WO2023220961A1 - 数据传输方法、第一设备、第二设备 - Google Patents

数据传输方法、第一设备、第二设备 Download PDF

Info

Publication number
WO2023220961A1
WO2023220961A1 PCT/CN2022/093529 CN2022093529W WO2023220961A1 WO 2023220961 A1 WO2023220961 A1 WO 2023220961A1 CN 2022093529 W CN2022093529 W CN 2022093529W WO 2023220961 A1 WO2023220961 A1 WO 2023220961A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
signaling
transmission mode
copy transmission
copy
Prior art date
Application number
PCT/CN2022/093529
Other languages
English (en)
French (fr)
Inventor
冷冰雪
卢前溪
张博源
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/093529 priority Critical patent/WO2023220961A1/zh
Publication of WO2023220961A1 publication Critical patent/WO2023220961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system

Definitions

  • the present application relates to the field of communications, and more specifically, to a data transmission method, a first device, and a second device.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the Long Term Evolution (LTE) system can realize duplicate transmission in V2X.
  • the 5G New Radio (NR) system based on 5G technology uses sidelinks for multi-carrier communication in V2X. In order to improve The reliability of data transmission also requires copy transmission.
  • Embodiments of the present application provide a data transmission method, a first device, and a second device, which can realize data transmission in the sidelink copy transmission mode.
  • An embodiment of the present application provides a data transmission method, applied to a first device, including:
  • the first device sends first data on the sidelink in a copy transmission mode.
  • An embodiment of the present application provides a data transmission method, applied to a second device, including:
  • the second device performs carrier sensing on the sidelink
  • the second device receives the first data transmitted on the current carrier
  • the first data is: data sent by the first device in copy transmission mode.
  • the embodiment of the present application provides a first device, including:
  • a first processing unit configured for the first device to send first data in a copy transmission mode on the side link.
  • This embodiment of the present application provides a second device, including:
  • a thirteenth processing unit used for the second device to perform carrier monitoring on the sidelink
  • a fourteenth processing unit configured to receive the first data transmitted on the current carrier
  • the first data is: data sent by the first device in copy transmission mode.
  • An embodiment of the present application provides a first device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, so that the terminal device executes the method described in the above embodiments of the present application.
  • This embodiment of the present application provides a second device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer programs stored in the memory, so that the terminal device executes the method described in the above embodiments of the present application.
  • the embodiment of the present application provides a chip for implementing the method described in the above embodiment of the present application.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the method described in the above embodiments of the present application.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program.
  • the computer program When the computer program is run by a device, the device performs the method described in the above embodiments of the present application.
  • Embodiments of the present application provide a computer program product, which includes computer program instructions.
  • the computer program instructions cause a computer to execute the method described in the above embodiments of the present application.
  • An embodiment of the present application provides a computer program, which when run on a computer causes the computer to execute the above method described in the embodiment of the present application.
  • the first device sends the first data in the copy transmission mode on the sidelink, so that data transmission in the sidelink copy transmission mode can be realized.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of sidelink transmission mode A according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of sidelink transmission mode B according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of replication transmission in a carrier aggregation scenario according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of another application scenario according to an embodiment of the present application.
  • Figure 6 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 7 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 9 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 10 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 11 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 12 is a schematic flow chart of a data transmission method according to an embodiment of the present application.
  • Figure 13 is a schematic flow chart of application example 1 of the data transmission method according to an embodiment of the present application.
  • Figure 14 is a schematic flow chart of application example 2 of the data transmission method according to an embodiment of the present application.
  • Figures 15a-15b are schematic flow charts of application example 3 of the data transmission method according to an embodiment of the present application.
  • Figures 16a-16b are schematic flow charts of application example 4 of the data transmission method according to an embodiment of the present application.
  • Figure 17 is a schematic block diagram of a first device according to an embodiment of the present application.
  • Figure 18 is a schematic block diagram of a second device according to an embodiment of the present application.
  • Figure 19 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 20 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 21 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) deployment scenario.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone deployment scenario.
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where, Licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a session initiation system (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1 illustrates a communication system 100.
  • the communication system 100 includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a Mobility Management Entity (MME), an Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbre
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • D2D or V2X technology is a sidelink (SL) transmission technology based on D2D. It is different from the way communication data is received or sent through the base station in the traditional cellular system. It has higher With high spectrum efficiency and lower transmission delay, D2D/V2X is usually used in Internet of Vehicles systems. In the Internet of Vehicles system, D2D/V2X is used to enable direct communication from terminal device to terminal device. 3GPP defines the following two transmission modes: Mode A and Mode B.
  • the transmission resources of terminal equipment are allocated by network equipment (such as base stations), and the terminal equipment transmits data on the sidelink according to the resources allocated by the base station.
  • the base station can allocate resources for a single transmission to the terminal device, or allocate resources for semi-static transmission to the terminal device.
  • the terminal device selects a resource in the resource pool for data transmission.
  • D2D is divided into different stages for research:
  • ProSe Proximity based Service
  • Rel-12/13 D2D communication in Rel-12/13 is studied for ProSe scenarios, which is mainly aimed at public safety services.
  • ProSe by configuring the location of the resource pool in the time domain, for example, the resource pool is non-continuous in the time domain, so that the terminal device can send/receive data non-continuously on the sidelink, thereby achieving the effect of power saving.
  • Phase 2 As far as V2X is concerned, in Rel-14/15, the V2X system is studied for vehicle-to-vehicle communication scenarios, which is mainly oriented to relatively high-speed moving vehicle-to-vehicle and vehicle-to-human communication services.
  • V2X since the vehicle system has continuous power supply, power efficiency is not the main issue, but the delay of data transmission is the main issue. Therefore, the system design requires the terminal equipment to transmit and receive continuously.
  • the third stage As far as wearable devices (FeD2D) are concerned, in Rel-14, the scenario of wearable devices accessing the network through mobile phones is studied, which is mainly aimed at low mobile speed and low power access scenarios.
  • the base station can configure the discontinuous reception (DRX) parameters of the remote terminal through a terminal device acting as a relay node.
  • DRX discontinuous reception
  • NR V2X On the basis of LTE V2X, NR V2X is proposed. As far as NR V2X is concerned, NR V2X is not limited to broadcast scenarios, but has been further expanded to unicast and multicast scenarios. The application of V2X is studied in the following scenarios.
  • NR V2X defines two resource authorization modes, mode 1 and mode 2; further, the user may be in a mixed mode, that is, he can use mode 1 to obtain resources and mode 2 at the same time.
  • the resource acquisition is indicated through sidelink authorization, that is, the sidelink authorization indicates the corresponding physical sidelink control channel (Physical Sidelink Control Channel, PSCCH) and physical sidelink shared channel (Physical Sidelink Shared Channel, PSSCH) resources time-frequency position.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • NR V2X introduces feedback-based HARQ retransmission, which is not limited to unicast communication, but also includes multicast communication.
  • LTE-V2X carrier aggregation As far as LTE-V2X carrier aggregation is concerned, carrier selection in LTE-V2X carrier aggregation can be completed by the following mechanisms:
  • the upper layer configures the mapping relationship between service type (service type) and carrier, that is, for a certain service, the upper layer indicates the set of carriers available to the access layer (AS);
  • the AS layer can configure the set of carriers available for each logical channel and the CBR measurement threshold configured for data priority (priority) in each resource pool.
  • the UE measures the CBR value in the resource pool and compares it with the CBR threshold corresponding to the priority of the transmitted data. If the measured value is lower than the threshold, the carrier is considered available.
  • carrier aggregation is a bandwidth expansion technology supported by the LTE-Advanced standard. It can aggregate multiple component carriers (CC) together and be received or transmitted by one UE at the same time. According to the scope of aggregated carriers, carrier aggregation can be divided into intra-band carrier aggregation (intra-band CA) and cross-band carrier aggregation (inter-band CA).
  • intra-band CA intra-band carrier aggregation
  • inter-band CA cross-band carrier aggregation
  • One of the main uses of intra-band carrier aggregation is in scenarios where the cell carrier bandwidth is greater than the single carrier bandwidth capability of the terminal device. In this case, the terminal device can use carrier aggregation to achieve "wide carrier" (wide carrier) operations in.
  • the base station supports a carrier of 300MHz, but the terminal equipment only supports a maximum carrier of 100MHz. At this time, the terminal equipment can use carrier aggregation to achieve broadband operation greater than 100MHz.
  • the aggregated carriers can be adjacent carriers or non-adjacent carriers. carrier.
  • a primary cell PCell
  • PSCell secondary cell
  • a beam failure recovery mechanism is designed for the primary cell and secondary cell. Its main functional modules (or main steps) are divided into the following four parts:
  • BFRQ Beam Failure Recovery ReQest
  • the terminal equipment measures the PDCCH and determines the link quality corresponding to the downlink transmission beam. If the corresponding link quality is very poor, the downlink beam is considered to have beam failure.
  • the terminal device will also measure a set of candidate beams to select a beam that meets a certain threshold as a new beam. Then, the terminal device notifies the network device that a beam failure has occurred through the beam failure recovery request process (Beam Failure Recovery Request, BFRQ) , and report new beams.
  • BFRQ Beam Failure Recovery Request
  • the network device receives the BFRQ information sent by a terminal device, it knows that the terminal device has a beam failure and chooses to send the PDCCH from the new beam.
  • the terminal device receives the PDCCH sent by the network on the new beam, it is considered that the network device side has been correctly received. response information. At this point, the beam failure recovery process is successfully completed.
  • the data packets on the signaling radio bearer (SRB, signaling Radio Bearer)/data radio bearer (DRB, Data Radio Bearer) at the transmission end can Transmit on the corresponding logical channels of the two RLC entities configured for this SRB/DRB (one of which is the primary RLC entity (primary RLC) and the other is the secondary RLC entity (secondary RLC)) (if the two RLC entities serve For the same radio bearer, the srb-Identity or drb-Identity in their corresponding configuration RLC-BearerConfig will be set to the same value).
  • SRB signaling Radio Bearer
  • DRB Data Radio Bearer
  • the network device can first configure the terminal device with each DRB through RRC signaling. Relevant RLC transmission links (that is, the DRB ID or SRB ID corresponding to more than two RLC entities is set to the same one). Furthermore, copy transmission activation/deactivation of related RLC entities can also be performed through RRC and MAC CE.
  • the copied transmission in LTE V2X only supports priority-based judgment, and the mapping relationship between the original logical channel and the copied logical channel is fixed. As shown in Table 1, this fixed configuration does not Consider the different states of terminal devices. However, actual data transmission scenarios include unicast, multicast, broadcast, terminal devices in different network coverage, etc., and the introduction of unicast and multicast also provides a more flexible configuration. way provides possibilities.
  • the current copy transmission mode cannot meet the needs of various data transmission scenarios in multi-carrier communication using sidelinks in NR-V2X.
  • the following embodiments of this application take the use of sidelinks for multi-carrier communication in NR-V2X as an example. They mainly focus on the different coverage conditions of terminal equipment and the different RRC states of terminal equipment, combined with unicast, multicast, and broadcast communication. Various data transmission scenarios illustrate the use of sidelinks to support the replication transmission mode to improve the reliability of data transmission.
  • the first device may be a sender UE, and the second device may be a receiver UE; the first device may also be a receiver UE, and the second device may be a sender UE.
  • the second device may be a terminal device (such as a receiving UE or a sending UE). According to different networking architectures, the second device may also be a network device.
  • the second device When the second device is a terminal device, no matter which one of the first device and the second device serves as the sender UE or the receiver UE, the device needs to support/enable the copy transmission mode.
  • first device and the second device serves as the sender UE or the receiver UE, they can perform: activating the copy transmission mode, and after activating the copy transmission mode, send the above-mentioned information in the copy transmission mode on the sidelink.
  • First data means that the copy transmission mode is not a certain capability supported by the first device, but that the first device is configured to support the copy transmission mode on the carrier or logical channel. A transmission of data.
  • FIG. 5 is a schematic diagram of another application scenario according to an embodiment of the present application, exemplarily showing the interactive process of the data transmission method according to the embodiment of the present application.
  • the interaction process includes some or all of the following steps:
  • the first device sends the first data in the copy transmission mode on the sidelink.
  • the second device performs carrier monitoring on the sidelink.
  • the second device receives the first data transmitted on the current carrier.
  • Figure 6 is a schematic flow chart of a data transmission method 600 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device sends the first data in the copy transmission mode on the sidelink.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the first device can realize data transmission in the sidelink copy transmission mode by sending the first data in the copy transmission mode on the side link.
  • a possible implementation further includes: according to the first rule, the first device determines that the copy transmission mode is enabled or the copy transmission mode is disabled.
  • the first rule (such as a defined mapping relationship or a defined rule, which may also be called a first condition, such as a defined mapping relationship or a defined condition) can be configured through at least one of preconfiguration, system message indication, and upper layer indication. One way to get.
  • the first rule may be related to at least one configuration method. That is, the definition of the first rule can be related to a multi-granularity configuration method.
  • the multi-granularity configuration method includes: each business type, Quality of Service (QoS) flow, data link layer ( L2) At least one of the classification granularity of identification, logical channel, transmission (Transport, Tx) protocol, data transmission type, data transmission priority, carrier, resource pool, constant bit rate (Constants Bit Rate, CBR) level, so as to ,
  • QoS Quality of Service
  • L2 data link layer
  • At least one of the classification granularity of identification logical channel, transmission (Transport, Tx) protocol, data transmission type, data transmission priority, carrier, resource pool, constant bit rate (Constants Bit Rate, CBR) level, so as to .
  • Figure 7 is a schematic flow chart of a data transmission method 700 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device sends the first data in the copy transmission mode on the sidelink.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the copy transmission mode can be activated when the first condition is met, thereby realizing sending the first data after activating the copy transmission mode.
  • the first condition includes at least one of the following:
  • the resource pool CBR measurement value is less than the first threshold (such as the maximum threshold);
  • the measured value of the sidelink reference signal receiving power (RSRP) is greater than the second threshold value (such as the minimum threshold value) and/or less than the third threshold value (such as the maximum threshold value);
  • N is a positive integer greater than 1;
  • N is a positive integer greater than 1;
  • the first signaling is used to indicate activation of the duplication transmission mode.
  • the first signaling may be signaling (duplication activation) indicating activation of the duplication transmission mode.
  • steps S710-S720 There is no necessary sequential relationship between steps S710-S720. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • Figure 8 is a schematic flow chart of a data transmission method 800 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device sends the first data in the copy transmission mode on the sidelink, and the first data is the source data.
  • the first device sends second data on the side link, where the second data is duplicate data, where the second data and the first data are sent on the same carrier or different carriers.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the copy transmission mode can be activated when the first condition is met, thereby realizing sending the first data after activating the copy transmission mode.
  • the first condition includes at least one of the following:
  • the resource pool CBR measurement value is less than the first threshold (such as the maximum threshold);
  • the sidelink reference signal received power RSRP measured value is greater than the second threshold value (such as the minimum threshold value) and/or less than the third threshold value (such as the maximum threshold value);
  • N is a positive integer greater than 1;
  • N is a positive integer greater than 1;
  • the first signaling is used to indicate activation of the duplication transmission mode.
  • the first signaling may be signaling (duplication activation) indicating activation of the duplication transmission mode.
  • the second device may include: a terminal device or a network device, where the terminal device may be the sender UE or the receiver UE.
  • the corresponding relationship between the second data and the first data is determined by a carrier mapping indication, a logical channel identification mapping indication, an explicit indication, a network configuration, Determine at least one way in the pre-configuration, specifically, include the following:
  • the logical channel identifier mapping indication between the second data and the first data is used to determine the corresponding copy transmission relationship between the second data and the first data;
