WO2023223694A1 - 鋼板およびその製造方法 - Google Patents

鋼板およびその製造方法 Download PDF

Info

Publication number
WO2023223694A1
WO2023223694A1 PCT/JP2023/013709 JP2023013709W WO2023223694A1 WO 2023223694 A1 WO2023223694 A1 WO 2023223694A1 JP 2023013709 W JP2023013709 W JP 2023013709W WO 2023223694 A1 WO2023223694 A1 WO 2023223694A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
steel
temperature
Prior art date
Application number
PCT/JP2023/013709
Other languages
English (en)
French (fr)
Inventor
茂樹 木津谷
俊一 村上
順平 釘屋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023534743A priority Critical patent/JP7367896B1/ja
Publication of WO2023223694A1 publication Critical patent/WO2023223694A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a steel plate, and particularly to a steel plate that has both high strength and excellent low-temperature toughness and can be suitably used as a structural steel used in a low-temperature environment such as a liquefied gas storage tank.
  • the present invention also relates to a method for manufacturing the steel plate.
  • thick steel plates used in low-temperature structures such as liquefied gas storage tanks are required to have excellent low-temperature toughness from the perspective of ensuring safety against brittle fracture at low temperatures.
  • liquefied natural gas LNG
  • the thick steel plates used in LNG storage tanks have excellent toughness at temperatures below -164°C. required.
  • thick steel plates that contain high concentrations of Ni of 7% or 9% and have excellent low-temperature toughness have been used for applications such as liquefied gas storage tanks.
  • Patent Document 1 proposes a method for producing 9% Ni steel with a thickness of 40 mm or more by sequentially subjecting a hot rolled steel plate to quenching treatment, two-phase region quenching treatment, and tempering treatment.
  • Patent Document 2 proposes a method that can easily produce a thick 9% Ni steel plate having excellent low-temperature toughness.
  • a method that can easily produce a thick 9% Ni steel plate having excellent low-temperature toughness by reducing the amount of Si in the steel and at the same time applying appropriate hot rolling to control the microstructure, a large amount of stable retained austenite ( ⁇ ) can be produced without the need for two-phase region quenching treatment. It is possible to obtain excellent toughness over a wide tempering temperature range.
  • Patent Document 3 proposes a Ni-containing steel plate with excellent toughness in which the average coarse grain size of prior austenite at the 1/4t position of the steel plate is 20 ⁇ m or less.
  • Patent Documents 1 to 3 have the following problems.
  • the present invention has been made in view of the above-mentioned circumstances, and aims to provide a steel plate that has both high strength and excellent low-temperature toughness, and is also excellent in manufacturability, and a method for manufacturing the same.
  • the present inventors conducted intensive research on the chemical composition and manufacturing method of steel sheets, targeting Ni-containing steel sheets suitable for structural steel used in low-temperature environments, and conducted the following research. I gained knowledge.
  • the present invention was made by further considering the above findings, and the gist thereof is as follows.
  • the component composition further includes, in mass%, Cu: 0.01 to 1.00%, Cr: 0.01-1.50%, Mo: 0.03-1.0%, Nb: 0.001-0.030%, V: 0.01 to 0.10%, Ti: 0.003 to 0.050%, B: 0.0003 to 0.0050%, Sn: 0.01-0.30%, Sb: 0.01 to 0.30%, W: more than 0%, less than 2.00%, Co: more than 0%, less than 2.00%, Ca: 0.0005-0.0050%, Mg: 0.0005-0.0100%, Zr: 0.0005 to 0.0050%, Ta: 0.01-0.20%, Y: 0.001 to 0.010%, and REM: 0.0010 to 0.0200%,
  • the steel plate according to 1 above containing at least one selected from the group consisting of.
  • a heating step of heating a steel material having the composition described in 1 or 2 above to a heating temperature of 900°C or more and 1200°C or less The steel material heated in the heating step is hot-rolled to a plate thickness of 40 mm under the conditions that the rolling reduction ratio is 5 or more and the number of passes is 2 or more in which the rolling reduction ratio per pass is 10% or more among the final 5 passes.
  • a hot rolling process to produce the following hot rolled steel sheet a cooling step of cooling the hot rolled steel sheet; a reheating and quenching step of reheating and quenching the hot rolled steel sheet after the cooling step to a reheating temperature of 3 Ac or more and 900° C. or less;
  • a method for manufacturing a steel sheet comprising a tempering step of tempering the hot rolled steel sheet after the reheating and quenching step at a tempering temperature of 500° C. or more and 650° C. or less.
  • the steel plate of the present invention has both high strength and excellent low-temperature toughness.
  • the steel sheet of the present invention can be manufactured by performing general reheating and quenching and tempering after the hot rolling process, other products cannot be simultaneously produced on the same line that manufactures the steel sheet of the present invention. It also has excellent manufacturability.
  • a steel plate in one embodiment of the present invention has a specific composition, microstructure, plate thickness, tensile strength, and yield strength. The reasons for each limitation will be explained below.
  • C 0.01-0.15%
  • C is an element that has the effect of increasing the strength of the steel plate.
  • the C content is set to 0.01% or more, preferably 0.03% or more.
  • the C content is set to 0.15% or less, preferably 0.10% or less, and more preferably 0.08% or less.
  • Si 0.01 ⁇ 1.00%
  • Si is an element that acts as a deoxidizing agent in the steel manufacturing process. Furthermore, Si has the effect of increasing the strength of the steel plate through solid solution strengthening. In order to obtain the above effect, the Si content is set to 0.01% or more. On the other hand, if the Si content is higher than 1.00%, low-temperature toughness decreases due to an increase in inclusions, and weldability and surface quality deteriorate. Therefore, the Si content is set to 1.00% or less, preferably 0.5% or less, and more preferably 0.3% or less.
  • Mn 0.10-2.00%
  • Mn is an element that has the effect of improving the hardenability of a steel plate and increasing its strength.
  • the Mn content is set to 0.10% or more, preferably 0.40% or more.
  • the Mn content is 2.00% or less, preferably 1.00% or less.
  • the P content exceeds 0.010%, low temperature toughness decreases. This is because P segregates at grain boundaries, reduces grain boundary strength, and becomes a starting point for fracture. Therefore, the P content is set to 0.010% or less.
  • the lower limit of the P content is not particularly limited and may be 0%.
  • excessive reduction leads to an increase in manufacturing costs and a decrease in productivity. Therefore, from the viewpoint of industrial production, it is preferable that the P content is 0.001% or more.
  • S 0.0050% or less S forms MnS in steel and significantly deteriorates low temperature toughness. Therefore, it is desirable to reduce S as much as possible, and the S content is 0.0050% or less, preferably 0.0020% or less. On the other hand, since it is desirable to reduce S as much as possible from the viewpoint of low-temperature toughness, the lower limit of the S content is not particularly limited and may be 0%. However, excessive reduction causes an increase in manufacturing costs and a decrease in productivity, so from the viewpoint of industrial production, it is preferable to set the S content to 0.0001% or more.
  • Ni 5.0-10.0%
  • Ni is an element that has the effect of improving the strength of the steel plate. Further, Ni is an extremely effective element for improving the low-temperature toughness of steel sheets. If the Ni content is less than 5.0%, desired strength and low temperature toughness cannot be obtained. Therefore, the Ni content is set to 5.0% or more, preferably 6.5% or more, more preferably 6.8% or more, and even more preferably 8.0% or more. On the other hand, since Ni is an expensive element, the higher the Ni content, the higher the cost of the steel sheet. Therefore, the Ni content is 10.0% or less, preferably 9.5% or less.
  • Al 0.002-0.100%
  • Al is an element that acts as a deoxidizing agent and is commonly used in the molten steel deoxidizing process. Moreover, Al reacts with N in steel to form AlN. This reaction reduces solid solution N, resulting in improved low-temperature toughness.
  • the Al content is set to 0.002% or more, preferably 0.010% or more, and more preferably 0.020% or more.
  • the Al content is set to 0.100% or less, preferably 0.070% or less, and more preferably 0.060% or less.
  • N 0.0080% or less N forms nitrides and carbonitrides, thereby reducing low-temperature toughness. If the N content is higher than 0.0080%, desired low temperature toughness cannot be obtained. Therefore, the N content is set to 0.0080% or less, preferably 0.0040% or less. On the other hand, from the viewpoint of low-temperature toughness, it is desirable to reduce N as much as possible, so the lower limit of the N content is not particularly limited and may be 0%. However, excessive reduction causes an increase in manufacturing costs and a decrease in productivity, so from the viewpoint of industrial production, it is preferable to set the N content to 0.0010% or more.
  • a steel plate in an embodiment of the present invention has a composition containing the above elements, with the balance consisting of Fe and inevitable impurities.
  • the chemical composition of the steel sheet in another embodiment of the present invention may optionally further contain at least one of the elements listed below for the purpose of further improving the characteristics of the steel sheet.
