WO2023218938A1 - 紫外線透過ガラス - Google Patents

紫外線透過ガラス Download PDF

Info

Publication number
WO2023218938A1
WO2023218938A1 PCT/JP2023/016202 JP2023016202W WO2023218938A1 WO 2023218938 A1 WO2023218938 A1 WO 2023218938A1 JP 2023016202 W JP2023016202 W JP 2023016202W WO 2023218938 A1 WO2023218938 A1 WO 2023218938A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
transmittance
ultraviolet
mass
Prior art date
Application number
PCT/JP2023/016202
Other languages
English (en)
French (fr)
Inventor
幸市 橋本
英佑 高尾
俊輔 藤田
修 小谷
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022167700A external-priority patent/JP2023168201A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023218938A1 publication Critical patent/WO2023218938A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts

Definitions

  • the present invention relates to ultraviolet-transparent glass.
  • a flame sensor that detects ultraviolet light with a wavelength of 185 to 260 nm that is generated by flames has been developed, and a method has been proposed that uses this flame sensor to detect fires and flames from combustion devices.
  • Ultraviolet transmitting glass for example, Patent Document 1
  • Patent Document 1 which has high transmittance in the deep ultraviolet region, is used for containers and window materials that house such flame sensors.
  • ultraviolet-transmissive glass As the outer cylinder of the flame sensor, high detection sensitivity can be achieved continuously.
  • conventional ultraviolet transmitting glasses have a problem in that their transmittance is low, especially in the deep ultraviolet region of wavelengths from 200 to 250 nm.
  • the present invention aims to obtain a glass having higher transmittance than conventional products in the deep ultraviolet region.
  • the F content at a depth of 15 ⁇ m from the glass surface is x (mass%)
  • the F content at a depth of 1 ⁇ m from the glass surface is y (mass%)
  • y /x is 0.8 or more.
  • the "F content” can be measured with a commercially available electron beam microanalyzer (for example, EPMA-1720H manufactured by Shimadzu Corporation).
  • the transmittance (%) at a thickness of 0.5 mm and a wavelength of 200 nm is T200 , it is preferable that T200 ⁇ 69.
  • the "transmittance at a wavelength of 200 nm” can be measured with a commercially available spectrophotometer (for example, UV-3100PC manufactured by Shimadzu Corporation).
  • the ultraviolet transmitting glass of the present invention preferably has a thickness of 0.2 to 2 mm and is tubular.
  • the ultraviolet transmitting glass of the present invention has, as a glass composition, SiO 2 55 to 75%, Al 2 O 3 1 to 10%, B 2 O 3 10 to 30%, CaO 0 to 5%, BaO 0 to 5%, Li 2 O+Na 2 O+K 2 O 1-15%, TiO 2 0-0.001%, Fe 2 O 3 0-0.001%, and F 0.5-7%.
  • A+B+C refers to the total amount of component A, component B, and component C.
  • Li2O + Na2O + K2O refers to the total amount of Li2O , Na2O and K2O .
  • the ultraviolet transmitting glass of the present invention is preferably used for flame sensors.
  • the method for producing ultraviolet transmitting glass of the present invention is characterized by forming glass into a tubular shape and then immersing the tubular glass in an acid solution for etching.
  • y/x is 0.8 or more, preferably 0.85 or more, particularly 0.9 or more. If y/x is too small, Fe 3+ contained near the glass surface will be difficult to reduce, and the transmittance in the deep ultraviolet region will tend to decrease. Note that the upper limit value of y/x is not particularly limited, but is realistically 1.2 or less. Moreover, the specific numerical value of y/x is as follows.
  • x is 0.5 to 7%, 0.6 to 5%, particularly 0.7 to 3%. If x is too small, the content of F inside the glass will decrease, Fe 3+ contained inside the glass will be difficult to reduce, and the transmittance in the deep ultraviolet region will tend to decrease. On the other hand, if x is too large, it becomes difficult to vitrify.
