WO2023219446A1 - 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법 - Google Patents

4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법 Download PDF

Info

Publication number
WO2023219446A1
WO2023219446A1 PCT/KR2023/006432 KR2023006432W WO2023219446A1 WO 2023219446 A1 WO2023219446 A1 WO 2023219446A1 KR 2023006432 W KR2023006432 W KR 2023006432W WO 2023219446 A1 WO2023219446 A1 WO 2023219446A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
metal element
less
composition
Prior art date
Application number
PCT/KR2023/006432
Other languages
English (en)
French (fr)
Inventor
김병관
김진식
박명호
안성우
유다솜
최준환
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to CN202380013367.4A priority Critical patent/CN117897518A/zh
Publication of WO2023219446A1 publication Critical patent/WO2023219446A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to a composition for film deposition comprising a Group 4 metal element-containing precursor compound, and a film forming method using the same.
  • Group 4 metal element-containing films are used as DRAM, flash memory, resistive memory (ReRAM), ferroelectric memory (FeRAM), or phase change memory (PCRAM). It is one of the thin films that are essential for driving not only memory semiconductors, but also non-memory semiconductor devices, such as logic devices.
  • these Group 4 metal element-containing films are used in the cutting-edge technology of Organic Light Emitting Diodes (OLED) in the display field, and are used in memory devices as gate insulating films, capacitor high-k dielectric films, etc.
  • OLED Organic Light Emitting Diodes
  • the technical problem to be solved by the present invention is to achieve constant film growth (GPC) per ALD gas supply cycle in a wide temperature range and to achieve excellent step coverage and uniform film even on complex-shaped substrates.
  • GPC constant film growth
  • Another technical problem to be solved by the present invention is to provide a composition for film deposition containing a Group 4 metal element-containing precursor compound having a specific structure.
  • the present invention includes the step of depositing a Group 4 metal element-containing film on a substrate by reacting a composition for film deposition containing a Group 4 metal element-containing precursor compound represented by the following formula (1) with a reaction gas.
  • a method of forming a Group 4 metal element-containing film comprising:
  • M is Zr or Hf
  • R 1 is a methyl group
  • R 2 is selected from the group consisting of linear or branched C 3 -C 4 alkyl groups
  • R 3 to R 8 are each independently selected from the group consisting of a linear or branched C 1 -C 4 alkyl group.
  • composition for film deposition containing a Group 4 metal element-containing precursor compound represented by Chemical Formula 1 is provided.
  • composition for film deposition containing the Group 4 metal element-containing precursor compound of the present invention By using the composition for film deposition containing the Group 4 metal element-containing precursor compound of the present invention, self-limiting film growth of ALD can be achieved over a wide temperature range, especially at high temperatures, and thus can be achieved at various process temperatures. It is possible to form a Group 4 metal element-containing film for various purposes.
  • the film growth (GPC) per ALD gas supply cycle is constant over a wide temperature range of low temperature as well as high temperature, so the film growth (GPC) per ALD gas supply cycle is constant even on the uneven surface with a large aspect ratio. Since it is possible to form a Group 4 metal element-containing film of one thickness, it can be effectively used to manufacture various semiconductor devices such as DRAM and 3D NAND flash memory.
  • Figure 1 is a graph comparing 1 H-NMR spectra of hafnium (Hf)-containing precursor compounds prepared according to Example 3 and Comparative Example 5 of the present invention.
  • Figure 2 shows the film per ALD gas supply cycle at a temperature of 250°C to 400°C when depositing a zirconium (Zr)-containing film using the film deposition composition of Example 1 and Comparative Examples 1, 3, and 4 of the present invention. This is a graph showing growth (GPC).
  • Figure 3 shows film growth (GPC) per ALD gas supply cycle at a temperature of 250°C to 450°C when depositing a hafnium (Hf)-containing film using the film deposition composition of Example 3 and Comparative Example 2 of the present invention. This is the graph shown.
  • Figure 4 is a transmission electron microscope (TEM) image confirming step coverage at 300°C using the film deposition composition of Example 1 and Comparative Examples 1, 3, and 4 of the present invention. am.
  • TEM transmission electron microscope
  • Figure 5 is a transmission electron microscope (TEM) showing step coverage at 340°C and 360°C using the composition for film deposition of Example 1 and Comparative Examples 3 and 4 of the present invention. It is an image.
  • TEM transmission electron microscope
  • Figure 6 is a transmission electron microscope (TEM) image confirming step coverage at 350°C and 400°C using the composition for film deposition of Example 3 and Comparative Example 2 of the present invention.
  • TEM transmission electron microscope
  • film or “thin film” each mean both “film” and “thin film”, unless otherwise specified.
  • alkyl or “alkyl group” includes linear or branched alkyl groups and all possible isomers thereof.
  • the alkyl or alkyl group includes methyl group (Me), ethyl group (Et), normal propyl group ( n Pr), isopropyl group ( i Pr), normal butyl group ( n Bu), and isobutyl group ( i Bu).
  • methyl group (Me) ethyl group (Et), normal propyl group ( n Pr), isopropyl group ( i Pr), normal butyl group ( n Bu), and isobutyl group ( i Bu).
  • tert-butyl group tert-Bu, t Bu
  • sec Bu sec-butyl group
  • the step of depositing a Group 4 metal element-containing film on a substrate by reacting a composition for film deposition containing a Group 4 metal element-containing precursor compound represented by the following formula (1) with a reaction gas.
  • a method of forming a Group 4 metal element-containing film comprising:
  • M is Zr or Hf
  • R 1 is a methyl group
  • R 2 is selected from the group consisting of linear or branched C 3 -C 4 alkyl groups
  • R 3 to R 8 are each independently selected from the group consisting of a linear or branched C 1 -C 4 alkyl group.
  • the method of forming a Group 4 metal element-containing film uses a composition for film deposition containing a Group 4 metal element-containing precursor compound represented by Chemical Formula 1, thereby forming a film at a wide range of temperatures, including low and high temperatures.
  • a composition for film deposition containing a Group 4 metal element-containing precursor compound represented by Chemical Formula 1 thereby forming a film at a wide range of temperatures, including low and high temperatures.
  • the film growth (GPC) per gas supply cycle of the chemical vapor deposition (hereinafter referred to as CVD) as well as the atomic layer deposition (hereinafter referred to as ALD) method consistently produces a Group 4 metal element-containing film. can be formed.
  • the Group 4 metal element-containing precursor compound represented by Formula 1 may exhibit a single composition structure.
  • the “single composition” refers to a material that does not contain structural isomers, and may not mean a 100% pure material. For example, it may contain impurities of 5% or less. Additionally, the “impurities” may refer to all substances except the Group 4 metal element-containing precursor compound represented by Chemical Formula 1.
  • the Group 4 metal element-containing precursor compound represented by Formula 1 does not contain structural isomers or mixtures thereof when analyzing the 1 H-NMR spectrum, and has an impurity content of, for example, 5% or less, 3% or less, 2 % or less, 1% or less, or 0.5% or less, may represent a structure of a single composition (single material structure). Therefore, the Group 4 metal element-containing precursor compound represented by Formula 1 has a high purity of 95% or more, exists in a liquid state at room temperature, which is advantageous for the manufacturing process, and has excellent thermal stability, making it easy to form various Group 4 metal element films. can be formed.
  • the composition for film deposition containing the Group 4 metal element-containing precursor compound is heated using ALD, for example, at 150°C to 500°C, 200°C to 500°C, 200°C.
  • ALD atomic layer deposition
  • Group 4 metal element-containing film Specifically, when forming a zirconium (Zr)-containing film or a hafnium (Hf)-containing film, the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle depending on temperature is almost zero, for example, 30% or less, 30 % or less, 29% or less, 25% or less, 20% or less, 18% or less, 16% or less, 15% or less, 13% or less, 12% or less, 11% or less,
  • the Group 4 metal element-containing precursor compound represented by Chemical Formula 1 will be described in detail in the [Composition for Film Deposition] section described later.
  • a method of forming a Group 4 metal element-containing film according to an embodiment of the present invention includes providing at least a portion of the substrate to a reaction chamber (first step); supplying the film deposition composition in a gaseous state to the reaction chamber (second step); and introducing a reaction gas into the reaction chamber (third step).
  • the gas supply cycle including the second step and the third step is performed several times, for example, several times, tens of times, hundreds of times, or thousands of times. can be repeated to form a Group 4 metal element-containing film of a desired thickness.
  • an inert gas such as argon (Ar) gas or nitrogen (N 2 ) gas is supplied to the reaction chamber to remove the film deposition composition (gas) remaining in the reaction chamber.
  • a step of removing may be further included.
  • the step of supplying an inert gas such as argon (Ar) gas or nitrogen (N 2 ) gas to the reaction chamber may further include removing the reaction gas remaining in the reaction chamber. .
  • the method of forming the Group 4 metal element-containing film may include providing at least a portion of the substrate to a reaction chamber (first step).
  • the substrate may be formed on one or more substrates selected from conventional semiconductor wafers, compound semiconductor wafers, and plastic substrates (PI, PET, PES, and PEN), but may not be limited thereto. Additionally, a substrate with holes or grooves can be used, and a porous substrate with a large surface area can be used.
  • substrates selected from conventional semiconductor wafers, compound semiconductor wafers, and plastic substrates (PI, PET, PES, and PEN), but may not be limited thereto. Additionally, a substrate with holes or grooves can be used, and a porous substrate with a large surface area can be used.
  • group 4 membranes with a thickness of several micrometers ( ⁇ m) to several nanometers (nm) in various temperature ranges, for example, in the temperature range of 150 °C to 500 °C
  • the metal element-containing film can be formed to a uniform thickness, with an aspect ratio of 1 or more, such as about 1 to 50 or more, and a fine pattern (groove) with a width of 1 ⁇ m or less, such as about 1 ⁇ m to 10 nm or less.
  • the method of forming the Group 4 metal element-containing film may include supplying a composition for film deposition containing the Group 4 metal element-containing precursor compound in a gaseous state to the reaction chamber (second step).
  • a composition for film deposition containing the Group 4 metal element-containing precursor compound may be delivered in a gaseous state to form a Group 4 metal element-containing oxide film on the substrate, and further, other elements may be added together with the composition for film deposition.
  • a composition for film deposition containing a Group 4 metal element-containing composite metal oxide film or nano-laminate for example Zr-Si-O, Hf-Si-O, Hf-Zr-O, ZrO 2 /Al 2 O 3 /ZrO 2 , ZrO 2 /Al 2 O 3 /TiO 2 films, etc. can be formed.
  • transport gas or dilution gas is used to deposit the film containing the Group 4 metal element-containing precursor compound.
  • the composition can be transferred onto the substrate to form a Group 4 metal element-containing film at a deposition temperature of 150°C to 500°C.
  • the transport gas or dilution gas is preferably a single or mixed gas selected from the group consisting of argon (Ar), nitrogen (N 2 ), helium (He), and hydrogen (H 2 ).
  • the method of supplying the composition for film deposition containing the Group 4 metal element-containing precursor compound into the reaction chamber is to supply the composition for film deposition containing the Group 4 metal element-containing precursor compound with a transport gas or dilution gas.
  • a bubbling method that forcibly vaporizes;
  • a liquid delivery system (LDS) method that supplies liquid at room temperature and vaporizes it through a vaporizer;
  • a vapor flow control (VFC) method that directly supplies gas using the vapor pressure of a composition for film deposition containing a precursor compound; and one or more methods selected from the group consisting of bypass methods may be used.
  • a method of supplying a composition for film deposition in a gaseous state through chemical vapor deposition (CVD) or ALD can be applied to the present invention.
  • the method of forming a Group 4 metal element-containing film according to an embodiment of the present invention may include introducing a reaction gas into the reaction chamber (third step).
  • a Group 4 metal element-containing oxide film ZrO 2 , HfO 2
  • a Group 4 metal element-containing composite metal oxide film ⁇ (ZrSiO x , ZrAlO x , ZrHfO x , ZrHfSiO x , ZrHfAlO x , ZrHfSiAlO _ , nitrogen oxide plasma (N 2 O Plasma), oxygen nitride (N 2 O 2 ), hydrogen peroxide (H 2 O 2 ), and ozone (O 3 ).
  • ammonia NH 3
  • HN 3 Plasma ammonia plasma
  • N 2 H 4 hydrazine
  • nitrogen nitrogen
  • One or more types selected from the group consisting of plasma (N 2 Plasma) can be used.
  • the composition for film deposition containing the Group 4 metal element-containing precursor compound is delivered in a gaseous state to form a Group 4 metal element-containing nitride film and a Group 4 metal element-containing carbide film on the substrate. , and a Group 4 metal element-containing composite metal film.
  • a composition for depositing a film comprising the Group 4 metal element-containing precursor compound is delivered in a gaseous state to form a Group 4 metal element-containing film, specifically, on the surface of at least a portion of the substrate by CVD or ALD.
  • a Group 4 metal element-containing oxide film, a Group 4 metal element-containing composite metal oxide film, a Group 4 metal element-containing nitride film, or a Group 4 metal element-containing composite metal nitride film can be formed.
  • the method for depositing the Group 4 metal element-containing film may use methods and/or devices known in the art, and, if necessary, may be performed using one or more additional reaction gases.
  • the method for depositing the Group 4 metal element-containing film may be performed by CVD, such as metal organic chemical vapor deposition (MOCVD), or ALD.
  • CVD such as metal organic chemical vapor deposition (MOCVD), or ALD.
  • MOCVD or ALD can be performed using deposition equipment, deposition conditions, and reaction gases known in the art.