  • Cu 0.01 ⁇ 1.00%
  • Cu is an element that has the effect of further increasing the strength of the steel sheet by improving hardenability.
  • the Cu content is set to 0.01% or more.
  • the Cu content is 1.00% or less, preferably 0.30% or less.
  • Cr 0.01 ⁇ 1.50% Cr is an element effective in further improving the strength of the steel sheet.
  • the Cr content is set to 0.01% or more in order to obtain the above effects.
  • Cr may precipitate as precipitates such as nitrides, carbides, and carbonitrides during rolling, and the precipitates serve as starting points for corrosion and fracture, reducing low-temperature toughness. Therefore, the Cr content is set to 1.50% or less, preferably 1.00% or less.
  • Mo 0.03 ⁇ 1.0%
  • Mo is an element that has the effect of suppressing the temper embrittlement susceptibility of steel sheets. Moreover, Mo has the effect of further improving the strength of the steel sheet.
  • Mo content is set to 0.03% or more, preferably more than 0.05%, in order to obtain the above effect.
  • the Mo content exceeds 1.0%, low temperature toughness decreases. Therefore, the Mo content is 1.0% or less, preferably 0.30% or less.
  • Nb 0.001-0.030%
  • Nb is an element that has the effect of further improving the strength of the steel plate.
  • the Nb content is set to 0.001% or more, preferably 0.005% or more, and more preferably 0.007% or more.
  • the Nb content is set to 0.030% or less, preferably 0.025% or less, and more preferably 0.022% or less.
  • V is an element that has the effect of further improving the strength of the steel plate.
  • the V content is set to 0.01% or more, preferably 0.02% or more, and more preferably 0.03% or more.
  • the V content is set to 0.10% or less, preferably 0.09% or less, and more preferably 0.08% or less.
  • Ti 0.003 ⁇ 0.050%
  • Ti is an element that precipitates as a nitride or carbonitride and has the effect of further refining the austenite grains in the steel sheet structure.
  • the Ti content is set to 0.003% or more, preferably 0.005% or more, and more preferably 0.007% or more.
  • the Ti content is set to 0.050% or less, preferably 0.035% or less, and more preferably 0.032% or less.
  • B 0.0003-0.0050%
  • B is an element that has the effect of further improving the strength of the steel plate.
  • the B content is set to 0.0003% or more in order to obtain the above effect.
  • the B content is set to 0.0050% or less, preferably 0.0030% or less.
  • Sn 0.01-0.30%
  • Sn is an element that has the effect of improving the corrosion resistance of steel sheets, and even when contained in a small amount, the effect is exhibited. Therefore, when adding Sn, the Sn content is set to 0.01% or more. On the other hand, if Sn is excessive, low-temperature toughness decreases. Therefore, the Sn content is 0.30% or less, preferably 0.25% or less.
  • Sb 0.01 ⁇ 0.30%
  • Sb is an element that has the effect of improving the corrosion resistance of steel sheets, and even if it is contained in a small amount, it exhibits the effect. Therefore, when adding Sb, the Sb content is set to 0.01% or more. On the other hand, if Sb is excessive, low-temperature toughness decreases and cost increases. Therefore, the Sb content is 0.30% or less, preferably 0.25% or less.
  • W More than 0%, 2.00% or less W, like Sn and Sb, is an element that has the effect of improving the corrosion resistance of steel sheets, and even if it is contained in a small amount, it is effective. Therefore, when adding W, the W content is set to more than 0%, preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, if W is in excess, the low-temperature toughness decreases and the cost increases. Therefore, the W content is set to 2.00% or less, preferably 0.50% or less.
  • Co more than 0%, 2.00% or less
  • Co is an element that has the effect of improving the corrosion resistance of steel sheets, and even if it is contained in a small amount, it is effective. Therefore, when adding Co, the Co content should be more than 0%, preferably 0.01% or more, and more preferably 0.05% or more. On the other hand, if Co is in excess, the cost will increase. Therefore, the Co content is 2.00% or less, preferably 1.50% or less.
  • Ca 0.0005-0.0050%
  • Ca is an element effective in controlling the morphology of inclusions such as MnS. Controlling the form of inclusions means suppressing the formation of expanded sulfide-based inclusions to form granular inclusions. By controlling the morphology of these inclusions, it is possible to further improve low-temperature toughness and improve sulfide stress corrosion cracking resistance.
  • the Ca content is set to 0.0005% or more, preferably 0.0010% or more in order to obtain the above effects.
  • the Ca content is 0.0050% or less, preferably 0.0040% or less.
  • Mg 0.0005-0.0100% Mg, like Ca, is an element effective in controlling the morphology of inclusions such as MnS. By controlling the morphology of these inclusions, it is possible to further improve low-temperature toughness and improve sulfide stress corrosion cracking resistance.
  • the Mg content is set to 0.0005% or more, preferably 0.0010% or more.
  • the Mg content is set to 0.0100% or less, preferably 0.0050% or less, and more preferably 0.0040% or less.
  • Zr 0.0005-0.0050% Zr, like Ca and Mg, is an element effective in controlling the morphology of inclusions such as MnS. By controlling the morphology of these inclusions, it is possible to further improve low-temperature toughness and improve sulfide stress corrosion cracking resistance.
  • the Zr content is set to 0.0005% or more, preferably 0.0010% or more in order to obtain the above effects.
  • the Zr content is 0.0050% or less, preferably 0.0040% or less.
  • Ta 0.01 ⁇ 0.20%
  • Ta is an element effective in further improving the strength of the steel sheet.
  • the Ta content is set to 0.01% or more in order to obtain the above effect.
  • the Ta content exceeds 0.20%, the low temperature toughness decreases due to the formation of precipitates. Therefore, the Ta content is set to 0.20% or less.
  • Y 0.001-0.010%
  • Y is an element effective in forming an oxide that is stable at high temperatures. The formation of the oxide makes it possible to effectively suppress coarsening of prior austenite grains in the weld heat affected zone, thereby improving the toughness of the weld zone.
  • the Y content is set to 0.001% or more in order to obtain the above effects.
  • the Y content exceeds 0.010%, the amount of inclusions increases and low-temperature toughness decreases. Therefore, the Y content is set to 0.010% or less.
  • REM 0.0010-0.0200% REM (rare earth metal), like Ca, Mg, and Zr, is an element effective in controlling the morphology of inclusions such as MnS. By controlling the morphology of these inclusions, it is possible to further improve low-temperature toughness and improve sulfide stress corrosion cracking resistance.
  • the REM content is set to 0.0010% or more, preferably 0.0020% or more in order to obtain the above effects.
  • the REM content is set to 0.0200% or less.
  • the steel plate in one embodiment of the present invention has a microstructure that satisfies the following conditions (1) to (3).
  • (1) The volume fraction of retained austenite at the 1/4 position of the plate thickness is less than 3.0%.
  • (2) The maximum grain size of prior austenite grains at the 1/2 position of the plate thickness is 100 ⁇ m or less.
  • (3) The ratio b/a of the average value b of the top 5% of the grain sizes of the prior austenite grains to the average grain size a of the prior austenite grains at the 1/2 plate thickness position is 4.5 or less.
  • prior austenite grains refers to ⁇ grains before transformation when viewed from a steel sheet that has undergone structural transformation as austenite ( ⁇ ) is cooled and has a different structure.
  • the amount of retained austenite at the 1/4 plate thickness position is set to be less than 3.0% in terms of volume fraction, preferably 2.8% or less, and more preferably 2.6% or less.
  • the lower limit of the volume fraction of retained austenite is not particularly limited, and may be 0% or 0.5% or more.
  • the microstructure is mainly composed of tempered martensite and bainite. Specifically, it is preferable that the total area ratio of tempered martensite and bainite is 90% or more. The upper limit of the total area ratio of tempered martensite and bainite is not particularly limited, but may be 100%.
  • the volume fraction of the retained austenite can be measured by X-ray diffraction. More specifically, it can be measured by the method described in Examples.
  • the maximum grain size of prior ⁇ grains at the 1/2 plate thickness position is set to 100 ⁇ m or less, preferably 80 ⁇ m or less.
  • the lower limit of the maximum grain size is not particularly limited, but in order to make the maximum grain size of the prior ⁇ grains 20 ⁇ m or less, it is necessary to control the quenching conditions very strictly, resulting in poor productivity.
  • the maximum particle size is preferably greater than 20 ⁇ m, more preferably 22 ⁇ m or more, and even more preferably 25 ⁇ m or more.
  • the equivalent circle diameter is used as the grain size of the prior austenite grains.
  • the maximum grain size of the prior austenite grains can be measured using an optical microscope. More specifically, it can be measured by the method described in Examples.
  • the ratio b/a of the average value b of the top 5% of the grain sizes of the prior austenite grains to the average grain size a of the prior austenite grains is set to 4.5 or less.
