WO2023223383A1 - Cross flow fan, blowing device, and refrigeration cycle device - Google Patents

Cross flow fan, blowing device, and refrigeration cycle device Download PDF

Info

Publication number
WO2023223383A1
WO2023223383A1 PCT/JP2022/020363 JP2022020363W WO2023223383A1 WO 2023223383 A1 WO2023223383 A1 WO 2023223383A1 JP 2022020363 W JP2022020363 W JP 2022020363W WO 2023223383 A1 WO2023223383 A1 WO 2023223383A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cross
flow fan
blades
region
Prior art date
Application number
PCT/JP2022/020363
Other languages
French (fr)
Japanese (ja)
Inventor
惇司 河野
拓矢 寺本
奈穂 安達
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020363 priority Critical patent/WO2023223383A1/en
Publication of WO2023223383A1 publication Critical patent/WO2023223383A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type

Definitions

  • the present disclosure relates to a crossflow fan, a blower device, and a refrigeration cycle device.
  • a fan has an inner edge part disposed on the inner circumferential side and an outer edge part disposed on the outer circumferential side, and includes a plurality of blade parts arranged at intervals in the circumferential direction, and the blade part has an inner edge part and an outer edge part arranged on the outer peripheral side.
  • a blade surface is formed that extends between the outer edge part and consists of a positive pressure surface located on the side in the rotation direction of the fan and a negative pressure surface located on the back side of the positive pressure surface, and as the fan rotates, A fluid flow occurs between the inner edge and the outer edge on the blade surface, and when the blade is cut by a plane perpendicular to the rotation axis of the fan, recesses are formed on the pressure and suction surfaces.
  • An object of the present invention is to provide a cross flow fan, a blower device, and a refrigeration cycle device that can suppress separation.
  • a cross flow fan includes a plurality of support members arranged at preset intervals in a rotation axis direction and having a circular or annular flat plate shape, and provided between adjacent support members, and a plurality of blades disposed near the outer periphery of the member and spaced apart in the circumferential direction, each of the blades having a positive pressure surface on the rotation direction side and a negative pressure surface on the counter rotation direction side.
  • the plurality of blades have at least one first blade
  • the pressure surface of the first blade includes a first blade including an outer peripheral end of the first blade in a cross section perpendicular to the rotation axis.
  • One region has a convex shape in the opposite rotational direction, and a second region including the inner circumferential end of the first blade has a convex shape in the rotational direction.
  • a blower device includes a crossflow fan configured as described above.
  • a refrigeration cycle device includes a cross-flow fan configured as described above, and a heat exchanger that performs heat exchange between a refrigerant and an air flow generated by the cross-flow fan.
  • the cross-flow fan, blower device, and refrigeration cycle device it is possible to suppress sudden turning of airflow after passing between the blades from the outer circumferential side of the impeller to the inner circumferential side, and to reduce ventilation resistance between the blades.
  • the effect is that it is possible to suppress the increase in airflow, and in turn, it is possible to suppress airflow separation from the blade surface.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing the configuration of an indoor unit of an air conditioner that is an example of a refrigeration cycle device and a blower device according to Embodiment 1.
  • FIG. 1 is a front view of a cross flow fan according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing an example of an impeller of the cross flow fan according to the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of a main part of an example of an impeller of the cross flow fan according to the first embodiment.
  • FIG. 3 is a diagram showing airflow in an example of an impeller of the crossflow fan according to the first embodiment.
  • FIG. 3 is a sectional view showing another example of the impeller of the cross flow fan according to the first embodiment.
  • FIG. 3 is a sectional view showing another example of the impeller of the cross flow fan according to the first embodiment.
  • FIG. 7 is an enlarged sectional view of a main part showing another example of the impeller of the cross flow fan according to the first embodiment.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle device.
  • FIG. 2 is a sectional view showing the configuration of an indoor unit of an air conditioner, which is an example of a refrigeration cycle device and a blower device.
  • FIG. 3 is a front view of the crossflow fan.
  • FIG. 4 is a sectional view showing an example of an impeller of a cross flow fan.
  • FIG. 5 is an enlarged sectional view of a main part of an example of an impeller of a cross flow fan.
  • FIG. 6 is a diagram showing airflow in an example of an impeller of a crossflow fan.
  • 7 and 8 are cross-sectional views showing other examples of the impeller of the cross flow fan.
  • FIG. 9 is an enlarged sectional view of a main part showing another example of an impeller of a cross flow fan.
  • FIG. 1 shows the configuration of an air conditioner as an example of a refrigeration cycle device equipped with a crossflow fan according to the present disclosure.
  • examples of the refrigeration cycle device including the crossflow fan according to the present disclosure include a showcase and the like.
  • the air conditioner has a function of blowing air. Therefore, the air conditioner described here is also an example of a blower device including a cross-flow fan according to the present disclosure.
  • examples of the blower device including the cross-flow fan according to the present disclosure include a circulator, a tower-type electric fan, and the like.
  • the air conditioner which is a refrigeration cycle device according to this embodiment, includes an indoor unit 10 and an outdoor unit 20.
  • the indoor unit 10 is installed inside a room to be air-conditioned, that is, indoors.
  • the outdoor unit 20 is installed outside the room, that is, outdoors.
  • the indoor unit 10 includes an indoor unit heat exchanger 11 and a cross flow fan 100.
  • the outdoor unit 20 includes an outdoor unit heat exchanger 21, an outdoor unit fan 22, a compressor 23, an expansion valve 24, and a four-way valve 25.
  • the indoor unit 10 and the outdoor unit 20 are connected by a refrigerant pipe 30.
  • the refrigerant pipe 30 is provided cyclically between the indoor unit heat exchanger 11 of the indoor unit 10 and the outdoor unit heat exchanger 21 of the outdoor unit 20.
  • a refrigerant is sealed inside the refrigerant pipe 30.
  • the refrigerant sealed in the refrigerant pipe 30 is, for example, difluoromethane (CH2F2:R32).
  • the refrigerant pipe 30 connects the indoor unit heat exchanger 11, the four-way valve 25, the compressor 23, the outdoor unit heat exchanger 21, and the expansion valve 24 in an annular manner. Therefore, a refrigerant circuit in which refrigerant circulates between the indoor heat exchanger 11 and the outdoor heat exchanger 21 is formed.
  • the compressor 23 is a device that compresses the supplied refrigerant to increase the pressure and temperature of the refrigerant.
  • the compressor 23 for example, a rotary compressor, a scroll compressor, a reciprocating compressor, etc. can be used.
  • the expansion valve 24 expands the refrigerant condensed in the outdoor unit heat exchanger 21 and reduces the pressure of the refrigerant.
  • the indoor heat exchanger 11 exchanges heat between the refrigerant that has flowed into the indoor heat exchanger 11 and the air surrounding the indoor heat exchanger 11.
  • the cross flow fan 100 blows indoor air so that it passes around the indoor unit heat exchanger 11, promotes heat exchange between the refrigerant and air in the indoor unit heat exchanger 11, and also promotes heat exchange. The heated or cooled air is sent back into the room.
  • the outdoor heat exchanger 21 exchanges heat between the refrigerant that has flowed into the outdoor heat exchanger 21 and the air around the outdoor heat exchanger 21 .
  • the outdoor unit fan 22 blows outdoor air so that it passes around the outdoor unit heat exchanger 21, and promotes heat exchange between the refrigerant and the air in the outdoor unit heat exchanger 21.
  • the refrigerant circuit configured in this manner exchanges heat between the refrigerant and air in each of the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21, thereby providing a connection between the indoor unit 10 and the outdoor unit 20. It works as a heat pump to move heat.
  • the circulation direction of the refrigerant in the refrigerant circuit can be reversed, and the air conditioner can be switched between cooling operation and heating operation.
  • the indoor unit 10 includes a housing 12.
  • the housing 12 is installed indoors. Inside the housing 12, an indoor unit heat exchanger 11 and a cross flow fan 100 are housed.
  • a suction port 13 is formed in the upper surface of the housing 12 .
  • the suction port 13 is an opening for taking air into the housing 12 from the outside.
  • An air outlet 14 is formed on the lower surface of the housing 12 .
  • the air outlet 14 is an opening for discharging air from the inside of the housing 12 to the outside.
  • An air path leading from the suction port 13 to the blowout port 14 is formed inside the housing 12 .
  • a filter 15 is installed in the suction port 13. The filter 15 is for removing relatively large particles, dirt, dust, etc. from the air entering the interior of the housing 12 from the suction port 13.
  • An indoor unit heat exchanger 11 is installed on the leeward side of the filter 15 in the air passage inside the housing 12.
  • the indoor unit heat exchanger 11 exchanges heat with the air flowing through the air path inside the housing 12 to heat or cool the air flowing through the air path. Whether the air is heated or cooled depends on whether the air conditioner is in heating mode or cooling mode.
  • a cross flow fan 100 is installed on the leeward side of the indoor unit heat exchanger 11 in the aforementioned air path.
  • the crossflow fan 100 is for generating an airflow from the suction port 13 toward the blowout port 14 in the air path inside the housing 12 .
  • a rear guide 17 is provided on the rear side of the impeller of the cross flow fan 100 in the housing 12. Further, a stabilizer 18 is provided on the front side of the impeller of the cross flow fan 100 inside the housing 12.
  • the rear guide 17 is arranged in a spiral shape such that the distance from the impeller of the cross flow fan 100 increases from the indoor unit heat exchanger 11 side to the air outlet 14 side.
  • Upper and lower vanes 16 are provided at the air outlet 14.
  • the upper and lower vanes 16 are for adjusting the blowing angle of air blown out from the blowing outlet 14.
  • the indoor unit 10 can change the air blowing direction up and down.
  • the air outlet 14 is also provided with left and right vanes. The left and right vanes are for adjusting the blowing angle of the air blown out from the air outlet 14 in the left and right direction.
  • the crossflow fan 100 When the crossflow fan 100 operates, an air flow from the suction port 13 to the blowout port 14 is generated in the air path, air is sucked in from the suction port 13, and air is blown out from the blowout port 14.
  • the air sucked in from the suction port 13 becomes an airflow that passes through the air path inside the housing 12 in this order through the filter 15, the indoor unit heat exchanger 11, and the crossflow fan 100, and is blown out from the blowout port 14.
  • the direction of the wind blown out from the outlet 14, that is, the direction of the air blowing is adjusted by the upper and lower vanes 16 and the left and right vanes arranged on the leeward side of the cross flow fan 100.
  • the indoor unit 10 of the air conditioner configured as described above blows air indoors.
  • the indoor unit 10 can change the temperature and direction of the airflow.
  • the crossflow fan 100 includes an impeller 110 and a motor 150.
  • the impeller 110 includes a support member 120, blades 130, and a rotating shaft 140.
  • the motor 150 rotates the impeller 110 around the rotating shaft 140.
  • the impeller 110 includes a plurality of support members 120.
  • the support member 120 is a flat member having a circular or annular shape.
  • the plurality of support members 120 are arranged at preset intervals in a direction parallel to the rotation axis 140 (hereinafter also referred to as the rotation axis 140 direction).
  • the rotation shaft 140 of the impeller 110 is provided to pass through the center of the circular or annular shape of the plurality of support members 120.
  • a plurality of wings 130 are provided between adjacent support members 120.
  • the plurality of wings 130 are provided near the outer periphery of the support member 120.
  • the plurality of wings 130 are arranged at intervals along the circumferential direction of the support member 120.
  • a plurality of wings 130 supported between a pair of support members 120 constitute a series.
  • the impeller 110 of the cross-flow fan 100 is configured such that about 7 to 14 impellers are connected in the direction of the rotating shaft 140.
  • FIG. 4 shows a cross section of the blades 130 of the impeller 110 perpendicular to the rotation axis 140.
  • FIG. 5 shows an enlarged view of the main part of FIG.
  • a cross section perpendicular to the rotating shaft 140 is also referred to as a cross section C.
  • each of the plurality of blades 130 has a pressure surface 131 and a suction surface 132, as well as an outer peripheral end 133 and an inner peripheral end 134.
  • the positive pressure surface 131 is the surface of the blade 130 facing toward the direction of rotation.
