WO2023221368A1 - 一种巷隧道掘进机器人及自动截割控制方法 - Google Patents

一种巷隧道掘进机器人及自动截割控制方法 Download PDF

Info

Publication number
WO2023221368A1
WO2023221368A1 PCT/CN2022/123152 CN2022123152W WO2023221368A1 WO 2023221368 A1 WO2023221368 A1 WO 2023221368A1 CN 2022123152 W CN2022123152 W CN 2022123152W WO 2023221368 A1 WO2023221368 A1 WO 2023221368A1
Authority
WO
WIPO (PCT)
Prior art keywords
milling
rock
shaft
pressure
disc
Prior art date
Application number
PCT/CN2022/123152
Other languages
English (en)
French (fr)
Inventor
江红祥
朱真才
刘送永
沈刚
张晓迪
赵慧贺
李洪盛
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to JP2023526337A priority Critical patent/JP2024524787A/ja
Priority to AU2022358643A priority patent/AU2022358643A1/en
Priority to US18/031,869 priority patent/US20240141784A1/en
Publication of WO2023221368A1 publication Critical patent/WO2023221368A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1006Making by using boring or cutting machines with rotary cutting tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1006Making by using boring or cutting machines with rotary cutting tools
    • E21D9/1013Making by using boring or cutting machines with rotary cutting tools on a tool-carrier supported by a movable boom
    • E21D9/102Making by using boring or cutting machines with rotary cutting tools on a tool-carrier supported by a movable boom by a longitudinally extending boom being pivotable about a vertical and a transverse axis
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1066Making by using boring or cutting machines with fluid jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/108Remote control specially adapted for machines for driving tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/02Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for cutting or breaking-down devices
    • E21C31/04Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for cutting or breaking-down devices imparting both a rotary and reciprocating motion
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1093Devices for supporting, advancing or orientating the machine or the tool-carrier

