WO2023223419A1 - Ultraviolet light sterilization apparatus - Google Patents

Ultraviolet light sterilization apparatus Download PDF

Info

Publication number
WO2023223419A1
WO2023223419A1 PCT/JP2022/020515 JP2022020515W WO2023223419A1 WO 2023223419 A1 WO2023223419 A1 WO 2023223419A1 JP 2022020515 W JP2022020515 W JP 2022020515W WO 2023223419 A1 WO2023223419 A1 WO 2023223419A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
light
light guide
ultraviolet
optical member
Prior art date
Application number
PCT/JP2022/020515
Other languages
French (fr)
Japanese (ja)
Inventor
紗希 本倉
潤 近藤
智彦 澤中
俊輔 曽山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020515 priority Critical patent/WO2023223419A1/en
Publication of WO2023223419A1 publication Critical patent/WO2023223419A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light

Definitions

  • the present disclosure relates to an ultraviolet light sterilization device.
  • ultraviolet light has sterilizing ability.
  • BACKGROUND ART Sterilizers that irradiate ultraviolet light have become popular for sterilization of air, water, daily necessities, etc., and for sterilization in fields such as medicine and food processing.
  • strong ultraviolet light is harmful to the human body (eg, skin and eyes). Therefore, the location of the sterilizer that irradiates ultraviolet light and the time period in which the sterilizer is used are restricted, that is, the application of the sterilizer is limited.
  • the intensity of the ultraviolet light is lowered, the time required for sterilization increases, which shortens the life of the ultraviolet light source.
  • a sterilization device that performs sterilization treatment by generating evanescent ultraviolet light near the surface of a light guide in consideration of the effect on the human body (see, for example, Patent Documents 1 and 2).
  • JP2014-39876A Japanese Patent Application Publication No. 9-299937
  • the present disclosure aims to save space in an ultraviolet light sterilization device while ensuring a sufficient sterilization range by evanescent light.
  • An ultraviolet light sterilization device includes an ultraviolet light source group that emits ultraviolet light, and a plurality of optical members arranged in a predetermined first direction, wherein the plurality of optical members are arranged in a first direction.
  • Each optical member has a light incidence surface through which the ultraviolet light is incident, and evanescent light is generated around the surface of the optical member by total reflection of the ultraviolet light inside the optical member,
  • the distance between two adjacent optical members among the plurality of optical members is 10 mm or less.
  • FIG. 1 is a perspective view showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a part of the configuration of the ultraviolet light sterilization device according to the first embodiment.
  • FIG. 3 is a schematic diagram showing an example of the progress of ultraviolet light inside the light guide rod shown in FIGS. 1 and 2 and an example of evanescent light generated around the surface of the light guide rod.
  • FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilizer according to Modification 1 of Embodiment 1.
  • FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a second modification of the first embodiment.
  • FIG. 3 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a third modification of the first embodiment.
  • FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a second embodiment.
  • FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a modification of the second embodiment.
  • FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 3.
  • FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a modification of the third embodiment.
  • FIGS. 1 and (B) are cross-sectional views showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 4.
  • FIG. 1 are a plan view and a sectional view showing the configuration of an ultraviolet light sterilization device according to Modification 1 of Embodiment 4.
  • FIG. 1 is a plan view and a sectional view showing the configuration of an ultraviolet light sterilization device according to a second modification of the fourth embodiment.
  • the ultraviolet light sterilization device is placed, for example, in a flow path through which fluid flows.
  • the ultraviolet light sterilizer is placed, for example, in a flow path in which air circulates inside an air conditioner, electric fan, ventilation fan, air cleaner, elevator, or the like.
  • the ultraviolet light sterilizer may be placed in a flow path (ie, a waterway) through which water flows.
  • the ultraviolet light sterilization device may be placed in a flow path through which water flows inside a water heater, water supply, water bottle, wastewater regeneration device, or sewage treatment device.
  • the ultraviolet light sterilization device may be placed in a flow path through which a medium other than air and water flows.
  • the z-axis is a coordinate axis parallel to the direction in which a long light guide member (for example, a light guide rod) provided in the ultraviolet light sterilizer according to the embodiment of the present disclosure extends.
  • the z-axis direction is the longitudinal direction of the light guide member.
  • the y-axis is a coordinate axis perpendicular to the z-axis.
  • the x-axis is a coordinate axis perpendicular to both the y-axis and the z-axis.
  • the xz plane is, for example, a plane parallel to the installation surface on which the ultraviolet light sterilizer according to the embodiment of the present disclosure is installed. Furthermore, in the following description, the x-axis direction may be referred to as a "first direction” and the z-axis direction may be referred to as a "second direction.”
  • FIG. 1 is a perspective view showing a part of the configuration of an ultraviolet light sterilizer 100 according to the first embodiment.
  • FIG. 2 is a sectional view showing a part of the configuration of the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilizer 100 includes a plurality of ultraviolet light sources 1 as a group of ultraviolet light sources, and a plurality of light guide rods 4 (hereinafter referred to as "a plurality of light guide rods" as a plurality of optical members). 1) and a housing 5. Note that in FIG. 2, illustration of the housing 5 is omitted.
  • Each ultraviolet light source 1 of the plurality of ultraviolet light sources 1 emits ultraviolet light L1 as first ultraviolet light.
  • the ultraviolet light source 1 emits ultraviolet light L1 toward a light incident surface of the light guide rod 4 (for example, an end surface 4a facing the ⁇ z-axis direction shown in FIG. 3, which will be described later).
  • the ultraviolet light source 1 is, for example, a UV-LED (UltraViolet-Light Emitting Diode).
  • the peak wavelength of the ultraviolet light L1 is, for example, within the range of 100 nm to 315 nm.
  • the peak wavelength of the ultraviolet light L1 is preferably within the range of 100 nm to 280 nm. This makes it possible to achieve sterilization by directly destroying the DNA of bacteria and viruses.
  • the number of ultraviolet light sources 1 provided in the ultraviolet light sterilizer 100 may be one depending on the object to be sterilized, the location of the ultraviolet light sterilizer 100, and the like. In other words, the ultraviolet light sterilization device 100 only needs to include at least one ultraviolet light source 1.
  • the light guide rod 4 is a long rod-shaped light guide member.
  • the light guide rod 4 is made of a material that has a low absorption rate for ultraviolet light.
  • the light guide rod 4 is preferably made of a material with high transmittance for ultraviolet light.
  • the light guide rod 4 is made of, for example, quartz glass, polymethyl methacrylate, polycarbonate, polypropylene, polyfluoroethylene, polyvinylidene fluoride, polymethylpentene, multicomponent glass, and combinations of these materials.
  • FIG. 3 is a diagram showing an example of the progress of the ultraviolet light L1 inside the light guide rod 4 shown in FIGS. 1 and 2, and an example of the evanescent light Le generated around the outer peripheral surface 4c of the light guide rod 4. .
  • the ultraviolet light source 1 emits ultraviolet light L1 toward the end surface 4a of the light guide rod 4 facing in the ⁇ z-axis direction. Therefore, in the example shown in FIG. 3, the end surface 4a of the light guide rod 4 facing the ⁇ z-axis direction is the light incidence surface through which the ultraviolet light L1 is incident.
  • the plurality of ultraviolet light sources 1 are arranged, for example, at positions facing the end surfaces 4a of the plurality of light guide rods 4, which are light incident surfaces facing in the ⁇ z-axis direction.
  • the light incidence surface through which the ultraviolet light L1 is incident is not limited to the end surface 4a of the light guide rod 4 facing the -z-axis direction, but may be the end surface 4b facing the +z-axis direction, or the end surface facing the -z-axis direction. 4a and an end surface 4b facing the +z-axis direction.
  • the light guide rod 4 for example, completely reflects a part of the ultraviolet light L1 incident on the end surface 4a facing in the -z-axis direction while guiding the light toward the end surface 4b in the +z-axis direction.
  • the ultraviolet light that is totally reflected is indicated by the symbol L11.
  • the ultraviolet light L11 propagates inside the light guide rod 4 while repeating total reflection.
  • Evanescent light Le is generated around the outer peripheral surface 4c, which is the surface of the light guide rod 4.
  • the evanescent light Le is generated by total reflection of the ultraviolet light L11 inside the light guide rod 4.
  • the totally reflected ultraviolet light L11 leaks into a very small area of the outer peripheral surface 4c as evanescent light Le.
  • the evanescent light Le seeps out from the outer peripheral surface 4c at about the peak wavelength of the ultraviolet light L1.
  • the evanescent light Le that has seeped out remains near the outer peripheral surface 4c of the light guide rod 4.
  • the outer peripheral surface 4c of the light guide rod 4 is a total reflection interface that generates the evanescent light Le.
  • the light guide rod 4 is an optical member that generates the evanescent light Le by total reflection of the ultraviolet light L11.
  • the influence on the human body when using the ultraviolet light sterilizer 100 can be reduced compared to the case where the sterilization area is directly irradiated with ultraviolet light.
  • the evanescent light Le stays in the vicinity of the outer circumferential surface 4c of the light guide rod 4, the influence on the human body when the ultraviolet light sterilizer 100 is used can be reduced.
  • the ultraviolet light sterilization device 100 can be used regardless of the presence or absence of people.
  • the number of ultraviolet light sources 1 and the number of light guide rods 4 are set to arbitrary numbers depending on the sterilization range or the intensity of the evanescent light Le necessary for sterilization.
  • the ultraviolet light sterilizer 100 since the ultraviolet light sterilizer 100 includes a plurality of light guide rods 4 arranged close to each other, the surface area of the surface that can be sterilized increases. Thereby, the range of sterilization of bacteria (range of inactivation for viruses) contained in the medium (eg, air, water) flowing through the channel in which the ultraviolet light sterilizer 100 is arranged can be expanded. Moreover, the ultraviolet light sterilizer 100 can expand the range of sterilization of bacteria contained in dust and the like attached to the light guide rod 4. Note that a specific example of the interval between two adjacent light guide rods 4 will be described later.
  • the length of the light guide rod 4 is determined based on the sterilization range.
  • the light guide rod 4 is, for example, a rod-shaped member that is long in the z-axis direction.
  • the shape of the light guide rod 4 is, for example, a cylindrical shape that is long in the z-axis direction. It is preferable that the light guide rod 4 is a cylindrical member having no unevenness. Thereby, in the light guide rod 4, the surface area where the evanescent light Le is generated can be increased while satisfying the total reflection condition.
  • the shape of the light guide rod 4 is not limited to a cylindrical shape, but may be a prismatic shape that is long in the z-axis direction depending on the placement location or sterilization range.
  • the ultraviolet light sterilizer 100 may include a plate-like member elongated in the z-axis direction or a cylindrical lens as a light guide member instead of the light guide rod 4, depending on the location or sterilization range.
  • the shape of the light guide rod 4 may be a hollow cylinder.
  • the light guide rod 4 may be a member processed with holes through which air or water flows (for example, see FIG. 11 described later).
  • the shape of the light guide rod 4 is made into a shape different from a cylindrical shape, it is necessary to satisfy the total internal reflection condition and to prevent ultraviolet light having an intensity that may affect the human body from emanating.
  • the plurality of light guide rods 4 are arranged in a predetermined first arrangement direction (for example, the x-axis direction).
  • the distance (pitch) p between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less.
  • the interval p is the interval between the total reflection interface of the light guide rod 4 and the total reflection interface of another adjacent light guide rod 4.
  • the evanescent light Le remains near the outer peripheral surface 4c of the light guide rod 4.
  • the plurality of light guide rods 4 are arranged close to each other, which saves space while sterilizing bacteria (as for viruses) contained in the medium around the light guide rods 4. can be inactivated).
  • the evanescent light Le seeps out from the outer circumferential surface 4c of the light guide rod 4 at approximately the peak wavelength of the ultraviolet light L1.
  • the distance p between two adjacent light guide rods 4 is twice or more the peak wavelength of the ultraviolet light L1.
  • the peak wavelength (unit: nm) of the ultraviolet light L1 is ⁇ 1
  • the interval p and the peak wavelength ⁇ 1 of the ultraviolet light L1 satisfy the following formula (1).
  • the housing 5 houses a plurality of ultraviolet light sources 1 and a plurality of light guide rods 4.
  • the housing 5 is preferably made of a material that absorbs or reflects ultraviolet light L1 (see FIG. 2).
  • the ultraviolet light L1 emitted from the ultraviolet light source 1, in other words, the ultraviolet light L1 that may affect the human body, can be prevented from being emitted to the outside of the apparatus.
  • the housing 5 is a rectangular parallelepiped having an opening 5a that exposes the outer circumferential surface 4c of the light guide rod 4 (see FIG. 3).
  • the housing 5 covers the ultraviolet light source 1 and the end surfaces 4a and 4b of the light guide rod 4 facing in the z-axis direction.
  • the housing 5 exposes the outer circumferential surface 4c of the light guide rod 4 through which the evanescent light Le seeps out, and covers the end surface 4a of the light guide rod 4, which is the light incidence surface through which the ultraviolet light L1 is incident.
  • the casing 5 can be implemented without having the opening 5a, as long as it has a structure that does not directly emit the ultraviolet light L1 to the outside of the device.
  • the evanescent light Le generated by totally reflecting the ultraviolet light L11 inside the light guide rod 4 seeps onto the outer circumferential surface 4c of the light guide rod 4.
  • the area around the outer circumferential surface 4c of the light guide rod 4 can be sterilized while preventing the ultraviolet light L1 harmful to the human body from being emitted from the ultraviolet light sterilizer 100. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 100 can be improved.
  • the distance p between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less.
  • a plurality of light guide rods 4 can be arranged close to each other. Since the evanescent light Le remains on the surface of the light guide rod 4, by arranging a plurality of light guide rods 4 close to each other, objects to be sterilized around the light guide rod 4 can be efficiently sterilized.
  • the evanescent light Le seeps out from the outer circumferential surface 4c of the light guide rod 4 at approximately the peak wavelength of the ultraviolet light L1.
  • the distance p between two adjacent light guide rods 4 is twice or more the peak wavelength of the ultraviolet light L1.
  • the ultraviolet light sterilizer 100 further includes a housing 5 that accommodates a plurality of ultraviolet light sources 1 and a plurality of light guide rods 4, and the housing 5 is arranged around the outer periphery of the light guide rod 4.
  • the surface 4c is exposed, and the end surface 4a of the light guide rod 4, which is a light incident surface through which the ultraviolet light L1 is incident, is covered.
  • FIG. 4 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100a according to Modification 1 of Embodiment 1.
  • the ultraviolet light sterilizer 100a according to the first modification of the first embodiment differs from the first embodiment in that it includes a plurality of ultraviolet light sources 1a and 1b arranged on opposite sides of each other with a plurality of light guide rods 4 in between. This is different from the ultraviolet light sterilizer 100 according to the above.
  • the ultraviolet light sterilizer 100a according to the first modification of the first embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilizer 100a includes a plurality of ultraviolet light sources 1a and 1b (hereinafter also referred to as "a plurality of first ultraviolet light sources 1a and 1b") as a group of ultraviolet light sources. , a plurality of light guide rods 4 and a housing 5 (see FIG. 1).
  • the ultraviolet light source 1b is arranged at a position facing the end surface 4b of the light guide rod 4 facing the +z-axis direction.
  • the ultraviolet light L1 emitted from the ultraviolet light source 1b propagates inside the light guide rod 4 while being totally reflected.
  • sterilizing evanescent light Le (see FIG. 3) is generated around the outer circumferential surface 4c of the light guide rod 4.
  • the ultraviolet light source 1a is arranged at a position facing the end surface 4a of the odd-numbered light guide rod 4 facing the ⁇ z-axis direction, and facing the end surface 4b of the even-numbered light guide rod 4 facing the +z-axis direction.
  • An ultraviolet light source 1b is placed at the position.
  • the light guide rod 4 into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b enters This is different from the light guide rod 4 through which the ultraviolet light L1 enters.
  • the ultraviolet light L1 emitted from the ultraviolet light source 1b and the ultraviolet light L1 emitted from the ultraviolet light source 1a enter another light guide bar 4 adjacent to the light guide bar 4.
  • all of the plurality of ultraviolet light sources 1 are arranged at positions facing the end surface 4a of the light guide rod 4 facing in the ⁇ z-axis direction (see FIG. 2). Compared to this, the wiring structure of the ultraviolet light sources 1a and 1b can be simplified.
  • the ultraviolet light sterilizer 100a includes a plurality of ultraviolet light sources 1a and 1b.
  • the ultraviolet light L1 emitted from the ultraviolet light sources 1a and 1b is totally reflected inside the light guide rod 4, so that evanescent light Le is generated around the outer peripheral surface 4c of the light guide rod 4.
  • the area around the outer circumferential surface 4c of the light guide rod 4 can be sterilized while reducing the possibility of adverse effects on the human body. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 100a can be improved.
  • the plurality of ultraviolet light sources 1a and 1b are arranged on opposite sides with the plurality of light guide rods 4 interposed therebetween.
  • the intensity of the evanescent light Le (see FIG. 3) on the outer peripheral surface 4c of the light guide rod 4 can be made uniform in the longitudinal direction of the light guide rod 4. Therefore, a sufficient sterilizing effect can be ensured. Moreover, sterilization time can be shortened.
  • the light guide rod 4 into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b is incident It is different from the light guide rod 4 into which the ultraviolet light L1 emitted from the light source 1b enters.
  • the ultraviolet light sources 1a, 1b The wiring structure can be simplified.
  • FIG. 5 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100b according to a second modification of the first embodiment.
  • the ultraviolet light sterilizer 100b according to the second modification of the first embodiment is different from the ultraviolet sterilizer according to the first embodiment or the first modification of the first embodiment in that one light guide rod 4 has a plurality of light incident surfaces. This is different from the optical sterilizers 100 and 100a.
  • the ultraviolet light sterilizer 100b according to the second modification of the first embodiment is the same as the ultraviolet light sterilizers 100 and 100a according to the first embodiment or the first modification of the first embodiment. .
  • the ultraviolet light sterilizer 100b includes a plurality of ultraviolet light sources 1a and 1b, a plurality of light guide rods 4, and a housing 5 (see FIG. 1).
  • each light guide rod 4 among the plurality of light guide rods 4 has a plurality of light incident surfaces.
  • the plurality of light incident surfaces are end surfaces 4a and 4b on both sides of the light guide rod 4 in the z-axis direction.
  • the light guide rod 4 into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b is incident This is the same as the light guide rod 4 into which the ultraviolet light L1 emitted from the ultraviolet light source 1b enters.
  • the amount of ultraviolet light L1 incident on one light guide rod 4 increases. Therefore, the intensity of the evanescent light Le generated around the outer peripheral surface 4c of the light guide rod 4 increases, and the sterilization effect can be enhanced. Moreover, sterilization time can be shortened.
  • FIG. 6 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100c according to a third modification of the first embodiment.
  • the ultraviolet light sterilizer 100c according to the third variation of the first embodiment is different from the embodiment in that it further includes a plurality of second light guide rods 6 arranged to cross the plurality of first light guide rods 4. This is different from the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilizer 100c according to the third modification of the first embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilizer 100c includes a plurality of ultraviolet light sources 1, a plurality of first light guide rods 4, and a plurality of second light guides as a plurality of second optical members. It includes a rod 6 and a housing 5 (see FIG. 1).
  • the plurality of second light guide rods 6 overlap the plurality of first light guide rods 4 in plan view. Further, the plurality of second light guide rods 6 are arranged in a direction (in the example shown in FIG. 6, the z-axis direction) that intersects the arrangement direction (in the example shown in FIG. 6, the x-axis direction) of the plurality of first light guide rods 4. axial direction). In FIG. 6, the arrangement direction of the plurality of second light guide rods 6 is orthogonal to the arrangement direction of the plurality of first light guide rods 4. Note that the arrangement direction of the plurality of second light guide rods 6 may obliquely intersect the arrangement direction of the plurality of first light guide rods 4.
  • Each second light guide rod 6 of the plurality of second light guide rods 6 has a light incidence surface 6a through which the ultraviolet light L1 is incident.
  • Evanescent light is generated around the surface of the second light guide rod 6 by total reflection of the ultraviolet light L1 inside the second light guide rod 6.
  • the ultraviolet light L1 that is totally reflected inside the second light guide rod 6 leaks into a very small area on the surface of the second light guide rod 6 as evanescent light.
  • evanescent light having a sterilizing effect seeps out in the second light guide rod 6 in addition to the first light guide rod 4. Therefore, since the surface area having a sterilizing effect in the ultraviolet light sterilizer 100c increases, the sterilizing effect can be enhanced.
  • the volume of the object to be sterilized (for example, air or water) in the ultraviolet light sterilizer 100c can be increased, and the object to be sterilized can be actively placed near the first light guide rod 4 and the second light guide rod 6. You can get close to the target.
  • the object to be sterilized for example, air or water
  • the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4, so that the arrangement direction of the plurality of second light guide rods 6 is , is independent from the arrangement direction of the plurality of first light guide rods 4.
  • the optical path of the ultraviolet light L1 traveling inside the second light guide rod 6 and the optical path of the ultraviolet light L1 traveling inside the first light guide rod 4 are not shared. Therefore, total reflection conditions can be maintained in each of the first light guide rod 4 and the second light guide rod 6, and evanescent light can be generated.
  • the distance p between two adjacent second light guide rods 6 among the plurality of second light guide rods 6 is the same as the distance p between two adjacent first light guide rods 4. be. Specifically, the distance p between two adjacent second light guide rods 6 is 10 mm or less. This makes it possible to save space while ensuring a sufficient sterilization range by evanescent light. Moreover, the distance p between two adjacent second light guide rods 6 is twice or more the peak wavelength of the ultraviolet light L1. This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent second light guide rods 6 from interfering with each other.
  • the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4.
  • Evanescent light is generated around the surface of each second light guide rod 6 of the plurality of second light guide rods 6 by total reflection of the ultraviolet light L1 inside the second light guide rod 6.