  • the suction surface 132 is a surface of the blade 130 facing toward the side opposite to the rotation direction (hereinafter also referred to as the counter-rotation direction side).
  • the outer peripheral end 133 is the end of the blade 130 furthest from the rotating shaft 140.
  • Inner peripheral end 134 is the end of blade 130 closest to rotation axis 140.
  • the shapes of the outer circumferential end 133 and the inner circumferential end 134 in cross section C are both arcuate. In particular, as will be described later, when the shapes of the positive pressure surface 131 and the negative pressure surface 132 in the cross section C are the same, the shapes of the outer peripheral end 133 and the inner peripheral end 134 in the cross section C are both semicircular.
  • Each of the positive pressure surface 131 and the negative pressure surface 132 and the outer peripheral end portion 133 are smoothly connected. Further, each of the positive pressure surface 131 and the negative pressure surface 132 and the inner peripheral end portion 134 are smoothly connected.
  • the plurality of wings 130 have at least one first wing 201.
  • all of the plurality of wings 130 are the first wings 201.
  • not all of the plurality of wings 130 need to be the first wings 201, and at least some of the plurality of wings 130 may be the first wings 201. That is, in other words, some or all of the plurality of wings 130 are the first wings 201.
  • the pressure surface 131 of the first blade 201 has a convex shape in the first region 301 in the counter-rotational direction. In other words, the pressure surface 131 of the first blade 201 is concave in the rotation direction in the first region 301 .
  • the first region 301 is a region that includes the outer peripheral end portion 133 of the first blade 201 and is continuous in the radial direction of the impeller 110.
  • the pressure surface 131 of the first blade 201 has a convex shape in the second region 302 in the rotation direction side. In other words, the pressure surface 131 of the first blade 201 has a concave shape in the second region 302 in the counter-rotational direction.
  • the second region 302 is a region that includes the inner peripheral end portion 134 of the first blade 201 and is continuous in the radial direction of the impeller 110.
  • the suction surface 132 of the first blade 201 has the same shape as the pressure surface 131 of the first blade 201 in the cross section C. That is, in cross section C, the suction surface 132 of the first blade 201 has a convex shape in the first region 301 in the counter-rotational direction. In other words, the suction surface 132 of the first blade 201 is concave in the rotation direction in the first region 301 . Further, in cross section C, the suction surface 132 of the first blade 201 has a convex shape in the rotation direction side in the second region 302. In other words, the suction surface 132 of the first blade 201 has a concave shape in the second region 302 in the counter-rotational direction.
  • the impeller 110 switches between suction and blowout of the airflow.
  • the airflow flowing from the outer peripheral side of the impeller 110 between the blades 130 is abruptly turned in the direction of rotation after passing between the blades 130.
  • the crossflow fan 100 configured as described above at least some of the plurality of blades 130 are the first blades 201.
  • the first blade 201 at least the convex shape of the pressure surface 131 is oriented in opposite directions in the first region 301 and the second region 302.
  • the pressure surface 131 has a convex shape in the rotation direction side. Therefore, as shown in FIG. 6, the airflow passing between the blades 130 on the suction side of the cross-flow fan 100 tends to be directed toward the counter-rotation direction along the positive pressure surface 131 on the inner peripheral side. Therefore, the airflow after passing between the blades 130 on the suction side of the crossflow fan 100 can be suppressed from abruptly turning in the rotation direction. Accordingly, it is possible to suppress an increase in resistance due to a sudden turn of the airflow after passing between the blades.
  • the pressure surface 131 has a convex shape in the counter-rotation direction. Therefore, on the outer circumferential side of the suction side of the crossflow fan 100, separation of airflow from the negative pressure surface 132 can be suppressed, and inflow resistance between the blades can be reduced. In this way, ventilation resistance can be reduced on both the outer circumferential side and the inner circumferential side on the suction side of the crossflow fan 100, thereby making it easier for airflow to flow between the blades and preventing airflow separation from the negative pressure surface 132. It is possible to suppress the
  • first region 301 in which the positive pressure surface 131 and the negative pressure surface 132 have a convex shape in the counter-rotational direction
  • first region 301 in which the positive pressure surface 131 and the negative pressure surface 132 have a convex shape in the rotational direction.
  • the two areas 302 are directly connected.
  • an inflection point 303 exists in the shape of the pressure surface 131 and the suction surface 132 in the cross section C.
  • the first region 301 and the second region 302 may not be directly connected, and a third region may exist between the first region 301 and the second region 302. In the third region, for example, the shapes of the positive pressure surface 131 and the negative pressure surface 132 in cross section C are linear.
  • the curvature of the convex shape of the first region 301 is larger than the curvature of the convex shape of the second region 302.
  • the radial length of the convex shape of the first region 301 is longer than the radial length of the convex shape of the second region 302.
  • the first region 301 and the second region 302 are directly connected, and there is an inflection point 303 in the shape of the positive pressure surface 131 and the negative pressure surface 132 in cross section C.
  • the inflection point 303 is located closer to the inner circumferential end portion 134 than the midpoint in the radial direction of the first blade 201 .
  • the curvature of the blade cross-sectional shape on the outer peripheral side can be made small.
  • the curvature of the cross-sectional shape of the blades on the outer circumferential side becomes large, the airflow cannot follow the blade surfaces on both the suction side and the blowout side of the cross flow fan 100, and separation tends to occur.
  • FIG. 7 shows another example of the impeller 110 of the cross flow fan according to this embodiment.
  • the plurality of wings 130 need to be the first wings 201, and at least some of the plurality of wings 130 may be the first wings 201.
  • the plurality of blades 130 further include a second blade 202 in addition to the first blade 201. That is, some of the plurality of blades 130 that the impeller 110 has are the first blades 201 and the rest are the second blades 202.
  • the pressure surface 131 of the second blade 202 is a region from the outer peripheral end 133 of the second blade 202 to the inner peripheral end 134 of the second blade 202 in cross section C, that is, the area between the second blade 202 and the inner peripheral end 134 of the second blade 202.
  • the entire shape is convex in the counter-rotational direction.
  • the pressure surface 131 of the second blade 202 has a concave shape in the rotation direction side in the cross section C as a whole of the second blade 202 .
  • the suction surface 132 of the second blade 202 has the same shape as the pressure surface 131 of the second blade 202 in the cross section C.
  • the suction surface 132 of the second blade 202 has a convex shape in the counter-rotation direction as a whole.
  • the suction surface 132 of the second blade 202 has a concave shape in the rotation direction in the entire second blade 202 in the cross section C.
  • the length from the outer peripheral end 133 to the inner peripheral end 134 of the second blade 202 is the length from the outer peripheral end 133 to the inner peripheral end 134 of the first blade 201. length, i.e. shorter than the radial length.
  • the distance from the rotating shaft 140 to the outer peripheral end 133 of the first blade 201 is equal to the distance from the rotating shaft 140 to the outer peripheral end 133 of the second blade 202.
  • the distance from the rotating shaft 140 to the inner peripheral end 134 of the first blade 201 is shorter than the distance from the rotating shaft 140 to the inner peripheral end 134 of the second blade 202.
  • At least one second wing 202 is arranged between the first wings 201.
  • the second blade 202 is shorter than the first blade 201, and the inner peripheral end 134 of the second blade 202 is arranged on the outer peripheral side than the inner peripheral end 134 of the first blade 201. Therefore, the second blades 202 do not exist between the first blades 201 on the inner peripheral side. Since the first blades 201 have a long radial length, when the first blades 201 are arranged next to each other, the distance between the blades becomes small, especially on the inner peripheral side.
  • the second blade 202 which has a shorter radial length than the first blade 201, between the first blades 201, the distance between the blades on the inner circumferential side is suppressed from becoming smaller. However, it is possible to suppress an increase in ventilation resistance due to narrowing of the space between the blades.
  • the first blade 201 and the second blade 202 have the same outer peripheral cross-sectional shape. That is, in cross section C, the shape of the first region 301 of the first blade 201 is preferably the same as the shape of the second blade 202 in the same radial range as the first region 301. By doing so, on the blowout side of the crossflow fan 100, the directions of the airflow flowing out from between the blades 130 can be aligned, and destabilization of the blowing airflow can be suppressed.
  • the number of second wings 202 is greater than the number of first wings 201.
  • separation of airflow tends to occur at the inner peripheral end portion 134 of the first blade 201.
  • the number of second wings 202 arranged between the first wings 201 may be one or more, but in particular, two or more second wings 202 may be arranged between the first wings 201. It is preferable to arrange three.
  • a line T extending from a line tangent to the positive pressure surface 131 at the connection point between the positive pressure surface 131 and the inner peripheral end 134 of the first blade 201 toward the inner peripheral end 134 side is , it is preferable to pass through the opposite rotation direction side of the rotating shaft 140. That is, the inner circumferential end 134 side of the positive pressure surface 131 of the first blade 201 is inclined toward the opposite rotation direction than the surface from the inner circumferential end 134 toward the rotating shaft 140 . By doing so, the airflow passing between the blades 130 on the suction side of the crossflow fan 100 and flowing out to the inner peripheral side of the impeller 110 can be made more likely to be oriented in the counter-rotation direction.
  • the airflow that has passed between the blades 130 on the suction side of the crossflow fan 100 can be further suppressed from abruptly turning in the rotation direction, and the increase in resistance due to the sudden turning of the airflow after passing between the blades can be further suppressed.
  • a line extending from a line that is in contact with the positive pressure surface 131 at the connection point between the positive pressure surface 131 and the inner peripheral end 134 of the second blade 202 toward the inner peripheral end 134 side is a line that extends toward the inner peripheral end 134 side. It may be made to pass on the rotation direction side. In this case, it is preferable that the inner peripheral end 134 side of the pressure surface 131 of the first blade 201 is tilted more toward the counter-rotational direction than the second blade 202.
  • the inner circumference of the pressure surface 131 of the first blade 201 can be tilted more toward the counter-rotation direction. , it is possible to make the airflow passing between the blades 130 from the outer circumferential side to the inner circumferential side of the impeller 110 even more likely to be oriented in the counter-rotational direction.
  • the present disclosure includes a plurality of support members arranged at preset intervals in the direction of a rotation axis, and provided between adjacent support members, and arranged near the outer periphery of the support members and spaced apart in the circumferential direction. Available for cross flow fans with multiple blades. Further, the present disclosure can also be used in a blower device and a refrigeration cycle device equipped with a cross-flow fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a cross flow fan that can suppress an increase in ventilation resistance between blades of an impeller. For this purpose, a cross flow fan (100) comprises: a plurality of support members (120) that are disposed at a preset interval in a rotational axis direction, and that have a circular or annular plate shape; and a plurality of blades (130) that are provided between the support members (120) adjacent to each other, and that are disposed closer to the outer circumference of the support members (120) and spaced apart from each other in a circumferential direction. Each of the blades (130) has a positive pressure surface (131) on a rotational direction side and a negative pressure surface (132) on an anti-rotational direction side. The plurality of blades (130) include at least one first blade (201). The positive pressure surface (131) of the first blade (201) has, in a cross section thereof perpendicular to a rotational axis (140), a protruding shape on the anti-rotational direction side in a first area (301) including an outer circumferential end (133) of the first blade (201), and has a protruding shape on the rotational direction side in a second area (302) including an inner circumferential end (134) of the first blade (201).