  • steps S810-S830 There is no necessary sequence relationship between steps S810-S830. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • the method further includes: the first device receives the second signaling initiated by the first network device, and the first device responds to the second signaling and configures the copy transmission on the sidelink. mode to send the first data.
  • the second signaling may be configuration signaling (duplicated config) of the duplicate transmission mode.
  • the second signaling may include: at least one of RRC signaling, medium access control element (MAC CE), and physical layer signaling.
  • the method further includes: obtaining the above-mentioned first rule by means of instructions from the RRC signaling.
  • the first signaling sent from the second device is received, including at least one of the following:
  • it also includes: capability information interaction between the first device and the second device, and according to the first rule and/or the capability information, the first device determines whether the copy transmission mode is enabled or the copy transmission mode is enabled. Disabled.
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • a network device in addition to the interaction between two terminal devices (such as the first device and the second device), can also be introduced into the networking architecture for interaction between the two terminal devices.
  • the first network device can send second signaling (such as RRC signaling) to the first device for configuration, and request the first device to perform various processes such as copy transmission (such as sending the first data in copy transmission mode).
  • a network device may also receive a request response from the first device.
  • the second signaling (such as indicated by the first network device through RRC signaling) may be configuration signaling of the copy transmission mode; the third signaling may be a request signaling for activating the copy transmission mode; and the fourth The signaling may be request response signaling to activate the copy transmission mode.
  • the method further includes: the first device receives a third signaling initiated by the first network device, the third signaling is used to carry an indication of activating the copy transmission mode, and the first device responds to the third signaling , according to the instruction to activate the copy transmission mode, the copy transmission mode is triggered to enter the activation state, and the first device sends fourth signaling to the first network device.
  • the fourth signaling is used to notify the first network of the copy transmission status of the first device. equipment.
  • the third signaling is: RRC signaling, medium access control element (MAC CE) signaling, or physical layer signaling (such as PDCCH).
  • MAC CE medium access control element
  • PDCCH physical layer signaling
  • the method when the second signaling carries an RRC signaling indication, the method further includes: obtaining the above-mentioned first rule through the RRC signaling indication.
  • a network device such as a first network device
  • it may also include: when the first device meets the following first condition Activate copy transfer mode;
  • the first condition includes: receiving a first signaling, which is used to indicate activation of the copy transmission mode.
  • the second device sends the first signaling based on one of the following conditions:
  • the RSRP measurement value is greater than the second threshold value (such as the minimum threshold value) and/or less than the third threshold value (such as the maximum threshold value);
  • the first signaling is used to indicate that the second device has failed to receive data for N consecutive times;
  • the first signaling is used to indicate that the second device receives an instruction to activate the copy transmission mode initiated by the second network device.
  • the method further includes: the first device receiving a tenth signaling sent by the second device, the tenth signaling being used to configure the copy transmission mode, and the first device responding to the tenth signaling, configuring The first data is sent on the sidelink in said copy transmission mode.
  • Figure 9 is a schematic flow chart of a data transmission method 900 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the first device determines that the copy transmission mode is enabled or the copy transmission mode is disabled.
  • the first device sends the first data in the copy transmission mode on the sidelink.
  • support for signaling interaction/configuration (such as capability interaction) between the first device and the second device can also be introduced. ).
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • steps S910-S940 There is no necessary sequential relationship between steps S910-S940. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • the method further includes: the first device sends a fifth signaling to the first network device after exchanging capability information, the first device receives the sixth signaling initiated by the first network device, and the first device In response to the sixth signaling, the first data is configured to be sent in a copy transmission mode on the sidelink.
  • the first device may report the fifth signaling to the network device in the connected state and/or mode 1 resource selection and/or the network supports sidelink copy transmission. .
  • a network device such as the first network device
  • the first device can send the capability information after the interaction.
  • the fifth signaling (such as RRC signaling) requests the first network device to configure the first device so that the first device performs various processes such as copy transmission (such as sending the first data in copy transmission mode).
  • the fifth signaling (such as the RRC message reported by the first device to the first network device) includes that the peer UE of the first device (such as the second device) supports and/or starts replication transmission, or is about to perform replication. Transmit or request copy transmission resources; the sixth signaling (such as indicated by the first network device through RRC signaling) may be configuration signaling of the copy transmission mode.
  • the fifth signaling carries capability information; wherein the capability information includes at least one of: the first device and/or the second device turning on the copy transmission mode, about to enter the copy transmission mode, and requesting a copy transmission resource. information.
  • the method when the sixth signaling carries an RRC signaling indication, the method further includes: obtaining the first rule through the RRC signaling indication.
  • a network device such as a first network device
  • it may also include: when the first device meets the following first condition Activate copy transfer mode;
  • the first condition includes: receiving a first signaling, which is used to indicate that the RSRP measurement value of the second device after activating the copy transmission mode is greater than the second threshold and/or less than the third threshold. value, or the first signaling is used to indicate that the second device has failed to receive data for N consecutive times, or the first signaling is used to indicate that the second device has received an instruction to activate the copy transmission mode initiated by the second network device.
  • the method further includes: the first device receives a seventh signaling initiated by the first network device, the seventh signaling is used to carry an indication of activating the copy transmission mode, and the first device responds to the seventh signaling and activates the copy transmission according to The indication of the mode triggers the copy transmission mode to enter the activation state, and the first device sends an eighth signaling to the first network device.
  • the eighth signaling is used to notify the first network device of the copy transmission status of the first device.
  • the seventh signaling may be a request signaling to activate the copy transmission mode; the eighth signaling may be a request response signaling to activate the copy transmission mode.
  • Figure 10 is a schematic flow chart of a data transmission method 1000 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device performs carrier monitoring on the sidelink.
  • the second device receives the first data transmitted on the current carrier.
  • the first data is the data sent by the first device in the copy transmission mode.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the second device may perform carrier sensing on the sidelink according to carrier selection and/or carrier configuration.
  • the first device transmits the first data in the copy transmission mode on the side link to realize data transmission in the side link copy transmission mode.
  • the second device can receive the data on the current carrier through carrier monitoring. The first data transmitted.
  • steps S1010-S1020 There is no necessary sequential relationship between steps S1010-S1020. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • Figure 11 is a schematic flow chart of a data transmission method 1100 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device performs carrier monitoring on the sidelink.
  • the second device identifies the first data transmitted on the current carrier.
  • the second device receives the first data transmitted on the current carrier.
  • the first data is the data sent by the first device in the copy transmission mode.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the second device may perform carrier sensing on the sidelink according to carrier selection and/or carrier configuration.
  • the first rule can be obtained through at least one of preconfiguration, system message indication, RRC signaling indication, and upper layer indication, so that the second data can be identified and received according to the first rule.
  • the first rule may be related to at least one configuration method. That is, the definition of the first rule can be related to a multi-granularity configuration method.
  • the multi-granularity configuration method includes: each business type, Quality of Service (QoS) flow, data link layer ( L2) At least one of the classification granularity of identification, logical channel, transmission (Transport, Tx) protocol, data transmission type, data transmission priority, carrier, resource pool, constant bit rate (Constants Bit Rate, CBR) level, so as to ,
  • QoS Quality of Service
  • L2 data link layer
  • At least one of the classification granularity of identification logical channel, transmission (Transport, Tx) protocol, data transmission type, data transmission priority, carrier, resource pool, constant bit rate (Constants Bit Rate, CBR) level, so as to .
  • steps S1110-S1130 There is no necessary sequential relationship between steps S1110-S1130. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed sequentially.
  • the method further includes: the second device sends a first signaling to the first device, where the first signaling is used to indicate activation of the copy transmission mode.
  • the first signaling may be sent when the RSRP measurement value of the second device is greater than a second threshold (eg, a minimum threshold) and/or less than a third threshold (eg, a maximum threshold).
  • a second threshold eg, a minimum threshold
  • a third threshold eg, a maximum threshold
  • the first signaling may be sent when/after the second device fails to receive data for N consecutive times.
  • the method further includes: the second device receives a ninth signaling initiated by the second network device, the ninth signaling is used to configure the copy transmission mode, and the second device responds to the ninth signaling to The first device sends tenth signaling, which is used to configure the copy transmission mode.
  • the ninth signaling (such as the second network device indicates through RRC signaling) may be the configuration signaling of the duplicate transmission mode (duplicated config); the tenth signaling may be the duplicated config sent by the first device to the second device. Configuration signaling in transport mode (duplicated config).
  • Figure 12 is a schematic flow chart of a data transmission method 1200 according to an embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least some of the following:
  • the second device performs carrier monitoring on the sidelink.
  • the second device determines that the copy transmission mode is enabled or the copy transmission mode is disabled.
  • copy transfer mode may be activated on the second device after capability interaction.
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • the first device may be a sending UE
  • the second device may be a receiving UE
  • the second device can identify the first data transmitted on the current carrier, and the second device receives the first data transmitted on the current carrier, and the first data is copied and transmitted by the first device. The data sent by the mode.
  • steps S1210-S1230 There is no necessary sequence relationship between steps S1210-S1230. Some of the steps can be selected and executed as needed, and the above steps do not need to be executed in sequence.
  • the method further includes: the second device sends an eleventh signaling to the first device, the eleventh signaling is used to indicate activation of the copy transmission mode; and/or the second device sends an eleventh signaling to the first device.
  • the device sends twelfth signaling, which is used to configure the copy transmission mode.
  • the eleventh signaling may be a signaling indicating activation of the duplication transmission mode (duplication activation); the twelfth signaling may be a signaling (duplication activation indication) configuring the duplication transmission mode.
  • the method further includes: the second device receiving a thirteenth signaling sent by the second network device, the thirteenth signaling being used to indicate activation of the copy transmission mode; and/or the second device receiving The fourteenth signaling sent by the second network device is used to configure the copy transmission mode.
  • the thirteenth signaling may be a signaling indicating activation of the duplication transmission mode (duplication activation); the fourteenth signaling may be a signaling (duplication activation indication) configuring the duplication transmission mode.
  • Application example 1 In a multicast/broadcast communication scenario, the UE is outside the network coverage, or the UE is within the coverage but in the idle (IDLE) state/deactivated (INACTIVE) state, as shown in Figure 13, including the following:
  • Both the receiving UE/sending UE can perform the following processing:
  • the first rule can be defined for each service type/QoS flow/L2 identification/logical channel/Tx protocol/data transmission type (unicast or broadcast)/priority/carrier/resource pool/CBR level;
  • the sending UE determines whether copy transmission can be performed according to the first rule
  • the receiving UE determines whether to receive the copy transmission according to the first rule
  • the first rule is preconfiguration, network indication via system message, and upper layer indication.
  • the sending UE can perform the following processing:
  • the copy transmission mode is automatically/default activated for copy transmission.
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • the measurement value here can be the average, maximum value, minimum value or any value of multiple multicast/broadcast measurement values
  • the conditions above the minimum threshold and/or below the maximum threshold
  • N can be achieved through network configuration, fixed value, or UE customization
  • the receiving UE can be activated by signaling (such as PSFCH or MAC CE) for the receiving UE.
  • signaling such as PSFCH or MAC CE
  • the receiving UE can satisfy the conditions when the RSRP measurement value is higher than the minimum threshold and/or lower than the maximum threshold. ) or N consecutive reception failures trigger activation.
  • the sending UE can perform the following processing:
  • the carrier selection mechanism/configuration select the carrier and resources used for the source data/copy data to achieve data transmission, including first data (such as source data) and second data (such as copy data);
  • Source data and copy data can be sent on the same carrier or different carriers;
  • the corresponding relationship between the first data (such as source data) and the second data (such as copied data) can satisfy the following second condition;
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication that it is copied data.
  • This indication can be carried in the SCI, or the MAC header, or the MAC-CE, and can be indicated as Copy data and which (logical channel) data the data is copied from;
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • the receiving UE can perform the following processing:
  • the carrier selection mechanism/configuration select the carrier to be monitored and identify the first data (such as source data) transmitted on the current carrier;
  • mapping rules carriers or logical channels
  • Application example 2 In a multicast/broadcast communication scenario, the UE is within coverage and in the connected (CONNECTED) state, and/or mode 1, as shown in Figure 14, including the following:
  • Both the receiving UE/sending UE can perform the following processing:
  • the first rule can be defined for each service type/QoS flow/L2 identification/logical channel/Tx protocol/data transmission type (unicast or broadcast)/priority/carrier/resource pool/CBR level;
  • the sending UE determines whether copy transmission can be performed according to the first rule
  • the receiving UE determines whether to receive the copy transmission according to the first rule
  • the first rule may be preconfiguration, network indication via system message, network indication via RRC signaling, or upper layer indication.
  • the sending UE can perform the following processing:
  • the copy transmission mode is automatically/default activated for copy transmission.
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • the measurement value here can be the average, maximum value, minimum value or any value of multiple multicast/broadcast measurement values) meets the conditions (above the minimum threshold and/or below the maximum threshold);
  • N is network configuration, fixed value, or UE implementation
  • the receiving UE can be activated by signaling for the receiving UE (such as PSFCH or MAC CE).
  • the receiving UE can satisfy the conditions when the RSRP measurement value is above the minimum threshold and/or below the maximum threshold. Or N consecutive reception failures trigger activation or the network of the receiving UE indicates activation;
  • the sending UE can report the copy transmission situation to the network device.
  • the reporting of the copy transmission situation can occur at any time before or after the network device issues copy transmission activation/configuration;
  • MAC CE can indicate the target L2ID and logical channel for copy transmission (it can be a new MAC CE or an existing MAC CE such as BSR to add indication information).
  • the sending UE can perform the following processing:
  • the carrier selection mechanism/configuration select the carrier and resources used for the source data/copy data to achieve data transmission, including first data (such as source data) and second data (such as copy data);
  • Source data and copy data can be sent on the same carrier or different carriers;
  • -Can define carriers that support source data and copied data
  • the corresponding relationship between the first data (such as source data) and the second data (such as copied data) can satisfy the following second condition;
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication that it is copied data. This indication can be carried in the SCI, or in the MAC header, or in the MAC CE, and can be indicated as copied. Which (logical channel) data is the copied data of data and ⁇ ?
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • the receiving UE can perform the following processing:
  • mapping rules carriers or logical channels
  • Both the receiving UE/sending UE can perform the following processing:
  • signaling interaction/configuration between UEs can also be enabled;
  • the sender UE as shown in Figure 15a can perform the following processing:
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • N is network configuration, fixed value, or UE implementation
  • the receiving UE can be activated by signaling (such as PSFCH) for the receiving UE.
  • the receiving UE can be activated when the RSRP measurement value meets the conditions (above the minimum threshold and/or below the maximum threshold) or N times consecutively. Failure to receive triggers activation.
  • the above-mentioned activation of the copy transmission mode can also be performed at the receiving UE.
  • the receiving UE as shown in Figure 15b can perform the following processing:
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • the sender UE as shown in Figure 15a can perform the following processing:
  • the sender UE sends copy transmission activation and copy transmission related configurations to the receiver UE, including mapping rules between copy transmission data and source data, bearer configuration, etc.;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information;
  • Source data and copy data can be sent on the same carrier or different carriers;
  • -Can define carriers that support source data and copied data
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication that it is copied data.
  • This indication can be carried in the SCI or in the MAC packet header, and can be indicated as copied data and ⁇ as Which (logical channel) data is copied;
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • the receiving UE as shown in Figure 15a can perform the following processing:
  • mapping rules carrier or logical channel
  • the above data transmission can also be performed at the receiving UE, including data transmission of first data (such as source data) and second data (such as copy data).
  • first data such as source data
  • second data such as copy data
  • the receiving UE can perform the following processing:
  • the receiving UE sends copy transmission activation and copy transmission related configurations to the sender UE, including mapping rules between copy transmission data and source data, bearer configuration, etc.;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information;
  • the receiving UE sends a copy transmission activation to the sender UE, and then the sender UE configures the copy transmission related configuration after receiving the activation information;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information;
  • mapping rules carriers or logical channels
  • the sender UE as shown in Figure 15b can perform the following processing:
  • Source data and copy data can be sent on the same carrier or different carriers;
  • -Can define carriers that support source data and copied data
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication that it is copied data.
  • This indication can be carried in the SCI or in the MAC packet header, and can be indicated as copied data and ⁇ as Which (logical channel) data is copied;
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • Application Example 4 In the unicast communication scenario, the UE is within network coverage and in the CONNECTED state, as shown in Figure 16a- Figure 16b, including the following:
  • Both the receiving UE/sending UE can perform the following processing:
  • signaling interaction/configuration between UEs can also be enabled;
  • the sender UE as shown in Figure 16a can perform the following processing:
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • N is network configuration, fixed value, or UE implementation
  • the above-mentioned activation of the copy transmission mode can also be performed at the receiving UE.
  • the receiving UE as shown in Figure 16b can perform the following processing:
  • the copy transmission mode is activated under the first condition, including the following first condition:
  • the sender UE as shown in Figure 16a can perform the following processing:
  • the sender UE receives the copy transmission activation and configuration from the network device, and sends the copy transmission activation and copy transmission related configuration to the receiving UE according to the received configuration, including the mapping rules between the copy transmission data and the source data, and the bearer Configuration, etc.;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information
  • the sending UE reports the copy transmission status to the network device
  • MAC CE can indicate the target L2ID and logical channel for copy transmission (it can be a new MAC CE or an existing MAC CE such as BSR to add indication information)
  • Source data and copy data can be sent on the same carrier or different carriers;
  • -Can define carriers that support source data and copied data
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication that it is copied data.
  • This indication can be carried in the SCI or in the MAC packet header, and can be indicated as copied data and ⁇ as Which (logical channel) data is copied;
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • the receiving UE as shown in Figure 16a can perform the following processing:
  • mapping rules carriers or logical channels
  • the above data transmission can also be performed at the receiving UE, including data transmission of first data (such as source data) and second data (such as copy data).
  • first data such as source data
  • second data such as copy data
  • the receiving UE can perform the following processing:
  • the receiving UE receives the copy transmission activation and copy transmission related configuration from the network device, and sends the copy transmission activation and copy transmission related configuration to the sender UE according to the received configuration, including the mapping rules between copy transmission data and source data. , bearer configuration, etc.;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information
  • the receiving UE sends a copy transmission activation to the sender UE, and then the sender UE configures the copy transmission related configuration after receiving the activation information;
  • the sender UE can also report to the network device that the peer UE supports copy transmission and will perform copy transmission; the sender UE receives the copy transmission related configuration from the network device and reports to the receiver UE according to the received configuration.
  • Send configuration information ;
  • -Activation information can be MAC CE or RRC or physical layer information, and configuration information is RRC information
  • mapping rules carriers or logical channels
  • the sender UE as shown in Figure 16b can perform the following processing:
  • the sending UE reports the copy transmission status to the network device
  • MAC CE can indicate the target L2ID and logical channel for copy transmission (it can be a new MAC CE or an existing MAC CE such as BSR to add indication information)
  • Source data and copy data can be sent on the same carrier or different carriers;
  • -Can define carriers that support source data and copied data
  • the copy transmission relationship is indicated by carrier mapping between the source data and the copied data, that is, the data on carrier two is copied on carrier one;
  • the logical channel identifier mapping between the source data and the copied data indicates the copy transmission relationship, that is, the data on LCH ID 2 is copied on LCH ID 1;
  • the copied data packet carries an indication of the copied data. This indication can be carried in the SCI or the MAC header, and can be indicated as the copied data and where.
  • the second condition (such as copy transmission relationship) is a mapping relationship between source data and copy data, which can be set by setting a fixed mapping relationship/network configuration mapping relationship/preconfigured mapping relationship/UE-customized mapping relationship to achieve.
  • Figure 17 is a schematic block diagram of a first device 1700 according to an embodiment of the present application.
  • the first device 1700 may include: a first processing unit 1710 configured to send the first data in a copy transmission mode on the sidelink.
  • the method further includes: a second processing unit, configured to determine whether the copy transmission mode is enabled or the copy transmission mode is disabled according to the first rule;
  • the first rule is obtained through at least one of preconfiguration, system message indication, and upper layer indication.
  • the first rule is related to at least one of service type, QoS flow, L2 identifier, logical channel, Tx protocol, data transmission type, data transmission priority, carrier, resource pool, and CBR level. A correlation.
  • the method further includes: a third processing unit, configured to activate the copy transmission mode when the copy mode is turned on, and after activating the copy transmission mode, perform the copy transmission mode on the side link. Send the first data.
  • a third processing unit configured to activate the copy transmission mode when the copy mode is turned on, and after activating the copy transmission mode, perform the copy transmission mode on the side link. Send the first data.
  • the copy transmission mode is activated when the first condition is met.
  • the first condition includes at least one of the following:
  • the priority of data transmission is greater than the priority requirement
  • the resource pool CBR measurement value is less than the first threshold
  • the sidelink RSRP measurement value is greater than the second threshold and/or less than the third threshold
  • the upper layer instruction is used to activate the copy transmission mode
  • N is a positive integer greater than 1;
  • N is a positive integer greater than 1;
  • the first signaling sent from the second device is received, and the first signaling is used to indicate activation of the copy transmission mode.
  • the first signaling may be signaling indicating activation of the duplication transmission mode (duplication activation).
  • the second device may include: a terminal device or a network device, where the terminal device may be the sender UE or the receiver UE.
  • the corresponding relationship between the second data and the first data is determined by a carrier mapping indication, a logical channel identification mapping indication, an explicit indication, a network configuration, Determine at least one way in the pre-configuration, specifically, include the following:
  • the logical channel identifier mapping indication between the second data and the first data is used to determine the corresponding copy transmission relationship between the second data and the first data;
  • the method further includes: a fourth processing unit, configured to send first data and second data on the side link, where the first data is source data and the second data is copy data; wherein the second data and the first data are sent on the same carrier or different carriers.
  • a fourth processing unit configured to send first data and second data on the side link, where the first data is source data and the second data is copy data; wherein the second data and the first data are sent on the same carrier or different carriers.
  • a fifth processing unit is also included, used for:
  • the first data is configured to be sent in a copy transmission mode on the sidelink.
  • the second signaling includes: at least one of RRC signaling, MAC CE, or physical layer signaling.
  • an indication unit is also included, which is used to obtain the above-mentioned first rule through RRC signaling indication.
  • a receiving unit configured to receive the first signaling sent from the second device in at least one of the following ways:
  • the first signaling sent from the second device is received when the second device fails to receive data for N consecutive times.
  • the second device may be a terminal device or a network device.
  • a sixth processing unit is further included, configured to receive a third signaling initiated by the first network device, where the third signaling is used to carry an indication of activating the copy transmission mode; in response to the The third signaling triggers the copy transmission mode to enter an activation state according to the instruction to activate the copy transmission mode; and sends a fourth signaling to the first network device, where the fourth signaling is used to transfer the first device to the first network device. Notify the first network device of the copy transmission situation.
  • the third signaling is: RRC signaling, MAC CE signaling, or physical layer signaling (such as PDCCH).
  • a seventh processing unit is also included, configured to activate the copy transmission mode when the following first condition is met;
  • the first condition includes: receiving a first signaling, the first signaling being used to indicate activation of the copy transmission mode;
  • the second device sends the first signaling based on one of the following conditions:
  • the RSRP measured value is greater than the second threshold value and/or less than the third threshold value
  • the first signaling is used to indicate that the second device has failed to receive data for N consecutive times;
  • the first signaling is used to indicate that the second device receives an instruction initiated by the second network device to activate the copy transmission mode.
  • an eighth processing unit is also included, configured to interact with capability information between the first device and the second device; and determine, according to the first rule and/or capability information, whether the copy transmission mode is turned on or Copy transfer mode disabled.
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • a ninth processing unit is further included, configured to receive a tenth signaling sent by the second device, where the tenth signaling is used to configure the copy transmission mode; and to respond to the tenth signaling. Let, configure a configuration for sending the first data in the copy transmission mode on the sidelink.
  • the method further includes a tenth processing unit, configured to send a fifth signaling to the first network device after interacting with the capability information; and receive a sixth signaling initiated by the first network device. Signaling; in response to the sixth signaling, configure the sidelink to send the first data in the copy transmission mode.
  • the capability information is carried in the fifth signaling
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • an eleventh processing unit is further included, configured to receive a seventh signaling initiated by the first network device, the seventh signaling being used to carry an indication of activating the copy transmission mode; responding The seventh signaling triggers the copy transmission mode to enter an activation state according to the instruction to activate the copy transmission mode; and sends an eighth signaling to the first network device, where the eighth signaling is used to transfer the first The first network device is notified of the copy transmission status of the device.
  • the method further includes: obtaining the first rule through the RRC signaling indication.
  • a twelfth processing unit is further included, configured to activate the copy transmission mode when the first device meets the following first condition;
  • the first condition includes: receiving a first signaling, which is used to indicate that after activating the copy transmission mode, the RSRP measurement value of the second device is greater than a second threshold value and/or less than a third threshold value.
  • the threshold value, or the first signaling is used to indicate that the second device has failed to receive data for N consecutive times, or the first signaling is used to indicate that the second device has received an activation of the copy transmission initiated by the second network device. Mode indication.
  • the first device 1700 in the embodiment of the present application can implement the corresponding functions of the first device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the first device 1700 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the first device 1700 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 18 is a schematic block diagram of a second device 1800 according to an embodiment of the present application.
  • the network device 1800 may include: a thirteenth processing unit 1810, configured to perform carrier sensing on the sidelink; a fourteenth processing unit 1820, configured to receive the first data transmitted on the current carrier; the first data is: data sent by the first device in copy transmission mode.
  • the thirteenth processing unit is configured to perform carrier monitoring according to carrier selection and/or carrier configuration.
  • the fourteenth processing unit is configured to identify the first data transmitted on the current carrier according to the first rule; wherein the first rule is configured through preconfiguration, system message indication, Obtained by at least one of RRC signaling indication and upper layer indication.
  • the first rule is related to at least one of service type, QoS flow, L2 identifier, logical channel, Tx protocol, data transmission type, data transmission priority, carrier, resource pool, and CBR level. A correlation.
  • a fifteenth processing unit used for:
  • the first signaling is sent when the RSRP measurement value of the second device is greater than the second threshold and/or less than the third threshold.
  • the first signaling is sent when/after the second device fails to receive data for N consecutive times.
  • the method further includes: a sending unit, configured to send second signaling, where the second signaling is used to configure the above-mentioned copy transmission mode.
  • the second signaling includes: at least one of RRC signaling, MAC CE, and physical layer signaling.
  • the method further includes: a sixteenth processing unit, configured to receive ninth signaling initiated by the second network device, where the ninth signaling is used to configure the copy transmission mode; in response to the Ninth signaling: Send the tenth signaling to the first device, where the tenth signaling is used to configure the copy transmission mode.
  • a seventeenth processing unit is further included, configured to interact with capability information between the second device and the first device. According to the first rule and the capability information , confirm that the copy transfer mode is on or the copy transfer mode is disabled.
  • the capability information includes: at least one of the following: the first device and/or the second device starts the copy transmission mode, is about to enter the copy transmission mode, and requests a copy transmission resource.
  • a nineteenth processing unit is further included, configured to send eleventh signaling to the first device, where the eleventh signaling is used to indicate activation of the copy transmission mode; and/or , prepare to send twelfth signaling to the first device, where the twelfth signaling is used to configure the copy transmission mode.
  • a twentieth processing unit is further included, configured to receive a thirteenth signaling sent by the second network device, where the thirteenth signaling is used to indicate activation of the copy transmission mode; and /Or, receive fourteenth signaling sent by the second network device, where the fourteenth signaling is used to configure the copy transmission mode.
  • the second device 1800 in the embodiment of the present application can implement the corresponding functions of the second device 1800 in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the second device 1800 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the second device 1800 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module.
  • a module (submodule, unit or component, etc.) is implemented.
  • Figure 19 is a schematic structural diagram of a communication device 1900 according to an embodiment of the present application.
  • the communication device 1900 includes a processor 1910, and the processor 1910 can call and run a computer program from the memory, so that the communication device 1900 implements the method in the embodiment of the present application.
  • communication device 1900 may also include memory 1920.
  • the processor 1910 can call and run the computer program from the memory 1920, so that the communication device 1900 implements the method in the embodiment of the present application.
  • the memory 1920 may be a separate device independent of the processor 1910, or may be integrated into the processor 1910.
  • the communication device 1900 may also include a transceiver 1930, and the processor 1910 may control the transceiver 1930 to communicate with other devices.
  • the communication device 1900 may send information or data to other devices, or receive information or data sent by other devices. .
  • the transceiver 1930 may include a transmitter and a receiver.
  • the transceiver 1930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1900 can be the first device in the embodiment of the present application, and the communication device 1900 can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • the communication device 1900 can be the second device in the embodiment of the present application, and the communication device 1900 can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application. For the sake of brevity, they will not be described here. Repeat.
  • Figure 20 is a schematic structural diagram of a chip 2000 according to an embodiment of the present application.
  • the chip 2000 includes a processor 2010, and the processor 2010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 2000 may also include a memory 2020.
  • the processor 2010 can call and run the computer program from the memory 2020 to implement the method executed by the first device or the second device in the embodiment of the present application.
  • the memory 2020 may be a separate device independent of the processor 2010 , or may be integrated into the processor 2010 .
  • the chip 2000 may also include an input interface 2030.
  • the processor 2010 can control the input interface 2030 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 2000 may also include an output interface 2040.
  • the processor 2010 can control the output interface 2040 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the details will not be described again.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the various methods of the embodiment of the present application.
  • details will not be described here.
  • the chips applied to the first device and the second device may be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Figure 21 is a schematic block diagram of a communication system 2100 according to an embodiment of the present application.
  • the communication system 2100 includes a first device 2110 and a second device 2120, wherein the first device 2110 may include: a first processing unit 2110, configured for the first device to send first data in a copy transmission mode on the side link.
  • the second device 2120 may include: a thirteenth processing unit, used by the second device to perform carrier sensing on the sidelink; and a fourteenth processing unit, used by the second device to receive the first data transmitted on the current carrier.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据传输方法、第一设备及第二设备,其中,所述方法包括:第一设备在侧行链路上以复制传输模式发送第一数据,采用本申请,实现了侧行链路复制传输模式下的数据传输。