  • y is 0.4 to 8.4%, 0.45 to 6%, 0.5 to 5%, particularly 0.6 to 3%. If y is too small, the content of F near the glass surface will decrease, making it difficult for Fe 3+ contained near the glass surface to be reduced, and the transmittance in the deep ultraviolet region will tend to decrease. On the other hand, if y is too large, it becomes difficult to vitrify.
  • the transmittance (%) at a thickness of 0.5 mm and a wavelength of 200 nm is T 200
  • T 220 is the transmittance (%) at a thickness of 0.5 mm and a wavelength of 220 nm
  • T 220 ⁇ 79, particularly T 220 ⁇ 80 If the transmittance at a thickness of 0.5 mm and a wavelength of 220 nm is too low, it will be difficult for ultraviolet light to pass through, and the performance of the light source or device mounted thereon will likely deteriorate.
  • T 250 is the transmittance (%) at a thickness of 0.5 mm and a wavelength of 250 nm
  • T 250 ⁇ 87, particularly T 250 ⁇ 88 it is preferable that T 250 ⁇ 87, particularly T 250 ⁇ 88. If the transmittance at a thickness of 0.5 mm and a wavelength of 250 nm is too low, it will be difficult for ultraviolet light to pass through, and the performance of the light source or device mounted thereon will likely deteriorate.
  • the strain point of the ultraviolet transmitting glass of the present invention is preferably 400°C or higher, 410°C or higher, particularly 415°C or higher. If the strain point of the ultraviolet-transmitting glass is too low, for example, when forming a functional film on the surface, the glass is likely to undergo unintended deformation during a high-temperature film-forming process. Note that the upper limit of the strain point is not particularly limited, but realistically it is 600° C. or less.
  • the softening point of the ultraviolet transmitting glass of the present invention is preferably 850°C or lower, 800°C or lower, or 750°C or lower, particularly 700°C or lower. If the softening point is too high, it will be difficult to reheat the glass. Note that the lower limit of the softening point is not particularly limited, but realistically it is 600°C or higher.
  • the temperature at which the ultraviolet transmitting glass of the present invention has a viscosity of 10 2.5 dPa ⁇ s is preferably 1540°C or lower, 1520°C or lower, 1500°C or lower, particularly 1480°C or lower. If the temperature at 10 2.5 dPa ⁇ s is too high, the load on the glass melting furnace increases, the meltability decreases, and the manufacturing cost of glass tends to rise.
  • the "temperature at 10 2.5 dPa ⁇ s" can be measured by the platinum ball pulling method. Note that the lower limit of the temperature at 10 2.5 dPa ⁇ s is not particularly limited, but realistically it is 1300° C. or higher.
  • the average linear thermal expansion coefficient of the ultraviolet transmitting glass of the present invention in the temperature range of 30 to 380°C is preferably 30 x 10 -7 /°C or more, particularly 35 x 10 -7 /°C or more, and 95 x 10 -7 /°C or less, particularly preferably 80 ⁇ 10 -7 /°C or less. If the average linear thermal expansion coefficient is too low, it will be difficult to match the thermal expansion coefficients of various members such as sensor terminals. On the other hand, if the average linear thermal expansion coefficient is too high, the glass will be easily damaged by thermal shock.
  • the liquidus temperature of the ultraviolet transmitting glass of the present invention is preferably 1120°C or lower, 1100°C or lower, 1080°C or lower, 1050°C or lower, 1000°C or lower, 950°C or lower, 900°C or lower, particularly 850°C or lower.
  • the viscosity at the liquidus temperature is 10 4.0 dPa ⁇ s or more, 10 4.3 dPa ⁇ s or more, 10 4.5 dPa ⁇ s or more, 10 4.8 dPa ⁇ s or more, 10 5.1 dPa ⁇ s
  • it is preferably 10 5.3 dPa ⁇ s or more, particularly 10 5.5 dPa ⁇ s or more. In this way, the devitrification resistance is improved and it becomes easier to mold by a down-draw method, particularly an overflow down-draw method, so that it becomes easier to produce glass in a desired shape.