Description

クロスフローファン、送風装置及び冷凍サイクル装置Cross flow fans, blowers and refrigeration cycle equipment
 本開示は、クロスフローファン、送風装置及び冷凍サイクル装置に関するものである。 The present disclosure relates to a crossflow fan, a blower device, and a refrigeration cycle device.
 内周側に配置される内縁部と、外周側に配置される外縁部とを有し、周方向に互いに間隔を隔てて配列される複数の羽根部を備え、羽根部には、内縁部と外縁部との間で延在し、ファンの回転方向の側に配置される正圧面と、正圧面の裏側に配置される負圧面とからなる翼面が形成され、ファンの回転に伴って、翼面上には内縁部と外縁部との間を流れる流体流れが発生し、羽根部は、ファンの回転軸に直交する平面により切断された場合に、正圧面および負圧面に凹部が形成される翼断面を有し、複数の羽根部は、互いに異なる形状の翼断面を有する第1羽根部および第2羽根部を含むファンが知られている(例えば、特許文献1参照)。 It has an inner edge part disposed on the inner circumferential side and an outer edge part disposed on the outer circumferential side, and includes a plurality of blade parts arranged at intervals in the circumferential direction, and the blade part has an inner edge part and an outer edge part arranged on the outer peripheral side. A blade surface is formed that extends between the outer edge part and consists of a positive pressure surface located on the side in the rotation direction of the fan and a negative pressure surface located on the back side of the positive pressure surface, and as the fan rotates, A fluid flow occurs between the inner edge and the outer edge on the blade surface, and when the blade is cut by a plane perpendicular to the rotation axis of the fan, recesses are formed on the pressure and suction surfaces. 2. Description of the Related Art A fan is known in which a plurality of blade parts include a first blade part and a second blade part each having a blade cross section of a different shape (see, for example, Patent Document 1).
日本特開2011-190747号公報Japanese Patent Application Publication No. 2011-190747
 しかしながら、特許文献1に示されるようなクロスフローファンでは、特に、羽根車への気流の吸込みが吹出しに切り替わる直前の領域において、翼間を通過した後に気流が羽根車の回転方向に急転向する。このような気流の急転向に起因して翼間の通風抵抗が増大する。そして、翼間の通風抵抗の増大により、風量が低下し、翼の負圧面からの気流剥離を生じやすい。 However, in a cross-flow fan as shown in Patent Document 1, the airflow suddenly turns in the direction of rotation of the impeller after passing between the blades, especially in the region immediately before the airflow changes from suction to the impeller to blowout. . Due to such a sudden turn of the airflow, the ventilation resistance between the blades increases. Further, due to the increase in ventilation resistance between the blades, the air volume decreases, and air flow tends to separate from the suction surface of the blade.
 本開示は、このような課題を解決するためになされたものである。その目的は、特に羽根車の外周側から内周側に翼間を通過した後における気流の急転向を抑制し、翼間の通風抵抗の増大を抑制することができ、ひいては翼面からの気流剥離を抑制することが可能であるクロスフローファン、送風装置及び冷凍サイクル装置を提供することにある。 The present disclosure has been made to solve such problems. The purpose of this is to suppress the sharp turn of the airflow after passing between the blades, especially from the outer circumferential side to the inner circumferential side of the impeller, and to suppress the increase in ventilation resistance between the blades, which in turn suppresses the airflow from the blade surface. An object of the present invention is to provide a cross flow fan, a blower device, and a refrigeration cycle device that can suppress separation.
 本開示に係るクロスフローファンは、回転軸方向に予め設定された間隔で配置され、円形又は円環形の平板状を呈する複数の支持部材と、隣り合う前記支持部材の間に設けられ、前記支持部材の外周寄りで、かつ、周方向に間隔をあけて配置された複数の翼と、を備え、それぞれの前記翼は、回転方向側の正圧面と反回転方向側の負圧面とを有し、複数の前記翼は、少なくとも1つの第1の翼を有し、前記第1の翼の前記正圧面は、前記回転軸に垂直な断面において、前記第1の翼の外周端部を含む第1領域で前記反回転方向側に凸形状であり、かつ、前記第1の翼の内周端部を含む第2領域で前記回転方向側に凸形状である。 A cross flow fan according to the present disclosure includes a plurality of support members arranged at preset intervals in a rotation axis direction and having a circular or annular flat plate shape, and provided between adjacent support members, and a plurality of blades disposed near the outer periphery of the member and spaced apart in the circumferential direction, each of the blades having a positive pressure surface on the rotation direction side and a negative pressure surface on the counter rotation direction side. , the plurality of blades have at least one first blade, and the pressure surface of the first blade includes a first blade including an outer peripheral end of the first blade in a cross section perpendicular to the rotation axis. One region has a convex shape in the opposite rotational direction, and a second region including the inner circumferential end of the first blade has a convex shape in the rotational direction.
 本開示に係る送風装置は、上記のように構成されたクロスフローファンを備える。 A blower device according to the present disclosure includes a crossflow fan configured as described above.
 本開示に係る冷凍サイクル装置は、上記のように構成されたクロスフローファンと、前記クロスフローファンにより生成された空気流と冷媒との間で熱交換を行わせる熱交換器と、を備える。 A refrigeration cycle device according to the present disclosure includes a cross-flow fan configured as described above, and a heat exchanger that performs heat exchange between a refrigerant and an air flow generated by the cross-flow fan.
 本開示に係るクロスフローファン、送風装置及び冷凍サイクル装置によれば、特に羽根車の外周側から内周側に翼間を通過した後における気流の急転向を抑制し、翼間の通風抵抗の増大を抑制することができ、ひいては翼面からの気流剥離を抑制することが可能であるという効果を奏する。 According to the cross-flow fan, blower device, and refrigeration cycle device according to the present disclosure, it is possible to suppress sudden turning of airflow after passing between the blades from the outer circumferential side of the impeller to the inner circumferential side, and to reduce ventilation resistance between the blades. The effect is that it is possible to suppress the increase in airflow, and in turn, it is possible to suppress airflow separation from the blade surface.
実施の形態1に係る冷凍サイクル装置の構成を示す図である。1 is a diagram showing the configuration of a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置及び送風装置の一例である空気調和機の室内機の構成を示す断面図である。1 is a cross-sectional view showing the configuration of an indoor unit of an air conditioner that is an example of a refrigeration cycle device and a blower device according to Embodiment 1. FIG. 実施の形態1に係るクロスフローファンの正面図である。1 is a front view of a cross flow fan according to Embodiment 1. FIG. 実施の形態1に係るクロスフローファンの羽根車の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of an impeller of the cross flow fan according to the first embodiment. 実施の形態1に係るクロスフローファンの羽根車の一例を示す要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part of an example of an impeller of the cross flow fan according to the first embodiment. 実施の形態1に係るクロスフローファンの羽根車の一例における気流を示す図である。FIG. 3 is a diagram showing airflow in an example of an impeller of the crossflow fan according to the first embodiment. 実施の形態1に係るクロスフローファンの羽根車の別例を示す断面図である。FIG. 3 is a sectional view showing another example of the impeller of the cross flow fan according to the first embodiment. 実施の形態1に係るクロスフローファンの羽根車の別例を示す断面図である。FIG. 3 is a sectional view showing another example of the impeller of the cross flow fan according to the first embodiment. 実施の形態1に係るクロスフローファンの羽根車の別例を示す要部拡大断面図である。FIG. 7 is an enlarged sectional view of a main part showing another example of the impeller of the cross flow fan according to the first embodiment.
 本開示に係るクロスフローファン、送風装置及び冷凍サイクル装置を実施するための形態について添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜に簡略化又は省略する。以下の説明においては便宜上、図示の状態を基準に各構造の位置関係を表現することがある。なお、本開示は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 Embodiments for implementing the crossflow fan, blower device, and refrigeration cycle device according to the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals, and overlapping explanations will be simplified or omitted as appropriate. In the following description, for convenience, the positional relationship of each structure may be expressed based on the illustrated state. Note that the present disclosure is not limited to the following embodiments, and any combination of embodiments, modification of any component of each embodiment, or modification of each embodiment may be made without departing from the spirit of the present disclosure. Any component of the embodiment can be omitted.
実施の形態1.
 図1から図9を参照しながら、本開示の実施の形態1について説明する。図1は冷凍サイクル装置の構成を示す図である。図2は冷凍サイクル装置及び送風装置の一例である空気調和機の室内機の構成を示す断面図である。図3はクロスフローファンの正面図である。図4はクロスフローファンの羽根車の一例を示す断面図である。図5はクロスフローファンの羽根車の一例を示す要部拡大断面図である。図6はクロスフローファンの羽根車の一例における気流を示す図である。図7及び図8はクロスフローファンの羽根車の別例を示す断面図である。図9はクロスフローファンの羽根車の別例を示す要部拡大断面図である。
Embodiment 1.
Embodiment 1 of the present disclosure will be described with reference to FIGS. 1 to 9. FIG. 1 is a diagram showing the configuration of a refrigeration cycle device. FIG. 2 is a sectional view showing the configuration of an indoor unit of an air conditioner, which is an example of a refrigeration cycle device and a blower device. FIG. 3 is a front view of the crossflow fan. FIG. 4 is a sectional view showing an example of an impeller of a cross flow fan. FIG. 5 is an enlarged sectional view of a main part of an example of an impeller of a cross flow fan. FIG. 6 is a diagram showing airflow in an example of an impeller of a crossflow fan. 7 and 8 are cross-sectional views showing other examples of the impeller of the cross flow fan. FIG. 9 is an enlarged sectional view of a main part showing another example of an impeller of a cross flow fan.
 本開示に係るクロスフローファンを備えた冷凍サイクル装置の一例として、空気調和機の構成を図1に示す。なお、本開示に係るクロスフローファンを備えた冷凍サイクル装置としては、空気調和機の他に、例えばショーケース等を挙げることができる。また、後述するように、空気調和機は送風する機能を有している。したがって、ここで説明する空気調和機は、本開示に係るクロスフローファンを備えた送風装置の一例でもある。なお、本開示に係るクロスフローファンを備えた送風装置としては、空気調和機の他に、例えばサーキュレータ、タワー型扇風機等を挙げることができる。 FIG. 1 shows the configuration of an air conditioner as an example of a refrigeration cycle device equipped with a crossflow fan according to the present disclosure. Note that, in addition to an air conditioner, examples of the refrigeration cycle device including the crossflow fan according to the present disclosure include a showcase and the like. Furthermore, as described later, the air conditioner has a function of blowing air. Therefore, the air conditioner described here is also an example of a blower device including a cross-flow fan according to the present disclosure. Note that, in addition to an air conditioner, examples of the blower device including the cross-flow fan according to the present disclosure include a circulator, a tower-type electric fan, and the like.
 図1に示すように、この実施の形態に係る冷凍サイクル装置である空気調和機は、室内機10と室外機20とを備えている。室内機10は、空気調和の対象となる室の内部すなわち室内に設置される。室外機20は、当該室の外部すなわち室外に設置される。室内機10は、室内機熱交換器11とクロスフローファン100とを備えている。室外機20は、室外機熱交換器21、室外機ファン22、圧縮機23、膨張弁24及び四方弁25を備えている。 As shown in FIG. 1, the air conditioner, which is a refrigeration cycle device according to this embodiment, includes an indoor unit 10 and an outdoor unit 20. The indoor unit 10 is installed inside a room to be air-conditioned, that is, indoors. The outdoor unit 20 is installed outside the room, that is, outdoors. The indoor unit 10 includes an indoor unit heat exchanger 11 and a cross flow fan 100. The outdoor unit 20 includes an outdoor unit heat exchanger 21, an outdoor unit fan 22, a compressor 23, an expansion valve 24, and a four-way valve 25.