Description

数据传输方法、第一设备、第二设备 技术领域
本申请涉及通信领域,更具体地,涉及一种数据传输方法、第一设备、第二设备。
背景技术
随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等。
长期演进(Long Term Evolution,LTE)***在V2X中可以实现复制传输,以5G技术为基础的5G新无线(New Radio,NR)***在V2X中利用侧行链路进行多载波通信中,为了提高数据传输的可靠性,也需要实现复制传输。
发明内容
本申请实施例提供一种数据传输方法、第一设备、第二设备,可以实现侧行链路复制传输模式下的数据传输。
本申请实施例提供一种数据传输方法,应用于第一设备,包括:
所述第一设备在侧行链路上以复制传输模式发送第一数据。
本申请实施例提供一种数据传输方法,应用于第二设备,包括:
所述第二设备在侧行链路上进行载波监听;
所述第二设备接收当前载波上传输的第一数据;
所述第一数据为:所述第一设备以复制传输模式发送的数据。
本申请实施例提供一种第一设备,包括:
第一处理单元,用于所述第一设备在侧行链路上以复制传输模式发送第一数据。
本申请实施例提供一种第二设备,包括:
第十三处理单元,用于所述第二设备在侧行链路上进行载波监听;
第十四处理单元,用于接收当前载波上传输的第一数据;
所述第一数据为:所述第一设备以复制传输模式发送的数据。
本申请实施例提供一种第一设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述本申请实施例所述的方法。
本申请实施例提供一种第二设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述本申请实施例所述的方法。
本申请实施例提供一种芯片,用于实现上述本申请实施例所述的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述本申请实施例所述的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述本申请实施例所述的方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行 上述的本申请实施例所述的方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的本申请实施例所述的方法。
本申请实施例中,所述第一设备在侧行链路上以复制传输模式发送第一数据,从而可以实现侧行链路复制传输模式下的数据传输。
附图说明
图1是根据本申请实施例的一应用场景的示意图。
图2是根据本申请实施例的侧行链路传输模式A的示意图。
图3是根据本申请实施例的侧行链路传输模式B的示意图。
图4是根据本申请实施例的载波聚合场景下复制传输的结构示意图。
图5是根据本申请实施例的另一应用场景的示意图。
图6是根据本申请一实施例的数据传输方法的示意性流程图。
图7是根据本申请一实施例的数据传输方法的示意性流程图。
图8是根据本申请一实施例的数据传输方法的示意性流程图。
图9是根据本申请一实施例的数据传输方法的示意性流程图。
图10是根据本申请一实施例的数据传输方法的示意性流程图。
图11是根据本申请一实施例的数据传输方法的示意性流程图。
图12是根据本申请一实施例的数据传输方法的示意性流程图。
图13是根据本申请一实施例的数据传输方法应用示例一的示意性流程图。
图14是根据本申请一实施例的数据传输方法应用示例二的示意性流程图。
图15a-图15b是根据本申请一实施例的数据传输方法应用示例三的示意性流程图。
图16a-图16b是根据本申请一实施例的数据传输方法应用示例四的示意性流程图。
图17是根据本申请一实施例的第一设备的示意性框图。
图18是根据本申请一实施例的第二设备的示意性框图。
图19是根据本申请实施例的通信设备示意性框图。
图20是根据本申请实施例的芯片的示意性框图。
图21是根据本申请实施例的通信***的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)***、非地面通信网络(Non-Terrestrial Networks,NTN)***、通用移动 通信***(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信***。
可选地,本申请实施例中的通信***可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信***可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信***也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动***(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信***例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接 入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信***100。该通信***100包括一个网络设备110和两个终端设备120。可选地,该通信***100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信***100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信***还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)***、下一代(移动通信***)(next radio,NR)***或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)***中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信***中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表 示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
就LTE D2D/V2X而言,D2D或V2X技术是基于D2D的一种侧行链路(Sidelink,SL)传输技术,与传统的蜂窝***中通信数据通过基站接收或者发送的方式不同,具有更高的频谱效率以及更低的传输时延,D2D/V2X通常应用于车联网***中。在车联网***中,采用D2D/V2X,使终端设备到终端设备之间可以实现直接通信。在3GPP定义了如下两种传输模式:模式A和模式B。
针对模式A而言,如图2所示,终端设备(如车载终端)的传输资源是由网络设备(如基站)分配的,终端设备根据基站分配的资源在侧行链路上进行数据的发送;基站可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。
针对模式B而言,如图3所示,终端设备(如车载终端)在资源池中选取一个资源进行数据的传输。
在3GPP中,D2D分成了如下不同的阶段进行研究:
第一阶段:就近距离服务(Proximity based Service,ProSe)而言,在Rel-12/13中D2D通信,是针对ProSe的场景进行了研究,其主要针对公共安全类的业务。在ProSe中,通过配置资源池在时域上的位置,例如资源池在时域上非连续,达到终端设备在侧行链路上非连续发送/接收数据,从而达到省电的效果。
第二阶段:就V2X而言,在Rel-14/15中,V2X***针对车与车通信的场景进行了研究,其主要面向相对高速移动的车车、车人通信的业务。在V2X中,由于车载***具有持续的供电,因此功率效率不是主要问题,而数据传输的时延是主要问题,因此在***设计上要求终端设备进行连续的发送和接收。
第三阶段:就可穿戴设备(FeD2D)而言,在Rel-14中,对于可穿戴设备通过手机接入网络的场景进行了研究,其主要面向是低移动速度以及低功率接入的场景。在FeD2D中,基站可以通过一个作为中继节点(Relay)的终端设备去配置远程(remote)终端的非连续性接收(DRX)参数。
在LTE V2X的基础上,提出了NR V2X,就NR V2X而言,NR V2X不局限于广播场景,而是进一步拓展到了单播和组播的场景,在如下场景下研究V2X的应用。
第一场景:NR V2X定义了模式1和模式2两种资源授权模式;更进一步,用户可能处在一个混合的模式下,即既可以使用模式1进行资源的获取,又同时可以使用模式2进行资源的获取。该资源获取通过侧行链路授权的方式指示,即侧行链路授权指示相应的物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)与物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源的时频位置。
第二场景:除了无反馈的、终端设备自主发起的混合自动重复请求(Hybrid Automatic Repeat Request,HARQ),NR V2X引入了基于反馈的HARQ重传,不限于单播通信,也包括组播通信。
就LTE-V2X载波聚合而言,LTE-V2X载波聚合中的载波选择,可以由以下机制完成:
上层配置业务类型(service type)到载波的映射关系,即针对某项业务,上层指示给接入层(AS)可用的载波集合;
进一步地,AS层可以配置每一个逻辑信道可用的载波集合及每个资源池中针对数据优先级(priority)配置的CBR测量门限值。UE测量资源池中的CBR值并与和所传输数据优先级所对应的CBR门限值 相比较,若测量值低于门限值则认为此载波可用。
就NR Uu载波聚合而言,载波聚合是从LTE-Advanced标准就开始支持的一种带宽扩展技术,可以将多个成员载波(component carrier,CC)聚合在一起,由一个UE同时接收或发送。按照聚合的载波的范围分,载波聚合又可以分为频带内载波聚合(intra-band CA)和跨频带载波聚合(inter-band CA)。Intra-band载波聚合的一个主要用途是,用于小区载波带宽大于终端设备的单个载波带宽能力的场景,这种情况下,终端设备可以用载波聚合方式来实现在“宽载波”(wide carrier)中的操作。例如基站支持300MHz一个载波,而终端设备只支持最大100MHz的载波,此时终端设备可以用载波聚合方式实现大于100MHz的宽带操作,聚合的载波可以是相邻的载波,也可以是不相邻的载波。
当终端设备和网络设备通过载波聚合进行通信时,可能会同时配置主小区(PCell)和辅小区(PSCell)。针对主小区和辅小区设计了波束失败恢复机制,其主要功能模块(或称为主要步骤)分为如下4个部分:
●波束失败检测(Beam Failure Detection,BFD)。
●新波束选择(New Beam Identification,NBI)。
●波束失败恢复请求(Beam Failure Recovery ReQest,BFRQ)。
●网络侧响应。
终端设备对PDCCH进行测量,判断下行发送波束对应的链路质量。如果对应的链路质量很差,则认为下行波束发生波束失败。终端设备还会对一组备选波束进行测量以从中选择满足一定门限的波束作为新波束,然后,终端设备通过波束失败恢复请求流程(Beam Failure Recovery Request,BFRQ),通知网络设备发生了波束失败,并且上报新波束。网络设备收到一个终端设备发送的BFRQ信息后,知道该终端设备发生了波束失败,选择从新波束上发送PDCCH,终端设备在新波束上收到网络发送的PDCCH,则认为正确接收了网络设备侧的响应信息。至此,波束失败恢复流程成功完成。
就PDCP复制传输而言,在载波聚合场景下,开启PDCP数据包复制传输后,传输端的信令无线承载(SRB,signaling Radio Bearer)/数据无线承载(DRB,Data Radio Bearer)上的数据包可以在为此SRB/DRB配置的两个RLC实体(其中一个为主RLC实体(primary RLC),另一个是辅RLC实体(secondary RLC)的对应的逻辑信道上进行传输(如果两个RLC实体服务于同一个无线承载,则它们对应的配置RLC-BearerConfig中的srb-Identity或者drb-Identity将被设为同一值),最后由MAC层组建MAC PDU时将其映射到对应不同载波的传输资源上(如通过上行授权的逻辑信道选择过程来映射到对应不同载波的传输资源上),具体架构如图4所示。如图4所示,网络设备首先可以通过RRC信令为终端设备配置与各个DRB相关的RLC传输链路(即有多于两个RLC实体对应的DRB ID或者SRB ID设为同一个),进一步的,还可以通过RRC和MAC CE对相关RLC实体进行复制传输激活/去激活。
综上所述,LTE V2X中的复制传输,仅支持基于优先级判断的,且原逻辑信道与复制后的逻辑信道之间的映射关系是固定的,如表1所示,该固定的配置未考虑终端设备所处的不同状态,然而,实际的数据传输场景包括单播、组播、广播、终端设备处于不同网络覆盖等多种情况,并且单播和组播的引入也为更灵活的配置方式提供了可能。目前的复制传输模式无法满足NR-V2X中利用侧行链路进行多载波通信中的多种数据传输场景的需求。
Figure PCTCN2022093529-appb-000001
Figure PCTCN2022093529-appb-000002
表1
本申请如下的各个实施例,以NR-V2X中利用侧行链路进行多载波通信为例,主要从终端设备不同覆盖状况,以及终端设备不同RRC状态,结合单播、组播、广播通信的多种数据传输场景,阐述了利用侧行链路支持复制传输模式以提升数据传输的可靠性。
需要指出的是,第一设备可以为发送方UE,第二设备可以为接收方UE;第一设备也可以为接收方UE,第二设备可以为发送方UE。其中,第二设备可以为终端设备(如接收方UE或发送方UE),根据不同的组网架构,第二设备还可以为网络设备。第二设备为终端设备的情况下,无论第一设备和第二设备中的任一设备谁作为发送方UE或接收方UE,设备都需要支持/使能(Enable)该复制传输模式。无论第一设备和第二设备中的任一设备谁作为发送方UE或接收方UE,都可以执行:激活复制传输模式,以及激活复制传输模式后在侧行链路上以复制传输模式发送上述第一数据。其中,“使能”,是指:针对该复制传输模式,并不是第一设备支持的某种能力,而是第一设备被配置的其在载波或逻辑信道上可以支持以复制传输模式进行第一数据的传输。
图5是根据本申请实施例的另一应用场景的示意图,示例性地示出了本申请实施例数据传输方法的交互过程。以第一设备和第二设备皆为终端设备(如手机)为例,该交互过程包括下面的部分步骤或全部步骤:
S510、第一设备在侧行链路上以复制传输模式发送第一数据。
S520、第二设备在侧行链路上进行载波监听。
S530、第二设备接收当前载波上传输的第一数据。
图6是根据本申请一实施例的数据传输方法600的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S610、第一设备在侧行链路上以复制传输模式发送第一数据。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
采用本申请实施例,第一设备通过在侧行链路上以复制传输模式发送第一数据,可以实现侧行链路复制传输模式下的数据传输。
一种可能的实现方式中,还包括:根据第一规则,第一设备确定复制传输模式开启或复制传输模式禁用。其中,该第一规则(如定义的映射关系或定义的规则,也可以称之为第一条件,如定义的映射关系或定义的条件)可以通过预配置、***消息指示、上层指示中的至少一种方式得到。
一些示例中,该第一规则可以与至少一种配置方式相关。即:对第一规则的定义,可以与多粒度的 配置方式相关,比如,该多粒度的配置方式,包括:每种业务类型、服务质量(Quality of Service,QoS)流、数据链路层(L2)标识、逻辑信道、发送(Transport,Tx)协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率(Constants Bit Rate,CBR)等级中的至少一种划分粒度,从而,采用本申请实施例,可以实现侧行链路复制传输模式下的数据传输,根据该多粒度的配置方式能满足多种数据传输场景的需求。
图7是根据本申请一实施例的数据传输方法700的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S710、在复制模式开启的情况下第一设备激活复制传输模式。
S720、第一设备在侧行链路上以复制传输模式发送第一数据。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,针对激活复制传输模式而言,可以在满足第一条件的情况下激活该复制传输模式,从而实现了在激活复制传输模式后发送该第一数据。
一些示例中,该第一条件包括如下至少之一:
1)数据传输的优先级大于优先级要求;
2)资源池CBR测量值小于第一门限值(如最大门限值);
3)侧行链路参考信号接收功率(Reference Signal Receiving Power,RSRP)测量值大于第二门限值(如最小门限值)和/或小于第三门限值(如最大门限值);
4)收到上层指示,上层指示用于激活复制传输模式;
5)连续N次未收到反馈信道PSFCH的反馈,N为大于1的正整数;
6)连续N次未收到确认字符(ACKnowledgment,ACK)的反馈,N为大于1的正整数;
7)收到来自第二设备发送的第一信令,第一信令用于指示激活复制传输模式,比如,第一信令可以为指示激活复制传输模式的信令(duplication activation)。
步骤S710-S720,不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
图8是根据本申请一实施例的数据传输方法800的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S810、在复制模式开启的情况下第一设备激活复制传输模式。
S820、第一设备在侧行链路上以复制传输模式发送第一数据,第一数据为源数据。
S830、第一设备在侧行链路上发送第二数据,第二数据为复制数据,其中,该第二数据和该第一数据在相同的载波或不同的载波上发送。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,针对激活复制传输模式而言,可以在满足第一条件的情况下激活该复制传输模式,从而实现了在激活复制传输模式后发送该第一数据。
一些示例中,该第一条件包括如下至少之一:
1)数据传输的优先级大于优先级要求;
2)资源池CBR测量值小于第一门限值(如最大门限值);
3)侧行链路参考信号接收功率RSRP测量值大于第二门限值(如最小门限值)和/或小于第三门限 值(如最大门限值);
4)收到上层指示,上层指示用于激活复制传输模式;
5)连续N次未收到反馈信道PSFCH的反馈,N为大于1的正整数;
6)连续N次未收到ACK的反馈,N为大于1的正整数;
7)收到来自第二设备发送的第一信令,第一信令用于指示激活复制传输模式,比如,第一信令可以为指示激活复制传输模式的信令(duplication activation)。比如,第二设备可以包括:终端设备或网络设备,其中,终端设备可以为发送方UE或接收方UE。
一些示例中,第二数据和第一数据之间的对应关系(比如第二数据和第一数据对应的复制传输关系),由载波映射指示、逻辑信道标识映射指示、显式指示、网络配置、预配置中的至少一种方式确定,具体的,包括如下内容:
1)第二数据与第一数据之间通过载波映射指示,确定第二数据与第一数据之间对应的复制传输关系;
2)第二数据与第一数据之间通过逻辑信道标识映射指示,确定第二数据与第一数据之间对应的复制传输关系;
3)第二数据与第一数据之间通过显式指示,确定第二数据与第一数据之间对应的复制传输关系。
步骤S810-S830不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第一设备接收第一网络设备发起的第二信令,第一设备响应第二信令,配置在所述侧行链路上以所述复制传输模式发送所述第一数据。
