of the surface of the substrate W exposed from the resist pattern 100.
 図3A、図3B、図3C、図3D、図3E、および図3Fは、本発明の一実施形態に係るレジスト剥離の一例について説明するための概略図である。図3A~図3Fは、基板Wを水平に見た状態を示している。図4は、基板W上の過酸化水素水の液滴に溶け込んだオゾンガスが過酸化水素水に含まれる過酸化水素と反応して、ヒドロキシルラジカルが生成されることを説明するための概略図である。図4中の太線は、レジストパターン100と過酸化水素水との界面である固液界面111を示している。図5は、硬化層101に空洞103が形成されたレジストパターン100のイメージの一例を示す鉛直断面図である。 3A, FIG. 3B, FIG. 3C, FIG. 3D, FIG. 3E, and FIG. 3F are schematic diagrams for explaining an example of resist peeling according to an embodiment of the present invention. 3A to 3F show the substrate W viewed horizontally. FIG. 4 is a schematic diagram for explaining that ozone gas dissolved in droplets of hydrogen peroxide on the substrate W reacts with hydrogen peroxide contained in the hydrogen peroxide to generate hydroxyl radicals. be. The thick line in FIG. 4 indicates the solid-liquid interface 111, which is the interface between the resist pattern 100 and the hydrogen peroxide solution. FIG. 5 is a vertical cross-sectional view showing an example of an image of the resist pattern 100 in which a cavity 103 is formed in the hardened layer 101.
 図3Aに示すように、硬化層101を有するレジストパターン100を基板Wから除去するときは、室温(15~30℃内の一定またはほぼ一定の温度)よりも高温の剥離促進温度で基板Wを均一に加熱し、基板Wの全体を剥離促進温度に維持する。図3Aは、レジストパターン100が形成された基板Wの表面を上に向けた状態で、発熱するホットプレート30の上に基板Wを水平に配置し、基板Wの下面とホットプレート30との接触により基板Wを剥離促進温度で均一に加熱している例を示している。このような基板Wの加熱に加えてまたは代えて、室温よりも高温の加熱ガスまたは加熱液と基板Wとの接触により基板Wを加熱してもよいし、ランプなどの熱源から放出された電磁波を基板Wに照射することにより基板Wを加熱してもよい。 As shown in FIG. 3A, when removing the resist pattern 100 having the hardened layer 101 from the substrate W, the substrate W is removed at a peeling promotion temperature higher than room temperature (a constant or almost constant temperature within 15 to 30° C.). The entire substrate W is heated uniformly and maintained at a temperature that promotes peeling. In FIG. 3A, the substrate W is placed horizontally on a heat-generating hot plate 30 with the surface of the substrate W on which a resist pattern 100 is formed facing upward, and the bottom surface of the substrate W is in contact with the hot plate 30. An example is shown in which the substrate W is uniformly heated at a peeling promoting temperature. In addition to or in place of such heating of the substrate W, the substrate W may be heated by contact between the substrate W and a heating gas or liquid at a temperature higher than room temperature, or by electromagnetic waves emitted from a heat source such as a lamp. The substrate W may be heated by irradiating the substrate W with the following.
 次に、図3Bに示すように、水平な姿勢の基板Wを剥離促進温度で均一に加熱した状態で、過酸化水素水ノズルの一例であるミストノズル51Aから噴出された過酸化水素水のミストを基板Wの表面に供給し、過酸化水素水の複数の液滴を基板Wの表面の全域に分散させる。基板Wへの過酸化水素水のミストの供給は、基板Wの表面に向けて過酸化水素水のミストを噴射することにより行ってもよいし、過酸化水素水のミストを基板Wの上方の空間に拡散させて、拡散した過酸化水素水のミストを基板Wの表面に落下させることにより行ってもよい。これら以外の方法により過酸化水素水のミストを基板Wの表面に供給してもよい。 Next, as shown in FIG. 3B, while the substrate W in the horizontal position is uniformly heated to a peeling promoting temperature, a mist of hydrogen peroxide is ejected from the mist nozzle 51A, which is an example of a hydrogen peroxide nozzle. is supplied to the surface of the substrate W to disperse a plurality of droplets of hydrogen peroxide over the entire surface of the substrate W. The hydrogen peroxide mist may be supplied to the substrate W by spraying the hydrogen peroxide mist toward the surface of the substrate W, or by supplying the hydrogen peroxide mist above the substrate W. This may be carried out by diffusing the hydrogen peroxide solution in a space and causing the diffused mist of hydrogen peroxide to fall onto the surface of the substrate W. The hydrogen peroxide mist may be supplied to the surface of the substrate W by methods other than these.
 過酸化水素水のミストは、多数の過酸化水素水の粒子によって構成されている。基板Wに供給された過酸化水素水の粒子は、別の過酸化水素水の粒子と結合し、過酸化水素水の液滴を基板Wの表面上に形成する。過酸化水素水のミストの供給を継続すると、基板W上の過酸化水素水の液滴は、徐々に大きくなっていく。しかしながら、レジストパターン100の表面が疎水性なので、基板Wの表面の全域を覆う過酸化水素水の液膜が形成されるのではなく、図3Bに示すように、互いに離れた複数の過酸化水素水の液滴が基板Wの表面の全域に分散し、基板Wの表面の一部だけが過酸化水素水で覆われる。 The mist of hydrogen peroxide is composed of many particles of hydrogen peroxide. The hydrogen peroxide particles supplied to the substrate W combine with other hydrogen peroxide particles to form hydrogen peroxide droplets on the surface of the substrate W. As the hydrogen peroxide mist continues to be supplied, the hydrogen peroxide droplets on the substrate W gradually become larger. However, since the surface of the resist pattern 100 is hydrophobic, instead of forming a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W, as shown in FIG. The water droplets are dispersed over the entire surface of the substrate W, and only a portion of the surface of the substrate W is covered with the hydrogen peroxide solution.
 次に、図3Cに示すように、水平な姿勢の基板Wを剥離促進温度で均一に加熱すると共に、過酸化水素水の複数の液滴を基板Wの表面の全域に分散させた状態で、基板W上の過酸化水素水の複数の液滴にオゾンガスを接触させる。例えば、基板Wを収容した熱処理チャンバー34(図10Aおよび図10B参照)内の気体を排出しながら、熱処理チャンバー34内にオゾンガスを供給し続けることにより、オゾンガスが熱処理チャンバー34内に充満した状態を維持すると共に、新しいオゾンガスを基板Wに供給し続ける。 Next, as shown in FIG. 3C, the substrate W in a horizontal position is uniformly heated at a peeling promoting temperature, and a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W. Ozone gas is brought into contact with a plurality of droplets of hydrogen peroxide solution on the substrate W. For example, by continuing to supply ozone gas into the heat treatment chamber 34 while discharging the gas in the heat treatment chamber 34 (see FIGS. 10A and 10B) that accommodates the substrate W, the state in which the heat treatment chamber 34 is filled with ozone gas can be prevented. At the same time, new ozone gas is continuously supplied to the substrate W.
 これに代えて、熱処理チャンバー34内にオゾンガスを充満させた後、熱処理チャンバー34内へのオゾンガスの供給を停止すると共に、熱処理チャンバー34の内部を密閉してもよい。この場合、一定の時間が経過するたびに熱処理チャンバー34内のオゾンガスを新しいオゾンガスで置換してもよい。熱処理チャンバー34内に供給されるオゾンガスは、室温であってもよいし、室温よりも高温であってもよい。 Alternatively, after the heat treatment chamber 34 is filled with ozone gas, the supply of ozone gas to the heat treatment chamber 34 may be stopped, and the inside of the heat treatment chamber 34 may be sealed. In this case, the ozone gas in the heat treatment chamber 34 may be replaced with new ozone gas every time a certain period of time passes. The ozone gas supplied into the heat treatment chamber 34 may be at room temperature or may be at a higher temperature than room temperature.
 図4に示すように、オゾンガスは、基板W上の過酸化水素水に溶解し、過酸化水素水に含まれる過酸化水素と反応する。これにより、「O+H→OH+HO+O」で示される化学反応により、ヒドロキシルラジカル(図4中の「OH」)とヒドロペルオキシラジカル(図4中の「HO」)とが生成される。過酸化水素水の液滴内で生成されたヒドロキシルラジカルの一部は、当該液滴中を拡散し、レジストパターン100と過酸化水素水との界面である固液界面111に到達する。固液界面111で生成されるヒドロキシルラジカルもある。ヒドロキシルラジカルは、固液界面111でレジストパターン100の硬化層101(図5参照)と反応し、硬化層101を酸化および分解する。非硬化部102(図5参照)まで到達したヒドロキシルラジカルは、非硬化部102を酸化および分解する。これにより、レジストパターン100の少なくとも一部が気化し、基板Wから除去される。 As shown in FIG. 4, the ozone gas is dissolved in the hydrogen peroxide solution on the substrate W and reacts with the hydrogen peroxide contained in the hydrogen peroxide solution. As a result, hydroxyl radicals ("OH" in FIG. 4) and hydroperoxy radicals ("HO 2 " in FIG. 4) are separated by the chemical reaction shown as "O 3 + H 2 O 2 → OH + HO 2 + O 2 " . generated. A portion of the hydroxyl radicals generated within the droplet of hydrogen peroxide diffuses within the droplet and reaches the solid-liquid interface 111, which is the interface between the resist pattern 100 and the hydrogen peroxide. There are also hydroxyl radicals generated at the solid-liquid interface 111. The hydroxyl radicals react with the hardened layer 101 (see FIG. 5) of the resist pattern 100 at the solid-liquid interface 111 to oxidize and decompose the hardened layer 101. The hydroxyl radicals that reach the non-cured portion 102 (see FIG. 5) oxidize and decompose the non-cured portion 102. As a result, at least a portion of the resist pattern 100 is vaporized and removed from the substrate W.
 前述のように、水平な姿勢の基板Wを剥離促進温度で均一に加熱すると共に、過酸化水素水の複数の液滴を基板Wの表面の全域に分散させた状態で、基板W上の過酸化水素水の複数の液滴にオゾンガスを接触させる。基板Wの加熱により基板W上の過酸化水素水を間接的に加熱することができ、オゾンガスと過酸化水素との反応性を高めることができる。これにより、ヒドロキシルラジカルの総数を増やすことができ、硬化層101と反応するヒドロキシルラジカルを増やすことができる。 As described above, while the substrate W in the horizontal position is uniformly heated to a peeling promoting temperature, a plurality of droplets of hydrogen peroxide solution are dispersed over the entire surface of the substrate W, and the superposition on the substrate W is heated. Ozone gas is brought into contact with multiple droplets of hydrogen oxide water. By heating the substrate W, the hydrogen peroxide solution on the substrate W can be indirectly heated, and the reactivity between ozone gas and hydrogen peroxide can be increased. Thereby, the total number of hydroxyl radicals can be increased, and the number of hydroxyl radicals that react with the cured layer 101 can be increased.
 その一方で、基板W上の過酸化水素水を加熱すると、過酸化水素水が基板Wから蒸発する速度が増加する。したがって、基板Wへの過酸化水素水のミストの供給を停止した後に、新しい過酸化水素水のミストを基板Wに補給してもよい。もしくは、オゾンガスの供給を開始した後も過酸化水素水のミストの供給(追加)を継続してもよい。図3Dは、基板W上の過酸化水素水の液滴が小さくなった状態を示しており、図3Eは、過酸化水素水のミストの補給により、基板W上の過酸化水素水の液滴が大きくなった状態を示している。基板W上の過酸化水素水を加熱しなくても、オゾンガスと過酸化水素との反応により過酸化水素が基板Wから減少するので、これを補うために、新しい過酸化水素水のミストを再び基板Wに供給してもよい。 On the other hand, when the hydrogen peroxide solution on the substrate W is heated, the rate at which the hydrogen peroxide solution evaporates from the substrate W increases. Therefore, after stopping the supply of the hydrogen peroxide mist to the substrate W, the substrate W may be replenished with a new hydrogen peroxide mist. Alternatively, the supply (addition) of the hydrogen peroxide solution mist may be continued even after the supply of ozone gas is started. FIG. 3D shows a state in which the droplets of hydrogen peroxide on the substrate W have become smaller, and FIG. 3E shows the droplets of hydrogen peroxide on the substrate W due to replenishment of the mist of hydrogen peroxide. It shows that it has become larger. Even if the hydrogen peroxide solution on the substrate W is not heated, hydrogen peroxide will be reduced from the substrate W due to the reaction between ozone gas and hydrogen peroxide, so to compensate for this, a new mist of hydrogen peroxide solution is added again. It may also be supplied to the substrate W.
 図4は、基板W上の過酸化水素水の液滴の鉛直断面(鉛直な平面で切断した断面)を示している。図4中の符号112は、オゾンガスと過酸化水素水とレジストパターン100との境界である三態境界を示しており、図4中のハッチングされた領域は、ヒドロキシルラジカルの供給量が相対的に多い領域を示している。固液界面111に供給されるヒドロキシルラジカルは、三態境界112に近づくにしたがって増加する。これは、ヒドロキシルラジカルが短時間で過酸化水素に戻るので、過酸化水素水の液滴または液膜の表面から固液界面111までの最短距離が長いと、固液界面111に到達する前にヒドロキシルラジカルが消滅するからである。言い換えると、三態境界112付近では、過酸化水素水の液滴または液膜の表面から固液界面111までの最短距離が短く、ヒドロキシルラジカルが到達または発生し易い。 FIG. 4 shows a vertical cross section (a cross section cut along a vertical plane) of a droplet of hydrogen peroxide solution on the substrate W. Reference numeral 112 in FIG. 4 indicates a three-state boundary that is a boundary between ozone gas, hydrogen peroxide solution, and resist pattern 100, and the hatched area in FIG. 4 indicates the relative amount of hydroxyl radicals supplied. It shows areas where there are many areas. The number of hydroxyl radicals supplied to the solid-liquid interface 111 increases as it approaches the three-state boundary 112. This is because hydroxyl radicals return to hydrogen peroxide in a short time, so if the shortest distance from the surface of the hydrogen peroxide droplet or liquid film to the solid-liquid interface 111 is long, the hydroxyl radicals return to hydrogen peroxide before reaching the solid-liquid interface 111. This is because hydroxyl radicals disappear. In other words, near the three-state boundary 112, the shortest distance from the surface of the hydrogen peroxide droplet or liquid film to the solid-liquid interface 111 is short, and hydroxyl radicals are likely to reach or generate.