  • a Group 4 metal element-containing film formed by a method for forming a Group 4 metal element-containing film is provided.
  • the Group 4 metal element-containing film may have a thickness of about 1 nanometer (nm) to several micrometers ( ⁇ m), and may be applied in various ways depending on the intended application. Specifically, the Group 4 metal element-containing film may be formed in a thickness range of 1 nm to 500 nm.
  • the Group 4 metal element-containing film may be formed on a substrate.
  • the Group 4 metal element-containing film according to an embodiment of the present invention has excellent physical properties and coating properties as well as stable and consistent physical properties by using a composition for film deposition containing a Group 4 metal element-containing precursor compound having a specific structure. It has an excellent effect of forming a high-quality Group 4 metal element-containing film.
  • the Group 4 metal element-containing film may be at least one selected from the group consisting of a Group 4 metal element-containing oxide film, a Group 4 metal element-containing composite metal oxide film, a Group 4 metal element-containing nitride film, and a Group 4 metal element-containing composite metal nitride film.
  • the Group 4 metal element-containing film may include one or more types selected from the group consisting of a Group 4 metal element-containing oxide film and a Group 4 metal element-containing composite metal oxide film.
  • the Group 4 metal element-containing film is a nano-laminate, for example, Zr-Si-O, Hf-Si-O, Hf-Zr-O, ZrO 2 /Al 2 O 3 /ZrO 2 , It may include a ZrO 2 /Al 2 O 3 /TiO 2 film, etc.
  • the Group 4 metal element-containing film may have very excellent step coverage.
  • an oxide or nitride film is formed with a thickness of about 5 nm to 20 nm by ALD at a process temperature of about 300 ° C. or more.
  • the thickness deviation calculated by measuring the film thickness of the top, middle, and bottom is very small, and the step coverage (%) is very excellent.
  • the step coverage refers to the ratio of the bottom to the top thickness (bottom thickness/top thickness) ⁇ 100).
  • the composition for film deposition according to an embodiment of the present invention has a step coverage (%) of 80% or more, 82% or more, 85% or more, 90% or more, 92% or more, 93% or more, 95% or more, or It may be more than 96%.
  • the composition for film deposition according to an embodiment of the present invention has a large aspect ratio. Because it can form a film of a certain thickness even in a groove, it is more effective in manufacturing various semiconductor devices such as DRAM and 3D NAND flash memory.
  • ALD was applied at a process temperature of about 350°C and about 400°C using a composition for film deposition according to an embodiment of the present invention.
  • hafnium (Hf)-containing oxide film with a thickness of 6 to 7 nm, hafnium ( The step coverage (%) calculated by measuring the thickness of the Hf)-containing oxide film can be very excellent beyond a certain value.
  • the Group 4 metal element-containing film when formed on a substrate having an aspect ratio of 11:1 at about 350° C., is a stepped coating of the Group 4 metal element-containing film, such as a hafnium (Hf)-containing oxide film.
  • the gender (%) may be, for example, 80% or higher, 82% or higher, 85% or higher, 90% or higher, 92% or higher, 93% or higher, 95% or higher, or 96% or higher.
  • the step coverage (%) of the Group 4 metal element-containing film, such as a hafnium (Hf)-containing oxide film, is ) may be, for example, at least 85%, at least 90%, at least 92%, at least 93%, at least 95%, at least 96%, at least 97%, or at least 98%.
  • a composition for film deposition according to an embodiment of the present invention on a substrate having a silicon oxide film formed in a groove having an aspect ratio of 20:1, at a process temperature of about 300°C, about 340°C, and about 360°C.
  • a zirconium (Zr)-containing oxide film about 12 to 15 nm thick by ALD, transmission electron microscopy (TEM) of the top, middle, and bottom of the groove shown in Figures 4 and 5 )
  • the step coverage (%) calculated by measuring the thickness of the zirconium (Zr)-containing oxide film in the photograph can be very excellent beyond a certain value.
  • the Group 4 metal element-containing film when formed on a substrate having an aspect ratio of 20:1 at about 300° C., is a stepped coating of the Group 4 metal element-containing film, such as a zirconium (Zr)-containing oxide film.
  • the gender (%) may be, for example, 80% or higher, 82% or higher, 85% or higher, 90% or higher, 92% or higher, 93% or higher, 95% or higher, or 96% or higher.
  • the step coverage (%) of the Group 4 metal element-containing film, such as a zirconium (Zr)-containing oxide film, is ) may be, for example, at least 80%, at least 82%, at least 85%, at least 90%, at least 92%, at least 93%, at least 95%, or at least 96%.
  • the step coverage (%) of the Group 4 metal element-containing film, such as a zirconium (Zr)-containing oxide film, is ) may be, for example, at least 85%, at least 90%, at least 92%, at least 93%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%.
  • step coverage (%) of the group 4 metal element-containing film satisfies the above range, it is easy to control the high step ratio and fine thickness, making it possible to use various semiconductor devices such as DRAM and 3D NAND flash memory. It can be effectively used in manufacturing.
  • composition for film deposition may include a Group 4 metal element-containing precursor compound represented by the following Chemical Formula 1:
  • M is Zr or Hf
  • R 1 is a methyl group
  • R 2 is selected from the group consisting of linear or branched C 3 -C 4 alkyl groups
  • R 3 to R 8 are each independently selected from the group consisting of a linear or branched C 1 -C 4 alkyl group.
  • the composition for film deposition according to an embodiment of the present invention includes a compound represented by Formula 1, and thus, when depositing a film at a process temperature in a wide temperature range, for example, from 250°C to 400°C, it is obtained by formula A below: Film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the displayed temperature is 30% or less, less than 30%, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% It may be constant at 11% or less, 11% or less, 10% or less, 8% or less, 7% or less, 6% or less, or 5% or less.
  • GPC 250 is the film growth per ALD gas supply cycle at 250°C
  • GPC temp is film growth per ALD gas supply cycle at process temperature.
  • the composition for film deposition for example, when depositing a film at a process temperature of 250 °C to 320 °C, the film growth change rate per ALD gas supply cycle according to the temperature ( ⁇ GPC, %) is for example 30% or less, 30% or less, 25% or less, 20% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% It may be constant at 2% or less, 1.5% or less, or 1% or less.
  • the composition for film deposition for example, when depositing a film at a process temperature of 250 °C to 340 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %) for example 30% or less, 30% or less, 25% or less, 20% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, It may be constant at 10% or less, 8% or less, 7% or less, or 6% or less.
  • the composition for film deposition for example, when depositing a film at a process temperature of 250 °C to 360 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %) is for example 30% or less, 30% or less, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, 10% or less, Alternatively, it may be constant at 9% or less.
  • the composition for film deposition for example, when depositing a film at a process temperature of 250 °C to 380 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %) may be constant, for example, 30% or less, 30% or less, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, or 12% or less.
  • the composition for film deposition for example, when depositing a film at a process temperature of 300 °C to 360 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %) is 30% or less, less than 30%, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, 10% or less, 8% or less , may be constant at 7% or less, 6% or less, or 5% or less.
  • GPC 300 instead of GPC 250 (i.e. It can be calculated using (film growth per ALD gas supply cycle at 300°C).
  • the composition for film deposition for example, when depositing a film at a process temperature of 330 °C to 390 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %), for example, 30% or less, 30% or less, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, 8% or less, It may be constant at 7% or less, 6% or less, or 5% or less.
  • GPC 330 instead of GPC 250 (i.e. It can be calculated using (film growth per ALD gas supply cycle at 330°C).
  • the composition for film deposition for example, when depositing a film at a process temperature of 360 °C to 400 °C, the film growth change rate ( ⁇ GPC, per ALD gas supply cycle according to the temperature) %), for example, 30% or less, 30% or less, 25% or less, 20% or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, 8% or less, It may be constant at 7% or less, 6% or less, 5% or less, 4% or less, or 3% or less.
  • GPC 360 instead of GPC 250 (i.e. It can be calculated using (film growth per ALD gas supply cycle at 360°C).
  • the composition for film deposition according to an embodiment of the present invention includes a Group 4 metal element-containing precursor compound represented by the following Chemical Formula 2, and is processed at a process temperature from 250°C to 380°C using ALD.
  • the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the temperature represented by the formula A below is, for example, 30% or less, 30% or less, 25% or less, 20% or less. % or less, 18% or less, 15% or less, 13% or less, 12% or less, 11% or less, less than 11%, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, or 4% It may be below.
  • R 1 is a methyl group
  • R 2 is selected from the group consisting of linear or branched C 3 -C 4 alkyl groups
  • R 3 to R 8 are each independently selected from the group consisting of a linear or branched C 1 -C 4 alkyl group.
  • the compound represented by Formula 2 is, for example, 250°C to 340°C, 250°C to 360°C, 250°C to 380°C, 300°C to 360°C, 330°C to 390°C, or 360°C to 400°C.
  • the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the temperature is 30% or less, respectively, as specifically described above.
  • the film growth (GPC) per ALD gas supply cycle is constant in a wide temperature range, not only at low temperatures but also at high temperatures, a Group 4 metal element-containing film of uniform thickness can be formed even on a surface with irregularities with a large aspect ratio.
  • the Group 4 metal element-containing precursor compound may be a compound represented by one of the following formulas 2-1 to 2-3:
  • the composition for film deposition includes a Group 4 metal element-containing precursor compound represented by the following formula (3), and when depositing a hafnium (Hf)-containing film at a process temperature from 250°C to 400°C using ALD, , the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the temperature represented by the above formula A is, for example, 30% or less, less than 30%, 25% or less, 20% or less, 18% or less, 15% or less.
  • R 1 is a methyl group
  • R 2 is selected from the group consisting of linear or branched C 3 -C 4 alkyl groups
  • R 3 to R 8 are each independently selected from the group consisting of a linear or branched C 1 -C 4 alkyl group.
  • the compound represented by Formula 3 is, for example, 250 °C to 340 °C, 250 °C to 360 °C, 250 °C to 380 °C, 250 °C to 4000 °C, 250 °C to 420 °C, 250 °C to 430 °C, 300 °C
  • the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the temperature is 30% or less, respectively, and the specific As described above.
  • the film growth (GPC) per ALD gas supply cycle is constant in a wide temperature range, not only at low temperatures but also at high temperatures, a Group 4 metal element-containing film of uniform thickness can be formed even on a surface with irregularities with a large aspect ratio.
  • the Group 4 metal element-containing precursor compound may be a compound represented by one of the following formulas 3-1 to 3-3:
  • the film growth rate ( ⁇ GPC, %) per ALD gas supply cycle according to the above temperature can be measured in units of 1°C to 50°C during film deposition. Specifically, the film growth change rate ( ⁇ GPC, %) per ALD gas supply cycle according to the above temperature can be measured at, for example, 5°C, 10°C, 15°C, 20°C, 25°C, or 30°C during film deposition. .
  • the Group 4 metal element-containing precursor compound is 0.5 to 1.0 ⁇ /cycle, 0.6 at 150°C to 400°C when depositing a Group 4 metal element-containing film by ALD using ozone (O 3 ) as a reaction gas.
  • ozone (O 3 ) ozone
  • GPC Film growth per ALD gas supply cycle
  • the Group 4 metal element-containing precursor compound is a Group 4 metal element-containing precursor compound represented by Formula 2, and zirconium (Zr)-containing compound is formed by ALD using ozone (O 3 ) as a reaction gas.
  • Zr zirconium
  • the Group 4 metal element-containing precursor compound is a Group 4 metal element-containing precursor compound represented by Chemical Formula 3, and hafnium (Hf) is formed by ALD using ozone (O 3 ) as a reaction gas.
  • hafnium (Hf) is formed by ALD using ozone (O 3 ) as a reaction gas.
  • O 3 ozone
  • Film growth per ALD gas supply cycle (GPC) may be ⁇ /cycle, or 0.7 to 0.8 ⁇ /cycle.
  • the Group 4 metal element-containing precursor compound has a specific structure of Formula 1, for example, Formula 2 or Formula 3, and can be used for ALD in a wide temperature range by using a composition for film deposition containing the precursor compound. It is possible to uniformly form a Group 4 metal element-containing film.
  • the Group 4 metal element-containing precursor compound represented by Formula 1, for example, Formula 2 or Formula 3 is cyclopentadiene in the generally known synthesis method of CpZr(NMe 2 ) 3 compound or CpHf (NMe 2 ) 3 compound. (C 5 H 6 ) can be synthesized using alkyl-substituted cyclopentadiene instead.
  • MCPO 3-Methyl-2-cyclopenten-1-one
  • THF tetrahydrofuran
  • Cyclopentadienyl-tris(dimethylamido)Zirconium (CpZr(NMe 2 ) 3 or CpZr) was used from UP Chemical Co., Ltd.
  • Cyclopentadienyl-tris(dimethylamido)Hafnium (CpHf(NMe 2 ) 3 or CpHf) was manufactured by UP Chemical Co., Ltd.
  • diene represented by Formulas 4-5 to 4-7 obtained in Preparation Example 4 above
  • the same method as in Example 1 was performed, except for using the ethylcyclopentadiene mixed composition, to obtain about 49 g (yield 71.1%) of a light yellow liquid mixed composition represented by Formulas 2-4 and 2-5. . This was used in a composition for film deposition.
  • the hafnium (Hf)-containing precursor compound prepared in Example 3 of the present invention was confirmed to have a single composition in 1 H-NMR analysis.
  • the hafnium (Hf)-containing precursor compound of Example 3 is a precursor of sufficient high purity to be applied to a process using ALD. Accordingly, the Group 4 metal element-containing precursor compound prepared by the method of the above example can be used for the purpose of forming various films.