Definitions

  • the invention relates to the field of tunnel excavation of coal and rock tunnels with high Platts hardness coefficient, and specifically relates to a tunnel excavation robot and an automatic cutting control method.
  • the present invention provides a tunnel excavation robot and an automatic cutting control method.
  • the milling mechanism drives the drilling and milling hob to rotate.
  • the rock is broken by oscillating motion, and the robot is controlled by the controller to realize automatic cutting by the disc-shaped hob driven by the milling mechanism.
  • a tunnel boring robot including:
  • the frame; the mobile platform is set at the bottom of the frame and is used for the movement of the frame; the support and stabilizing mechanism is set on the frame and is used to support the top and sides of the rock mass; the milling mechanism is used for milling the coal and rock mass;
  • the telescopic mechanism is arranged between the milling mechanism and the frame to extend and retract the milling mechanism; the horizontal swing mechanism is arranged between the telescopic mechanism and the frame to swing the milling mechanism left and right; the oblique feed adjustment mechanism is arranged between Between the telescopic mechanism and the milling mechanism, the milling mechanism changes the direction of bevel cutting; the lifting mechanism is set between the horizontal swing mechanism and the frame to make the milling mechanism swing up and down; the controller controls the terminal mechanism of the robot;
  • the milling mechanism includes: a driving unit, the driving end is drivingly connected to the eccentric rotary sleeve, and is fixedly connected to the shell of the milling mechanism; a milling shaft, the milling end of which is provided with a milling
  • the eccentric rotating sleeve is provided with an inner hole, and the inner hole is cooperatively connected with the milling shaft.
  • the inner hole is cooperatively connected with the milling shaft.
  • the high-pressure jet nozzle unit is arranged on the On the milling end, a high-pressure jet is formed to assist the milling cutter head in rock breaking;
  • the tension sensor is set on the shell of the milling mechanism and is connected to the controller signal to detect the force load of the connecting fasteners in the milling mechanism;
  • the direction sensor is set On the shell of the milling mechanism, it is connected to the controller signal and used to detect the movement direction of the milling head.
  • the eccentric rotary sleeve includes: a sleeve with an inner hole at one end and a closed end of the sleeve at the other end.
  • the outer wall of the sleeve is cooperatively connected to the shell of the milling mechanism, and the closed end of the sleeve is connected to the drive
  • the units are matched and connected;
  • the eccentric disk is arranged on the outer wall of the middle part of the sleeve, and there is an eccentricity between the axis of the eccentric disk and the axis of the eccentric sleeve;
  • the inner hole is provided with a reinforced surface.
  • the milling shaft is divided into a milling end, a spherical section, and a connecting section in sequence.
  • the milling end on the milling shaft is connected to the milling head, and the limiter is connected to the The spherical section at the rear end of the milling end, the contact surface between the spherical section and the milling shaft support seat is provided with a high-pressure sealing ring; the connecting section is installed in conjunction with the inner hole of the eccentric rotary sleeve.
  • the milling shaft is also provided with: a cooling water inlet connected to the low-pressure water inlet on the milling shaft support seat; a cooling branch water channel arranged between the inner hole of the eccentric rotary sleeve and the milling shaft On the contact surface of the right section; the cooling water outlet channel is set inside the milling shaft, connected to the cooling branch water channel, and connected to the milling head.
  • the high-pressure jet nozzle unit includes: a high-pressure water pipe with a high-pressure water opening and closing device installed in series and connected to the high-pressure water inlet on the milling axis support seat; a high-pressure water opening and closing device, Used to control and close the high-pressure water pipe; the high-pressure jet nozzle is connected to the high-pressure water inlet of the milling axis support seat.
  • a high-pressure water pipe with a high-pressure water opening and closing device installed in series and connected to the high-pressure water inlet on the milling axis support seat
  • a high-pressure water opening and closing device Used to control and close the high-pressure water pipe
  • the high-pressure jet nozzle is connected to the high-pressure water inlet of the milling axis support seat.
  • the driving unit is an electric motor
  • the electric motor is fixed on the housing of the milling mechanism through screws II
  • the milling head is a butterfly hob inlaid with carbide.
  • the angle between center line I and center line II is less than 3°.
  • the milling mechanism is connected to the oblique feed adjustment mechanism through the hinge hole in the adjustment support. Connected to the inclined feed adjustment mechanism.
  • the telescopic mechanism includes: a square housing, a square extending beam, and a telescopic oil cylinder.
  • the cylinder barrel of the telescopic oil cylinder is fixedly connected to the square housing, and the cylinder rod of the telescopic oil cylinder is fixedly connected to the square extending beam.
  • a displacement sensor is provided on the telescopic cylinder, and the displacement sensor is used to detect the displacement of the telescopic cylinder;
  • the lifting mechanism includes a lifting cylinder, one end is connected to the lower hinge hole of the horizontal swing mechanism, and the other end is connected to the middle hinge hole of the square housing , and a lifting angle sensor is provided at the connection, so that the milling head in the milling mechanism can move up and down in the tunnel;
  • the oblique feed adjustment mechanism has one end connected to the symmetrical hinge hole at the rear end of the milling mechanism, and the other end to the square extension
  • the front end of the outgoing beam is connected with symmetrical hinge holes, and a milling mechanism angle sensor is provided in the oblique feed adjustment mechanism to adjust the milling head to achieve the oblique cutting state.
  • the automatic cutting control method of tunnel boring robot includes the following steps:
  • Step 1 The controller controls the walking platform to make the excavation robot's milling mechanism fit the coal and rock mass excavation surface, controls the support and stabilization mechanism to be supported on the top floor or side of the tunnel, and the anti-slip mechanism is opened and supported on the tunnel floor;
  • Step 2 Start the drive unit, which drives the eccentric rotary sleeve to rotate.
  • the inner hole of the eccentric rotary sleeve rotates to drive the milling shaft and the milling head to rotate and swing together.
  • the drive unit starts, open the low-pressure cooling water pipe and let the cooling water flow through.
  • the contact surface between the milling shaft connecting section and the inner hole of the eccentric rotary sleeve is cooled;
  • the drive unit is started, the high-pressure water pipe jet unit is started, and the high-pressure jet passes through the impact of the gyrating and oscillating cutter head to form an oscillating jet-assisted milling cutter.
  • the head breaks through the rock;
  • Step 3 The controller controls the inclined feed adjustment mechanism to make the disc-shaped hob reach the bevel cutting state.
  • the controller controls the lifting cylinder to make the disc-shaped hob move downward.
  • the controller controls the telescopic cylinder to make the square extending beam extend out of the square shell.
  • the force load of the connecting fastener between the milling shaft support seat and the milling mechanism shell is indirectly detected by pulling the pressure sensor, and the detected load reaches the preset
  • the high-pressure water system is turned on; the direction sensor installed on the shell of the milling mechanism detects the movement direction of the disc-shaped hob, and the high-pressure water opening and closing device is opened and installed on the milling axis support seat according to the detected movement direction of the disc-shaped hob.
  • a high-pressure jet nozzle forms an oscillating jet in the direction of movement of the disc-shaped hob to assist rock breaking;
  • a displacement sensor is installed on the telescopic cylinder to detect its displacement, control the telescopic cylinder to make the disc-shaped hob reach the predetermined milling thickness, and control the oblique feed adjustment mechanism to The disc-shaped hob closely fits the rock mass excavation surface to reach the milling state;
  • Step 4 According to the lifting angle sensor installed at the hinge position at the end of the square shell and the rotation angle sensor signal at the outer circumferential position of the horizontal swing mechanism, the controller calculates the position of the disc hob on the rock mass excavation surface and controls the lifting cylinder and horizontal swing mechanism. Make the disc-shaped hob installed on the milling mechanism mill the coal and rock mass according to the preset milling path; after completing the milling of the coal and rock mass excavation face with a predetermined thickness, the milling mechanism returns to the initial position in step 1;
  • Step 5 Repeat steps 3 and 4 until the telescopic cylinder reaches the maximum stroke, retract the support stabilizing mechanism and anti-slip mechanism to complete the milling of coal and rock after the excavation robot is fixed once;
  • Step 6 Repeat steps 1 to 5 to realize automatic cutting of the coal and rock mass excavation surface.
  • the present invention has the following beneficial effects:
  • the center line of the inner hole of the eccentric rotary sleeve is deflected, so that the milling mechanism drives the milling head to rotate and oscillate.
  • the discontinuous contact between the milling head and the rock mass makes the contact path of the milling head short, with small wear and low temperature. Avoid excessive wear of the milling head and achieve efficient milling of rock mass.
  • the high-pressure jet forms an oscillating jet by impacting the cyclically oscillating cutter head.
  • the oscillating jet assists the milling cutter head in breaking the rock, which can reduce the difficulty of milling.
  • the oscillating jet cuts the rock in advance and facilitates cyclic oscillation milling.
  • the cutter head mills and breaks the rock, making full use of the rock's compression and non-tension properties, which greatly reduces the difficulty of rock breaking and improves the crushing efficiency of hard rock mass.
  • the controller can realize the milling mechanism by adjusting the oblique feed adjustment mechanism, square extending beam, lifting cylinder, and horizontal swing mechanism based on the displacement sensor, milling mechanism angle sensor, lifting angle sensor, rotation angle sensor, direction sensor, and tension pressure sensor.
  • the driven disc-shaped hob automatically cuts, with high work efficiency and good cutting and forming quality.
  • Figure 1 is an overall view of the tunnel boring robot of the present invention
  • Figure 2 is a cross-sectional view of the milling mechanism in the present invention.
  • Figure 3 is a cross-sectional view of the milling shaft in the present invention.
  • Figure 4 is a cross-sectional view of the eccentric rotary sleeve in the present invention.
  • Figure 5 is a cross-sectional view of a square extending beam in the present invention.
  • Figure 6 is a schematic diagram of the bevel cutting method and milling path of the dish-shaped hob in the present invention.
  • 1 is the milling mechanism
  • 2 is the oblique feed adjustment mechanism
  • 3 is the square extending beam
  • 4 is the square shell
  • 5 is the lifting cylinder
  • 6 is the horizontal swing mechanism
  • 7 is the hydraulic power source
  • 8 is the electrical system.
  • this embodiment is a tunnel excavation robot.
  • the milling mechanism is used to complete automatic bevel cutting and milling of coal and rock mass.