 図5は、三態境界112付近に形成された硬化層101の空洞103の一例を示している。この例では、3つの過酸化水素水の液滴のうち、両側の2つは、2つのレジストパターン100の上に配置されており、残りの1つは、2つのレジストパターン100の間に配置されている。5つの空洞103のうちの3つは、両側の2つの過酸化水素水の液滴の外周付近から基板Wの厚み方向に延びており、2つは、2つのレジストパターン100の側面から基板Wの面方向(基板Wの厚み方向に対して垂直な方向。図5では、紙面の左右方向)に延びている。いずれの空洞103も、硬化層101を貫通しており、非硬化部102に到達している。 FIG. 5 shows an example of a cavity 103 in the hardened layer 101 formed near the three-state boundary 112. In this example, of the three hydrogen peroxide droplets, two on both sides are placed on the two resist patterns 100, and the remaining one is placed between the two resist patterns 100. has been done. Three of the five cavities 103 extend in the thickness direction of the substrate W from near the outer periphery of the two hydrogen peroxide droplets on both sides, and two of the cavities 103 extend in the thickness direction of the substrate W from the sides of the two resist patterns 100. (the direction perpendicular to the thickness direction of the substrate W; in FIG. 5, the left-right direction of the paper surface). Both cavities 103 penetrate the hardened layer 101 and reach the unhardened portion 102 .
 前記の通り、固液界面111に供給されるヒドロキシルラジカルは、三態境界112に近づくにしたがって増加する。したがって、図5に示すように、過酸化水素水の液滴の外周付近に空洞103が形成され、その後、硬化層101の残りの部分がヒドロキシルラジカルによって分解される。基板Wへのオゾンガスの供給は、空洞103が非硬化部102に到達すると想定される時間が経過した後に停止してもよいし、硬化層101において過酸化水素水に接触している全ての部分がヒドロキシルラジカルによって分解されると想定される時間が経過した後に停止してもよい。 As described above, the number of hydroxyl radicals supplied to the solid-liquid interface 111 increases as it approaches the three-state boundary 112. Therefore, as shown in FIG. 5, a cavity 103 is formed near the outer periphery of the hydrogen peroxide droplet, and then the remaining portion of the cured layer 101 is decomposed by the hydroxyl radicals. The supply of ozone gas to the substrate W may be stopped after the time period for which the cavity 103 is expected to reach the uncured portion 102 has elapsed, or the supply of ozone gas to the substrate W may be stopped after the time elapsed when the cavity 103 is expected to reach the non-cured portion 102, or all portions of the cured layer 101 that are in contact with the hydrogen peroxide solution may be stopped. The reaction may be stopped after a period of time during which it is assumed that the hydroxyl radicals are decomposed by the hydroxyl radicals.
 前述のように、レジストパターン100の表面が疎水性なので、過酸化水素水のミストを基板Wに供給すると、基板Wの表面の全域を覆う過酸化水素水の液膜が形成されるのではなく、過酸化水素水の複数の液滴が基板Wの表面の全域に分散する。しかしながら、レジストパターン100の表面において過酸化水素水に接している部分は、過酸化水素水やヒドロキシルラジカルとの反応により疎水性が弱まる。レジストパターン100の表面において過酸化水素水に接していない部分も、オゾンガスとの反応により疎水性が弱まる。したがって、基板Wへの新しい過酸化水素水のミストの供給を継続しながら、もしくは、新しい過酸化水素水のミストを基板Wに断続的に補給しながら、オゾンガスと過酸化水素とを反応させると、レジストパターン100の表面の疎水性が弱まり、基板W上の過酸化水素水の複数の液滴が、基板Wの表面の全域を覆う過酸化水素水の液膜に変化する。 As mentioned above, since the surface of the resist pattern 100 is hydrophobic, when a mist of hydrogen peroxide is supplied to the substrate W, a liquid film of hydrogen peroxide that covers the entire surface of the substrate W is not formed. , a plurality of droplets of hydrogen peroxide solution are dispersed over the entire surface of the substrate W. However, the hydrophobicity of the portion of the surface of the resist pattern 100 that is in contact with the hydrogen peroxide solution is weakened due to the reaction with the hydrogen peroxide solution and hydroxyl radicals. The hydrophobicity of the surface of the resist pattern 100 that is not in contact with the hydrogen peroxide solution is also weakened due to the reaction with the ozone gas. Therefore, if ozone gas and hydrogen peroxide are allowed to react while continuing to supply a new mist of hydrogen peroxide to the substrate W or while intermittently replenishing the substrate W with a new mist of hydrogen peroxide, , the hydrophobicity of the surface of the resist pattern 100 weakens, and the multiple droplets of hydrogen peroxide on the substrate W change into a liquid film of hydrogen peroxide that covers the entire surface of the substrate W.
 過酸化水素水の複数の液滴が基板Wの表面の全域に分散しているとき、レジストパターン100の表面の一部が基板W上の過酸化水素水に接触していないことがある。これに対して、過酸化水素水の液膜が基板Wの表面の全域を覆っているとき、レジストパターン100の表面の全域またはほぼ全域が基板W上の過酸化水素水に接触している。したがって、過酸化水素水の液膜が形成されると、レジストパターン100の表面においてヒドロキシルラジカルが供給される範囲が広がり、硬化層101においてヒドロキシルラジカルによって分解される部分が増加する。これにより、より多くの硬化層101をヒドロキシルラジカルで分解することができる。 When a plurality of droplets of hydrogen peroxide solution are dispersed over the entire surface of the substrate W, a part of the surface of the resist pattern 100 may not be in contact with the hydrogen peroxide solution on the substrate W. On the other hand, when the hydrogen peroxide liquid film covers the entire surface of the substrate W, the entire or almost the entire surface of the resist pattern 100 is in contact with the hydrogen peroxide solution on the substrate W. Therefore, when a liquid film of hydrogen peroxide is formed, the range to which hydroxyl radicals are supplied on the surface of the resist pattern 100 expands, and the portion of the cured layer 101 that is decomposed by the hydroxyl radicals increases. Thereby, more of the cured layer 101 can be decomposed by hydroxyl radicals.
 レジストパターン100の硬化層101の少なくとも一部をヒドロキシルラジカルで分解した後は、基板Wを収容している熱処理チャンバー34(図10Aおよび図10B参照)の内部からオゾンガスを排出する。さらに、過酸化水素水の蒸発により全ての過酸化水素水が基板Wからなくなるまで待機し、その後、基板Wの加熱を停止する。このとき、剥離促進温度で基板Wを加熱し続けてもよいし、剥離促進温度よりも高い乾燥温度で基板Wを加熱することにより、基板Wが乾燥するまでの時間を短縮してもよい。基板Wの加熱を停止した後、基板Wを室温またはその付近の温度まで強制的に冷却してもよい。基板Wの加熱に加えてまたは代えて、気圧の低下や基板Wへの気体の供給などの別の乾燥方法により過酸化水素水を基板Wから除去してもよい。 After at least a portion of the hardened layer 101 of the resist pattern 100 is decomposed by hydroxyl radicals, ozone gas is exhausted from the inside of the heat treatment chamber 34 (see FIGS. 10A and 10B) that accommodates the substrate W. Further, the process waits until all the hydrogen peroxide is removed from the substrate W by evaporation, and then heating of the substrate W is stopped. At this time, the substrate W may be continued to be heated at the peel-promoting temperature, or the time required for the substrate W to dry may be shortened by heating the substrate W at a drying temperature higher than the peel-promoting temperature. After stopping the heating of the substrate W, the substrate W may be forcibly cooled to room temperature or a temperature close thereto. In addition to or instead of heating the substrate W, the hydrogen peroxide solution may be removed from the substrate W by another drying method such as lowering the atmospheric pressure or supplying a gas to the substrate W.
 次に、図3Fに示すように、レジスト剥離液を基板Wの表面に供給し、残留しているレジストパターン100を基板Wから剥離する。図3Fは、回転している基板Wの上面(表面)に向けて剥離液ノズル85がレジスト剥離液の一例であるSPM(硫酸と過酸化水素水との混合液)を吐出している例を示している。レジスト剥離液は、レジストパターン100と化学反応する化合物を含む薬液である。レジスト剥離液は、レジスト除去液とも呼ばれる。レジスト剥離液は、SPMまたはSC1(アンモニア水と過酸化水素水と水との混合液)であってもよいし、これら以外の薬液であってもよい。 Next, as shown in FIG. 3F, a resist stripping solution is supplied to the surface of the substrate W, and the remaining resist pattern 100 is stripped from the substrate W. FIG. 3F shows an example in which the stripper nozzle 85 discharges SPM (a mixed solution of sulfuric acid and hydrogen peroxide solution), which is an example of a resist stripper, toward the upper surface (front surface) of the rotating substrate W. It shows. The resist stripping solution is a chemical solution containing a compound that chemically reacts with the resist pattern 100. The resist stripping liquid is also called a resist removing liquid. The resist stripping solution may be SPM or SC1 (a mixed solution of ammonia water, hydrogen peroxide solution, and water), or may be a chemical solution other than these.
 図5に示すような非硬化部102に到達した空洞103が硬化層101に形成されている場合、レジスト剥離液を基板Wに供給すると、レジスト剥離液が非硬化部102と反応し、硬化層101と共に非硬化部102が基板Wから剥がれる(リフトオフ)。これにより、レジストパターン100が基板Wから除去される。全てまたは殆ど全ての硬化層101がヒドロキシルラジカルによって分解されている場合も、レジスト剥離液が非硬化部102と反応し、非硬化部102が基板Wから剥がれる。したがって、レジスト剥離液が非硬化部102に到達できる状態であれば、硬化層101が残っていても、レジスト剥離液の供給により、全てまたは殆ど全てのレジストパターン100を基板Wから除去できる。 When a cavity 103 that reaches the uncured portion 102 as shown in FIG. The uncured portion 102 is peeled off from the substrate W together with the uncured portion 101 (lift-off). Thereby, the resist pattern 100 is removed from the substrate W. Even when all or almost all of the cured layer 101 has been decomposed by hydroxyl radicals, the resist stripping liquid reacts with the uncured portion 102 and the uncured portion 102 is peeled off from the substrate W. Therefore, if the resist stripping solution is in a state where it can reach the uncured portion 102, all or almost all of the resist pattern 100 can be removed from the substrate W by supplying the resist stripping solution even if the cured layer 101 remains.
 レジスト剥離液を基板Wに供給した後は、純水などのリンス液で基板Wに付着するレジスト剥離液を洗い流し、その後、基板Wを乾燥させる。基板Wへのレジスト剥離液の供給は、基板Wの中心を通る鉛直な直線まわりに基板Wを水平面内で回転させながら、基板Wの上面または下面に向けてレジスト剥離液を吐出することにより行ってもよいし、基板Wをレジスト剥離液に浸漬させることにより行ってもよい。基板Wへのリンス液の供給についても同様である。基板Wの乾燥は、基板Wの高速回転により基板Wに付着している液を飛散させるスピンドライによって行ってもよいし、減圧乾燥などのスピンドライ以外の乾燥方法により行ってもよい。 After the resist stripping solution is supplied to the substrate W, the resist stripping solution adhering to the substrate W is washed away with a rinsing solution such as pure water, and then the substrate W is dried. The resist stripping solution is supplied to the substrate W by discharging the resist stripping solution toward the top or bottom surface of the substrate W while rotating the substrate W in a horizontal plane around a vertical straight line passing through the center of the substrate W. Alternatively, the substrate W may be immersed in a resist stripping solution. The same applies to the supply of the rinsing liquid to the substrate W. The substrate W may be dried by spin drying, in which the liquid adhering to the substrate W is scattered by high-speed rotation of the substrate W, or by a drying method other than spin drying, such as vacuum drying.
 前述のように、オゾンガスが基板W上の過酸化水素水と接触するとき、室温よりも高温の剥離促進温度で基板Wを均一に加熱する。剥離促進温度は、プリベーク温度と等しくてもよいし、プリベーク温度よりも高温または低温であってもよい。同様に、剥離促進温度は、ポストベーク温度と等しくてもよいし、ポストベーク温度よりも高温または低温であってもよい。剥離促進温度は、過酸化水素水の沸点未満であってもよいし、水の沸点未満であってもよい。過酸化水素の沸点は、150.2℃である。したがって、剥離促進温度は、150.2℃未満であってもよいし、100℃未満であってもよい。過酸化水素水の濃度は、30~40wt%(質量パーセント濃度)であってもよいし、この範囲外であってもよい。30wt%の過酸化水素水の沸点は、106℃であり、35wt%の過酸化水素水の沸点は、108℃である。 As described above, when the ozone gas comes into contact with the hydrogen peroxide solution on the substrate W, the substrate W is uniformly heated at a peeling promotion temperature higher than room temperature. The peel-off promoting temperature may be equal to the pre-bake temperature, or may be higher or lower than the pre-bake temperature. Similarly, the peel promoting temperature may be equal to the post-bake temperature, or may be higher or lower than the post-bake temperature. The peeling promotion temperature may be lower than the boiling point of hydrogen peroxide solution or lower than the boiling point of water. The boiling point of hydrogen peroxide is 150.2°C. Therefore, the peel promoting temperature may be less than 150.2°C or less than 100°C. The concentration of the hydrogen peroxide solution may be 30 to 40 wt% (mass percent concentration) or may be outside this range. The boiling point of 30 wt% hydrogen peroxide solution is 106°C, and the boiling point of 35 wt% hydrogen peroxide solution is 108°C.
 次に、本発明の一実施形態に係るレジスト剥離の他の例について説明する。 Next, another example of resist peeling according to an embodiment of the present invention will be described.
 図6A、図6B、図6C、および図6Dは、本発明の一実施形態に係るレジスト剥離の他の例について説明するための概略図である。図6A~図6Dは、基板Wを水平に見た状態を示している。図7は、基板W上の過酸化水素水の液膜に溶け込んだオゾンガスが過酸化水素水に含まれる過酸化水素と反応して、ヒドロキシルラジカルが生成されることを説明するための概略図である。 FIGS. 6A, 6B, 6C, and 6D are schematic diagrams for explaining other examples of resist peeling according to an embodiment of the present invention. 6A to 6D show the substrate W viewed horizontally. FIG. 7 is a schematic diagram for explaining that ozone gas dissolved in a liquid film of hydrogen peroxide on the substrate W reacts with hydrogen peroxide contained in the hydrogen peroxide to generate hydroxyl radicals. be.
 レジスト剥離の他の例では、レジスト剥離の一例と同様に、水平な姿勢の基板Wを剥離促進温度で均一に加熱する。その後、過酸化水素水のミストを基板Wに供給するのではなく、図6Aに示すように、オゾンガスを基板Wの表面の全域に接触させる。接触させる方法は、レジスト剥離の一例と同様である。オゾンガスがレジストパターン100の表面と反応すると、レジストパターン100の表面に対する水の接触角が減少し、レジストパターン100の表面の疎水性が弱まる。これにより、レジストパターン100の表面が親水性に変化する。 In another example of resist peeling, similarly to the example of resist peeling, the substrate W in a horizontal position is uniformly heated at a temperature that promotes peeling. Thereafter, instead of supplying a mist of hydrogen peroxide to the substrate W, ozone gas is brought into contact with the entire surface of the substrate W, as shown in FIG. 6A. The contacting method is the same as an example of resist peeling. When the ozone gas reacts with the surface of the resist pattern 100, the contact angle of water with the surface of the resist pattern 100 decreases, and the hydrophobicity of the surface of the resist pattern 100 weakens. This changes the surface of the resist pattern 100 to be hydrophilic.