  • Example 2 GPC evaluation according to zirconium (Zr)-containing oxide film formed by atomic layer deposition (ALD) and temperature
  • a silicone substrate was provided in the reaction chamber.
  • the film deposition composition prepared by the method of Example 1 was placed in a stainless steel container and heated to about 120°C.
  • Argon (Ar) carrier gas was flowed into the stainless steel container at a flow rate of about 200 to 500 sccm, and the composition for film deposition was supplied to the reaction chamber in a gaseous state.
  • the temperature of the gas transfer pipe connected from the stainless steel container to the reaction chamber was about 120°C to 150°C, and the closer it was to the reaction chamber, the higher the temperature.
  • Oxygen gas (O 2 ) was supplied to the ozone (O 3 ) generator at a flow rate of 500 to 1000 sccm to generate ozone (O 3 ) at a concentration of about 180 to 220 g/m 3 , and this was supplied to the reaction chamber as a reaction gas. used.
  • argon (Ar) gas was supplied to the reaction chamber at a flow rate of about 500 to 2000 sccm. The process pressure of the reaction chamber was maintained at 0.9 to 1.2 torr.
  • composition for film deposition in gaseous form for about 5 to 30 seconds ⁇ Supply argon (Ar) gas for about 5 to 30 seconds to remove the composition (gas) for film deposition remaining in the reactor ⁇ for about 5 to 30 seconds Supply ozone (O 3 ) as a reaction gas ⁇ Supply argon (Ar) gas for about 5 to 30 seconds to remove ozone (O 3 ) gas remaining in the reactor.
  • the gas supply cycle is repeated 100 times to produce zirconium. A (Zr)-containing oxide film was formed.
  • the composition for film deposition containing the zirconium (Zr)-containing precursor compound of Comparative Example 1, Comparative Example 3, and Comparative Example 4 was used to produce a stainless steel film.
  • a zirconium (Zr) oxide film was formed under the same conditions as the film formation method in Example 1, except that the steel container was heated to 100°C, 110°C, and 120°C, respectively, and vaporized.
  • each oxide film formed using the film deposition composition prepared by the method of Example 1, Comparative Example 1, Comparative Example 3, and Comparative Example 4 was measured using an ellipsometer (J.A. Woollam, M-2000) did.
  • the measured thickness was divided by the number of gas supply cycles (100 times) to measure film growth (GPC) per ALD gas supply cycle.
  • film growth (GPC) per ALD gas supply cycle was measured depending on the temperature (process temperature) of 250°C to 400°C, and the results are shown in FIG. 2 and Table 1.
  • GPC 250 is the film growth per ALD gas supply cycle at 250°C
  • GPC temp is film growth per ALD gas supply cycle at process temperature.
  • ALD was used at a process temperature of about 250°C to 400°C using a composition for film deposition containing a hafnium (Hf)-containing precursor compound prepared by the method of Example 3 and ozone (O 3 ) as a reaction gas.
  • a hafnium (Hf)-containing oxide film was formed on the heated silicon substrate.
  • a silicone substrate was provided in the reaction chamber.
  • the composition for film deposition prepared by the method of Example 3 was placed in a stainless steel container and heated to about 120°C.
  • Argon (Ar) carrier gas was flowed into the stainless steel container at a flow rate of about 200 to 500 sccm, and the composition for film deposition was supplied to the reaction chamber in a gaseous state.
  • the temperature of the gas transfer pipe connected from the stainless steel container to the reaction chamber was about 120°C to 150°C, and the closer it was to the reaction chamber, the higher the temperature.
  • Oxygen gas (O 2 ) was supplied to the ozone (O 3 ) generator at a flow rate of 500 to 1000 sccm to generate ozone (O 3 ) at a concentration of about 180 to 220 g/m 3 , and this was supplied to the reaction chamber as a reaction gas. used.
  • argon (Ar) gas was supplied to the reaction chamber at a flow rate of about 500 to 2000 sccm. The process pressure of the reaction chamber was maintained at 0.9 to 1.2 torr.
  • the composition for film deposition containing the hafnium (Hf)-containing precursor compound of Comparative Example 2 was used, and a stainless steel container was heated to 100°C.
  • a hafnium (Hf) oxide film was formed under the same conditions as the film formation method in Example 3, except that it was heated and vaporized.
  • each oxide film formed using the film deposition composition prepared by the method of Example 3 and Comparative Example 2 was measured using an ellipsometer (J.A. Woollam, M-2000).
  • the measured thickness was divided by the number of gas supply cycles (100 times) to measure film growth (GPC) per ALD gas supply cycle.
  • film growth (GPC) per ALD gas supply cycle was measured depending on the temperature (process temperature) of 250°C to 450°C, and the results are shown in Figure 3 and Table 2.
  • the zirconium (Zr)-containing precursor compound contained in the composition for film deposition had excellent thermal stability, so the temperature during film deposition was low.
  • the film growth (GPC) per ALD gas supply cycle was constant, and it was confirmed that the GPC change rate ( ⁇ GPC) was maintained below 10% up to about 370°C without thermal decomposition.
  • a film growth is fast on the top of the unevenness, and the film growth is slow on the bottom (bottom) where there are narrow and deep grooves. Therefore, a film of a certain thickness can be formed through surface reaction even on a surface with severe unevenness. It can be seen that it is very disadvantageous to achieve the advantages of ALD.
  • the hafnium (Hf)-containing precursor compound contained in the composition for film deposition has excellent thermal stability, and as the temperature increases during film deposition, the ALD gas supply cycle It was confirmed that the sugar film growth (GPC) was constant and the GPC change rate ( ⁇ GPC) was maintained below 8% up to about 440°C without thermal decomposition.
  • Example 1 the film deposition compositions of Example 1, Comparative Example 1, Comparative Example 3, and Comparative Example 4 were used on a substrate with a silicon oxide (SiO 2 ) film formed in a groove with an aspect ratio of 20:1 at about 300° C., 340° C.
  • a zirconium (Zr)-containing oxide film was formed using the film deposition composition of Example 1 of the present invention on a stepped substrate at a ratio of 20:1.
  • step coverage (%) was superior to Comparative Example 1, Comparative Example 3, and Comparative Example 4 at 300°C, 340°C, and 360°C.
  • Example 1 when the composition for film deposition of Example 1 was used, the step coverage was about 99.3% even at a high temperature of about 360°C, confirming that a zirconium (Zr)-containing oxide film of very uniform thickness could be formed. .
  • the film growth (GPC) per ALD gas supply cycle is constant in a wide temperature range, so that a uniform thickness of zirconium (Zr) is formed even on a surface with irregularities with a large aspect ratio. )-containing film can be formed, so it can be effectively used to manufacture various semiconductor devices such as DRAM and 3D NAND flash memory.
  • Example 3 using the film deposition composition of Example 3 and Comparative Example 2 on a substrate with a titanium nitride (TiN) film formed in a groove with an aspect ratio of 11:1, ALD was applied at a process temperature of about 350°C and about 400°C. A hafnium (Hf)-containing oxide film with a thickness of 6 to 7 nm was formed.
  • TiN titanium nitride
  • Hf hafnium
  • the thickness and step coverage (%) of the hafnium (Hf)-containing oxide film were measured in transmission electron microscope (TEM) photographs of the top, middle, and bottom of the groove shown in Figure 6. did.
  • the step coverage was about 98.7% even at a high temperature of about 400°C, confirming that a hafnium (Hf)-containing oxide film of very uniform thickness could be formed. did.
  • the film growth (GPC) per ALD gas supply cycle is constant in a wide temperature range, so that a uniform thickness of hafnium (Hf) is formed even on a surface with irregularities with a large aspect ratio. )-containing film can be formed, so it can be effectively used to manufacture various semiconductor devices such as DRAM and 3D NAND flash memory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 4족 금속 원소-함유 막의 형성 방법에 관한 것이다. 본 발명의 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간에서, 특히 저온은 물론, 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있어서, 다양한 공정 온도에서 다양한 용도의 4족 금속 원소-함유 막을 형성할 수 있다. 특히, 본 발명의 4족 금속 원소-함유 막의 형성 방법에 따르면, 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 4족 금속 원소-함유 막을 형성할 수 있어서, 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.

Description

4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법
본 발명은 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법에 관한 것이다.
4족 금속 원소-함유 막, 특히 유전율이 높은 4족 금속 산화막은 디램(DRAM), 플래시 메모리(Flash Memory), 저항 메모리(ReRAM), 강유전 메모리 (ferroelectric memory, FeRAM) 또는 상 변화 메모리(PCRAM) 등의 메모리 반도체뿐만 아니라, 논리 소자와 같은 비메모리 반도체 소자의 구동에 있어 꼭 필요한 박막 중의 하나이다.
특히, 이러한 4족 금속 원소-함유 막은 디스플레이 분야에 있어서, 유기발광소자(Organic Light Emitting Diodes, OLED)의 최첨단 기술에 사용되고 있고, 메모리 소자에는 게이트 절연막, 캐패시터 고유전막 등에 사용되고 있다.
한편, 반도체 및 비반도체 분야에서 높은 종횡비(high aspect ratio) 및 3차원 구조의 복잡한 형상 등 제품의 개발이 다양화되고 있으며, 이에 따라 다양한 응용 분야별 공정 온도에 적합하고, 높은 단차비를 극복할 수 있는 원자층 증착법(Atomic Layer Deposition, ALD)에 사용 가능한 4족 금속 원소-함유 막을 형성하기 위한 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물이 요구되고 있다.
[선행기술문헌]
[비특허문헌]
J. Niinistφ et al., "Novel mixed alkylamido-cyclopentadienyl precursors for ALD of ZrO2 thin films" Journal of Materials Chemistry 2008, 18 (43), 5243. https://doi.org/10.1039/b810922b
본 발명이 해결하고자 하는 기술적 과제는 넓은 온도 구간에서 ALD 기체 공급주기 당 막 성장(growth-per-cycle, GPC)이 일정하고, 복잡한 형상의 기재에서도 우수한 단차 피복성 및 균일한 막을 구현할 수 있는 4족 금속 원소-함유 막을 형성하는 방법을 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는 특정 구조를 갖는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위해 본 발명은, 하기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 반응 기체와 반응시켜 기재 상에 4족 금속 원소-함유 막을 증착하는 단계를 포함하는, 4족 금속 원소-함유 막의 형성 방법을 제공한다:
Figure PCTKR2023006432-appb-img-000001
상기 화학식 1에서,
M은 Zr 또는 Hf이고,
R1은 메틸기이고,
R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
아울러, 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 제공한다.
본 발명의 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간에서, 특히 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있어서, 다양한 공정 온도에서 다양한 용도의 4족 금속 원소-함유 막을 형성할 수 있다.
특히, 본 발명의 4족 금속 원소-함유 막의 형성 방법에 따르면, 저온은 물론, 고온의 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 4족 금속 원소-함유 막을 형성할 수 있어서, 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.
도 1은 본 발명의 실시예 3 및 비교예 5에 따라 제조된 하프늄(Hf)-함유 전구체 화합물들의 1H-NMR 스펙트럼을 비교한 그래프이다.
도 2는 본 발명의 실시예 1, 및 비교예 1, 3 및 4의 막 증착용 조성물을 이용하여 지르코늄(Zr)-함유 막 증착 시, 250℃ 내지 400℃의 온도에서 ALD 기체 공급 주기 당 막 성장(GPC)을 나타낸 그래프이다.
도 3은 본 발명의 실시예 3 및 비교예 2의 막 증착용 조성물을 이용하여 하프늄(Hf)-함유 막 증착 시, 250℃ 내지 450℃의 온도에서 ALD 기체 공급 주기 당 막 성장(GPC)을 나타낸 그래프이다.
도 4는 본 발명의 실시예 1, 및 비교예 1, 3 및 4의 막 증착용 조성물을 이용하여 300℃에서의 단차 피복성(Step Coverage)을 확인한 투과전자현미경(TEM, Transmission Electron Microscope) 이미지이다.
도 5는 본 발명의 실시예 1, 및 비교예 3과 4의 막 증착용 조성물을 이용하여 340℃ 및 360℃에서의 단차 피복성(Step Coverage)을 확인한 투과전자현미경(TEM, Transmission Electron Microscope) 이미지이다.
도 6은 본 발명의 실시예 3 및 비교예 2의 막 증착용 조성물을 이용하여 350℃ 및 400℃에서의 단차 피복성(Step Coverage)을 확인한 투과전자현미경(TEM, Transmission Electron Microscope) 이미지이다.
이하에서는 본 발명에 대하여 보다 상세하게 설명한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의 될 뿐이다.
또한, 본 명세서에서 어떤 부재가 다른 부재 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약 "이라는 용어로써 수식되는 것으로 이해하여 야 한다.
본 명세서에서, 용어 "막" 또는 "박막" 각각은, 특별히 구별되지 않는 한, "막" 및 "박막" 모두를 의미한다.
본 명세서에서, 용어 "알킬" 또는 "알킬기"는, 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), 노말프로필기(nPr), 아이소프로필기(iPr), 노말부틸기(nBu), 아이소부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(secBu) 등뿐만 아니라, 이들의 이성질체들 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
[4족 금속 원소-함유 막의 형성 방법]
본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 반응 기체와 반응시켜 기재 상에 4족 금속 원소-함유 막을 증착하는 단계를 포함하는, 4족 금속 원소-함유 막의 형성 방법을 제공한다:
Figure PCTKR2023006432-appb-img-000002
상기 화학식 1에서,
M은 Zr 또는 Hf이고,
R1은 메틸기이고,
R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
본 발명의 일 실시예에 따른 4족 금속 원소-함유 막의 형성 방법은, 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 사용함으로써, 저온은 물론 고온의 넓은 온도 구간에서 화학기상 증착법(Chemical Vapor Deposition, 이하 CVD라 칭함)은 물론 원자층 증착법(Atomic Layer Deposition, 이하 ALD라 칭함) 기체 공급 주기 당 막 성장(GPC)이 일정하게 4족 금속 원소-함유 막을 형성할 수 있다.