  • the center line of the inner hole of the eccentric rotary sleeve is provided therein. Deflection causes the milling mechanism to drive the milling cutter head to rotate and oscillate.
  • the discontinuous contact between the milling cutter head and the rock mass results in a short contact path of the milling cutter head, low wear and low temperature, avoiding excessive wear of the milling cutter head and achieving efficient milling of rock mass.
  • the high-pressure jet forms an oscillating jet by impacting the oscillating oscillating cutter head, forming an oscillating jet to assist the milling cutter head in breaking the rock, which can reduce the difficulty of milling.
  • the jet cuts the rock in advance and then facilitates the oscillating oscillating milling cutter head to break the rock, which greatly It reduces the difficulty of rock breaking and improves the crushing efficiency of hard rock mass.
  • the tunnel excavation robot includes a controller 23, and a milling mechanism 1, an oblique feed adjustment mechanism 2, a square extending beam 3, a square shell 4, a lifting cylinder 5, a horizontal swing mechanism 6, Hydraulic power source 7, electrical system 8, slag conveying mechanism 9, anti-slip mechanism 10, walking platform 11, slag collection mechanism 12, support and stabilization mechanism 13, telescopic cylinder 14, displacement sensor 15, milling mechanism angle sensor 16, lifting angle Sensor 17, rotation angle sensor 18, direction sensor 19, tension pressure sensor 20, high pressure water system 21, high pressure jet nozzle 22, among which, hydraulic power source 7, electrical system 8, rock slag conveying mechanism 9, anti-skid mechanism 10, rock slag
  • the collection mechanism 12, the support and stabilization mechanism 13, the high-pressure water system 21, etc. are all installed on the mobile platform 10 to form the frame of the entire tunnel boring robot.
  • the milling mechanism includes: drive unit, milling shaft 1-3, eccentric rotary sleeve 1-12, support bearing 1-10, adjustment support 1-16, and high-pressure jet nozzle unit, where,
  • the driving end of the driving unit is drivingly connected to the eccentric rotary sleeve.
  • the driving unit is an electric motor 1-14, which is fixed on the milling mechanism housing 1-9 through screws II1-13.
  • the milling axis 1-3 includes: the milling end 1-3-1, which is the end where the milling axis 1-3 is connected to the milling head; the milling axis support seat 1-4, through bolts I1-5 and The shell 1-9 of the milling mechanism is connected; the spherical segment 1-3-2 is a limiter in the milling shaft and is arranged between the milling shaft supports 1-4.
  • the contact surface with the milling shaft support 1-4 is provided with The high-pressure sealing ring 1-19 prevents the leakage of cooling water through the setting of the high-pressure sealing ring 1-19;
  • the connecting section 1-3-3 is the end installed in conjunction with the inner hole 1-12-1 of the eccentric rotary sleeve.
  • the milling axis is also provided with: cooling water inlet 1-3-4, which is connected to the low-pressure water inlet 1-4-1 on the milling axis support seat 1-4; cooling branch water channel 1-3-5, which is arranged on the eccentric rotation The contact surface between the inner hole 1-12-1 of the sleeve 1-12 and the right section 1-3-3 of the milling shaft 1-3; the cooling water outlet channel 1-3-6 is set inside the milling shaft and connected with the cooling branch water channel Communicated and connected to the milling head, a disc-shaped hob 1-1 inlaid with carbide 1-2-1 is fixed on the left end surface 1-3-1 of the milling shaft 1-3 through a screw I1-2.
  • the eccentric rotary sleeve 1-12 includes: a sleeve with an inner hole 1-12-1 at one end, and a closed end of the sleeve at the other end.
  • the outer wall of the sleeve is connected to the shell of the milling mechanism 1-9.
  • the closed end 1-12-3 of the sleeve is connected with the motor; the eccentric disk is arranged on the outer wall of the middle part of the sleeve, and there is an eccentricity between the axis of the eccentric disk and the axis of the eccentric sleeve; the inner hole is provided with a reinforced On the treated surface, there is an included angle between the center line I1-12-5 of the inner hole 1-12-1 and the center line II1-12-6 of the outer surface 1-12-2, which is generally less than 3°.
  • the right end 1-12-3 of the eccentric rotary sleeve 1-12 is connected with the electric motor 1-14 through a key.
  • Support bearing 1-10 the inner and outer rings of which are matched with the outer surface 1-12-2 of the eccentric rotary sleeve 1-12 and the inner hole of the milling mechanism shell 1-9 respectively.
  • the adjusting support 1-16 is provided with a main hinge hole 1-17 at the rear end and a symmetrical hinge hole 1-18 at the rear end, which are connected to the milling mechanism shell 1-9 through screws III1-15.
  • the high-pressure jet nozzle unit is connected 21 to the high-pressure water system and includes: high-pressure water pipes 1-7, with a high-pressure water opening and closing device 1-8 arranged in series, and connected to the high-pressure water inlet 1-4 on the milling axis support seat 1-4. 2-phase connection; high-pressure water opening and closing device 1-8, used to control and close the high-pressure water pipe; high-pressure jet nozzle, connected with the high-pressure water inlet 1-4-2 of the milling axis support 1-4, and the high-pressure water jet oscillates through impact rotation The knife forms an oscillating jet.
  • the mobile platform 11 is provided at the bottom of the frame and is used for moving the frame; the support and stabilizing mechanism 13 is provided on the frame and is used to support the top and sides of the rock mass.
  • the tensile pressure sensor 20 is installed between the milling shaft support seat 1-4 and the milling mechanism housing 1-9, and the direction sensor 19 is installed on the surface of the milling mechanism housing 1-9.
  • the telescopic mechanism includes: a square housing 4, a square extending beam 3, and a telescopic cylinder 14.
  • the telescopic cylinder 14 is respectively connected to the tail support seat 4-3 of the square housing 4 and the middle support seat 3-1 of the square extending beam 3.
  • the cylinder barrel of the telescopic oil cylinder 14 is fixedly connected to the square housing 4, and the cylinder rod of the telescopic oil cylinder 14 is fixedly connected to the square extending beam 3.
  • the controller controls the square extending beam through the displacement control of the telescopic oil cylinder 14 detected by the displacement sensor 15. Move relative to the square shell.
  • the middle support seat 3-1 of the square extended beam is connected to the piston rod of the telescopic cylinder 14, the main hinge hole 3-2 at the front end is hinged to the main hinge hole 1-17 at the rear end of the milling mechanism 1, and the front end is symmetrical.
  • 3-3 is connected to the symmetrical hinge hole 1-18 at the rear end of the milling mechanism 1 through the oblique feed adjustment mechanism 2, and the four surfaces 3-4 of the square extending beam 3 are strengthened.
  • the horizontal swing mechanism 6 is arranged between the frame and the square shell through the upper hinge hole 6-2.
  • the rotary end 6-1 is vertically rotatably installed on the front side of the mobile platform 10, and is provided between the frame and the horizontal swing mechanism.
  • the lifting mechanism including the lifting cylinder, is connected to the lower hinge hole 6-3 of the horizontal swing mechanism 6 and the middle hinge hole 4-2 of the square housing 4 respectively.
  • the lifting angle sensor 17 is arranged at the right hinge hole 4-2 of the square housing 4. 1 and the hinge hole 6-2 on the horizontal swing mechanism 6, so that the milling head in the milling mechanism can move up and down in the tunnel.
  • the two ends of the oblique feed adjustment mechanism are respectively connected to the symmetrical hinge holes 1-18 at the rear end of the milling mechanism 1 and the symmetrical hinge holes 3-3 at the front end of the square extending beam 3, and are connected to the main hinge hole 1-1 at the rear end of the milling mechanism 1.
  • 17 is hinged with the main hinge hole 3-2 at the front end of the square extending beam 3 and is provided with a milling mechanism angle sensor 16.
  • the oblique feed adjustment mechanism is used to adjust the milling head to the oblique cutting state.
  • the controller controls the oblique feed adjustment mechanism 2, the lifting cylinder 14, the horizontal swing mechanism 6, and the telescopic
  • the oil cylinder 5, the opening and closing device of the oscillating jet nozzle 22, etc. realize the automatic bevel cutting and milling of coal and rock mass by the milling mechanism 1 assisted by the directional water jet.
  • An automatic cutting control method for a tunnel boring robot includes the following steps:
  • Step 1 The controller controls the walking platform 11 to make the excavation robot milling mechanism 1 fit the coal and rock mass excavation surface 24, controls the support and stabilization mechanism 13 to be supported on the top floor or side of the tunnel, and the anti-slip mechanism 10 is opened and supported on the tunnel floor;
  • Step 2 Start the drive unit, which drives the eccentric rotary sleeve to rotate.
  • the inner hole of the eccentric rotary sleeve rotates to drive the milling shaft and the milling head to rotate and swing together.
  • the drive unit starts, open the low-pressure cooling water pipe and let the cooling water flow through.
  • the contact surface between the milling shaft connecting section and the inner hole of the eccentric rotary sleeve is cooled;
  • the drive unit is started, the high-pressure water pipe jet unit is started, and the high-pressure jet forms an oscillating jet by impacting the gyrating and oscillating cutter head.
  • Auxiliary milling cutter head breaks rock;
  • Step 3 The controller controls the inclined feed adjustment mechanism 2 to make the disc-shaped hob 1-1 reach the bevel cutting state 25, controls the lifting cylinder 5 to make the disc-shaped hob 1-1 move downward, and controls the telescopic cylinder 14 to make the square extend.
  • the beam 3 extends out of the square housing 4, causing the disc-shaped hob 1-1 to perform a downward and forward compound movement to obliquely cut into the rock mass; it is installed on the tensile pressure sensor 20 to indirectly detect the milling axis support seat 1-4 and the milling mechanism housing 1
  • the connecting fasteners between -9 are subjected to force loads.
  • the high-pressure water system 21 installed on the mobile platform 10 is turned on; the direction sensor 19 installed on the shell of the milling mechanism 1-9 detects the dish shape.
  • the high-pressure water opening and closing device 1-8 opens the corresponding high-pressure jet nozzle 22 installed on the milling axis support seat 1-4 according to the detected movement direction of the disc-shaped hob 1-1.
  • the movement direction of the hob 1-1 forms an oscillating jet to assist rock breaking;
  • the displacement sensor 15 is installed on the telescopic cylinder 14 to detect its displacement, controls the telescopic cylinder 14 to make the disc-shaped hob 1-1 reach the predetermined milling thickness, and controls the oblique feed adjustment mechanism 2.
  • Step 4 According to the signals of the lifting angle sensor 17 installed at the hinge position of the end of the square housing 4 and the rotation angle sensor 18 at the outer circumferential position of the horizontal swing mechanism 6, the controller 23 calculates the position of the disc hob 1-1 on the rock mass excavation surface 24 position, control the lifting cylinder 5 and the horizontal swing mechanism 6 to make the disc-shaped hob 1-1 installed on the milling mechanism 1 mill the coal and rock mass according to the preset milling path 27; after completing the milling of the coal and rock mass excavation surface 24 of a predetermined thickness, Milling mechanism 1 returns to the initial position in step 1;
  • Step 5 Repeat steps 3 and 4 until the telescopic cylinder 14 reaches the maximum stroke, retract the support stabilizing mechanism 13 and the anti-slip mechanism 10 to complete the milling of coal and rock after the excavation robot has been fixed once;
  • Step 6 Repeat steps 1 to 5 to realize automatic cutting of coal and rock mass excavation face 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Earth Drilling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