  • b/a is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the lower limit of b/a is not particularly limited, but the theoretical lower limit is 1.
  • b/a may be 1.2 or more, and may be 1.3 or more. Note that, as the values of a and b, the values at the plate thickness 1/2 position are used.
  • the average particle diameter a and the average value b can be measured using an optical microscope. More specifically, it can be measured by the method described in Examples.
  • the aspect ratio of the prior austenite grains at the 1/2 plate thickness position is not particularly limited, but is preferably 2.0 or less.
  • the aspect ratio is 2.0 or less, the anisotropy of mechanical properties, especially the anisotropy of low-temperature toughness, is improved.
  • the aspect ratio of the prior austenite grains can be measured using an optical microscope. More specifically, it can be measured by the method described in Examples.
  • Plate thickness 40 mm or less
  • the thickness of the steel plate should be 40 mm or less.
  • the plate thickness is 40 mm or less, the heat treatment time is shortened, so that the influence of temper embrittlement during tempering can be reduced. Therefore, in the present invention, restrictions on the Si content are small.
  • the lower limit of the plate thickness is not particularly limited, but is preferably 6 mm or more.
  • TS tensile strength
  • the tensile strength (TS) of the steel plate according to the present invention is 690 MPa or more. Since the steel plate of the present invention has a high tensile strength of 690 MPa or more, it can be suitably used for applications such as LNG tanks.
  • the upper limit of the tensile strength is not particularly limited, but may be, for example, 830 MPa or less, or 800 MPa or less.
  • yield strength (YS) of the steel plate according to the present invention is 585 MPa or more. Since the steel sheet of the present invention has a high yield strength of 585 MPa or more, it can be suitably used for applications such as LNG tanks. On the other hand, the upper limit of the yield strength is not particularly limited, and may be, for example, 790 MPa or less, or 770 MPa or less.
  • the above tensile strength and yield strength can be measured by a tensile test based on JIS Z 2204. More specifically, it can be measured by the method described in Examples.
  • the absorbed energy vE -196 at -196°C is 100 J or more.
  • the steel sheet of the present invention has high low temperature toughness with vE -196 of 100J or more, so it can be suitably used for applications such as LNG tanks.
  • the absorbed energy vE -196 is preferably 150J or more.
  • the upper limit of the absorbed energy vE -196 is not particularly limited, but may be, for example, 400 J or less, or 350 J or less.
  • the absorbed energy vE -196 can be measured by a Charpy impact test in accordance with JIS Z 2242. More specifically, it can be measured by the method described in Examples.
  • the steel plate can be manufactured by sequentially performing the following steps (1) to (5) on a steel material having the above-mentioned composition.
  • the temperature "°C" means the temperature at the 1/2 position of the plate thickness.
  • the temperature at the 1/2 plate thickness position is determined by differential calculation or the like.
  • the steel material may be, for example, a steel slab.
  • the method for manufacturing the steel material is not particularly limited, but, for example, it can be manufactured by melting molten steel having the above-mentioned composition by a conventional method and casting.
  • the melting can be performed by any method such as a converter, an electric furnace, an induction furnace, or the like.
  • the casting is preferably carried out by a continuous casting method, but may be carried out by an ingot-forming method.
  • Heating process In the heating step, the steel material is heated to a heating temperature of 900°C or more and 1200°C or less.
  • the heating may be performed after once cooling the steel material obtained by a method such as casting, or the obtained steel material may be directly subjected to the heating without cooling.
  • the purpose of heating the steel material is to dissolve the precipitates in the structure of the steel material.
  • the heating temperature is set to 900°C or higher.
  • the heating temperature of the steel material is 1200°C or lower, preferably 1150°C or lower.
  • the heating time is not particularly limited, but is preferably 2 hours or more and 8 hours or less.
  • the steel material heated in the heating step is hot rolled into a hot rolled steel plate having a thickness of 40 mm or less.
  • the rolling end temperature is not particularly limited, it is preferably 700° C. or higher, which is the austenite single phase region.
  • the upper limit of the rolling end temperature is not particularly limited, but is preferably 950°C or lower, more preferably 920°C or lower.
  • Reduction ratio 5 or more
  • the rolling reduction ratio in the hot rolling step is 5 or more, preferably 6 or more, and more preferably 10 or more.
  • the upper limit of the rolling reduction ratio is not particularly limited, but is preferably 50 or less. Note that the rolling ratio is defined here as (thickness of steel material/thickness of hot rolled steel sheet after hot rolling).
  • Number of passes with a rolling reduction of 10% or more among the final 5 passes 2 or more Recrystallization of austenite grains in the latter half of the hot rolling process is particularly effective for grain refinement and grain size regulation of the steel sheet structure. . Therefore, the number of passes in which the rolling reduction per pass is 10% or more among the final five passes of the hot rolling process is set to two or more. If the number of passes is less than 2, grain size regulation of austenite grains will not proceed sufficiently. As a result, b/a in the finally obtained steel plate becomes larger than 4.0, and low-temperature toughness deteriorates.
  • the number of passes in which the rolling reduction per pass is 10% or more among the final five passes of the hot rolling process is preferably 3 or more, and 4 or more. It is more preferable to set it to 5, and even more preferably to set it to 5.
  • the cooling process Next, the hot rolled steel sheet obtained in the above hot rolling process is cooled.
  • the cooling suppresses coarsening of precipitates and improves strength and toughness.
  • the cooling stop temperature in the cooling step is not particularly limited, but may be, for example, room temperature (20° C., etc.) or higher. Further, the cooling stop temperature is preferably 400°C or less.
  • the cooling is not particularly limited, and can be performed by any method such as air cooling or water cooling.
  • Water cooling such as spray cooling, mist cooling, laminar cooling, etc. may be performed to enhance necessary properties such as strength and low temperature toughness.
  • water cooling since the cooling is rapid, the elongated structure formed during rolling remains, and the anisotropy of the structure tends to increase. Therefore, from the viewpoint of reducing the anisotropy of the structure, it is preferable to perform air cooling.
  • the hot rolled steel sheet after the cooling step is heated to a reheating temperature of 3 Ac or more and 900° C. or less, and then quenched.
  • a reheating temperature 3 Ac or more and 900° C. or less
  • the structure of the entire hot rolled steel sheet undergoes reverse transformation to austenite.
  • the grain size of the steel plate structure is further refined, and low-temperature toughness is improved.
  • the reheating temperature is less than the Ac3 point, the microstructure of the heated steel sheet will contain a ferrite phase, making it impossible to make the microstructure uniform, resulting in a decrease in low-temperature toughness.
  • austenite grains grow and become coarse, resulting in a decrease in low-temperature toughness.
  • Ac3 points are calculated using the following formula (1).
  • Ac3(°C) 937.2-436.5C+56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr+38.1Mo+124.8V+136.3Ti-19.1Nb+198.4Al+3315B...(1)
  • the element symbol in the above formula (1) represents the content (mass%) of each element, and is set to 0 when the element is not contained.
  • Quenching can be carried out under any conditions without particular limitations, but it is preferably carried out by water cooling.
  • the conditions for the quenching are not particularly limited, but it is preferable to cool to a cooling stop temperature of less than 200°C.
  • the cooling stop temperature is more preferably 100°C or lower, and even more preferably 50°C or lower.
  • the lower limit of the cooling stop temperature is not particularly limited, but for example, the cooling stop temperature may be room temperature or higher.
  • the tempering step the steel plate after the reheating and quenching step is tempered at a tempering temperature of 500° C. or more and 650° C. or less.
  • the tempering temperature is set at 500°C or more and 650°C or less.
  • the cooling method is not particularly limited, and any method such as air cooling or water cooling can be used.
  • Steel having the composition shown in Table 1 was melted to obtain a steel slab as a steel material.
  • the obtained steel slabs were sequentially subjected to a heating process, a hot rolling process, a cooling process, a reheating quenching process, and a tempering process under the conditions shown in Table 2 to produce a steel plate.
  • the steel plate was reheated to the reheating temperature shown in Table 2, and then cooled to a cooling stop temperature of less than 200°C.
  • the top 5 grain sizes of prior austenite grains are determined based on the amount of retained austenite (volume ratio), the maximum grain size of prior austenite grains, and the average grain size a of prior austenite grains using the following procedure.
  • the ratio b/a of the average value b in % was determined. The measurement results are shown in Table 3.
  • a test piece for X-ray diffraction was taken parallel to the plate surface so that the measurement plane was at 1/4 of the plate thickness of the obtained steel plate.
  • the test piece was subjected to mirror polishing and electrolytic polishing, and then subjected to X-ray diffraction.
  • the diffraction intensities of the (200) and (211) planes of ⁇ -Fe and the (200), (220) and (311) planes of ⁇ -Fe that appear in the symmetrical reflection X-ray diffraction pattern are determined, and the amount of retained austenite is calculated using the following formula.
  • V ⁇ was calculated.