특히, 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물은 단일 조성의 구조를 나타낼 수 있다. 여기서, 상기 "단일 조성"이란, 구조 이성질체를 포함하지 않는 물질을 의미하는 것으로서, 100% 순수한 물질을 의미하는 것은 아닐 수 있으며, 예를 들어 5% 이하의 함량의 불순물은 포함할 수는 있다. 또한, 상기 "불순물"은 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 제외한 모든 물질을 의미할 수 있다.
구체적으로, 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물은 1H-NMR 스펙트럼 분석 시, 구조 이성질체 또는 이들의 혼합물을 포함하지 않고, 불순물 함량이 예컨대 5% 이하, 3% 이하, 2% 이하, 1% 이하, 또는 0.5% 이하인, 단일 조성의 구조(단일 물질 구조)를 나타낼 수 있다. 따라서, 상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물은 순도가 95% 이상으로 높고, 실온에서 액체 상태로 존재하여 제조공정에 유리하고, 열적 안정성이 우수하여 다양한 4족 금속 원소 막을 용이하게 형성할 수 있다.
또한, 표면에 요철 또는 패턴(홈)이 있는 기재, 다공성 기재, 플라스틱 기재, 또는 3차원 구조의 복잡한 형상의 기재에서도 우수한 피복성 및 균일한 막을 형성할 수 있으므로, 고품질의 4족 금속 원소-함유 막을 제공할 수 있으므로, 반도체 소자 분야에서 다양한 용도에 따라 매우 효과적으로 활용될 수 있음은 물론, 우수한 특성을 발휘할 수 있다는 것에 기술적 의의가 있다.
구체적으로, 본 발명의 실시예에 따르면, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을, ALD를 사용하여, 예를 들어 150℃ 내지 500℃, 200℃ 내지 500℃, 200℃ 내지 450℃, 250℃ 내지 450℃, 250℃ 내지 400℃, 250℃ 내지 380℃, 250℃ 내지 360℃, 250℃ 내지 350℃, 또는 250℃ 내지 340℃에서, 4족 금속 원소-함유 막, 구체적으로, 지르코늄(Zr)-함유 막 또는 하프늄(Hf)-함유 막 형성 시, 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 거의 없거나, 예를 들어 30% 이하, 30% 미만, 29% 이하, 25% 이하, 20% 이하, 18% 이하, 16% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 9% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 또는 4% 이하로 일정한 것을 특징으로 한다.
상기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물은 후술하는 [막 증착용 조성물] 부분에서 구체적으로 설명한다.
본 발명의 일 실시예에 따른 4족 금속 원소-함유 막의 형성 방법은, 상기 기재의 적어도 일부를 반응 챔버에 제공하는 단계(제 1 단계); 상기 막 증착용 조성물을 기체 상태로 상기 반응 챔버에 공급하는 단계(제 2 단계); 및 상기 반응 챔버에 반응 기체를 도입하는 단계(제 3 단계);를 포함한다.
또한, 상기 4족 금속 원소-함유 막의 형성 방법에 따르면, 상기 제 2 단계와 상기 제 3 단계를 포함하는 기체의 공급 주기를 여러 번, 예를 들어 수 회, 수십 회, 수백 회, 또는 수천 회를 반복하여 원하는 두께의 4족 금속 원소-함유 막을 형성할 수 있다.
또한, 상기 제 2 단계 및 상기 제 3 단계 사이에 아르곤(Ar) 기체 또는 질소(N2) 기체와 같은 불활성 기체를 상기 반응 챔버에 공급하여, 상기 반응 챔버에서 잔류하는 막 증착용 조성물(기체)을 제거하는 단계를 더 포함할 수 있다. 아울러, 상기 제 3 단계 이후에 아르곤(Ar) 기체 또는 질소(N2) 기체와 같은 불활성 기체를 상기 반응 챔버에 공급하여, 상기 반응 챔버에서 잔류하는 반응 기체를 제거하는 단계를 더 포함할 수 있다.
구체적으로, 상기 4족 금속 원소-함유 막의 형성 방법은, 상기 기재의 적어도 일부를 반응 챔버에 제공하는 단계를 포함할 수 있다(제 1 단계).
상기 기재는 통상적인 반도체 웨이퍼, 화합물 반도체 웨이퍼, 및 플라스틱 기판들(PI, PET, PES, 및 PEN)에서 선택되는 하나 이상의 기재 상에 형성될 수 있는 것이나, 이에 제한되지 않을 수 있다. 또한, 구멍이나 홈이 있는 기재를 사용 할 수도 있으며, 표면적이 넓은 다공질의 기재를 사용할 수 있다.
특히, 표면에 패턴(홈)이 있는 기판 또는 다공성 기판, 플라스틱 기판 상에도 다양한 온도 범위, 예컨대 150℃ 내지 500℃의 온도범위에서 수 마이크로미터(㎛) 내지 수 나노미터(nm) 두께의 4족 금속 원소-함유 막을 균일한 두께로 형성할 수 있으며, 종횡비가 1 이상, 예컨대 약 1 내지 50 또는 그 이상이고, 폭이 1 ㎛ 이하, 예컨대 약 1 ㎛ 내지 10 nm 또는 그 이하까지 미세한 패턴(홈)의 가장 깊은 곳의 표면 및 상기 미세한 요철을 하나 이상 포함하는 기재의 전체 표면 상에 4족 금속 원소-함유 막을 균일하게 형성할 수 있는 우수한 효과를 가진다.
상기 4족 금속 원소-함유 막의 형성 방법은, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 기체 상태로 상기 반응 챔버에 공급하는 단계를 포함할 수 있다(제 2 단계).
상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 기체 상태로 전달하여 상기 기재 상에 4족 금속 원소-함유 산화막을 형성할 수 있으며, 또한, 상기 막 증착용 조성물과 함께 다른 원소를 포함하는 막 증착용 조성물을 사용하여, 4족 금속 원소-함유 복합 금속 산화막 또는 나노다층막(nano-laminate), 예를 들어 Zr-Si-O, Hf-Si-O, Hf-Zr-O, ZrO2/Al2O3/ZrO2, ZrO2/Al2O3/TiO2 막 등을 형성할 수 있다.
구체적으로, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 상기 반응 챔버에 공급 시, 운송 기체 또는 희석 기체를 사용하여 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 상기 기재 상으로 이송하여 150℃ 내지 500℃의 증착 온도에서 4족 금속 원소-함유 막을 형성할 수 있다.
또한, 상기 운송 기체 또는 희석 기체로는 아르곤(Ar), 질소(N2), 헬륨(He) 및 수소(H2)로 이루어진 군으로부터 선택되는 단일 또는 혼합 기체를 사용하는 것이 바람직하다.
또한, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 반응 챔버 내로 공급하는 방식은, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 운송 기체 또는 희석 기체를 이용하여 강제적으로 기화시키는 버블링(bubbling) 방식; 상온에서 액상으로 공급하여 기화기를 통해 기화시키는 액체 공급 시스템(liquid delivery system, LDS) 방식; 전구체 화합물을 포함하는 막 증착용 조성물의 증기압을 이용하여 직접 공급하는 기체 유량 제어(vapor flow control, VFC) 방식; 및 바이패스(bypass) 방식으로 이루어진 군으로부터 선택된 하나 이상의 방법을 사용할 수 있다. 이 밖에 화학증착법(chemical vapor deposition, CVD) 또는 ALD에서 막 증착용 조성물을 기체 상태로 공급하는 방법을 본 발명에 적용할 수 있다.
본 발명의 일 실시예에 따른 4족 금속 원소-함유 막의 형성 방법은, 상기 반응 챔버에 반응 기체를 도입하는 단계를 포함할 수 있다(제 3 단계).
상기 4족 금속 원소-함유 막의 형성 방법에 따라, 4족 금속 원소-함유 산화막(ZrO2, HfO2) 또는 4족 금속 원소-함유 복합 금속 산화막{(ZrSiOx, ZrAlOx, ZrHfOx, ZrHfSiOx, ZrHfAlOx, ZrHfSiAlOx, ZrON 등)}을 증착시키기 위해서, 반응 기체로서, 수증기(H2O), 산소(O2), 산소 플라즈마(O2 Plasma), 산화질소(NO, N2O), 산화질소 플라즈마(N2O Plasma), 질화산소(N2O2), 과산화수소수(H2O2), 및 오존(O3)으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
또한, 4족 금속 원소-함유 질화막 또는 4족 금속 원소-함유 복합 금속 질화막을 증착시키기 위해서, 상기 증착 시 암모니아(NH3), 암모니아 플라즈마(HN3 Plasma), 하이드라진(N2H4) 및 질소 플라즈마(N2 Plasma)로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 기체 상태로 전달하여 기재 상에 4족 금속 원소-함유 질화막, 4족 금속 원소-함유 탄화막, 및 4족 금속 원소-함유 복합 금속막으로 이루어진 군으로부터 선택되는 하나 이상을 형성할 수 있다.
예를 들어, 상기 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 기체 상태로 전달하여 CVD 또는 ALD에 의해 상기 기재의 적어도 일부의 표면 상에 4족 금속 원소-함유 막, 구체적으로 4족 금속 원소-함유 산화막, 4족 금속 원소-함유 복합 금속 산화막, 4족 금속 원소-함유 질화막 또는 4족 금속 원소-함유 복합 금속 질화막을 형성할 수 있다.
상기 4족 금속 원소-함유 막의 증착 방법은 본 발명의 기술분야에 공지된 방법 및/또는 장치 등을 이용할 수 있고, 필요한 경우 하나 이상의 추가 반응 기체를 함께 이용하여 수행될 수 있다.
상기 4족 금속 원소-함유 막의 증착 방법은, CVD, 예컨대 유기금속 화학기상 증착법(MOCVD), 또는 ALD에 의해 수행될 수 있다. 상기 MOCVD 또는 ALD는 본 기술분야에서 공지된 증착 장치, 증착 조건, 및 반응 기체 등을 이용하여 수행될 수 있다.
[4족 금속 원소-함유 막]
본 발명의 일 실시예에 따르면, 4족 금속 원소-함유 막의 형성 방법에 의해 형성된 4족 금속 원소-함유 막을 제공한다.
상기 4족 금속 원소-함유 막은 약 1 나노미터(nm) 내지 수 마이크로미터(㎛) 두께를 가질 수 있으며, 적용 용도에 따라 다양하게 응용될 수 있다. 구체적으로, 상기 4족 금속 원소-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성될 수 있다.
상기 4족 금속 원소-함유 막은 기재(기판) 상에 형성될 수 있다.
상기 기재는 상술한 바와 같다.
본 발명의 일 구현예에 따른 4족 금속 원소-함유 막은 특정 구조를 갖는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 사용함으로써, 우수한 물성 및 피복성은 물론, 안정적이고 일정한 물성을 갖는 고품질의 4족 금속 원소-함유 막을 형성할 수 있는 우수한 효과를 가진다.
상기 4족 금속 원소-함유 막은 4족 금속 원소-함유 산화막, 4족 금속 원소-함유 복합 금속 산화막, 4족 금속 원소-함유 질화막 및 4족 금속 원소-함유 복합 금속 질화막으로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 구체적으로 상기 4족 금속 원소-함유 막은 4족 금속 원소-함유 산화막 및 4족 금속 원소-함유 복합 금속 산화막으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한, 상기 4족 금속 원소-함유 막은 나노 다층막(nano-laminate), 예를 들어 Zr-Si-O, Hf-Si-O, Hf-Zr-O, ZrO2/Al2O3/ZrO2, ZrO2/Al2O3/TiO2 막 등을 포함할 수 있다.
또한, 상기 4족 금속 원소-함유 막은 단차 피복성(step coverage)이 매우 우수할 수 있다.
예를 들어, 종횡비가 10 이상:1인 홈에 본 발명의 실시예에 따른 막 증착용 조성물을 사용하여 약 300℃ 이상의 공정 온도에서 ALD로 약 5 nm 내지 20 nm의 두께로 산화막 또는 질화막을 형성한 후, 상단(Top), 중간(Middle), 하단(Bottom)의 막 두께를 측정하여 산출한 두께 편차가 매우 작아 단차 피복성(%)이 매우 우수하다. 이때, 상기 단차 피복성은 상기 상단(Top) 두께에 대한 상기 하단(Bottom)의 비율(하단 두께/상단 두께) × 100))을 의미한다.
구체적으로 본 발명의 실시예에 따른 막 증착용 조성물은 단차 피복성(%)이 80% 이상, 82% 이상, 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 또는 96% 이상일 수 있다.
특히 종횡비가 큰 홈에 산화막 또는 질화막을 형성하는 경우에는 상단과 하단에서 형성된 막의 두께 편차가 크기 때문에 일정한 두께로 막을 형성하는데 문제가 있었으나, 본 발명의 실시예에 따른 막 증착용 조성물은 종횡비가 큰 홈에서도 규인한 두께의 막을 형성할 수 있기 때문에 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 더욱 효과적이다.