公开了一种巷隧道掘进机器人,包括机架,移动平台(10),支撑稳定机构(13),铣削机构(1),伸缩机构,斜进刀调节机构(2),水平摆动机构(6),升降机构,控制器(23);铣削机构(1)包括:驱动单元,铣削轴(1-3),偏心回转套(1-12),高压射流喷嘴单元,拉压力传感器(20),方向传感器(19);通过偏心回转套内孔的中心线偏斜,使得铣削机构带动铣削刀头旋回振荡运动进行破岩阻力小,同时产生轴向和径向激振力,充分利用煤岩不抗拉特性,破岩效率高,铣削刀头与岩体非连续接触使得铣削刀头接触路径短磨损小、温度低,避免铣削刀头过度磨损;控制伸缩机构、斜进刀调节机构、升降机构和水平摆动机构,实现铣削机构按照预定路径铣削煤岩,实现岩体自动化高效铣削;还公开了包括该机器人的自动截割控制方法。

Description

一种巷隧道掘进机器人及自动截割控制方法 技术领域
本发明涉及普氏硬度系数高的煤岩巷隧道掘进领域,具体涉及一种巷隧道掘进机器人及自动截割控制方法。
背景技术
能源工业是国民经济的基础产业,也是技术密集型产业。“安全、高效、低碳”集中体现了现代能源技术的特点,也是抢占未来能源技术制高点的主要方向。要想用无限的科技解决有限能源与资源的约束,着力提高能源资源的安全、高效开发,推动能源生产和利用方式的变革,规划将能源勘探和开采技术作为四个重点发展领域之一,则需要研发复杂地质条件下资源安全、高效、节约、环境友好型开采技术与装备,如研制适用于岩石抗压强度100MPa的掘进机,高效井下动力与破岩***等。随着各类岩石开挖机械在矿山开采、隧道掘进、油气井钻进等实际工程中的广泛应用,对坚硬岩石破碎技术提出了更高的要求和新的挑战。机械破岩具有破碎块度大、作业效率高等优点,其已被广泛运用于矿山开采、建筑工程及资源勘探等领域。然而,现有装备在坚硬岩体掘进施工中,刀具磨损加大,可靠性和工作效率降低,如何实现硬岩的高效破碎已经成为亟待解决的问题和难题,亟需研究新的岩石破碎方法实现坚硬岩石的高效破碎,对实现矿山高效开采、隧道高效掘进乃至我国能源资源的高效开发具有极其重要的意义。
以往主要通过增大机械驱动功率实现机械破碎坚硬岩石,但机械截齿破岩能力没有发生改变,仅增大功率会导致岩石破碎机构的磨损加剧、工作面粉尘量增大,难以有效提升机械的破岩效率,且安全隐患增大。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种巷隧道掘进机器人及自动截割控制方法,通过偏心回转套内孔的中心线偏斜,使得铣削机构带动钻铣滚刀旋回振荡运动进行破岩,并通过控制器对机器人进行控制,使其实现铣削机构带动的碟形滚刀自动化截割。
为实现上述目的,本发明采用的技术方案为:
一种巷隧道掘进机器人,包括:
机架;移动平台,设置在机架的底部,用于机架的移动;支撑稳定机构,设置在机架上,用于支撑岩体顶部和侧部;铣削机构,用于铣削煤岩体;伸缩机构,设置于铣削机构与机架之 间,使铣削机构伸出和缩回;水平摆动机构,设置于伸缩机构与机架之间,使铣削机构左右摆动;斜进刀调节机构,设置于伸缩机构与铣削机构之间,使铣削机构改变斜切方向;升降机构,设置于水平摆动机构与机架之间,使铣削机构上下摆动;;控制器,对机器人的终端机构进行控制操作;所述铣削机构包括:驱动单元,驱动端与偏心回转套驱动连接,固定连接在铣削机构外壳上;铣削轴,其铣削端设置有铣削刀头,所述铣削轴的中段设置有限位件,所述限位件用于抵消作用于旋回体的轴向力;偏心回转套,设置在铣削轴与驱动单元之间,所述偏心回转套内部设置有内孔,所述内孔与铣削轴配合连接,所述内孔的轴线即中心线I与偏心回转套的轴线即中心线II之间存在夹角,使铣削轴上的铣削刀头进行旋回振荡铣削破岩;高压射流喷嘴单元,设置在所述铣削端上,形成高压射流辅助铣削刀头破岩;拉压力传感器,设置在铣削机构外壳上,与控制器信号连接,用于检测铣削机构中连接紧固件的受力载荷;方向传感器,设置在铣削机构外壳上,与控制器信号连接,用于检测铣削刀头的运动方向。
作为本发明的一种优选实施方式:所述偏心回转套包括:筒套,一端开有内孔,另一端为筒套封闭端,筒套外壁与铣削机构外壳配合连接,筒套封闭端与驱动单元配合连接;偏心圆盘,设置在筒套中部外壁,该偏心圆盘的轴线与偏心套筒的轴线之间存在偏心距;所述内孔设置有强化处理表面。
作为本发明的一种优选实施方式:所述铣削轴依次分为铣削端、球形段、连接段,所述铣削轴上的铣削端与铣削刀头连接,所述限位件为连接在所述铣削端后端的球形段,所述球形段与铣削轴支撑座的接触面设有高压密封圈;所述连接段与偏心回转套的内孔配合安装。
作为本发明的一种优选实施方式:所述铣削轴上还设置有:冷却进水道,与铣削轴支撑座上的低压水入口相连接;冷却分支水道,设置在偏心回转套内孔与铣削轴右侧段的接触面上;冷却水出水道,设置在铣削轴内部,与冷却分支水道连通,并连接到铣削刀头处。
作为本发明的一种优选实施方式:高压射流喷嘴单元中,包括:高压水管,串联设置有高压水开闭装置,并与铣削轴支撑座上的高压水入口相连接;高压水开闭装置,用于控制闭合高压水管;高压射流喷嘴,与铣削轴支撑座的高压水入口连通。作为本发明的一种优选实施方式:
作为本发明的一种优选实施方式:所述驱动单元为电机马达,所述电机马达通过螺钉II固定在铣削机构外壳上,所述铣削刀头为镶嵌硬质合金的蝶形滚刀。
作为本发明的一种优选实施方式:中心线I与中心线II之间夹角小于3°。
作为本发明的一种优选实施方式:所述铣削机构通过调节支撑件中的铰接孔与斜进刀调节机构连接。与斜进刀调节机构连接。
作为本发明的一种优选实施方式:伸缩机构包括:方形壳体、方形伸出梁、伸缩油缸,伸缩油缸的缸筒与方形壳体固定连接、伸缩油缸的缸杆与方形伸出梁固定连接,伸缩油缸上设置有位移传感器,所述位移传感器用于检测伸缩油缸的位移;升降机构,包括升降油缸,一端与水平摆动机构的下铰接孔连接,另一端与方形壳体的中部铰接孔连接,并在连接处设有升降角度传感器,使得铣削机构中的铣削刀头能在巷道内进行上下运动;斜进刀调节机构,一端与铣削机构的后端对称铰接孔连接、另一端与方形伸出梁的前端对称铰接孔连接,并在斜进刀调节机构中设置有铣削机构角度传感器,调整铣削刀头达到斜切状态。
巷隧道掘进机器人的自动截割控制方法,包括以下步骤:
步骤1:控制器控制行走平台使掘进机器人铣削机构贴合煤岩体掘进面,控制支撑稳定机构支撑在巷道顶底板或侧帮,防滑机构打开并支撑在巷道底板上;
步骤2:启动驱动单元,由驱动单元带动偏心回转套进行旋转,通过偏心回转套的内孔旋转带动铣削轴和铣削刀头一同旋回摆动;在驱动单元启动时,打开低压冷却水管,通过冷却水流经铣削轴连接段外壁,对铣削轴连接段与偏心回转套内孔接触面进行冷却;在驱动单元启动时,启动高压水管射流单元,高压射流通过冲击旋回振荡的刀头形成振荡射流辅助铣削刀头破岩;