  • the volume of the object to be sterilized (for example, air or water) in the ultraviolet light sterilizer 100c can be increased, and the object to be sterilized can be actively placed near the first light guide rod 4 and the second light guide rod 6. You can get close to the target.
  • the object to be sterilized for example, air or water
  • the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4.
  • the optical path of the ultraviolet light L1 traveling inside the second light guide rod 6 and the optical path of the ultraviolet light L1 traveling inside the first light guide rod 4 are not shared. Therefore, total reflection conditions can be maintained in each of the first light guide rod 4 and the second light guide rod 6, and evanescent light can be generated.
  • FIG. 7 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 200 according to the second embodiment.
  • the ultraviolet light sterilizer 200 according to the second embodiment differs from the ultraviolet light sterilizer 100 according to the first embodiment in that it further includes a second ultraviolet light source 2a.
  • the ultraviolet light sterilizer 200 according to the second embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilizer 200 includes a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, a plurality of light guide rods 4, and a housing 5 (see FIG. 1).
  • Each second ultraviolet light source 2a of the plurality of second ultraviolet light sources 2a emits ultraviolet light L2.
  • the second ultraviolet light source 2a is, for example, a UV-LED.
  • an ultraviolet light source group is configured by a plurality of first ultraviolet light sources 1a and a plurality of second ultraviolet light sources 2a.
  • the peak wavelength of the ultraviolet light L2 is, for example, within the range of 100 nm to 315 nm.
  • both the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 100 nm to 315 nm.
  • the sterilization effect due to DNA damage of bacteria and viruses can be enhanced.
  • one of the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 100 nm to 315 nm.
  • both the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 315 nm to 400 nm.
  • one of the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 315 nm to 400 nm.
  • the peak wavelength of the ultraviolet light L1 may be within the range from 100 nm to 315 nm
  • the peak wavelength of the ultraviolet light L2 may be within the range from 315 nm to 400 nm. In this case, it is possible to inhibit the repair of DNA caused by light irradiation or placement in a dark place after DNA is damaged by the evanescent light of the ultraviolet light L1.
  • active enzyme species are generated against the object to be sterilized or surrounding organic matter in the medium by evanescent light of ultraviolet light L2, and the active enzyme species oxidizes multicellular organisms (e.g., cell membranes, proteins, etc.) and cells. By killing them, indirect sterilization can be achieved.
  • the peak wavelength of the ultraviolet light L2 can be changed as appropriate depending on the object to be sterilized or the expected sterilization effect.
  • the plurality of first ultraviolet light sources 1a and the plurality of second ultraviolet light sources 2a are arranged in alternating rows.
  • the ultraviolet light sterilizer 200 can be realized without having the same number of second ultraviolet light sources 2a as the plurality of first ultraviolet light sources 1a.
  • the number of the plurality of second ultraviolet light sources 2a may be greater than the number of the plurality of first ultraviolet light sources 1a.
  • UV-LEDs are more expensive than general LEDs.
  • ultraviolet light sources that emit ultraviolet light with a high bactericidal effect that is, ultraviolet light with a short peak wavelength
  • the peak wavelength of the ultraviolet light L2 is longer than the peak wavelength of the ultraviolet light L1
  • the number of the plurality of second ultraviolet light sources 2a is greater than the number of the plurality of first ultraviolet light sources 1a
  • Sterilization and virus inactivation by ultraviolet light is generally effective against all microorganisms.
  • the sensitivity of bacteria to ultraviolet light varies greatly depending on the type of bacteria and virus, the environment, etc. For example, if only one type of evanescent light is generated, the types of microorganisms that can be sterilized and inactivated are limited.
  • the ultraviolet light sterilizer 200 includes a plurality of types of ultraviolet light sources (i.e., the first ultraviolet light source 1a and the second ultraviolet light source 2a) that emit ultraviolet light having different peak wavelengths. . Further, a part of the ultraviolet light L2 that has entered the light guide rod 4 propagates while repeating total reflection inside the light guide rod 4. Thereby, the ultraviolet light L2 is totally reflected inside the light guide rod 4, and second evanescent light is generated around the surface of the light guide rod 4 into which the ultraviolet light L2 is incident.
  • the first ultraviolet light source 1a and the second ultraviolet light source 2a that emit ultraviolet light having different peak wavelengths.
  • the plurality of light guide rods 4 in the ultraviolet light sterilizer 200 are configured by one light guide rod 4 that generates evanescent light of the ultraviolet light L1 and another light guide rod 4 that generates the evanescent light of the ultraviolet light L2. ing. Thereby, the types of objects to be sterilized can be increased.
  • the interval (pitch) p1 between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less, as in the first embodiment.
  • the interval p1 between two adjacent light guide rods 4 is greater than or equal to the sum of the peak wavelengths of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2.
  • the peak wavelength (unit: nm) of the ultraviolet light L1 is ⁇ 2
  • the interval p1, the peak wavelength ⁇ 1 of the ultraviolet light L1, and the peak wavelength ⁇ 2 of the ultraviolet light L2 satisfy the following formula (2).
  • the ultraviolet light sterilizer 200 includes a second ultraviolet light source 2a that emits ultraviolet light L2 having a second peak wavelength longer than the first peak wavelength of the ultraviolet light L1. Further, on the surface of the light guide rod 4, second evanescent light is generated by total reflection of the ultraviolet light L2 inside the light guide rod 4. As a result, compared to a configuration in which evanescent light of a single wavelength is irradiated, the types of objects that can be sterilized are increased, so that the sterilization effect can be enhanced. In addition, indirect sterilization by active enzyme species generated by the evanescent light of the ultraviolet light L2 can be achieved while inhibiting the repair function of DNA damaged by the evanescent light of the ultraviolet light L1 on the object to be sterilized.
  • the distance p1 between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less.
  • a plurality of light guide rods 4 can be arranged close to each other. Since the evanescent light remains on the surface of the light guide rod 4, the object to be sterilized around the light guide rod 4 can be efficiently sterilized by arranging a plurality of light guide rods 4 close to each other.
  • the distance p1 between two adjacent light guide rods 4 is greater than or equal to the sum of the peak wavelength ⁇ 1 of the ultraviolet light L1 and the peak wavelength ⁇ 2 of the ultraviolet light L2. This can prevent the evanescent light generated around the respective surfaces of two adjacent light guide rods 4 from interfering with each other.
  • FIG. 8 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 200a according to a modification of the second embodiment.
  • An ultraviolet light sterilizer 200a according to a modification of the second embodiment includes a plurality of first ultraviolet light sources 1a and 1b provided with a light guide rod 4 in between, and a plurality of second ultraviolet light sources 2a, 2b is also different from the ultraviolet light sterilizer 200 according to the second embodiment in that the light guide rod 4 is also provided on both sides.
  • the ultraviolet light sterilizer 200a according to the modification of the second embodiment is the same as the ultraviolet light sterilizer 200 according to the second embodiment.
  • the ultraviolet light sterilizer 200a includes a plurality of first ultraviolet light sources 1a and 1b, a plurality of second ultraviolet light sources 2a and 2b, a plurality of light guide rods 4, and a housing 5 (see FIG. 1). Equipped with
  • End surfaces 4a and 4b on both sides in the z-axis direction of each light guide rod 4 of the plurality of light guide rods 4 are light incident surfaces 4a and 4b into which the ultraviolet lights L1 and L2 are incident.
  • the ultraviolet light L1 emitted from the first ultraviolet light source 1a or the ultraviolet light L2 emitted from the second ultraviolet light source 2a enters the end surface 4a of the light guide rod 4 facing in the ⁇ z-axis direction.
  • the ultraviolet light L1 emitted from the first ultraviolet light source 1b or the ultraviolet light L2 emitted from the second ultraviolet light source 2b enters the end surface 4b of the light guide rod 4 facing in the +z-axis direction.
  • the second ultraviolet light source 2a is placed at a position facing the first ultraviolet light source 1b with the light guide rod 4 in between.
  • the second ultraviolet light source 2b is arranged at a position facing the ultraviolet light source 1a with the light guide rod 4 in between.
  • the light guide rod 4 into which the ultraviolet light L2 emitted from the second ultraviolet light sources 2a and 2b enters is configured to receive the ultraviolet light L2 emitted from the first ultraviolet light sources 1b and 1a. They are the same as the light guide rod 4 into which L1 enters.
  • Evanescent light caused by the ultraviolet light L1 and evanescent light caused by the ultraviolet light L2 are generated on the surface of each light guide rod 4 of the plurality of light guide rods 4 shown in FIG. 8.
  • two types of evanescent light having different peak wavelengths are generated on the surface of one light guide rod 4.
  • the light guide rod 4 into which the ultraviolet light L2 emitted from the second ultraviolet light sources 2a and 2b is incident is configured such that the light guide rod 4 receives the ultraviolet light L2 emitted from the first ultraviolet light sources 1b and 1a.
  • the light guide rods 4 through which the ultraviolet light L1 is incident are the same as the light guide rods 4 through which the ultraviolet light L1 is incident.
  • two types of evanescent light having different peak wavelengths are generated on the surface of one light guide rod 4.
  • the types of objects to be sterilized that can be sterilized can be increased.
  • FIG. 9 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 300 according to the third embodiment.
  • the ultraviolet light sterilizer 300 according to the third embodiment is different from the ultraviolet light sterilizers 100 and 200 according to the first or second embodiment in that it further includes a third ultraviolet light source 3a.
  • the ultraviolet light sterilizer 300 according to the third embodiment is the same as the ultraviolet light sterilizers 100 and 200 according to the first or second embodiment.
  • the ultraviolet light sterilization device 300 includes a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, a plurality of third ultraviolet light sources 3a, and a plurality of third ultraviolet light sources 3a. It includes light guide rods 41 to 43 and a housing 5 (see FIG. 1).
  • Each third ultraviolet light source 3a of the plurality of third ultraviolet light sources 3a emits ultraviolet light L3.
  • the third ultraviolet light source 3 is, for example, a UV-LED.
  • an ultraviolet light source group is configured by a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, and a plurality of third ultraviolet light sources 3a.
  • the peak wavelength of the ultraviolet light L3 is longer than the peak wavelength of the ultraviolet light L2.
  • the peak wavelength of the ultraviolet light L3 is longer than the peak wavelength of the ultraviolet lights L1 and L2.
  • the plurality of third ultraviolet light sources 3a may emit ultraviolet light L3 having different peak wavelengths as long as they are longer than the peak wavelengths of the ultraviolet light L1 and the ultraviolet light L2.
  • the ultraviolet light sterilization device 300 may include one third ultraviolet light source 3a. That is, the ultraviolet light sterilizer 300 only needs to include at least one third ultraviolet light source 3a.
  • the light guide rod into which the ultraviolet light L1 enters is indicated by the reference numeral 41, and the light guide rod 4 into which the ultraviolet light L2 enters is indicated by the reference numeral 42. Further, in FIG. 9, the light guide rod through which the ultraviolet light L3 is incident is indicated by the reference numeral 43.
  • the ultraviolet light sterilizer 300 is a sterilizer that generates three types of evanescent light. Thereby, the types of objects that can be sterilized can be further increased. Note that the ultraviolet light sterilizer 300 may perform sterilization using four or more types of evanescent light.
  • a first ultraviolet light source 1a, a second ultraviolet light source 2a, and a third ultraviolet light source 3a are regularly arranged.
  • a first ultraviolet light source 1a, a second ultraviolet light source 2a, and a third ultraviolet light source 3a are arranged in this order.
  • the types of ultraviolet light sources adjacent to each other in the x-axis direction are different.
  • the first ultraviolet light source 1a, the second ultraviolet light source 2a, and the third ultraviolet light source 3a may be arranged randomly.
  • the distance between two adjacent light guide rods in Embodiment 3 will be explained.
  • the distance between two adjacent light guide bars 41 and 43 is indicated by p2
  • the distance between two adjacent light guide bars 42 and 43 is indicated by p3.
  • the intervals p2 and p3 are 10 mm or less, as in the first embodiment.
  • the plurality of light guide rods 41 to 43 are arranged close to each other, which saves space while sterilizing bacteria (as for viruses) contained in the medium around the light guide rods 41 to 43. inactivation).
  • the third evanescent light generated by total reflection of the ultraviolet light L3 oozes out from the surface of the light guide rod 43 at approximately the peak wavelength of the ultraviolet light L3.
  • the distance p1 between the light guide rod 41 and the light guide rod 43 is greater than or equal to the sum of the peak wavelength of the ultraviolet light L3 and the peak wavelength of the ultraviolet light L1. That is, when the peak wavelength of the ultraviolet light L3 is ⁇ 3, the interval p2, the peak wavelength ⁇ 1 of the ultraviolet light L1, and the peak wavelength ⁇ 3 of the ultraviolet light L3 satisfy the following formula (3). p2 ⁇ 1+ ⁇ 3 (3) This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent light guide rods 41 and 43 from interfering with each other.
  • the distance p3 between the light guide rod 43 and the light guide rod 42 is greater than or equal to the sum of the peak wavelength ⁇ 3 of the ultraviolet light L3 and the peak wavelength ⁇ 1 of the ultraviolet light L1. That is, the interval p3, the peak wavelength ⁇ 2 of the ultraviolet light L2, and the peak wavelength ⁇ 3 of the ultraviolet light L3 satisfy the following equation (4). p3 ⁇ 2+ ⁇ 3 (4) This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent light guide rods 42 and 43 from interfering with each other.
  • the ultraviolet light sterilizer 300 uses ultraviolet light L3 having a third peak wavelength longer than the first peak wavelength of ultraviolet light L1 and the second peak wavelength of ultraviolet light L2. It further includes a third ultraviolet light source 3 that emits the light, and third evanescent light is generated around the surface of the light guide rod 43 by total reflection of the ultraviolet light L3 inside the light guide rod 43. . Thereby, the types of objects to be sterilized that can be sterilized can be further increased.
  • the distance p2 between two adjacent light guide rods 41 and 43 among the plurality of light guide rods 41 to 43 and the distance p3 between the light guide rods 42 and 43 are as follows. It is 10 mm or less. This allows the plurality of light guide rods 41 to 43 to be arranged close to each other. Since the evanescent light remains on the surfaces of the light guide rods 41 to 43, by arranging a plurality of light guide rods 41 to 43 in close proximity, objects to be sterilized around the light guide rods 41 to 43 can be efficiently sterilized. be able to.
  • FIG. 10 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 300a according to a modification of the third embodiment.
  • the ultraviolet light sterilizer 300a according to the modification of the third embodiment differs from the ultraviolet light sterilizer 300 according to the third embodiment in the arrangement of the ultraviolet light source group.
  • the ultraviolet light sterilizer 300a according to the third embodiment is the same as the ultraviolet light sterilizer 300 according to the third embodiment.
  • the ultraviolet light sterilizer 300a includes a plurality of first ultraviolet light sources 1a and 1b, a plurality of second ultraviolet light sources 2a and 2b, and a plurality of third ultraviolet light sources 3a. , 3b, a plurality of light guide rods 41 to 43, and a housing 5 (see FIG. 1).
  • the first ultraviolet light source 1a faces the third ultraviolet light source 3b with the light guide rod 41 in between.
  • the second ultraviolet light source 2a faces the first ultraviolet light source 1b with the light guide rod 42 in between.
  • the third ultraviolet light source 3a faces the second ultraviolet light source 2b with the light guide rod 43 in between.
  • the ultraviolet light L3 emitted from the third ultraviolet light sources 3a, 3b enters the light guide rods 41, 43 into which the ultraviolet light L1 or the ultraviolet light L2 enters.
  • two types of ultraviolet light having different peak wavelengths are incident on the light guide rods 41 to 43. Therefore, since two types of evanescent light seep out around the surface of each light guide rod, it is possible to increase the types of objects that can be sterilized.
  • FIGS. 11A and 11B are cross-sectional views showing a part of the configuration of an ultraviolet light sterilizer 400 according to Embodiment 4.
  • FIGS. 11A and 11B components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG.
  • the ultraviolet light sterilizer 400 according to the fourth embodiment is different from the ultraviolet light sterilizer 100 according to the first embodiment in that the light guide rod 404 has a hole 404a and the shape of the exit surface of the light source 1.
  • the ultraviolet light sterilizer 400 according to the fourth embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
  • the ultraviolet light sterilization device 400 includes a plurality of ultraviolet light sources 1 as a group of ultraviolet light sources, a plurality of light guide rods 404, and a housing 5 (see FIG. 1).
  • Each light guide rod 404 of the plurality of light guide rods 404 has a hole 404a as a through portion through which fluid (for example, air or water) flows.
  • fluid for example, air or water
  • the cross-sectional shape of the hole 404a is circular.
  • the inner surface of the light guide rod 404 is processed so that the ultraviolet light L11 incident from the end surface is totally reflected.
  • the surfaces on which evanescent light Le is generated are the outer peripheral surface 404c of the light guide rod 404 and the inner peripheral surface of the hole 404a.
  • the surface area having a sterilizing effect can be increased in the ultraviolet light sterilizer 400 without inhibiting the flow of fluid.
  • the ultraviolet light sterilizer 400 can be realized even if it includes one light guide rod 404. Therefore, the ultraviolet light sterilizer 400 only needs to include at least one light guide rod 404.
  • the ultraviolet light sterilizer 400 includes the ultraviolet light source 1 and the light guide rod 404 into which the ultraviolet light emitted from the ultraviolet light source 1 enters, and the ultraviolet light L11 is guided.
  • evanescent light Le is generated on the outer peripheral surface 404c, which is the surface of the light guide rod 404.
  • the fluid passing around the outer peripheral surface 404c of the light guide rod 404 can be sterilized while reducing the possibility of adverse effects on the human body. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 400 can be improved.
  • the light guide rod 404 has a hole 404a through which fluid flows.
  • evanescent light Le is generated around the inner circumferential surface of the hole 404a in addition to the outer circumferential surface 404c of the light guide rod 404.
  • the fluid passing around the inner peripheral surface of the hole 404a of the light guide rod 404 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.
  • FIGS. 12A and 12B are a plan view and a cross-sectional view showing the configuration of an ultraviolet light sterilization device according to Modification 1 of Embodiment 4.
  • FIG. 12(B) shows a cross section of the structure of FIG. 12(A) taken along line XII-XII.
  • the ultraviolet light sterilizer 410 includes a plurality of ultraviolet light sources 1, a light guide plate 414 as an optical member, and a housing 5 (see FIG. 1). .
  • the light guide plate 414 is provided with a hole 414a that is a penetrating portion that penetrates the light guide plate 414 in the thickness direction and divides the light guide plate 414 into a plurality of regions.
  • Evanescent light is generated around the outer surface of the light guide plate 414 and around the surface inside the hole 414a by total reflection of the ultraviolet light inside the light guide plate 414.
  • the width of the hole 414a is preferably 10 mm or less.
  • the shape of the light guide plate 414 is a plate, and the planar shape of the hole 414a is an ellipse. In this way, the inner surface of the light guide plate 414 is processed so that the ultraviolet light L1 incident from the end surface is totally reflected. Therefore, the surface area that has a sterilizing effect can be increased in the ultraviolet light sterilizer 410 without obstructing the flow of fluid. In addition, when the light guide plate 414 has the hole 414a, the ultraviolet light sterilizer 410 can be realized even if it includes one light guide plate 414.
  • a light shielding part such as a mask
  • Measures such as installing a shield to prevent ultraviolet rays from leaking to the outside can be made easier.
  • the ultraviolet light sterilizer 410 includes the ultraviolet light source 1 and the light guide plate 414 on which the ultraviolet light L1 emitted from the ultraviolet light source 1 enters, and As the light is totally reflected inside the light guide plate 414, evanescent light Le is generated on the outer peripheral surface 414c, which is the surface of the light guide plate 414. Thereby, the fluid passing around the outer circumferential surface 414c of the light guide plate 414 can be sterilized while reducing the possibility of adverse effects on the human body.
  • the light guide plate 414 has holes 414a through which fluid flows.
  • evanescent light Le is generated around the inner circumferential surface of the hole 414a in addition to the outer circumferential surface 414c of the light guide plate 414.
  • the fluid passing around the inner peripheral surface of the hole 414a of the light guide plate 414 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.
  • FIGS. 13A and 13B are a plan view and a sectional view showing the configuration of an ultraviolet light sterilizer according to a second modification of the fourth embodiment.
  • FIG. 13(B) shows a cross section of the structure of FIG. 13(A) taken along the line XIII-XIII.
  • the ultraviolet light sterilizer 420 includes a plurality of ultraviolet light sources 1, a light guide plate 424 as a light guide member, and a housing 5 (see FIG. 1). Be prepared.
  • the light guide plate 424 is provided with a hole 424a that is a through portion that penetrates the light guide plate 424 in the thickness direction and divides the light guide plate 424 into a plurality of regions.
  • Evanescent light is generated around the outer surface of the light guide plate 424 and around the surface inside the hole 424a by total reflection of the ultraviolet light inside the light guide plate 424.
  • the width of the hole 424a is preferably 10 mm or less.
  • the shape of the light guide plate 424 is a plate, and the cross-sectional shape of the hole 424a is an ellipse.
  • the inner surface of the light guide plate 424 is processed so that the ultraviolet light L1 incident from the end surface is totally reflected.
  • the surfaces on which evanescent light Le is generated are the outer circumferential surface 424c of the light guide plate 424 and the inner circumferential surface of the hole 424a. Therefore, the surface area that has a sterilizing effect can be increased in the ultraviolet light sterilizer 420 without obstructing the flow of fluid.
  • the ultraviolet light sterilizer 420 can be realized even if it includes one light guide plate 424. If there is an area that does not satisfy the total reflection condition due to the position and shape of the hole, provide a light shielding part (such as a mask) to prevent light from exiting from that area, or block light from entering that area. Measures such as installing a shield to prevent ultraviolet rays from leaking to the outside can be made easier.
  • the ultraviolet light sterilizer 420 includes the ultraviolet light source 1 and the light guide plate 424 on which the ultraviolet light L1 emitted from the ultraviolet light source 1 enters. As the light is totally reflected inside the light guide plate 424, evanescent light Le is generated on the outer peripheral surface 424c, which is the surface of the light guide plate 424. Thereby, the fluid passing around the outer peripheral surface 424c of the light guide plate 424 can be sterilized while reducing the possibility of adverse effects on the human body.
  • the light guide plate 424 has holes 424a through which fluid flows.
  • evanescent light Le is generated around the inner circumferential surface of the hole 424a in addition to the outer circumferential surface 424c of the light guide plate 424.
  • the fluid passing around the inner peripheral surface of the hole 424a of the light guide plate 424 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