 次に、水平な姿勢の基板Wを剥離促進温度で均一に加熱した状態で、過酸化水素水を基板Wに供給し、基板Wの表面の全域を覆う過酸化水素水の液膜を形成する。具体的には、前述したレジスト剥離の一例と同様に、過酸化水素水のミストを基板Wの表面に供給する。過酸化水素水のミストの供給を継続すると、過酸化水素水の複数の液滴が基板W上に形成され、徐々に大きくなっていく。オゾンガスとの反応によってレジストパターン100の表面の疎水性が弱まっているので、過酸化水素水の複数の液滴が基板Wの表面の全域に分散するのではなく、これらの液滴が基板Wの表面上で結合する。これにより、基板Wの表面の全域を覆う過酸化水素水の液膜が形成される。 Next, while the substrate W in a horizontal position is uniformly heated at a peel-promoting temperature, hydrogen peroxide is supplied to the substrate W to form a liquid film of hydrogen peroxide that covers the entire surface of the substrate W. . Specifically, a mist of hydrogen peroxide solution is supplied to the surface of the substrate W, similar to the above-described example of resist stripping. When the mist of hydrogen peroxide is continued to be supplied, a plurality of droplets of hydrogen peroxide are formed on the substrate W and gradually become larger. Since the hydrophobicity of the surface of the resist pattern 100 is weakened by the reaction with ozone gas, multiple droplets of hydrogen peroxide are not dispersed over the entire surface of the substrate W, but these droplets are spread over the entire surface of the substrate W. Bind on the surface. As a result, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed.
 過酸化水素水の液膜を形成するとき、過酸化水素水のミストを基板Wの表面に供給することに加えてまたは代えて、基板Wの表面に向けて過酸化水素水を連続的に吐出してもよい。具体的には、図6Bに示すように、過酸化水素水ノズルの一例である液柱ノズル51Bから過酸化水素水を連続的に吐出することにより、液柱ノズル51Bから基板Wの表面の中央部に向かって流れる、液柱ノズル51Bと同程度の直径(例えば、直径が5~20mmの範囲内)の連続した過酸化水素水の液柱を形成し、この液柱を形成する過酸化水素水を水平な姿勢で静止した基板Wの表面の中央部に衝突させてもよい。 When forming a liquid film of hydrogen peroxide, in addition to or instead of supplying a mist of hydrogen peroxide to the surface of the substrate W, the hydrogen peroxide is continuously discharged toward the surface of the substrate W. You may. Specifically, as shown in FIG. 6B, by continuously discharging hydrogen peroxide water from the liquid column nozzle 51B, which is an example of a hydrogen peroxide water nozzle, the center of the surface of the substrate W is sprayed from the liquid column nozzle 51B. The hydrogen peroxide that forms a continuous liquid column of hydrogen peroxide water that has a diameter similar to that of the liquid column nozzle 51B (for example, within a diameter range of 5 to 20 mm) flows toward the liquid column nozzle 51B. The water may be caused to collide with the center of the surface of the substrate W that is stationary in a horizontal position.
 基板Wを水平な姿勢で静止させながら、基板Wの表面の中央部に向けて過酸化水素水を連続的に吐出すると、吐出された過酸化水素水は、基板Wの表面の中央部に衝突し、その後、基板Wの表面に沿って基板Wの表面の中央部から放射状に流れる。基板W上の過酸化水素水は、後続の過酸化水素水によって外方に押し流され、基板Wの表面の外周から外方に排出される。これにより、基板Wの表面の全域を覆う過酸化水素水の液膜が形成される。 When the hydrogen peroxide solution is continuously discharged toward the center of the surface of the substrate W while the substrate W is held still in a horizontal position, the discharged hydrogen peroxide solution collides with the center of the surface of the substrate W. Then, it flows radially along the surface of the substrate W from the center of the surface of the substrate W. The hydrogen peroxide solution on the substrate W is swept outward by the subsequent hydrogen peroxide solution, and is discharged outward from the outer periphery of the surface of the substrate W. As a result, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed.
 基板Wへの過酸化水素水の供給は、基板Wを水平な姿勢で静止させながら行うのではなく、基板Wを水平な姿勢で回転させながら行ってもよい。具体的には、基板Wの中心を通る鉛直な直線まわりに基板Wを水平面内で回転させながら、基板Wの上面(表面)に向けて過酸化水素水を連続的に吐出してもよい。この場合、基板Wの回転による遠心力が基板W上の過酸化水素水に加わるので、基板Wの表面の全域を覆う過酸化水素水の液膜を形成する時間を短縮できる。 The hydrogen peroxide solution may be supplied to the substrate W while the substrate W is rotated in a horizontal position, instead of while the substrate W is held still in a horizontal position. Specifically, the hydrogen peroxide solution may be continuously discharged toward the upper surface (front surface) of the substrate W while rotating the substrate W in a horizontal plane around a vertical straight line passing through the center of the substrate W. In this case, centrifugal force due to the rotation of the substrate W is applied to the hydrogen peroxide solution on the substrate W, so that the time required to form a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W can be shortened.
 基板Wの表面に向けて過酸化水素水を連続的に吐出することにより、過酸化水素水のミストだけを基板Wの表面に供給する場合に比べて、短時間で基板Wの表面の全域を覆う過酸化水素水の液膜を形成できる。基板Wを水平な姿勢で回転させながら、基板Wの表面に向けて過酸化水素水を連続的に吐出する場合は、吐出される過酸化水素水の流量と基板Wの回転速度とを制御することにより、薄い過酸化水素水の液膜を形成できる。過酸化水素水のミストを基板Wに供給する場合は、基板Wの表面に向けて過酸化水素水を連続的に吐出する場合に比べて薄い過酸化水素水の液膜を形成できる。 By continuously discharging the hydrogen peroxide solution toward the surface of the substrate W, the entire surface of the substrate W can be covered in a shorter time than when only a mist of hydrogen peroxide solution is supplied to the surface of the substrate W. A covering liquid film of hydrogen peroxide can be formed. When the hydrogen peroxide solution is continuously discharged toward the surface of the substrate W while rotating the substrate W in a horizontal position, the flow rate of the discharged hydrogen peroxide solution and the rotation speed of the substrate W are controlled. By doing so, a thin liquid film of hydrogen peroxide solution can be formed. When a mist of hydrogen peroxide is supplied to the substrate W, a thinner liquid film of hydrogen peroxide can be formed than when the hydrogen peroxide is continuously discharged toward the surface of the substrate W.
 基板Wの表面の全域を覆う過酸化水素水の液膜が形成された後は、基板Wへの過酸化水素水のミストの供給を停止してもよいし、継続してもよい。前者の場合、過酸化水素水のミストの供給を停止してから一定時間が経過した後に、基板Wへの過酸化水素水のミストの供給を再開してもよい。同様に、基板Wの表面の全域を覆う過酸化水素水の液膜が形成された後は、液柱ノズル51Bからの過酸化水素水の吐出を停止してもよいし、継続してもよい。前者の場合、過酸化水素水の吐出を停止してから一定時間が経過した後に、過酸化水素水の吐出を再開してもよい。 After a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed, supply of the mist of hydrogen peroxide solution to the substrate W may be stopped or may be continued. In the former case, the supply of the hydrogen peroxide solution mist to the substrate W may be restarted after a certain period of time has passed since the supply of the hydrogen peroxide solution mist was stopped. Similarly, after a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed, the discharge of hydrogen peroxide solution from the liquid column nozzle 51B may be stopped or may be continued. . In the former case, the discharging of the hydrogen peroxide solution may be resumed after a certain period of time has elapsed since the discharging of the hydrogen peroxide solution was stopped.
 次に、図6Cに示すように、水平な姿勢の基板Wを剥離促進温度で均一に加熱すると共に、基板Wの表面の全域を過酸化水素水の液膜で覆った状態で、基板W上の過酸化水素水の液膜にオゾンガスを接触させる。基板Wへのオゾンガスの供給は、レジストパターン100の表面を親水化するときから継続していてもよいし、過酸化水素水の液膜を形成した後に再開してもよい。後者の場合、過酸化水素水の液膜を形成する前に、熱処理チャンバー34の内部からオゾンガスを排出してもよい。 Next, as shown in FIG. 6C, the substrate W in a horizontal position is heated uniformly at a peeling promoting temperature, and the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide solution. ozone gas is brought into contact with a liquid film of hydrogen peroxide solution. The supply of ozone gas to the substrate W may be continued from the time when the surface of the resist pattern 100 is made hydrophilic, or may be restarted after forming a liquid film of hydrogen peroxide solution. In the latter case, ozone gas may be exhausted from the inside of the heat treatment chamber 34 before forming the hydrogen peroxide solution film.
 オゾンガスが基板W上の過酸化水素水に接触すると、レジスト剥離の一例と同様に、オゾンガスと過酸化水素との反応によりヒドロキシルラジカルが生成され、レジストパターン100の硬化層101(図5参照)を分解する。これにより、非硬化部102(図5参照)に至る空洞103(図5参照)が硬化層101に形成される。基板Wへのオゾンガスの供給は、非硬化部102に至る空洞103が硬化層101に形成された時点で停止してもよいし、全てまたは殆ど全ての硬化層101がヒドロキシルラジカルによって分解されるまで継続してもよい。 When ozone gas comes into contact with the hydrogen peroxide solution on the substrate W, hydroxyl radicals are generated by the reaction between the ozone gas and hydrogen peroxide, similar to an example of resist peeling, and the cured layer 101 of the resist pattern 100 (see FIG. 5) is generated. Disassemble. As a result, a cavity 103 (see FIG. 5) reaching the uncured portion 102 (see FIG. 5) is formed in the hardened layer 101. The supply of ozone gas to the substrate W may be stopped when a cavity 103 reaching the uncured portion 102 is formed in the cured layer 101, or until all or almost all of the cured layer 101 is decomposed by hydroxyl radicals. You may continue.
 図6Cおよび図7に示すように、過酸化水素水の液膜の表面からレジストパターン100と過酸化水素水との界面である固液界面111までの最短距離は、過酸化水素水の液膜の外周部を除き、一定またはほぼ一定である。したがって、ヒドロキシルラジカルを固液界面111に均一に供給することができ、基板Wの表面の全域でレジストパターン100を均一に剥離できる。その一方で、過酸化水素水の液膜の厚みが大きいと、固液界面111に到達するヒドロキシルラジカルが減少する。したがって、過酸化水素水の液膜の厚み(膜厚)を極力減少させることが好ましい。 As shown in FIGS. 6C and 7, the shortest distance from the surface of the hydrogen peroxide solution film to the solid-liquid interface 111, which is the interface between the resist pattern 100 and the hydrogen peroxide solution, is the hydrogen peroxide solution film. is constant or nearly constant except for the outer periphery. Therefore, hydroxyl radicals can be uniformly supplied to the solid-liquid interface 111, and the resist pattern 100 can be uniformly peeled off over the entire surface of the substrate W. On the other hand, when the thickness of the hydrogen peroxide solution film is large, the number of hydroxyl radicals that reach the solid-liquid interface 111 is reduced. Therefore, it is preferable to reduce the thickness (film thickness) of the hydrogen peroxide solution as much as possible.
 基板Wへのオゾンガスの供給を停止した後は、レジスト剥離の一例と同様に、基板Wを乾燥させる。その後、図6Dに示すように、レジスト剥離液を基板Wに供給し、レジストパターン100を基板Wから除去する。図6Dは、回転している基板Wの上面(表面)に向けて剥離液ノズル85がレジスト剥離液の一例であるSPMを吐出している例を示している。 After stopping the supply of ozone gas to the substrate W, the substrate W is dried as in an example of resist peeling. Thereafter, as shown in FIG. 6D, a resist stripping solution is supplied to the substrate W, and the resist pattern 100 is removed from the substrate W. FIG. 6D shows an example in which the stripping liquid nozzle 85 discharges SPM, which is an example of a resist stripping liquid, toward the upper surface (front surface) of the rotating substrate W.
 このように、レジスト剥離の2つの例では、オゾンガスおよび過酸化水素水を基板Wの表面に供給することにより、レジストパターン100の少なくとも一部を基板Wの表面から剥離するレジスト剥離工程を行う。その後、レジスト剥離液を基板Wの表面に供給する残留レジスト剥離工程を行う。レジスト剥離工程を行った後にレジストが基板Wの表面に残っていたとしても、残留したレジストをレジスト剥離液によって基板Wの表面から剥離することができる。これにより、全てのレジストを基板Wから除去することができる。もしくは、基板Wに残留するレジストを減少させることができる。 As described above, in the two examples of resist stripping, a resist stripping step is performed in which at least a portion of the resist pattern 100 is stripped from the surface of the substrate W by supplying ozone gas and hydrogen peroxide solution to the surface of the substrate W. Thereafter, a residual resist stripping step is performed in which a resist stripping solution is supplied to the surface of the substrate W. Even if the resist remains on the surface of the substrate W after performing the resist stripping process, the remaining resist can be stripped from the surface of the substrate W with the resist stripping liquid. Thereby, all the resist can be removed from the substrate W. Alternatively, the amount of resist remaining on the substrate W can be reduced.
 図8は、本発明の一実施形態に係る基板処理装置1のレイアウトを示す概略平面図である。 FIG. 8 is a schematic plan view showing the layout of the substrate processing apparatus 1 according to an embodiment of the present invention.
 基板処理装置1は、基板Wを1枚ずつ処理する枚葉式の装置である。基板Wは、例えば、半導体ウエハなどである。基板処理装置1は、基板Wを収容する複数のキャリアCをそれぞれ保持する複数のロードポートLPと、複数のロードポートLPから搬送された基板Wを処理液や処理ガスなどの処理流体で処理する複数の処理ユニット2とを含む。 The substrate processing apparatus 1 is a single-wafer type apparatus that processes substrates W one by one. The substrate W is, for example, a semiconductor wafer. The substrate processing apparatus 1 includes a plurality of load ports LP each holding a plurality of carriers C for accommodating substrates W, and processes the substrates W transported from the plurality of load ports LP with a processing fluid such as a processing liquid or a processing gas. and a plurality of processing units 2.
 基板処理装置1は、さらに、基板Wを搬送する搬送ユニット(IR,SH,CR)と、基板処理装置1を制御する制御装置(コントローラ)3とを含む。制御装置3は、典型的にはコンピュータであり、プログラム等の情報を記憶するメモリ3mとメモリ3mに記憶された情報に従って基板処理装置1を制御するプロセッサ3pとを含む。 The substrate processing apparatus 1 further includes a transport unit (IR, SH, CR) that transports the substrate W, and a control device (controller) 3 that controls the substrate processing apparatus 1. The control device 3 is typically a computer, and includes a memory 3m that stores information such as programs, and a processor 3p that controls the substrate processing apparatus 1 according to the information stored in the memory 3m.