步骤3:控制器控制斜进刀调节机构使碟形滚刀达到斜切状态,控制器控制升降油缸使碟形滚刀向下运动,控制器控制伸缩油缸使方形伸出梁伸出方形壳体,使碟形滚刀作向下、向前复合运动斜切入岩体;通过拉压力传感器间接检测铣削轴支撑座、铣削机构外壳之间的连接紧固件受力载荷,检测的载荷达到预设值时,开启高压水***;安装在铣削机构外壳上的方向传感器检测获得碟形滚刀的运动方向,高压水开闭装置根据检测的碟形滚刀运动方向开启安装在铣削轴支撑座上对应的高压射流喷嘴,在碟形滚刀运动方向形成振荡射流辅助破岩;位移传感器安装在伸缩油缸上检测其位移,控制伸缩油缸使碟形滚刀达到预定铣削厚度,控制斜进刀调节机构使碟形滚刀与岩体掘进面近似贴合达到铣削状态;
步骤4:根据安装在方形壳体末端铰接位置的升降角度传感器、水平摆动机构外圆周位置的回转角度传感器信号,控制器计算碟形滚刀在岩体掘进面位置,控制升降油缸、水平摆动机构使安装在铣削机构上的碟形滚刀按照预设铣削路径铣削煤岩体;完成一次预定厚度煤岩体掘进面铣削后,铣削机构回到步骤1初始位置;
步骤5:不断重复步骤3、步骤4,直至伸缩油缸达到最大行程,收回支撑稳定机构和防滑 机构完成掘进机器人一次固定后的铣削煤岩;
步骤6:重复执行步骤1~步骤5,实现煤岩体掘进面自动化截割。
本发明相比现有技术,具有以下有益效果:
1.通过其中设置的偏心回转套内孔的中心线偏斜,使得铣削机构带动铣削刀头旋回振荡运动,铣削刀头与岩体非连续接触使得铣削刀头接触路径短磨损小、温度低,避免铣削刀头过度磨损,实现岩体高效铣削。通过带动铣削刀头使用旋回振荡进行破岩阻力小,同时产生轴向和径向激振力,充分利用煤岩不抗拉特性,破岩效率高。
2.在铣削刀头铣削岩石工作时,高压射流通过冲击旋回振荡的刀头形成振荡射流形成振荡射流辅助铣削刀头破岩,能降低铣削难度,振荡射流预先对岩石割缝后利于旋回振荡铣削刀头对岩石进行铣削破碎,充分利用岩石抗压不抗拉特性,大大的降低了破岩难度,提高了坚硬岩体的破碎效率。
3.通过在铣削轴中冷却水通道的设计,使得在铣削轴和偏心回转套的内孔进行旋回振荡运动时,由于相互摩擦产生的热量通过冷却水进行冷却,从而降低由于过热导致铣削轴和偏心回转套的过度损耗,并且通过在铣削轴与铣削轴支撑座中设置高压密封圈,防止冷却水的泄漏。
4.控制器根据位移传感器、铣削机构角度传感器、升降角度传感器、回转角度传感器、方向传感器、拉压力传感器,调节斜进刀调节机构、方形伸出梁、升降油缸、水平摆动机构可以实现铣削机构带动的碟形滚刀自动化截割,工作效率高、截割成形质量好。
附图说明
图1为本发明巷隧道掘进机器人总体图;
图2为本发明中铣削机构的剖视图;
图3为本发明中铣削轴的剖视图;
图4为本发明中偏心回转套的剖视图;
图5为本发明中方形伸出梁的剖视图;
图6为本发明中碟形滚刀斜切方式及铣削路径示意图。
图中:1为铣削机构、2为斜进刀调节机构、3为方形伸出梁、4为方形壳体、5为升降油缸、6为水平摆动机构、7为液压动力源、8为电气***、9为岩渣输送机构、10为防滑机构、11为行走平台、12为岩渣收集机构、13为支撑稳定机构、14为伸缩油缸、15为位移传感器、16为铣削机构角度传感器、17为升降角度传感器、18为回转角度传感器、19为方向传感器、20为拉压力传感器、21为高压水***、22为高压射流喷嘴、23为控制器、 24为煤岩体掘进面、25为斜切状态、26为铣削状态、27为铣削路径、1-1为碟形滚刀、1-2为螺钉I、1-3为铣削轴、1-4为铣削轴支撑座、1-5为螺栓I、1-6为低压冷却水管、1-7为高压水管、1-8为高压水开闭装置、1-9为铣削机构外壳、1-10为支撑轴承、1-12为偏心回转套、1-13为螺钉II、1-14为电机马达、1-15为螺钉III、1-16为调节支撑件、1-17为后端主铰接孔、1-18为后端对称铰接孔、1-19为高压密封圈、1-2-1为镶嵌硬质合金、1-3-1为铣削端、1-3-2为球形段、1-3-3为连接段、1-3-4为冷却进水道、1-3-5为冷却分支水道、1-3-6为冷却水出水道、1-4-1为低压水入口、1-4-2为高压水入口、1-12-1为内孔、1-12-2为筒套外壁、1-12-3为筒套封闭端、1-12-4为偏心圆盘、1-12-5为中心线I、1-12-6为中心线II、3-1为中部支撑座、3-2为前端主铰接孔、3-3为前端对称铰接孔、3-4四个表面;4-1为右铰接孔、4-2为中部铰接孔、4-3为尾部支撑座、6-1为回转端、6-2为上铰接孔、6-3为下铰接孔。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1至图6所示,本实施例为一种巷隧道掘进机器人,其中铣削机构,用于完成自动斜切进刀和铣削煤岩体,通过其中设置的偏心回转套内孔的中心线偏斜,使得铣削机构带动铣削刀头旋回振荡运动,铣削刀头与岩体非连续接触使得铣削刀头接触路径短磨损小、温度低,避免铣削刀头过度磨损,实现岩体高效铣削。通过带动铣削刀头使用旋回振荡进行破岩阻力小,同时产生轴向和径向激振力,充分利用煤岩不抗拉特性,破岩效率高。工作时,高压射流通过冲击旋回振荡的刀头形成振荡射流形成振荡射流辅助铣削刀头破岩,能降低铣削难度,射流预先对岩石割缝后利于旋回振荡铣削刀头对岩石进行破碎,大大的降低了破岩难度,提高了坚硬岩体的破碎效率。
巷隧道掘进机器人,包括控制器23,以及与控制器23信号连接的,铣削机构1、斜进刀调节机构2、方形伸出梁3、方形壳体4、升降油缸5、水平摆动机构6、液压动力源7、电气***8、岩渣输送机构9、防滑机构10、行走平台11、岩渣收集机构12、支撑稳定机构13、伸缩油缸14、位移传感器15、铣削机构角度传感器16、升降角度传感器17、回转角度传感器18、方向传感器19、拉压力传感器20、高压水***21、高压射流喷嘴22,其中,液压动力源7、电气***8、岩渣输送机构9、防滑机构10、岩渣收集机构12、支撑稳定机构13、高压水***21等均安装在移动平台10上,组成整个巷隧道掘进机器人的机 架。
如图2所示,铣削机构包括:驱动单元、铣削轴1-3、偏心回转套1-12、支撑轴承1-10、调节支撑件1-16,高压射流喷嘴单元,其中,
驱动单元,驱动端与偏心回转套驱动连接,驱动单元为电机马达1-14,所述电机马达通过螺钉II1-13固定在铣削机构外壳1-9上。
如图3所示,铣削轴1-3,包括:铣削端1-3-1,为铣削轴1-3与铣削刀头连接的一端;铣削轴支撑座1-4,通过螺栓I1-5和铣削机构外壳1-9连接;球形段1-3-2,为铣削轴中的限位件,设置在铣削轴支撑座1-4之间,与铣削轴支撑座1-4的接触面设有高压密封圈1-19,通过高压密封圈1-19的设置,防止冷却水的泄漏;连接段1-3-3,与偏心回转套的内孔1-12-1配合安装的一端。铣削轴中还设置有:冷却进水道1-3-4,与铣削轴支撑座1-4上的低压水入口1-4-1相连接;冷却分支水道1-3-5,设置在偏心回转套1-12内孔1-12-1与铣削轴1-3右侧段1-3-3的接触面上;冷却水出水道1-3-6,设置在铣削轴内部,与冷却分支水道连通,并连接到铣削刀头处,所述铣削轴1-3左端面1-3-1上通过螺钉I1-2固定有镶嵌硬质合金1-2-1的碟形滚刀1-1。