This ultraviolet light sterilization apparatus (100) is provided with: an ultraviolet light source group (1) that emits ultraviolet light (L1); and a plurality of optical members (4) that are arranged in a predetermined first direction. Each optical member (4) in the plurality of optical members (4) has a light entrance surface (4a) which the ultraviolet light (L1) enters, in which evanescent light (Le) is generated as the result of the occurrence of total reflection of the ultraviolet light (L1) inside the optical member (4) on the periphery of the surface (4c) of the optical member (4). The distance (p) between adjacent two optical members (4) among the plurality of optical members (4) is 10 mm or less.

Description

紫外光殺菌装置UV light sterilizer
 本開示は、紫外光殺菌装置に関する。 The present disclosure relates to an ultraviolet light sterilization device.
 紫外光は、殺菌能力を有することが一般的に知られている。空気、水、日用品等の殺菌処理及び医療、食品加工等の分野における殺菌処理において、紫外光を照射する殺菌装置が普及している。強い紫外光は、人体(例えば、皮膚及び眼など)に有害であることが一般的に知られている。そのため、紫外光を照射する殺菌装置の配置場所及び殺菌装置を使用する時間帯が制限される、すなわち、殺菌装置の応用には制限があった。また、紫外光の強度を下げると、殺菌に要する時間が増大するため、紫外光光源の寿命が短くなる。 It is generally known that ultraviolet light has sterilizing ability. BACKGROUND ART Sterilizers that irradiate ultraviolet light have become popular for sterilization of air, water, daily necessities, etc., and for sterilization in fields such as medicine and food processing. It is generally known that strong ultraviolet light is harmful to the human body (eg, skin and eyes). Therefore, the location of the sterilizer that irradiates ultraviolet light and the time period in which the sterilizer is used are restricted, that is, the application of the sterilizer is limited. Furthermore, when the intensity of the ultraviolet light is lowered, the time required for sterilization increases, which shortens the life of the ultraviolet light source.
 人体への影響を考慮して、導光体の表面近傍に紫外光のエバネッセント光を発生させることで殺菌処理を行う殺菌装置が知られている(例えば、特許文献1及び2参照)。 A sterilization device is known that performs sterilization treatment by generating evanescent ultraviolet light near the surface of a light guide in consideration of the effect on the human body (see, for example, Patent Documents 1 and 2).
特開2014-39876号公報JP2014-39876A 特開平9-299937号公報Japanese Patent Application Publication No. 9-299937
 しかしながら、特許文献1の殺菌装置では、エバネッセント光が導光体の表面の一部に発生しているため、殺菌範囲が制限される。また、特許文献2の殺菌装置において、エバネッセント光が発生する導光板の表面積を増やした場合、殺菌装置が大型化するため、当該殺菌装置の配置場所が制限される。 However, in the sterilization device of Patent Document 1, since evanescent light is generated on a part of the surface of the light guide, the sterilization range is limited. Furthermore, in the sterilizing device of Patent Document 2, if the surface area of the light guide plate where evanescent light is generated is increased, the sterilizing device becomes larger, and the placement location of the sterilizing device is restricted.
 本開示は、エバネッセント光による殺菌範囲を十分に確保しつつ、紫外光殺菌装置の省スペース化を実現することを目的としている。 The present disclosure aims to save space in an ultraviolet light sterilization device while ensuring a sufficient sterilization range by evanescent light.
 本開示の一態様に係る紫外光殺菌装置は、紫外光を出射する紫外光光源群と、予め決められた第1の方向に配列された複数の光学部材とを備え、前記複数の光学部材の各光学部材は、前記紫外光を入射する光入射面を有し、前記光学部材の表面周辺には、前記紫外光が前記光学部材の内部で全反射することでエバネッセント光が発生していて、前記複数の光学部材のうち隣り合う2つの光学部材の間の間隔は、10mm以下である。 An ultraviolet light sterilization device according to one aspect of the present disclosure includes an ultraviolet light source group that emits ultraviolet light, and a plurality of optical members arranged in a predetermined first direction, wherein the plurality of optical members are arranged in a first direction. Each optical member has a light incidence surface through which the ultraviolet light is incident, and evanescent light is generated around the surface of the optical member by total reflection of the ultraviolet light inside the optical member, The distance between two adjacent optical members among the plurality of optical members is 10 mm or less.
 本開示によれば、エバネッセント光による殺菌範囲を十分に確保しつつ、紫外光殺菌装置の省スペース化を実現することができる。 According to the present disclosure, it is possible to save space in an ultraviolet light sterilization device while ensuring a sufficient sterilization range by evanescent light.
実施の形態1に係る紫外光殺菌装置の構成の一部を示す斜視図である。1 is a perspective view showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 1. FIG. 実施の形態1に係る紫外光殺菌装置の構成の一部を示す断面図である。1 is a cross-sectional view showing a part of the configuration of the ultraviolet light sterilization device according to the first embodiment. 図1及び2に示される導光棒の内部における紫外光の進行の一例及び当該導光棒の表面の周辺に発生するエバネッセント光の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of the progress of ultraviolet light inside the light guide rod shown in FIGS. 1 and 2 and an example of evanescent light generated around the surface of the light guide rod. 実施の形態1の変形例1に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilizer according to Modification 1 of Embodiment 1. 実施の形態1の変形例2に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a second modification of the first embodiment. 実施の形態1の変形例3に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a third modification of the first embodiment. 実施の形態2に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a second embodiment. 実施の形態2の変形例に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a modification of the second embodiment. 実施の形態3に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 3. 実施の形態3の変形例に係る紫外光殺菌装置の構成の一部を示す断面図である。FIG. 7 is a cross-sectional view showing a part of the configuration of an ultraviolet light sterilization device according to a modification of the third embodiment. (A)及び(B)は、実施の形態4に係る紫外光殺菌装置の構成の一部を示す断面図である。(A) and (B) are cross-sectional views showing a part of the configuration of an ultraviolet light sterilization device according to Embodiment 4. (A)及び(B)は、実施の形態4の変形例1に係る紫外光殺菌装置の構成を示す平面図及び断面図である。(A) and (B) are a plan view and a sectional view showing the configuration of an ultraviolet light sterilization device according to Modification 1 of Embodiment 4. (A)及び(B)は、実施の形態4の変形例2に係る紫外光殺菌装置の構成を示す平面図及び断面図である。(A) and (B) are a plan view and a sectional view showing the configuration of an ultraviolet light sterilization device according to a second modification of the fourth embodiment.
 以下に、本開示の実施の形態に係る紫外光殺菌装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。 Below, an ultraviolet light sterilization device according to an embodiment of the present disclosure will be described with reference to the drawings. The following embodiments are merely examples, and the embodiments can be combined as appropriate and each embodiment can be changed as appropriate.
 本開示の実施の形態に係る紫外光殺菌装置は、例えば、流体が流れる流路に配置される。紫外光殺菌装置は、例えば、空気調和機、扇風機、換気扇、空気清浄機及びエレベータ等の内部における空気が循環する流路に配置される。また、紫外光殺菌装置は、水が流れる流路(すなわち、水路)に配置されてもよい。具体的には、紫外光殺菌装置は、給湯器、水道、水筒、廃水再生装置、下水処理装置の内部における水が流れる流路に配置されてもよい。なお、紫外光殺菌装置は、空気及び水以外の他の媒質が流れる流路に配置されていてもよい。 The ultraviolet light sterilization device according to the embodiment of the present disclosure is placed, for example, in a flow path through which fluid flows. The ultraviolet light sterilizer is placed, for example, in a flow path in which air circulates inside an air conditioner, electric fan, ventilation fan, air cleaner, elevator, or the like. Moreover, the ultraviolet light sterilizer may be placed in a flow path (ie, a waterway) through which water flows. Specifically, the ultraviolet light sterilization device may be placed in a flow path through which water flows inside a water heater, water supply, water bottle, wastewater regeneration device, or sewage treatment device. Note that the ultraviolet light sterilization device may be placed in a flow path through which a medium other than air and water flows.
 図面には、図面相互の関係の理解を容易にするために、xyz直交座標系の座標軸が示されている。z軸は、本開示の実施の形態に係る紫外光殺菌装置に備えられた長尺の導光部材(例えば、導光棒)が延びる方向に平行な座標軸である。言い換えれば、z軸方向は、導光部材の長手方向である。y軸は、z軸に直交する座標軸である。x軸は、y軸及びz軸の両方に直交する座標軸である。xz平面は、例えば、本開示の実施の形態に係る紫外光殺菌装置が設置される設置面に平行な面である。また、以下の説明において、x軸方向を「第1の方向」と呼び、z軸方向を「第2の方向」と呼ぶ場合がある。 In the drawings, coordinate axes of an xyz orthogonal coordinate system are shown to facilitate understanding of the relationship between the drawings. The z-axis is a coordinate axis parallel to the direction in which a long light guide member (for example, a light guide rod) provided in the ultraviolet light sterilizer according to the embodiment of the present disclosure extends. In other words, the z-axis direction is the longitudinal direction of the light guide member. The y-axis is a coordinate axis perpendicular to the z-axis. The x-axis is a coordinate axis perpendicular to both the y-axis and the z-axis. The xz plane is, for example, a plane parallel to the installation surface on which the ultraviolet light sterilizer according to the embodiment of the present disclosure is installed. Furthermore, in the following description, the x-axis direction may be referred to as a "first direction" and the z-axis direction may be referred to as a "second direction."
《実施の形態1》
 図1は、実施の形態1に係る紫外光殺菌装置100の構成の一部を示す斜視図である。図2は、実施の形態1に係る紫外光殺菌装置100の構成の一部を示す断面図である。図1及び2に示されるように、紫外光殺菌装置100は、紫外光光源群としての複数の紫外光光源1と、複数の光学部材としての複数の導光棒4(以下、「複数の第1の導光棒4」とも呼ぶ。)と、筐体5とを備える。なお、図2では、筐体5の図示が省略されている。
Embodiment 1》
FIG. 1 is a perspective view showing a part of the configuration of an ultraviolet light sterilizer 100 according to the first embodiment. FIG. 2 is a sectional view showing a part of the configuration of the ultraviolet light sterilizer 100 according to the first embodiment. As shown in FIGS. 1 and 2, the ultraviolet light sterilizer 100 includes a plurality of ultraviolet light sources 1 as a group of ultraviolet light sources, and a plurality of light guide rods 4 (hereinafter referred to as "a plurality of light guide rods" as a plurality of optical members). 1) and a housing 5. Note that in FIG. 2, illustration of the housing 5 is omitted.
 複数の紫外光光源1の各紫外光光源1は、第1の紫外光としての紫外光L1を出射する。紫外光光源1は、導光棒4の光入射面(例えば、後述する図3に示される-z軸方向を向く端面4a)に向けて紫外光L1を出射する。紫外光光源1は、例えば、UV-LED(UltraViolet-Light Emitting Diode)である。 Each ultraviolet light source 1 of the plurality of ultraviolet light sources 1 emits ultraviolet light L1 as first ultraviolet light. The ultraviolet light source 1 emits ultraviolet light L1 toward a light incident surface of the light guide rod 4 (for example, an end surface 4a facing the −z-axis direction shown in FIG. 3, which will be described later). The ultraviolet light source 1 is, for example, a UV-LED (UltraViolet-Light Emitting Diode).
 紫外光L1のピーク波長は、例えば、100nmから315nmまでの範囲内である。紫外光L1のピーク波長は、100nmから280nmまでの範囲内であることが好ましい。これにより、菌及びウイルスのDNAが直接破壊されることによる殺菌を実現することができる。なお、紫外光殺菌装置100に備えられる紫外光光源1の個数は、殺菌対象物及び紫外光殺菌装置100の配置場所等に応じて、1つであってもよい。言い換えれば、紫外光殺菌装置100は、少なくとも1つの紫外光光源1を備えていればよい。 The peak wavelength of the ultraviolet light L1 is, for example, within the range of 100 nm to 315 nm. The peak wavelength of the ultraviolet light L1 is preferably within the range of 100 nm to 280 nm. This makes it possible to achieve sterilization by directly destroying the DNA of bacteria and viruses. Note that the number of ultraviolet light sources 1 provided in the ultraviolet light sterilizer 100 may be one depending on the object to be sterilized, the location of the ultraviolet light sterilizer 100, and the like. In other words, the ultraviolet light sterilization device 100 only needs to include at least one ultraviolet light source 1.
 紫外光光源1から出射した紫外光L1は、導光棒4に入射する。導光棒4は、長尺の棒状の導光部材である。導光棒4は、紫外光の吸収率が低い材料から形成されている。言い換えれば、導光棒4は、紫外光の透過率が高い材料から形成されていることが好ましい。導光棒4は、例えば、石英ガラス、ポリメタクリル酸メチル、ポリカーボネート、ポリプロピレン、ポリフッ化エチレン、ポリフッ化ビニリデン、ポリメチルペンテン、多成分ガラス及びこれらの材料の組み合わせから形成される。 The ultraviolet light L1 emitted from the ultraviolet light source 1 enters the light guide rod 4. The light guide rod 4 is a long rod-shaped light guide member. The light guide rod 4 is made of a material that has a low absorption rate for ultraviolet light. In other words, the light guide rod 4 is preferably made of a material with high transmittance for ultraviolet light. The light guide rod 4 is made of, for example, quartz glass, polymethyl methacrylate, polycarbonate, polypropylene, polyfluoroethylene, polyvinylidene fluoride, polymethylpentene, multicomponent glass, and combinations of these materials.
 図3は、図1及び2に示される導光棒4の内部における紫外光L1の進行の一例及び当該導光棒4の外周面4cの周辺に発生するエバネッセント光Leの一例を示す図である。図3に示されるように、紫外光光源1は、導光棒4の-z軸方向を向く端面4aに向けて紫外光L1を出射する。そのため、図3に示す例では、導光棒4の-z軸方向を向く端面4aが、紫外光L1を入射する光入射面である。複数の紫外光光源1は、例えば、複数の導光棒4の光入射面である-z軸方向を向く端面4aとそれぞれ向き合う位置に配置されている。なお、紫外光L1を入射する光入射面は、導光棒4の-z軸方向を向く端面4aに限らず、+z軸方向を向く端面4bであってもよく、-z軸方向を向く端面4aと+z軸方向を向く端面4bの組み合わせであってもよい。 FIG. 3 is a diagram showing an example of the progress of the ultraviolet light L1 inside the light guide rod 4 shown in FIGS. 1 and 2, and an example of the evanescent light Le generated around the outer peripheral surface 4c of the light guide rod 4. . As shown in FIG. 3, the ultraviolet light source 1 emits ultraviolet light L1 toward the end surface 4a of the light guide rod 4 facing in the −z-axis direction. Therefore, in the example shown in FIG. 3, the end surface 4a of the light guide rod 4 facing the −z-axis direction is the light incidence surface through which the ultraviolet light L1 is incident. The plurality of ultraviolet light sources 1 are arranged, for example, at positions facing the end surfaces 4a of the plurality of light guide rods 4, which are light incident surfaces facing in the −z-axis direction. Note that the light incidence surface through which the ultraviolet light L1 is incident is not limited to the end surface 4a of the light guide rod 4 facing the -z-axis direction, but may be the end surface 4b facing the +z-axis direction, or the end surface facing the -z-axis direction. 4a and an end surface 4b facing the +z-axis direction.
 導光棒4は、例えば、-z軸方向を向く端面4aに入射した紫外光L1の一部を全反射させながら、+z軸方向の端面4bに向けて導光する。図3では、全反射する紫外光は、符号L11で示されている。紫外光L11は、全反射を繰り返しながら、導光棒4内部を伝搬する。 The light guide rod 4, for example, completely reflects a part of the ultraviolet light L1 incident on the end surface 4a facing in the -z-axis direction while guiding the light toward the end surface 4b in the +z-axis direction. In FIG. 3, the ultraviolet light that is totally reflected is indicated by the symbol L11. The ultraviolet light L11 propagates inside the light guide rod 4 while repeating total reflection.
 導光棒4の表面である外周面4cの周辺には、エバネッセント光Leが発生する。エバネッセント光Leは、紫外光L11が導光棒4内部で全反射することで発生する。全反射する紫外光L11は、外周面4cの極わずかな領域にエバネッセント光Leとして染み出す。エバネッセント光Leは、例えば、外周面4cから紫外光L1のピーク波長程度、染み出す。染み出したエバネッセント光Leは、導光棒4の外周面4c近傍に留まる。導光棒4の外周面4cは、エバネッセント光Leを発生させる全反射界面である。 Evanescent light Le is generated around the outer peripheral surface 4c, which is the surface of the light guide rod 4. The evanescent light Le is generated by total reflection of the ultraviolet light L11 inside the light guide rod 4. The totally reflected ultraviolet light L11 leaks into a very small area of the outer peripheral surface 4c as evanescent light Le. For example, the evanescent light Le seeps out from the outer peripheral surface 4c at about the peak wavelength of the ultraviolet light L1. The evanescent light Le that has seeped out remains near the outer peripheral surface 4c of the light guide rod 4. The outer peripheral surface 4c of the light guide rod 4 is a total reflection interface that generates the evanescent light Le.
 このように、導光棒4は、紫外光L11の全反射によってエバネッセント光Leを発生させる光学部材である。これにより、紫外光が殺菌範囲に直接、照射される場合と比較して、紫外光殺菌装置100の使用時における人体への影響を低減することができる。また、エバネッセント光Leは、導光棒4の外周面4c近傍に滞在する観点からも、紫外光殺菌装置100の使用時における人体への影響を低減することができる。具体的には、人の有無に関わらず、紫外光殺菌装置100を使用することができる。なお、紫外光光源1の個数及び導光棒4の個数は、殺菌範囲又は殺菌に必要なエバネッセント光Leの強度などに応じて、任意の数に設定される。 In this way, the light guide rod 4 is an optical member that generates the evanescent light Le by total reflection of the ultraviolet light L11. Thereby, the influence on the human body when using the ultraviolet light sterilizer 100 can be reduced compared to the case where the sterilization area is directly irradiated with ultraviolet light. Furthermore, since the evanescent light Le stays in the vicinity of the outer circumferential surface 4c of the light guide rod 4, the influence on the human body when the ultraviolet light sterilizer 100 is used can be reduced. Specifically, the ultraviolet light sterilization device 100 can be used regardless of the presence or absence of people. Note that the number of ultraviolet light sources 1 and the number of light guide rods 4 are set to arbitrary numbers depending on the sterilization range or the intensity of the evanescent light Le necessary for sterilization.
 また、紫外光殺菌装置100では、互いに近接して配置された複数の導光棒4が備えられているため、殺菌可能な面の表面積が増加する。これにより、紫外光殺菌装置100が配置される流路を流れる媒質(例えば、空気、水)に含まれる菌の殺菌範囲(ウイルスについては、不活化の範囲)を拡大することできる。また、紫外光殺菌装置100は、導光棒4に付着した埃などに含まれる菌の殺菌範囲を拡大することができる。なお、隣り合う2つの導光棒4の間隔の具体例については、後述する。 Moreover, since the ultraviolet light sterilizer 100 includes a plurality of light guide rods 4 arranged close to each other, the surface area of the surface that can be sterilized increases. Thereby, the range of sterilization of bacteria (range of inactivation for viruses) contained in the medium (eg, air, water) flowing through the channel in which the ultraviolet light sterilizer 100 is arranged can be expanded. Moreover, the ultraviolet light sterilizer 100 can expand the range of sterilization of bacteria contained in dust and the like attached to the light guide rod 4. Note that a specific example of the interval between two adjacent light guide rods 4 will be described later.
 導光棒4の長さは、殺菌範囲に基づいて決定される。導光棒4は、例えば、z軸方向に長い棒状の部材である。導光棒4の形状は、例えば、z軸方向に長い円柱状である。導光棒4は、凹凸を有しない円柱状の部材であることが好ましい。これにより、導光棒4において、全反射条件が満たされつつ、エバネッセント光Leが発生する表面積を大きくすることができる。 The length of the light guide rod 4 is determined based on the sterilization range. The light guide rod 4 is, for example, a rod-shaped member that is long in the z-axis direction. The shape of the light guide rod 4 is, for example, a cylindrical shape that is long in the z-axis direction. It is preferable that the light guide rod 4 is a cylindrical member having no unevenness. Thereby, in the light guide rod 4, the surface area where the evanescent light Le is generated can be increased while satisfying the total reflection condition.
 導光棒4の形状は、円柱状に限らず、配置場所又は殺菌範囲に応じて、z軸方向に長い角柱状であってもよい。また、紫外光殺菌装置100は、配置場所又は殺菌範囲に応じて、導光棒4の代わりに、z軸方向に細長い板状の部材又はシリンドリカルレンズを、導光部材として備えていてもよい。更に、導光棒4の形状は、中空の円筒状であってもよい。言い換えれば、導光棒4は、空気又は水が流れる孔等が加工された部材であってもよい(例えば、後述する図11参照)。なお、導光棒4の形状を円柱状とは異なる形状とする場合、全反射条件を満たしつつ、人体に影響を及ぼす強度を持つ紫外光が発散することを防止する必要がある。 The shape of the light guide rod 4 is not limited to a cylindrical shape, but may be a prismatic shape that is long in the z-axis direction depending on the placement location or sterilization range. Moreover, the ultraviolet light sterilizer 100 may include a plate-like member elongated in the z-axis direction or a cylindrical lens as a light guide member instead of the light guide rod 4, depending on the location or sterilization range. Furthermore, the shape of the light guide rod 4 may be a hollow cylinder. In other words, the light guide rod 4 may be a member processed with holes through which air or water flows (for example, see FIG. 11 described later). In addition, when the shape of the light guide rod 4 is made into a shape different from a cylindrical shape, it is necessary to satisfy the total internal reflection condition and to prevent ultraviolet light having an intensity that may affect the human body from emanating.
 次に、図2に戻って、複数の導光棒4のうち隣り合う2つの導光棒4の間隔の一例について説明する。複数の導光棒4は、予め決められた第1の配列方向(例えば、x軸方向)に配列されている。複数の導光棒4のうち隣り合う2つの導光棒4の間の間隔(ピッチ)pは、10mm以下である。具体的には、間隔pは、導光棒4の全反射界面と、隣接する他の導光棒4の全反射界面との間の間隔である。上述した通り、エバネッセント光Leが導光棒4の外周面4c近傍に留まる。間隔pが10mm以下であることによって、複数の導光棒4が近接して配置されるため、省スペース化を実現しつつ、導光棒4の周辺の媒質に含まれる菌を殺菌(ウイルスについては、不活化)することができる。 Next, returning to FIG. 2, an example of the interval between two adjacent light guide rods 4 among the plurality of light guide rods 4 will be described. The plurality of light guide rods 4 are arranged in a predetermined first arrangement direction (for example, the x-axis direction). The distance (pitch) p between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less. Specifically, the interval p is the interval between the total reflection interface of the light guide rod 4 and the total reflection interface of another adjacent light guide rod 4. As described above, the evanescent light Le remains near the outer peripheral surface 4c of the light guide rod 4. By setting the interval p to 10 mm or less, the plurality of light guide rods 4 are arranged close to each other, which saves space while sterilizing bacteria (as for viruses) contained in the medium around the light guide rods 4. can be inactivated).
 次に、間隔pの下限値について説明する。上述した通り、エバネッセント光Leは、導光棒4の外周面4cから紫外光L1のピーク波長程度、染み出す。実施の形態1によれば、2つの隣り合う2つの導光棒4の間隔pは、紫外光L1のピーク波長の2倍以上である。紫外光L1のピーク波長(単位:nm)をλ1としたとき、間隔p及び紫外光L1のピーク波長λ1は、以下の式(1)を満たす。
 p≧2・λ1     (1)
Next, the lower limit value of the interval p will be explained. As described above, the evanescent light Le seeps out from the outer circumferential surface 4c of the light guide rod 4 at approximately the peak wavelength of the ultraviolet light L1. According to the first embodiment, the distance p between two adjacent light guide rods 4 is twice or more the peak wavelength of the ultraviolet light L1. When the peak wavelength (unit: nm) of the ultraviolet light L1 is λ1, the interval p and the peak wavelength λ1 of the ultraviolet light L1 satisfy the following formula (1).
p≧2・λ1 (1)
 間隔pが式(1)を満たすことにより、隣り合う2つの導光棒4の外周面4cで発生するエバネッセント光Leが互いに干渉することを防止できる。よって、紫外光殺菌装置100において、エバネッセント光Leによる殺菌範囲を十分に確保しつつ、省スペース化を実現することができる。 When the interval p satisfies formula (1), it is possible to prevent the evanescent light Le generated on the outer peripheral surfaces 4c of two adjacent light guide rods 4 from interfering with each other. Therefore, in the ultraviolet light sterilizer 100, it is possible to save space while ensuring a sufficient sterilization range by the evanescent light Le.