  • the Young's modulus of the ultraviolet transmitting glass of the present invention is preferably 40 GPa or more, particularly 45 GPa or more. If the Young's modulus is too low, it will be difficult for the glass to maintain its rigidity on the conveyance line in the device manufacturing process, and the glass will be more likely to deform, warp, or break.
  • the ultraviolet transmitting glass of the present invention has, as a glass composition, SiO 2 55-75%, Al 2 O 3 1-10%, B 2 O 3 10-30%, CaO 0-5%, BaO 0-0. 5%, Li 2 O+Na 2 O+K 2 O 1-15%, TiO 2 0-0.001%, Fe 2 O 3 0-0.001%, and F 0.5-7%.
  • SiO 2 is the main component that forms the skeleton of glass.
  • the content of SiO 2 is preferably 55-75%, 58-70%, particularly 65-69%. If the content of SiO 2 is too low, Young's modulus and acid resistance tend to decrease. On the other hand, if the content of SiO 2 is too high, the high-temperature viscosity becomes high and the meltability tends to decrease, and in addition, devitrification crystals such as cristobalite tend to precipitate, and the liquidus temperature tends to increase. Become.
  • Al 2 O 3 is a component that increases Young's modulus and also suppresses phase separation and devitrification.
  • the content of Al 2 O 3 is preferably 1 to 10%, 2 to 9%, particularly 3 to 8%. If the content of Al 2 O 3 is too small, the Young's modulus tends to decrease, and the glass tends to undergo phase separation and devitrification. On the other hand, if the content of Al 2 O 3 is too large, the high temperature viscosity will increase and the meltability will tend to decrease.
  • B 2 O 3 is a component that improves melting properties and devitrification resistance, and also improves susceptibility to scratches and increases strength.
  • the content of B 2 O 3 is preferably 10 to 30%, 13 to 28%, particularly 15 to 25%. If the content of B 2 O 3 is too small, meltability and devitrification resistance tend to decrease, and resistance to hydrofluoric acid-based chemicals tends to decrease. On the other hand, if the content of B 2 O 3 is too large, Young's modulus and acid resistance tend to decrease.
  • CaO is a component that lowers high temperature viscosity and increases meltability. Moreover, among alkaline earth metal oxides, since the raw material to be introduced is relatively inexpensive, it is a component that reduces raw material costs.
  • the content of CaO is preferably 0 to 5%, 0.01 to 1%, particularly 0.1 to 0.8%. If the content of CaO is too high, the glass tends to devitrify.
  • BaO is a component that increases resistance to devitrification.
  • the content of BaO is preferably 0 to 5%, 0.1 to 3%, particularly 0.5 to 1.5%. If the BaO content is too high, the glass will easily devitrify.
  • Li 2 O, Na 2 O, and K 2 O are alkali metal oxide components that lower high-temperature viscosity, significantly increase meltability, and contribute to initial melting of the glass raw material.
  • the content of Li 2 O+Na 2 O+K 2 O is preferably 1 to 15%, 2 to 10%, particularly 3 to 6%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the meltability tends to decrease. On the other hand, if the content of Li 2 O+Na 2 O+K 2 O is too large, the coefficient of thermal expansion may become unduly high.
  • Li 2 O is a component that lowers high-temperature viscosity, significantly increases meltability, and contributes to initial melting of the glass raw material.
  • the content of Li 2 O is preferably 0 to 5%, 0 to 3%, particularly 0.1 to 1.2%. If the content of Li 2 O is too large, the glass tends to undergo phase separation.
  • Na 2 O is a component that lowers high-temperature viscosity, significantly increases meltability, and contributes to initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of Na 2 O is preferably 0 to 10%, 0 to 8%, 1 to 5%, particularly 1 to 3%. If the content of Na 2 O is too large, the coefficient of thermal expansion may become unduly high.