一些示例中,该第二信令可以为复制传输模式的配置信令(duplicated config)。该第二信令可以包括:RRC信令、介质访问控制元素(MAC CE)、物理层信令中的至少一种。
一些示例中,该第二信令中携上述RRC信令的情况下,还包括:通过该RRC信令指示的方式得到上述第一规则。
在一种可能的实现方式中,收到来自第二设备发送的第一信令,包括如下至少之一:
1)在第二设备RSRP测量值大于第二门限值和/或小于第三门限值的情况下收到来自所述第二设备发送的所述第一信令;
2)在第二设备连续N次数据接收失败的情况下收到来自所述第二设备发送的所述第一信令。
在一种可能的实现方式中,还包括:第一设备与第二设备之间进行能力信息交互,根据第一规则和/或所述能力信息,第一设备确定复制传输模式开启或复制传输模式禁用。
一些示例中,能力信息包括:第一设备和/或第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
一些示例中,除了两个终端设备(如第一设备与第二设备)间的交互,还可以在两个终端设备间交互的组网架构中引入网络设备(如第一网络设备),具体的,第一网络设备可以发送第二信令(如RRC信令)给第一设备以进行配置,请求第一设备进行复制传输等各种处理(如以复制传输模式发送该第一数据),第一网络设备还可以接收第一设备的请求响应。
一些示例中,第二信令(如第一网络设备通过RRC信令指示),可以为复制传输模式的配置信令;第三信令,可以为激活该复制传输模式的请求信令;第四信令可以为激活该复制传输模式的请求响应信 令。
在一种可能的实现方式中,还包括:第一设备接收第一网络设备发起的第三信令,该第三信令用于携带激活复制传输模式的指示,第一设备响应第三信令,根据激活复制传输模式的指示触发复制传输模式进入激活状态,第一设备向第一网络设备发送第四信令,该第四信令用于将第一设备的复制传输情况通知该第一网络设备。
一些示例中,该第三信令为:RRC信令、介质访问控制元素(MAC CE)信令、或物理层信令(如PDCCH)。
一些示例中,该第二信令中携带RRC信令指示的情况下,还包括:通过RRC信令指示的方式得到上述第一规则。
一些示例中,除了两个终端设备(如第一设备与第二设备)间的交互,引入网络设备(如第一网络设备)之后,还可以包括:在第一设备满足如下第一条件的情况下激活复制传输模式;
其中,该第一条件包括:收到第一信令,该第一信令用于指示激活所述复制传输模式。其中,第二设备在基于如下条件之一发送第一信令:
1)RSRP测量值大于第二门限值(如最小门限值)和/或小于第三门限值(如最大门限值);
2)所述第一信令用于指示第二设备连续N次数据接收失败;
3)第一信令用于指示第二设备收到第二网络设备发起的激活复制传输模式的指示。
在一种可能的实现方式中,还包括:第一设备接收第二设备发送的第十信令,该第十信令用于配置所述复制传输模式,第一设备响应第十信令,配置在侧行链路上以所述复制传输模式发送第一数据。
图9是根据本申请一实施例的数据传输方法900的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S910、在第一设备与第二设备之间进行能力信息的交互。
S920、根据第一规则和/或能力信息,第一设备确定复制传输模式开启或复制传输模式禁用。
S930、在复制模式开启的情况下第一设备激活复制传输模式。
S940、第一设备在侧行链路上以复制传输模式发送第一数据。
一些示例中,除了上述实施例中可以根据第一规则确定复制传输模式开启或复制传输模式禁用,进一步的,还可以引入支持第一设备与第二设备间的信令交互/配置(如能力交互)。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,能力信息包括:第一设备和/或第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
步骤S910-S940不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第一设备进行能力信息的交互后向第一网络设备发送第五信令,第一设备接收第一网络设备发起的第六信令,第一设备响应该第六信令,配置在侧行链路上以复制传输模式发送第一数据。
一些示例中,针对第五信令而言,第一设备可以在连接态下和/或模式1资源选择下和/或网络支持侧行链路复制传输情况下向网络设备上报该第五信令。
一些示例中,除了两个终端设备(如第一设备与第二设备)间的交互,还可以引入网络设备(如第 一网络设备),具体的,第一设备可以在能力信息的交互后发送第五信令(如RRC信令),请求第一网络设备对第一设备进行配置,使得第一设备进行复制传输等各种处理(如以复制传输模式发送该第一数据)。
一些示例中,第五信令(如第一设备向第一网络设备上报的RRC消息),包括第一设备的对端UE(如第二设备)支持和/或开启复制传输、或即将进行复制传输或请求复制传输资源;第六信令(如第一网络设备通过RRC信令指示),可以为复制传输模式的配置信令。
一些示例中,在第五信令中携带能力信息;其中,该能力信息包括:第一设备和/或第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
一些示例中,该第六信令中携带RRC信令指示的情况下,还包括:通过RRC信令指示的方式得到第一规则。
一些示例中,除了两个终端设备(如第一设备与第二设备)间的交互,引入网络设备(如第一网络设备)之后,还可以包括:在第一设备满足如下第一条件的情况下激活复制传输模式;
其中,该第一条件包括:收到第一信令,该第一信令用于指示激活所述复制传输模式后第二设备RSRP测量值大于第二门限值和/或小于第三门限值、或者该第一信令用于指示第二设备连续N次数据接收失败、或者该第一信令用于指示第二设备收到第二网络设备发起的激活复制传输模式的指示。
一些示例中,还包括:第一设备接收第一网络设备发起的第七信令,该第七信令用于携带激活复制传输模式的指示,第一设备响应第七信令,根据激活复制传输模式的指示触发复制传输模式进入激活状态,第一设备向第一网络设备发送第八信令,该第八信令用于将第一设备的复制传输情况通知所述第一网络设备。其中,该第七信令可以为激活该复制传输模式的请求信令;该第八信令可以为激活该复制传输模式的请求响应信令。
图10是根据本申请一实施例的数据传输方法1000的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1010、第二设备在侧行链路上进行载波监听。
S1020、第二设备接收当前载波上传输的第一数据,该第一数据为第一设备以复制传输模式发送的数据。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,第二设备可以根据载波选择和/或载波配置的方式,在侧行链路上进行载波监听。
采用本申请实施例,第一设备通过在侧行链路上以复制传输模式发送第一数据,实现侧行链路复制传输模式下的数据传输,第二设备通过载波监听,可以接收当前载波上传输的该第一数据。
步骤S1010-S1020不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
图11是根据本申请一实施例的数据传输方法1100的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1110、第二设备在侧行链路上进行载波监听。
S1120、根据第一规则,第二设备识别当前载波上传输的第一数据。
S1130、第二设备接收当前载波上传输的第一数据,该第一数据为第一设备以复制传输模式发送的数据。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,第二设备可以根据载波选择和/或载波配置的方式,在侧行链路上进行载波监听。
一些示例中,该第一规则可以通过预配置、***消息指示、RRC信令指示、上层指示中的至少一种方式得到,从而可以根据第一规则识别及接收该第二数据。
一些示例中,该第一规则可以与至少一种配置方式相关。即:对第一规则的定义,可以与多粒度的配置方式相关,比如,该多粒度的配置方式,包括:每种业务类型、服务质量(Quality of Service,QoS)流、数据链路层(L2)标识、逻辑信道、发送(Transport,Tx)协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率(Constants Bit Rate,CBR)等级中的至少一种划分粒度,从而,采用本申请实施例,可以实现侧行链路复制传输模式下的数据传输,根据该多粒度的配置方式能满足多种数据传输场景的需求。
步骤S1110-S1130不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第二设备向第一设备发送第一信令,该第一信令用于指示激活所述复制传输模式。
一些示例中,该第一信令可以为第二设备RSRP测量值大于第二门限值(如最小门限值)和/或小于第三门限值(如最大门限值)时发送。
一些示例中,该第一信令可以为第二设备连续N次数据接收失败时/后发送。
在一种可能的实现方式中,还包括:第二设备接收第二网络设备发起的第九信令,该第九信令用于配置复制传输模式,第二设备响应该第九信令,向第一设备发送第十信令,该第十信令用于配置复制传输模式。
一些示例中,第九信令(如第二网络设备通过RRC信令指示)可以为复制传输模式的配置信令(duplicated config);第十信令可以为第一设备发送给第二设备的复制传输模式的配置信令(duplicated config)。
图12是根据本申请一实施例的数据传输方法1200的示意性流程图。该方法可选地可以应用于图1所示的***,但并不仅限于此。该方法包括以下内容的至少部分内容:
S1210、在第二设备与第一设备之间进行能力信息的交互。
S1220、第二设备在侧行链路上进行载波监听。
S1230、根据第一规则和能力信息,第二设备确定复制传输模式开启或复制传输模式禁用。
一些示例中,可以在能力交互后在第二设备激活复制传输模式。其中,该能力信息包括:第一设备和/或第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
一些示例中,第一设备可以为发送方UE,第二设备可以为接收方UE。
一些示例中,根据第一规则和能力信息,第二设备可以识别当前载波上传输的第一数据,第二设备接收当前载波上传输的第一数据,该第一数据为第一设备以复制传输模式发送的数据。
步骤S1210-S1230不存在必然的顺序关系,可以根据需要选择其中部分步骤予以执行,不需要顺序执行上述步骤。
在一种可能的实现方式中,还包括:第二设备向第一设备发送第十一信令,该第十一信令用于指示激活复制传输模式;和/或,第二设备向第一设备发送第十二信令,该第十二信令用于配置复制传输模 式。比如,第十一信令可以为指示激活复制传输模式的信令(duplication activation);第十二信令可以为配置复制传输模式的信令(duplication activation indication)。
在一种可能的实现方式中,还包括:第二设备接收第二网络设备发送的第十三信令,该第十三信令用于指示激活复制传输模式;和/或,第二设备接收第二网络设备发送的第十四信令,该第十四信令用于配置复制传输模式。比如,该第十三信令可以为指示激活复制传输模式的信令(duplication activation);该第十四信令可以为配置复制传输模式的信令(duplication activation indication)。
下面对上述本申请实施例提供的数据传输方法进行详细说明。
应用示例一:组播/广播通信场景中,UE处于网络覆盖外、或UE在覆盖内但处于空闲(IDLE)状态/去激活(INACTIVE)状态,如图13所示,包括如下内容:
一、接收方UE/发送方UE都可以执行如下处理:
1)根据第一规则(如预先定义的映射关系或规则)来确定复制传输模式开启或复制传输模式禁用;
2)该第一规则,可以为每种业务类型/QoS流/L2标识/逻辑信道/Tx协议/数据传输类型(单播或广播)/优先级/载波/资源池/CBR等级定义的;
3)发送方UE根据该第一规则确定是否可以做复制传输;
4)接收方UE根据该第一规则确定是否做复制传输的接收;
5)该第一规则为预配置、网络通过***消息指示、上层指示。
二、针对激活该复制传输模式而言,发送方UE可以执行如下处理:
若经过该第一规则判断某次数据传输为开启复制传输模式下的数据传输,则自动/默认激活该复制传输模式以进行复制传输。
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断SL-RSRP测量值(这里测量值可以为组播/广播多个测量值的平均值、最大值、最小值或任意一个值)满足条件(高于最小门限和/或低于最大门限);
-对于组播,连续N次未收到PSFCH反馈;(N可以通过网络配置、固定值、或UE自定义来实现);
-对于组播,连续N次未收到ACK反馈;
-收到上层指示激活;
-对于组播或广播,可以为接收方UE通过信令激活(如PSFCH或MAC CE),这种情况下接收方UE可以在RSRP测量值满足条件(高于最小门限和/或低于最大门限)或连续N次接收失败触发激活。
三、针对数据传输而言,发送方UE可以执行如下处理:
1)根据载波选择机制/配置,选择源数据/复制数据所用载波及资源,以实现数据传输,包括第一数据(如源数据)及第二数据(如复制数据);
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波。
2)数据传输中,第一数据(如源数据)及第二数据(如复制数据)之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中、或MAC包头、或MAC-CE中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
四、接收方UE可以执行如下处理:
1)根据载波选择机制/配置,选择要监听的载波,识别出当前载波上传输的第一数据(如源数据);
2)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示进行复制传输数据包的识别及接收。
应用示例二:组播/广播通信场景中,UE处于覆盖内且处于连接(CONNECTED)状态、和/或模式1,如图14所示,包括如下内容:
一、接收方UE/发送方UE都可以执行如下处理:
1)根据根据第一规则(如预先定义的映射关系或规则)来确定复制传输模式开启或复制传输模式禁用;
2)该第一规则,可以为每种业务类型/QoS流/L2标识/逻辑信道/Tx协议/数据传输类型(单播或广播)/优先级/载波/资源池/CBR等级定义的;
3)发送方UE根据该第一规则确定是否可以做复制传输;
4)接收方UE根据该第一规则确定是否做复制传输的接收;
5)该第一规则可以为预配置、网络通过***消息指示、网络通过RRC信令指示、上层指示。
二、针对激活该复制传输模式而言,发送方UE可以执行如下处理:
若经过该第一规则判断某次数据传输为开启复制传输模式下的数据传输,则自动/默认激活该复制传输模式以进行复制传输。
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断RSRP测量值(这里测量值可以为组播/广播多个测量值的平均值、最大值、最小值或任意一个值)满足条件(高于最小门限和/或低于最大门限);
-对于组播,连续N次未收到PSFCH反馈;(N为网络配置、固定值、或UE实现);
-对于组播,连续N次未收到ACK反馈;
-收到上层指示激活;
-对于组播或广播,可以为接收方UE通过信令激活(如PSFCH或MAC CE)这种情况下接收方UE可以在RSRP测量值满足条件(高于最小门限和/或低于最大门限)或连续N次接收失败触发激活或接收方UE的网络指示激活;
-收到网络激活复制传输的指示(可以为MAC CE或RRC信令);
激活该复制传输模式之后,发送方UE可以向网络设备上报复制传输情况,该复制传输情况的上报可以发生在该网络设备下发复制传输激活/配置前或激活/配置后的任意时机;
-可以为RRC信令上报,指示进行复制传输的目标L2ID,逻辑信道;
-可以为MAC CE上报,指示进行复制传输的目标L2ID,逻辑信道(可以为新的MAC CE也可以为已有MAC CE如BSR中增加指示信息)。
三、针对数据传输而言,发送方UE可以执行如下处理:
1)根据载波选择机制/配置,选择源数据/复制数据所用载波及资源,以实现数据传输,包括第一数据(如源数据)及第二数据(如复制数据);
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波;
2)数据传输中,第一数据(如源数据)及第二数据(如复制数据)之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中、或MAC包头、或MAC CE中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
四、接收方UE可以执行如下处理:
1)根据载波选择机制/配置,选择要监听的载波,识别出当前载波上传输的第一数据;
2)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示进行复制传输数据包的识别及接收。
应用示例三:单播通信场景中,UE处于网络覆盖外、或在覆盖内但处于IDLE/INACTIVE状态,如图15a-图15b所示,包括如下内容:
一、接收方UE/发送方UE都可以执行如下处理:
除上述应用示例中的根据第一规则(如预先定义的映射关系或规则)确定复制传输模式开启或复制传输模式禁用,还可以开启UE间信令交互/配置(如能力交互);
二、针对激活该复制传输模式而言,如图15a所示的发送方UE,可以执行如下处理:
1)若经过该第一规则及能力交互判断某次数据传输为开启复制传输模式下的数据传输,则自动/默认激活该复制传输模式以进行复制传输;
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断RSRP测量值满足条件(高于最小门限和/或低于最大门限);
-对于组播,连续N次未收到PSFCH反馈;(N为网络配置、固定值、或UE实现);
-对于组播,连续N次未收到ACK反馈;
-收到上层指示激活;
-对于组播,可以为接收方UE通过信令激活(如PSFCH),这种情况下接收方UE可以在RSRP测量值满足条件(高于最小门限和/或低于最大门限)或连续N次接收失败触发激活。
三、上述激活该复制传输模式也可以在接收方UE进行,针对激活该复制传输模式而言,如图15b所示的接收方UE,可以执行如下处理:
1)若经过该第一规则及能力交互判断某次数据传输为开启复制传输模式下的数据传输,则自动/默认激活该复制传输模式以进行复制传输。
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断RSRP测量值满足条件(高于最小门限和/或低于最大门限);
-收到上层指示激活;
-连续N次接收失败触发激活。
四、针对数据传输而言,包括第一数据(如源数据)及第二数据(如复制数据)的数据传输,如图15a所示的发送方UE可以执行如下处理:
1)发送方UE向接收方UE发送复制传输激活及复制传输相关配置,包括复制传输数据与源数据之间的映射规则,承载配置等;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息;
2)根据载波选择机制/配置,选择源数据/复制数据所用载波及资源;
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波;
3)发送源数据及复制数据,源数据及复制数据之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中、或MAC包头中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-源数据与复制数据之间通过PC5-RRC配置复制传输关系;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
五、相应的,如图15a所示的接收方UE可以执行如下处理:
1)根据载波选择机制/来自发送方UE的配置,选择要监听的载波;
2)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示/或发送方UE指示进行复制传输数据包识别及接收;