  • V ⁇ 100/((I ⁇ R ⁇ /I ⁇ R ⁇ )+1)
  • V ⁇ volume fraction of retained austenite
  • I diffraction X-ray intensity
  • R theoretical intensity value per unit volume.
  • I the integrated intensity after background removal was used.
  • the amount of retained austenite is extremely small, sufficient measurement accuracy cannot be obtained, so if the calculated amount of retained austenite is 0.5% or less, the microstructure does not substantially contain retained austenite. (0%), and the volume percentage column of residual ⁇ in Table 3 was left blank (-).
  • the steel plates in all Examples and Comparative Examples had microstructures mainly composed of tempered martensite and bainite. Specifically, the total area ratio of tempered martensite and bainite was 90% or more.
  • the ratio obtained by dividing the long axis by the short axis when prior austenite grains are approximated to an ellipse was calculated as the aspect ratio.
  • a vE -196 of 100J or more was considered to be a pass.
  • a vE -196 of 50J or more was considered a pass.
  • the steel plates of the examples of the present invention satisfied the above characteristics and were excellent in strength (tensile strength and yield strength), low-temperature toughness, and manufacturability.
  • steel plates of comparative examples outside the scope of the present invention were inferior in at least one of strength (tensile strength and yield strength), low-temperature toughness, and manufacturability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度と優れた低温靭性とを兼ね備え、かつ製造性にも優れる鋼板を提供する。所定の成分組成と、板厚1/4位置における残留オーステナイトの体積率が3.0%未満であり、板厚1/2位置における旧オーステナイト粒の最大粒径が100μm以下であり、かつ、板厚1/2位置における、旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aが4.5以下であるミクロ組織とを有し、板厚が40mm以下、降伏強度が585MPa以上、かつ引張強度が690MPa以上である、鋼板。

Description

鋼板およびその製造方法
 本発明は、鋼板に関し、特に、高強度と優れた低温靭性とを兼ね備え、液化ガス貯蔵用タンクなどの低温環境で使用される構造用鋼として好適に用いることができる鋼板に関する。また、本発明は前記鋼板の製造方法に関する。
 液化ガス貯蔵用タンク等の低温用構造物に用いられる厚鋼板には、強度に加えて、低温での脆性破壊に対する安全性確保の観点から、低温靱性に優れることが要求される。例えば、液化天然ガス(LNG)は、LNGの沸点である-164℃以下の低温で貯蔵されるため、LNG貯蔵用タンクに用いられる厚鋼板には、-164℃以下の温度において優れた靱性が要求される。
 そこで、従来、液化ガス貯蔵用タンク等の用途には、7%や9%と高濃度のNiを含むみ、低温靭性に優れる厚鋼板が使用されてきた。
 例えば、特許文献1では、熱延鋼板に焼入れ処理、二相域焼入れ処理、および焼戻し処理を順次施すことにより、板厚40mm以上の9%Ni鋼を製造する方法が提案されている。
 また、特許文献2では、優れた低温靱性を有する厚肉9%Ni鋼板を容易に製造することができる方法が提案されている。前記方法では、鋼中のSi量を低減すると同時に、適切な加熱圧延を付与し、ミクロ組織を制御することで、二相域焼入れ処理を施さなくても安定な残留オーステナイト(γ)を多量に生成でき、広い焼戻し温度範囲で優れた靭性を得ることができる。
 特許文献3では、鋼板の1/4t位置における旧オーステナイトの平均粗大粒径が20μm以下である、靭性に優れたNi含有鋼板が提案されている。
特開平4-371520号公報 特開平6-184630号公報 国際公開第2020/136829号
 近年、SOxやNOxの排出規制強化に伴い、船舶燃料を重油からLNGへ転換することが検討されており、7%Ni鋼板や9%Ni鋼板などNi含有量の高い鋼板を船舶燃料用タンクの本体に適用することが模索されている。この用途では、従来の地上貯蔵用タンクに比べ、板厚が薄いことが求められる。さらに、鋼材需要量が多いため、製造性に優れる鋼板が求められる。
 しかし、特許文献1~3で提案されているような従来の技術には、次の問題があった。
 すなわち、特許文献1で提案されている9%Ni鋼の製造方法では、熱延鋼板に対して、焼入れ処理、二相域焼入れ処理、および焼戻し処理の3段階の熱処理を施す必要がある。そのため、製造コストおよび生産性の面で不利であった。また、前記二相域焼入れ処理は、通常の焼入れ処理とは異なる特殊な温度に設定された炉を用いて行う必要がある。そのため、前記方法を適用している製造ラインでは、他の製品を製造することができないという製造上の制約があった。
 また、特許文献2で提案されている厚肉9%Ni鋼板の製造方法では、Si含有量を0.10質量%以下に厳格に管理する必要があり、成分設計の自由度が低かった。
 さらに、特許文献3で提案されているNi含有鋼板を製造するためには、再加熱焼入れ時の特定の温度域において昇温速度を厳密に制御する必要があるため、製造性の観点で課題があった。
 本発明は上記の実状に鑑みてなされたものであり、高強度と優れた低温靭性とを兼ね備え、かつ製造性にも優れる鋼板、およびその製造方法を提供することを目的とする。
 本発明者らは、上記の課題を達成するため、低温環境で使用される構造用鋼に好適なNiを含有する鋼板を対象に、鋼板の成分組成、製造方法に関して鋭意研究を行い、以下の知見を得た。
 [1] 5.0~10.0質量%のNiを添加した鋼素材を、圧下比が5以上、かつ最終5パスのうち1パス当たりの圧下率が10%以上であるパス数が2以上の条件で熱間圧延して板厚40mm以下の熱延鋼板とすることにより、オーステナイト粒を細粒化するとともに整粒化することができる。そしてその結果、前記熱延鋼板に再加熱焼入れおよび焼戻しを施した後に得られるミクロ組織においても、旧オーステナイト粒が細粒化および整粒化されるため、優れた低温靭性が得られる。
[2] 従来、優れた低温靭性を実現するためには、二相域焼入れを行って残留オーステナイト量を高める必要があった。これに対して上記のプロセスでは、熱間圧延、再加熱焼入れ、および焼戻しによりオーステナイト粒を細粒化、整粒化することができる。そのため、二相域焼入れによる残留オーステナイト量の増加を行う必要がなく、残留オーステナイトの体積率が3.0%未満であっても、優れた低温靭性が得られる。したがって、上記プロセスで得られる鋼板は、製造性にも優れている。
 本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は以下のとおりである。
1.質量%で、
  C :0.01~0.15%、
  Si:0.01~1.00%、
  Mn:0.10~2.00%、
  P :0.010%以下、
  S :0.0050%以下、
  Ni:5.0~10.0%、
  Al:0.002~0.100%、および
  N :0.0080%以下、を含有し、
  残部Feおよび不可避的不純物からなる成分組成と、
 板厚1/4位置における残留オーステナイトの体積率が3.0%未満であり、
 板厚1/2位置における旧オーステナイト粒の最大粒径が100μm以下であり、かつ、
 板厚1/2位置における、旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aが4.5以下であるミクロ組織とを有し、
 板厚が40mm以下であり、
 降伏強度が585MPa以上、かつ、
 引張強度が690MPa以上である、鋼板。
2.前記成分組成が、さらに、質量%で、
  Cu:0.01~1.00%、
  Cr:0.01~1.50%、
  Mo:0.03~1.0%、
  Nb:0.001~0.030%、
  V :0.01~0.10%、
  Ti:0.003~0.050%、
  B :0.0003~0.0050%、
  Sn:0.01~0.30%、
  Sb:0.01~0.30%、
  W :0%超、2.00%以下、
  Co:0%超、2.00%以下、
  Ca:0.0005~0.0050%、
  Mg:0.0005~0.0100%、