 室内機10と室外機20とは冷媒配管30で接続されている。冷媒配管30は、室内機10の室内機熱交換器11と室外機20の室外機熱交換器21との間で循環的に設けられている。冷媒配管30内には冷媒が封入されている。冷媒配管30内に封入される冷媒は、例えば、ジフルオロメタン(CH2F2:R32)等である。 The indoor unit 10 and the outdoor unit 20 are connected by a refrigerant pipe 30. The refrigerant pipe 30 is provided cyclically between the indoor unit heat exchanger 11 of the indoor unit 10 and the outdoor unit heat exchanger 21 of the outdoor unit 20. A refrigerant is sealed inside the refrigerant pipe 30. The refrigerant sealed in the refrigerant pipe 30 is, for example, difluoromethane (CH2F2:R32).
 冷媒配管30は、室内機熱交換器11、四方弁25、圧縮機23、室外機熱交換器21及び膨張弁24を環状に接続している。したがって、室内機熱交換器11と室外機熱交換器21との間で冷媒が循環する冷媒回路が形成されている。 The refrigerant pipe 30 connects the indoor unit heat exchanger 11, the four-way valve 25, the compressor 23, the outdoor unit heat exchanger 21, and the expansion valve 24 in an annular manner. Therefore, a refrigerant circuit in which refrigerant circulates between the indoor heat exchanger 11 and the outdoor heat exchanger 21 is formed.
 圧縮機23は、供給された冷媒を圧縮して当該冷媒の圧力及び温度を高める機器である。圧縮機23は、例えば、ロータリ圧縮機、スクロール圧縮機、レシプロ圧縮機等を用いることができる。膨張弁24は、室外機熱交換器21で凝縮された冷媒を膨張させ、当該冷媒を減圧する。 The compressor 23 is a device that compresses the supplied refrigerant to increase the pressure and temperature of the refrigerant. As the compressor 23, for example, a rotary compressor, a scroll compressor, a reciprocating compressor, etc. can be used. The expansion valve 24 expands the refrigerant condensed in the outdoor unit heat exchanger 21 and reduces the pressure of the refrigerant.
 室内機熱交換器11は、室内機熱交換器11に流入した冷媒と室内機熱交換器11の周囲の空気との間で熱を交換させる。クロスフローファン100は、室内の空気が室内機熱交換器11の周囲を通過するように送風し、室内機熱交換器11における冷媒と空気との間での熱交換を促進するとともに、熱交換により加熱又は冷却された空気を再び室内に送り出す。室外機熱交換器21は、室外機熱交換器21に流入した冷媒と室外機熱交換器21の周囲の空気との間で熱を交換させる。室外機ファン22は、室外の空気が室外機熱交換器21の周囲を通過するように送風し、室外機熱交換器21における冷媒と空気との間での熱交換を促進する。 The indoor heat exchanger 11 exchanges heat between the refrigerant that has flowed into the indoor heat exchanger 11 and the air surrounding the indoor heat exchanger 11. The cross flow fan 100 blows indoor air so that it passes around the indoor unit heat exchanger 11, promotes heat exchange between the refrigerant and air in the indoor unit heat exchanger 11, and also promotes heat exchange. The heated or cooled air is sent back into the room. The outdoor heat exchanger 21 exchanges heat between the refrigerant that has flowed into the outdoor heat exchanger 21 and the air around the outdoor heat exchanger 21 . The outdoor unit fan 22 blows outdoor air so that it passes around the outdoor unit heat exchanger 21, and promotes heat exchange between the refrigerant and the air in the outdoor unit heat exchanger 21.
 このようにして構成された冷媒回路は、室内機熱交換器11及び室外機熱交換器21のそれぞれにおいて冷媒と空気の間で熱交換を行うことにより、室内機10と室外機20との間で熱を移動させるヒートポンプとして働く。この際、四方弁25を切り換えることにより、冷媒回路における冷媒の循環方向を反転させて空気調和機の冷房運転と暖房運転とを切り換えることができる。 The refrigerant circuit configured in this manner exchanges heat between the refrigerant and air in each of the indoor unit heat exchanger 11 and the outdoor unit heat exchanger 21, thereby providing a connection between the indoor unit 10 and the outdoor unit 20. It works as a heat pump to move heat. At this time, by switching the four-way valve 25, the circulation direction of the refrigerant in the refrigerant circuit can be reversed, and the air conditioner can be switched between cooling operation and heating operation.
 図2に示すように、室内機10は筐体12を備えている。筐体12は室内に設置される。筐体12の内部には、室内機熱交換器11及びクロスフローファン100が収容されている。筐体12の上面部には、吸込口13が形成されている。吸込口13は、外部から筐体12の内部に空気を取り込むための開口である。筐体12の下面には、吹出口14が形成されている。吹出口14は、筐体12の内部から外部へと空気を排出するための開口である。 As shown in FIG. 2, the indoor unit 10 includes a housing 12. The housing 12 is installed indoors. Inside the housing 12, an indoor unit heat exchanger 11 and a cross flow fan 100 are housed. A suction port 13 is formed in the upper surface of the housing 12 . The suction port 13 is an opening for taking air into the housing 12 from the outside. An air outlet 14 is formed on the lower surface of the housing 12 . The air outlet 14 is an opening for discharging air from the inside of the housing 12 to the outside.
 筐体12の内部には、吸込口13から吹出口14へと通じる風路が形成されている。吸込口13には、フィルター15が設置されている。フィルター15は、吸込口13から筐体12の内部へと入る空気から、比較的大きなごみ、塵、埃等を取り除くためのものである。 An air path leading from the suction port 13 to the blowout port 14 is formed inside the housing 12 . A filter 15 is installed in the suction port 13. The filter 15 is for removing relatively large particles, dirt, dust, etc. from the air entering the interior of the housing 12 from the suction port 13.
 筐体12内の風路におけるフィルター15の風下側には、室内機熱交換器11が設置されている。室内機熱交換器11は、筐体12内の風路を流れる空気と熱交換を行って、風路を流れる空気を加熱又は冷却する。空気を加熱するか冷却するかは、空気調和機が暖房運転であるか冷房運転であるかによる。 An indoor unit heat exchanger 11 is installed on the leeward side of the filter 15 in the air passage inside the housing 12. The indoor unit heat exchanger 11 exchanges heat with the air flowing through the air path inside the housing 12 to heat or cool the air flowing through the air path. Whether the air is heated or cooled depends on whether the air conditioner is in heating mode or cooling mode.
 前述した風路における室内機熱交換器11の風下側には、クロスフローファン100が設置されている。クロスフローファン100は、吸込口13から吹出口14へと向かう空気流を、筐体12内の風路中に生成するためのものである。筐体12内におけるクロスフローファン100の羽根車の後面側には、リアガイド17が設けられている。また、筐体12内におけるクロスフローファン100の羽根車の前面側には、スタビライザー18が設けられている。リアガイド17は、室内機熱交換器11側から吹出口14側にいくに従って、クロスフローファン100の羽根車からの距離が拡大する螺旋状に配置されている。これらのリアガイド17及びスタビライザー18により、クロスフローファン100の羽根車の回転時に、流路抵抗が最も小さい室内機熱交換器11側から吸い込み、流路抵抗が次に小さい吹出口14側に吹き出す空気の流れが実現される。 A cross flow fan 100 is installed on the leeward side of the indoor unit heat exchanger 11 in the aforementioned air path. The crossflow fan 100 is for generating an airflow from the suction port 13 toward the blowout port 14 in the air path inside the housing 12 . A rear guide 17 is provided on the rear side of the impeller of the cross flow fan 100 in the housing 12. Further, a stabilizer 18 is provided on the front side of the impeller of the cross flow fan 100 inside the housing 12. The rear guide 17 is arranged in a spiral shape such that the distance from the impeller of the cross flow fan 100 increases from the indoor unit heat exchanger 11 side to the air outlet 14 side. With these rear guides 17 and stabilizers 18, when the impeller of the cross flow fan 100 rotates, air is sucked in from the indoor unit heat exchanger 11 side where the flow path resistance is lowest, and is blown out to the outlet 14 side where the flow path resistance is the next lowest. Air flow is achieved.
 吹出口14には、上下ベーン16が設けられている。上下ベーン16は、吹出口14から吹き出す空気の吹き出し角度を調整するためのものである。上下ベーン16の向きを変えることで、室内機10は、送風方向を上下に変更可能である。また、ここでは図示が省略されているが、吹出口14には、左右ベーンも備えている。左右ベーンは、吹出口14から吹き出す空気の左右方向の吹き出し角度を調整するためのものである。 Upper and lower vanes 16 are provided at the air outlet 14. The upper and lower vanes 16 are for adjusting the blowing angle of air blown out from the blowing outlet 14. By changing the orientation of the upper and lower vanes 16, the indoor unit 10 can change the air blowing direction up and down. Although not shown here, the air outlet 14 is also provided with left and right vanes. The left and right vanes are for adjusting the blowing angle of the air blown out from the air outlet 14 in the left and right direction.
 クロスフローファン100が動作すると、吸込口13から吹出口14へと向かう空気流が風路中に生成されて、吸込口13から空気が吸い込まれ、吹出口14から空気が吹き出される。吸込口13から吸い込まれた空気は、筐体12内部の風路を、フィルター15、室内機熱交換器11、クロスフローファン100の順に通過する空気流となり、吹出口14から吹き出す。この際、クロスフローファン100の風下側に配置された上下ベーン16及び左右ベーンにより、吹出口14から吹き出される風の方向すなわち送風方向が調整される。以上のように構成された空気調和機の室内機10は、室内に送風する。そして、室内機10は、送風する気流の温度及び風向を変更可能である。 When the crossflow fan 100 operates, an air flow from the suction port 13 to the blowout port 14 is generated in the air path, air is sucked in from the suction port 13, and air is blown out from the blowout port 14. The air sucked in from the suction port 13 becomes an airflow that passes through the air path inside the housing 12 in this order through the filter 15, the indoor unit heat exchanger 11, and the crossflow fan 100, and is blown out from the blowout port 14. At this time, the direction of the wind blown out from the outlet 14, that is, the direction of the air blowing, is adjusted by the upper and lower vanes 16 and the left and right vanes arranged on the leeward side of the cross flow fan 100. The indoor unit 10 of the air conditioner configured as described above blows air indoors. The indoor unit 10 can change the temperature and direction of the airflow.
 図3に示すように、クロスフローファン100は、羽根車110及びモータ150を備えている。羽根車110は、支持部材120、翼130及び回転軸140を備えている。モータ150は、回転軸140を中心に羽根車110を回転させる。 As shown in FIG. 3, the crossflow fan 100 includes an impeller 110 and a motor 150. The impeller 110 includes a support member 120, blades 130, and a rotating shaft 140. The motor 150 rotates the impeller 110 around the rotating shaft 140.
 羽根車110は、複数の支持部材120を備えている。支持部材120は、円形又は円環形を呈する平板状の部材である。複数の支持部材120は、回転軸140に平行な方向(以下、回転軸140方向ともいう)に予め設定された間隔で配置されている。羽根車110の回転軸140は、複数の支持部材120の円形又は円環形の中心を貫通して設けられている。隣り合う支持部材120の間には、複数の翼130が設けられている。複数の翼130は、支持部材120の外周寄りに設けられている。複数の翼130は、支持部材120の周方向に沿って間隔をあけて整列されている。一対の支持部材120の間に支持される複数の翼130により1連が構成される。クロスフローファン100の羽根車110は、回転軸140方向に7連から14連程度が連なって構成されている。 The impeller 110 includes a plurality of support members 120. The support member 120 is a flat member having a circular or annular shape. The plurality of support members 120 are arranged at preset intervals in a direction parallel to the rotation axis 140 (hereinafter also referred to as the rotation axis 140 direction). The rotation shaft 140 of the impeller 110 is provided to pass through the center of the circular or annular shape of the plurality of support members 120. A plurality of wings 130 are provided between adjacent support members 120. The plurality of wings 130 are provided near the outer periphery of the support member 120. The plurality of wings 130 are arranged at intervals along the circumferential direction of the support member 120. A plurality of wings 130 supported between a pair of support members 120 constitute a series. The impeller 110 of the cross-flow fan 100 is configured such that about 7 to 14 impellers are connected in the direction of the rotating shaft 140.
 図4は、羽根車110の翼130の回転軸140に垂直な断面を示している。図5は、図4の要部を拡大して示したものである。本開示においては、回転軸140に垂直な断面を断面Cともいう。これらの図に示すように、複数の翼130のそれぞれは、正圧面131及び負圧面132、並びに、外周端部133及び内周端部134を有している。正圧面131は、回転方向側に向いた翼130の面である。負圧面132は、回転方向とは反対側(以下、反回転方向側ともいう)に向いた翼130の面である。 FIG. 4 shows a cross section of the blades 130 of the impeller 110 perpendicular to the rotation axis 140. FIG. 5 shows an enlarged view of the main part of FIG. In the present disclosure, a cross section perpendicular to the rotating shaft 140 is also referred to as a cross section C. As shown in these figures, each of the plurality of blades 130 has a pressure surface 131 and a suction surface 132, as well as an outer peripheral end 133 and an inner peripheral end 134. The positive pressure surface 131 is the surface of the blade 130 facing toward the direction of rotation. The suction surface 132 is a surface of the blade 130 facing toward the side opposite to the rotation direction (hereinafter also referred to as the counter-rotation direction side).