 次に、図1に戻って、筐体5の構成について説明する。筐体5は、複数の紫外光光源1及び複数の導光棒4を収容している。筐体5は、紫外光L1(図2参照)を吸収又は反射する材料から形成されていることが好ましい。これにより、紫外光光源1から出射した紫外光L1、言い換えれば、人体に影響を及ぼす可能性がある紫外光L1が、装置外部に発散されることを防止できる。 Next, returning to FIG. 1, the configuration of the casing 5 will be described. The housing 5 houses a plurality of ultraviolet light sources 1 and a plurality of light guide rods 4. The housing 5 is preferably made of a material that absorbs or reflects ultraviolet light L1 (see FIG. 2). Thereby, the ultraviolet light L1 emitted from the ultraviolet light source 1, in other words, the ultraviolet light L1 that may affect the human body, can be prevented from being emitted to the outside of the apparatus.
 図1に示す例では、筐体5は、導光棒4の外周面4c(図3参照)を露出させる開口部5aを有する直方体である。筐体5は、紫外光光源1と、導光棒4のz軸方向を向く端面4a、4bを覆っている。言い換えれば、筐体5は、エバネッセント光Leが染み出す導光棒4の外周面4cを露出させていて、且つ紫外光L1を入射する光入射面である導光棒4の端面4aを覆っている。これにより、外周面4cの周辺に染み出すエバネッセント光Leによる殺菌を実現しつつ、紫外光L1が装置外部に出射されることを防止できる。なお、筐体5は、開口部5aを有していなくても実現することができ、紫外光L1が装置外部に直接出射されない構造を有していればよい。 In the example shown in FIG. 1, the housing 5 is a rectangular parallelepiped having an opening 5a that exposes the outer circumferential surface 4c of the light guide rod 4 (see FIG. 3). The housing 5 covers the ultraviolet light source 1 and the end surfaces 4a and 4b of the light guide rod 4 facing in the z-axis direction. In other words, the housing 5 exposes the outer circumferential surface 4c of the light guide rod 4 through which the evanescent light Le seeps out, and covers the end surface 4a of the light guide rod 4, which is the light incidence surface through which the ultraviolet light L1 is incident. There is. Thereby, it is possible to prevent the ultraviolet light L1 from being emitted to the outside of the device while achieving sterilization by the evanescent light Le seeping out around the outer circumferential surface 4c. Note that the casing 5 can be implemented without having the opening 5a, as long as it has a structure that does not directly emit the ultraviolet light L1 to the outside of the device.
〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、導光棒4の外周面4cに、紫外光L11を導光棒4の内部で全反射させることで発生させたエバネッセント光Leが染み出す。これにより、紫外光殺菌装置100から人体に有害な紫外光L1が発散されることを防ぎつつ、導光棒4の外周面4c周辺を殺菌することができる。よって、紫外光殺菌装置100の配置場所及び使用時間の自由度を向上させることができる。
<Effects of Embodiment 1>
According to the first embodiment described above, the evanescent light Le generated by totally reflecting the ultraviolet light L11 inside the light guide rod 4 seeps onto the outer circumferential surface 4c of the light guide rod 4. Thereby, the area around the outer circumferential surface 4c of the light guide rod 4 can be sterilized while preventing the ultraviolet light L1 harmful to the human body from being emitted from the ultraviolet light sterilizer 100. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 100 can be improved.
 また、実施の形態1によれば、複数の導光棒4のうちの隣り合う2つの導光棒4の間の間隔pは、10mm以下である。これにより、複数の導光棒4を互いに近接して配置することができる。エバネッセント光Leは、導光棒4表面に留まるため、複数の導光棒4が近接して配置されることで、導光棒4の周辺の殺菌対象物を効率良く殺菌することができる。 According to the first embodiment, the distance p between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less. Thereby, a plurality of light guide rods 4 can be arranged close to each other. Since the evanescent light Le remains on the surface of the light guide rod 4, by arranging a plurality of light guide rods 4 close to each other, objects to be sterilized around the light guide rod 4 can be efficiently sterilized.
 また、エバネッセント光Leは、導光棒4の外周面4cから紫外光L1のピーク波長程度、染み出す。実施の形態1によれば、2つの隣り合う2つの導光棒4の間隔pは、紫外光L1のピーク波長の2倍以上である。これにより、隣り合う2つの導光棒4の外周面4cの周辺に発生するエバネッセント光Leが互いに干渉することを防止できる。よって、紫外光殺菌装置100において、エバネッセント光Leによる殺菌範囲を十分に確保しつつ、省スペース化を実現することができる。 Further, the evanescent light Le seeps out from the outer circumferential surface 4c of the light guide rod 4 at approximately the peak wavelength of the ultraviolet light L1. According to the first embodiment, the distance p between two adjacent light guide rods 4 is twice or more the peak wavelength of the ultraviolet light L1. Thereby, it is possible to prevent the evanescent light Le generated around the outer peripheral surfaces 4c of two adjacent light guide rods 4 from interfering with each other. Therefore, in the ultraviolet light sterilizer 100, it is possible to save space while ensuring a sufficient sterilization range by the evanescent light Le.
 また、実施の形態1によれば、紫外光殺菌装置100は、複数の紫外光光源1及び複数の導光棒4を収容する筐体5を更に備え、筐体5は導光棒4の外周面4cを露出させていて、且つ紫外光L1を入射する光入射面である導光棒4の端面4aを覆っている。これにより、外周面4cの周辺に染み出すエバネッセント光Leによる殺菌を実現しつつ、紫外光L1が装置外部に発散されることを防止できる。 Further, according to the first embodiment, the ultraviolet light sterilizer 100 further includes a housing 5 that accommodates a plurality of ultraviolet light sources 1 and a plurality of light guide rods 4, and the housing 5 is arranged around the outer periphery of the light guide rod 4. The surface 4c is exposed, and the end surface 4a of the light guide rod 4, which is a light incident surface through which the ultraviolet light L1 is incident, is covered. Thereby, it is possible to prevent the ultraviolet light L1 from being emitted to the outside of the device while achieving sterilization by the evanescent light Le seeping out around the outer peripheral surface 4c.
《実施の形態1の変形例1》
 図4は、実施の形態1の変形例1に係る紫外光殺菌装置100aの構成の一部を示す断面図である。図4において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態1の変化例1に係る紫外光殺菌装置100aは、複数の導光棒4を挟んで互いに反対側に配置された複数の紫外光光源1a、1bを備える点で、実施の形態1に係る紫外光殺菌装置100と相違する。これ以外の点については、実施の形態1の変形例1に係る紫外光殺菌装置100aは、実施の形態1に係る紫外光殺菌装置100と同じである。
<<Modification 1 of Embodiment 1>>
FIG. 4 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100a according to Modification 1 of Embodiment 1. In FIG. 4, components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 100a according to the first modification of the first embodiment differs from the first embodiment in that it includes a plurality of ultraviolet light sources 1a and 1b arranged on opposite sides of each other with a plurality of light guide rods 4 in between. This is different from the ultraviolet light sterilizer 100 according to the above. In other respects, the ultraviolet light sterilizer 100a according to the first modification of the first embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
 図4に示されるように、紫外光殺菌装置100aは、紫外光光源群としての複数の紫外光光源1a、1b(以下、「複数の第1の紫外光光源1a、1b」とも呼ぶ。)と、複数の導光棒4と、筐体5(図1参照)とを備える。 As shown in FIG. 4, the ultraviolet light sterilizer 100a includes a plurality of ultraviolet light sources 1a and 1b (hereinafter also referred to as "a plurality of first ultraviolet light sources 1a and 1b") as a group of ultraviolet light sources. , a plurality of light guide rods 4 and a housing 5 (see FIG. 1).
 紫外光光源1bは、導光棒4の+z軸方向を向く端面4bと向き合う位置に配置されている。紫外光光源1bから出射した紫外光L1は、導光棒4内部を全反射しながら伝搬する。これにより、導光棒4の外周面4cの周辺に、殺菌可能なエバネッセント光Le(図3参照)が発生する。 The ultraviolet light source 1b is arranged at a position facing the end surface 4b of the light guide rod 4 facing the +z-axis direction. The ultraviolet light L1 emitted from the ultraviolet light source 1b propagates inside the light guide rod 4 while being totally reflected. As a result, sterilizing evanescent light Le (see FIG. 3) is generated around the outer circumferential surface 4c of the light guide rod 4.
 図4においては、奇数番目の導光棒4の-z軸方向を向く端面4aと向き合う位置に紫外光光源1aを配置し、偶数番目の導光棒4の+z軸方向を向く端面4bと向き合う位置に紫外光光源1bを配置している。これにより、導光棒4が長尺であっても、隣り合う導光棒4に挟まれる空間内におけるエバネッセント光Leの強度(すなわち、導光棒4の外周面4cにおけるエバネッセント光Le(図3参照)の強度)を、導光棒4の長手方向において均一に近づけることができる。よって、十分な殺菌効果を確保することができる。また、殺菌時間を短縮することができる。 In FIG. 4, the ultraviolet light source 1a is arranged at a position facing the end surface 4a of the odd-numbered light guide rod 4 facing the −z-axis direction, and facing the end surface 4b of the even-numbered light guide rod 4 facing the +z-axis direction. An ultraviolet light source 1b is placed at the position. As a result, even if the light guide rods 4 are long, the intensity of the evanescent light Le in the space sandwiched between adjacent light guide rods 4 (i.e., the evanescent light Le on the outer circumferential surface 4c of the light guide rods 4 (Fig. 3 (see) can be made uniform in the longitudinal direction of the light guide rod 4. Therefore, a sufficient sterilizing effect can be ensured. Moreover, sterilization time can be shortened.
 また、図4に示す例では、複数の紫外光光源1a、1bのうちの一方の紫外光光源1aから出射した紫外光L1が入射する導光棒4は、他方の紫外光光源1bから出射した紫外光L1が入射する導光棒4と異なる。具体的には、紫外光光源1bから出射した紫外光L1は、紫外光光源1aから出射した紫外光L1が導光棒4に隣接する他の導光棒4に入射する。また、実施の形態1の変形例1によれば、複数の紫外光光源1の全てが導光棒4の-z軸方向を向く端面4aと向き合う位置に配置されている構成(図2参照)と比較して、紫外光光源1a、1bの配線構造を簡素化することができる。 In addition, in the example shown in FIG. 4, the light guide rod 4 into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b enters, This is different from the light guide rod 4 through which the ultraviolet light L1 enters. Specifically, the ultraviolet light L1 emitted from the ultraviolet light source 1b and the ultraviolet light L1 emitted from the ultraviolet light source 1a enter another light guide bar 4 adjacent to the light guide bar 4. Further, according to the first modification of the first embodiment, all of the plurality of ultraviolet light sources 1 are arranged at positions facing the end surface 4a of the light guide rod 4 facing in the −z-axis direction (see FIG. 2). Compared to this, the wiring structure of the ultraviolet light sources 1a and 1b can be simplified.
〈実施の形態1の変形例1の効果〉
 以上に説明した実施の形態1の変形例1によれば、紫外光殺菌装置100aは、複数の紫外光光源1a、1bを備える。紫外光光源1a、1bから出射した紫外光L1が導光棒4内部を全反射することで、導光棒4の外周面4cの周辺にエバネッセント光Leが発生する。これにより、人体に悪影響を及ぼす可能性を低減しつつ、導光棒4の外周面4cの周辺を殺菌することができる。よって、紫外光殺菌装置100aの配置場所及び使用時間の自由度を向上させることができる。
<Effects of Modification 1 of Embodiment 1>
According to the first modification of the first embodiment described above, the ultraviolet light sterilizer 100a includes a plurality of ultraviolet light sources 1a and 1b. The ultraviolet light L1 emitted from the ultraviolet light sources 1a and 1b is totally reflected inside the light guide rod 4, so that evanescent light Le is generated around the outer peripheral surface 4c of the light guide rod 4. Thereby, the area around the outer circumferential surface 4c of the light guide rod 4 can be sterilized while reducing the possibility of adverse effects on the human body. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 100a can be improved.
 また、実施の形態1によれば、複数の紫外光光源1a、1bは、複数の導光棒4を挟んで反対側に配置されている。これにより、導光棒4の外周面4cにおけるエバネッセント光Le(図3参照)の強度を、導光棒4の長手方向において均一にすることができる。よって、十分な殺菌効果を確保することができる。また、殺菌時間を短縮することができる。 Furthermore, according to the first embodiment, the plurality of ultraviolet light sources 1a and 1b are arranged on opposite sides with the plurality of light guide rods 4 interposed therebetween. Thereby, the intensity of the evanescent light Le (see FIG. 3) on the outer peripheral surface 4c of the light guide rod 4 can be made uniform in the longitudinal direction of the light guide rod 4. Therefore, a sufficient sterilizing effect can be ensured. Moreover, sterilization time can be shortened.
 また、実施の形態1の変形例1によれば、複数の紫外光光源1a、1bのうちの一方の紫外光光源1aから出射した紫外光L1が入射する導光棒4は、他方の紫外光光源1bから出射した紫外光L1が入射する導光棒4と異なる。これにより、複数の紫外光光源1の全てが導光棒4の-z軸方向を向く端面4aと向き合う位置に配置されている構成(図2参照)と比較して、紫外光光源1a、1bの配線構造を簡素化することができる。 According to the first modification of the first embodiment, the light guide rod 4 into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b is incident, It is different from the light guide rod 4 into which the ultraviolet light L1 emitted from the light source 1b enters. As a result, compared to a configuration in which all of the plurality of ultraviolet light sources 1 are arranged at positions facing the end surface 4a facing the −z-axis direction of the light guide rod 4 (see FIG. 2), the ultraviolet light sources 1a, 1b The wiring structure can be simplified.
《実施の形態1の変形例2》
 図5は、実施の形態1の変形例2に係る紫外光殺菌装置100bの構成の一部を示す断面図である。図5において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態1の変形例2に係る紫外光殺菌装置100bは、1つの導光棒4が複数の光入射面を有する点で、実施の形態1又は実施の形態1の変形例1に係る紫外光殺菌装置100、100aと相違する。これ以外の点については、実施の形態1の変形例2に係る紫外光殺菌装置100bは、実施の形態1又は実施の形態1の変形例1に係る紫外光殺菌装置100、100aと同じである。
《Modification 2 of Embodiment 1》
FIG. 5 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100b according to a second modification of the first embodiment. In FIG. 5, components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 100b according to the second modification of the first embodiment is different from the ultraviolet sterilizer according to the first embodiment or the first modification of the first embodiment in that one light guide rod 4 has a plurality of light incident surfaces. This is different from the optical sterilizers 100 and 100a. In other respects, the ultraviolet light sterilizer 100b according to the second modification of the first embodiment is the same as the ultraviolet light sterilizers 100 and 100a according to the first embodiment or the first modification of the first embodiment. .
 図5に示されるように、紫外光殺菌装置100bは、複数の紫外光光源1a、1bと、複数の導光棒4と、筐体5(図1参照)とを備える。 As shown in FIG. 5, the ultraviolet light sterilizer 100b includes a plurality of ultraviolet light sources 1a and 1b, a plurality of light guide rods 4, and a housing 5 (see FIG. 1).
 図5に示す例では、複数の紫外光光源1a、1bのうちの一方の紫外光光源1aから出射した紫外光L1が入射する導光棒4は、他方の紫外光光源1bから出射した紫外光L1が入射する導光棒4と同一である。言い換えれば、複数の導光棒4のうちの各導光棒4が、複数の光入射面を有する。図5に示す例では、複数の光入射面は、導光棒4のz軸方向両側の端面4a、4bである。これにより、1つの導光棒4に入射する紫外光L1の光量が増大する。よって、導光棒4の外周面4cの周辺に発生するエバネッセント光Le(図3参照)の強度が増大し、殺菌効果を高めることができる。また、殺菌時間を短縮することができる。 In the example shown in FIG. 5, the light guide rod 4 into which the ultraviolet light L1 emitted from one of the ultraviolet light sources 1a and 1b of the plurality of ultraviolet light sources 1a and 1b is incident, This is the same as the light guide rod 4 into which L1 enters. In other words, each light guide rod 4 among the plurality of light guide rods 4 has a plurality of light incident surfaces. In the example shown in FIG. 5, the plurality of light incident surfaces are end surfaces 4a and 4b on both sides of the light guide rod 4 in the z-axis direction. Thereby, the amount of ultraviolet light L1 incident on one light guide rod 4 increases. Therefore, the intensity of the evanescent light Le (see FIG. 3) generated around the outer circumferential surface 4c of the light guide rod 4 increases, and the sterilization effect can be enhanced. Moreover, sterilization time can be shortened.
 〈実施の形態1の変形例2の効果〉
 以上に説明した実施の形態1の変形例2によれば、複数の紫外光光源1a、1bのうちの一方の紫外光光源1aから出射した紫外光L1が入射する導光棒4は、他方の紫外光光源1bから出射した紫外光L1が入射する導光棒4と同一である。これにより、1つの導光棒4に入射する紫外光L1の光量が増大する。よって、導光棒4の外周面4cの周辺に発生するエバネッセント光Leの強度が増大し、殺菌効果を高めることができる。また、殺菌時間を短縮することができる。
<Effects of Modification 2 of Embodiment 1>
According to the second modification of the first embodiment described above, the light guide rod 4, into which the ultraviolet light L1 emitted from one of the plurality of ultraviolet light sources 1a and 1b is incident, This is the same as the light guide rod 4 into which the ultraviolet light L1 emitted from the ultraviolet light source 1b enters. Thereby, the amount of ultraviolet light L1 incident on one light guide rod 4 increases. Therefore, the intensity of the evanescent light Le generated around the outer peripheral surface 4c of the light guide rod 4 increases, and the sterilization effect can be enhanced. Moreover, sterilization time can be shortened.
《実施の形態1の変形例3》
 図6は、実施の形態1の変形例3に係る紫外光殺菌装置100cの構成の一部を示す断面図である。図6において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態1の変化例3に係る紫外光殺菌装置100cは、複数の第1の導光棒4に交差するように配列された複数の第2の導光棒6を更に備える点で、実施の形態1に係る紫外光殺菌装置100と相違する。これ以外の点については、実施の形態1の変形例3に係る紫外光殺菌装置100cは、実施の形態1に係る紫外光殺菌装置100と同じである。
《Modification 3 of Embodiment 1》
FIG. 6 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 100c according to a third modification of the first embodiment. In FIG. 6, components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 100c according to the third variation of the first embodiment is different from the embodiment in that it further includes a plurality of second light guide rods 6 arranged to cross the plurality of first light guide rods 4. This is different from the ultraviolet light sterilizer 100 according to the first embodiment. In other respects, the ultraviolet light sterilizer 100c according to the third modification of the first embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
 図6に示されるように、紫外光殺菌装置100cは、複数の紫外光光源1と、複数の第1の導光棒4と、複数の第2の光学部材としての複数の第2の導光棒6と、筐体5(図1参照)とを備える。 As shown in FIG. 6, the ultraviolet light sterilizer 100c includes a plurality of ultraviolet light sources 1, a plurality of first light guide rods 4, and a plurality of second light guides as a plurality of second optical members. It includes a rod 6 and a housing 5 (see FIG. 1).
 複数の第2の導光棒6は、平面視で、複数の第1の導光棒4と重なっている。また、複数の第2の導光棒6は、複数の第1の導光棒4の配列方向(図6に示す例では、x軸方向)に交差する方向(図6に示す例では、z軸方向)に配列されている。図6では、複数の第2の導光棒6の配列方向は、複数の第1の導光棒4の配列方向に直交している。なお、複数の第2の導光棒6の配列方向は、複数の第1の導光棒4の配列方向と斜めに交差していてもよい。 The plurality of second light guide rods 6 overlap the plurality of first light guide rods 4 in plan view. Further, the plurality of second light guide rods 6 are arranged in a direction (in the example shown in FIG. 6, the z-axis direction) that intersects the arrangement direction (in the example shown in FIG. 6, the x-axis direction) of the plurality of first light guide rods 4. axial direction). In FIG. 6, the arrangement direction of the plurality of second light guide rods 6 is orthogonal to the arrangement direction of the plurality of first light guide rods 4. Note that the arrangement direction of the plurality of second light guide rods 6 may obliquely intersect the arrangement direction of the plurality of first light guide rods 4.
 複数の第2の導光棒6の各第2の導光棒6は、紫外光L1を入射する光入射面6aを有する。第2の導光棒6の表面の周辺には、紫外光L1が第2の導光棒6の内部で全反射することでエバネッセント光が発生する。第2の導光棒6の内部で全反射する紫外光L1は、第2の導光棒6の表面の極わずかな領域に、エバネッセント光として染み出す。これにより、紫外光殺菌装置100cでは、第1の導光棒4に加えて、第2の導光棒6において、殺菌効果を有するエバネッセント光が染み出す。よって、紫外光殺菌装置100cにおける殺菌効果を有する表面積が増大するため、殺菌効果を高めることができる。したがって、紫外光殺菌装置100cの殺菌対象物(例えば、空気又は水)の体積を増加させることができ、第1の導光棒4及び第2の導光棒6の近傍に殺菌対象物を積極的に近づけることができる。 Each second light guide rod 6 of the plurality of second light guide rods 6 has a light incidence surface 6a through which the ultraviolet light L1 is incident. Evanescent light is generated around the surface of the second light guide rod 6 by total reflection of the ultraviolet light L1 inside the second light guide rod 6. The ultraviolet light L1 that is totally reflected inside the second light guide rod 6 leaks into a very small area on the surface of the second light guide rod 6 as evanescent light. As a result, in the ultraviolet light sterilizer 100c, evanescent light having a sterilizing effect seeps out in the second light guide rod 6 in addition to the first light guide rod 4. Therefore, since the surface area having a sterilizing effect in the ultraviolet light sterilizer 100c increases, the sterilizing effect can be enhanced. Therefore, the volume of the object to be sterilized (for example, air or water) in the ultraviolet light sterilizer 100c can be increased, and the object to be sterilized can be actively placed near the first light guide rod 4 and the second light guide rod 6. You can get close to the target.
 また、複数の第2の導光棒6は、複数の第1の導光棒4の配列方向に交差する方向に配列されていることで、複数の第2の導光棒6の配列方向が、複数の第1の導光棒4の配列方向と独立している。これにより、第2の導光棒6内を進む紫外光L1の光路と第1の導光棒4内を進む紫外光L1の光路とは共有されない。よって、第1の導光棒4及び第2の導光棒6のそれぞれにおいて、全反射条件を保つことができ、エバネッセント光を発生させることができる。 Further, the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4, so that the arrangement direction of the plurality of second light guide rods 6 is , is independent from the arrangement direction of the plurality of first light guide rods 4. Thereby, the optical path of the ultraviolet light L1 traveling inside the second light guide rod 6 and the optical path of the ultraviolet light L1 traveling inside the first light guide rod 4 are not shared. Therefore, total reflection conditions can be maintained in each of the first light guide rod 4 and the second light guide rod 6, and evanescent light can be generated.
 また、複数の第2の導光棒6のうち隣り合う2つの第2の導光棒6の間の間隔pと、隣り合う2つの第1の導光棒4の間の間隔pと同じである。具体的には、隣り合う2つの第2の導光棒6の間の間隔pは、10mm以下である。これにより、エバネッセント光による殺菌範囲を十分に確保しつつ、省スペース化を実現することができる。また、隣り合う2つの第2の導光棒6の間の間隔pは、紫外光L1のピーク波長の2倍以上である。これにより、隣り合う2つの第2の導光棒6の外周面の周辺で発生するエバネッセント光が互いに干渉することを防止できる。 Further, the distance p between two adjacent second light guide rods 6 among the plurality of second light guide rods 6 is the same as the distance p between two adjacent first light guide rods 4. be. Specifically, the distance p between two adjacent second light guide rods 6 is 10 mm or less. This makes it possible to save space while ensuring a sufficient sterilization range by evanescent light. Moreover, the distance p between two adjacent second light guide rods 6 is twice or more the peak wavelength of the ultraviolet light L1. This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent second light guide rods 6 from interfering with each other.
〈実施の形態1の変形例3の効果〉
 以上に説明した実施の形態1の変形例3によれば、複数の第2の導光棒6は、複数の第1の導光棒4の配列方向に交差する方向に配列されている。複数の第2の導光棒6の各第2の導光棒6の表面の周辺には、紫外光L1が第2の導光棒6の内部で全反射することでエバネッセント光が発生する。これにより、紫外光殺菌装置100cでは、第1の導光棒4に加えて、第2の導光棒6に殺菌効果を有するエバネッセント光が染み出す。よって、紫外光殺菌装置100cにおける殺菌効果を有する表面積が増大するため、殺菌効果を高めることができる。したがって、紫外光殺菌装置100cの殺菌対象物(例えば、空気又は水)の体積を増加させることができ、第1の導光棒4及び第2の導光棒6の近傍に殺菌対象物を積極的に近づけることができる。
<Effects of Modification 3 of Embodiment 1>
According to the third modification of the first embodiment described above, the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4. Evanescent light is generated around the surface of each second light guide rod 6 of the plurality of second light guide rods 6 by total reflection of the ultraviolet light L1 inside the second light guide rod 6. As a result, in the ultraviolet light sterilizer 100c, evanescent light having a sterilizing effect seeps into the second light guide rod 6 in addition to the first light guide rod 4. Therefore, since the surface area having a sterilizing effect in the ultraviolet light sterilizer 100c increases, the sterilizing effect can be enhanced. Therefore, the volume of the object to be sterilized (for example, air or water) in the ultraviolet light sterilizer 100c can be increased, and the object to be sterilized can be actively placed near the first light guide rod 4 and the second light guide rod 6. You can get close to the target.