如图4所示,偏心回转套1-12,包括:筒套,一端开有一内孔1-12-1,另一端为筒套封闭端,筒套外壁与铣削机构外壳1-9配合连接,筒套封闭端1-12-3与电机马达配合连接;偏心圆盘,设置在筒套中部外壁,该偏心圆盘的轴线与偏心套筒的轴线之间存在偏心距;内孔,设置有强化处理表面,内孔1-12-1中心线I1-12-5与外表面1-12-2中心线II1-12-6之间存在一个夹角,该夹角一般小于3°。偏心回转套1-12右端1-12-3与电机马达1-14通过键连接。
支撑轴承1-10,其内、外圈分别与偏心回转套1-12外表面1-12-2和铣削机构外壳1-9内孔配合连接。
调节支撑件1-16,设有后端主铰接孔1-17、后端对称铰接孔1-18通过螺钉III1-15与铣削机构外壳1-9连接。
高压射流喷嘴单元,与高压水***连接21,包括:高压水管1-7,串联设置有高压水开闭装置1-8,并与铣削轴支撑座1-4上的高压水入口1-4-2相连接;高压水开闭装置1-8,用于控制闭合高压水管;高压射流喷嘴,与铣削轴支撑座1-4的高压水入口1-4-2连通,高压水射流通过冲击旋回振荡的刀形成振荡射流。
移动平台11,设置在机架的底部,用于机架的移动;支撑稳定机构13,设置在机架上,用于支撑岩体顶部和侧部。
拉压力传感器20安装在铣削轴支撑座1-4与铣削机构外壳1-9之间,方向传感器19安装在铣削机构外壳1-9表面。
伸缩机构包括:方形壳体4、方形伸出梁3、伸缩油缸14,伸缩油缸14分别与方形壳体4的尾部支撑座4-3、方形伸出梁3的中部支撑座3-1连接,伸缩油缸14的缸筒与方形壳体4固定连接、伸缩油缸14的缸杆与方形伸出梁3固定连接,通过位移传感器15检测到的伸缩油缸14的位移控制,控制器控制方形伸出梁相对方形壳体移动。如图5所示,方形伸出梁的中部支撑座3-1与伸缩油缸14活塞杆连接,前端主铰接孔3-2与铣削机构1后端主铰接孔1-17铰接,前端对称铰接孔3-3与铣削机构1后端对称铰接孔1-18通过斜进刀调节机构2连接,方形伸出梁3四个表面3-4强化处理。
水平摆动机构6,通过上铰接孔6-2设置在机架与方形壳体之间,回转端6-1竖直回转安装在移动平台10前侧,并且在机架与水平摆动机构之间设有回转角度传感器18,使方形壳体4左右摆动。
升降机构,包括升降油缸,分别与水平摆动机构6的下铰接孔6-3、方形壳体4的中部铰接孔4-2连接,升降角度传感器17设置在方形壳体4的右铰接孔4-1与水平摆动机构6上铰接孔6-2的铰接处,使得铣削机构中的铣削刀头能在巷道内进行上下运动。
斜进刀调节机构,两端分别与铣削机构1的后端对称铰接孔1-18、方形伸出梁3的前端对称铰接孔3-3连接,并在铣削机构1后端主铰接孔1-17与方形伸出梁3前端主铰接孔3-2铰接并设有铣削机构角度传感器16,所述斜进刀调节机构用于使调整铣削刀头达到斜切状态。
控制器根据位移传感器15、铣削机构角度传感器16、升降角度传感器17、回转角度传感器18、拉压力传感器20、方向传感器19,控制斜进刀调节机构2、升降油缸14、水平摆动机构6、伸缩油缸5、振荡射流喷嘴22开闭装置等实现定向水射流辅助下铣削机构1自动斜切进刀和铣削煤岩体。
一种巷隧道掘进机器人的自动截割控制方法,基于所述的巷隧道掘进机器人,包括以下步骤:
步骤1:控制器控制行走平台11使掘进机器人铣削机构1贴合煤岩体掘进面24,控制支撑稳定机构13支撑在巷道顶底板或侧帮,防滑机构10打开并支撑在巷道底板上;
步骤2:启动驱动单元,由驱动单元带动偏心回转套进行旋转,通过偏心回转套的内孔旋转带动铣削轴和铣削刀头一同旋回摆动;在驱动单元启动时,打开低压冷却水管,通过冷却水流经铣削轴连接段外壁,对铣削轴连接段与偏心回转套内孔接触面进行冷却;在驱动单元启 动时,启动高压水管射流单元,高压射流通过冲击旋回振荡的刀头形成振荡射流形成振荡射流辅助铣削刀头破岩;
步骤3:控制器控制斜进刀调节机构2使碟形滚刀1-1达到斜切状态25,控制升降油缸5使碟形滚刀1-1向下运动,控制伸缩油缸14使方形伸出梁3伸出方形壳体4,使碟形滚刀1-1作向下、向前复合运动斜切入岩体;安装在拉压力传感器20间接检测铣削轴支撑座1-4、铣削机构外壳1-9之间的连接紧固件受力载荷,检测的载荷达到预设值时安装在移动平台10上高压水***21开启;安装在铣削机构外壳1-9上的方向传感器19检测获得碟形滚刀1-1的运动方向,高压水开闭装置1-8根据检测的碟形滚刀1-1运动方向开启安装在铣削轴支撑座1-4上对应的高压射流喷嘴22,在碟形滚刀1-1运动方向形成振荡射流辅助破岩;位移传感器15安装在伸缩油缸14上检测其位移,控制伸缩油缸14使碟形滚刀1-1达到预定铣削厚度,控制斜进刀调节机构2使碟形滚刀1-1与岩体掘进面24近似贴合达到铣削状态26;
步骤4:根据安装在方形壳体4末端铰接位置的升降角度传感器17、水平摆动机构6外圆周位置的回转角度传感器18信号,控制器23计算碟形滚刀1-1在岩体掘进面24位置,控制升降油缸5、水平摆动机构6使安装在铣削机构1上的碟形滚刀1-1按照预设铣削路径27铣削煤岩体;完成一次预定厚度煤岩体掘进面24铣削后,铣削机构1回到步骤1初始位置;
步骤5:不断重复步骤3、步骤4,直至伸缩油缸14达到最大行程,收回支撑稳定机构13和防滑机构10完成掘进机器人一次固定后的铣削煤岩;
步骤6:重复执行步骤1~步骤5,实现煤岩体掘进面24自动化截割。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种巷隧道掘进机器人,包括:
    机架;
    移动平台(11),设置在机架的底部,用于机架的移动;
    支撑稳定机构(13),设置在机架上,用于支撑岩体顶部和侧部;
    铣削机构,用于铣削煤岩体;
    伸缩机构,设置于铣削机构与机架之间,使铣削机构伸出和缩回;
    水平摆动机构,设置于伸缩机构与机架之间,使铣削机构左右摆动;
    斜进刀调节机构,设置于伸缩机构与铣削机构之间,使铣削机构改变斜切方向;
    升降机构,设置于水平摆动机构与机架之间,使铣削机构上下摆动;
    控制器,对机器人的终端机构进行控制操作;
    其特征在于,所述铣削机构包括:
    驱动单元,驱动端与偏心回转套驱动连接,固定连接在铣削机构外壳(1-9)上;
    铣削轴,其铣削端(1-3-1)设置有铣削刀头,所述铣削轴的中段设置有限位件,所述限位件用于抵消作用于旋回体的轴向力;
    偏心回转套,设置在铣削轴与驱动单元之间,所述偏心回转套内部设置有内孔,所述内孔与铣削轴配合连接,所述内孔的轴线即中心线I(1-12-5)与偏心回转套的轴线即中心线II(1-12-6)之间存在夹角,使铣削轴上的铣削刀头进行旋回振荡铣削破岩;
    高压射流喷嘴单元,设置在所述铣削端上,形成高压射流辅助铣削刀头破岩;