 外周端部133は、回転軸140から最も遠い翼130の端部である。内周端部134は、回転軸140に最も近い翼130の端部である。断面Cにおける外周端部133及び内周端部134の形状は、いずれも円弧状である。特に、後述するように、断面Cにおける正圧面131及び負圧面132の形状が同一である場合、断面Cにおける外周端部133及び内周端部134の形状は、いずれも半円状である。正圧面131及び負圧面132のそれぞれと外周端部133とは、滑らかに接続されている。また、正圧面131及び負圧面132のそれぞれと内周端部134とは、滑らかに接続されている。 The outer peripheral end 133 is the end of the blade 130 furthest from the rotating shaft 140. Inner peripheral end 134 is the end of blade 130 closest to rotation axis 140. The shapes of the outer circumferential end 133 and the inner circumferential end 134 in cross section C are both arcuate. In particular, as will be described later, when the shapes of the positive pressure surface 131 and the negative pressure surface 132 in the cross section C are the same, the shapes of the outer peripheral end 133 and the inner peripheral end 134 in the cross section C are both semicircular. Each of the positive pressure surface 131 and the negative pressure surface 132 and the outer peripheral end portion 133 are smoothly connected. Further, each of the positive pressure surface 131 and the negative pressure surface 132 and the inner peripheral end portion 134 are smoothly connected.
 複数の翼130は、少なくとも1つの第1の翼201を有している。図4に示す構成例では、複数の翼130の全てが第1の翼201である。ただし、複数の翼130の全てが第1の翼201である必要はなく、複数の翼130の少なくとも一部が第1の翼201であればよい。すなわち、換言すれば、複数の翼130の一部又は全部が第1の翼201である。 The plurality of wings 130 have at least one first wing 201. In the configuration example shown in FIG. 4, all of the plurality of wings 130 are the first wings 201. However, not all of the plurality of wings 130 need to be the first wings 201, and at least some of the plurality of wings 130 may be the first wings 201. That is, in other words, some or all of the plurality of wings 130 are the first wings 201.
 図5に示すように、断面Cにおいて、第1の翼201の正圧面131は、第1領域301で反回転方向側に凸形状である。換言すれば、第1の翼201の正圧面131は、第1領域301で回転方向側に凹形状である。第1領域301とは、当該第1の翼201の外周端部133を含み、かつ、羽根車110の径方向に連続した領域である。また、断面Cにおいて、第1の翼201の正圧面131は、第2領域302で回転方向側に凸形状である。換言すれば、第1の翼201の正圧面131は、第2領域302で反回転方向側に凹形状である。第2領域302とは、当該第1の翼201の内周端部134を含み、かつ、羽根車110の径方向に連続した領域である。 As shown in FIG. 5, in cross section C, the pressure surface 131 of the first blade 201 has a convex shape in the first region 301 in the counter-rotational direction. In other words, the pressure surface 131 of the first blade 201 is concave in the rotation direction in the first region 301 . The first region 301 is a region that includes the outer peripheral end portion 133 of the first blade 201 and is continuous in the radial direction of the impeller 110. Further, in cross section C, the pressure surface 131 of the first blade 201 has a convex shape in the second region 302 in the rotation direction side. In other words, the pressure surface 131 of the first blade 201 has a concave shape in the second region 302 in the counter-rotational direction. The second region 302 is a region that includes the inner peripheral end portion 134 of the first blade 201 and is continuous in the radial direction of the impeller 110.
 さらに、図5に示す構成例では、断面Cにおいて、第1の翼201の負圧面132は、第1の翼201の正圧面131と同形状である。すなわち、断面Cにおいて、第1の翼201の負圧面132は、第1領域301で反回転方向側に凸形状である。換言すれば、第1の翼201の負圧面132は、第1領域301で回転方向側に凹形状である。また、断面Cにおいて、第1の翼201の負圧面132は、第2領域302で回転方向側に凸形状である。換言すれば、第1の翼201の負圧面132は、第2領域302で反回転方向側に凹形状である。 Further, in the configuration example shown in FIG. 5, the suction surface 132 of the first blade 201 has the same shape as the pressure surface 131 of the first blade 201 in the cross section C. That is, in cross section C, the suction surface 132 of the first blade 201 has a convex shape in the first region 301 in the counter-rotational direction. In other words, the suction surface 132 of the first blade 201 is concave in the rotation direction in the first region 301 . Further, in cross section C, the suction surface 132 of the first blade 201 has a convex shape in the rotation direction side in the second region 302. In other words, the suction surface 132 of the first blade 201 has a concave shape in the second region 302 in the counter-rotational direction.
 クロスフローファン100のリアガイド17の近傍では、羽根車110の気流の吸込みと吹出しとが切り替わる。クロスフローファン100の吸込側におけるリアガイド17の近傍では、羽根車110の外周側から翼130の間に流入した気流は、翼130の間を通過した後に回転方向に急転向する。以上のように構成されたクロスフローファン100においては、複数の翼130の少なくとも一部が第1の翼201である。そして、この第1の翼201では、少なくとも正圧面131の凸形状の向きが、第1領域301と第2領域302とで反対向きになっている。すなわち、第1の翼201では、当該第1の翼201の内周端部134を含む第2領域302において、少なくとも正圧面131が回転方向側に凸形状である。このため、図6に示すように、クロスフローファン100の吸込側で翼130の間を通過する気流は、内周側で正圧面131に沿って反回転方向側に向きやすくなる。したがって、クロスフローファン100の吸込側で翼130の間を通過した後の気流が、回転方向へと急転向することを抑制できる。そして、これにより、翼間通過後の気流の急転向による抵抗増大を抑制できる。 In the vicinity of the rear guide 17 of the crossflow fan 100, the impeller 110 switches between suction and blowout of the airflow. In the vicinity of the rear guide 17 on the suction side of the cross-flow fan 100, the airflow flowing from the outer peripheral side of the impeller 110 between the blades 130 is abruptly turned in the direction of rotation after passing between the blades 130. In the crossflow fan 100 configured as described above, at least some of the plurality of blades 130 are the first blades 201. In the first blade 201, at least the convex shape of the pressure surface 131 is oriented in opposite directions in the first region 301 and the second region 302. That is, in the first blade 201, in the second region 302 including the inner peripheral end portion 134 of the first blade 201, at least the pressure surface 131 has a convex shape in the rotation direction side. Therefore, as shown in FIG. 6, the airflow passing between the blades 130 on the suction side of the cross-flow fan 100 tends to be directed toward the counter-rotation direction along the positive pressure surface 131 on the inner peripheral side. Therefore, the airflow after passing between the blades 130 on the suction side of the crossflow fan 100 can be suppressed from abruptly turning in the rotation direction. Accordingly, it is possible to suppress an increase in resistance due to a sudden turn of the airflow after passing between the blades.
 また、第1の翼201では、当該第1の翼201の外周端部133を含む第1領域301において、少なくとも正圧面131が反回転方向側に凸形状である。このため、クロスフローファン100の吸込側の外周側において、負圧面132からの気流剥離を抑制して、翼間への流入抵抗を低減できる。このようにして、クロスフローファン100の吸込側における外周側及び内周側の両方で通風抵抗を低減させることができ、これにより、翼間に気流が流入しやすくなり負圧面132からの気流剥離を抑制することが可能である。 Further, in the first blade 201, in the first region 301 including the outer peripheral end portion 133 of the first blade 201, at least the pressure surface 131 has a convex shape in the counter-rotation direction. Therefore, on the outer circumferential side of the suction side of the crossflow fan 100, separation of airflow from the negative pressure surface 132 can be suppressed, and inflow resistance between the blades can be reduced. In this way, ventilation resistance can be reduced on both the outer circumferential side and the inner circumferential side on the suction side of the crossflow fan 100, thereby making it easier for airflow to flow between the blades and preventing airflow separation from the negative pressure surface 132. It is possible to suppress the
 図5に示す構成例では、断面Cにおいて、正圧面131及び負圧面132が反回転方向に凸形状を呈する第1領域301と、正圧面131及び負圧面132が回転方向に凸形状を呈する第2領域302とが直接的に接続されている。換言すれば、断面Cにおける正圧面131及び負圧面132の形状について変曲点303が存在する。なお、第1領域301と第2領域302とが直接的に接続されておらず、第1領域301と第2領域302との間に第3領域が存在してもよい。第3領域においては、例えば、断面Cにおける正圧面131及び負圧面132の形状が直線状である。 In the configuration example shown in FIG. 5, in the cross section C, there is a first region 301 in which the positive pressure surface 131 and the negative pressure surface 132 have a convex shape in the counter-rotational direction, and a first region 301 in which the positive pressure surface 131 and the negative pressure surface 132 have a convex shape in the rotational direction. The two areas 302 are directly connected. In other words, an inflection point 303 exists in the shape of the pressure surface 131 and the suction surface 132 in the cross section C. Note that the first region 301 and the second region 302 may not be directly connected, and a third region may exist between the first region 301 and the second region 302. In the third region, for example, the shapes of the positive pressure surface 131 and the negative pressure surface 132 in cross section C are linear.
 クロスフローファン100の吹出側においては、内周側における翼断面形状の曲率が大きいほど、内周端部134から気流が剥離しやすくなる。図5に示す構成例では、断面Cにおいて、第1領域301の凸形状の曲率は、第2領域302の凸形状の曲率よりも大きい。このようにすることで、内周側における翼断面形状の曲率を小さくすることができるため、内周端部134からの気流剥離を抑制することが可能である。 On the blowout side of the cross-flow fan 100, the larger the curvature of the blade cross-sectional shape on the inner circumferential side, the more easily the airflow separates from the inner circumferential end 134. In the configuration example shown in FIG. 5, in cross section C, the curvature of the convex shape of the first region 301 is larger than the curvature of the convex shape of the second region 302. By doing so, it is possible to reduce the curvature of the blade cross-sectional shape on the inner circumferential side, so it is possible to suppress separation of airflow from the inner circumferential end 134.
 図5に示す構成例では、第1領域301の凸形状の径方向の長さは、第2領域302の凸形状の径方向の長さより長い。同図の例では、前述したように、第1領域301と第2領域302とが直接的に接続されており、断面Cにおける正圧面131及び負圧面132の形状について変曲点303が存在する。この場合、変曲点303は、第1の翼201の径方向における中間点よりも、内周端部134側に配置されている。 In the configuration example shown in FIG. 5, the radial length of the convex shape of the first region 301 is longer than the radial length of the convex shape of the second region 302. In the example shown in the figure, as described above, the first region 301 and the second region 302 are directly connected, and there is an inflection point 303 in the shape of the positive pressure surface 131 and the negative pressure surface 132 in cross section C. . In this case, the inflection point 303 is located closer to the inner circumferential end portion 134 than the midpoint in the radial direction of the first blade 201 .
 このような構成によれば、第1領域301の凸形状の径方向の長さを相対的に長くできるため、外周側における翼断面形状の曲率を小さくできる。外周側における翼断面形状の曲率が大きくなると、クロスフローファン100の吸込側及び吹出側の両側で翼面に気流が沿いきれずに剥離を生じやすくなる。図5に示す本開示の構成例によれば、外周側における翼断面形状の曲率を小さくできるため、このような羽根車110の外周側における気流剥離を抑制することが可能である。 According to such a configuration, since the length in the radial direction of the convex shape of the first region 301 can be made relatively long, the curvature of the blade cross-sectional shape on the outer peripheral side can be made small. When the curvature of the cross-sectional shape of the blades on the outer circumferential side becomes large, the airflow cannot follow the blade surfaces on both the suction side and the blowout side of the cross flow fan 100, and separation tends to occur. According to the configuration example of the present disclosure shown in FIG. 5, it is possible to reduce the curvature of the blade cross-sectional shape on the outer circumferential side, so it is possible to suppress such airflow separation on the outer circumferential side of the impeller 110.