 また、実施の形態1の変形例3によれば、複数の第2の導光棒6は、複数の第1の導光棒4の配列方向に交差する方向に配列されている。これにより、第2の導光棒6内を進む紫外光L1の光路と第1の導光棒4内を進む紫外光L1の光路とは共有されない。よって、第1の導光棒4及び第2の導光棒6のそれぞれにおいて、全反射条件を保つことができ、エバネッセント光を発生させることができる。 According to the third modification of the first embodiment, the plurality of second light guide rods 6 are arranged in a direction intersecting the arrangement direction of the plurality of first light guide rods 4. Thereby, the optical path of the ultraviolet light L1 traveling inside the second light guide rod 6 and the optical path of the ultraviolet light L1 traveling inside the first light guide rod 4 are not shared. Therefore, total reflection conditions can be maintained in each of the first light guide rod 4 and the second light guide rod 6, and evanescent light can be generated.
《実施の形態2》
 図7は、実施の形態2に係る紫外光殺菌装置200の構成の一部を示す断面図である。図7において、図2に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。実施の形態2に係る紫外光殺菌装置200は、第2の紫外光光源2aを更に備える点で、実施の形態1に係る紫外光殺菌装置100と相違する。これ以外の点については、実施の形態2に係る紫外光殺菌装置200は、実施の形態1に係る紫外光殺菌装置100と同じである。
《Embodiment 2》
FIG. 7 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 200 according to the second embodiment. In FIG. 7, components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 200 according to the second embodiment differs from the ultraviolet light sterilizer 100 according to the first embodiment in that it further includes a second ultraviolet light source 2a. In other respects, the ultraviolet light sterilizer 200 according to the second embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
 紫外光殺菌装置200は、複数の第1の紫外光光源1aと、複数の第2の紫外光光源2aと、複数の導光棒4と、筐体5(図1参照)とを備える。 The ultraviolet light sterilizer 200 includes a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, a plurality of light guide rods 4, and a housing 5 (see FIG. 1).
 複数の第2の紫外光光源2aの各第2の紫外光光源2aは、紫外光L2を出射する。第2の紫外光光源2aは、例えば、UV-LEDである。実施の形態2では、複数の第1の紫外光光源1aと複数の第2の紫外光光源2aとによって、紫外光光源群が構成されている。 Each second ultraviolet light source 2a of the plurality of second ultraviolet light sources 2a emits ultraviolet light L2. The second ultraviolet light source 2a is, for example, a UV-LED. In the second embodiment, an ultraviolet light source group is configured by a plurality of first ultraviolet light sources 1a and a plurality of second ultraviolet light sources 2a.
 紫外光L2のピーク波長は、例えば、100nmから315nmまでの範囲内である。実施の形態2では、例えば、紫外光L1のピーク波長及び紫外光L2のピーク波長の両方が、100nmから315nmまでの範囲内であってもよい。これにより、菌及びウイルスのDNA損傷による殺菌効果を高めることができる。なお、紫外光L1のピーク波長及び紫外光L2のピーク波長の一方が、100nmから315nmまでの範囲内であってもよい。また、実施の形態2では、例えば、紫外光L1のピーク波長及び紫外光L2のピーク波長の両方が、315nmから400nmまでの範囲内であってもよい。 The peak wavelength of the ultraviolet light L2 is, for example, within the range of 100 nm to 315 nm. In the second embodiment, for example, both the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 100 nm to 315 nm. Thereby, the sterilization effect due to DNA damage of bacteria and viruses can be enhanced. Note that one of the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 100 nm to 315 nm. Further, in the second embodiment, for example, both the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 315 nm to 400 nm.
 更に、紫外光L1のピーク波長及び紫外光L2のピーク波長の一方が、315nmから400nmまでの範囲内であってもよい。例えば、紫外光L1のピーク波長が100nmから315nmまでの範囲内であって、紫外光L2のピーク波長が315nmから400nmまでの範囲内であってもよい。この場合、紫外光L1のエバネッセント光によってDNAが損傷した後の光の照射又は暗所への安置によって起こるDNAの修復を阻害することができる。また、殺菌対象物又は媒質中の周辺有機物に対して、紫外光L2のエバネッセント光によって活性酵素種を発生させ、当該活性酵素種が多細胞生物(例えば、細胞膜、タンパク質など)を酸化して細胞死させることで、間接的な殺菌を実現することができる。紫外光殺菌装置200では、殺菌対象物又は期待する殺菌効果などによって、紫外光L2のピーク波長を適宜変更することができる。 Further, one of the peak wavelength of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2 may be within the range of 315 nm to 400 nm. For example, the peak wavelength of the ultraviolet light L1 may be within the range from 100 nm to 315 nm, and the peak wavelength of the ultraviolet light L2 may be within the range from 315 nm to 400 nm. In this case, it is possible to inhibit the repair of DNA caused by light irradiation or placement in a dark place after DNA is damaged by the evanescent light of the ultraviolet light L1. In addition, active enzyme species are generated against the object to be sterilized or surrounding organic matter in the medium by evanescent light of ultraviolet light L2, and the active enzyme species oxidizes multicellular organisms (e.g., cell membranes, proteins, etc.) and cells. By killing them, indirect sterilization can be achieved. In the ultraviolet light sterilizer 200, the peak wavelength of the ultraviolet light L2 can be changed as appropriate depending on the object to be sterilized or the expected sterilization effect.
 図7に示す例では、複数の第1の紫外光光源1a及び複数の第2の紫外光光源2aは、交互に並んで配列されている。紫外光殺菌装置200は、複数の第1の紫外光光源1aと同じ個数の複数の第2の紫外光光源2aを備えていなくても実現することができる。例えば、複数の第2の紫外光光源2aの個数は、複数の第1の紫外光光源1aの個数より多くてもよい。 In the example shown in FIG. 7, the plurality of first ultraviolet light sources 1a and the plurality of second ultraviolet light sources 2a are arranged in alternating rows. The ultraviolet light sterilizer 200 can be realized without having the same number of second ultraviolet light sources 2a as the plurality of first ultraviolet light sources 1a. For example, the number of the plurality of second ultraviolet light sources 2a may be greater than the number of the plurality of first ultraviolet light sources 1a.
 ここで、UV-LEDは、一般的なLEDより高価である。特に、殺菌効果の高い紫外光、すなわち、短いピーク波長を持つ紫外光を出射する紫外光光源は、高価である。実施の形態2において、紫外光L2のピーク波長が紫外光L1のピーク波長より長く、且つ複数の第2の紫外光光源2aの個数が複数の第1の紫外光光源1aの個数より多い場合、紫外光殺菌装置200におけるコストの増大を抑制することができる。 Here, UV-LEDs are more expensive than general LEDs. In particular, ultraviolet light sources that emit ultraviolet light with a high bactericidal effect, that is, ultraviolet light with a short peak wavelength, are expensive. In the second embodiment, when the peak wavelength of the ultraviolet light L2 is longer than the peak wavelength of the ultraviolet light L1, and the number of the plurality of second ultraviolet light sources 2a is greater than the number of the plurality of first ultraviolet light sources 1a, Increase in cost in the ultraviolet light sterilizer 200 can be suppressed.
 紫外光による殺菌及びウイルスの不活化は、一般的に、全ての微生物に対して有効である。しかしながら、細菌及びウイルスの種類、環境などによって、紫外光に対する菌の感受性は大幅に異なる。例えば、発生するエバネッセント光の種類が1種類である場合、殺菌及び不活化できる微生物の種類が限られる。 Sterilization and virus inactivation by ultraviolet light is generally effective against all microorganisms. However, the sensitivity of bacteria to ultraviolet light varies greatly depending on the type of bacteria and virus, the environment, etc. For example, if only one type of evanescent light is generated, the types of microorganisms that can be sterilized and inactivated are limited.
 上述したように、紫外光殺菌装置200は、互いにピーク波長の異なる紫外光を出射する複数の種類の紫外光光源(すなわち、第1の紫外光光源1a及び第2の紫外光光源2a)を備える。また、導光棒4に入射した紫外光L2の一部は、当該導光棒4の内部で全反射を繰り返しながら伝搬する。これにより、紫外光L2を入射する導光棒4の表面の周辺には、紫外光L2が導光棒4の内部で全反射することで第2のエバネッセント光が発生する。よって、紫外光殺菌装置200における複数の導光棒4は、紫外光L1のエバネッセント光が発生する導光棒4と、紫外光L2のエバネッセント光が発生する他の導光棒4とによって構成されている。これにより、殺菌対象物の種類を増加することができる。 As described above, the ultraviolet light sterilizer 200 includes a plurality of types of ultraviolet light sources (i.e., the first ultraviolet light source 1a and the second ultraviolet light source 2a) that emit ultraviolet light having different peak wavelengths. . Further, a part of the ultraviolet light L2 that has entered the light guide rod 4 propagates while repeating total reflection inside the light guide rod 4. Thereby, the ultraviolet light L2 is totally reflected inside the light guide rod 4, and second evanescent light is generated around the surface of the light guide rod 4 into which the ultraviolet light L2 is incident. Therefore, the plurality of light guide rods 4 in the ultraviolet light sterilizer 200 are configured by one light guide rod 4 that generates evanescent light of the ultraviolet light L1 and another light guide rod 4 that generates the evanescent light of the ultraviolet light L2. ing. Thereby, the types of objects to be sterilized can be increased.
 実施の形態2では、複数の導光棒4のうち隣り合う2つの導光棒4の間の間隔(ピッチ)p1は、実施の形態1と同様に、10mm以下である。これにより、複数の導光棒4が近接して配置されるため、省スペース化を実現しつつ、導光棒4の周辺の媒質に含まれる菌を殺菌(ウイルスについては、不活化)することができる。 In the second embodiment, the interval (pitch) p1 between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less, as in the first embodiment. As a result, since the plurality of light guide rods 4 are arranged close to each other, it is possible to save space while sterilizing bacteria (inactivating viruses) contained in the medium around the light guide rods 4. Can be done.
 次に、実施の形態2における隣り合う2つの導光棒4の間の間隔p1の下限値について説明する。紫外光L2が全反射することで発生するエバネッセント光は、導光棒4の表面から紫外光L2のピーク波長程度、染み出す。実施の形態2によれば、2つの隣り合う2つの導光棒4の間隔p1は、紫外光L1のピーク波長と紫外光L2のピーク波長との合算値以上である。紫外光L1のピーク波長(単位:nm)をλ2としたとき、間隔p1、紫外光L1のピーク波長λ1及び紫外光L2のピーク波長λ2は、以下の式(2)を満たす。
 p1≧λ1+λ2     (2)
Next, the lower limit value of the distance p1 between two adjacent light guide rods 4 in the second embodiment will be explained. Evanescent light generated by total reflection of the ultraviolet light L2 oozes out from the surface of the light guide rod 4 at approximately the peak wavelength of the ultraviolet light L2. According to the second embodiment, the interval p1 between two adjacent light guide rods 4 is greater than or equal to the sum of the peak wavelengths of the ultraviolet light L1 and the peak wavelength of the ultraviolet light L2. When the peak wavelength (unit: nm) of the ultraviolet light L1 is λ2, the interval p1, the peak wavelength λ1 of the ultraviolet light L1, and the peak wavelength λ2 of the ultraviolet light L2 satisfy the following formula (2).
p1≧λ1+λ2 (2)
 間隔p1が式(2)を満たすことにより、近接する2つの導光棒4の外周面4cの周辺で発生するエバネッセント光が互いに干渉することを防止できる。よって、紫外光殺菌装置200において、エバネッセント光による殺菌範囲を十分に確保しつつ、省スペース化を実現することができる。 When the distance p1 satisfies formula (2), it is possible to prevent evanescent light generated around the outer peripheral surfaces 4c of two adjacent light guide rods 4 from interfering with each other. Therefore, in the ultraviolet light sterilizer 200, it is possible to save space while ensuring a sufficient sterilization range by evanescent light.
〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、紫外光殺菌装置200は、紫外光L1の第1のピーク波長より長い第2のピーク波長を持つ紫外光L2を出射する第2の紫外光光源2aを更に備え、導光棒4の表面には、紫外光L2が導光棒4の内部で全反射することで第2のエバネッセント光が発生している。これにより、単一の波長のエバネッセント光が照射される構成と比較して、殺菌可能な殺菌対象物の種類が増加するため、殺菌効果を高めることができる。また、殺菌対象物に対する紫外光L1のエバネッセント光によって損傷したDNAの修復機能を阻害しつつ、紫外光L2のエバネッセント光によって生成された活性酵素種による間接的な殺菌を実現することができる。
<Effects of Embodiment 2>
According to the second embodiment described above, the ultraviolet light sterilizer 200 includes a second ultraviolet light source 2a that emits ultraviolet light L2 having a second peak wavelength longer than the first peak wavelength of the ultraviolet light L1. Further, on the surface of the light guide rod 4, second evanescent light is generated by total reflection of the ultraviolet light L2 inside the light guide rod 4. As a result, compared to a configuration in which evanescent light of a single wavelength is irradiated, the types of objects that can be sterilized are increased, so that the sterilization effect can be enhanced. In addition, indirect sterilization by active enzyme species generated by the evanescent light of the ultraviolet light L2 can be achieved while inhibiting the repair function of DNA damaged by the evanescent light of the ultraviolet light L1 on the object to be sterilized.
 また、実施の形態2によれば、複数の導光棒4のうちの隣り合う2つの導光棒4の間の間隔p1は、10mm以下である。これにより、複数の導光棒4を互いに近接して配置することができる。エバネッセント光は、導光棒4表面に留まるため、複数の導光棒4が近接して配置されることで、導光棒4の周辺の殺菌対象物を効率良く殺菌することができる。 According to the second embodiment, the distance p1 between two adjacent light guide rods 4 among the plurality of light guide rods 4 is 10 mm or less. Thereby, a plurality of light guide rods 4 can be arranged close to each other. Since the evanescent light remains on the surface of the light guide rod 4, the object to be sterilized around the light guide rod 4 can be efficiently sterilized by arranging a plurality of light guide rods 4 close to each other.
 また、実施の形態2によれば、隣り合う2つの導光棒4の間の間隔p1は、紫外光L1のピーク波長λ1と紫外光L2のピーク波長λ2との合算値以上である。これにより、近接する2つの導光棒4のそれぞれの表面の周辺で発生するエバネッセント光が互いに干渉することを防止できる。 According to the second embodiment, the distance p1 between two adjacent light guide rods 4 is greater than or equal to the sum of the peak wavelength λ1 of the ultraviolet light L1 and the peak wavelength λ2 of the ultraviolet light L2. This can prevent the evanescent light generated around the respective surfaces of two adjacent light guide rods 4 from interfering with each other.
《実施の形態2の変形例》
 図8は、実施の形態2の変形例に係る紫外光殺菌装置200aの構成の一部を示す断面図である。図8において、図7に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。実施の形態2の変形例に係る紫外光殺菌装置200aは、複数の第1の紫外光光源1a、1bが導光棒4を挟んで設けられていて且つ複数の第2の紫外光光源2a、2bも導光棒4を挟んで設けられている点で、実施の形態2に係る紫外光殺菌装置200と相違する。これ以外の点については、実施の形態2の変形例に係る紫外光殺菌装置200aは、実施の形態2に係る紫外光殺菌装置200と同じである。
《Modification of Embodiment 2》
FIG. 8 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 200a according to a modification of the second embodiment. In FIG. 8, components that are the same as or correspond to those shown in FIG. 7 are given the same reference numerals as those shown in FIG. An ultraviolet light sterilizer 200a according to a modification of the second embodiment includes a plurality of first ultraviolet light sources 1a and 1b provided with a light guide rod 4 in between, and a plurality of second ultraviolet light sources 2a, 2b is also different from the ultraviolet light sterilizer 200 according to the second embodiment in that the light guide rod 4 is also provided on both sides. In other respects, the ultraviolet light sterilizer 200a according to the modification of the second embodiment is the same as the ultraviolet light sterilizer 200 according to the second embodiment.
 紫外光殺菌装置200aは、複数の第1の紫外光光源1a、1bと、複数の第2の紫外光光源2a、2bと、複数の導光棒4と、筐体5(図1参照)とを備える。 The ultraviolet light sterilizer 200a includes a plurality of first ultraviolet light sources 1a and 1b, a plurality of second ultraviolet light sources 2a and 2b, a plurality of light guide rods 4, and a housing 5 (see FIG. 1). Equipped with
 複数の導光棒4の各導光棒4のz軸方向両側の端面4a、4bは、紫外光L1、L2を入射する光入射面4a、4bである。導光棒4の-z軸方向を向く端面4aには、第1の紫外光光源1aから出射した紫外光L1又は第2の紫外光光源2aから出射した紫外光L2が入射する。導光棒4の+z軸方向を向く端面4bには、第1の紫外光光源1bから出射した紫外光L1又は第2の紫外光光源2bから出射した紫外光L2が入射する。 End surfaces 4a and 4b on both sides in the z-axis direction of each light guide rod 4 of the plurality of light guide rods 4 are light incident surfaces 4a and 4b into which the ultraviolet lights L1 and L2 are incident. The ultraviolet light L1 emitted from the first ultraviolet light source 1a or the ultraviolet light L2 emitted from the second ultraviolet light source 2a enters the end surface 4a of the light guide rod 4 facing in the −z-axis direction. The ultraviolet light L1 emitted from the first ultraviolet light source 1b or the ultraviolet light L2 emitted from the second ultraviolet light source 2b enters the end surface 4b of the light guide rod 4 facing in the +z-axis direction.
 図8に示す例では、第2の紫外光光源2aは、導光棒4を挟んで第1の紫外光光源1bと対向する位置に配置されている。第2の紫外光光源2bは、導光棒4を挟んで紫外光光源1aと対向する位置に配置されている。これにより、実施の形態2の変形例では、第2の紫外光光源2a、2bから出射した紫外光L2が入射する導光棒4は、第1の紫外光光源1b、1aから出射した紫外光L1が入射する導光棒4とそれぞれ同一である。 In the example shown in FIG. 8, the second ultraviolet light source 2a is placed at a position facing the first ultraviolet light source 1b with the light guide rod 4 in between. The second ultraviolet light source 2b is arranged at a position facing the ultraviolet light source 1a with the light guide rod 4 in between. As a result, in the modified example of the second embodiment, the light guide rod 4 into which the ultraviolet light L2 emitted from the second ultraviolet light sources 2a and 2b enters is configured to receive the ultraviolet light L2 emitted from the first ultraviolet light sources 1b and 1a. They are the same as the light guide rod 4 into which L1 enters.
 図8に示される複数の導光棒4の各導光棒4の表面には、紫外光L1によるエバネッセント光と、紫外光L2によるエバネッセント光とが発生する。言い換えれば、1つの導光棒4の表面には、互いにピーク波長の異なる2種類のエバネッセント光が発生する。これにより、殺菌可能な殺菌対象物の種類を増加させることができる。 Evanescent light caused by the ultraviolet light L1 and evanescent light caused by the ultraviolet light L2 are generated on the surface of each light guide rod 4 of the plurality of light guide rods 4 shown in FIG. 8. In other words, two types of evanescent light having different peak wavelengths are generated on the surface of one light guide rod 4. Thereby, the types of objects to be sterilized that can be sterilized can be increased.
 〈実施の形態2の変形例の効果〉
 以上に説明した実施の形態2の変形例によれば、第2の紫外光光源2a、2bから出射した紫外光L2が入射する導光棒4は、第1の紫外光光源1b、1aから出射した紫外光L1が入射する導光棒4とそれぞれ同一である。これにより、1つの導光棒4の表面には、互いにピーク波長の異なる2種類のエバネッセント光が発生する。これにより、殺菌可能な殺菌対象物の種類を増加させることができる。
<Effects of modification of Embodiment 2>
According to the modification of Embodiment 2 described above, the light guide rod 4 into which the ultraviolet light L2 emitted from the second ultraviolet light sources 2a and 2b is incident, is configured such that the light guide rod 4 receives the ultraviolet light L2 emitted from the first ultraviolet light sources 1b and 1a. These are the same as the light guide rods 4 through which the ultraviolet light L1 is incident. As a result, two types of evanescent light having different peak wavelengths are generated on the surface of one light guide rod 4. Thereby, the types of objects to be sterilized that can be sterilized can be increased.
《実施の形態3》
 図9は、実施の形態3に係る紫外光殺菌装置300の構成の一部を示す断面図である。図9において、図7に示される構成要素と同一又は対応する構成要素には、図7に示される符号と同じ符号が付される。実施の形態3に係る紫外光殺菌装置300は、第3の紫外光光源3aを更に備える点で、実施の形態1又は2に係る紫外光殺菌装置100、200と相違する。これ以外の点については、実施の形態3に係る紫外光殺菌装置300は、実施の形態1又は2に係る紫外光殺菌装置100、200と同じである。
《Embodiment 3》
FIG. 9 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 300 according to the third embodiment. In FIG. 9, components that are the same as or correspond to those shown in FIG. 7 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 300 according to the third embodiment is different from the ultraviolet light sterilizers 100 and 200 according to the first or second embodiment in that it further includes a third ultraviolet light source 3a. In other respects, the ultraviolet light sterilizer 300 according to the third embodiment is the same as the ultraviolet light sterilizers 100 and 200 according to the first or second embodiment.
 図9に示されるように、紫外光殺菌装置300は、複数の第1の紫外光光源1aと、複数の第2の紫外光光源2aと、複数の第3の紫外光光源3aと、複数の導光棒41~43と、筐体5(図1参照)とを備える。 As shown in FIG. 9, the ultraviolet light sterilization device 300 includes a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, a plurality of third ultraviolet light sources 3a, and a plurality of third ultraviolet light sources 3a. It includes light guide rods 41 to 43 and a housing 5 (see FIG. 1).
 複数の第3の紫外光光源3aの各第3の紫外光光源3aは、紫外光L3を出射する。第3の紫外光光源3は、例えば、UV-LEDである。実施の形態3では、複数の第1の紫外光光源1a、複数の第2の紫外光光源2a及び複数の第3の紫外光光源3aによって、紫外光光源群が構成されている。 Each third ultraviolet light source 3a of the plurality of third ultraviolet light sources 3a emits ultraviolet light L3. The third ultraviolet light source 3 is, for example, a UV-LED. In the third embodiment, an ultraviolet light source group is configured by a plurality of first ultraviolet light sources 1a, a plurality of second ultraviolet light sources 2a, and a plurality of third ultraviolet light sources 3a.
 紫外光L3のピーク波長は、紫外光L2のピーク波長より長い。実施の形態2において、一例として述べたように、紫外光L2のピーク波長は、紫外光L1のピーク波長より長い場合、紫外光L3のピーク波長は、紫外光L1及びL2のピーク波長より長い。なお、複数の第3の紫外光光源3aは、紫外光L1のピーク波長及び紫外光L2のピーク波長より長ければ、互いに異なるピーク波長を持つ紫外光L3を出射してもよい。また、紫外光殺菌装置300は、1つの第3の紫外光光源3aを備えていてもよい。すなわち、紫外光殺菌装置300は、少なくとも1つの第3の紫外光光源3aを備えていればよい。 The peak wavelength of the ultraviolet light L3 is longer than the peak wavelength of the ultraviolet light L2. In the second embodiment, as described as an example, when the peak wavelength of the ultraviolet light L2 is longer than the peak wavelength of the ultraviolet light L1, the peak wavelength of the ultraviolet light L3 is longer than the peak wavelength of the ultraviolet lights L1 and L2. The plurality of third ultraviolet light sources 3a may emit ultraviolet light L3 having different peak wavelengths as long as they are longer than the peak wavelengths of the ultraviolet light L1 and the ultraviolet light L2. Further, the ultraviolet light sterilization device 300 may include one third ultraviolet light source 3a. That is, the ultraviolet light sterilizer 300 only needs to include at least one third ultraviolet light source 3a.
 図9では、紫外光L1を入射する導光棒は符号41で示され、紫外光L2を入射する導光棒4は符号42で示されている。また、図9では、紫外光L3を入射する導光棒は符号43で示されている。 In FIG. 9, the light guide rod into which the ultraviolet light L1 enters is indicated by the reference numeral 41, and the light guide rod 4 into which the ultraviolet light L2 enters is indicated by the reference numeral 42. Further, in FIG. 9, the light guide rod through which the ultraviolet light L3 is incident is indicated by the reference numeral 43.
 導光棒43内部に入射した紫外光L3の一部は全反射を繰り返しながら、導光棒43内部を伝搬する。これにより、導光棒43の表面の周辺には、紫外光L3の第3のエバネッセント光が発生する。そのため、紫外光殺菌装置300では、紫外光L1の第1のエバネッセント光が発生する導光棒41、紫外光L2の第2のエバネッセント光が発生する導光棒42及び紫外光L3の第3のエバネッセント光が発生する導光棒43が備えられている。このように、紫外光殺菌装置300は、3種類のエバネッセント光が発生する殺菌装置である。これにより、殺菌可能な対象物の種類を更に増加させることができる。なお、紫外光殺菌装置300では、4種類以上のエバネッセント光による殺菌を行ってもよい。 A part of the ultraviolet light L3 that has entered the inside of the light guide rod 43 propagates inside the light guide rod 43 while repeating total reflection. As a result, third evanescent light of the ultraviolet light L3 is generated around the surface of the light guide rod 43. Therefore, in the ultraviolet light sterilizer 300, the light guide rod 41 generates the first evanescent light of the ultraviolet light L1, the light guide rod 42 generates the second evanescent light of the ultraviolet light L2, and the third evanescent light of the ultraviolet light L3. A light guide rod 43 that generates evanescent light is provided. In this way, the ultraviolet light sterilizer 300 is a sterilizer that generates three types of evanescent light. Thereby, the types of objects that can be sterilized can be further increased. Note that the ultraviolet light sterilizer 300 may perform sterilization using four or more types of evanescent light.
 図9に示す例では、第1の紫外光光源1a、第2の紫外光光源2a及び第3の紫外光光源3aが規則的に配列されている。具体的には、図9では、第1の紫外光光源1a、第2の紫外光光源2a及び第3の紫外光光源3aの順に配列されている。言い換えれば、図9では、x軸方向に隣り合う紫外光光源の種類が異なる。なお、第1の紫外光光源1a、第2の紫外光光源2a及び第3の紫外光光源3aは、ランダムに配列されていてもよい。 In the example shown in FIG. 9, a first ultraviolet light source 1a, a second ultraviolet light source 2a, and a third ultraviolet light source 3a are regularly arranged. Specifically, in FIG. 9, a first ultraviolet light source 1a, a second ultraviolet light source 2a, and a third ultraviolet light source 3a are arranged in this order. In other words, in FIG. 9, the types of ultraviolet light sources adjacent to each other in the x-axis direction are different. Note that the first ultraviolet light source 1a, the second ultraviolet light source 2a, and the third ultraviolet light source 3a may be arranged randomly.