    拉压力传感器(20),设置在铣削机构外壳(1-9)上,与控制器信号连接,用于检测铣削机构中连接紧固件的受力载荷;
    方向传感器(19),设置在铣削机构外壳(1-9)上,与控制器信号连接,用于检测铣削刀头的运动方向。
  2. 根据权利要求1所述的巷隧道掘进机器人,其特征在于,所述偏心回转套(1-12)包括:筒套,一端开有内孔,另一端为筒套封闭端,筒套外壁与铣削机构外壳(1-9)配合连接,筒套封闭端(1-12-3)与驱动单元配合连接;
    偏心圆盘,设置在筒套中部外壁,该偏心圆盘的轴线与偏心套筒的轴线之间存在偏心距;
    所述内孔设置有强化处理表面。
  3. 根据权利要求2所述的巷隧道掘进机器人,其特征在于:所述铣削轴依次分为铣削端、球形段、连接段,所述铣削轴上的铣削端与铣削刀头连接,所述限位件为连接在所述铣削端后端的球形段,所述球形段与铣削轴支撑座(1-4)的接触面设有高压密封圈(1-19);所述 连接段与偏心回转套的内孔(1-12-1)配合安装。
  4. 根据权利要求3所述的巷隧道掘进机器人,其特征在于:所述铣削轴上还设置有:
    冷却进水道(1-3-4),与铣削轴支撑座(1-4)上的低压水入口(1-4-1)相连接;
    冷却分支水道(1-3-5),设置在偏心回转套(1-12)内孔(1-12-1)与铣削轴(1-3)右侧段(1-3-3)的接触面上;
    冷却水出水道(1-3-6),设置在铣削轴内部,与冷却分支水道连通,并连接到铣削刀头处。
  5. 根据权利要求3所述的巷隧道掘进机器人,其特征在于:高压射流喷嘴单元中,包括:
    高压水管(1-7),串联设置有高压水开闭装置(1-8),并与铣削轴支撑座(1-4)上的高压水入口(1-4-2)相连接;
    高压水开闭装置(1-8),用于控制闭合高压水管;
    高压射流喷嘴,与铣削轴支撑座(1-4)的高压水入口(1-4-2)连通。
  6. 根据权利要求4所述的巷隧道掘进机器人,其特征在于:所述驱动单元为电机马达(1-14),所述电机马达通过螺钉II(1-13)固定在铣削机构外壳(1-9)上,所述铣削刀头为镶嵌硬质合金(1-2-1)的蝶形滚刀(1-1)。
  7. 根据权利要求1所述的巷隧道掘进机器人,其特征在于,中心线I(1-12-5)与中心线II(1-12-6)之间夹角小于3°。
  8. 根据权利要求1所述的巷隧道掘进机器人,其特征在于,所述铣削机构(1)通过调节支撑件中的铰接孔与斜进刀调节机构连接。
  9. 根据权利要求8所述的巷隧道掘进机器人,其特征在于,
    伸缩机构包括:方形壳体、方形伸出梁、伸缩油缸(14),伸缩油缸的缸筒与方形壳体固定连接、伸缩油缸的缸杆与方形伸出梁固定连接,伸缩油缸上设置有位移传感器(15),所述位移传感器(15)用于检测伸缩油缸的位移;
    升降机构,包括升降油缸,一端与水平摆动机构(6)的下铰接孔(6-3)连接,另一端与方形壳体(4)的中部铰接孔(4-2)连接,并在连接处设有升降角度传感器(17),使得铣削机构中的铣削刀头能在巷道内进行上下运动;
    斜进刀调节机构,一端与铣削机构(1)的后端对称铰接孔(1-18)连接、另一端与方形伸出梁(3)的前端对称铰接孔(3-3)连接,并在斜进刀调节机构中设置有铣削机构角度传感器(16),调整铣削刀头达到斜切状态。
  10. 根据权利要求9中所述的巷隧道掘进机器人的自动截割控制方法,其特征在于,包括以下步骤:
    步骤1:控制器控制行走平台使掘进机器人铣削机构贴合煤岩体掘进面,控制支撑稳定机构支撑在巷道顶底板或侧帮,防滑机构打开并支撑在巷道底板上;
    步骤2:启动驱动单元,由驱动单元带动偏心回转套进行旋转,通过偏心回转套的内孔旋转带动铣削轴和铣削刀头一同旋回摆动;在驱动单元启动时,打开低压冷却水管,通过冷却水流经铣削轴连接段外壁,对铣削轴连接段与偏心回转套内孔接触面进行冷却;在驱动单元启动时,启动高压水管射流单元,高压射流通过冲击旋回振荡的刀头形成振荡射流辅助铣削刀头破岩;
    步骤3:控制器控制斜进刀调节机构使碟形滚刀达到斜切状态,控制器控制升降油缸使碟形滚刀向下运动,控制器控制伸缩油缸使方形伸出梁伸出方形壳体,使碟形滚刀作向下、向前复合运动斜切入岩体;通过拉压力传感器间接检测铣削轴支撑座、铣削机构外壳之间的连接紧固件受力载荷,检测的载荷达到预设值时,开启高压水***;安装在铣削机构外壳上的方向传感器检测获得碟形滚刀的运动方向,高压水开闭装置根据检测的碟形滚刀运动方向开启安装在铣削轴支撑座上对应的高压射流喷嘴,在碟形滚刀运动方向形成振荡射流辅助破岩;位移传感器安装在伸缩油缸上检测其位移,控制伸缩油缸使碟形滚刀达到预定铣削厚度,控制斜进刀调节机构使碟形滚刀与岩体掘进面近似贴合达到铣削状态;
    步骤4:根据安装在方形壳体末端铰接位置的升降角度传感器、水平摆动机构外圆周位置的回转角度传感器信号,控制器计算碟形滚刀在岩体掘进面位置,控制升降油缸、水平摆动机构使安装在铣削机构上的碟形滚刀按照预设铣削路径铣削煤岩体;完成一次预定厚度煤岩体掘进面铣削后,铣削机构回到步骤1初始位置;
    步骤5:不断重复步骤3、步骤4,直至伸缩油缸达到最大行程,收回支撑稳定机构和防滑机构完成掘进机器人一次固定后的铣削煤岩;
    步骤6:重复执行步骤1~步骤5,实现煤岩体掘进面自动化截割。
PCT/CN2022/123152 2022-05-20 2022-09-30 一种巷隧道掘进机器人及自动截割控制方法 WO2023221368A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023526337A JP2024524787A (ja) 2022-05-20 2022-09-30 坑道掘削ロボット及び自動切削制御方法
AU2022358643A AU2022358643A1 (en) 2022-05-20 2022-09-30 Roadway/tunnel excavation robot and automatic cutting control method
US18/031,869 US20240141784A1 (en) 2022-05-20 2022-09-30 Roadway/tunnel excavation robot and automatic cutting control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210554910.9A CN114876486B (zh) 2022-05-20 2022-05-20 一种巷隧道掘进机器人及自动截割控制方法
CN202210554910.9 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221368A1 true WO2023221368A1 (zh) 2023-11-23