  • K 2 O is a component that lowers high temperature viscosity, significantly increases meltability, and contributes to the initial melting of the glass raw material. It is also a component for adjusting the coefficient of thermal expansion.
  • the content of K 2 O is preferably 0 to 10%, 0.1 to 5%, particularly 0.5 to 3%. If the content of K 2 O is too large, the coefficient of thermal expansion may become unduly high.
  • TiO 2 is a component that reduces transmittance in the deep ultraviolet region.
  • the content of TiO 2 is preferably 0.001% or less, 0.0008% or less, particularly 0.0001 to 0.0006%. If the content of TiO 2 is too large, the glass becomes colored and the transmittance in the deep ultraviolet region tends to decrease.
  • Fe 2 O 3 is a component that reduces transmittance in the deep ultraviolet region.
  • the content of Fe 2 O 3 is preferably 0.001% or less, 0.0001 to 0.0009%, particularly 0.00001 to 0.0008%. If the content of Fe 2 O 3 is too large, the glass becomes colored and the transmittance in the deep ultraviolet region tends to decrease.
  • Fe ions in iron oxide exist in the state of Fe 2+ or Fe 3+ . If the proportion of Fe 2+ is too small, the transmittance in deep ultraviolet rays tends to decrease. Therefore, the mass ratio of Fe 2+ /(Fe 2+ +Fe 3+ ) in the iron oxide contained in the ultraviolet transmitting glass of the present invention is 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, especially It is preferable that it is 0.5 or more.
  • F is a component that reduces Fe 3+ contained in the glass and improves the transmittance in the deep ultraviolet region. It is also a component that lowers viscosity and increases meltability.
  • the content of F is preferably 0.5 to 7%, 0.6 to 5%, particularly 0.7 to 3%. If the F content is too low, it will be difficult to obtain the above effects. On the other hand, if the F content is too high, it becomes difficult to vitrify.
  • SrO is a component that increases resistance to devitrification.
  • the content of SrO is preferably 0 to 7%, 0 to 5%, 0 to 3%, particularly 0 to 1%. If the content of SrO is too large, the glass tends to devitrify.
  • ZrO 2 is a component that improves acid resistance, but if it is included in a large amount in the glass composition, the glass tends to devitrify. Therefore, the content of ZrO 2 is preferably 0.1% or less, 0.001 to 0.02%, particularly 0.0001 to 0.01%.
  • MoO 3 is a component that is contained as an impurity from within the furnace during production, but if it is contained in a large amount in the glass composition, there is a risk of reducing the transmittance in the deep ultraviolet region. Therefore, the content of MoO 3 is preferably 0.05% or less, 0.005 to 0.001%, particularly 0.0001 to 0.0005%.
  • the shape of the ultraviolet transmitting glass of the present invention can be set arbitrarily.
  • the shape of the ultraviolet transmitting glass of the present invention can be, for example, a flat plate, a curved plate, a straight tube, a curved tube, a rod, a sphere, a container, or a block.
  • the thickness of the ultraviolet transmitting glass is preferably 0.2 to 2 mm, particularly 0.25 to 1.9 mm, and preferably has a tubular shape such as a straight tube shape or a curved tube shape. preferable.
  • the ultraviolet transmittance decreases as the thickness of the glass increases, but since the ultraviolet transmitting glass of the present invention has high transmittance in the wavelength region of 250 nm or less, even if the thickness is increased compared to conventional products. High transmittance can be maintained in the same wavelength range.
  • the surface roughness Ra of the surface of the ultraviolet transmitting glass of the present invention is preferably 10 nm or less, 9 nm or less, 8 nm or less, 7 nm or less, 6 nm or less, 5 nm or less, 4 nm or less, 3 nm or less, 2 nm or less, particularly 1 nm or less. . If the surface roughness Ra of the surface is too large, the transmittance in deep ultraviolet rays tends to decrease.