보다 구체적으로, 종횡비가 11:1인 홈에 질화티탄(TiN) 막이 형성된 기재에, 본 발명의 실시예에 따른 막 증착용 조성물을 사용하여 약 350℃ 및 약 400℃의 공정 온도에서 ALD로 약 6 내지 7 nm 두께의 하프늄(Hf)-함유 산화막을 형성한 후, 도 6에 표시한 홈의 상단(Top), 중간(Middle), 하단(Bottom)의 투과전자현미경(TEM) 사진에서 하프늄(Hf)-함유 산화막의 두께를 측정하여 산출한 단차 피복성(%)이 특정 값 이상으로 매우 우수할 수 있다.
실시예에 따르면, 상기 4족 금속 원소-함유 막은 약 350℃에서 11:1의 종횡비를 갖는 기재 상에 형성 시, 상기 4 족 금속 원소-함유 막, 예컨대 하프늄(Hf)-함유 산화막의 단차 피복성(%)이 예를 들어 80% 이상, 82% 이상, 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 또는 96% 이상일 수 있다.
또한, 상기 4족 금속 원소-함유 막은 약 400℃에서 11:1의 종횡비를 갖는 기재 상에 형성 시, 상기 4 족 금속 원소-함유 막, 예컨대 하프늄(Hf)-함유 산화막의 단차 피복성(%)이 예를 들어 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 96% 이상, 97% 이상, 또는 98% 이상일 수 있다.
또한, 예를 들어, 종횡비가 20:1인 홈에 실리콘 산화막이 형성된 기재에, 본 발명의 실시예에 따른 막 증착용 조성물을 사용하여 약 300℃, 약 340℃ 및 약 360℃의 공정 온도에서 ALD로 약 12 내지 15 nm 두께의 지르코늄(Zr)-함유 산화막을 형성한 후, 도 4 및 5에 표시한 홈의 상단(Top), 중간(Middle), 하단(Bottom)의 투과전자현미경(TEM) 사진에서 지르코늄(Zr)-함유 산화막의 두께를 측정하여 산출한 단차 피복성(%)이 특정 값 이상으로 매우 우수할 수 있다.
실시예에 따르면, 상기 4족 금속 원소-함유 막은 약 300℃에서 20:1의 종횡비를 갖는 기재 상에 형성 시, 상기 4 족 금속 원소-함유 막, 예컨대 지르코늄(Zr)-함유 산화막의 단차 피복성(%)이 예를 들어 80% 이상, 82% 이상, 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 또는 96% 이상일 수 있다.
또한, 상기 4족 금속 원소-함유 막은 약 340℃에서 20:1의 종횡비를 갖는 기재 상에 형성 시, 상기 4 족 금속 원소-함유 막, 예컨대 지르코늄(Zr)-함유 산화막의 단차 피복성(%)이 예를 들어 80% 이상, 82% 이상, 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 또는 96% 이상일 수 있다.
또한, 상기 4족 금속 원소-함유 막은 약 360℃에서 20:1의 종횡비를 갖는 기재 상에 형성 시, 상기 4 족 금속 원소-함유 막, 예컨대 지르코늄(Zr)-함유 산화막의 단차 피복성(%)이 예를 들어 85% 이상, 90% 이상, 92% 이상, 93% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상, 또는 99% 이상일 수 있다.
상기 4족 금속 원소-함유 막의 단차 피복성(%)이 상기 범위를 만족함으로써, 고 단차비 및 미세한 두께 조절이 용이하여, 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.
[막 증착용 조성물]
본 발명의 일 실시예에 따른 막 증착용 조성물은 하기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함할 수 있다:
Figure PCTKR2023006432-appb-img-000003
상기 화학식 1에서,
M은 Zr 또는 Hf이고,
R1은 메틸기이고,
R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
본 발명의 일 실시예에 따른 상기 막 증착용 조성물은 상기 화학식 1로 표시되는 화합물을 포함함으로써, 넓은 온도 구간, 예를 들어 250℃ 내지 400℃까지의 공정 온도에서 막 증착 시, 하기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 8% 이하, 7% 이하, 6% 이하, 또는 5% 이하로 일정할 수 있다.
Figure PCTKR2023006432-appb-img-000004
상기 식 A에서,
GPC250은 250℃에서의 ALD 기체 공급 주기 당 막 성장이고,
GPCtemp는 공정 온도에서의 ALD 기체 공급 주기 당 막 성장이다.
구체적으로, 본 발명의 일 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 250℃ 내지 320℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 10% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 2% 이하, 1.5% 이하 또는 1% 이하로 일정할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 250℃ 내지 340℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 20% 미만, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 8% 이하, 7% 이하, 또는 6% 이하로 일정할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 250℃ 내지 360℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 또는 9% 이하로 일정할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 250℃ 내지 380℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 또는 12% 이하로 일정할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 300℃ 내지 360℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 8% 이하, 7% 이하, 6% 이하, 또는 5% 이하로 일정할 수 있다. 이때, 상기 식 A에서, GPC250 대신 GPC300(즉, 300℃에서의 ALD 기체 공급 주기 당 막 성장)을 사용하여 산출할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 330℃ 내지 390℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 8% 이하, 7% 이하, 6% 이하, 또는 5% 이하로 일정할 수 있다. 이때, 상기 식 A에서, GPC250 대신 GPC330(즉, 330℃에서의 ALD 기체 공급 주기 당 막 성장)을 사용하여 산출할 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 막 증착용 조성물은, 예를 들어 360℃ 내지 400℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 또는 3% 이하로 일정할 수 있다. 이때, 상기 식 A에서, GPC250 대신 GPC360(즉, 360℃에서의 ALD 기체 공급 주기 당 막 성장)을 사용하여 산출할 수 있다.
더욱 구체적으로, 본 발명의 일 실시예에 따른 상기 막 증착용 조성물은, 하기 화학식 2로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하고, ALD를 사용하여 250℃에서 380℃까지의 공정 온도에서 지르코늄(Zr)-함유 막 증착 시, 하기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 또는 4% 이하일 수 있다.
Figure PCTKR2023006432-appb-img-000005
상기 화학식 2에서,
R1은 메틸기이고,
R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
또한, 상기 화학식 2로 표시되는 화합물을 예컨대, 250℃ 내지 340℃, 250℃ 내지 360℃, 250℃ 내지 380℃, 300℃ 내지 360℃, 330℃ 내지 390℃, 또는 360℃ 내지 400℃까지의 공정 온도에서 막 증착 시, 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)은 각각 30% 이하이며, 구체적으로 상술한 바와 같다. 즉, 저온은 물론, 고온의 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 4족 금속 원소-함유 막을 형성할 수 있다.
상기 4족 금속 원소-함유 전구체 화합물은 하기 화학식 2-1 내지 2-3 중 하나로 표시되는 화합물일 수 있다:
Figure PCTKR2023006432-appb-img-000006
,
Figure PCTKR2023006432-appb-img-000007
, 및
Figure PCTKR2023006432-appb-img-000008
.
또한, 상기 막 증착용 조성물은, 하기 화학식 3으로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하고, ALD를 사용하여 250℃에서 400℃까지의 공정 온도에서 하프늄(Hf)-함유 막 증착 시, 상기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 예를 들어 30% 이하, 30% 미만, 25% 이하, 20% 이하, 18% 이하, 15% 이하, 13% 이하, 12% 이하, 11% 이하, 11% 미만, 10% 이하, 8% 이하, 7% 이하, 6% 이하, 5% 이하, 4% 이하, 3% 이하, 1% 이하, 1% 미만, 0% 이하, 또는 0% 미만일 수 있다:
Figure PCTKR2023006432-appb-img-000009
상기 화학식 3에서,
R1은 메틸기이고,
R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
또한, 상기 화학식 3으로 표시되는 화합물을 예컨대, 250℃ 내지 340℃, 250℃ 내지 360℃, 250℃ 내지 380℃, 250℃ 내지 4000℃, 250℃ 내지 420℃, 250℃ 내지 430℃, 300℃ 내지 360℃, 330℃ 내지 390℃, 또는 360℃ 내지 400℃까지의 공정 온도에서 막 증착 시 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC, %)은 각각 30% 이하이며, 구체적으로 상술한 바와 같다. 즉, 저온은 물론, 고온의 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 4족 금속 원소-함유 막을 형성할 수 있다.
상기 4족 금속 원소-함유 전구체 화합물은 하기 화학식 3-1 내지 3-3 중 하나로 표시되는 화합물일 수 있다:
Figure PCTKR2023006432-appb-img-000010
,
Figure PCTKR2023006432-appb-img-000011
, 및
Figure PCTKR2023006432-appb-img-000012
.
상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)은 막 증착 시, 1℃ 내지 50℃의 단위로 측정할 수 있다. 구체적으로 상기 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)은 막 증착 시 예를 들어, 5℃, 10℃, 15℃, 20℃, 25℃, 또는 30℃로 측정할 수 있다.
한편, 상기 4족 금속 원소-함유 전구체 화합물은 반응 기체로서 오존(O3)을 사용하여 ALD에 의해 4족 금속 원소-함유 막 증착 시, 150℃ 내지 400℃에서 0.5 내지 1.0 Å/cycle, 0.6 내지 1.0 Å/cycle, 0.7 내지 1.0 Å/cycle, 0.8 내지 1.0 Å/cycle, 0.6 내지 0.9 Å/cycle, 0.7 내지 0.9 Å/cycle, 0.8 내지 0.9 Å/cycle, 0.6 내지 0.8 Å/cycle, 또는 0.7 내지 0.8 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 달성할 수 있다.
예를 들어, 상기 4족 금속 원소-함유 전구체 화합물이 상기 화학식 2로 표시되는 4족 금속 원소-함유 전구체 화합물이고, 반응 기체로서 오존(O3)을 사용하여 ALD에 의해 지르코늄(Zr)-함유막 증착 시, 150℃ 내지 400℃, 예컨대 200℃ 내지 400℃, 또는 250℃ 내지 400℃에서 0.5 내지 0.9 Å/cycle, 0.6 내지 0.9 Å/cycle, 0.7 내지 0.9 Å/cycle, 또는 0.8 내지 0.9 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 보일 수 있다.
또 다른 예를 들어, 상기 4족 금속 원소-함유 전구체 화합물이 상기 화학식 3으로 표시되는 4족 금속 원소-함유 전구체 화합물이고, 반응 기체로서 오존(O3)을 사용하여 ALD에 의해 하프늄(Hf)-함유 막 증착 시, 150℃ 내지 410℃, 예컨대 150℃ 내지 400℃, 또는 250℃ 내지 400℃에서 0.5 내지 0.9 Å/cycle, 0.6 내지 0.9 Å/cycle, 0.7 내지 0.9 Å/cycle, 0.6 내지 0.8 Å/cycle, 또는 0.7 내지 0.8 Å/cycle의 ALD 기체 공급 주기 당 막 성장(GPC)을 보일 수 있다.
상기 4족 금속 원소-함유 전구체 화합물은, 상기 화학식 1, 예를 들어 상기 화학식 2 또는 화학식 3의 특정 구조를 가짐으로써, 상기 전구체 화합물을 포함하는 막 증착용 조성물을 사용함으로써, 넓은 온도 범위에서 ALD에 의해 4족 금속 원소-함유 막을 균일하게 형성할 수 있다.
상기 화학식 1, 예를 들어 상기 화학식 2 또는 상기 화학식 3으로 표시되는 4족 금속 원소-함유 전구체 화합물은 일반적으로 알려진 CpZr(NMe2)3 화합물 또는 CpHf(NMe2)3 화합물의 합성법에서 사이클로펜타디엔(C5H6) 대신 알킬 치환된 사이클로펜타디엔을 사용하여 합성할 수 있다.
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
제조예
<제조예 1> 1-메틸-3-노말프로필사이클로펜타-1,3-디엔의 제조
Figure PCTKR2023006432-appb-img-000013
불꽃 건조된 1L 슐렝크 플라스크에 상온에서 3-메틸-2-사이클로펜텐-1-온 (3-Methyl-2-cyclopenten-1-one, MCPO) 약 27g (약 0.281mol)과 테트라하이드로퓨란 (THF, C4H8O) 약 100mL를 넣었다. 상기 플라스크에 노말프로필 마그네슘 클로라이드 (Normalpropyl magnesium chloride, nPrMgCl) 약 40.4g (약 0.393mol)을 천천히 적가한 후 반응 용액을 약 4시간 동안 상온에서 교반시켰다.
상기 플라스크에 증류수 (DI Water) 약 200ml와 혼합한 아세트산 (Acetic acid, CH3COOH) 약 33.7g (약 0.562mol)을 천천히 적가한 후 반응 용액을 하루 동안 상온에서 교반하였다. 분별 깔대기를 사용하여 물 층을 제거한 후, 증류수 (DI Water) 약 150ml와 혼합한 탄산나트륨 (sodium carbonate, Na2CO3) 약 14.9g (약 0.140mol)을 천천히 적가한 후 반응 용액을 약 2시간 동안 상온에서 교반하였다. 분별 깔대기를 사용하여 물 층을 제거한 후, 황산 마그네슘 (Magnesium sulfate, MgSO4)를 사용하여 수분을 제거하였다. 감압 하에서 용매를 제거하고 감압 하에서 증류하여 상기 화학식 4-1로 표시되는 무색 투명 액체 화합물 1-메틸-3-노말프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene) 약 17g (수율 49.5%)을 수득하였고, 이를 막 증착용 조성물 합성에 사용하였다.