Family

ID=82677047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123152 WO2023221368A1 (zh) 2022-05-20 2022-09-30 一种巷隧道掘进机器人及自动截割控制方法

Country Status (5)

Country Link
US (1) US20240141784A1 (zh)
JP (1) JP2024524787A (zh)
CN (1) CN114876486B (zh)
AU (1) AU2022358643A1 (zh)
WO (1) WO2023221368A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114876486B (zh) * 2022-05-20 2023-03-10 中国矿业大学 一种巷隧道掘进机器人及自动截割控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167968B1 (en) * 1998-05-05 2001-01-02 Penetrators Canada, Inc. Method and apparatus for radially drilling through well casing and formation
US20180023390A1 (en) * 2016-07-22 2018-01-25 Caterpillar Inc. Milling Depth Compensation System and Method
CN108547627A (zh) * 2018-04-18 2018-09-18 中国矿业大学 一种具有定向高速磨料射流超前切缝功能的振动式硬岩截割机构
CN110318766A (zh) * 2019-07-02 2019-10-11 中国科学院武汉岩土力学研究所 机械-水力联合破岩的tbm掘进装备及其掘进方法
CN114876486A (zh) * 2022-05-20 2022-08-09 中国矿业大学 一种巷隧道掘进机器人及自动截割控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056363B (zh) * 2019-04-19 2020-06-02 中国矿业大学 一种滚刀主动旋转的坚硬岩石巷隧道掘进机
CN110778324B (zh) * 2019-11-05 2020-09-01 中国矿业大学 一种集钻孔、探水、铣削为一体的硬岩巷道掘进方法
CN110735647B (zh) * 2019-11-05 2020-09-01 中国矿业大学 不影响支护作业且可按预定路径破岩的偏心滚刀式掘进机
CN113833485B (zh) * 2021-09-28 2024-05-17 中国矿业大学 一种适合复杂地质的多模式巷隧掘进机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167968B1 (en) * 1998-05-05 2001-01-02 Penetrators Canada, Inc. Method and apparatus for radially drilling through well casing and formation
US20180023390A1 (en) * 2016-07-22 2018-01-25 Caterpillar Inc. Milling Depth Compensation System and Method
CN108547627A (zh) * 2018-04-18 2018-09-18 中国矿业大学 一种具有定向高速磨料射流超前切缝功能的振动式硬岩截割机构
CN110318766A (zh) * 2019-07-02 2019-10-11 中国科学院武汉岩土力学研究所 机械-水力联合破岩的tbm掘进装备及其掘进方法
CN114876486A (zh) * 2022-05-20 2022-08-09 中国矿业大学 一种巷隧道掘进机器人及自动截割控制方法

Also Published As

Publication number Publication date
US20240141784A1 (en) 2024-05-02
CN114876486B (zh) 2023-03-10
JP2024524787A (ja) 2024-07-09
AU2022358643A1 (en) 2023-12-07
CN114876486A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN106761805B (zh) 激光全断面岩石掘进机刀盘设计方法
CN105239928B (zh) 一种超高压旋转磨料水射流钻机
CN105156085B (zh) 煤矿井下煤层树状钻孔复合压裂均匀增透的方法
CN110219660B (zh) 水力-机械tbm刀盘联合破岩方法及其刀盘及其装置
AU2018419727B2 (en) Vibrating-type hard rock cutting mechanism with function of directional high-speed abrasive jet advanced slitting
WO2023221368A1 (zh) 一种巷隧道掘进机器人及自动截割控制方法
CN104718346A (zh) 用于采掘机的刀头
CN103912272A (zh) 掘进机
CN105525900A (zh) 煤矿井下煤层树状钻孔复合压裂均匀增透装备
CN104959183A (zh) 一种盾构机的泥水环流和碎石方法
CN104727819A (zh) 一种免爆机及免爆挖掘机
CN110056363A (zh) 一种滚刀主动旋转的坚硬岩石巷隧道掘进机
CN105065007A (zh) 一种盾构机泥水环流和碎石***
WO2024088229A1 (zh) 一种不旋转潜孔锤钻机及其使用方法
CN212803060U (zh) 钻孔内径向切槽装置
CN105927149B (zh) 一种快速穿透煤矸石的煤层钻孔打钻装置与方法
CN107630699A (zh) 一种振动冲击加水射流辅助截割的复合式破煤方法与机构
CN104984780A (zh) 一种用于盾构机中的泥浆管路破碎机
CN110107292A (zh) 高压磨料射流切缝机
CN109707323A (zh) 一种用于钻头与钻杆的连接结构
CN105134080A (zh) 一种粒子钻井方法
CN206111176U (zh) 煤矿井下用开槽装备的开槽机械手
CN111997605B (zh) 一种盘形底切截割机构
CN105041214A (zh) 一种适用于粒子钻井的双注入泵连续注入方法
CN213392015U (zh) 一种用于矿山开采过程中的高效钻机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18031869

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022358643

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2023526337

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022358643

Country of ref document: AU

Date of ref document: 20220930

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942395

Country of ref document: EP

Kind code of ref document: A1