 搬送ユニット(IR,SH,CR)は、複数のロードポートLPから複数の処理ユニット2に延びる搬送経路上に配置されたインデクサロボットIR、シャトルSH、およびセンターロボットCRを含む。インデクサロボットIRは、複数のロードポートLPとシャトルSHとの間で基板Wを搬送する。シャトルSHは、インデクサロボットIRとセンターロボットCRとの間で往復移動して基板Wを搬送する。センターロボットCRは、シャトルSHと複数の処理ユニット2との間で基板Wを搬送する。センターロボットCRは、さらに、複数の処理ユニット2の間で基板Wを搬送する。図8に示す太線の矢印は、インデクサロボットIRおよびシャトルSHの移動方向を示している。 The transport units (IR, SH, CR) include an indexer robot IR, a shuttle SH, and a center robot CR arranged on a transport path extending from the plurality of load ports LP to the plurality of processing units 2. The indexer robot IR transports the substrate W between the plurality of load ports LP and the shuttle SH. The shuttle SH transports the substrate W by reciprocating between the indexer robot IR and the center robot CR. The center robot CR transports the substrate W between the shuttle SH and the plurality of processing units 2. The central robot CR further transports the substrate W between the plurality of processing units 2. The thick arrows shown in FIG. 8 indicate the moving directions of the indexer robot IR and shuttle SH.
 複数の処理ユニット2は、水平に離れた4つの位置にそれぞれ配置された4つの塔を形成している。各塔は、上下方向に積層された複数の処理ユニット2を含む。4つの塔は、搬送経路の両側に2つずつ配置されている。複数の処理ユニット2は、基板Wを加熱または冷却しながら処理する複数の前処理ユニット2Dと、複数の前処理ユニット2Dで処理された基板Wを処理液で処理する複数の後処理ユニット2Wとを含む。ロードポートLP側の2つの塔は、複数の前処理ユニット2Dで形成されており、残り2つの塔は、複数の後処理ユニット2Wで形成されている。 The plurality of processing units 2 form four towers arranged at four horizontally spaced positions. Each tower includes a plurality of processing units 2 stacked vertically. The four towers are placed two on each side of the conveyance path. The plurality of processing units 2 include a plurality of pre-processing units 2D that process the substrates W while heating or cooling them, and a plurality of post-processing units 2W that process the substrates W processed by the plurality of pre-processing units 2D with a processing liquid. including. The two towers on the load port LP side are formed by a plurality of pre-processing units 2D, and the remaining two towers are formed by a plurality of post-processing units 2W.
 次に、前処理ユニット2Dについて説明する。 Next, the preprocessing unit 2D will be explained.
 図9は、前処理ユニット2Dの鉛直断面の一例を示す断面図である。図10Aは、熱処理ユニット8の鉛直断面の一例を示す断面図である。図10Bは、熱処理ユニット8の鉛直断面の他の例を示す断面図である。以下の説明において、「ライン」は、配管やバルブ等の流体機器によって形成された流路を意味する。例えば、気体供給ライン49は、気体供給のための流路に相当する。 FIG. 9 is a sectional view showing an example of a vertical cross section of the preprocessing unit 2D. FIG. 10A is a cross-sectional view showing an example of a vertical cross section of the heat treatment unit 8. FIG. FIG. 10B is a sectional view showing another example of a vertical section of the heat treatment unit 8. In the following description, "line" means a flow path formed by fluid devices such as piping and valves. For example, the gas supply line 49 corresponds to a flow path for gas supply.
 前処理ユニット2Dは、基板Wが通過する搬入搬出口4aが設けられたチャンバー4と、チャンバー4の搬入搬出口4aを開閉するシャッター5と、チャンバー4内で基板Wを加熱しながら処理液や処理ガスなどの処理流体を基板Wに供給する熱処理ユニット8と、熱処理ユニット8によって加熱された基板Wをチャンバー4内で冷却する冷却ユニット7と、チャンバー4内で基板Wを搬送する室内搬送機構6とを含む。センターロボットCRは、搬入搬出口4aを介して、チャンバー4に基板Wを出し入れする。搬入搬出口4aの近傍のチャンバー4内に冷却ユニット7が配置されている。 The preprocessing unit 2D includes a chamber 4 provided with a loading/unloading port 4a through which the substrate W passes, a shutter 5 for opening/closing the loading/unloading port 4a of the chamber 4, and a processing liquid or the like while heating the substrate W in the chamber 4. A heat treatment unit 8 that supplies a processing fluid such as a processing gas to the substrate W, a cooling unit 7 that cools the substrate W heated by the heat treatment unit 8 within the chamber 4, and an indoor transport mechanism that transports the substrate W within the chamber 4. 6. The central robot CR takes substrates W into and out of the chamber 4 via the loading/unloading port 4a. A cooling unit 7 is arranged within the chamber 4 near the loading/unloading port 4a.
 冷却ユニット7は、クールプレート20と、クールプレート20を貫通して上下動するリフトピン22と、リフトピン22を上下動させるピン昇降駆動機構23とを含む。クールプレート20は、基板Wが載置される冷却面20aを備えている。クールプレート20の内部には、冷媒(典型的には冷却水)が循環する冷媒経路(図示省略)が形成されている。リフトピン22は、冷却面20aよりも上方で基板Wを支持する上位置と、先端が冷却面20aよりも下方に没入する下位置との間で上下動される。 The cooling unit 7 includes a cool plate 20, a lift pin 22 that passes through the cool plate 20 and moves up and down, and a pin elevation drive mechanism 23 that moves the lift pin 22 up and down. The cool plate 20 includes a cooling surface 20a on which the substrate W is placed. A refrigerant path (not shown) through which a refrigerant (typically cooling water) circulates is formed inside the cool plate 20 . The lift pins 22 are moved up and down between an upper position where the substrate W is supported above the cooling surface 20a and a lower position where the tips thereof are recessed below the cooling surface 20a.
 熱処理ユニット8は、ヒータ33を備えている。より具体的には、熱処理ユニット8は、ホットプレート30と、ホットプレート30を収容する熱処理チャンバー34と、ホットプレート30を貫通して上下動するリフトピン38と、リフトピン38を上下動させるピン昇降駆動機構39とを含む。ホットプレート30は、基板Wが載置される加熱面30aを備え、ヒータ33を内蔵している。 The heat treatment unit 8 includes a heater 33. More specifically, the heat treatment unit 8 includes a hot plate 30, a heat treatment chamber 34 that accommodates the hot plate 30, a lift pin 38 that moves up and down through the hot plate 30, and a pin lifting drive that moves the lift pin 38 up and down. mechanism 39. The hot plate 30 includes a heating surface 30a on which the substrate W is placed, and has a built-in heater 33.
 ヒータ33は、加熱面30aに置かれた基板Wを室温よりも高い一定の温度で加熱できるように構成されており、例えば、基板Wを250℃まで加熱できるように構成されていてもよい。加熱面30aは、基板Wの形状に倣い、基板Wよりも一回り大きな平面形状を有している。具体的には、基板Wが円形であれば、加熱面30aは、基板Wよりもひとまわり大きな円形に形成される。 The heater 33 is configured to be able to heat the substrate W placed on the heating surface 30a at a constant temperature higher than room temperature, and may be configured to be able to heat the substrate W to 250° C., for example. The heating surface 30a follows the shape of the substrate W and has a planar shape that is one size larger than the substrate W. Specifically, if the substrate W is circular, the heating surface 30a is formed into a circle that is slightly larger than the substrate W.
 熱処理チャンバー34は、チャンバー本体35と、チャンバー本体35の上方で上下動する蓋36とを備えている。熱処理ユニット8は、蓋36を昇降する蓋昇降駆動機構37を備えている。チャンバー本体35は、上方に開放する開口35aを有しており、この開口35aを蓋36が開閉する。蓋36は、チャンバー本体35の開口35aを塞いで熱処理チャンバー34の内部に密閉処理空間を形成する閉位置(下位置)と、開口35aを開放するように上方に退避した上位置との間で上下動される。リフトピン38は、加熱面30aよりも上方で基板Wを支持する上位置と、先端が加熱面30aよりも下方に没入する下位置との間で上下動される。 The heat treatment chamber 34 includes a chamber body 35 and a lid 36 that moves up and down above the chamber body 35. The heat treatment unit 8 includes a lid lifting mechanism 37 that raises and lowers the lid 36. The chamber body 35 has an opening 35a that opens upward, and a lid 36 opens and closes this opening 35a. The lid 36 is located between a closed position (lower position) in which it closes the opening 35a of the chamber body 35 and forms a sealed processing space inside the heat treatment chamber 34, and an upper position in which it is retracted upward so as to open the opening 35a. Moved up and down. The lift pins 38 are moved up and down between an upper position where the substrate W is supported above the heating surface 30a and a lower position where the tips thereof are recessed below the heating surface 30a.
 チャンバー本体35の底部には、排気ポート41が形成されている。排気ポート41は、周方向に間隔を開けて複数箇所(例えば3箇所)に配置されていることが好ましい。排気ポート41は、排気ライン42を介して排気設備に結合される。 An exhaust port 41 is formed at the bottom of the chamber body 35. It is preferable that the exhaust ports 41 are arranged at a plurality of locations (for example, three locations) at intervals in the circumferential direction. Exhaust port 41 is coupled to exhaust equipment via exhaust line 42 .
 蓋36は、加熱面30aに平行に延びるプレート部45と、プレート部45の周縁から下方に延びる筒部46とを含む。プレート部45は、具体的にはほぼ円形であり、筒部46は円筒形状を有している。筒部46の下端は、チャンバー本体35の上端に対向している。それにより、蓋36の上下動によって、チャンバー本体35の開口35aを開閉できる。 The lid 36 includes a plate portion 45 extending parallel to the heating surface 30a, and a cylindrical portion 46 extending downward from the periphery of the plate portion 45. Specifically, the plate portion 45 has a substantially circular shape, and the tube portion 46 has a cylindrical shape. The lower end of the cylindrical portion 46 faces the upper end of the chamber body 35. Thereby, the opening 35a of the chamber body 35 can be opened and closed by moving the lid 36 up and down.
 図10Aに示すように、過酸化水素水のミストを基板Wの上面に向けて噴射するミストノズル51Aと、オゾンガスを基板Wの上面に向けて噴射するオゾンノズル55とは、蓋36に取り付けられている。図10Aは、蓋36のプレート部45を上下に貫通する2つの穴にミストノズル51Aおよびオゾンノズル55が挿入された例を示している。蓋36に対するミストノズル51Aおよびオゾンノズル55の位置は、この例に限られない。 As shown in FIG. 10A, a mist nozzle 51A that sprays a mist of hydrogen peroxide solution toward the top surface of the substrate W, and an ozone nozzle 55 that sprays ozone gas toward the top surface of the substrate W are attached to the lid 36. ing. FIG. 10A shows an example in which a mist nozzle 51A and an ozone nozzle 55 are inserted into two holes vertically penetrating the plate portion 45 of the lid 36. The positions of the mist nozzle 51A and the ozone nozzle 55 with respect to the lid 36 are not limited to this example.
 ミストノズル51Aは、過酸化水素水供給源54からミストノズル51Aに過酸化水素水を案内する過酸化水素水ライン52に接続されている。過酸化水素水バルブ53は、過酸化水素水ライン52上に配置されている。制御装置3が過酸化水素水バルブ53を開くと、過酸化水素水がミストノズル51Aに供給され、ミストノズル51Aが過酸化水素水のミストを噴出する。制御装置3が過酸化水素水バルブ53を閉じると、ミストノズル51Aへの過酸化水素水の供給が停止され、ミストノズル51Aからの過酸化水素水のミストの噴出が停止される。 The mist nozzle 51A is connected to a hydrogen peroxide line 52 that guides hydrogen peroxide from a hydrogen peroxide supply source 54 to the mist nozzle 51A. The hydrogen peroxide water valve 53 is arranged on the hydrogen peroxide water line 52. When the control device 3 opens the hydrogen peroxide water valve 53, the hydrogen peroxide water is supplied to the mist nozzle 51A, and the mist nozzle 51A spouts the hydrogen peroxide water mist. When the control device 3 closes the hydrogen peroxide water valve 53, the supply of hydrogen peroxide water to the mist nozzle 51A is stopped, and the ejection of the hydrogen peroxide water mist from the mist nozzle 51A is stopped.
 オゾンノズル55は、オゾン発生器58からオゾンノズル55にオゾンガスを案内するオゾンライン56に接続されている。オゾンバルブ57は、オゾンライン56上に配置されている。制御装置3がオゾンバルブ57を開くと、オゾンガスがオゾンノズル55に供給され、オゾンノズル55がオゾンガスを噴出する。制御装置3がオゾンバルブ57を閉じると、オゾンノズル55へのオゾンガスの供給が停止され、オゾンノズル55からのオゾンガスの噴出が停止される。 The ozone nozzle 55 is connected to an ozone line 56 that guides ozone gas from the ozone generator 58 to the ozone nozzle 55. Ozone valve 57 is placed on ozone line 56. When the control device 3 opens the ozone valve 57, ozone gas is supplied to the ozone nozzle 55, and the ozone nozzle 55 spouts the ozone gas. When the control device 3 closes the ozone valve 57, the supply of ozone gas to the ozone nozzle 55 is stopped, and the ejection of ozone gas from the ozone nozzle 55 is stopped.
 ミストノズル51Aおよびオゾンノズル55とホットプレート30上の基板Wとの間には、シャワープレート59が配置されている。ミストノズル51Aから噴出された過酸化水素水のミストは、シャワープレート59と蓋36との間の空間を拡散し、シャワープレート59を貫通する複数の穴を通過する。これにより、過酸化水素水のミストがホットプレート30上の基板Wの上面に均一に供給される。同様に、オゾンノズル55から噴出されたオゾンガスは、シャワープレート59と蓋36との間の空間を拡散し、シャワープレート59を貫通する複数の穴を通過する。これにより、オゾンガスがホットプレート30上の基板Wの上面に均一に供給される。 A shower plate 59 is arranged between the mist nozzle 51A and the ozone nozzle 55 and the substrate W on the hot plate 30. The mist of hydrogen peroxide ejected from the mist nozzle 51A diffuses through the space between the shower plate 59 and the lid 36, and passes through a plurality of holes penetrating the shower plate 59. Thereby, the mist of hydrogen peroxide solution is uniformly supplied to the upper surface of the substrate W on the hot plate 30. Similarly, ozone gas ejected from the ozone nozzle 55 diffuses through the space between the shower plate 59 and the lid 36 and passes through a plurality of holes penetrating the shower plate 59. Thereby, ozone gas is uniformly supplied to the upper surface of the substrate W on the hot plate 30.
 図10Bに示すように、熱処理ユニット8は、ミストノズル51Aに代えてまたは加えて、過酸化水素水を連続的に吐出する液柱ノズル51Bを備えていてもよい。この場合、シャワープレート59は省略することが好ましい。さらに、液柱ノズル51Bは、ホットプレート30上の基板Wの上面の中央部に向けて過酸化水素水を吐出することが好ましい。排気ライン42内の排気から液体を分離する気液分離器60を排気設備の上流に配置してもよい。 As shown in FIG. 10B, the heat treatment unit 8 may include a liquid column nozzle 51B that continuously discharges hydrogen peroxide solution instead of or in addition to the mist nozzle 51A. In this case, it is preferable to omit the shower plate 59. Furthermore, it is preferable that the liquid column nozzle 51B discharges the hydrogen peroxide solution toward the center of the upper surface of the substrate W on the hot plate 30. A gas-liquid separator 60 that separates liquid from the exhaust gas in the exhaust line 42 may be placed upstream of the exhaust equipment.