 次に、実施の形態3における隣り合う2つの導光棒の間隔について説明する。図9では、隣り合う2つの導光棒41、43の間の間隔は符号p2で示され、隣り合う2つの導光棒42、43の間の間隔は符号p3で示されている。間隔p2、p3は、実施の形態1と同様に、10mm以下である。これにより、複数の導光棒41~43が互いに近接して配置されるため、省スペース化を実現しつつ、導光棒41~43の周辺の媒質に含まれる菌を殺菌(ウイルスについては、不活化)することができる。 Next, the distance between two adjacent light guide rods in Embodiment 3 will be explained. In FIG. 9, the distance between two adjacent light guide bars 41 and 43 is indicated by p2, and the distance between two adjacent light guide bars 42 and 43 is indicated by p3. The intervals p2 and p3 are 10 mm or less, as in the first embodiment. As a result, the plurality of light guide rods 41 to 43 are arranged close to each other, which saves space while sterilizing bacteria (as for viruses) contained in the medium around the light guide rods 41 to 43. inactivation).
 次に、間隔p2、p3の下限値について説明する。紫外光L3が全反射することで発生する第3のエバネッセント光は、導光棒43の表面から紫外光L3のピーク波長程度、染み出す。 Next, the lower limit values of the intervals p2 and p3 will be explained. The third evanescent light generated by total reflection of the ultraviolet light L3 oozes out from the surface of the light guide rod 43 at approximately the peak wavelength of the ultraviolet light L3.
 そのため、導光棒41と導光棒43との間の間隔p1は、紫外光L3のピーク波長と紫外光L1のピーク波長との合算値以上であることが好ましい。すなわち、紫外光L3のピーク波長をλ3としたとき、間隔p2、紫外光L1のピーク波長λ1及び紫外光L3のピーク波長λ3は、以下の式(3)を満たす。
 p2≧λ1+λ3     (3)
 これにより、隣り合う2つの導光棒41、43の外周面の周辺で発生するエバネッセント光が互いに干渉することを防止できる。
Therefore, it is preferable that the distance p1 between the light guide rod 41 and the light guide rod 43 is greater than or equal to the sum of the peak wavelength of the ultraviolet light L3 and the peak wavelength of the ultraviolet light L1. That is, when the peak wavelength of the ultraviolet light L3 is λ3, the interval p2, the peak wavelength λ1 of the ultraviolet light L1, and the peak wavelength λ3 of the ultraviolet light L3 satisfy the following formula (3).
p2≧λ1+λ3 (3)
This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent light guide rods 41 and 43 from interfering with each other.
 また、導光棒43と導光棒42との間の間隔p3は、紫外光L3のピーク波長λ3と紫外光L1のピーク波長λ1との合算値以上であることが好ましい。すなわち、間隔p3、紫外光L2のピーク波長λ2及び紫外光L3のピーク波長λ3は、以下の式(4)を満たす。
 p3≧λ2+λ3     (4)
 これにより、隣り合う2つの導光棒42、43の外周面の周辺で発生するエバネッセント光が互いに干渉することを防止できる。
Moreover, it is preferable that the distance p3 between the light guide rod 43 and the light guide rod 42 is greater than or equal to the sum of the peak wavelength λ3 of the ultraviolet light L3 and the peak wavelength λ1 of the ultraviolet light L1. That is, the interval p3, the peak wavelength λ2 of the ultraviolet light L2, and the peak wavelength λ3 of the ultraviolet light L3 satisfy the following equation (4).
p3≧λ2+λ3 (4)
This can prevent evanescent light generated around the outer peripheral surfaces of two adjacent light guide rods 42 and 43 from interfering with each other.
〈実施の形態3の効果〉
 以上に説明した実施の形態3によれば、紫外光殺菌装置300は、紫外光L1の第1のピーク波長及び紫外光L2の第2のピーク波長より長い第3のピーク波長を持つ紫外光L3を出射する第3の紫外光光源3を更に備え、導光棒43の表面の周辺には、紫外光L3が導光棒43内部で全反射することで第3のエバネッセント光が発生している。これにより、殺菌可能な殺菌対象物の種類を更に増加させることができる。
<Effects of Embodiment 3>
According to the third embodiment described above, the ultraviolet light sterilizer 300 uses ultraviolet light L3 having a third peak wavelength longer than the first peak wavelength of ultraviolet light L1 and the second peak wavelength of ultraviolet light L2. It further includes a third ultraviolet light source 3 that emits the light, and third evanescent light is generated around the surface of the light guide rod 43 by total reflection of the ultraviolet light L3 inside the light guide rod 43. . Thereby, the types of objects to be sterilized that can be sterilized can be further increased.
 また、実施の形態3によれば、複数の導光棒41~43のうちの隣り合う2つの導光棒41、43の間の間隔p2及び導光棒42、43の間の間隔p3は、10mm以下である。これにより、複数の導光棒41~43を互いに近接して配置することができる。エバネッセント光は、導光棒41~43の表面に留まるため、複数の導光棒41~43が近接して配置されることで、導光棒41~43周辺の殺菌対象物を効率良く殺菌することができる。 Further, according to the third embodiment, the distance p2 between two adjacent light guide rods 41 and 43 among the plurality of light guide rods 41 to 43 and the distance p3 between the light guide rods 42 and 43 are as follows. It is 10 mm or less. This allows the plurality of light guide rods 41 to 43 to be arranged close to each other. Since the evanescent light remains on the surfaces of the light guide rods 41 to 43, by arranging a plurality of light guide rods 41 to 43 in close proximity, objects to be sterilized around the light guide rods 41 to 43 can be efficiently sterilized. be able to.
《実施の形態3の変形例》
 図10は、実施の形態3の変形例に係る紫外光殺菌装置300aの構成の一部を示す断面図である。図10において、図9に示される構成要素と同一又は対応する構成要素には、図9に示される符号と同じ符号が付される。実施の形態3の変形例に係る紫外光殺菌装置300aは、紫外光光源群の配列の点で、実施の形態3に係る紫外光殺菌装置300と相違する。これ以外の点については、実施の形態3に係る紫外光殺菌装置300aは、実施の形態3に係る紫外光殺菌装置300と同じである。
《Modification of Embodiment 3》
FIG. 10 is a sectional view showing a part of the configuration of an ultraviolet light sterilizer 300a according to a modification of the third embodiment. In FIG. 10, components that are the same as or correspond to those shown in FIG. 9 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 300a according to the modification of the third embodiment differs from the ultraviolet light sterilizer 300 according to the third embodiment in the arrangement of the ultraviolet light source group. In other respects, the ultraviolet light sterilizer 300a according to the third embodiment is the same as the ultraviolet light sterilizer 300 according to the third embodiment.
 図10に示されるように、紫外光殺菌装置300aは、複数の第1の紫外光光源1a、1bと、複数の第2の紫外光光源2a、2bと、複数の第3の紫外光光源3a、3bと、複数の導光棒41~43と、筐体5(図1参照)とを備える。 As shown in FIG. 10, the ultraviolet light sterilizer 300a includes a plurality of first ultraviolet light sources 1a and 1b, a plurality of second ultraviolet light sources 2a and 2b, and a plurality of third ultraviolet light sources 3a. , 3b, a plurality of light guide rods 41 to 43, and a housing 5 (see FIG. 1).
 図10に示す例では、第1の紫外光光源1aは、導光棒41を挟んで第3の紫外光光源3bと対向している。第2の紫外光光源2aは、導光棒42を挟んで第1の紫外光光源1bと対向している。第3の紫外光光源3aは、導光棒43を挟んで第2の紫外光光源2bと対向している。言い換えれば、第3の紫外光光源3a、3bから出射した紫外光L3は、紫外光L1又は紫外光L2が入射する導光棒41、43に入射する。これにより、導光棒41~43には、ピーク波長が互いに異なる2種類の紫外光が入射する。よって、各導光棒の表面の周辺には、2種類のエバネッセント光が染み出すため、殺菌可能な殺菌対象物の種類を増加させることができる。 In the example shown in FIG. 10, the first ultraviolet light source 1a faces the third ultraviolet light source 3b with the light guide rod 41 in between. The second ultraviolet light source 2a faces the first ultraviolet light source 1b with the light guide rod 42 in between. The third ultraviolet light source 3a faces the second ultraviolet light source 2b with the light guide rod 43 in between. In other words, the ultraviolet light L3 emitted from the third ultraviolet light sources 3a, 3b enters the light guide rods 41, 43 into which the ultraviolet light L1 or the ultraviolet light L2 enters. As a result, two types of ultraviolet light having different peak wavelengths are incident on the light guide rods 41 to 43. Therefore, since two types of evanescent light seep out around the surface of each light guide rod, it is possible to increase the types of objects that can be sterilized.
〈実施の形態3の変形例の効果〉
 以上に説明した実施の形態3の変形例によれば、複数の導光棒41~43の各導光棒には、ピーク波長が互いに異なる2種類の紫外光が入射する。これにより、各導光棒の表面の周辺には、2種類のエバネッセント光が染み出すため、殺菌可能な殺菌対象物の種類を増加させることができる。
<Effects of modification of Embodiment 3>
According to the modification of the third embodiment described above, two types of ultraviolet light having different peak wavelengths are incident on each of the plurality of light guide rods 41 to 43. As a result, two types of evanescent light seep out around the surface of each light guide rod, so it is possible to increase the types of objects that can be sterilized.
《実施の形態4》
 図11(A)及び(B)は、実施の形態4に係る紫外光殺菌装置400の構成の一部を示す断面図である。図11(A)及び(B)において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態4に係る紫外光殺菌装置400は、導光棒404が孔404aを有する点及び光源1の出射面の形状の点で、実施の形態1に係る紫外光殺菌装置100と相違する。これ以外の点については、実施の形態4に係る紫外光殺菌装置400は、実施の形態1に係る紫外光殺菌装置100と同じである。
Embodiment 4》
FIGS. 11A and 11B are cross-sectional views showing a part of the configuration of an ultraviolet light sterilizer 400 according to Embodiment 4. In FIGS. 11A and 11B, components that are the same as or correspond to those shown in FIG. 2 are given the same reference numerals as those shown in FIG. The ultraviolet light sterilizer 400 according to the fourth embodiment is different from the ultraviolet light sterilizer 100 according to the first embodiment in that the light guide rod 404 has a hole 404a and the shape of the exit surface of the light source 1. In other respects, the ultraviolet light sterilizer 400 according to the fourth embodiment is the same as the ultraviolet light sterilizer 100 according to the first embodiment.
 図11に示されるように、紫外光殺菌装置400は、紫外光光源群としての複数の紫外光光源1と、複数の導光棒404と、筐体5(図1参照)とを備える。 As shown in FIG. 11, the ultraviolet light sterilization device 400 includes a plurality of ultraviolet light sources 1 as a group of ultraviolet light sources, a plurality of light guide rods 404, and a housing 5 (see FIG. 1).
 複数の導光棒404の各導光棒404は、流体(例えば、空気又は水)が流れる貫通部としての孔404aを有する。導光棒404の形状が円柱状であるとき、孔404aの断面形状は、円形である。このように、実施の形態4では、導光棒404の端面から入射した紫外光L11が全反射する内面に加工が施されている。これにより、紫外光L11が導光棒404に入射したときに、エバネッセント光Leが発生する表面は、導光棒404の外周面404c及び孔404aの内周面である。よって、流体の流れを阻害せずに、紫外光殺菌装置400において、殺菌効果を有する表面積を増加させることができる。なお、導光棒404が孔404aを有する場合、紫外光殺菌装置400は、1つの導光棒404を備えていても実現することができる。そのため、紫外光殺菌装置400は、少なくとも1つの導光棒404を備えていればよい。 Each light guide rod 404 of the plurality of light guide rods 404 has a hole 404a as a through portion through which fluid (for example, air or water) flows. When the shape of the light guide rod 404 is cylindrical, the cross-sectional shape of the hole 404a is circular. In this manner, in the fourth embodiment, the inner surface of the light guide rod 404 is processed so that the ultraviolet light L11 incident from the end surface is totally reflected. Thereby, when the ultraviolet light L11 enters the light guide rod 404, the surfaces on which evanescent light Le is generated are the outer peripheral surface 404c of the light guide rod 404 and the inner peripheral surface of the hole 404a. Therefore, the surface area having a sterilizing effect can be increased in the ultraviolet light sterilizer 400 without inhibiting the flow of fluid. In addition, when the light guide rod 404 has the hole 404a, the ultraviolet light sterilizer 400 can be realized even if it includes one light guide rod 404. Therefore, the ultraviolet light sterilizer 400 only needs to include at least one light guide rod 404.
〈実施の形態4の効果〉
 以上に説明した実施の形態4によれば、紫外光殺菌装置400は、紫外光光源1と、紫外光光源1から出射した紫外光が入射する導光棒404とを備え、紫外光L11が導光棒404の内部で全反射することで、導光棒404の表面である外周面404cにエバネッセント光Leが発生する。これにより、人体に悪影響を及ぼす可能性を低減しつつ、導光棒404の外周面404c周辺を通過する流体を殺菌することができる。よって、紫外光殺菌装置400の配置場所及び使用時間の自由度を向上させることができる。
<Effects of Embodiment 4>
According to the fourth embodiment described above, the ultraviolet light sterilizer 400 includes the ultraviolet light source 1 and the light guide rod 404 into which the ultraviolet light emitted from the ultraviolet light source 1 enters, and the ultraviolet light L11 is guided. By being totally reflected inside the light rod 404, evanescent light Le is generated on the outer peripheral surface 404c, which is the surface of the light guide rod 404. Thereby, the fluid passing around the outer peripheral surface 404c of the light guide rod 404 can be sterilized while reducing the possibility of adverse effects on the human body. Therefore, the degree of freedom in the location and usage time of the ultraviolet light sterilizer 400 can be improved.
 また、実施の形態4によれば、導光棒404は、流体が流れる孔404aを有する。これにより、エバネッセント光Leは、導光棒404の外周面404cに加えて、孔404aの内周面周辺に発生する。これにより、流体の流れを阻害せずに、導光棒404の孔404aの内周面の周辺を通過する流体を殺菌することができ、殺菌効果を有する表面積を増加させることができる。 Furthermore, according to Embodiment 4, the light guide rod 404 has a hole 404a through which fluid flows. As a result, evanescent light Le is generated around the inner circumferential surface of the hole 404a in addition to the outer circumferential surface 404c of the light guide rod 404. Thereby, the fluid passing around the inner peripheral surface of the hole 404a of the light guide rod 404 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.
 《実施の形態4の変形例1》
 図12(A)及び(B)は、実施の形態4の変形例1に係る紫外光殺菌装置の構成を示す平面図及び断面図である。図12(B)は、図12(A)の構造をXII-XII線で切る断面を示す。
Modification 1 of Embodiment 4》
FIGS. 12A and 12B are a plan view and a cross-sectional view showing the configuration of an ultraviolet light sterilization device according to Modification 1 of Embodiment 4. FIG. 12(B) shows a cross section of the structure of FIG. 12(A) taken along line XII-XII.
 図12(A)及び(B)に示されるように、紫外光殺菌装置410は、複数の紫外光光源1と、光学部材としての導光板414と、筐体5(図1参照)とを備える。導光板414には、導光板414を厚み方向に貫通することで、導光板414を複数の領域に区分する貫通部である孔414aが備えられている。導光板414の外側の面の周辺及び孔414a内の面の周辺には、紫外光が導光板414の内部で全反射することでエバネッセント光が発生している。孔414aの幅は、10mm以下であることが望ましい。このように構成することで、導光棒を平行に並べた実施の形態1の場合と同様の殺菌効果が得られる。 As shown in FIGS. 12A and 12B, the ultraviolet light sterilizer 410 includes a plurality of ultraviolet light sources 1, a light guide plate 414 as an optical member, and a housing 5 (see FIG. 1). . The light guide plate 414 is provided with a hole 414a that is a penetrating portion that penetrates the light guide plate 414 in the thickness direction and divides the light guide plate 414 into a plurality of regions. Evanescent light is generated around the outer surface of the light guide plate 414 and around the surface inside the hole 414a by total reflection of the ultraviolet light inside the light guide plate 414. The width of the hole 414a is preferably 10 mm or less. With this configuration, the same sterilizing effect as in the first embodiment in which the light guide rods are arranged in parallel can be obtained.
 導光板414の形状が板状であり、孔414aの平面形状が楕円形である。このように、導光板414の端面から入射した紫外光L1が全反射する内面に加工が施されている。よって、流体の流れを阻害せずに、紫外光殺菌装置410において、殺菌効果を有する表面積を増加させることができる。なお、導光板414が孔414aを有する場合、紫外光殺菌装置410は、1つの導光板414を備えていても実現することができる。なお、孔の位置及び形状によって全反射条件を満たさない領域ができる場合は、その領域から光が出射するのを防ぐ遮光部(マスクなど)を設ける、又は、その領域への光の入射を遮蔽する遮蔽部を設けるなどの対策によって、紫外線が外側に漏れにくくなる。 The shape of the light guide plate 414 is a plate, and the planar shape of the hole 414a is an ellipse. In this way, the inner surface of the light guide plate 414 is processed so that the ultraviolet light L1 incident from the end surface is totally reflected. Therefore, the surface area that has a sterilizing effect can be increased in the ultraviolet light sterilizer 410 without obstructing the flow of fluid. In addition, when the light guide plate 414 has the hole 414a, the ultraviolet light sterilizer 410 can be realized even if it includes one light guide plate 414. If there is an area that does not satisfy the total reflection condition due to the position and shape of the hole, provide a light shielding part (such as a mask) to prevent light from exiting from that area, or block light from entering that area. Measures such as installing a shield to prevent ultraviolet rays from leaking to the outside can be made easier.
 以上に説明した実施の形態4の変形例1によれば、紫外光殺菌装置410は、紫外光光源1と、紫外光光源1から出射した紫外光L1が入射する導光板414とを備え、紫外光が導光板414の内部で全反射することで、導光板414の表面である外周面414cにエバネッセント光Leが発生する。これにより、人体に悪影響を及ぼす可能性を低減しつつ、導光板414の外周面414c周辺を通過する流体を殺菌することができる。 According to the first modification of the fourth embodiment described above, the ultraviolet light sterilizer 410 includes the ultraviolet light source 1 and the light guide plate 414 on which the ultraviolet light L1 emitted from the ultraviolet light source 1 enters, and As the light is totally reflected inside the light guide plate 414, evanescent light Le is generated on the outer peripheral surface 414c, which is the surface of the light guide plate 414. Thereby, the fluid passing around the outer circumferential surface 414c of the light guide plate 414 can be sterilized while reducing the possibility of adverse effects on the human body.
 また、実施の形態4の変形例1によれば、導光板414は、流体が流れる孔414aを有する。これにより、エバネッセント光Leは、導光板414の外周面414cに加えて、孔414aの内周面周辺に発生する。これにより、流体の流れを阻害せずに、導光板414の孔414aの内周面の周辺を通過する流体を殺菌することができ、殺菌効果を有する表面積を増加させることができる。 According to the first modification of the fourth embodiment, the light guide plate 414 has holes 414a through which fluid flows. As a result, evanescent light Le is generated around the inner circumferential surface of the hole 414a in addition to the outer circumferential surface 414c of the light guide plate 414. Thereby, the fluid passing around the inner peripheral surface of the hole 414a of the light guide plate 414 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.
 《実施の形態4の変形例2》
 図13(A)及び(B)は、実施の形態4の変形例2に係る紫外光殺菌装置の構成を示す平面図及び断面図である。図13(B)は、図13(A)の構造をXIII-XIII線で切る断面を示す。
《Modification 2 of Embodiment 4》
FIGS. 13A and 13B are a plan view and a sectional view showing the configuration of an ultraviolet light sterilizer according to a second modification of the fourth embodiment. FIG. 13(B) shows a cross section of the structure of FIG. 13(A) taken along the line XIII-XIII.
 図13(A)及び(B)に示されるように、紫外光殺菌装置420は、複数の紫外光光源1と、導光部材としての導光板424と、筐体5(図1参照)とを備える。導光板424には、導光板424を厚み方向に貫通することで、導光板424を複数の領域に区分する貫通部である孔424aが備えられている。導光板424の外側の面の周辺及び孔424a内の面の周辺には、紫外光が導光板424の内部で全反射することでエバネッセント光が発生している。孔424aの幅は、10mm以下であることが望ましい。このように構成することで、導光棒を平行に並べた実施の形態1の場合と同様の殺菌効果が得られる。 As shown in FIGS. 13A and 13B, the ultraviolet light sterilizer 420 includes a plurality of ultraviolet light sources 1, a light guide plate 424 as a light guide member, and a housing 5 (see FIG. 1). Be prepared. The light guide plate 424 is provided with a hole 424a that is a through portion that penetrates the light guide plate 424 in the thickness direction and divides the light guide plate 424 into a plurality of regions. Evanescent light is generated around the outer surface of the light guide plate 424 and around the surface inside the hole 424a by total reflection of the ultraviolet light inside the light guide plate 424. The width of the hole 424a is preferably 10 mm or less. With this configuration, the same sterilizing effect as in the first embodiment in which the light guide rods are arranged in parallel can be obtained.
 導光板424の形状が板状であり、孔424aの断面形状は、楕円形である。このように、導光板424の端面から入射した紫外光L1が全反射する内面に加工が施されている。これにより、紫外光L1が導光板424に入射したときに、エバネッセント光Leが発生する表面は、導光板424の外周面424c及び孔424aの内周面である。よって、流体の流れを阻害せずに、紫外光殺菌装置420において、殺菌効果を有する表面積を増加させることができる。なお、導光板424が孔424aを有する場合、紫外光殺菌装置420は、1つの導光板424を備えていても実現することができる。なお、孔の位置及び形状によって全反射条件を満たさない領域ができる場合は、その領域から光が出射するのを防ぐ遮光部(マスクなど)を設ける、又は、その領域への光の入射を遮蔽する遮蔽部を設けるなどの対策によって、紫外線が外側に漏れにくくなる。 The shape of the light guide plate 424 is a plate, and the cross-sectional shape of the hole 424a is an ellipse. In this way, the inner surface of the light guide plate 424 is processed so that the ultraviolet light L1 incident from the end surface is totally reflected. Thereby, when the ultraviolet light L1 enters the light guide plate 424, the surfaces on which evanescent light Le is generated are the outer circumferential surface 424c of the light guide plate 424 and the inner circumferential surface of the hole 424a. Therefore, the surface area that has a sterilizing effect can be increased in the ultraviolet light sterilizer 420 without obstructing the flow of fluid. In addition, when the light guide plate 424 has the hole 424a, the ultraviolet light sterilizer 420 can be realized even if it includes one light guide plate 424. If there is an area that does not satisfy the total reflection condition due to the position and shape of the hole, provide a light shielding part (such as a mask) to prevent light from exiting from that area, or block light from entering that area. Measures such as installing a shield to prevent ultraviolet rays from leaking to the outside can be made easier.
 以上に説明した実施の形態4の変形例2によれば、紫外光殺菌装置420は、紫外光光源1と、紫外光光源1から出射した紫外光L1が入射する導光板424とを備え、紫外光が導光板424の内部で全反射することで、導光板424の表面である外周面424cにエバネッセント光Leが発生する。これにより、人体に悪影響を及ぼす可能性を低減しつつ、導光板424の外周面424c周辺を通過する流体を殺菌することができる。 According to the second modification of the fourth embodiment described above, the ultraviolet light sterilizer 420 includes the ultraviolet light source 1 and the light guide plate 424 on which the ultraviolet light L1 emitted from the ultraviolet light source 1 enters. As the light is totally reflected inside the light guide plate 424, evanescent light Le is generated on the outer peripheral surface 424c, which is the surface of the light guide plate 424. Thereby, the fluid passing around the outer peripheral surface 424c of the light guide plate 424 can be sterilized while reducing the possibility of adverse effects on the human body.
 また、実施の形態4の変形例2によれば、導光板424は、流体が流れる孔424aを有する。これにより、エバネッセント光Leは、導光板424の外周面424cに加えて、孔424aの内周面周辺に発生する。これにより、流体の流れを阻害せずに、導光板424の孔424aの内周面の周辺を通過する流体を殺菌することができ、殺菌効果を有する表面積を増加させることができる。 According to the second modification of the fourth embodiment, the light guide plate 424 has holes 424a through which fluid flows. As a result, evanescent light Le is generated around the inner circumferential surface of the hole 424a in addition to the outer circumferential surface 424c of the light guide plate 424. Thereby, the fluid passing around the inner peripheral surface of the hole 424a of the light guide plate 424 can be sterilized without inhibiting the flow of the fluid, and the surface area having a sterilizing effect can be increased.
 1、1a、1b 第1の紫外光光源、 2a、2b 第2の紫外光光源、 3a、3b 第3の紫外光光源、 4、41~43、404 導光棒(第1の導光棒)、 4a、4b、6a 光入射面、 4c、404c、414c、424c 外周面、 5 筐体、 5a 開口部、 6 第2の導光棒、 100~400、100a~100c、200a、410、420 紫外光殺菌装置、 404a、414a、424a 孔(貫通部)、 414、424 導光板(導光部材)、 L1~L3 紫外光、 Le エバネッセント光、 p、p1~p3 間隔、 λ1、λ2、λ3 ピーク波長。 1, 1a, 1b first ultraviolet light source, 2a, 2b second ultraviolet light source, 3a, 3b third ultraviolet light source, 4, 41 to 43, 404 light guide rod (first light guide rod) , 4a, 4b, 6a light incidence surface, 4c, 404c, 414c, 424c outer peripheral surface, 5 housing, 5a opening, 6 second light guide bar, 100-400, 100a-100c, 200a, 410, 420 purple outside Photosterilizer, 404a, 414a, 424a hole (penetrating part), 414, 424 light guide plate (light guide member), L1 to L3 ultraviolet light, Le evanescent light, p, p1 to p3 interval, λ1, λ2, λ3 peak wavelength .