 図7に示すのは、この実施の形態に係るクロスフローファンの羽根車110の別例である。前述したように、複数の翼130の全てが第1の翼201である必要はなく、複数の翼130の少なくとも一部が第1の翼201であればよい。同図に示す構成例は、複数の翼130は、第1の翼201に加えて、第2の翼202をさらに有している。すなわち、羽根車110が有する複数の翼130のうちの一部が第1の翼201であり、残りが第2の翼202である。 FIG. 7 shows another example of the impeller 110 of the cross flow fan according to this embodiment. As described above, not all of the plurality of wings 130 need to be the first wings 201, and at least some of the plurality of wings 130 may be the first wings 201. In the configuration example shown in the figure, the plurality of blades 130 further include a second blade 202 in addition to the first blade 201. That is, some of the plurality of blades 130 that the impeller 110 has are the first blades 201 and the rest are the second blades 202.
 第2の翼202の正圧面131は、断面Cにおいて、当該第2の翼202の外周端部133から第2の翼202の内周端部134までの領域、つまり、当該第2の翼202の全体で反回転方向側に凸形状である。換言すれば、第2の翼202の正圧面131は、断面Cにおいて、当該第2の翼202の全体で回転方向側に凹形状である。さらに、図7に示す構成例では、断面Cにおいて、第2の翼202の負圧面132は、第2の翼202の正圧面131と同形状である。すなわち、断面Cにおいて、第2の翼202の負圧面132は、当該第2の翼202の全体で反回転方向側に凸形状である。換言すれば、第2の翼202の負圧面132は、断面Cにおいて、当該第2の翼202の全体で回転方向側に凹形状である。 The pressure surface 131 of the second blade 202 is a region from the outer peripheral end 133 of the second blade 202 to the inner peripheral end 134 of the second blade 202 in cross section C, that is, the area between the second blade 202 and the inner peripheral end 134 of the second blade 202. The entire shape is convex in the counter-rotational direction. In other words, the pressure surface 131 of the second blade 202 has a concave shape in the rotation direction side in the cross section C as a whole of the second blade 202 . Further, in the configuration example shown in FIG. 7, the suction surface 132 of the second blade 202 has the same shape as the pressure surface 131 of the second blade 202 in the cross section C. That is, in cross section C, the suction surface 132 of the second blade 202 has a convex shape in the counter-rotation direction as a whole. In other words, the suction surface 132 of the second blade 202 has a concave shape in the rotation direction in the entire second blade 202 in the cross section C.
 また、第2の翼202の外周端部133から内周端部134までの長さ、すなわち径方向の長さは、第1の翼201の外周端部133から内周端部134までの長さ、すなわち径方向の長さよりも短い。そして、回転軸140から第1の翼201の外周端部133までの距離と、回転軸140から第2の翼202の外周端部133までの距離とは等しい。一方、回転軸140から第1の翼201の内周端部134までの距離は、回転軸140から第2の翼202の内周端部134までの距離よりも短い。 Further, the length from the outer peripheral end 133 to the inner peripheral end 134 of the second blade 202, that is, the length in the radial direction, is the length from the outer peripheral end 133 to the inner peripheral end 134 of the first blade 201. length, i.e. shorter than the radial length. The distance from the rotating shaft 140 to the outer peripheral end 133 of the first blade 201 is equal to the distance from the rotating shaft 140 to the outer peripheral end 133 of the second blade 202. On the other hand, the distance from the rotating shaft 140 to the inner peripheral end 134 of the first blade 201 is shorter than the distance from the rotating shaft 140 to the inner peripheral end 134 of the second blade 202.
 図7に示す構成例では、第1の翼201同士の間に、少なくとも1つの第2の翼202が配置されている。第2の翼202は第1の翼201よりも短く、かつ、第2の翼202の内周端部134は、第1の翼201の内周端部134よりも外周側に配置されているため、内周側において第1の翼201同士の間に第2の翼202が存在しない。第1の翼201は径方向の長さが長いため、第1の翼201同士を隣に配列すると、特に内周側における翼間距離が小さくなってしまう。そこで、第1の翼201同士の間に、第1の翼201よりも径方向の長さが短い第2の翼202を配置することで、内周側における翼間距離が小さくなることを抑制し、翼間が狭まることによる通風抵抗の増加を抑制することが可能である。 In the configuration example shown in FIG. 7, at least one second wing 202 is arranged between the first wings 201. The second blade 202 is shorter than the first blade 201, and the inner peripheral end 134 of the second blade 202 is arranged on the outer peripheral side than the inner peripheral end 134 of the first blade 201. Therefore, the second blades 202 do not exist between the first blades 201 on the inner peripheral side. Since the first blades 201 have a long radial length, when the first blades 201 are arranged next to each other, the distance between the blades becomes small, especially on the inner peripheral side. Therefore, by arranging the second blade 202, which has a shorter radial length than the first blade 201, between the first blades 201, the distance between the blades on the inner circumferential side is suppressed from becoming smaller. However, it is possible to suppress an increase in ventilation resistance due to narrowing of the space between the blades.
 第1の翼201と第2の翼202の外周側の断面形状は同じものにするとよい。すなわち、断面Cにおいて、第1の翼201の第1領域301の形状は、第1領域301と同じ径方向の範囲の第2の翼202の形状と同一にするとよい。このようにすることで、クロスフローファン100の吹出側において、翼130の間から流出する気流の風向を揃えることができ、吹き出す気流の不安定化を抑制できる。 It is preferable that the first blade 201 and the second blade 202 have the same outer peripheral cross-sectional shape. That is, in cross section C, the shape of the first region 301 of the first blade 201 is preferably the same as the shape of the second blade 202 in the same radial range as the first region 301. By doing so, on the blowout side of the crossflow fan 100, the directions of the airflow flowing out from between the blades 130 can be aligned, and destabilization of the blowing airflow can be suppressed.
 図8に示す構成例では、第2の翼202の数は、第1の翼201の数よりも多い。クロスフローファン100の吹出側において、第1の翼201の内周端部134で気流の剥離が生じやすくなる。第2の翼202の数を第1の翼201の数よりも多くして、羽根車110が有する第1の翼201の数を少なくすることで、翼130の内周端部134における気流剥離を低減できる。なお、第1の翼201同士の間に配置される第2の翼202の数は1つ以上であればよいが、特に第1の翼201同士の間に第2の翼202を2つ又は3つ配置するのが好ましい。 In the configuration example shown in FIG. 8, the number of second wings 202 is greater than the number of first wings 201. On the blowout side of the cross-flow fan 100, separation of airflow tends to occur at the inner peripheral end portion 134 of the first blade 201. By increasing the number of second blades 202 than the number of first blades 201 and reducing the number of first blades 201 that the impeller 110 has, air flow separation at the inner peripheral end portion 134 of the blade 130 is reduced. can be reduced. Note that the number of second wings 202 arranged between the first wings 201 may be one or more, but in particular, two or more second wings 202 may be arranged between the first wings 201. It is preferable to arrange three.
 図9に示すように、断面Cにおいて、第1の翼201の正圧面131と内周端部134との接続部で正圧面131に接する線を内周端部134側に延長した線Tが、回転軸140の反回転方向側を通るようにするとよい。すなわち、第1の翼201の正圧面131の内周端部134側は、内周端部134から回転軸140に向かう面よりも反回転方向側に傾いている。このようにすることで、クロスフローファン100の吸込側で翼130の間を通過して羽根車110の内周側に流出する気流が、反回転方向側にさらに向きやすくできる。したがって、クロスフローファン100の吸込側で翼130の間を通過した気流が回転方向へと急転向することをさらに抑制し、翼間通過後の気流の急転向による抵抗増大をより一層抑制できる。 As shown in FIG. 9, in the cross section C, a line T extending from a line tangent to the positive pressure surface 131 at the connection point between the positive pressure surface 131 and the inner peripheral end 134 of the first blade 201 toward the inner peripheral end 134 side is , it is preferable to pass through the opposite rotation direction side of the rotating shaft 140. That is, the inner circumferential end 134 side of the positive pressure surface 131 of the first blade 201 is inclined toward the opposite rotation direction than the surface from the inner circumferential end 134 toward the rotating shaft 140 . By doing so, the airflow passing between the blades 130 on the suction side of the crossflow fan 100 and flowing out to the inner peripheral side of the impeller 110 can be made more likely to be oriented in the counter-rotation direction. Therefore, the airflow that has passed between the blades 130 on the suction side of the crossflow fan 100 can be further suppressed from abruptly turning in the rotation direction, and the increase in resistance due to the sudden turning of the airflow after passing between the blades can be further suppressed.
 なお、羽根車110が第2の翼202を有する場合、第2の翼202についても同様にしてもよい。すなわち、断面Cにおいて、第2の翼202の正圧面131と内周端部134との接続部で正圧面131に接する線を内周端部134側に延長した線が、回転軸140の反回転方向側を通るようにしてもよい。この場合、第1の翼201の方が第2の翼202よりも、正圧面131の内周端部134側が反回転方向側に、より大きく傾くようにするとよい。第1の翼201の方が第2の翼202よりも内周側に配置されているため、第1の翼201の正圧面131の内周側を、より大きく反回転方向側に傾けることで、羽根車110の外周側から内周側に向かって翼130の間を通過する気流を、より一層、反回転方向側に向きやすくすることが可能である。 Note that when the impeller 110 has the second blades 202, the same may be applied to the second blades 202. That is, in the cross section C, a line extending from a line that is in contact with the positive pressure surface 131 at the connection point between the positive pressure surface 131 and the inner peripheral end 134 of the second blade 202 toward the inner peripheral end 134 side is a line that extends toward the inner peripheral end 134 side. It may be made to pass on the rotation direction side. In this case, it is preferable that the inner peripheral end 134 side of the pressure surface 131 of the first blade 201 is tilted more toward the counter-rotational direction than the second blade 202. Since the first blade 201 is arranged closer to the inner circumference than the second blade 202, the inner circumference of the pressure surface 131 of the first blade 201 can be tilted more toward the counter-rotation direction. , it is possible to make the airflow passing between the blades 130 from the outer circumferential side to the inner circumferential side of the impeller 110 even more likely to be oriented in the counter-rotational direction.
 本開示は、回転軸方向に予め設定された間隔で配置された複数の支持部材と、隣り合う支持部材の間に設けられ、支持部材の外周寄りで、かつ、周方向に間隔をあけて配置された複数の翼とを備えたクロスフローファンに利用できる。また、本開示は、クロスフローファンを備えた送風装置及び冷凍サイクル装置にも利用できる。 The present disclosure includes a plurality of support members arranged at preset intervals in the direction of a rotation axis, and provided between adjacent support members, and arranged near the outer periphery of the support members and spaced apart in the circumferential direction. Available for cross flow fans with multiple blades. Further, the present disclosure can also be used in a blower device and a refrigeration cycle device equipped with a cross-flow fan.
 10  室内機
 11  室内機熱交換器
 12  筐体
 13  吸込口
 14  吹出口
 15  フィルター
 16  上下ベーン
 17  リアガイド
 18  スタビライザー
 20  室外機
 21  室外機熱交換器
 22  室外機ファン
 23  圧縮機
 24  膨張弁
 25  四方弁
 30  冷媒配管
100  クロスフローファン
110  羽根車
120  支持部材
130  翼
131  正圧面
132  負圧面
133  外周端部
134  内周端部
140  回転軸
150  モータ
201  第1の翼
202  第2の翼
301  第1領域
302  第2領域
303  変曲点
10 Indoor unit 11 Indoor unit heat exchanger 12 Housing 13 Suction port 14 Air outlet 15 Filter 16 Upper and lower vanes 17 Rear guide 18 Stabilizer 20 Outdoor unit 21 Outdoor unit heat exchanger 22 Outdoor unit fan 23 Compressor 24 Expansion valve 25 Four-way valve 30 Refrigerant piping 100 Crossflow fan 110 Impeller 120 Support member 130 Wings 131 Positive pressure surface 132 Negative pressure surface 133 Outer peripheral end 134 Inner peripheral end 140 Rotating shaft 150 Motor 201 First blade 202 Second blade 301 First region 302 Second area 303 Inflection point