  Zr:0.0005~0.0050%、
  Ta:0.01~0.20%、
  Y :0.001~0.010%、および
  REM:0.0010~0.0200%、
  からなる群より選択される少なくとも1つを含有する、上記1に記載の鋼板。
3.上記1または2に記載の成分組成を有する鋼素材を、900℃以上1200℃以下の加熱温度まで加熱する加熱工程と、
 前記加熱工程で加熱した鋼素材を、圧下比が5以上、かつ最終5パスのうち1パス当たりの圧下率が10%以上であるパス数が2以上の条件で熱間圧延して板厚40mm以下の熱延鋼板とする熱間圧延工程と、
 前記熱延鋼板を冷却する冷却工程と、
 前記冷却工程後の熱延鋼板を、Ac3点以上900℃以下の再加熱温度まで再加熱し、焼入れする再加熱焼入れ工程と、
 前記再加熱焼入れ工程後の熱延鋼板を、500℃以上650℃以下の焼戻し温度で焼戻しする焼戻し工程とを有する、鋼板の製造方法。
 本発明の鋼板は、高強度と優れた低温靭性とを兼ね備えている。加えて、本発明の鋼板は、熱間圧延工程後に一般的な再加熱焼入れと焼戻しを行うことで製造できるため、本発明の鋼板を製造しているラインで他の製品を一緒に生産することもでき、製造性に優れている。
 以下、本発明の実施形態について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
[鋼板]
 本発明の一実施形態における鋼板は、特定の成分組成、ミクロ組織、板厚、引張強度、および降伏強度を備えている。以下、それぞれの限定理由について説明する。
[成分組成]
 まず、鋼板の成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、含有量の単位としての「%」は、とくに断らない限り「質量%」を表す。
C:0.01~0.15%
 Cは、鋼板を高強度化する効果を有する元素である。前記効果を得るために、C含有量は0.01%以上、好ましくは0.03%以上とする。一方、C含有量が0.15%より高いと低温靭性が低下する。これは、鋼板の、特に中心偏析部においてCr炭化物やNb、V、Ti系炭化物が過度に析出するためである。そのため、C含有量は0.15%以下、好ましくは0.10%以下、より好ましくは0.08%以下とする。
Si:0.01~1.00%
 Siは、製鋼プロセスにおいて脱酸剤として作用する元素である。また、Siは、固溶強化により鋼板を高強度化する効果を有する。前記効果を得るために、Si含有量を0.01%以上とする。一方、Si含有量が1.00%より高いと、介在物の増大により低温靭性が低下することに加え、溶接性および表面性状が劣化する。そのため、Si含有量は1.00%以下、好ましくは0.5%以下、より好ましくは0.3%以下とする。
Mn:0.10~2.00%
 Mnは、鋼板の焼き入れ性を高め、高強度化させる効果を有する元素である。前記効果を得るため、Mn含有量を0.10%以上、好ましくは0.40%以上とする。一方、Mn含有量が2.00%より高いと、中心偏析を助長し、低温靭性の低下を引き起こす。そのため、Mn含有量は2.00%以下、好ましくは、1.00%以下とする。
P:0.010%以下
 P含有量が0.010%を超えると、低温靭性が低下する。これは、Pが粒界に偏析して粒界強度を低下させ、破壊起点となるためである。そのため、P含有量は0.010%以下とする。一方、低温靭性の観点からは、Pを可能な限り低減することが望ましいため、P含有量の下限は特に限定されず、0%であってよい。しかし、過度の低減は製造コストの上昇および生産性の低下を招く。そのため、工業的な生産の観点からは、P含有量を0.001%以上とすることが好ましい。
S:0.0050%以下
 Sは、鋼中でMnSを形成し、低温靭性を著しく劣化させる。そのため、Sは可能な限り低減することが望ましく、S含有量は0.0050%以下、好ましくは0.0020%以下とする。一方、低温靭性の観点からも、Sを可能な限り低減することが望ましいため、S含有量の下限は特に限定されず、0%であってよい。しかし、過度の低減は製造コストの上昇および生産性の低下を招くため、工業的な生産の観点からは、S含有量を0.0001%以上とすることが好ましい。
Ni:5.0~10.0%
 Niは、鋼板の強度を向上させる効果を有する元素である。また、Niは、鋼板の低温靭性の向上に極めて有効な元素である。Ni含有量が5.0%未満であると、所望の強度および低温靭性を得ることができない。そのため、Ni含有量は5.0%以上、好ましくは、6.5%以上、より好ましくは6.8%以上、さらに好ましくは8.0%以上とする。一方、Niは高価な元素であるため、その含有量が高いほど鋼板コストが高騰する。そのため、Ni含有量は10.0%以下、好ましくは9.5%以下とする。
Al:0.002~0.100%
 Alは、脱酸剤として作用する元素であり、溶鋼脱酸プロセスにおいて汎用的に使用されている。また、Alは、鋼中のNと反応してAlNを形成する。この反応により固溶Nが低減される結果、低温靭性が向上する。前記効果を得るために、Al含有量を0.002%以上、好ましくは0.010%以上、より好ましくは0.020%以上とする。一方、Al含有量が0.100%より高いと、鋼中の介在物が増加し、かえって低温靭性が劣化する。そのため、Al含有量は0.100%以下、好ましくは0.070%以下、より好ましくは0.060%以下とする。
N:0.0080%以下
 Nは、窒化物や炭窒化物を形成し、それにより低温靭性を低下させる。N含有量が0.0080%より高いと所望の低温靭性を得ることができない。そのため、N含有量は0.0080%以下、好ましくは0.0040%以下とする。一方、低温靭性の観点からは、Nを可能な限り低減することが望ましいため、N含有量の下限は特に限定されず、0%であってよい。しかし、過度の低減は製造コストの上昇および生産性の低下を招くため、工業的な生産の観点からは、N含有量を0.0010%以上とすることが好ましい。
 本発明の一実施形態における鋼板は、上記元素を含み、残部Feおよび不可避的不純物からなる成分組成を有する。
 また、本発明の他の実施形態における鋼板の成分組成は、鋼板の特性をさらに向上させることを目的として、任意に、以下に挙げる元素の少なくとも1つをさらに含有することができる。
Cu:0.01~1.00%
 Cuは、焼入れ性向上により鋼板強度をさらに高める効果を有する元素である。Cuを添加する場合、前記効果を得るために、Cu含有量を0.01%以上とする。一方、Cu含有量が1.00%より高いと、鋼板の低温靭性が低下することに加え、鋼素材表面の性状が悪化する。そのため、Cu含有量は1.00%以下、好ましくは、0.30%以下とする。
Cr:0.01~1.50%
 Crは、鋼板強度のさらなる向上に有効な元素である。Crを添加する場合、前記効果を得るために、Cr含有量を0.01%以上とする。一方、Crは圧延中に窒化物、炭化物、炭窒化物などの析出物として析出する場合があり、前記析出物は腐食や破壊の起点となって低温靭性を低下させる。そのため、Cr含有量は1.50%以下、好ましくは1.00%以下とする。
Mo:0.03~1.0%
 Moは、鋼板の焼戻し脆化感受性を抑制する効果を有する元素である。また、Moは、鋼板強度をさらに向上させる効果を有する。Moを添加する場合、前記効果を得るために、Mo含有量を0.03%以上、好ましくは0.05%超とする。一方、Mo含有量が1.0%を超えると低温靭性が低下する。そのため、Mo含有量は1.0%以下、好ましくは0.30%以下とする。
Nb:0.001~0.030%
 Nbは、鋼板の強度をさらに向上させる効果を有する元素である。Nbを添加する場合、前記効果を得るために、Nb含有量を0.001%以上、好ましくは0.005%以上、より好ましくは0.007%以上とする。一方、Nb含有量が0.030%より高いと粗大な炭窒化物が生成し、低温靱性が低下する。そのため、Nb含有量は0.030%以下、好ましくは0.025%以下、より好ましくは0.022%以下とする。
V:0.01~0.10%
 Vは、鋼板の強度をさらに向上させる効果を有する元素である。Vを添加する場合、前記効果を得るために、V含有量を0.01%以上、好ましくは0.02%以上、より好ましくは0.03%以上とする。一方、V含有量が0.10%より高いと、粗大な炭窒化物が析出し、破壊の起点となる。また、析出物が粗大化し、低温靱性を劣化させることがある。そのため、V含有量を0.10%以下、好ましくは0.09%以下、より好ましくは0.08%以下とする。
Ti:0.003~0.050%
 Tiは、窒化物もしくは炭窒化物として析出し、鋼板組織中のオーステナイト粒をさらに細粒化させる効果を有する元素である。Tiを添加する場合、前記効果を得るために、Ti含有量を0.003%以上、好ましくは0.005%以上、より好ましくは0.007%以上とする。一方、Ti含有量が0.050%より高いと、析出物が粗大化し、低温靱性が低下する。そのため、Ti含有量は0.050%以下、好ましくは0.035%以下、より好ましくは0.032%以下とする。
B:0.0003~0.0050%
 Bは、鋼板の強度をさらに向上させる効果を有する元素である。Bを添加する場合、前記効果を得るために、B含有量を0.0003%以上とする。一方、B含有量が0.0050%より高いと、粗大な析出物を生成し、低温靭性が低下する。そのため、B含有量は0.0050%以下、好ましくは、0.0030%以下とする。
Sn:0.01~0.30%
 Snは、鋼板の耐食性を向上させる効果を有する元素であり、少量の含有でも効果を発揮する。そのため、Snを添加する場合、Sn含有量は0.01%以上とする。一方、Snが過剰であると低温靱性が低下する。そのため、Sn含有量は0.30%以下、好ましくは0.25%以下とする。
Sb:0.01~0.30%
 Sbは、Snと同様に、鋼板の耐食性を向上させる効果を有する元素であり、少量の含有でも効果を発揮する。そのため、Sbを添加する場合、Sb含有量は0.01%以上とする。一方、Sbが過剰であると低温靱性が低下することに加え、コストが上昇する。そのため、Sb含有量は0.30%以下、好ましくは0.25%以下とする。
W:0%超、2.00%以下