Claims (20)

  1.  紫外光を出射する紫外光光源群と、
     予め決められた第1の方向に配列された複数の光学部材と
     を備え、
     前記複数の光学部材の各光学部材は、前記紫外光を入射する光入射面を有し、
     前記光学部材の表面の周辺には、前記紫外光が前記光学部材の内部で全反射することでエバネッセント光が発生していて、
     前記複数の光学部材のうち隣り合う2つの光学部材の間の間隔は、10mm以下である、
     紫外光殺菌装置。
    an ultraviolet light source group that emits ultraviolet light;
    a plurality of optical members arranged in a predetermined first direction,
    Each optical member of the plurality of optical members has a light entrance surface that receives the ultraviolet light,
    Evanescent light is generated around the surface of the optical member by total reflection of the ultraviolet light inside the optical member,
    The distance between two adjacent optical members among the plurality of optical members is 10 mm or less,
    Ultraviolet light sterilizer.
  2.  前記紫外光光源群は、第1の紫外光を出射する複数の第1の紫外光光源を有し、
     前記隣り合う2つの光学部材の間の前記間隔は、前記第1の紫外光のピーク波長の2倍以上である、
     請求項1に記載の紫外光殺菌装置。
    The ultraviolet light source group includes a plurality of first ultraviolet light sources that emit first ultraviolet light,
    The distance between the two adjacent optical members is at least twice the peak wavelength of the first ultraviolet light,
    The ultraviolet light sterilization device according to claim 1.
  3.  前記複数の第1の紫外光光源は、前記複数の光学部材を挟んで互いに反対側に配置されている、
     請求項2に記載の紫外光殺菌装置。
    The plurality of first ultraviolet light sources are arranged on opposite sides of the plurality of optical members,
    The ultraviolet light sterilization device according to claim 2.
  4.  前記複数の第1の紫外光光源の一方から出射した第1の紫外光が入射する光学部材は、他方から出射した第1の紫外光が入射する光学部材と異なる、
     請求項3に記載の紫外光殺菌装置。
    The optical member into which the first ultraviolet light emitted from one of the plurality of first ultraviolet light sources is incident is different from the optical member into which the first ultraviolet light emitted from the other one is incident.
    The ultraviolet light sterilizer according to claim 3.
  5.  前記複数の第1の紫外光光源の一方から出射した第1の紫外光が入射する光学部材は、他方から出射した第1の紫外光が入射する光学部材と同一である、
     請求項3に記載の紫外光殺菌装置。
    The optical member into which the first ultraviolet light emitted from one of the plurality of first ultraviolet light sources is incident is the same as the optical member into which the first ultraviolet light emitted from the other one is incident.
    The ultraviolet light sterilizer according to claim 3.
  6.  前記光学部材は、棒状又は板状の導光部材で構成されている、
     請求項1から5のいずれか1項に記載の紫外光殺菌装置。
    The optical member is composed of a rod-shaped or plate-shaped light guide member,
    The ultraviolet light sterilization device according to any one of claims 1 to 5.
  7.  前記紫外光光源群は、前記導光部材の端部と向き合う位置に配置されている、
     請求項6に記載の紫外光殺菌装置。
    The ultraviolet light source group is arranged at a position facing the end of the light guide member,
    The ultraviolet light sterilization device according to claim 6.
  8.  前記第1の方向に交差する第2の方向に延びる他の光学部材を更に備え、
     前記他の光学部材の表面の周辺には、前記紫外光が前記他の光学部材の内部で全反射することで前記エバネッセント光が発生している
     請求項1に記載の紫外光殺菌装置。
    further comprising another optical member extending in a second direction intersecting the first direction,
    The ultraviolet light sterilization device according to claim 1, wherein the evanescent light is generated around the surface of the other optical member by total reflection of the ultraviolet light inside the other optical member.
  9.  前記紫外光光源群は、前記第1の紫外光のピーク波長と異なるピーク波長を持つ第2の紫外光を出射する少なくとも1つの第2の紫外光光源を更に備え、
     前記複数の光学部材は、前記第1の紫外光が全反射することによる第1のエバネッセント光が染み出す光学部材と、前記第2の紫外光が全反射することによる第2のエバネッセント光が染み出す他の光学部材とを有する、
     請求項2に記載の紫外光殺菌装置。
    The ultraviolet light source group further includes at least one second ultraviolet light source that emits a second ultraviolet light having a peak wavelength different from the peak wavelength of the first ultraviolet light,
    The plurality of optical members include an optical member from which a first evanescent light seeps out due to total reflection of the first ultraviolet light, and an optical member from which a second evanescent light seeps out due to total reflection of the second ultraviolet light. and other optical members that emit
    The ultraviolet light sterilization device according to claim 2.
  10.  前記第1の紫外光のピーク波長及び前記第2の紫外光のピーク波長の少なくとも一方は、100nmから315nmまでの範囲内である、
     請求項9に記載の紫外光殺菌装置。
    At least one of the peak wavelength of the first ultraviolet light and the peak wavelength of the second ultraviolet light is within the range of 100 nm to 315 nm.
    The ultraviolet light sterilization device according to claim 9.
  11.  前記第1の紫外光のピーク波長及び前記第2の紫外光のピーク波長の少なくとも一方は、315nmから400nmまでの範囲内である、
     請求項9に記載の紫外光殺菌装置。
    At least one of the peak wavelength of the first ultraviolet light and the peak wavelength of the second ultraviolet light is within the range of 315 nm to 400 nm.
    The ultraviolet light sterilization device according to claim 9.
  12.  前記第1の紫外光のピーク波長は、100nmから315nmまでの範囲内であり、
     前記第2の紫外光のピーク波長は、315nmから400nmまでの範囲内である、
     請求項9に記載の紫外光殺菌装置。
    The peak wavelength of the first ultraviolet light is within the range of 100 nm to 315 nm,
    The peak wavelength of the second ultraviolet light is within the range of 315 nm to 400 nm.
    The ultraviolet light sterilization device according to claim 9.
  13.  前記少なくとも1つの第2の紫外光光源は、複数の第2の紫外光光源であり、
     前記複数の第1の紫外光光源及び前記複数の第2の紫外光光源は、前記第1の方向に交互に並んで配列されている、
     請求項9から12のいずれか1項に記載の紫外光殺菌装置。
    the at least one second ultraviolet light source is a plurality of second ultraviolet light sources;
    The plurality of first ultraviolet light sources and the plurality of second ultraviolet light sources are arranged alternately in the first direction.
    The ultraviolet light sterilization device according to any one of claims 9 to 12.
  14.  前記2つの光学部材の間の前記間隔は、前記第1の紫外光のピーク波長と前記第2の紫外光のピーク波長との合算値以上である、
     請求項13に記載の紫外光殺菌装置。
    The distance between the two optical members is greater than or equal to the sum of the peak wavelength of the first ultraviolet light and the peak wavelength of the second ultraviolet light,
    The ultraviolet light sterilization device according to claim 13.
  15.  前記少なくとも1つの第2の紫外光光源の一方から出射した前記第2の紫外光が入射する光学部材は、前記第1の紫外光が入射する光学部材と同一である、
     請求項9から14のいずれか1項に記載の紫外光殺菌装置。
    The optical member into which the second ultraviolet light emitted from one of the at least one second ultraviolet light source enters is the same as the optical member into which the first ultraviolet light enters,
    The ultraviolet light sterilization device according to any one of claims 9 to 14.
  16.  前記紫外光光源群は、前記第1の紫外光のピーク波長及び前記第2の紫外光のピーク波長より長いピーク波長を持つ第3の紫外光を出射する少なくとも1つの第3の紫外光光源を更に有し、
     前記複数の光学部材のうちの少なくとも1つの光学部材の表面の周辺には、前記第3の紫外光が前記光学部材の内部で全反射することで第3のエバネッセント光が発生している、
     請求項9から15のいずれか1項に記載の紫外光殺菌装置。
    The ultraviolet light source group includes at least one third ultraviolet light source that emits third ultraviolet light having a peak wavelength longer than the peak wavelength of the first ultraviolet light and the peak wavelength of the second ultraviolet light. Furthermore, it has
    Third evanescent light is generated around the surface of at least one of the plurality of optical members by total reflection of the third ultraviolet light inside the optical member.
    The ultraviolet light sterilization device according to any one of claims 9 to 15.
  17.  前記少なくとも1つの第3の紫外光光源から出射した前記第3の紫外光は、前記第1の紫外光又は前記第2の紫外光が入射する前記光学部材に入射する、
     請求項16に記載の紫外光殺菌装置。
    The third ultraviolet light emitted from the at least one third ultraviolet light source is incident on the optical member into which the first ultraviolet light or the second ultraviolet light is incident.
    The ultraviolet light sterilization device according to claim 16.
  18.  紫外光を照射する紫外光光源群と、
     前記紫外光を入射する光入射面としての端面を有する光学部材と
     を備え、
     前記光学部材は、導光板と、前記導光板を厚み方向に貫通することで、前記導光板を複数の領域に区分する貫通部とを有し、
     前記導光板の外側の面の周辺及び前記貫通部内の面の周辺には、前記紫外光が前記光学部材の内部で全反射することでエバネッセント光が発生している、
     紫外光殺菌装置。
    an ultraviolet light source group that emits ultraviolet light;
    an optical member having an end surface as a light entrance surface into which the ultraviolet light is incident;
    The optical member includes a light guide plate and a penetration part that penetrates the light guide plate in the thickness direction and divides the light guide plate into a plurality of regions,
    Evanescent light is generated around the outer surface of the light guide plate and around the inner surface of the through-hole by total reflection of the ultraviolet light inside the optical member.
    Ultraviolet light sterilizer.
  19.  前記紫外光光源群及び前記光学部材を収容する筐体を更に備え、
     前記筐体は、前記光学部材の前記表面を露出させていて、且つ前記光入射面を覆っている、
     請求項1から18のいずれか1項に記載の紫外光殺菌装置。
    further comprising a housing that accommodates the ultraviolet light source group and the optical member,
    The casing exposes the surface of the optical member and covers the light incident surface.
    The ultraviolet light sterilization device according to any one of claims 1 to 18.
  20.  前記紫外光殺菌装置は、流体が流れる流路に配置される、
     請求項1から19のいずれか1項に記載の紫外光殺菌装置。
    The ultraviolet light sterilizer is disposed in a flow path through which a fluid flows.
    The ultraviolet light sterilization device according to any one of claims 1 to 19.
PCT/JP2022/020515 2022-05-17 2022-05-17 Ultraviolet light sterilization apparatus WO2023223419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020515 WO2023223419A1 (en) 2022-05-17 2022-05-17 Ultraviolet light sterilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020515 WO2023223419A1 (en) 2022-05-17 2022-05-17 Ultraviolet light sterilization apparatus