<제조예 2> 3-부틸-1-메틸사이클로펜타-1,3-디엔의 제조
Figure PCTKR2023006432-appb-img-000014
노말프로필 마그네슘 클로라이드 (Normalpropyl magnesium chloride, nPrMgCl) 대신 노말부틸 마그네슘 클로라이드 (Normalbuthyl magnesium chloride, nBuMgCl)를 사용한 것을 제외하고, 제조예 1과 동일한 방법을 수행하여 상기 화학식 4-2로 표시되는 무색 투명 액체 화합물 3-부틸-1-메틸사이클로펜타-1,3-디엔 (3-Buthyl-1-methylcyclopenta-1,3-diene) 약 18g (수율 47%)을 수득하였고, 이를 막 증착용 조성물 합성에 사용하였다.
<제조예 3> 메틸프로필사이클로펜타디엔 (Methylpropylcyclopentadiene) 혼합 조성물의 제조
Figure PCTKR2023006432-appb-img-000015
불꽃 건조된 1000mL 슈렝크 플라스크에서, 메틸 사이클로펜타디엔(Methylcyclopentadiene) 50.0g (0.624mol)과 테트라하이드로퓨란(THF, C4H8O) 400ml를 넣은 후 -20℃까지 온도를 낮췄다. 상기 플라스크에 노말부틸리튬 (NormalButylLithium, nBuLi) 173.79g (0.624mol)를 -20℃를 유지하면서 천천히 적가 한 후 반응 용액을 4시간 동안 상온에서 교반시켰다.
상기 반응이 완료된 후 1-브로모프로판 (1-Bromopropane, C3H7Br)을 67.07g (0.562mol)을 -20℃를 유지하면서 천천히 적가한 후 반응 용액을 상온으로 천천히 승온시켰으며 12시간 동안 교반시켰다.
상기 반응이 완료된 후 반응 중 생성된 염을 여과 과정을 통하여 제거하고 다이에틸에터 (Diethyl Ether, (C2H5)2-O)로 유기층을 추출하고 황산 마그네슘 (Magnesium sulfate, MgSO4)을 이용하여 수분을 제거하고 용매 및 휘발성 부반응물은 감압 증류에 의해 제거하여 상기 화학식 4-1, 화학식 4-3 및 화학식 4-4로 표시되는 무색 투명 액체 혼합 조성물 28.12g (37.2%)을 수득하였다. 이를 비교예 5의 막 증착용 조성물 합성에 사용하였다.
<제조예 4> 디에틸사이클로펜타디엔 (Diethylcyclopentadiene) 혼합 조성물의 제조
Figure PCTKR2023006432-appb-img-000016
불꽃 건조된 1L 슐렝크 플라스크에서, 소듐 아미드 (Sodium amide, NaNH2) 약 41.88g (약 1.074mol)와 테트라하이드로퓨란 (THF, C4H8O) 약 500mL 를 넣은 후 교반하였다. 에틸 사이클로펜타디엔 (Ethylcyclopentadiene, C7H10) 약 100g (약 1.074mol)을 -20℃ 부근에서 천천히 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17시간 동안 교반시켰다. 반응 종료 후, 1-브로모에테인 (1-Bromoethane, C2H5Br) 약 116.98g (약 1.074mol)을 -20℃ 부근에서 천천히 첨가한 후 교반하면서 실온까지 서서히 올린 뒤 17시간 동안 환류 교반시켰다. 반응 종료 후, 반응 중 생성된 염을 여과 과정을 통하여 제거하고 용매 및 휘발성 부반응물은 감압 증류에 의해 제거하여 상기 화학식 4-5, 화학식 4-6 및 화학식 4-7로 표시되는 무색 투명 액체 혼합 조성물 약 62g (수율 47.7%)을 수득하였고, 이를 비교예 4의 막 증착용 조성물 합성에 사용하였다.
실시예
<실시예 1> [(Me,nPr)Cp]Zr(NMe2)3, 및 이를 포함하는 막 증착용 조성물의 제조
Figure PCTKR2023006432-appb-img-000017
불꽃 건조된 1L 슐렝크 플라스크에 상온에서 테트라키스(디메틸아미노) 지르코늄(Ⅵ) (tetrakis(dimethylamido)zirconium) 약 80g (약 0.300mol)과 n-헥산 (n-hexane, C6H14) 약 500mL를 넣었다. 상기 플라스크에 상기 제조예 1에서 수득한 1-메틸-3-프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene) 약 39g (약 0.315mol)을 천천히 적가한 후 반응 용액을 약 3시간 동안 상온에서 교반시켰다.
상기 반응이 완료된 후 감압 하에서 용매를 제거하고 감압 하에서 증류하여 상기 화학식 2-1로 표시되는 연노랑 액체 화합물 약 61g (수율 60%)을 수득하였고, 이를 막 증착용 조성물에 사용하였다.
끓는점 (bp) : 100℃ (0.3 torr)
1H-NMR (400 MHz, C6D6, 25℃) :
δ 5.797, 5.763 (m, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 3.033 (s, 18H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 2.448 (t, 2H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 2.094 (s, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 1.577 (m, 2H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 0.923 (t, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3.
<실시예 2> [(Me,nBu)Cp]Zr(NMe2)3, 및 이를 포함하는 막 증착용 조성물의 제조
Figure PCTKR2023006432-appb-img-000018
1-메틸-3-프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene) 대신 상기 제조예 2에서 수득한3-부틸-1-메틸사이클로펜타-1,3-디엔 (3-Buthyl-1-methylcyclopenta-1,3-diene)을 사용한 것을 제외하고, 실시예 1과 동일한 방법을 수행하여 상기 화학식 2-2로 표시되는 연노랑 액체 화합물 약 65g (수율 60%)을 수득하였고, 이를 막 증착용 조성물에 사용하였다.
끓는점 (bp) : 110℃ (0.3 torr)
1H-NMR (400 MHz, C6D6, 25℃) :
δ 5.818, 5.777 (m, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 2.973 (s, 18H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 2.493 (t, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 2.102 (s, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 1.547 (m, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 1.338 (m, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3,
δ 0.904 (t, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Zr[N(CH3)2]3.
<실시예 3> [(Me,nPr)Cp]Hf(NMe2)3, 및 이를 포함하는 막 증착용 조성물의 제조
Figure PCTKR2023006432-appb-img-000019
불꽃 건조된 1L 슐렝크 플라스크에 상온에서, 테트라키스(디메틸아미노)하프늄(Ⅵ) (tetrakis(dimethylamido)hafnium) 약 65g (약 0.184 mol)과 n-헥산 (n-hexane, C6H14) 약 400mL를 넣었다. 상기 플라스크에 상기 제조예 1에서 수득한 1-메틸-3-프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene)약 27g (약 0.220mol)을 천천히 적가한 후 반응 용액을 약 3시간 동안 상온에서 교반시켰다.
상기 반응이 완료된 후 감압 하에서 용매를 제거하고 감압 하에서 증류하여 상기 화학식 3-1으로 표시되는 연노랑 액체 화합물 약 42g (수율 53%)을 수득하였고, 이를 막 증착용 조성물에 사용하였다.
끓는점 (bp) : 100℃ (0.3 torr)
1H-NMR (400 MHz, C6D6, 25℃) :
δ 5.750, 5.724 (m, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.987 (s, 18H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.466 (t, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 2.119 (s, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 1.541 (m, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 0.909 (t, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3.
<실시예 4> [(Me,nBu)Cp]Hf(NMe2)3, 및 이를 포함하는 막 증착용 조성물의 제조
Figure PCTKR2023006432-appb-img-000020
1-메틸-3-프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene) 대신 상기 제조예 2에서 수득한3-부틸-1-메틸사이클로펜타-1,3-디엔 (3-Buthyl-1-methylcyclopenta-1,3-diene)을 사용한 것을 제외하고, 실시예 3과 동일한 방법을 수행하여 상기 화학식 3-2로 표시되는 연노랑 액체 화합물 약 65g (수율 60%)을 수득하였고, 이를 막 증착용 조성물에 사용하였다.
끓는점 (bp) : 110℃ (0.3 torr)
1H-NMR (400 MHz, C6D6, 25℃) :
δ 5.767, 5.759 (m, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]-Hf[N(CH3)2]3,
δ 3.011 (s, 18H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.524 (t, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.132 (s, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 1.537 (m, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 1.330 (m, 2H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 0.901 (t, 3H, [(CH3CH2CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3.
<비교예 1>
사이클로펜타디에닐-트리스(디메틸아미도)지르코늄 (Cyclopentadienyl-tris(dimethylamido)Zirconium, CpZr(NMe2)3 또는 CpZr)은 ㈜유피케미칼 제품을 사용하였다.
<비교예 2>
사이클로펜타디에닐-트리스(디메틸아미도)하프늄 (Cyclopentadienyl-tris(dimethylamido)Hafnium, CpHf(NMe2)3 또는 CpHf)은 ㈜유피케미칼 제품을 사용하였다.
<비교예 3>
노말프로필사이클로펜타디에닐-트리스(디메틸아미도)지르코늄 (nPropylcyclopentadienyl-tris(dimethylamido)Zirconium, (nPrCp)Zr(NMe2)3 또는 nPrCpZr)은 ㈜유피케미칼 제품을 사용하였다.
<비교예 4> [(Et)2Cp]Zr(NMe2)3 혼합 조성물의 제조
Figure PCTKR2023006432-appb-img-000021
1-메틸-3-프로필사이클로펜타-1,3-디엔 (1-Methyl-3-propylcyclopenta-1,3-diene) 대신 상기 제조예 4에서 수득한 화학식 4-5 내지 4-7로 표시되는 디에틸사이클로펜타디엔 (Diethylcyclopentadiene) 혼합 조성물을 사용한 것을 제외하고, 실시예 1과 동일한 방법을 수행하여 상기 화학식 2-4 및 2-5로 표시되는 연노랑 액체 혼합 조성물 약 49g (수율 71.1%)을 수득하였다. 이를 막 증착용 조성물에 사용하였다.
<비교예 5> [(nPr,Me)Cp]Hf(NMe2)3 혼합 조성물의 제조
Figure PCTKR2023006432-appb-img-000022
Figure PCTKR2023006432-appb-img-000023
불꽃 건조된 1L 슐렝크 플라스크에 상온에서, 테트라키스(디메틸아미노)하프늄(Ⅵ) (tetrakis(dimethylamido)hafnium) 약 54g (약 0.152 mol)과 n-헥산 (n-hexane, C6H14) 약 500mL를 넣었다. 상기 플라스크에 제조예 3에서 수득한 화학식 4-1, 4-3, 및 4-4로 표시되는 메틸프로필사이클로펜타디엔 (Methylpropylcyclopentadiene) 혼합물 약 27g (약 0.220mol)을 천천히 적가한 후 반응 용액을 약 3시간 동안 상온에서 교반시켰다.
상기 반응이 완료된 후 감압 하에서 용매를 제거하고 감압 하에서 증류하여 약 1 : 1.87의 조성을 갖는 상기 화학식 3-1 및 화학식 3-4으로 표시되는 연노랑 액체 혼합 조성물 약 42.2g (수율 64%)을 수득하였다. 분자량이 동일한 2가지 이성질체의 비율은 1H-NMR (400MHz, C6D6, 25℃) 스펙트럼에서 리간드 사이클로펜타디엔 고리에 결합한 메틸(CH3)의 수소가 나타내는 2.119 ppm (화학식 3-1), 2.043 ppm (화학식 3-4) 위치의 1H-NMR 봉우리의 적분값의 상대적인 비율로 결정하였다.
끓는점 (bp) : 100℃ (0.3 torr)
1H-NMR (400 MHz, C6D6, 25℃) :
화학식 3-1로 표시되는 화합물 : [(1-nPr,3-Me)Cp]Hf(NMe2)3
δ 5.750, 5.724 (m, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.987 (s, 18H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.466 (t, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 2.119 (s, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 1.541 (m, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 0.909 (t, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3.
화학식 3-4로 표시되는 화합물 : [(1-nPr,2-Me)Cp]Hf(NMe2)3
δ 5.913, 5.842 (m, 3H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.995 (s, 18H, [(CH3CH2CH2)(CH3)(C5H3)]Hf[N(CH3)2]3,
δ 2.408 (t, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 2.043 (s, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 1.498 (m, 2H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3,
δ 0.886 (t, 3H, [(CH3CH2CH2)(CH3)(C5H3))Hf[N(CH3)2]3.
실험예
<실험예 1> 전구체 화합물들의 구조 분석
상기 실시예 및 비교예에서 제조된 4족 금속 원소-함유 전구체 화합물의 구조를 분석하기 위하여 1H-NMR (400 MHz, C6D6, 25℃) 분석을 실시하였고, 상기 실시예 및 비교예에 그 결과값을 나타내었다.
또한, 도 1에서 확인할 수 있듯이, 비교예 5의 하프늄(Hf)-함유 전구체 화합물의 경우, 구조 이성질체에 의해 2가지 구조의 조성(혼합물 구조)을 가지고 있어, 1H-NMR 스펙트럼에서, 리간드 사이클로펜타디엔 고리에 결합한 메틸(CH3)의 수소가 나타내는 2.119 ppm (화학식 3-1), 2.043 ppm (화학식 3-4) 위치의 1H-NMR 봉우리를 확인할 수 있었다(화학식 3-1: 화학식 3-4의 비율(봉우리의 적분값의 상대적인 비율) = 약 1:1.87). 반면, 본 발명의 실시예 3에서 제조된 하프늄(Hf)-함유 전구체 화합물의 경우, 1H-NMR 분석에서 단일 조성을 갖는 것으로 확인 되었다.
이러한 구조 분석의 결과로부터 실시예 3의 하프늄(Hf)-함유 전구체 화합물이 ALD를 이용하는 공정에 적용하기에 충분한 고순도의 전구체임을 확인할 수 있다. 따라서, 상기 실시예의 방법에 의해 제조된 4족 금속 원소-함유 전구체 화합물은 다양한 막을 형성할 목적에 사용될 수 있다.