 Wは、SnやSbと同様に、鋼板の耐食性を向上させる効果を有する元素であり、少量の含有でも効果を発揮する。そのため、Wを添加する場合、W含有量は0%超、好ましくは0.01%以上、より好ましくは0.05%以上とする。一方、Wが過剰であると低温靱性が低下することに加え、コストが上昇する。そのため、W含有量は2.00%以下、好ましくは0.50%以下とする。
Co:0%超、2.00%以下
 Coは、Sn、Sb、Wと同様に、鋼板の耐食性を向上させる効果を有する元素であり、少量の含有でも効果を発揮する。そのため、Coを添加する場合、Co含有量は0%超、好ましくは0.01%以上、より好ましくは0.05%以上とする。一方、Coが過剰であるとコストが上昇する。そのため、Co含有量は2.00%以下、好ましくは1.50%以下とする。
Ca:0.0005~0.0050%
 Caは、MnS等の介在物の形態制御に有効な元素である。介在物の形態制御とは、展伸した硫化物系介在物の生成を抑制し粒状の介在物とすることをいう。この介在物の形態制御を介して、低温靭性をさらに向上させるとともに、耐硫化物応力腐食割れ性を向上させることができる。Caを添加する場合、前記効果を得るために、Ca含有量を0.0005%以上、好ましくは0.0010%以上とする。一方、Caを多く含有させると、非金属介在物量が増加し、低温靭性が低下する場合がある。そのため、Ca含有量は0.0050%以下、好ましくは0.0040%以下とする。
Mg:0.0005~0.0100%
 Mgは、Caと同様に、MnS等の介在物の形態制御に有効な元素である。この介在物の形態制御を介して、低温靭性をさらに向上させるとともに、耐硫化物応力腐食割れ性を向上させることができる。Mgを添加する場合、前記効果を得るために、Mg含有量を0.0005%以上、好ましくは0.0010%以上とする。一方、Mgを多く含有させると、非金属介在物量が増加し、低温靭性が低下する場合がある。そのため、Mg含有量は0.0100%以下、好ましくは0.0050%以下、より好ましくは0.0040%以下とする。
Zr:0.0005~0.0050%
 Zrは、CaやMg同様、MnS等の介在物の形態制御に有効な元素である。この介在物の形態制御を介して、低温靭性をさらに向上させるとともに、耐硫化物応力腐食割れ性を向上させることができる。Zrを添加する場合、前記効果を得るために、Zr含有量を0.0005%以上、好ましくは0.0010%以上とする。一方、Zrを多く含有させると、非金属介在物量が増加し、低温靭性が低下する場合がある。そのため、Zr含有量は0.0050%以下、好ましくは0.0040%以下とする。
Ta:0.01~0.20%
 Taは、鋼板強度のさらなる向上に有効な元素である。Taを添加する場合、前記効果を得るために、Ta含有量を0.01%以上とする。一方、Ta含有量が0.20%を超えると、析出物生成によって低温靭性が低下する。そのため、Ta含有量は0.20%以下とする。
Y:0.001~0.010%
 Yは、高温で安定な酸化物の形成に有効な元素である。前記酸化物の形成により、溶接熱影響部の旧オーステナイト粒の粗大化を効果的に抑制することが可能となり、溶接部の靭性を向上させることができる。Yを添加する場合、前記効果を得るために、Y含有量を0.001%以上とする。一方、Y含有量が0.010%を超えると、介在物量が増加し、低温靭性が低下する。そのため、Y含有量は0.010%以下とする。
REM:0.0010~0.0200%
 REM(希土類金属)は、Ca、Mg、Zrと同様に、MnS等の介在物の形態制御に有効な元素である。この介在物の形態制御を介して、低温靭性をさらに向上させるとともに、耐硫化物応力腐食割れ性を向上させることができる。REMを添加する場合、前記効果を得るために、REM含有量を0.0010%以上、好ましくは0.0020%以上とする。一方、REMを多く含有させると、非金属介在物量が増加して低温靭性が低下する場合がある。そのため、REM含有量は0.0200%以下とする。
[ミクロ組織]
 次に本発明の鋼板のミクロ組織について説明する。本発明の一実施形態における鋼板は、ミクロ組織が下記(1)~(3)の条件を満たす。
(1)板厚1/4位置における残留オーステナイトの体積率が3.0%未満である。
(2)板厚1/2位置における旧オーステナイト粒の最大粒径が100μm以下である。
(3)板厚1/2位置における旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aが4.5以下である。
 なお、旧オーステナイト粒とは、オーステナイト(γ)が冷却されて組織変態が起こり、別の組織となった鋼板から見た際の変態前のγ粒を指す用語である。
残留γ:3.0%未満
 従来の技術では、残留オーステナイト量を高めることによって低温靭性を向上させていた。しかし、残留オーステナイト量を増加させるためには二相域焼入れが必要となり製造性が低下する。そのため、本発明では板厚1/4位置における残留オーステナイト量を体積率で3.0%未満、好ましくは2.8%以下、より好ましくは2.6%以下とする。一方、残留オーステナイトの体積率の下限はとくに限定されず、0%であってよく、0.5%以上であってもよい。
 なお、残留オーステナイト以外の組織については特に限定されないが、上記ミクロ組織は、焼戻しマルテンサイトとベイナイトを主体とすることが好ましい。具体的には、焼戻しマルテンサイトとベイナイトの合計面積率が90%以上であることが好ましい。焼戻しマルテンサイトとベイナイトの合計面積率の上限はとくに限定されないが、100%であってよい。
 前記残留オーステナイトの体積率は、X線回折により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
旧γ粒の最大粒径:100μm以下
 粗大な旧オーステナイト粒が存在すると、その粗大な旧オーステナイト粒に応力が集中し、破壊の起点となるため、低温靭性が低下する。そのため、本発明では板厚1/2位置における旧オーステナイト粒の最大粒径を100μm以下、好ましくは80μm以下とする。一方、前記最大粒径の下限はとくに限定されないが、旧γ粒の最大粒径を20μm以下とするためには焼入れ条件などを非常に厳格に制御する必要があるため、製造性に劣る。そのため、工業的な生産の観点からは、前記最大粒径を20μm超とすることが好ましく、22μm以上とすることがより好ましく、25μm以上とすることがさらに好ましい。なお、本発明では、旧オーステナイト粒の粒径として円相当径を用いるものとする。
 前記旧オーステナイト粒の最大粒径は、光学顕微鏡により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
b/a≦4.0
 本発明においては、旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aを4.5以下とする。b/aが4.5より高い場合、旧オーステナイト粒の整粒化が不十分であり、部分的に粗大な結晶粒が存在することから靭性が低下する。b/aは4.0以下であることが好ましく、3.5以下であることがより好ましく、3.0以下であることがさらに好ましい。一方、b/aの下限は特に限定されないが、理論上の下限値は1である。b/aが1に近いほど、粗大な結晶粒の生成が抑制され、整粒化が進行していることを意味するため、b/aは1に近いほど好ましい。工業的な生産の観点からは、b/aは1.2以上であってよく、1.3以上であってもよい。なお、前記aおよびbの値としては、板厚1/2位置における値を用いる。
 前記平均粒径aおよび平均値bの値は、光学顕微鏡により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
 また、板厚1/2位置における旧オーステナイト粒のアスペクト比は、特に限定されないが、2.0以下であることが好ましい。前記アスペクト比が2.0以下であると、機械的特性の異方性、特に低温靭性の異方性が改善される。
 前記旧オーステナイト粒のアスペクト比は、光学顕微鏡により測定することができる。より具体的には、実施例に記載した方法で測定することができる。
[板厚]
板厚:40mm以下
 鋼板の板厚が40mmを超える場合、熱間圧延工程において、オーステナイト粒の細粒化および整粒が不十分となる。そしてその結果、再加熱焼入れおよび焼戻しを施した後の鋼板組織の細粒化および整粒化が不十分となり、低温靭性が低下する。そのため、鋼板の板厚は40mm以下とする。さらに、板厚が40mm以下である場合、熱処理時間が短くなるため、焼戻し時に焼戻し脆化の影響を低下させることができる。そのため、本発明においてはSi含有量の制約は小さい。一方、板厚の下限については特に限定されないが、6mm以上とすることが好ましい。
[引張強度]
TS:690MPa以上
 本発明に係る鋼板の引張強度(TS)は、690MPa以上とする。本発明の鋼板は、690MPa以上という高い引張強度を有しているため、LNGタンクなどの用途に好適に用いることができる。一方、前記引張強度の上限はとくに限定されないが、例えば、830MPa以下であってよく、800MPa以下であってもよい。
[降伏強度]
YS:585MPa以上
 本発明に係る鋼板の降伏強度(YS)は、585MPa以上とする。本発明の鋼板は、585MPa以上という高い降伏強度を有しているため、LNGタンクなどの用途に好適に用いることができる。一方、前記降伏強度の上限はとくに限定されないが、例えば、790MPa以下であってよく、770MPa以下であってもよい。
 上記引張強度および降伏強度は、JIS Z 2204に準拠した引張試験により測定することができる。より具体的には、実施例に記載した方法で測定できる。
[低温靭性]
 本発明に係る鋼板の低温靭性は、-196℃における吸収エネルギーvE-196が100J以上であることが好ましい。本発明の鋼板は、vE-196が100J以上という高い低温靭性を有しているため、LNGタンクなどの用途に好適に用いることができる。前記吸収エネルギーvE-196は150J以上であることが好ましい。一方、前記吸収エネルギーvE-196の上限はとくに限定されないが、例えば、400J以下であってよく、350J以下であってもよい。