  • the ultraviolet transmitting glass of the present invention can be produced, for example, by mixing various glass raw materials to obtain a glass batch, then melting this glass batch, clarifying and homogenizing the obtained molten glass, and molding it into a predetermined shape. It can be made with
  • a reducing agent as part of the glass raw material.
  • Fe 3+ contained in the glass is reduced and the transmittance of deep ultraviolet rays is improved.
  • materials such as wood powder, carbon powder, metal aluminum, metal silicon, and aluminum fluoride can be used, and among these, metal silicon and aluminum fluoride are preferred.
  • metal silicon as a part of the glass raw material, and the amount added is 0.001 to 3% by mass, 0.005% by mass based on the total mass of the glass batch. -2% by weight, preferably 0.01-1% by weight, particularly 0.05-0.75% by weight. If the amount of metal silicon added is too small, Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease. On the other hand, if the amount of metal silicon added is too large, the glass tends to be colored brown.
  • AlF 3 aluminum fluoride
  • the amount added is 0.01 to 2% by mass in terms of F, 0.05% by mass based on the total mass of the glass batch. It is preferably from 1.5% by weight, particularly from 0.3 to 1.5% by weight. If the amount of aluminum fluoride added is too small, Fe 3+ contained in the glass will not be reduced, and the transmittance in deep ultraviolet rays will tend to decrease. On the other hand, if the amount of aluminum fluoride added is too large, there is a possibility that F gas will remain in the glass as bubbles.
  • the method for producing ultraviolet-transparent glass of the present invention when forming the ultraviolet-transparent glass into a flat plate shape, it is preferable to use a down-draw method or an overflow down-draw method.
  • molten glass overflows from both sides of a heat-resistant gutter-like structure, and the overflowing molten glass joins at the bottom end of the gutter-like structure, stretching downward to form a glass plate. This is the way to do it.
  • the surface of the glass plate that is to become the surface does not come into contact with the trough-like refractories and is formed as a free surface.
  • the structure and material of the gutter-like structure are not particularly limited as long as desired dimensions and surface accuracy can be achieved.
  • the method of applying force when performing downward stretch molding is not particularly limited. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated while in contact with the glass, or a plurality of pairs of heat-resistant rolls are brought into contact only near the end surface of the glass. You may adopt the method of stretching.
  • the method for producing ultraviolet-transparent glass of the present invention when forming the ultraviolet-transparent glass into a tubular shape, it is preferable to use a down-draw method, a bellows method, a Danner method, or the like.
  • the Danner method is a method in which molten glass is rolled down and wound around the upper end of a heat-resistant sleeve-like structure arranged at an angle, and the molten glass that has flowed down to the lower end is stretched and formed to form a glass tube.
  • a slot-down method for example, a slot-down method, a redraw method, a float method, etc. can also be adopted.
  • the content of F in the surface layer of the glass tends to decrease in some cases.
  • it is possible to increase the F content near the glass surface by immersing the glass in an acid solution and etching it to remove the surface layer where the F content has decreased.
  • the acid used for the etching treatment nitric acid, hydrofluoric acid, sulfuric acid, hydrochloric acid with a concentration of 3 to 50% by mass, or a mixed acid consisting of at least two of the above-mentioned acids with an acid concentration of 3 to 50% by mass, etc. can be used.
  • the immersion time is preferably 1 minute or more, 3 minutes or more, particularly 5 minutes or more.
  • the immersion time is too short, etching may be insufficient and the F content near the glass surface may not increase.
  • the upper limit of the immersion time is not particularly limited, but realistically it is 20 minutes or less.
  • the temperature of the acid is preferably 20°C or higher, 25°C or higher, particularly 30°C or higher. If the temperature of the acid is too low, etching may be insufficient and the F content near the glass surface may not increase.
  • the upper limit of the temperature of the acid is not particularly limited, it is realistically 95°C or lower. Note that it is also possible to remove the surface layer portion where the F content has decreased by physical polishing or the like.