<실험예 2> 원자층 증착법(ALD)으로 형성한 지르코늄(Zr)-함유 산화막 및 온도에 따른 GPC 평가
실시예 1의 방법에 의해 제조된 지르코늄(Zr)-함유 전구체 화합물을 포함하는 막 증착용 조성물 및 반응 기체인 오존(O3)을 사용하여 ALD를 이용하여 약 250℃ 내지 400℃의 온도(공정 온도)로 가열한 실리콘 기재 위에 지르코늄(Zr)-함유 산화막을 형성하였다.
구체적으로, 우선, 실리콘 기재를 반응 챔버에 제공하였다.
이 후, 실시예 1의 방법에 의해 제조된 막 증착용 조성물을 각각 스테인리스 스틸 재질의 용기에 담아 약 120℃로 가열하였다. 상기 스테인리스 스틸 재질의 용기에 아르곤(Ar) 운반 기체를 약 200 내지 500sccm의 유속으로 흘려서 막 증착용 조성물을 기체 상태로 반응 챔버로 공급하였다. 상기 스테인리스 스틸 재질의 용기로부터 반응 챔버로 연결된 기체 이송 배관의 온도는 약 120℃ 내지 150℃이며, 반응 챔버에 가까울수록 더 높은 온도로 가열하였다. 산소 기체(O2)를 500 내지 1000sccm의 유속으로 오존(O3) 생성기에 공급하여 약 180 내지 220g/m3 농도의 오존(O3)을 생성하였고, 이를 상기 반응 챔버에 공급하여 반응 기체로 사용하였다. 상기 반응 챔버 내에 잔류하는 지르코늄(Zr)-함유 전구체, 오존(O3) 및 반응 부산물 등을 제거하기 위해, 아르곤(Ar) 기체를 약 500 내지 2000sccm의 유속으로 반응 챔버에 공급하였다. 상기 반응 챔버의 공정 압력은 0.9 내지 1.2torr로 유지하였다.
약 5 내지 30초 동안 막 증착용 조성물을 기체 상태로 공급 → 약 5 내지 30초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 막 증착용 조성물(기체)를 제거 → 약 5 내지 30초 동안 반응 기체로서 오존(O3)을 공급 → 약 5 내지 30초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 오존(O3) 기체를 제거하는 단계로 이루어진 기체 공급 주기를 100회 반복하여 지르코늄(Zr)-함유 산화막을 형성하였다.
실시예 1의 방법에 의해 제조된 막 증착용 조성물과 비교하기 위하여, 비교예 1, 비교예 3 및 비교예 4의 지르코늄(Zr)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 사용하여, 스테인리스 스틸 재질의 용기를 각각 100℃, 110℃ 및 120℃로 가열하여 기화시킨 점을 제외하고, 상기 실시예 1의 막 형성 방법과 동일한 조건으로 지르코늄(Zr) 산화막을 형성하였다.
상기 실시예 1, 비교예 1, 비교예 3 및 비교예 4의 방법에 의해 제조된 막 증착용 조성물을 이용하여 형성된 각 산화막의 두께를 엘립소미터(J.A. Woollam, M-2000)를 사용하여 측정하였다.
이후, 상기 측정된 두께를 기체 공급 주기 횟수(100회)로 나누어 ALD 기체 공급 주기 당 막 성장(GPC)를 측정하였다. 구체적으로, 250℃ 내지 400℃의 온도(공정 온도)에 따른 ALD 기체 공급 주기 당 막 성장(GPC)을 측정하였고, 그 결과를 도 2 및 표 1에 나타내었다.
또한, 하기 식 A로 표시되는 공정 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC 변화율, %)을 산출하였으며, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2023006432-appb-img-000024
상기 식 A에서,
GPC250은 250℃에서의 ALD 기체 공급 주기 당 막 성장이고,
GPCtemp는 공정 온도에서의 ALD 기체 공급 주기 당 막 성장이다.
<실험예 3> 원자층 증착법(ALD)으로 형성한 하프늄(Hf)-함유 산화막 및 온도에 따른 GPC 평가
실시예 3의 방법에 의해 제조된 하프늄(Hf)-함유 전구체 화합물을 포함하는 막 증착용 조성물 및 반응 기체인 오존(O3)을 사용하여 ALD를 이용하여 약 250℃ 내지 400℃의 공정 온도로 가열한 실리콘 기재 위에 하프늄(Hf)-함유 산화막을 형성하였다.
구체적으로, 우선, 실리콘 기재를 반응 챔버에 제공하였다.
이 후, 실시예 3의 방법에 의해 제조된 막 증착용 조성물을 각각 스테인리스 스틸 재질의 용기에 담아 약 120℃로 가열하였다. 상기 스테인리스 스틸 재질의 용기에 아르곤(Ar) 운반 기체를 약 200 내지 500sccm의 유속으로 흘려서 막 증착용 조성물을 기체 상태로 반응 챔버로 공급하였다. 상기 스테인리스 스틸 재질의 용기로부터 반응 챔버로 연결된 기체 이송 배관의 온도는 약 120℃ 내지 150℃이며, 반응 챔버에 가까울수록 더 높은 온도로 가열하였다. 산소 기체(O2)를 500 내지 1000sccm의 유속으로 오존(O3) 생성기에 공급하여 약 180 내지 220g/m3 농도의 오존(O3)을 생성하였고, 이를 상기 반응 챔버에 공급하여 반응 기체로 사용하였다. 상기 반응 챔버 내에 잔류하는 하프늄(Hf)-함유 전구체, 오존(O3) 및 반응 부산물 등을 제거하기 위해, 아르곤(Ar) 기체를 약 500 내지 2000sccm의 유속으로 반응 챔버에 공급하였다. 상기 반응 챔버의 공정 압력은 0.9 내지 1.2torr로 유지하였다.
약 5 내지 30초 동안 막 증착용 조성물을 기체 상태로 공급 → 약 5 내지 30초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 막 증착용 조성물(기체)를 제거 → 약 5 내지 30초 동안 반응 기체로서 오존(O3)을 공급 → 약 5 내지 30초 동안 아르곤(Ar) 기체를 공급하여 반응기 내에 잔류하는 오존(O3) 기체를 제거하는 단계로 이루어진 기체 공급 주기를 100회 반복하여 하프늄(Hf)-함유 산화막을 형성하였다.
실시예 3의 방법에 의해 제조된 막 증착용 조성물과 비교하기 위하여, 비교예 2의 하프늄(Hf)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 사용하여, 스테인리스 스틸 재질의 용기를 100℃로 가열하여 기화시킨 점을 제외하고, 상기 실시예 3의 막 형성 방법과 동일한 조건으로 하프늄(Hf) 산화막을 형성하였다.
상기 실시예 3 및 비교예 2의 방법에 의해 제조된 막 증착용 조성물을 이용하여 형성된 각 산화막의 두께를 엘립소미터(J.A. Woollam, M-2000)를 사용하여 측정하였다.
이후, 상기 측정된 두께를 기체 공급 주기 횟수(100회)로 나누어 ALD 기체 공급 주기 당 막 성장(GPC)를 측정하였다. 구체적으로, 250℃ 내지 450℃의 온도(공정 온도)에 따른 ALD 기체 공급 주기 당 막 성장(GPC)을 측정하였고, 그 결과를 도 3 및 표 2에 나타내었다.
또한, 상기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(△GPC 변화율, %)을 산출하였으며, 그 결과를 하기 표 2에 나타내었다.
Figure PCTKR2023006432-appb-img-000025
도 2 및 표 1에서 확인할 수 있듯이, 본 발명의 지르코늄(Zr)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간, 특히 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있었다. 또한, 실시예 1의 막 증착용 조성물을 이용한 경우, 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하였다.
구체적으로 살펴보면, 비교예 1 및 비교예 4의 막 증착용 조성물을 이용한 경우, 전구체 화합물이 열적 안정성이 낮아 온도가 증가함에 따라 GPC가 급격하게 변화하여, 각각 330℃ 또는 360℃에서 GPC 변화율(ΔGPC)이 100%를 초과하는 것을 확인할 수 있다.
이는, 비교예 1 및 비교예 4에서 사용한 전구체 화합물의 열분해로 인해 표면 반응 이외의 기상 반응을 통해서도 막이 성장하였다는 것을 의미할 수 있다. 즉, 기상 반응으로 막이 성장하면 요철의 상부에는 막 성장이 빠르고, 좁고 깊은 홈이 있는 하부(바닥)에는 막 성장이 느리기 때문에, 요철이 심한 표면에도 표면 반응을 통해서 일정한 두께의 막을 형성할 수 있는 ALD의 장점을 달성하는 데에 매우 불리하다는 것을 확인할 수 있다.
이에 반해, 본 발명의 실시예 1의 막 증착용 조성물을 이용한 경우, 상기 막 증착용 조성물에 포함된 지르코늄(Zr)-함유 전구체 화합물이 열적 안정성 (thermal stability)이 우수하여, 막 증착 시 온도가 증가함에 따라 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하였고, 열분해 없이 약 370℃까지 GPC 변화율(ΔGPC)이 10% 이하로 유지된 것을 확인할 수 있었다.
또한, 비교예 3의 막 증착용 조성물을 이용한 경우, 380℃에서 GPC 변화율(ΔGPC)이 약 22%로서, 동일 온도에서 GPC 변화율(ΔGPC)이 약 12%인 실시예 1과 비교할 때, 현저한 차이를 보였다.
Figure PCTKR2023006432-appb-img-000026
도 3 및 표 2에서 확인할 수 있듯이, 본 발명의 하프늄(Hf)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간, 특히 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있었다. 또한, 실시예 3의 막 증착용 조성물을 이용한 경우, 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하였다.
구체적으로 살펴보면, 비교예 2의 경우, 전구체 화합물이 열적 안정성이 낮아 온도가 증가함에 따라 GPC가 급격하게 변화하여 400℃에서 GPC 변화율(ΔGPC)이 100%를 초과하는 것을 확인할 수 있다.
이는, 비교예 2에서 사용한 전구체 화합물의 열분해로 인해 표면 반응 이외의 기상 반응을 통해서도 막이 성장하였다는 것을 의미할 수 있다. 즉, 기상 반응으로 막이 성장하면 요철의 상부에는 막 성장이 빠르고, 좁고 깊은 홈이 있는 하부(바닥)에는 막 성장이 느리기 때문에, 요철이 심한 표면에도 표면 반응을 통해서 일정한 두께의 막을 형성할 수 있는 ALD의 장점을 달성하는 데에 매우 불리하다는 것을 확인할 수 있다.
이에 비해, 본 발명의 실시예 3의 경우, 막 증착용 조성물에 포함된 하프늄(Hf)-함유 전구체 화합물이 열적 안정성 (thermal stability)이 우수하여, 막 증착 시 온도가 증가함에 따라 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하였고, 열분해 없이 약 440℃까지 GPC 변화율(ΔGPC)이 8% 이하로 유지된 것을 확인할 수 있었다.
<실험예 4> 지르코늄(Zr)-함유 산화막의 단차 피복성 평가
실시예 1, 비교예 1, 비교예 3 및 비교예 4의 막 증착용 조성물을 사용하여 형성된 지르코늄(Zr)-함유 산화막의 단차 피복성을 평가하였다.
구체적으로, 종횡비가 20:1인 홈에 실리콘산화(SiO2) 막이 형성된 기재에, 실시예 1, 비교예 1, 비교예 3 및 비교예 4의 막 증착용 조성물을 사용하여 약 300℃, 340℃ 및 약 360℃의 공정 온도에서 ALD로 약 12 내지 15 nm 두께의 지르코늄(Zr)-함유 산화막을 형성하였다.
도 4 및 도 5에 표시한 홈의 상단(Top), 중간(Middle), 하단(Bottom)의 투과전자현미경(TEM) 사진에서 지르코늄(Zr)-함유 산화막의 두께, 및 단차 피복성(%)을 각각 측정하였다.
Figure PCTKR2023006432-appb-img-000027
Figure PCTKR2023006432-appb-img-000028
도 4, 도 5 및 표 3, 표 4에서 확인할 수 있듯이, 20:1 비율의 단차가 있는 기재에 본 발명의 실시예 1의 막 증착용 조성물을 사용하여 지르코늄(Zr)-함유 산화막을 형성한 결과, 300℃, 340℃ 및 360℃에서 비교예1, 비교예3 및 비교예 4 보다 단차 피복성(%)이 우수하였다.
아울러, 실시예 1의 막 증착용 조성물을 사용한 경우, 약 360℃의 높은 온도에서도 단차 피복성이 약 99.3%로서, 매우 균일한 두께의 지르코늄(Zr)-함유 산화막을 형성할 수 있음을 확인하였다.
상기 결과로부터, 본 발명의 지르코늄(Zr)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간에서, 특히 약 360℃의 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있어서, 다양한 공정 온도에서 다양한 용도의 지르코늄(Zr)-함유 막을 형성할 수 있음을 알 수 있다.
특히, 본 발명의 지르코늄(Zr)-함유 막의 형성 방법에 따르면, 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 지르코늄(Zr)-함유 막을 형성할 수 있어서 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.
<실험예 5> 하프늄(Hf)-함유 산화막의 단차 피복성 평가
실시예 3 및 비교예 2의 막 증착용 조성물을 사용하여 형성된 하프늄(Hf)-함유 산화막의 단차 피복성을 평가하였다.