Claims (9)

  1.  回転軸方向に予め設定された間隔で配置され、円形又は円環形の平板状を呈する複数の支持部材と、
     隣り合う前記支持部材の間に設けられ、前記支持部材の外周寄りで、かつ、周方向に間隔をあけて配置された複数の翼と、を備え、
     それぞれの前記翼は、回転方向側の正圧面と反回転方向側の負圧面とを有し、
     複数の前記翼は、少なくとも1つの第1の翼を有し、
     前記第1の翼の前記正圧面は、前記回転軸に垂直な断面において、前記第1の翼の外周端部を含む第1領域で前記反回転方向側に凸形状であり、かつ、前記第1の翼の内周端部を含む第2領域で前記回転方向側に凸形状であるクロスフローファン。
    A plurality of support members arranged at preset intervals in the direction of the rotation axis and having a circular or annular flat plate shape;
    a plurality of wings provided between adjacent support members and arranged near the outer periphery of the support member and spaced apart in the circumferential direction;
    Each of the blades has a pressure surface on the rotation direction side and a suction surface on the counter rotation direction side,
    the plurality of wings have at least one first wing;
    The positive pressure surface of the first blade has a convex shape toward the counter-rotation direction in a first region including an outer peripheral end of the first blade in a cross section perpendicular to the rotation axis, and A cross flow fan having a second region including an inner circumferential end of one blade having a convex shape in the rotation direction side.
  2.  前記第1の翼の前記負圧面は、前記回転軸に垂直な断面において、前記第1領域で前記反回転方向側に凸形状であり、かつ、前記第2領域で前記回転方向側に凸形状である請求項1に記載のクロスフローファン。 The suction surface of the first blade has a convex shape in the first region in the opposite rotation direction, and a convex shape in the second region in the rotation direction in a cross section perpendicular to the rotation axis. The cross flow fan according to claim 1.
  3.  前記回転軸に垂直な断面において、前記第1領域の凸形状の曲率は、前記第2領域の凸形状の曲率よりも大きい請求項1又は請求項2に記載のクロスフローファン。 3. The cross-flow fan according to claim 1, wherein the curvature of the convex shape of the first region is larger than the curvature of the convex shape of the second region in a cross section perpendicular to the rotation axis.
  4.  前記第1領域の凸形状の径方向の長さは、前記第2領域の凸形状の径方向の長さより長い請求項1から請求項3のいずれか一項に記載のクロスフローファン。 The cross flow fan according to any one of claims 1 to 3, wherein the radial length of the convex shape of the first region is longer than the radial length of the convex shape of the second region.
  5.  複数の前記翼は、第2の翼をさらに有し、
     前記第2の翼の前記正圧面は、前記回転軸に垂直な断面において、前記第2の翼の外周端部から前記第2の翼の内周端部までの領域で前記反回転方向側に凸形状であり、
     前記第1の翼同士の間に、少なくとも1つの前記第2の翼が配置される請求項1から請求項4のいずれか一項に記載のクロスフローファン。
    The plurality of wings further includes a second wing,
    The positive pressure surface of the second blade is located on the counter-rotation direction side in a region from the outer peripheral end of the second blade to the inner peripheral end of the second blade in a cross section perpendicular to the rotation axis. It has a convex shape,
    The cross-flow fan according to any one of claims 1 to 4, wherein at least one of the second blades is arranged between the first blades.
  6.  前記第2の翼の数は、前記第1の翼の数よりも多い請求項5に記載のクロスフローファン。 The cross flow fan according to claim 5, wherein the number of the second blades is greater than the number of the first blades.
  7.  前記回転軸に垂直な断面において、前記第1の翼の前記正圧面と前記内周端部との接続部で前記正圧面に接する線を前記内周端部側に延長した線は、前記回転軸の前記反回転方向側を通る請求項1から請求項6のいずれか一項に記載のクロスフローファン。 In a cross section perpendicular to the rotational axis, a line extending toward the inner peripheral end side a line that is in contact with the positive pressure surface at the connection point between the positive pressure surface and the inner peripheral end of the first blade is a line that extends toward the inner peripheral end side. The cross flow fan according to any one of claims 1 to 6, which passes through the opposite rotation direction side of the shaft.
  8.  請求項1から請求項7のいずれか一項に記載のクロスフローファンを備えた送風装置。 A blower device comprising the cross flow fan according to any one of claims 1 to 7.
  9.  請求項1から請求項7のいずれか一項に記載のクロスフローファンと、
     前記クロスフローファンにより生成された空気流と冷媒との間で熱交換を行わせる熱交換器と、を備えた冷凍サイクル装置。
    The cross flow fan according to any one of claims 1 to 7,
    A refrigeration cycle device comprising: a heat exchanger that performs heat exchange between an air flow generated by the cross-flow fan and a refrigerant.
PCT/JP2022/020363 2022-05-16 2022-05-16 Cross flow fan, blowing device, and refrigeration cycle device WO2023223383A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020363 WO2023223383A1 (en) 2022-05-16 2022-05-16 Cross flow fan, blowing device, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020363 WO2023223383A1 (en) 2022-05-16 2022-05-16 Cross flow fan, blowing device, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023223383A1 true WO2023223383A1 (en) 2023-11-23