 制御装置3が過酸化水素水バルブ53を開くと、過酸化水素水が液柱ノズル51Bに供給され、液柱ノズル51Bが過酸化水素水の吐出を開始する。これにより、液柱ノズル51Bから基板Wの上面まで連続した過酸化水素水の液柱が形成される。基板Wの上面の中央部に衝突した過酸化水素水は、基板Wの上面に沿って外方に流れ、基板Wの上面の外周部から外方に排出される。制御装置3が過酸化水素水バルブ53を閉じると、液柱ノズル51Bへの過酸化水素水の供給が停止され、液柱ノズル51Bからの過酸化水素水の吐出が停止される。 When the control device 3 opens the hydrogen peroxide water valve 53, hydrogen peroxide water is supplied to the liquid column nozzle 51B, and the liquid column nozzle 51B starts discharging the hydrogen peroxide water. As a result, a continuous liquid column of hydrogen peroxide water is formed from the liquid column nozzle 51B to the upper surface of the substrate W. The hydrogen peroxide solution that has collided with the center of the upper surface of the substrate W flows outward along the upper surface of the substrate W, and is discharged outward from the outer periphery of the upper surface of the substrate W. When the control device 3 closes the hydrogen peroxide water valve 53, the supply of hydrogen peroxide water to the liquid column nozzle 51B is stopped, and the discharge of hydrogen peroxide water from the liquid column nozzle 51B is stopped.
 図9に示すように、室内搬送機構6は、チャンバー4の内部で基板Wを搬送する。より具体的には、室内搬送機構6は、冷却ユニット7と熱処理ユニット8との間で基板Wを搬送する室内搬送ハンド6Hを備えている。室内搬送ハンド6Hは、冷却ユニット7のリフトピン22との間で基板Wを受渡しでき、かつ熱処理ユニット8のリフトピン38との間で基板Wを受渡しできるように構成されている。それにより、室内搬送ハンド6Hは、冷却ユニット7のリフトピン22から基板Wを受け取って熱処理ユニット8のリフトピン38にその基板Wを渡す。さらに、室内搬送ハンド6Hは、熱処理ユニット8のリフトピン38から基板Wを受け取って冷却ユニット7のリフトピン22にその基板Wを渡す。 As shown in FIG. 9, the indoor transport mechanism 6 transports the substrate W inside the chamber 4. More specifically, the indoor transport mechanism 6 includes an indoor transport hand 6H that transports the substrate W between the cooling unit 7 and the heat treatment unit 8. The indoor transfer hand 6H is configured to be able to transfer the substrate W to and from the lift pins 22 of the cooling unit 7 and to transfer the substrate W to and from the lift pins 38 of the heat treatment unit 8. Thereby, the indoor transfer hand 6H receives the substrate W from the lift pin 22 of the cooling unit 7 and transfers the substrate W to the lift pin 38 of the heat treatment unit 8. Further, the indoor transfer hand 6H receives the substrate W from the lift pin 38 of the heat treatment unit 8 and transfers the substrate W to the lift pin 22 of the cooling unit 7.
 前処理ユニット2Dの典型的な動作は、次のとおりである。 A typical operation of the preprocessing unit 2D is as follows.
 センターロボットCR(図8参照)が基板Wをチャンバー4に搬入するとき、シャッター5は、搬入搬出口4aを開放する開位置に制御される。その状態で、センターロボットCRのハンドHがチャンバー4に進入し、基板Wをクールプレート20の上方に配置する。すると、リフトピン22が上位置まで上昇し、センターロボットCRのハンドHから基板Wを受け取る。その後、センターロボットCRのハンドHはチャンバー4外へと後退する。次に、室内搬送機構6の室内搬送ハンド6Hは、リフトピン22から基板Wを受け取って熱処理ユニット8のリフトピン38へと基板Wを搬送する。このとき蓋36は開位置(上位置)にあり、リフトピン38は受け取った基板Wを上位置で支持する。室内搬送ハンド6Hが熱処理チャンバー34から退避した後、リフトピン38は下位置まで下降して、基板Wを加熱面30aに載置する。一方、蓋36は、閉位置(下位置)へと下降し、ホットプレート30を収容する密閉処理空間を形成する。この状態で、基板Wに対する熱処理が行われる。 When the central robot CR (see FIG. 8) carries the substrate W into the chamber 4, the shutter 5 is controlled to the open position to open the carry-in/out port 4a. In this state, the hand H of the central robot CR enters the chamber 4 and places the substrate W above the cool plate 20. Then, the lift pin 22 rises to the upper position and receives the substrate W from the hand H of the central robot CR. Thereafter, the hand H of the center robot CR retreats to the outside of the chamber 4. Next, the indoor transport hand 6H of the indoor transport mechanism 6 receives the substrate W from the lift pin 22 and transports the substrate W to the lift pin 38 of the heat treatment unit 8. At this time, the lid 36 is in the open position (upper position), and the lift pins 38 support the received substrate W in the upper position. After the indoor transport hand 6H retreats from the heat treatment chamber 34, the lift pins 38 descend to the lower position and place the substrate W on the heating surface 30a. On the other hand, the lid 36 is lowered to the closed position (lower position) and forms a sealed processing space in which the hot plate 30 is accommodated. In this state, heat treatment is performed on the substrate W.
 熱処理を終えると、蓋36が開位置(上位置)へと上昇して熱処理チャンバー34が開放される。さらに、リフトピン38が上位置へと上昇し、基板Wを加熱面30aの上方へと押し上げる。その状態で、室内搬送機構6の室内搬送ハンド6Hは、リフトピン38から基板Wを受け取って、冷却ユニット7のリフトピン22へとその基板Wを搬送する。リフトピン22は、受け取った基板Wを上位置で支持する。室内搬送ハンド6Hの退避を待って、リフトピン22が下位置へと下降し、それにより、基板Wがクールプレート20の冷却面20aに載置される。それにより、基板Wが冷却される。 When the heat treatment is finished, the lid 36 is raised to the open position (upper position) and the heat treatment chamber 34 is opened. Further, the lift pins 38 rise to the upper position, pushing the substrate W upwards above the heating surface 30a. In this state, the indoor transport hand 6H of the indoor transport mechanism 6 receives the substrate W from the lift pin 38 and transports the substrate W to the lift pin 22 of the cooling unit 7. The lift pins 22 support the received substrate W at the upper position. After the indoor transfer hand 6H is retracted, the lift pins 22 are lowered to the lower position, whereby the substrate W is placed on the cooling surface 20a of the cool plate 20. Thereby, the substrate W is cooled.
 基板Wの冷却を終えると、リフトピン22が上位置へと上昇し、それにより、基板Wを冷却面20aの上方へと押し上げる。その状態で、シャッター5が開かれ、センターロボットCRのハンドHがチャンバー4へと進入し、上位置にあるリフトピン22によって支持された基板Wの下方に配置される。その状態で、リフトピン22が下降することにより、センターロボットCRのハンドHに基板Wが渡される。基板Wを保持したハンドHは、チャンバー4外へと退避し、その後に、シャッター5が搬入搬出口4aを閉じる。 After cooling the substrate W, the lift pins 22 rise to the upper position, thereby pushing the substrate W above the cooling surface 20a. In this state, the shutter 5 is opened, and the hand H of the central robot CR enters the chamber 4 and is placed below the substrate W supported by the lift pin 22 located at the upper position. In this state, the lift pins 22 are lowered to transfer the substrate W to the hand H of the central robot CR. The hand H holding the substrate W retreats to the outside of the chamber 4, and then the shutter 5 closes the loading/unloading port 4a.
 図11は、後処理ユニット2Wの鉛直断面の一例を示す断面図である。 FIG. 11 is a sectional view showing an example of a vertical section of the post-processing unit 2W.
 後処理ユニット2Wは、基板Wを1枚ずつ処理する枚葉式の液処理ユニットである。後処理ユニット2Wは、内部空間を区画する箱形のチャンバー9(図8参照)と、チャンバー9内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック70(基板保持手段、基板ホルダ)と、レジスト剥離液の一例であるSPMをスピンチャック70に保持されている基板Wに供給する剥離液供給ユニット71と、リンス液供給ユニット72と、スピンチャック70を取り囲む筒状のカップ73とを含む。図8に示すように、チャンバー9には、基板Wが通過する搬入搬出口9aが形成されており、この搬入搬出口9aを開閉するためのシャッター10が備えられている。チャンバー9は、その内部で処理液を用いた基板処理が行われる液処理チャンバーの一例である。 The post-processing unit 2W is a single-wafer type liquid processing unit that processes the substrates W one by one. The post-processing unit 2W includes a box-shaped chamber 9 (see FIG. 8) that partitions an internal space, and holds a single substrate W in a horizontal position within the chamber 9, and performs vertical rotation passing through the center of the substrate W. A spin chuck 70 (substrate holding means, substrate holder) that rotates the substrate W around the axis A1, and a stripping liquid supply unit 71 that supplies SPM, which is an example of a resist stripping liquid, to the substrate W held on the spin chuck 70. , a rinsing liquid supply unit 72, and a cylindrical cup 73 surrounding the spin chuck 70. As shown in FIG. 8, the chamber 9 is formed with a loading/unloading port 9a through which the substrate W passes, and is provided with a shutter 10 for opening/closing this loading/unloading port 9a. The chamber 9 is an example of a liquid processing chamber in which substrate processing using a processing liquid is performed.
 スピンチャック70は、水平な姿勢で保持された円板状のスピンベース74と、スピンベース74の上方で基板Wを水平な姿勢で保持する複数のチャックピン75と、スピンベース74の中央部から下方に延びる回転軸76と、回転軸76を回転させることにより基板Wおよびスピンベース74を回転軸線A1まわりに回転させるスピンモータ77とを含む。スピンチャック70は、複数のチャックピン75を基板Wの周端面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース74の上面に吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 The spin chuck 70 includes a disk-shaped spin base 74 held in a horizontal position, a plurality of chuck pins 75 that hold the substrate W in a horizontal position above the spin base 74, and It includes a rotation shaft 76 that extends downward, and a spin motor 77 that rotates the substrate W and the spin base 74 around the rotation axis A1 by rotating the rotation shaft 76. The spin chuck 70 is not limited to a clamping type chuck in which a plurality of chuck pins 75 are brought into contact with the peripheral end surface of the substrate W, but can also be used to attract the back surface (lower surface) of the substrate W, which is a non-device forming surface, to the upper surface of the spin base 74. A vacuum type chuck that holds the substrate W horizontally may be used.
 カップ73は、スピンチャック70に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。カップ73は、スピンベース74の周囲を取り囲んでいる。カップ73は、スピンチャック70が基板Wを回転させている状態で、処理液が基板Wに供給されるときに、基板Wの周囲に排出される処理液を受け止める。カップ73に受け止められた処理液は、図示しない回収装置または排液装置に送られる。 The cup 73 is arranged outward (in the direction away from the rotation axis A1) from the substrate W held by the spin chuck 70. The cup 73 surrounds the spin base 74. The cup 73 receives the processing liquid discharged around the substrate W when the processing liquid is supplied to the substrate W while the spin chuck 70 is rotating the substrate W. The processing liquid received in the cup 73 is sent to a recovery device or a drainage device (not shown).
 リンス液供給ユニット72は、スピンチャック70に保持されている基板Wに向けてリンス液を吐出するリンス液ノズル80と、リンス液ノズル80にリンス液を供給するリンス液配管81と、リンス液配管81からリンス液ノズル80へのリンス液の供給および供給停止を切り替えるリンス液バルブ82とを含む。リンス液ノズル80は、リンス液ノズル80の吐出口が静止された状態でリンス液を吐出する固定ノズルであってもよい。リンス液供給ユニット72は、リンス液ノズル80を移動させることにより、基板Wの上面に対するリンス液の着液位置を移動させるリンス液ノズル移動ユニットを備えていてもよい。 The rinsing liquid supply unit 72 includes a rinsing liquid nozzle 80 that discharges rinsing liquid toward the substrate W held by the spin chuck 70, a rinsing liquid pipe 81 that supplies the rinsing liquid to the rinsing liquid nozzle 80, and a rinsing liquid pipe. 81 to the rinse liquid nozzle 80 and a rinse liquid valve 82 that switches between supplying and stopping the supply of the rinse liquid from 81 to the rinse liquid nozzle 80. The rinse liquid nozzle 80 may be a fixed nozzle that discharges the rinse liquid while the discharge port of the rinse liquid nozzle 80 remains stationary. The rinsing liquid supply unit 72 may include a rinsing liquid nozzle moving unit that moves the position of the rinsing liquid on the upper surface of the substrate W by moving the rinsing liquid nozzle 80.
 リンス液バルブ82が開かれると、リンス液配管81からリンス液ノズル80に供給されたリンス液が、リンス液ノズル80から基板Wの上面中央部に向けて吐出される。リンス液は、例えば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水および希釈濃度(例えば、10~100ppm程度)の塩酸水のいずれかであってもよい。リンス液の温度は、室温であってもよいし、室温よりも高い温度(例えば、70~90℃)であってもよい。 When the rinse liquid valve 82 is opened, the rinse liquid supplied from the rinse liquid pipe 81 to the rinse liquid nozzle 80 is discharged from the rinse liquid nozzle 80 toward the center of the upper surface of the substrate W. The rinsing liquid is, for example, pure water (DIW). The rinsing liquid is not limited to pure water, and may be carbonated water, electrolyzed ionized water, hydrogen water, ozone water, or hydrochloric acid water with a diluted concentration (for example, about 10 to 100 ppm). The temperature of the rinsing liquid may be room temperature or a temperature higher than room temperature (for example, 70 to 90° C.).
 剥離液供給ユニット71は、SPMを基板Wの上面に向けて吐出する剥離液ノズル85と、剥離液ノズル85が先端部に取り付けられたノズルアーム86と、ノズルアーム86を移動させることにより、剥離液ノズル85を移動させるノズル移動ユニット87とを含む。 The stripping liquid supply unit 71 performs stripping by moving a stripping liquid nozzle 85 that discharges SPM toward the upper surface of the substrate W, a nozzle arm 86 to which the stripping liquid nozzle 85 is attached to the tip, and the nozzle arm 86. A nozzle moving unit 87 that moves the liquid nozzle 85 is included.
 剥離液ノズル85は、例えば、連続流の状態でSPMを吐出するストレートノズルであり、例えば基板Wの上面に垂直な方向に処理液を吐出する垂直姿勢でノズルアーム86に取り付けられている。ノズルアーム86は、水平方向に延びており、スピンチャック70の周囲で鉛直方向に延びる揺動軸線(図示しない)まわりに旋回可能に設けられている。 The stripping liquid nozzle 85 is, for example, a straight nozzle that discharges SPM in a continuous flow state, and is attached to the nozzle arm 86 in a vertical position to discharge the processing liquid in a direction perpendicular to the upper surface of the substrate W, for example. The nozzle arm 86 extends in the horizontal direction and is provided so as to be pivotable about a swing axis (not shown) that extends in the vertical direction around the spin chuck 70 .