 上記吸収エネルギーvE-196は、JIS Z 2242に準拠したシャルピー衝撃試験により測定することができる。より具体的には、実施例に記載した方法で測定できる。
[製造方法]
 次に、本発明の一実施形態における鋼板の製造方法について説明する。前記鋼板は、上述した成分組成を有する鋼素材に対して、下記の(1)~(5)の工程を順次施すことによって製造することができる。
(1)加熱工程
(2)熱間圧延工程
(3)冷却工程
(4)再加熱焼入れ工程
(5)焼戻し工程
 以下、各工程における条件について説明する。なお、以下の説明において、温度「℃」は、板厚1/2位置における温度を意味するものとする。板厚1/2位置における温度は、差分計算などにより求められる。
(鋼素材)
 上記鋼素材としては、任意の形態の素材を使用することができる。前記鋼素材は、例えば、鋼スラブであってよい。鋼素材の製造方法は、とくに限定されないが、例えば、上記した成分組成を有する溶鋼を常法により溶製し、鋳造して製造することができる。前記溶
製は、転炉、電気炉、誘導炉等、任意の方法により行うことができる。また、前記鋳造は、生産性の観点から連続鋳造法で行うことが好ましいが、造塊法により行ってもよい。
(加熱工程)
 加熱工程では、上記鋼素材を900℃以上1200℃以下の加熱温度まで加熱する。前記加熱は、鋳造などの方法によって得た鋼素材を一旦冷却した後に行ってもよく、また、得られた鋼素材を冷却することなく直接、前記加熱に供することもできる。
 鋼素材を加熱するのは、鋼素材の組織中の析出物を固溶させるためである。加熱温度が900℃未満の場合、未固溶の析出物の影響が大きくなり、混粒となるなど均一な組織が得られない。そのため、鋼素材の加熱温度は900℃以上とする。一方、加熱温度が1200℃を超えると、逆変態したオーステナイト粒が著しく粗大化し、次の熱間圧延および熱処理工程を経ても鋼板組織の十分な細粒化が図れない。また、過大なエネルギーが必要となり、製造性が低下する。そのため、鋼素材の加熱温度は1200℃以下、好ましくは1150℃以下とする。なお、加熱時間は特に限定されないが、2時間以上、8時間以下とすることが好ましい。
(熱間圧延工程)
 熱間圧延工程では、前記加熱工程で加熱された鋼素材を熱間圧延して板厚が40mm以下の熱延鋼板とする。圧延終了温度は特に限定されないが、オーステナイト単相域となる700℃以上とすることが好ましい。前記圧延終了温度の上限はとくに限定されないが、950℃以下であることが好ましく、920℃以下であることがより好ましい。
圧下比:5以上
 鋼板組織の細粒化と整粒化を図るためには、熱間圧延工程において十分な加工を加え、オーステナイト粒の再結晶を促すことが必要である。前記熱間圧延工程における圧下比が5未満の場合、加工量が不足し、粗大なオーステナイト粒が残存し、その結果、低温靭性が低下する。また、圧下比が5未満であると、ポロシティと呼ばれる内部微小空孔等の鋳造欠陥の無害化が不十分となり、低温靭性が低下する。そのため、熱間圧延工程における圧下比は5以上、好ましくは6以上、より好ましくは10以上とする。一方、圧下比の上限は特に限定されないが、50以下とすることが好ましい。なお、ここで前記圧下比は、(鋼素材の板厚/熱間圧延後の熱延鋼板の板厚)と定義される。
最終5パスのうち圧下率が10%以上であるパス数:2以上
 鋼板組織の細粒化と整粒化には、特に、熱間圧延工程の後半においてのオーステナイト粒の再結晶が有効である。そのため、前記熱間圧延工程の最終5パスのうち1パス当たりの圧下率が10%以上であるパス数を2以上とする。前記パス数が2未満であると、オーステナイト粒の整粒化が十分に進行しない。そしてその結果、最終的に得られる鋼板におけるb/aが4.0より大きくなり、低温靭性が劣化する。b/aをさらに低減するという観点からは、前記熱間圧延工程の最終5パスのうち1パス当たりの圧下率が10%以上であるパス数は、3以上とすることが好ましく、4以上とすることがより好ましく、5とすることがさらに好ましい。
(冷却工程)
 次いで、上記熱間圧延工程で得られた熱延鋼板を冷却する。前記冷却により析出物の粗大化が抑制され、強度および靭性が向上する。前記冷却工程における冷却停止温度はとくに限定されないが、例えば、常温(20℃など)以上であってよい。また、前記冷却停止温度は、400℃以下とすることが好ましい。
 前記冷却は、特に限定されることなく、例えば、空冷、水冷など、任意の方法で行うことができる。強度、低温靭性など必要な特性を高めるために、スプレー冷却、ミスト冷却、ラミナー冷却などの水冷を実施してもよい。ただし、水冷を行った場合、急速に冷却されるため、圧延時に形成された細長い組織が残留し、組織の異方性が大きくなる傾向がある。そのため、組織の異方性を低減するという観点からは、空冷を行うことが好ましい。
[再加熱焼入れ工程]
 再加熱焼入れ工程では、前記冷却工程後の熱延鋼板を、Ac3点以上900℃以下の再加熱温度に加熱した後に焼き入れする。Ac3点以上に再加熱することにより、熱延鋼板全体の組織がオーステナイトに逆変態する。その結果、鋼板組織の細粒化がさらに生じ、低温靭性が向上する。前記再加熱温度がAc3点未満であると、加熱後の鋼板のミクロ組織中にフェライト相が含まれるため、ミクロ組織を均一にできず低温靭性が低下する。一方、前記再加熱温度が900℃を超えると、オーステナイト粒が成長して粗大になるため、低温靭性が低下する。
 なお、Ac3点は下記(1)式で計算される。
Ac3(℃)=937.2-436.5C+56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr+38.1Mo+124.8V+136.3Ti-19.1Nb+198.4Al+3315B…(1)
ただし、上記(1)式中の元素記号は、各元素の含有量(質量%)を表し、当該元素が含有されていない場合は0とする。
 焼入れは、特に限定されることなく、任意の条件で行うことができるが、水冷で行うことが好ましい。
 前記焼入れの条件は特に限定されないが、200℃未満の冷却停止温度まで冷却することが好ましい。前記冷却停止温度は100℃以下であることがより好ましく、50℃以下であることがさらに好ましい。一方、前記冷却停止温度の下限はとくに限定されないが、例えば、前記冷却停止温度は室温以上であってもよい。
(焼戻し工程)
 焼戻し工程では、再加熱焼入れ工程後の鋼板を500℃以上650℃以下の焼戻し温度で焼戻しする。焼戻し温度が500℃未満の場合、降伏強度が低下する。一方、焼戻し温度が650℃を超える場合は、鋼板組織の再結晶により強度が著しく低下する。したがって、焼戻し温度は、500℃以上650℃以下とする。
 上記焼戻し工程の後は、鋼板を冷却することが好ましい。前記冷却の方法は特に限定されず、例えば、空冷、水冷など、任意の方法で行うことができる。
 以下、本発明の作用効果について、実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分組成の鋼を溶製し、鋼素材としての鋼スラブを得た。得られた鋼スラブに対して、表2に示した条件で、加熱工程、熱間圧延工程、冷却工程、再加熱焼入れ工程、および焼戻し工程を順次施して鋼板を製造した。なお、再加熱焼入れ工程においては、鋼板を表2に示した再加熱温度まで再加熱した後、200℃未満の冷却停止温度まで冷却した。
 次いで、得られた鋼板のそれぞれについて、以下の手順で残留オーステナイト量(体積率)、旧オーステナイト粒の最大粒径、および旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aを測定した。測定結果を表3に示す。
(残留オーステナイト量)
 得られた鋼板の板厚1/4位置が測定面となるよう、板面に平行にX線回折用試験片を採取した。前記試験片に鏡面研磨および電解研磨を施した後、X線回折に供した。対称反射X線回折パターンに現れるα-Feの(200)、(211)面、γ-Feの(200)、(220)、(311)面の回折強度を求め、次式にて残留オーステナイト量Vγを算出した。
 Vγ=100/((IαRγ/IγRα)+1)
ここで、Vγ:残留オーステナイトの体積率、I:回折X線強度、R:単位体積当たりの理論強度値である。前記回折X線強度Iとしては、バックグラウンド除去後の積分強度を使用した。なお、残留オーステナイト量が極めて少ない場合には十分な測定精度が得られないため、算出された残留オーステナイト量が0.5%以下の場合についてはミクロ組織に残留オーステナイトが実質的に含まれていない(0%)と見なし、表3の残留γの体積率欄は空欄(-)とした。
 表3には残留γ量のみを記載したが、全ての実施例及び比較例における鋼板は、焼戻しマルテンサイトとベイナイトを主体とするミクロ組織を有していた。具体的には、焼戻しマルテンサイトとベイナイトの合計面積率が90%以上であった。
(旧γ粒の結晶粒径)
 得られた鋼板から、板厚1/2位置が観察位置となるように、組織観察用の試験片を採取した。前記試験片を、圧延方向(L方向)断面を観察面とするよう樹脂に埋め、鏡面研磨した。次いで、ピクリン酸腐食を実施した後、倍率200倍の光学顕微鏡で観察した。撮影した10視野分の画像を解析し、旧オーステナイト粒の最大粒径と、旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aを求めた。ここで、旧オーステナイト粒の粒径としては、円相当径を使用した。
 また、旧オーステナイト粒を楕円近似した場合における長軸を短軸で除して得られる比率をアスペクト比として算出した。
 さらに、得られた鋼板のそれぞれについて、以下の手順で機械的特性を評価した。評価結果を表3に示す。
(強度)
 鋼板の板幅方向(C方向)が引張方向と一致するように、JIS Z 2201に記載の5号試験片を採取し、JIS Z 2204に準拠して引張試験を行い、降伏強度(YS)及び引張強度(TS)を求めた。
(低温靭性)