Publications (1)

Publication Number Publication Date
WO2023223419A1 true WO2023223419A1 (en) 2023-11-23

Family

ID=88834883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020515 WO2023223419A1 (en) 2022-05-17 2022-05-17 Ultraviolet light sterilization apparatus

Country Status (1)

Country Link
WO (1) WO2023223419A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299937A (en) * 1996-05-09 1997-11-25 Daikin Ind Ltd Treating device for material
JP2005144225A (en) * 2003-11-11 2005-06-09 Japan Science & Technology Agency Proximity field photocatalyst device
JP2014530759A (en) * 2011-10-26 2014-11-20 コーニンクレッカ フィリップス エヌ ヴェ Photocatalytic purification of medium
JP2019512357A (en) * 2016-03-31 2019-05-16 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Treatment of fluid transfer pipelines with ultraviolet light
WO2022024406A1 (en) * 2020-07-30 2022-02-03 日本電信電話株式会社 Ultraviolet light irradiation system
JP2022071246A (en) * 2020-10-28 2022-05-16 プラス株式会社 Screen with sterilization function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299937A (en) * 1996-05-09 1997-11-25 Daikin Ind Ltd Treating device for material
JP2005144225A (en) * 2003-11-11 2005-06-09 Japan Science & Technology Agency Proximity field photocatalyst device
JP2014530759A (en) * 2011-10-26 2014-11-20 コーニンクレッカ フィリップス エヌ ヴェ Photocatalytic purification of medium
JP2019512357A (en) * 2016-03-31 2019-05-16 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Treatment of fluid transfer pipelines with ultraviolet light
WO2022024406A1 (en) * 2020-07-30 2022-02-03 日本電信電話株式会社 Ultraviolet light irradiation system
JP2022071246A (en) * 2020-10-28 2022-05-16 プラス株式会社 Screen with sterilization function

Similar Documents

Publication Publication Date Title
WO2015020041A1 (en) Ultraviolet sterilization device
US5503800A (en) Ultra-violet sterilizing system for waste water
US9974880B2 (en) Air sterilization and disinfection apparatus
EP2683442B1 (en) Apparatus for selectively affecting and/or killing bacteria
US20060207431A1 (en) Systems and methods for contaminant detection within a fluid, ultraviolet treatment and status notification
US9415126B2 (en) Reflective transparent optical chamber
JP5153681B2 (en) Air conditioning related equipment
BRPI0717199B1 (en) UV LIQUID DISINFECTION DEVICE
JP2021177809A (en) Sterilizer
WO2023223419A1 (en) Ultraviolet light sterilization apparatus
WO2019049702A1 (en) Ultraviolet irradiation device for water treatment and water treatment method using ultraviolet irradiation
JP3495969B2 (en) Organic substance decomposition unit
US10639393B1 (en) Fluid system with integrated disinfecting optics
US20210330852A1 (en) Ultraviolet irradiance optimization chamber
KR102351680B1 (en) Photocatalysts filter module
Grishkanich et al. Laser inactivation of pathogenic viruses in water
KR20180067990A (en) Air conditioner with ultraviolet sterilizer
US20220040365A1 (en) Air disinfection chamber
WO2023223420A1 (en) Ultraviolet light sterilization apparatus
DE102016225596A1 (en) Method and device for cleaning a medical device
KR20180009757A (en) Active photocatalytic oxidation
KR102510094B1 (en) Outdoor air blocking sterilizer
US11369712B1 (en) Baffles for modifying airflow in UV air sterilization device
Mudimbi Pulsed Ultraviolet Light Emitting Diodes for Advanced Oxidation of Tartrazine
KR102602730B1 (en) Laser sterilization module and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942624

Country of ref document: EP

Kind code of ref document: A1