구체적으로, 종횡비가 11:1인 홈에 질화티탄(TiN) 막이 형성된 기재에, 실시예 3 및 비교예 2의 막 증착용 조성물을 사용하여 약 350℃ 및 약 400℃의 공정 온도에서 ALD로 약 6 내지 7 nm 두께의 하프늄(Hf)-함유 산화막을 형성하였다.
도 6에 표시한 홈의 상단(Top), 중간(Middle), 하단(Bottom)의 투과전자현미경(TEM) 사진에서 하프늄(Hf)-함유 산화막의 두께, 및 단차 피복성(%)을 각각 측정하였다.
Figure PCTKR2023006432-appb-img-000029
도 6 및 표 5에서 확인할 수 있듯이, 11:1 비율의 단차가 있는 기재에 본 발명의 실시예 3의 막 증착용 조성물을 사용하여 하프늄(Hf)-함유 산화막을 형성한 결과, 350℃ 및 400℃에서의 단차 피복성(%)이 우수하였다.
구체적으로, 실시예 3의 막 증착용 조성물을 사용한 경우, 약 400℃의 높은 온도에서도 단차 피복성이 약 98.7%로서, 매우 균일한 두께의 하프늄(Hf)-함유 산화막을 형성할 수 있음을 확인하였다.
상기 결과로부터, 본 발명의 하프늄(Hf)-함유 전구체 화합물을 포함하는 막 증착용 조성물을 이용함으로써, 넓은 온도 구간에서, 특히 약 400℃의 고온에서도 ALD의 자기 제한적(self-limiting) 막 성장을 달성할 수 있어서, 다양한 공정 온도에서 다양한 용도의 하프늄(Hf)-함유 막을 형성할 수 있음을 알 수 있다.
특히, 본 발명의 하프늄(Hf)-함유 막의 형성 방법에 따르면, 넓은 온도 구간에서 ALD 기체 공급 주기 당 막 성장(GPC)이 일정하기 때문에 종횡비가 큰 요철이 있는 표면에도 균일한 두께의 하프늄(Hf)-함유 막을 형성할 수 있어서 디램(DRAM), 3차원 낸드(NAND) 플래시 메모리 등 다양한 반도체 소자를 제조하는 데 효과적으로 활용될 수 있다.

Claims (18)

  1. 하기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물을 반응 기체와 반응시켜 기재 상에 4족 금속 원소-함유 막을 증착하는 단계를 포함하는, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000030
    상기 화학식 1에서,
    M은 Zr 또는 Hf이고,
    R1은 메틸기이고,
    R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
    R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
  2. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 막의 형성 방법은,
    상기 기재의 적어도 일부를 반응 챔버에 제공하는 단계;
    상기 막 증착용 조성물을 기체 상태로 상기 반응 챔버에 공급하는 단계; 및
    상기 반응 챔버에 반응 기체를 도입하는 단계;
    를 포함하고,
    화학기상 증착법(Chemical Vapor Deposition, CVD) 또는 원자층 증착법(Atomic Layer Deposition, ALD)에 의해 상기 기재의 적어도 일부의 표면 상에 4족 금속 원소-함유 막을 형성시키는 것인, 4족 금속 원소-함유 막의 형성 방법.
  3. 제 1 항에 있어서,
    상기 증착은 150℃ 내지 500℃의 온도범위에서 수행되는, 4족 금속 원소-함유 막의 형성 방법.
  4. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 단일 조성의 구조를 나타내는, 4족 금속 원소-함유 막의 형성 방법.
  5. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 2로 표시되는 화합물인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000031
    상기 화학식 2에서,
    R1은 메틸기이고,
    R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
    R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
  6. 제 5 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 2-1 내지 2-3 중 하나로 표시되는 화합물인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000032
    ,
    Figure PCTKR2023006432-appb-img-000033
    , 및
    Figure PCTKR2023006432-appb-img-000034
    .
  7. 제 5 항에 있어서,
    상기 화학식 2로 표시되는 화합물을 원자층 증착법(Atomic Layer Deposition, ALD)에 사용하여 250℃에서 380℃까지의 공정 온도에서 지르코늄(Zr)-함유막 증착 시, 하기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 30% 이하인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000035
    상기 식 A에서,
    GPC250은 250℃에서의 ALD 기체 공급 주기 당 막 성장이고,
    GPCtemp는 공정 온도에서의 ALD 기체 공급 주기 당 막 성장이다.
  8. 제 7 항에 있어서,
    상기 화학식 2로 표시되는 화합물을 원자층 증착법(Atomic Layer Deposition, ALD)에 사용하여 250℃에서 400℃까지의 공정 온도에서 지르코늄(Zr)-함유막 증착 시, 상기 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 30% 이하인, 4족 금속 원소-함유 막의 형성 방법.
  9. 제 7 항에 있어서,
    상기 화학식 2로 표시되는 화합물을 원자층 증착법(Atomic Layer Deposition, ALD)에 사용하여 250℃에서 360℃까지의 공정 온도에서 지르코늄(Zr)-함유막 증착 시, 상기 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 30% 이하인, 4족 금속 원소-함유 막의 형성 방법.
  10. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 3으로 표시되는 화합물인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000036
    상기 화학식 3에서,
    R1은 메틸기이고,
    R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
    R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
  11. 제 10 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 3-1 내지 3-3 중 하나로 표시되는 화합물인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000037
    ,
    Figure PCTKR2023006432-appb-img-000038
    , 및
    Figure PCTKR2023006432-appb-img-000039
    .
  12. 제 10 항에 있어서,
    상기 화학식 3으로 표시되는 화합물을 원자층 증착법(Atomic Layer Deposition, ALD)에 사용하여 250℃에서 400℃까지의 공정 온도에서 하프늄(Hf)-함유 막 증착 시, 하기 식 A로 표시되는 온도에 따른 ALD 기체 공급 주기 당 막 성장 변화율(ΔGPC, %)이 30% 이하인, 4족 금속 원소-함유 막의 형성 방법:
    Figure PCTKR2023006432-appb-img-000040
    상기 식 A에서,
    GPC250은 250℃에서의 ALD 기체 공급 주기 당 막 성장이고,
    GPCtemp는 공정 온도에서의 ALD 기체 공급 주기 당 막 성장이다.
  13. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 막은 종횡비가 1 이상이고, 폭이 1 ㎛ 이하인 요철을 하나 이상 포함하는 기재 상에 형성되는, 4족 금속 원소-함유 막의 형성 방법.
  14. 제 1 항에 있어서,
    상기 4족 금속 원소-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성되는, 4족 금속 원소-함유 막의 형성 방법.
  15. 하기 화학식 1로 표시되는 4족 금속 원소-함유 전구체 화합물을 포함하는, 막 증착용 조성물:
    Figure PCTKR2023006432-appb-img-000041
    상기 화학식 1에서,
    M은 Zr 또는 Hf이고,
    R1은 메틸기이고,
    R2는 선형 또는 분지형의 C3-C4 알킬기로 구성된 군으로부터 선택되고,
    R3 내지 R8은 각각 독립적으로, 선형 또는 분지형의 C1-C4 알킬기로 구성된 군으로부터 선택된다.
  16. 제 15 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 2-1 내지 2-3 중 하나로 표시되는 화합물인, 막 증착용 조성물:
    Figure PCTKR2023006432-appb-img-000042
    ,
    Figure PCTKR2023006432-appb-img-000043
    , 및
    Figure PCTKR2023006432-appb-img-000044
    .
  17. 제 15 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 하기 화학식 3-1 내지 3-3 중 하나로 표시되는 화합물인, 막 증착용 조성물:
    Figure PCTKR2023006432-appb-img-000045
    ,
    Figure PCTKR2023006432-appb-img-000046
    , 및
    Figure PCTKR2023006432-appb-img-000047
    .
  18. 제 15 항에 있어서,
    상기 4족 금속 원소-함유 전구체 화합물이 단일 조성의 구조를 나타내는, 막 증착용 조성물.
PCT/KR2023/006432 2022-05-13 2023-05-11 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법 WO2023219446A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380013367.4A CN117897518A (zh) 2022-05-13 2023-05-11 包含含有第四族金属元素的前体化合物的膜沉积组合物及使用其形成膜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0058979 2022-05-13
KR20220058979 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219446A1 true WO2023219446A1 (ko) 2023-11-16

Family

ID=87973839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006432 WO2023219446A1 (ko) 2022-05-13 2023-05-11 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법

Country Status (4)

Country Link
KR (1) KR102574475B1 (ko)
CN (1) CN117897518A (ko)
TW (1) TW202406914A (ko)
WO (1) WO2023219446A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045509B2 (en) * 2009-08-14 2015-06-02 American Air Liquide, Inc. Hafnium- and zirconium-containing precursors and methods of using the same
KR20150139628A (ko) * 2007-09-14 2015-12-11 시그마 알드리치 컴퍼니 엘엘씨 하프늄과 지르코늄계 전구체를 이용한 원자층 증착에 의한 박막의 제조 방법
KR20160000392A (ko) * 2014-06-24 2016-01-04 솔브레인씨그마알드리치 유한회사 박막 형성용 조성물
KR20200072407A (ko) * 2018-12-12 2020-06-22 에스케이트리켐 주식회사 금속막 형성용 전구체 조성물, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
KR102259874B1 (ko) * 2019-12-23 2021-06-03 (주)원익머트리얼즈 사이클로펜타디엔이 도입된 유기금속 화합물 전구체를 이용한 유전체 필름의 형성 방법 및 그의 반도체 제조에서의 용도
WO2022146668A1 (en) * 2020-12-29 2022-07-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Group iv element containing precursors and deposition of group iv element containing films
WO2022245039A1 (ko) * 2021-05-21 2022-11-24 주식회사 아이켐스 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2201149B1 (en) * 2007-09-14 2013-03-13 Sigma-Aldrich Co. Methods of preparing titanium containing thin films by atomic layer deposition using monocyclopentadienyl titanium-based precursors
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
CN118027087A (zh) * 2018-02-07 2024-05-14 Up化学株式会社 含第ⅳ族金属元素化合物、其制备方法、含其的膜形成用前体组合物及用其的膜形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150139628A (ko) * 2007-09-14 2015-12-11 시그마 알드리치 컴퍼니 엘엘씨 하프늄과 지르코늄계 전구체를 이용한 원자층 증착에 의한 박막의 제조 방법
US9045509B2 (en) * 2009-08-14 2015-06-02 American Air Liquide, Inc. Hafnium- and zirconium-containing precursors and methods of using the same
KR20160000392A (ko) * 2014-06-24 2016-01-04 솔브레인씨그마알드리치 유한회사 박막 형성용 조성물
KR20200072407A (ko) * 2018-12-12 2020-06-22 에스케이트리켐 주식회사 금속막 형성용 전구체 조성물, 이를 이용한 금속막 형성 방법 및 상기 금속막을 포함하는 반도체 소자.
KR102259874B1 (ko) * 2019-12-23 2021-06-03 (주)원익머트리얼즈 사이클로펜타디엔이 도입된 유기금속 화합물 전구체를 이용한 유전체 필름의 형성 방법 및 그의 반도체 제조에서의 용도
WO2022146668A1 (en) * 2020-12-29 2022-07-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Group iv element containing precursors and deposition of group iv element containing films
WO2022245039A1 (ko) * 2021-05-21 2022-11-24 주식회사 아이켐스 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.

Also Published As

Publication number Publication date
CN117897518A (zh) 2024-04-16
TW202406914A (zh) 2024-02-16
KR102574475B1 (ko) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2012067439A2 (ko) 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
WO2019156451A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 형성용 전구체 조성물, 및 이를 이용하는 막의 형성 방법
WO2012176988A1 (en) Organometallic compound, preparing method of the same, and preparing method of thin film using the same
WO2015190900A1 (ko) 성막용 전구체 화합물 및 이를 이용한 박막 형성 방법
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2022010214A1 (ko) 펠리클 보호 박막 형성용 성장 억제제, 이를 이용한 펠리클 보호 박막 형성 방법 및 이로부터 제조된 마스크
WO2020101437A1 (ko) 실리콘 전구체 화합물, 제조 방법, 및 이를 이용하는 실리콘-함유 막 형성 방법
WO2023200154A1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2023219446A1 (ko) 4족 금속 원소-함유 전구체 화합물을 포함하는 막 증착용 조성물, 및 이를 이용한 막 형성 방법
WO2016108398A1 (ko) 유기 13족 전구체 및 이를 이용한 박막 증착 방법
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2023287192A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2024151136A1 (ko) 실리콘-함유 막의 형성 방법, 이에 사용되는 조성물 및 실리콘 전구체 화합물
WO2023287196A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물, 및 실리콘-함유 막 형성용 조성물을 이용한 막 형성 방법
WO2014168312A1 (ko) 4 족 전이금속-함유 전구체 화합물 및 이를 이용하는 박막의 증착 방법
WO2021172867A1 (ko) 알루미늄 전구체 화합물 및 이의 제조 방법, 이를 이용한 알루미늄 함유 막 형성 방법
WO2023003398A1 (ko) 실리콘-함유 막의 형성 방법 및 이에 의해 형성된 실리콘-함유 막
WO2023282615A1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 박막의 증착 방법
WO2022055201A1 (ko) 4족 금속 원소-함유 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조 방법
WO2023121383A1 (ko) 몰리브데늄 전구체 화합물, 이의 제조방법, 및 이를 이용한 몰리브데늄-함유 막의 증착 방법
WO2017179857A1 (ko) 전이금속 화합물, 이의 제조방법 및 이를 포함하는 전이금속함유 박막증착용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380013367.4

Country of ref document: CN