六、上述数据传输也可以在接收方UE进行,包括第一数据(如源数据)及第二数据(如复制数据)的数据传输,针对激活该复制传输模式而言,如图15b所示的接收方UE,可以执行如下处理:
1)接收方UE向发送方UE发送复制传输激活及复制传输相关配置,包括复制传输数据与源数据之间的映射规则,承载配置等;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息;
或者,接收方UE向发送方UE发送复制传输激活,再由发送方UE收到激活信息后配置复制传输相关配置;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息;
2)根据载波选择机制/来自发送方UE的配置,选择要监听的载波;
3)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示/或发送方UE指示或自身实现进行复制传输数据包识别及接收。
七、相应的,如图15b所示的发送方UE可以执行如下处理:
1)根据载波选择机制/配置,选择源数据/复制数据所用载波及资源;
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波;
2)发送源数据及复制数据,源数据及复制数据之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中、或MAC包头中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-源数据与复制数据之间通过PC5-RRC配置复制传输关系;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
应用示例四:单播通信场景中,UE处于网络覆盖内且处于CONNECTED状态,如图16a-图16b所示,包括如下内容:
一、接收方UE/发送方UE都可以执行如下处理:
除上述应用示例中的根据第一规则(如预先定义的映射关系或规则)确定复制传输模式开启或复制传输模式禁用,还可以开启UE间信令交互/配置(如能力交互);
二、针对激活该复制传输模式而言,如图16a所示的发送方UE,可以执行如下处理:
1)若经过该第一规则及能力交互判断某次数据传输为开启复制传输模式下的数据传输,则向网络设备上报RRC消息,包括对端UE支持复制传输或即将进行复制传输或请求,自动/默认激活该复制传输模式以进行复制传输;
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断RSRP测量值满足条件(高于最小门限和/或低于最大门限);
-连续N次未收到PSFCH反馈;(N为网络配置、固定值、或UE实现);
-连续N次未收到ACK反馈;
-收到上层指示激活;
-收到网络指示激活;
三、上述激活该复制传输模式也可以在接收方UE进行,针对激活该复制传输模式而言,如图16b所示的接收方UE,可以执行如下处理:
1)若经过该第一规则及能力交互判断某次数据传输为开启复制传输的传输,则向网络设备上报RRC消息,包括对端UE支持复制传输或即将进行复制传输或请求,自动/默认激活该复制传输模式以进行复制传输;
其中,该复制传输模式在第一条件下激活,包括如下第一条件:
-判断数据优先级满足条件(大于所设定优先级要求);
-判断资源池CBR测量值满足条件(低于所设定门限);
-判断RSRP测量值满足条件(高于最小门限和/或低于最大门限);
-收到上层指示激活;
-连续N次接收失败触发激活;
四、针对数据传输而言,包括第一数据(如源数据)及第二数据(如复制数据)的数据传输,如图16a所示的发送方UE可以执行如下处理:
1)发送方UE接收来自网络设备的复制传输激活及配置,并根据所受到的配置向接收方UE发送复制传输激活及复制传输相关配置,包括复制传输数据与源数据之间的映射规则,承载配置等;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息
2)发送方UE向网络设备上报复制传输情况;
-可以为RRC信令上报,指示进行复制传输的目标L2ID,逻辑信道;
-可以为MAC CE上报,指示进行复制传输的目标L2ID,逻辑信道(可以为新的MAC CE也可以为已有MAC CE如BSR中增加指示信息)
3)根据载波选择机制/配置,选择源数据/复制数据所用载波和/或资源;
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波;
4)发送源数据及复制数据,源数据及复制数据之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中、或MAC包头中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-源数据与复制数据之间通过PC5-RRC配置复制传输关系;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
五、相应的,如图16a所示的接收方UE可以执行如下处理:
1)根据载波选择机制/来自发送方UE的配置,选择要监听的载波;
2)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示/或发送方UE指示进行复制传输数据包识别及接收。
六、上述数据传输也可以在接收方UE进行,包括第一数据(如源数据)及第二数据(如复制数据)的数据传输,针对激活该复制传输模式而言,如图16b所示的接收方UE,可以执行如下处理:
1)接收方UE接收来自网络设备的复制传输激活及复制传输相关配置,并根据所受到配置向发送方UE发送复制传输激活及复制传输相关配置,包括复制传输数据与源数据之间的映射规则,承载配置等;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息
或者,接收方UE向发送方UE发送复制传输激活,再由发送方UE收到激活信息后配置复制传输相关配置;
-在这之前发送方UE还可以向网络设备上报对端UE支持复制传输,将要进行复制传输等信息;发送方UE接收来自网络设备的复制传输相关配置,并根据接收到的配置向接收方UE发送配置信息;
-激活信息可以为MAC CE或RRC或物理层信息,配置信息为RRC信息
2)根据载波选择机制/来自发送方UE的配置,选择要监听的载波;
3)通过映射规则(载波或逻辑信道)/或接收到数据包中的指示/或发送方UE指示或自身实现进行复制传输数据包识别及接收。
七、相应的,如图16b所示的发送方UE可以执行如下处理:
1)发送方UE向网络设备上报复制传输情况;
-可以为RRC信令上报,指示进行复制传输的目标L2ID,逻辑信道;
-可以为MAC CE上报,指示进行复制传输的目标L2ID,逻辑信道(可以为新的MAC CE也可以为已有MAC CE如BSR中增加指示信息)
2)根据载波选择机制/配置,选择源数据/复制数据所用载波和/或资源;
-源数据和复制数据可以在相同载波或不同载波上发送;
-可以定义支持源数据和复制数据的载波;
3)发送源数据及复制数据,源数据及复制数据之间的对应关系可以满足如下第二条件;
-源数据与复制数据之间通过载波映射指示复制传输关系,即载波二上的数据为载波一上复制得到;
-源数据与复制数据之间通过逻辑信道标识映射指示复制传输关系,即LCH ID为2上的数据为LCH ID为1上复制得到;
-源数据与复制数据之间通过显式指示复制传输关系,即在复制数据包种携带为复制数据的指示,该指示可以携带于SCI中或MAC包头中,可以指示为复制数据和\为哪一个(逻辑信道)数据的复制数据;
-源数据与复制数据之间通过PC5-RRC配置复制传输关系;
-该第二条件(如复制传输关系)为源数据与复制数据之间的一种映射关系,可以通过设置固定的 映射关系/网络配置的映射关系/预配置的映射关系/UE自定义的映射关系来实现。
需要指出的是,上面这些示例可以结合上述本申请实施例中的各种可能性,此处不做赘述。
图17是根据本申请一实施例的第一设备1700的示意性框图。该第一设备1700可以包括:第一处理单元1710,用于在侧行链路上以复制传输模式发送第一数据。
在一种可能的实现方式中,还包括:第二处理单元,用于根据第一规则,确定复制传输模式开启或复制传输模式禁用;
其中,所述第一规则,通过预配置、***消息指示、上层指示中的至少一种方式得到。
在一种可能的实现方式中,所述第一规则与业务类型、QoS流、L2标识、逻辑信道、Tx协议、数据传输类型、数据传输的优先级、载波、资源池、CBR等级中的至少一种相关。
在一种可能的实现方式中,还包括:第三处理单元,用于在复制模式开启的情况下激活所述复制传输模式,激活所述复制传输模式后在侧行链路上以复制传输模式发送第一数据。
在一种可能的实现方式中,在满足所述第一条件的情况下激活所述复制传输模式。
一些示例中,该第一条件包括如下至少之一:
数据传输的优先级大于优先级要求;
资源池CBR测量值小于第一门限值;
侧行链路RSRP测量值大于第二门限值和/或小于第三门限值;
收到上层指示,所述上层指示用于激活所述复制传输模式;
连续N次未收到PSFCH的反馈,N为大于1的正整数;
连续N次未收到ACK的反馈,N为大于1的正整数;
收到来自第二设备发送的第一信令,所述第一信令用于指示激活所述复制传输模式。比如,第一信令可以为指示激活复制传输模式的信令(duplication activation)。比如,第二设备可以包括:终端设备或网络设备,其中,终端设备可以为发送方UE或接收方UE。
一些示例中,第二数据和第一数据之间的对应关系(比如第二数据和第一数据对应的复制传输关系),由载波映射指示、逻辑信道标识映射指示、显式指示、网络配置、预配置中的至少一种方式确定,具体的,包括如下内容:
1)第二数据与第一数据之间通过载波映射指示,确定第二数据与第一数据之间对应的复制传输关系;
2)第二数据与第一数据之间通过逻辑信道标识映射指示,确定第二数据与第一数据之间对应的复制传输关系;
3)第二数据与第一数据之间通过显式指示,确定第二数据与第一数据之间对应的复制传输关系。
在一种可能的实现方式中,还包括:第四处理单元,用于在侧行链路上发送第一数据及第二数据,所述第一数据为源数据,所述第二数据为复制数据;其中,所述第二数据和所述第一数据在相同的载波或不同的载波上发送。
在一种可能的实现方式中,还包括第五处理单元,用于:
接收所述第二设备发起的第二信令;
响应该第二信令,配置在侧行链路上以复制传输模式发送所述第一数据。
一些示例中,该第二信令包括:RRC信令、MAC CE、或物理层信令中的至少一种。
一些示例中,第二信令中携带该RRC信令的情况下,还包括指示单元,用于通过RRC信令指示的方式得到上述第一规则。
在一种可能的实现方式中,还包括接收单元,用于采用如下至少之一的方式收到来自第二设备发送的第一信令:
在第二设备RSRP测量值大于第二门限值和/或小于第三门限值的情况下收到来自该第二设备发送的该第一信令;
在第二设备连续N次数据接收失败的情况下收到来自该第二设备发送的该第一信令。
一些示例中,该第二设备可以为终端设备或网络设备。
在一种可能的实现方式中,还包括第六处理单元,用于接收第一网络设备发起的第三信令,所述第三信令用于携带激活所述复制传输模式的指示;响应所述第三信令,根据激活所述复制传输模式的指示触发所述复制传输模式进入激活状态;向所述第一网络设备发送第四信令,所述第四信令用于将第一设备的复制传输情况通知所述第一网络设备。
在一种可能的实现方式中,所述第三信令为:RRC信令、MAC CE信令、或物理层信令(如PDCCH)。
在一种可能的实现方式中,还包括第七处理单元,用于满足如下第一条件的情况下激活所述复制传输模式;
其中,所述第一条件包括:收到第一信令,所述第一信令用于指示激活所述复制传输模式;
其中,所述第二设备在基于如下条件之一发送所述第一信令:
RSRP测量值大于第二门限值和/或小于第三门限值;
所述第一信令用于指示第二设备连续N次数据接收失败;
所述第一信令用于指示第二设备收到第二网络设备发起的激活所述复制传输模式的指示。
在一种可能的实现方式中,还包括第八处理单元,用于在第一设备与第二设备之间进行能力信息的交互;根据第一规则和/或能力信息,确定复制传输模式开启或复制传输模式禁用。
在一种可能的实现方式中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
在一种可能的实现方式中,还包括第九处理单元,用于接收第二设备发送的第十信令,所述第十信令用于配置所述复制传输模式;响应所述第十信令,配置在所述侧行链路上以所述复制传输模式发送所述第一数据的配置。
在一种可能的实现方式中,还包括第十处理单元,用于进行所述能力信息的交互后向所述第一网络设备发送第五信令;接收所述第一网络设备发起的第六信令;响应所述第六信令,配置在所述侧行链路上以所述复制传输模式发送所述第一数据。
在一种可能的实现方式中,在所述第五信令中携带所述能力信息;
其中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
在一种可能的实现方式中,还包括第十一处理单元,用于接收第一网络设备发起的第七信令,所述第七信令用于携带激活所述复制传输模式的指示;响应所述第七信令,根据激活所述复制传输模式的指示触发所述复制传输模式进入激活状态;向所述第一网络设备发送第八信令,所述第八信令用于将第一设备的复制传输情况通知所述第一网络设备。
在一种可能的实现方式中,所述第六信令中携带RRC信令指示的情况下,还包括:通过所述RRC信令指示的方式得到所述第一规则。
在一种可能的实现方式中,还包括第十二处理单元,用于在所述第一设备满足如下第一条件的情况下激活所述复制传输模式;
其中,所述第一条件包括:收到第一信令,所述第一信令用于指示激活所述复制传输模式后第二设备RSRP测量值大于第二门限值和/或小于第三门限值、或者所述第一信令用于指示第二设备连续N次数据接收失败、或者所述第一信令用于指示第二设备收到第二网络设备发起的激活所述复制传输模式的指示。
本申请实施例的第一设备1700能够实现前述的方法实施例中的第一设备的对应功能。该第一设备1700中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备1700中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图18是根据本申请一实施例的第二设备1800的示意性框图。该网络设备1800可以包括:第十三处理单元1810,用于在侧行链路上进行载波监听;第十四处理单元1820,用于接收当前载波上传输的第一数据;所述第一数据为:所述第一设备以复制传输模式发送的数据。
在一种可能的实现方式中,所述第十三处理单元,用于根据载波选择和/或载波配置的方式进行所述载波监听。
在一种可能的实现方式中,其中,第十四处理单元,用于根据第一规则,识别当前载波上传输的第一数据;其中,所述第一规则,通过预配置、***消息指示、RRC信令指示、上层指示中的至少一种方式得到。
在一种可能的实现方式中,所述第一规则与业务类型、QoS流、L2标识、逻辑信道、Tx协议、数据传输类型、数据传输的优先级、载波、资源池、CBR等级中的至少一种相关。
在一种可能的实现方式中,还包括:第十五处理单元,用于:
向第一设备发送第一信令,所述第一信令用于指示激活所述复制传输模式。
在一种可能的实现方式中,所述第一信令为第二设备RSRP测量值大于第二门限值和/或小于第三门限值时发送。
在一种可能的实现方式中,所述第一信令为第二设备连续N次数据接收失败时/后发送。
在一种可能的实现方式中,还包括:发送单元,用于发送第二信令,该第二信令用于配置上述复制传输模式。
一些示例中,该第二信令包括:RRC信令、MAC CE、物理层信令中的至少一种。
在一种可能的实现方式中,还包括:第十六处理单元,用于接收第二网络设备发起的第九信令,所述第九信令用于配置所述复制传输模式;响应所述第九信令,向所述第一设备发送所述第十信令,所述第十信令用于配置所述复制传输模式。
在一种可能的实现方式中,还包括第十七处理单元,用于在所述第二设备与所述第一设备之间进行能力信息的交互,根据所述第一规则和所述能力信息,确定复制传输模式开启或复制传输模式禁用。
一些示例中,能力信息包括:第一设备和/或第二设备开启复制传输模式、即将进入复制传输模式、 请求复制传输资源中的至少一种信息。
在一种可能的实现方式中,还包括第十九处理单元,用于向第一设备发送第十一信令,所述第十一信令用于指示激活所述复制传输模式;和/或,备向第一设备发送第十二信令,所述第十二信令用于配置所述复制传输模式。
在一种可能的实现方式中,还包括第二十处理单元,用于接收第二网络设备发送的第十三信令,所述第十三信令用于指示激活所述复制传输模式;和/或,接收第二网络设备发送的第十四信令,所述第十四信令用于配置所述复制传输模式。
本申请实施例的第二设备1800能够实现前述的方法实施例中的第二设备1800的对应功能。该第二设备1800中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备1800中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图19是根据本申请实施例的通信设备1900示意性结构图。该通信设备1900包括处理器1910,处理器1910可以从存储器中调用并运行计算机程序,以使通信设备1900实现本申请实施例中的方法。
可选地,通信设备1900还可以包括存储器1920。其中,处理器1910可以从存储器1920中调用并运行计算机程序,以使通信设备1900实现本申请实施例中的方法。
其中,存储器1920可以是独立于处理器1910的一个单独的器件,也可以集成在处理器1910中。
可选地,通信设备1900还可以包括收发器1930,处理器1910可以控制该收发器1930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1930可以包括发射机和接收机。收发器1930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1900可为本申请实施例的第一设备,并且该通信设备1900可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1900可为本申请实施例的第二设备,并且该通信设备1900可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
图20是根据本申请实施例的芯片2000的示意性结构图。该芯片2000包括处理器2010,处理器2010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片2000还可以包括存储器2020。其中,处理器2010可以从存储器2020中调用并运行计算机程序,以实现本申请实施例中由第一设备或者第二设备执行的方法。
其中,存储器2020可以是独立于处理器2010的一个单独的器件,也可以集成在处理器2010中。
可选地,该芯片2000还可以包括输入接口2030。其中,处理器2010可以控制该输入接口2030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片2000还可以包括输出接口2040。其中,处理器2010可以控制该输出接口2040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中第二设备,并且该芯片可以实现本申请实施例的各个方法 中由第二设备实现的相应流程,为了简洁,在此不再赘述。
应用于第一设备和第二设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图21是根据本申请实施例的通信***2100的示意性框图。该通信***2100包括第一设备2110和第二设备2120,其中,该第一设备2110可以包括:第一处理单元2110,用于第一设备在侧行链路上以复制传输模式发送第一数据。该第二设备2120可以包括:第十三处理单元,用于第二设备在侧行链路上进行载波监听;第十四处理单元,用于第二设备接收当前载波上传输的第一数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具 体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (63)