Family

ID=88834805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020363 WO2023223383A1 (en) 2022-05-16 2022-05-16 Cross flow fan, blowing device, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023223383A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479991U (en) * 1990-11-26 1992-07-13
CN112160937A (en) * 2020-09-21 2021-01-01 华中科技大学 Cross-flow fan blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479991U (en) * 1990-11-26 1992-07-13
CN112160937A (en) * 2020-09-21 2021-01-01 华中科技大学 Cross-flow fan blade

Similar Documents

Publication Publication Date Title
US10302091B2 (en) Air blower and air conditioner having the same
US10634168B2 (en) Blower and air-conditioning apparatus including the same
TW202020309A (en) Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device
CN107923413B (en) Blower and air conditioner
CN106481574B (en) Centrifugal fan and air conditioner comprising same
US20190040873A1 (en) Air-sending device and air-conditioning apparatus using the same
JP2008144753A (en) Turbofan and air conditioner provided therewith
JP2012047080A (en) Propeller, blower and heat pump device
WO2018092262A1 (en) Propeller fan and refrigeration cycle device
WO2023223383A1 (en) Cross flow fan, blowing device, and refrigeration cycle device
KR101911255B1 (en) Air conditioner
JP2007285164A (en) Sirocco fan and air conditioner
WO2023084652A1 (en) Cross-flow fan, blowing device, and refrigeration cycle device
CN109891101B (en) Propeller fan, outdoor unit, and refrigeration cycle device
JP7113819B2 (en) Propeller fan and refrigeration cycle device
WO2015063850A1 (en) Cross-flow fan and air conditioner
WO2023157289A1 (en) Cross-flow fan
JP6430032B2 (en) Centrifugal fan, air conditioner and refrigeration cycle apparatus
JP6925571B1 (en) Blower, indoor unit and air conditioner
WO2023152802A1 (en) Indoor unit and air conditioning device comprising same
JP7378505B2 (en) Centrifugal blower and air conditioner equipped with it
WO2023089658A1 (en) Cross-flow fan
JP7386885B2 (en) Indoor unit and air conditioner equipped with it
JP7282215B2 (en) Blowers and air conditioners
WO2023112077A1 (en) Axial fan, blower, and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942588

Country of ref document: EP

Kind code of ref document: A1