 ノズル移動ユニット87は、揺動軸線まわりにノズルアーム86を旋回させることにより、平面視で基板Wの上面中央部を通る軌跡に沿って剥離液ノズル85を水平に移動させる。ノズル移動ユニット87は、剥離液ノズル85から吐出されたSPMが基板Wの上面に着液する処理位置と、剥離液ノズル85が平面視でスピンチャック70の周囲に位置するホーム位置との間で、剥離液ノズル85を水平に移動させる。処理位置は、剥離液ノズル85から吐出されたSPMが基板Wの上面中央部に着液する中央位置と、剥離液ノズル85から吐出されたSPMが基板Wの上面周縁部に着液する周縁位置とを含む。 The nozzle moving unit 87 moves the stripping liquid nozzle 85 horizontally along a trajectory passing through the center of the upper surface of the substrate W in plan view by rotating the nozzle arm 86 around the swing axis. The nozzle moving unit 87 moves between a processing position where the SPM discharged from the stripping liquid nozzle 85 lands on the upper surface of the substrate W and a home position where the stripping liquid nozzle 85 is located around the spin chuck 70 in plan view. , move the stripping liquid nozzle 85 horizontally. The processing positions include a central position where the SPM discharged from the stripping liquid nozzle 85 lands on the center of the upper surface of the substrate W, and a peripheral position where the SPM discharged from the stripping liquid nozzle 85 lands on the periphery of the upper surface of the substrate W. including.
 剥離液供給ユニット71は、剥離液ノズル85に接続され、硫酸供給源88から硫酸(HSO)が供給される硫酸配管89と、剥離液ノズル85に接続され、過酸化水素水供給源94から過酸化水素水(H)が供給される過酸化水素水配管95とを含む。 The stripping solution supply unit 71 is connected to a stripping solution nozzle 85, a sulfuric acid pipe 89 to which sulfuric acid (H 2 SO 4 ) is supplied from a sulfuric acid supply source 88, and a hydrogen peroxide solution supply source. Hydrogen peroxide water piping 95 is supplied with hydrogen peroxide water (H 2 O 2 ) from 94 .
 硫酸供給源88から供給される硫酸と、過酸化水素水供給源94から供給される過酸化水素水とは、いずれも水溶液である。硫酸の濃度は、例えば90~98%であり、過酸化水素水の濃度は、例えば30~50%である。 The sulfuric acid supplied from the sulfuric acid supply source 88 and the hydrogen peroxide solution supplied from the hydrogen peroxide supply source 94 are both aqueous solutions. The concentration of sulfuric acid is, for example, 90 to 98%, and the concentration of hydrogen peroxide solution is, for example, 30 to 50%.
 硫酸配管89には、硫酸配管89の流路を開閉する硫酸バルブ90と、硫酸の流量を変更する硫酸流量調整バルブ91と、硫酸を加熱するヒータ92とが、剥離液ノズル85側からこの順に介装されている。ヒータ92は、硫酸を室温よりも高い温度(70~190℃の範囲内の一定温度。例えば90℃)に加熱する。 In the sulfuric acid piping 89, a sulfuric acid valve 90 that opens and closes the flow path of the sulfuric acid piping 89, a sulfuric acid flow rate adjustment valve 91 that changes the flow rate of sulfuric acid, and a heater 92 that heats the sulfuric acid are installed in this order from the stripping liquid nozzle 85 side. It has been intervened. The heater 92 heats the sulfuric acid to a temperature higher than room temperature (a constant temperature within the range of 70 to 190°C, for example 90°C).
 過酸化水素水配管95には、過酸化水素水配管95の流路を開閉する過酸化水素水バルブ96と、過酸化水素水の流量を変更する過酸化水素水流量調整バルブ97とが、剥離液ノズル85側からこの順に介装されている。過酸化水素水バルブ96には、温度調整されていない室温(例えば約23℃)の過酸化水素水が、過酸化水素水配管95を通して供給される。 The hydrogen peroxide water pipe 95 has a hydrogen peroxide water valve 96 that opens and closes the flow path of the hydrogen peroxide water pipe 95, and a hydrogen peroxide water flow rate adjustment valve 97 that changes the flow rate of the hydrogen peroxide water. They are interposed in this order from the liquid nozzle 85 side. The hydrogen peroxide water valve 96 is supplied with hydrogen peroxide water at room temperature (for example, about 23° C.) whose temperature is not adjusted through the hydrogen peroxide water piping 95 .
 剥離液ノズル85は、例えば略円筒状のケーシングを有している。このケーシングの内部には、混合室が形成されている。硫酸配管89は、剥離液ノズル85のケーシングの側壁に配置された硫酸導入口に接続されている。過酸化水素水配管95は、剥離液ノズル85のケーシングの側壁に配置された過酸化水素水導入口に接続されている。 The stripping liquid nozzle 85 has, for example, a substantially cylindrical casing. A mixing chamber is formed inside this casing. The sulfuric acid pipe 89 is connected to a sulfuric acid inlet arranged on the side wall of the casing of the stripper nozzle 85. The hydrogen peroxide water piping 95 is connected to a hydrogen peroxide water inlet arranged on the side wall of the casing of the stripper nozzle 85 .
 硫酸バルブ90および過酸化水素水バルブ96が開かれると、硫酸配管89からの硫酸(高温の硫酸)が、剥離液ノズル85の硫酸導入口からその内部の混合室へと供給されるとともに、過酸化水素水配管95からの過酸化水素水が、剥離液ノズル85の過酸化水素水導入口からその内部の混合室へと供給される。 When the sulfuric acid valve 90 and the hydrogen peroxide valve 96 are opened, sulfuric acid (high temperature sulfuric acid) from the sulfuric acid pipe 89 is supplied from the sulfuric acid inlet of the stripper nozzle 85 to the mixing chamber therein, and Hydrogen peroxide water from the hydrogen oxide water pipe 95 is supplied from the hydrogen peroxide water inlet of the stripper nozzle 85 to the mixing chamber therein.
 剥離液ノズル85の混合室に流入した硫酸および過酸化水素水は、混合室で十分に撹拌混合される。この混合によって、硫酸および過酸化水素水が均一に混ざり合い、それらの反応によってSPMが生成される。SPMは、酸化力が強いペルオキソ一硫酸(Peroxymonosulfuric acid;HSO)を含む。高温に加熱された硫酸が供給され、かつ硫酸と過酸化水素水との混合は発熱反応であるので、高温のSPMが生成される。具体的には、混合前の硫酸および過酸化水素水のいずれの温度よりも高い温度(100℃以上。例えば、160℃)のSPMが生成される。剥離液ノズル85の混合室において生成された高温のSPMは、ケーシングの先端(下端)に開口した吐出口から基板Wに向けて吐出される。 The sulfuric acid and hydrogen peroxide solution that have flowed into the mixing chamber of the stripper nozzle 85 are sufficiently stirred and mixed in the mixing chamber. Through this mixing, the sulfuric acid and the hydrogen peroxide solution are mixed uniformly, and SPM is produced by their reaction. SPM contains peroxymonosulfuric acid (H 2 SO 5 ), which has strong oxidizing power. Since sulfuric acid heated to a high temperature is supplied and the mixing of sulfuric acid and hydrogen peroxide is an exothermic reaction, high temperature SPM is generated. Specifically, SPM is generated at a temperature higher than the temperature of either the sulfuric acid or the hydrogen peroxide solution before mixing (100° C. or higher, for example, 160° C.). The high temperature SPM generated in the mixing chamber of the stripping liquid nozzle 85 is discharged toward the substrate W from a discharge port opened at the tip (lower end) of the casing.
 図12は、基板処理装置1によって実行される基板Wの処理の一例を示す工程図である。以下では、図8、図9、図11、および図12を参照する。制御装置3は、以下の動作を基板処理装置1に実行させるようにプログラムされている。 FIG. 12 is a process diagram showing an example of processing of the substrate W performed by the substrate processing apparatus 1. In the following, reference is made to FIGS. 8, 9, 11, and 12. The control device 3 is programmed to cause the substrate processing apparatus 1 to perform the following operations.
 基板処理装置1で基板Wを処理するときは、インデクサロボットIR、シャトルSH、およびセンターロボットCRが、ロードポートLPに置かれたキャリアC内の基板Wを前処理ユニット2Dに搬送する(図12のステップS11)。前処理ユニット2Dでは、前述のレジスト剥離の2つの例のいずれかが行われ、レジストパターン100(図5参照)の少なくとも一部が除去される(図12のステップS12)。 When processing a substrate W in the substrate processing apparatus 1, the indexer robot IR, shuttle SH, and center robot CR transport the substrate W in the carrier C placed on the load port LP to the preprocessing unit 2D (Fig. 12 step S11). In the pretreatment unit 2D, one of the two examples of resist stripping described above is performed, and at least a portion of the resist pattern 100 (see FIG. 5) is removed (step S12 in FIG. 12).
 具体的には、センターロボットCRが基板Wを前処理ユニット2Dに搬入し、室内搬送機構6が基板Wを熱処理ユニット8に搬送する。その後、基板W上の過酸化水素水を蒸発させて、基板Wを乾燥させるまでの工程が熱処理ユニット8で行われる。基板Wが乾燥した後は、必要に応じて、室内搬送機構6が基板Wをホットプレート30からクールプレート20に搬送する。これにより、基板Wがクールプレート20によって室温またはその付近の温度まで冷却される。基板Wが乾燥した後または冷却された後、センターロボットCRは、前処理ユニット2Dから基板Wを搬出し、搬出した基板Wを後処理ユニット2Wに搬入する(図12のステップS13)。 Specifically, the central robot CR carries the substrate W into the preprocessing unit 2D, and the indoor transport mechanism 6 transports the substrate W to the heat processing unit 8. Thereafter, the steps of evaporating the hydrogen peroxide solution on the substrate W and drying the substrate W are performed in the heat treatment unit 8. After the substrate W is dried, the indoor transport mechanism 6 transports the substrate W from the hot plate 30 to the cool plate 20 as required. As a result, the substrate W is cooled by the cool plate 20 to a temperature at or near room temperature. After the substrate W is dried or cooled, the center robot CR carries out the substrate W from the pre-processing unit 2D, and carries the carried-out substrate W into the post-processing unit 2W (step S13 in FIG. 12).
 後処理ユニット2Wでは、基板Wを回転させながら、レジスト剥離液などの処理液を基板Wの上面に供給するウェット処理が行われる(図12のステップS14)。具体的には、基板Wを回転させながら、基板Wの上面に向けて剥離液ノズル85にレジスト剥離液を吐出させるレジスト剥離液供給工程が行われる。その後、基板Wを回転させながら、基板Wの上面に向けてリンス液ノズル80にリンス液を吐出させるリンス液供給工程が行われる。その後、基板Wを高速回転させることにより基板Wを乾燥させる乾燥工程が行われる。その後、インデクサロボットIR、シャトルSH、およびセンターロボットCRが、後処理ユニット2W内の基板WをロードポートLPに置かれたキャリアCに搬送する(図12のステップS15)。 In the post-processing unit 2W, a wet process is performed in which a processing liquid such as a resist stripping liquid is supplied to the upper surface of the substrate W while rotating the substrate W (step S14 in FIG. 12). Specifically, while rotating the substrate W, a resist stripping liquid supply step is performed in which the resist stripping liquid is discharged from the stripping liquid nozzle 85 toward the upper surface of the substrate W. Thereafter, while rotating the substrate W, a rinsing liquid supply step is performed in which the rinsing liquid is discharged from the rinsing liquid nozzle 80 toward the upper surface of the substrate W. After that, a drying process is performed in which the substrate W is dried by rotating the substrate W at high speed. After that, the indexer robot IR, shuttle SH, and center robot CR transport the substrate W in the post-processing unit 2W to the carrier C placed in the load port LP (step S15 in FIG. 12).
 以上のように本実施形態では、基板Wの表面に形成されたレジストパターン100に過酸化水素水を接触させる。さらに、この過酸化水素水にオゾンガスを接触させる。オゾンガスと過酸化水素との反応により、ヒドロキシルラジカルが生成される。ヒドロキシルラジカルは、レジストパターン100を酸化し分解する。これにより、レジストパターン100の少なくとも一部が剥離または除去される。ヒドロキシルラジカルは、オゾンガスよりも酸化還元電位が高く、オゾンガスよりも酸化力が強い。したがって、オゾンガスでレジストパターン100を酸化および分解する場合に比べて、レジストパターン100を効率的に除去できる。それにより、硫酸を含有するレジスト剥離液の使用量を削減したり、その使用を省いたりすることができるので、環境負荷を低減できる。 As described above, in this embodiment, the resist pattern 100 formed on the surface of the substrate W is brought into contact with hydrogen peroxide solution. Further, ozone gas is brought into contact with this hydrogen peroxide solution. The reaction between ozone gas and hydrogen peroxide produces hydroxyl radicals. The hydroxyl radicals oxidize and decompose the resist pattern 100. As a result, at least a portion of the resist pattern 100 is peeled off or removed. Hydroxyl radicals have a higher redox potential than ozone gas and have stronger oxidizing power than ozone gas. Therefore, the resist pattern 100 can be removed more efficiently than when the resist pattern 100 is oxidized and decomposed using ozone gas. As a result, the amount of resist stripping solution containing sulfuric acid used can be reduced or eliminated, so that the environmental load can be reduced.
 本実施形態では、基板Wに供給した後に過酸化水素水を間接的または直接的に加熱する。もしくは、加熱した過酸化水素水を基板Wに供給する。これにより、剥離促進温度、つまり、室温よりも高温の過酸化水素水にオゾンガスを接触させることができ、ヒドロキシルラジカルの生成を促進することができる。その結果、レジストパターン100と反応するヒドロキシルラジカルを増やすことができ、より効率的にレジストパターン100を除去できる。 In this embodiment, the hydrogen peroxide solution is heated indirectly or directly after being supplied to the substrate W. Alternatively, heated hydrogen peroxide solution is supplied to the substrate W. Thereby, the ozone gas can be brought into contact with the hydrogen peroxide solution at a peeling promotion temperature, that is, a temperature higher than room temperature, and the generation of hydroxyl radicals can be promoted. As a result, the number of hydroxyl radicals that react with the resist pattern 100 can be increased, and the resist pattern 100 can be removed more efficiently.