  1. 一种数据传输方法,应用于第一设备,所述方法包括:
    所述第一设备在侧行链路上以复制传输模式发送第一数据。
  2. 根据权利要求1所述的方法,还包括:
    根据第一规则,所述第一设备确定复制传输模式开启或复制传输模式禁用;
    其中,所述第一规则,通过预配置、***消息指示、上层指示中的至少一种方式得到。
  3. 根据权利要求2所述的方法,其中,所述第一规则与业务类型、服务质量QoS流、数据链路层L2标识、逻辑信道、发送Tx协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率CBR等级中的至少一种相关。
  4. 根据权利要求2或3所述的方法,还包括:
    在所述复制模式开启的情况下,所述第一设备激活所述复制传输模式。
  5. 根据权利要求4所述的方法,其中,所述第一设备激活所述复制传输模式,包括:
    在满足第一条件的情况下激活所述复制传输模式。
  6. 根据权利要求5所述的方法,其中,所述第一条件包括如下至少之一:
    数据传输的优先级大于优先级要求;
    资源池CBR测量值小于第一门限值;
    侧行链路参考信号接收功率RSRP测量值大于第二门限值和/或小于第三门限值;
    收到上层指示,所述上层指示用于激活所述复制传输模式;
    连续N次未收到反馈信道PSFCH的反馈,N为大于1的正整数;
    连续N次未收到确认字符ACK的反馈,N为大于1的正整数;
    收到来自第二设备发送的第一信令,所述第一信令用于指示激活所述复制传输模式。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述第一设备在侧行链路上以复制传输模式发送第一数据,包括:
    所述第一设备在所述侧行链路上发送第一数据及第二数据,所述第二数据为复制数据;
    其中,所述第二数据和所述第一数据在相同的载波或不同的载波上发送。
  8. 根据权利要求7所述的方法,还包括:
    所述第二数据与所述第一数据之间的对应关系,由载波映射指示、逻辑信道标识映射指示、显式指示、网络配置、预配置中的至少一种方式确定。
  9. 根据权利要求6-8中任一项所述的方法,还包括:
    所述第一设备接收所述第二设备发起的第二信令;
    所述第一设备响应所述第二信令,配置在所述侧行链路上以所述复制传输模式发送所述第一数据。
  10. 根据权利要求9所述的方法,其中,所述第二信令包括:无线资源控制RRC信令、介质访问控制元素MAC CE、物理层信令中的至少一种。
  11. 根据权利要求10所述的方法,其中,所述第二信令中携带所述RRC信令的情况下,还包括:通过所述RRC信令指示的方式得到所述第一规则。
  12. 根据权利要求6所述的方法,其中,所述收到来自第二设备发送的第一信令,包括如下至少之一:
    在第二设备RSRP测量值大于第二门限值和/或小于第三门限值的情况下收到来自所述第二设备发送的所述第一信令;
    在第二设备连续N次数据接收失败的情况下收到来自所述第二设备发送的所述第一信令。
  13. 根据权利要求2-8中任一项所述的方法,还包括:
    所述第一设备与所述第二设备之间进行能力信息交互;
    根据所述第一规则和/或所述能力信息,所述第一设备确定复制传输模式开启或复制传输模式禁用。
  14. 根据权利要求13所述的方法,其中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
  15. 根据权利要求6-14中任一项所述的方法,其中,所述第二设备包括:终端设备或网络设备。
  16. 一种数据传输方法,应用于第二设备,所述方法包括:
    所述第二设备在侧行链路上进行载波监听;
    所述第二设备接收当前载波上传输的第一数据;
    所述第一数据为:所述第一设备以复制传输模式发送的数据。
  17. 根据权利要求16所述的方法,其中,所述第二设备在侧行链路上进行载波监听,包括:
    所述第二设备根据载波选择和/或载波配置的方式进行所述载波监听。
  18. 根据权利要求16所述的方法,还包括:
    根据第一规则,所述第二设备识别当前载波上传输的所述第一数据;
    其中,所述第一规则,通过预配置、***消息指示、RRC信令指示、上层指示中的至少一种方式得到。
  19. 根据权利要求18所述的方法,所述第一规则与业务类型、服务质量QoS流、数据链路层L2标识、逻辑信道、发送Tx协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率CBR等级中的至少一种相关。
  20. 根据权利要求16-19中任一项所述的方法,还包括:
    所述第二设备向第一设备发送第一信令,所述第一信令用于指示激活所述复制传输模式。
  21. 根据权利要求20所述的方法,其中,所述第一信令为第二设备RSRP测量值大于第二门限值和/或小于第三门限值时发送。
  22. 根据权利要求20所述的方法,其中,所述第一信令为第二设备连续N次数据接收失败时/后发送。
  23. 根据权利要求20-22中任一项所述的方法,还包括:
    所述第二设备发送第二信令,所述第二信令用于配置所述复制传输模式。
  24. 根据权利要求23所述的方法,其中,所述第二信令包括:无线资源控制RRC信令、介质访问控制元素MAC CE、物理层信令中的至少一种。
  25. 根据权利要求18-24中任一项所述的方法,还包括:
    在所述第二设备与所述第一设备之间进行能力信息的交互;
    根据所述第一规则和/或所述能力信息,所述第二设备确定复制传输模式开启或复制传输模式禁用。
  26. 根据权利要求25所述的方法,其中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
  27. 一种第一设备,所述第一设备包括:
    第一处理单元,用于在侧行链路上以复制传输模式发送第一数据。
  28. 根据权利要求27所述的设备,还包括:第二处理单元,用于:
    根据第一规则,确定复制传输模式开启或复制传输模式禁用;
    其中,所述第一规则,通过预配置、***消息指示、上层指示中的至少一种方式得到。
  29. 根据权利要求28所述的设备,其中,所述第一规则与业务类型、服务质量QoS流、数据链路层L2标识、逻辑信道、发送Tx协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率CBR等级中的至少一种相关。
  30. 根据权利要求28或29所述的设备,还包括第三处理单元,用于:
    在复制模式开启的情况下,激活所述复制传输模式。
  31. 根据权利要求30所述的设备,其中,所述第三处理单元,用于:
    在满足所述第一条件的情况下激活所述复制传输模式。
  32. 根据权利要求31所述的设备,其中,所述第一条件包括如下至少之一:
    数据传输的优先级大于优先级要求;
    资源池CBR测量值小于第一门限值;
    侧行链路参考信号接收功率RSRP测量值大于第二门限值和/或小于第三门限值;
    收到上层指示,所述上层指示用于激活所述复制传输模式;
    连续N次未收到反馈信道PSFCH的反馈,N为大于1的正整数;
    连续N次未收到确认字符ACK的反馈,N为大于1的正整数;
    收到来自第二设备发送的第一信令,所述第一信令用于指示激活所述复制传输模式。
  33. 根据权利要求27-32中任一项所述的设备,还包括:第四处理单元,用于:
    在所述侧行链路上发送第一数据及第二数据,所述第二数据为复制数据;
    其中,所述第二数据和所述第一数据在相同的载波或不同的载波上发送。
  34. 根据权利要求33所述的设备,还包括:
    所述第二数据与所述第一数据之间的对应关系,由载波映射指示、逻辑信道标识映射指示、显式指示、网络配置、预配置中的至少一种方式确定。
  35. 根据权利要求32-34中任一项所述的设备,还包括第五处理单元,用于:
    接收所述第二设备发起的第二信令;
    响应所述第二信令,配置在所述侧行链路上以所述复制传输模式发送所述第一数据。
  36. 根据权利要求35所述的设备,其中,所述第二信令包括:无线资源控制RRC信令、介质访问控制元素MAC CE、或物理层信令中的至少一种。
  37. 根据权利要求36所述的设备,其中,所述第二信令中携带所述RRC信令的情况下,还包括指示单元,用于通过所述RRC信令指示的方式得到所述第一规则。
  38. 根据权利要求32所述的设备,还包括接收单元,用于采用如下至少之一的方式收到来自第二设备发送的第一信令:
    在第二设备RSRP测量值大于第二门限值和/或小于第三门限值的情况下收到来自所述第二设备发送的所述第一信令;
    在第二设备连续N次数据接收失败的情况下收到来自所述第二设备发送的所述第一信令。
  39. 根据权利要求28-34中任一项所述的设备,还包括第八处理单元,用于:
    在所述第一设备与所述第二设备之间进行能力信息的交互;
    根据所述第一规则和/或所述能力信息,确定复制传输模式开启或复制传输模式禁用。
  40. 根据权利要求39所述的设备,其中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
  41. 根据权利要求32-40中任一项所述的设备,其中,所述第二设备包括:终端设备或网络设备。
  42. 一种第二设备,所述第二设备包括:
    第十三处理单元,用于在侧行链路上进行载波监听;
    第十四处理单元,用于接收当前载波上传输的第一数据;
    所述第一数据为:所述第一设备以复制传输模式发送的数据。
  43. 根据权利要求42所述的设备,其中,所述第十三处理单元,用于:
    根据载波选择和/或载波配置的方式进行所述载波监听。
  44. 根据权利要求42所述的设备,其中,所述第十四处理单元,用于:
    根据第一规则,识别当前载波上传输的所述第一数据;
    其中,所述第一规则,通过预配置、***消息指示、RRC信令指示、上层指示中的至少一种方式得到。
  45. 根据权利要求44所述的设备,所述第一规则与业务类型、服务质量QoS流、数据链路层L2标识、逻辑信道、发送Tx协议、数据传输类型、数据传输的优先级、载波、资源池、恒定码率CBR等级中的至少一种相关。
  46. 根据权利要求42-45中任一项所述的设备,还包括:第十五处理单元,用于:
    向第一设备发送第一信令,所述第一信令用于指示激活所述复制传输模式。
  47. 根据权利要求46所述的设备,其中,所述第一信令为第二设备RSRP测量值大于第二门限值和/或小于第三门限值时发送。
  48. 根据权利要求46所述的设备,其中,所述第一信令为第二设备连续N次数据接收失败时/后发送。
  49. 根据权利要求46-48中任一项所述的设备,还包括:发送单元,用于:
    发送第二信令,所述第二信令用于配置所述复制传输模式。
  50. 根据权利要求49所述的设备,其中,所述第二信令包括:无线资源控制RRC信令、介质访问控制元素MAC CE、物理层信令中的至少一种。
  51. 根据权利要求44-50中任一项所述的方法,还包括:第十七处理单元,用于:
    在所述第二设备与所述第一设备之间进行能力信息的交互;
    根据所述第一规则和所述能力信息,所述第二设备确定复制传输模式开启或复制传输模式禁用。
  52. 根据权利要求51所述的设备,其中,所述能力信息包括:所述第一设备和/或所述第二设备开启复制传输模式、即将进入复制传输模式、请求复制传输资源中的至少一种信息。
  53. 一种第一设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至15中任一项所述的方 法。
  54. 一种第二设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求16至26中任一项所述的方法。
  55. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  56. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至26中任一项所述的方法。
  57. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至15中任一项所述的方法。
  58. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求16至26中任一项所述的方法。
  59. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  60. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至26中任一项所述的方法。
  61. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  62. 一种计算机程序,所述计算机程序使得计算机执行如权利要求16至26中任一项所述的方法。
  63. 一种通信***,包括:
    第一设备,用于执行如权利要求1至15中任一项所述的方法;
    第二设备,用于执行如权利要求16至26中任一项所述的方法。
PCT/CN2022/093529 2022-05-18 2022-05-18 数据传输方法、第一设备、第二设备 WO2023220961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093529 WO2023220961A1 (zh) 2022-05-18 2022-05-18 数据传输方法、第一设备、第二设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093529 WO2023220961A1 (zh) 2022-05-18 2022-05-18 数据传输方法、第一设备、第二设备