 低温靭性を評価するためにシャルピー衝撃試験を行った。具体的には、まず、前記鋼板から、該鋼板の圧延方向(L方向)が長辺となるように2mmVノッチを有するシャルピー衝撃試験片を採取した。前記試験片を液体窒素中で-196℃に冷却し、JIS Z 2242に準拠してシャルピー衝撃試験を行い、-196℃における吸収エネルギーvE-196を測定した。3本の試験片で同様の測定を行い、得られた吸収エネルギーvE-196の平均値を表3に示した。なお、板厚が12mm以下の場合は、サブサイズ試験片を用いて評価した。
 通常の試験片を用いた場合、vE-196が100J以上を合格とした。また、サブサイズ試験片を用いた場合、vE-196が50J以上を合格とした。
 表3に示した結果から分かるように、本発明例の鋼板は、上記特性を満足し、強度(引張強度及び降伏強度)、低温靭性、製造性ともに優れていた。一方、本発明の範囲を外れる比較例の鋼板は、強度(引張強度及び降伏強度)、低温靭性、製造性の少なくとも1つが劣っていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  質量%で、
      C :0.01~0.15%、
      Si:0.01~1.00%、
      Mn:0.10~2.00%、
      P :0.010%以下、
      S :0.0050%以下、
      Ni:5.0~10.0%、
      Al:0.002~0.100%、および
      N :0.0080%以下、を含有し、
      残部Feおよび不可避的不純物からなる成分組成と、
     板厚1/4位置における残留オーステナイトの体積率が3.0%未満であり、
     板厚1/2位置における旧オーステナイト粒の最大粒径が100μm以下であり、かつ、
     板厚1/2位置における、旧オーステナイト粒の平均粒径aに対する、旧オーステナイト粒の粒径の上位5%における平均値bの比b/aが4.5以下であるミクロ組織とを有し、
     板厚が40mm以下であり、
     降伏強度が585MPa以上、かつ、
     引張強度が690MPa以上である、鋼板。
  2.  前記成分組成が、さらに、質量%で、
      Cu:0.01~1.00%、
      Cr:0.01~1.50%、
      Mo:0.03~1.0%、
      Nb:0.001~0.030%、
      V :0.01~0.10%、
      Ti:0.003~0.050%、
      B :0.0003~0.0050%、
      Sn:0.01~0.30%、
      Sb:0.01~0.30%、
      W :0%超、2.00%以下、
      Co:0%超、2.00%以下、
      Ca:0.0005~0.0050%、
      Mg:0.0005~0.0100%、
      Zr:0.0005~0.0050%、
      Ta:0.01~0.20%、
      Y :0.001~0.010%、および
      REM:0.0010~0.0200%、
      からなる群より選択される少なくとも1つを含有する、請求項1に記載の鋼板。
  3.  請求項1または2に記載の成分組成を有する鋼素材を、900℃以上1200℃以下の加熱温度まで加熱する加熱工程と、
     前記加熱工程で加熱した鋼素材を、圧下比が5以上、かつ最終5パスのうち1パス当たりの圧下率が10%以上であるパス数が2以上の条件で熱間圧延して板厚40mm以下の熱延鋼板とする熱間圧延工程と、
     前記熱延鋼板を冷却する冷却工程と、
     前記冷却工程後の熱延鋼板を、Ac3点以上900℃以下の再加熱温度まで再加熱し、焼入れする再加熱焼入れ工程と、
     前記再加熱焼入れ工程後の熱延鋼板を、500℃以上650℃以下の焼戻し温度で焼戻しする焼戻し工程とを有する、鋼板の製造方法。
PCT/JP2023/013709 2022-05-19 2023-03-31 鋼板およびその製造方法 WO2023223694A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023534743A JP7367896B1 (ja) 2022-05-19 2023-03-31 鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022082485 2022-05-19
JP2022-082485 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023223694A1 true WO2023223694A1 (ja) 2023-11-23

Family

ID=88834972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013709 WO2023223694A1 (ja) 2022-05-19 2023-03-31 鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2023223694A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074123A (ja) * 2007-09-19 2009-04-09 Nippon Steel Corp 表面品質が良好なNi含有鋼の製造方法
CN110129685A (zh) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 一种超低温容器用7Ni钢厚板的制造方法
WO2020237975A1 (zh) * 2019-05-27 2020-12-03 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
WO2022118592A1 (ja) * 2020-12-03 2022-06-09 Jfeスチール株式会社 鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074123A (ja) * 2007-09-19 2009-04-09 Nippon Steel Corp 表面品質が良好なNi含有鋼の製造方法
CN110129685A (zh) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 一种超低温容器用7Ni钢厚板的制造方法
WO2020237975A1 (zh) * 2019-05-27 2020-12-03 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺
WO2022118592A1 (ja) * 2020-12-03 2022-06-09 Jfeスチール株式会社 鋼板

Also Published As

Publication number Publication date
TW202407115A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
JP2019504210A (ja) 耐水素誘起割れ(hic)性に優れた圧力容器用鋼材及びその製造方法
WO2015088040A1 (ja) 鋼板およびその製造方法
KR100920536B1 (ko) 용접성 및 가스 절단성이 우수한 고장력 내화강 및 그 제조방법
WO2014132968A1 (ja) 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板
WO2010087512A1 (ja) 耐hic性に優れた厚肉高張力熱延鋼板及びその製造方法
WO2012002566A1 (ja) 加工性に優れた高強度鋼板およびその製造方法
CN113166897B (zh) 具有优异的可冷加工性和ssc抗力的超高强度钢及其制造方法
CN112236539B (zh) 极低温用高张力厚钢板及其制造方法
EP3730659A1 (en) High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same
JP6492862B2 (ja) 低温用厚鋼板及びその製造方法
JP2022548144A (ja) 低温衝撃靭性に優れた高強度極厚物鋼材及びその製造方法
JP7221476B6 (ja) 水素誘起割れ抵抗性に優れた鋼材及びその製造方法
CN112877591A (zh) 一种高强韧五金工具及链条用钢及其制造方法
CA3108674C (en) Steel for pressure vessel having excellent surface quality and impact toughness, and method for manufacturing same
WO2022129995A1 (en) Coated steel sheet and high strength press hardened steel part and method of manufacturing the same
KR102508128B1 (ko) 용접 열영향부 저온 충격인성이 우수한 강재 및 그 제조방법
JP7367896B1 (ja) 鋼板およびその製造方法
JP7251512B2 (ja) 鋼板およびその製造方法
JP7291222B2 (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法
WO2023223694A1 (ja) 鋼板およびその製造方法
TWI841339B (zh) 鋼板及其製造方法
CN113166896A (zh) 抗氢致开裂性优异的压力容器用钢材及其制备方法
JP3077568B2 (ja) 低温鉄筋用鋼材の製造方法
CN114341386B (zh) 强度和低温冲击韧性优异的钢材及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023534743

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807309

Country of ref document: EP

Kind code of ref document: A1