 本実施形態では、過酸化水素水の沸点よりも低い温度で過酸化水素水を加熱する。これにより、過酸化水素水が基板Wから蒸発する速度を低下させることができ、過酸化水素水が基板W上にある状態を維持することができる。多量の過酸化水素水を基板Wに保持させれば、過酸化水素水を沸点以上の温度で加熱しても、比較的長い時間、過酸化水素水が基板W上にある状態を維持することができる。しかしながら、この場合、基板W上の過酸化水素水の液滴または液膜の厚みが大きくなり、レジストパターン100の表面まで到達するヒドロキシルラジカルが減少する。過酸化水素水の沸点よりも低い温度で過酸化水素水を加熱することにより、厚みの大きな過酸化水素水の液滴または液膜を基板W上に形成しなくても、過酸化水素水が基板W上にある状態を維持することができる。 In this embodiment, the hydrogen peroxide solution is heated at a temperature lower than the boiling point of the hydrogen peroxide solution. Thereby, the speed at which the hydrogen peroxide solution evaporates from the substrate W can be reduced, and the state in which the hydrogen peroxide solution is on the substrate W can be maintained. If a large amount of hydrogen peroxide solution is held on the substrate W, the hydrogen peroxide solution can be maintained on the substrate W for a relatively long time even if the hydrogen peroxide solution is heated to a temperature above the boiling point. Can be done. However, in this case, the thickness of the hydrogen peroxide droplets or liquid film on the substrate W increases, and the number of hydroxyl radicals that reach the surface of the resist pattern 100 decreases. By heating the hydrogen peroxide solution at a temperature lower than the boiling point of the hydrogen peroxide solution, the hydrogen peroxide solution can be heated without forming large droplets or liquid films of the hydrogen peroxide solution on the substrate W. The state on the substrate W can be maintained.
 本実施形態では、水の沸点、つまり、100℃よりも低い温度で過酸化水素水を加熱する。これにより、基板W上の過酸化水素水から水が蒸発する速度を低下させることができ、厚みの大きな過酸化水素水の液滴または液膜を基板W上に形成しなくても、水が基板W上にある状態を維持することができる。ヒドロキシルラジカルは、オゾンガスと過酸化水素との反応だけでなく、オゾンガスと水との反応によっても生成される。これにより、レジストパターン100と反応するヒドロキシルラジカルを増やすことができる。 In this embodiment, the hydrogen peroxide solution is heated at a temperature lower than the boiling point of water, that is, 100°C. As a result, the speed at which water evaporates from the hydrogen peroxide solution on the substrate W can be reduced, and even without forming thick droplets or liquid films of hydrogen peroxide solution on the substrate W, the water evaporates from the hydrogen peroxide solution on the substrate W. The state on the substrate W can be maintained. Hydroxyl radicals are generated not only by the reaction between ozone gas and hydrogen peroxide, but also by the reaction between ozone gas and water. Thereby, the number of hydroxyl radicals that react with the resist pattern 100 can be increased.
 レジストパターン100が加熱されると、レジストパターン100に含まれる溶剤が気化する。レジストパターン100の表層に硬化層101が形成されている場合、気化した溶剤が排出され難いので、レジストパターン100の内部の圧力が上昇する。レジスト塗布からレジスト剥離の前までの一連の工程には、プリベークやポストベークなどの基板Wを加熱する工程が含まれる。この一連の工程における基板Wの温度の最大値を最高温度と定義する。レジストパターン100の表層に硬化層101が形成されており、レジストパターン100が加熱される温度が最高温度よりも大幅に高いと、レジストパターン100の内部の圧力が高くなり易い。 When the resist pattern 100 is heated, the solvent contained in the resist pattern 100 is vaporized. When the hardened layer 101 is formed on the surface layer of the resist pattern 100, the pressure inside the resist pattern 100 increases because the vaporized solvent is difficult to be discharged. The series of steps from resist application to before resist peeling includes steps of heating the substrate W, such as pre-bake and post-bake. The maximum value of the temperature of the substrate W in this series of steps is defined as the maximum temperature. A hardened layer 101 is formed on the surface layer of the resist pattern 100, and if the temperature at which the resist pattern 100 is heated is significantly higher than the maximum temperature, the pressure inside the resist pattern 100 tends to increase.
 過酸化水素水を室温よりも高温の剥離促進温度で加熱するとき、当該剥離促進温度を過酸化水素水の沸点よりも低い温度または水の沸点よりも低い温度にすれば、レジストパターン100が加熱される温度を、前述の一連の工程における基板Wの温度の最大値、つまり、最高温度に近づけることができる。もしくは、レジストパターン100が加熱される温度を、最高温度以下にすることができる。これにより、レジストパターン100の表層に硬化層101が形成されている場合であっても、レジストパターン100の内部の圧力が高くなることを防止できる。 When heating the hydrogen peroxide solution at a peeling-promoting temperature higher than room temperature, if the peeling-promoting temperature is set to a temperature lower than the boiling point of the hydrogen peroxide solution or lower than the boiling point of water, the resist pattern 100 is heated. The temperature of the substrate W can be brought close to the maximum temperature of the substrate W in the series of steps described above, that is, the maximum temperature. Alternatively, the temperature at which resist pattern 100 is heated can be lower than the maximum temperature. Thereby, even if the hardened layer 101 is formed on the surface layer of the resist pattern 100, the pressure inside the resist pattern 100 can be prevented from increasing.
 本実施形態では、過酸化水素水を室温よりも高温の剥離促進温度で加熱すると共に、過酸化水素水を基板Wの表面に断続的に供給する。つまり、過酸化水素水を基板Wの表面に供給し、基板Wの表面に保持させる。過酸化水素水の供給が停止(中断)されている間(過酸化水素水の追加が停止されている間)、基板W上の過酸化水素水は、蒸発やオゾンガスとの反応により減少する。基板Wの表面への過酸化水素水の供給を再開し、基板Wの表面に過酸化水素水を追加する。これにより、過酸化水素水を供給し続ける場合に比べて過酸化水素水の消費量を削減しながら、過酸化水素水が基板W上にある状態を維持することができる。加えて、過酸化水素水を供給し続ける場合に比べて基板W上の過酸化水素水の液滴または液膜を薄くできる。 In this embodiment, the hydrogen peroxide solution is heated at a peeling promotion temperature higher than room temperature, and the hydrogen peroxide solution is intermittently supplied to the surface of the substrate W. That is, hydrogen peroxide solution is supplied to the surface of the substrate W and held on the surface of the substrate W. While the supply of hydrogen peroxide solution is stopped (interrupted) (while the addition of hydrogen peroxide solution is stopped), the hydrogen peroxide solution on the substrate W decreases due to evaporation or reaction with ozone gas. The supply of hydrogen peroxide to the surface of the substrate W is restarted, and hydrogen peroxide is added to the surface of the substrate W. This makes it possible to maintain the state in which the hydrogen peroxide solution is on the substrate W while reducing the consumption amount of the hydrogen peroxide solution compared to the case where the hydrogen peroxide solution is continuously supplied. In addition, the droplets or liquid film of hydrogen peroxide on the substrate W can be made thinner than when hydrogen peroxide is continuously supplied.
 本実施形態では、基板Wの表面の全域が過酸化水素水の液膜で覆われている状態ではなく、過酸化水素水の複数の液滴が基板Wの表面の全域に分散している状態で、基板Wに接する過酸化水素水にオゾンガスを接触させる。これにより、基板Wの表面の全域が過酸化水素水の液膜で覆われている場合に比べて、効率的にレジストパターン100を除去することができる。理由は、以下の通りである。 In this embodiment, the entire surface of the substrate W is not covered with a liquid film of hydrogen peroxide, but a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W. Then, ozone gas is brought into contact with the hydrogen peroxide solution that is in contact with the substrate W. Thereby, the resist pattern 100 can be removed more efficiently than when the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide. The reason is as follows.
 レジストパターン100と過酸化水素水との界面である固液界面111(図4参照)に供給されるヒドロキシルラジカル(OH)は、オゾンガスと過酸化水素水とレジストパターン100との境界である三態境界112(図4参照)に近づくにしたがって増加する。これは、ヒドロキシルラジカルが短時間で過酸化水素に戻るので、過酸化水素水の液滴または液膜の表面から固液界面111までの最短距離が長いと、固液界面111に到達する前にヒドロキシルラジカルが消滅するからである。したがって、三態境界112付近では、三態境界112から遠い位置に比べて、過酸化水素水に接するレジストパターン100を効率的に除去することができる。 Hydroxyl radicals (OH) supplied to the solid-liquid interface 111 (see FIG. 4), which is the interface between the resist pattern 100 and the hydrogen peroxide solution, are in three states, which is the interface between the ozone gas, the hydrogen peroxide solution, and the resist pattern 100. It increases as the boundary 112 (see FIG. 4) is approached. This is because hydroxyl radicals return to hydrogen peroxide in a short time, so if the shortest distance from the surface of the hydrogen peroxide droplet or liquid film to the solid-liquid interface 111 is long, the hydroxyl radicals return to hydrogen peroxide before reaching the solid-liquid interface 111. This is because hydroxyl radicals disappear. Therefore, in the vicinity of the three-state boundary 112, the resist pattern 100 in contact with the hydrogen peroxide solution can be removed more efficiently than in a position farther from the three-state boundary 112.
 過酸化水素水の複数の液滴が基板Wの表面の全域に分散しているときの三態境界112の全長(長さの合計値)は、基板Wの表面の全域が過酸化水素水の液膜で覆われているときの三態境界112の全長よりも大きい。前述のように、三態境界112付近では、三態境界112から遠い位置に比べて、過酸化水素水に接するレジストパターン100を効率的に除去することができる。以上の理由により、基板Wの表面の全域が過酸化水素水の液膜で覆われている場合に比べて、効率的にレジストパターン100を除去することができる。 The total length (total value of lengths) of the three-state boundary 112 when a plurality of droplets of hydrogen peroxide are dispersed over the entire surface of the substrate W is as follows: It is larger than the total length of the three-state boundary 112 when covered with a liquid film. As described above, the resist pattern 100 in contact with the hydrogen peroxide solution can be removed more efficiently near the three-state boundary 112 than at a position farther from the three-state boundary 112. For the above reasons, the resist pattern 100 can be removed more efficiently than when the entire surface of the substrate W is covered with a liquid film of hydrogen peroxide.
 本実施形態では、霧状の過酸化水素水を基板Wの表面に供給する。過酸化水素水のミストは、多数の過酸化水素水の粒子によって構成されている。基板W上の過酸化水素水の粒子は、別の過酸化水素水の粒子と結合し、過酸化水素水の液滴(過酸化水素水の粒子よりも直径が大きい過酸化水素水の集合体)を基板Wの表面に形成する。レジストパターン100の表面が疎水性の場合、過酸化水素水の複数の液滴が形成され、基板Wの表面の全域に分散する。レジストパターン100の表面が親水性の場合、基板Wの表面の全域を覆う過酸化水素水の液膜が形成される。これにより、液柱ノズル51Bから基板Wの表面まで連続した過酸化水素水の液柱を形成する場合に比べて、薄い過酸化水素水の液滴または液膜を形成できる。 In this embodiment, atomized hydrogen peroxide water is supplied to the surface of the substrate W. The hydrogen peroxide mist is composed of a large number of hydrogen peroxide particles. The hydrogen peroxide particles on the substrate W combine with other hydrogen peroxide particles to form hydrogen peroxide droplets (aggregations of hydrogen peroxide with a diameter larger than the hydrogen peroxide particles). ) is formed on the surface of the substrate W. When the surface of the resist pattern 100 is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate W. When the surface of the resist pattern 100 is hydrophilic, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed. Thereby, thin droplets or a liquid film of hydrogen peroxide can be formed compared to the case where a continuous liquid column of hydrogen peroxide is formed from the liquid column nozzle 51B to the surface of the substrate W.
 本実施形態では、過酸化水素水を基板Wの表面に向けて液柱ノズル51Bから連続的に吐出し、過酸化水素水を基板Wの表面に衝突させる。液柱ノズル51Bから吐出された過酸化水素水は、液柱ノズル51Bから基板Wの表面まで連続した過酸化水素水の液注を形成する。レジストパターン100の表面が疎水性の場合、過酸化水素水の複数の液滴が形成され、基板Wの表面の全域に分散する。レジストパターン100の表面が親水性の場合、基板Wの表面の全域を覆う過酸化水素水の液膜が形成される。これにより、過酸化水素水のミストを基板Wの表面に供給する場合に比べて、短時間で過酸化水素水の液滴または液膜を形成できる。 In this embodiment, hydrogen peroxide solution is continuously discharged from the liquid column nozzle 51B toward the surface of the substrate W, and the hydrogen peroxide solution is caused to collide with the surface of the substrate W. The hydrogen peroxide solution discharged from the liquid column nozzle 51B forms a continuous injection of hydrogen peroxide solution from the liquid column nozzle 51B to the surface of the substrate W. When the surface of the resist pattern 100 is hydrophobic, multiple droplets of hydrogen peroxide are formed and dispersed over the entire surface of the substrate W. When the surface of the resist pattern 100 is hydrophilic, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W is formed. Thereby, droplets or a liquid film of hydrogen peroxide can be formed in a shorter time than when a mist of hydrogen peroxide is supplied to the surface of the substrate W.
 本実施形態では、オゾンガスを基板Wの表面に接触させ、レジストパターン100の表面の疎水性を弱める。これにより、レジストパターン100の表面に対する水の接触角が減少する。この状態で、過酸化水素水を基板Wの表面に供給する。レジストパターン100の表面が疎水性の場合、大きな流量で過酸化水素水を供給しなければ、基板Wの表面の全域を覆う過酸化水素水の液膜を形成することができない。しかしながら、この場合、過酸化水素水の消費量が増加する上に、分厚い過酸化水素水の液膜が形成される。レジストパターン100の表面を親水化した後に過酸化水素水を供給すれば、過酸化水素水の消費量を削減しながら、基板Wの表面の全域を覆う薄い過酸化水素水の液膜を形成することができる。加えて、オゾンガスを用いてレジストパターン100を除去するだけでなく、オゾンガスを用いてレジストパターン100の表面を親水化するので、オゾンガス以外の液体または気体を用いてレジストパターン100の表面を親水化する場合に比べて、配管やバルブなどの基板Wの処理に用いる流体機器の数を減らすことができる。 In this embodiment, ozone gas is brought into contact with the surface of the substrate W to weaken the hydrophobicity of the surface of the resist pattern 100. This reduces the contact angle of water with the surface of the resist pattern 100. In this state, hydrogen peroxide solution is supplied to the surface of the substrate W. When the surface of the resist pattern 100 is hydrophobic, a liquid film of hydrogen peroxide solution covering the entire surface of the substrate W cannot be formed unless the hydrogen peroxide solution is supplied at a large flow rate. However, in this case, not only the amount of hydrogen peroxide consumed increases, but also a thick film of hydrogen peroxide is formed. If hydrogen peroxide is supplied after making the surface of the resist pattern 100 hydrophilic, a thin hydrogen peroxide liquid film covering the entire surface of the substrate W can be formed while reducing the amount of hydrogen peroxide consumed. be able to. In addition, in addition to removing the resist pattern 100 using ozone gas, since the surface of the resist pattern 100 is made hydrophilic using ozone gas, a liquid or gas other than ozone gas is used to make the surface of the resist pattern 100 hydrophilic. The number of fluid devices used to process the substrate W, such as piping and valves, can be reduced compared to the case in which the number of fluid devices, such as piping and valves, is used to process the substrate W.