Publications (1)

Publication Number Publication Date
WO2023220961A1 true WO2023220961A1 (zh) 2023-11-23

Family

ID=88834149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093529 WO2023220961A1 (zh) 2022-05-18 2022-05-18 数据传输方法、第一设备、第二设备

Country Status (1)

Country Link
WO (1) WO2023220961A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737045A (zh) * 2017-04-19 2018-11-02 华为技术有限公司 重复传输的方法及装置
CN109661833A (zh) * 2017-08-10 2019-04-19 瑞典爱立信有限公司 用于副链路数据复制的方法和设备
CN110798287A (zh) * 2018-08-03 2020-02-14 华硕电脑股份有限公司 无线通信***中用于处理侧链路接收的方法和设备
CN112399641A (zh) * 2019-08-13 2021-02-23 大唐移动通信设备有限公司 一种直接通信接口重复传输的方法、终端及网络侧设备
WO2021060786A1 (ko) * 2019-09-27 2021-04-01 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치
CN113132067A (zh) * 2020-01-15 2021-07-16 大唐移动通信设备有限公司 数据重传激活方法、设备、装置及存储介质
WO2021158010A1 (ko) * 2020-02-03 2021-08-12 삼성전자 주식회사 무선 통신 시스템에서 사이드링크를 이용하여 패킷의 중복 전송을 지원하기 위한 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737045A (zh) * 2017-04-19 2018-11-02 华为技术有限公司 重复传输的方法及装置
CN109661833A (zh) * 2017-08-10 2019-04-19 瑞典爱立信有限公司 用于副链路数据复制的方法和设备
CN110798287A (zh) * 2018-08-03 2020-02-14 华硕电脑股份有限公司 无线通信***中用于处理侧链路接收的方法和设备
CN112399641A (zh) * 2019-08-13 2021-02-23 大唐移动通信设备有限公司 一种直接通信接口重复传输的方法、终端及网络侧设备
WO2021060786A1 (ko) * 2019-09-27 2021-04-01 주식회사 케이티 사이드링크 통신을 제어하는 방법 및 그 장치
CN113132067A (zh) * 2020-01-15 2021-07-16 大唐移动通信设备有限公司 数据重传激活方法、设备、装置及存储介质
WO2021158010A1 (ko) * 2020-02-03 2021-08-12 삼성전자 주식회사 무선 통신 시스템에서 사이드링크를 이용하여 패킷의 중복 전송을 지원하기 위한 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "The impact of duplication on MAC", 3GPP TSG RAN WG2#NR_ADHOC#2 R2-1706344, 26 June 2017 (2017-06-26), XP051300858 *

Similar Documents

Publication Publication Date Title
TW202013921A (zh) 發送上行信號的方法和設備
US20230063901A1 (en) Sidelink feedback method and terminal device
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
WO2021212372A1 (zh) 资源分配方法和终端
US20230337111A1 (en) Terminal device and network device
WO2021159413A1 (zh) 下行传输方法和终端设备
US20230107139A1 (en) Relay discovery method and terminal
JP2023514730A (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2023220961A1 (zh) 数据传输方法、第一设备、第二设备
WO2022120516A1 (zh) 通信方法、设备和***
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022077395A1 (zh) 侧行链路的传输方法和终端
WO2022027672A1 (zh) 通信方法和通信装置
WO2023245493A1 (zh) 无线通信的方法和终端设备
WO2023245492A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024020859A1 (zh) 中继链路之间切换的方法及设备
WO2024011588A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023060404A1 (zh) 逻辑信道优先级排序方法、装置、设备及存储介质
WO2024026632A1 (zh) 传输资源选取方法和设备
WO2023230787A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024031295A1 (zh) 通信方法和终端
WO2023212858A1 (zh) 信息上报方法及设备
WO2024026883A1 (zh) 无线通信的方法及设备
WO2022233011A1 (zh) 建立连接的方法和终端设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942003

Country of ref document: EP

Kind code of ref document: A1