 本実施形態では、オゾンガスと過酸化水素との反応により生成されたヒドロキシルラジカルを用いてレジストパターン100の全部または一部を剥離または除去した後に、レジスト剥離液を基板Wの表面に供給する。レジストパターン100の一部が基板Wの表面に残っていたとしても、このレジストパターン100は、レジスト剥離液との接触により、基板Wの表面から剥がれる。レジストパターン100の残渣が基板Wの表面に残っていたとしても、この残渣は、レジスト剥離液によって洗い流される。これにより、基板Wの表面に残留するレジストを減らすことができる。 In the present embodiment, a resist stripping solution is supplied to the surface of the substrate W after all or part of the resist pattern 100 is stripped or removed using hydroxyl radicals generated by the reaction between ozone gas and hydrogen peroxide. Even if a portion of the resist pattern 100 remains on the surface of the substrate W, this resist pattern 100 is peeled off from the surface of the substrate W due to contact with the resist stripping liquid. Even if the residue of the resist pattern 100 remains on the surface of the substrate W, this residue is washed away by the resist stripping liquid. Thereby, the amount of resist remaining on the surface of the substrate W can be reduced.
 他の実施形態
 オゾンガスおよび過酸化水素水を基板Wに供給することにより、全てまたは殆ど全てのレジストを基板Wから剥離できるのでれば、オゾンガスおよび過酸化水素水を基板Wに供給した後に、リンス液よりも酸化力が高いレジスト剥離液を基板Wに供給しなくてもよい。この場合、レジストパターン100の残渣を洗い流すために、純水などのリンス液を基板Wの表面に供給してもよい。とくに、SPMのような硫酸を含有するレジスト剥離液の使用量を削減したり、その使用を省いたりできることにより、環境負荷を低減できる。
Other Embodiments If all or almost all of the resist can be removed from the substrate W by supplying ozone gas and hydrogen peroxide solution to the substrate W, then after supplying ozone gas and hydrogen peroxide solution to the substrate W, rinsing is performed. It is not necessary to supply the resist stripping liquid to the substrate W, which has higher oxidizing power than the resist stripping liquid. In this case, a rinsing liquid such as pure water may be supplied to the surface of the substrate W in order to wash away the residue of the resist pattern 100. In particular, the environmental load can be reduced by reducing or eliminating the use of a resist stripping solution containing sulfuric acid such as SPM.
 レジストパターン100の硬化層101の一部をオゾンガスおよび過酸化水素水を用いて除去した後であれば、非硬化部102に至る空洞103(図5参照)が硬化層101に形成される前に、基板Wへのオゾンガスの供給を停止してもよい。このようにしても、レジストパターン100の硬化層101の一部を除去せずにレジスト剥離液を基板Wに供給した場合に比べて、全てのレジストパターン100を基板Wから剥離する時間を短縮できる。 If a part of the hardened layer 101 of the resist pattern 100 is removed using ozone gas and hydrogen peroxide solution, before the cavity 103 (see FIG. 5) reaching the unhardened portion 102 is formed in the hardened layer 101. , the supply of ozone gas to the substrate W may be stopped. Even in this case, the time required to peel all the resist patterns 100 from the substrate W can be shortened compared to the case where the resist stripping liquid is supplied to the substrate W without removing a part of the cured layer 101 of the resist pattern 100. .
 過酸化水素水を過酸化水素水の沸点以上の温度で加熱してもよい。この場合、基板Wを150℃以上の温度で加熱してもよい。このようにすれば、基板Wを介してオゾンガスを150℃以上の温度で加熱することができる。これにより、オゾンガスの活性を高めることができ、オゾンガスと過酸化水素との反応により生成されたヒドロキシルラジカルだけでなく、オゾンガスでもレジストパターン100を酸化および分解することができる。 The hydrogen peroxide solution may be heated at a temperature higher than the boiling point of the hydrogen peroxide solution. In this case, the substrate W may be heated at a temperature of 150° C. or higher. In this way, ozone gas can be heated through the substrate W to a temperature of 150° C. or higher. Thereby, the activity of ozone gas can be increased, and the resist pattern 100 can be oxidized and decomposed not only by hydroxyl radicals generated by the reaction between ozone gas and hydrogen peroxide but also by ozone gas.
 オゾンガスを室温よりも高温の過酸化水素水に接触させるのではなく、オゾンガスを室温の過酸化水素水に接触させてもよい。すなわち、基板Wを加熱したり、室温よりも高温の過酸化水素水を基板Wに供給したりしなくてもよい。 Rather than bringing ozone gas into contact with hydrogen peroxide solution at a temperature higher than room temperature, ozone gas may be brought into contact with hydrogen peroxide solution at room temperature. That is, it is not necessary to heat the substrate W or to supply hydrogen peroxide solution at a temperature higher than room temperature to the substrate W.
 基板Wの表面へのオゾンガスおよび過酸化水素水の供給と、基板Wの表面へのレジスト剥離液の供給とを、別々の基板処理装置1で行ってもよい。より具体的には、オゾンガスおよび過酸化水素水を基板Wに供給した後に基板Wを別の基板処理装置1に搬送し、当該基板処理装置1内でレジスト剥離液を基板Wの表面に供給してもよい。もしくは、オゾンガスおよび過酸化水素水を基板Wに供給した後に、基板Wを搬送することなく、当該基板Wの表面にレジスト剥離液を供給してもよい。例えば、スピンチャック70に保持されている基板Wの表面にオゾンガスおよび過酸化水素水を供給し、その後、このスピンチャック70に保持されている基板Wの表面にレジスト剥離液を供給してもよい。 The supply of ozone gas and hydrogen peroxide solution to the surface of the substrate W and the supply of the resist stripping liquid to the surface of the substrate W may be performed by separate substrate processing apparatuses 1. More specifically, after ozone gas and hydrogen peroxide solution are supplied to the substrate W, the substrate W is transported to another substrate processing apparatus 1, and a resist stripping liquid is supplied to the surface of the substrate W within the substrate processing apparatus 1. It's okay. Alternatively, after ozone gas and hydrogen peroxide solution are supplied to the substrate W, the resist stripping liquid may be supplied to the surface of the substrate W without transporting the substrate W. For example, ozone gas and hydrogen peroxide solution may be supplied to the surface of the substrate W held by the spin chuck 70, and then a resist stripping liquid may be supplied to the surface of the substrate W held by the spin chuck 70. .
 基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。 The substrate processing apparatus 1 is not limited to an apparatus that processes a disk-shaped substrate W, but may be an apparatus that processes a polygonal substrate W.
 前述の全ての構成の2つ以上を組み合わせてもよい。前述の全ての工程の2つ以上を組み合わせてもよい。 Two or more of all the above configurations may be combined. Two or more of all the steps described above may be combined.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical content of the present invention, and the present invention is to be construed as limited to these specific examples. Rather, the scope of the invention is limited only by the appended claims.
1   :基板処理装置
20  :クールプレート
30  :ホットプレート
34  :熱処理チャンバー
35  :チャンバー本体
36  :蓋
51A :ミストノズル
51B :液柱ノズル
55  :オゾンノズル
85  :剥離液ノズル
100 :レジストパターン
101 :硬化層
102 :非硬化部
103 :空洞
111 :固液界面
112 :三態境界
W   :基板
1: Substrate processing apparatus 20: Cool plate 30: Hot plate 34: Heat treatment chamber 35: Chamber body 36: Lid 51A: Mist nozzle 51B: Liquid column nozzle 55: Ozone nozzle 85: Stripper nozzle 100: Resist pattern 101: Hardened layer 102 : Uncured part 103 : Cavity 111 : Solid-liquid interface 112 : Three-state boundary W : Substrate

Claims (11)

  1.  レジストパターンが形成された基板の表面に過酸化水素水を供給する過酸化水素水供給工程と、
     前記基板に接する前記過酸化水素水にオゾンガスを供給するオゾンガス供給工程と、を含む、基板処理方法。
    a hydrogen peroxide supply step of supplying hydrogen peroxide to the surface of the substrate on which the resist pattern is formed;
    A substrate processing method, comprising: supplying ozone gas to the hydrogen peroxide solution in contact with the substrate.
  2.  前記過酸化水素水を前記基板に供給する前または後に前記過酸化水素水を室温よりも高い剥離促進温度で加熱する過酸化水素水加熱工程をさらに含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, further comprising a hydrogen peroxide solution heating step of heating the hydrogen peroxide solution at a peeling promotion temperature higher than room temperature before or after supplying the hydrogen peroxide solution to the substrate.
  3.  前記剥離促進温度は、前記過酸化水素水の沸点未満である、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein the peeling promotion temperature is lower than the boiling point of the hydrogen peroxide solution.
  4.  前記剥離促進温度は、水の沸点未満である、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein the peeling promotion temperature is lower than the boiling point of water.
  5.  前記過酸化水素水供給工程は、前記過酸化水素水を前記基板の表面に供給する初回供給工程と、前記基板の表面への前記過酸化水素水の供給を停止した後に前記過酸化水素水を前記基板の表面に供給する再供給工程とを含む、請求項2に記載の基板処理方法。 The hydrogen peroxide solution supply step includes an initial supply step of supplying the hydrogen peroxide solution to the surface of the substrate, and a step of supplying the hydrogen peroxide solution to the surface of the substrate after stopping the supply of the hydrogen peroxide solution to the surface of the substrate. 3. The substrate processing method according to claim 2, further comprising a re-supply step of supplying the substrate to the surface of the substrate.
  6.  前記オゾンガス供給工程は、前記過酸化水素水の複数の液滴が前記基板の表面の全域に分散している状態で、前記基板に接する前記過酸化水素水に前記オゾンガスを供給する工程を含む、請求項1~5のいずれか一項に記載の基板処理方法。 The ozone gas supply step includes a step of supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate in a state where a plurality of droplets of the hydrogen peroxide solution are dispersed over the entire surface of the substrate. The substrate processing method according to any one of claims 1 to 5.
  7.  前記過酸化水素水供給工程は、前記過酸化水素水のミストを前記基板の表面に供給するミスト供給工程を含む、請求項1~5のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 5, wherein the hydrogen peroxide solution supplying step includes a mist supplying step of supplying a mist of the hydrogen peroxide solution to the surface of the substrate.
  8.  前記過酸化水素水供給工程は、液柱ノズルから前記基板の表面まで連続した前記過酸化水素水の液柱を形成することにより、前記過酸化水素水を前記基板の表面に供給する液柱供給工程を含む、請求項1~5のいずれか一項に記載の基板処理方法。 In the hydrogen peroxide water supply step, the hydrogen peroxide water is supplied to the surface of the substrate by forming a continuous liquid column of hydrogen peroxide water from a liquid column nozzle to the surface of the substrate. The substrate processing method according to any one of claims 1 to 5, comprising the step of:
  9.  前記過酸化水素水を前記基板の表面に供給する前に、前記オゾンガスを前記基板の表面に接触させることにより、前記レジストパターンの表面に対する水の接触角を減少させる親水化工程をさらに含む、請求項1~5のいずれか一項に記載の基板処理方法。 Before supplying the hydrogen peroxide solution to the surface of the substrate, the method further comprises a hydrophilic step of reducing the contact angle of water with respect to the surface of the resist pattern by bringing the ozone gas into contact with the surface of the substrate. The substrate processing method according to any one of Items 1 to 5.
  10.  前記基板に接する前記過酸化水素水に前記オゾンガスを供給した後に、前記レジストパターンを前記基板の表面から剥離するレジスト剥離液を前記基板の表面に供給する剥離液供給工程をさらに含む、請求項1~5のいずれか一項に記載の基板処理方法。 1 . The method further comprises the step of supplying a resist stripping solution to the surface of the substrate after supplying the ozone gas to the hydrogen peroxide solution in contact with the substrate, to strip the resist pattern from the surface of the substrate. 5. The substrate processing method according to any one of items 5 to 5.
  11.  レジストパターンが形成された基板の表面に過酸化水素水を供給する過酸化水素水ノズルと、
     前記基板に接する前記過酸化水素水にオゾンガスを供給するオゾンノズルと、を含む、基板処理装置。
    a hydrogen peroxide solution nozzle that supplies hydrogen peroxide solution to the surface of the substrate on which the resist pattern is formed;
    A substrate processing apparatus, comprising: an ozone nozzle that supplies ozone gas to the hydrogen peroxide solution in contact with the substrate.
PCT/JP2023/015909 2022-05-17 2023-04-21 Substrate processing method and substrate processing apparatus WO2023223768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022080693A JP2023169533A (en) 2022-05-17 2022-05-17 Substrate processing method and substrate processing apparatus
JP2022-080693 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223768A1 true WO2023223768A1 (en) 2023-11-23

Family

ID=88834981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015909 WO2023223768A1 (en) 2022-05-17 2023-04-21 Substrate processing method and substrate processing apparatus

Country Status (3)

Country Link
JP (1) JP2023169533A (en)
TW (1) TW202401514A (en)
WO (1) WO2023223768A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192089A (en) * 2000-12-25 2002-07-10 Nomura Micro Sci Co Ltd Cleaning method
JP2003077824A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2007149972A (en) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd Electronic device cleaning device and electronic device cleaning method
JP2016046531A (en) * 2014-08-26 2016-04-04 ラム・リサーチ・アーゲーLam Research Ag Method and device for processing wafer-like article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002192089A (en) * 2000-12-25 2002-07-10 Nomura Micro Sci Co Ltd Cleaning method
JP2003077824A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2003077885A (en) * 2001-09-06 2003-03-14 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2003309098A (en) * 2002-04-16 2003-10-31 Uct Kk Resist removing device and method therefor
JP2007149972A (en) * 2005-11-28 2007-06-14 Matsushita Electric Ind Co Ltd Electronic device cleaning device and electronic device cleaning method
JP2016046531A (en) * 2014-08-26 2016-04-04 ラム・リサーチ・アーゲーLam Research Ag Method and device for processing wafer-like article

Also Published As

Publication number Publication date
JP2023169533A (en) 2023-11-30
TW202401514A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
TWI709169B (en) Substrate processing method and substrate processing apparatus
KR101833684B1 (en) Substrate processing method and substrate processing apparatus
TWI646596B (en) Substrate processing method and substrate processing apparatus
TWI631996B (en) Substrate processing method and substrate processing device
KR20070041342A (en) Substrate processing method and substrate processing apparatus
TW201140654A (en) Photoresist removing processor and methods
JP6222558B2 (en) Substrate processing method and substrate processing apparatus
JP2008235342A (en) Substrate processing apparatus and substrate processing method
WO2023223768A1 (en) Substrate processing method and substrate processing apparatus
TWI818297B (en) Substrate processing method and substrate processing device
WO2016152371A1 (en) Substrate processing method and substrate processing device
TWI805354B (en) Substrate processing method and substrate processing apparatus
TWI827088B (en) Substrate processing device and substrate processing method
TWI686867B (en) Substrate processing method and substrate processing apparatus
WO2024090473A1 (en) Substrate-processing device and substrate-processing method
JP2006286830A (en) Method and apparatus for removing resist
JP2024064787A (en) Substrate processing apparatus and substrate processing method
CN117015848A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807380

Country of ref document: EP

Kind code of ref document: A1