  • Table 1 shows Examples (Samples No. 1 to 5) of the present invention and Comparative Examples (Sample No. 6).
  • a glass batch prepared by mixing the glass raw materials shown in the table so as to have the glass composition shown in the table was placed in a platinum crucible and melted at 1600°C for 6 hours.
  • the obtained molten glass was stirred using a platinum stirrer to homogenize it.
  • the molten glass was poured onto a carbon plate, formed into a flat plate shape, and then slowly cooled from a temperature approximately 20°C higher than the annealing point to room temperature at a rate of 3°C/min, and then etched under the conditions shown in the table. I did it.
  • Transmittance was measured for each sample obtained.
  • the transmittance is a value obtained by measuring the spectral transmittance in the thickness direction using a double beam spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation).
  • UV-3100PC manufactured by Shimadzu Corporation
  • samples having the thicknesses listed in Table 1 and polished on both sides to optically polished surfaces (mirror surfaces) were used.
  • the surface roughness Ra of the surfaces of these measurement samples was measured by AFM, it was 0.5 to 1.0 nm in a measurement area of 10 ⁇ m ⁇ 10 ⁇ m.
  • the F content x (mass %) at a depth of 15 ⁇ m from the glass surface, and the F content y (mass %) at a depth of 1 ⁇ m from the glass surface are It was measured by line analysis using a microanalyzer (EPMA-1720H manufactured by Shimadzu Corporation).
  • sample No. with y/x of 0.81 or more had high transmittance for ultraviolet light with a wavelength of 200 to 250 nm.
  • sample No. with a small y/x of 0.71 No. 6 had a low transmittance of ultraviolet light with a wavelength of 200 to 250 nm. It was also found that the larger y/x, the higher the transmittance of ultraviolet light with a wavelength of 200 to 250 nm.
  • the molten glass was poured out and formed into a flat plate shape.
  • it is formed into a flat plate shape using an overflow down-draw method, etc., with both surfaces unpolished. It is preferable to use it.
  • it is preferable to shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Glass Compositions (AREA)

Abstract

深紫外域、特に、波長200~250nmの紫外光の透過率が高い紫外線透過ガラスを提供する。 本発明の紫外線透過ガラスは、ガラス表面から15μm深さのFの含有量をx(質量%)、ガラス表面から1μm深さのFの含有量をy(質量%)とした場合、y/xが0.8以上であることを特徴とする。

Description

紫外線透過ガラス
 本発明は、紫外線透過ガラスに関する。
 炎が発生する185~260nmの波長の紫外線を検出する炎センサが開発され、その炎センサを用いて、火災や燃焼装置の炎を検知する方法が提案されている。このような炎センサを収容する容器や窓材には、深紫外域の透過率が高い紫外線透過ガラス(例えば、特許文献1)が用いられている。
国際公開2017/057375号公報
 炎センサでは、紫外線透過ガラスを外筒として用いることによって、高い検出感度が持続して得られる。しかし、従来の紫外線透過ガラスでは、その透過率、特に、波長200~250nmの深紫外域の透過率が低く、課題となっていた。
 以上に鑑み、本発明は、深紫外域において従来品よりも高い透過率を有するガラスを得ることを目的とする。
 本発明者等は、Fが軽元素である為に製造プロセスで表面付近の含有量が低くなり易く、ガラス表面近傍のFの含有量が少ないと、ガラス表面近傍に含まれるFe3+が還元され難く、深紫外域の透過率の低下を来たしていることを見出した。
 即ち、本発明の紫外線透過ガラスは、ガラス表面から15μm深さのFの含有量をx(質量%)、ガラス表面から1μm深さのFの含有量をy(質量%)とした場合、y/xが0.8以上であることを特徴とする。ここで、「Fの含有量」は、市販の電子線マイクロアナライザ(例えば、島津製作所製EPMA-1720H)で測定可能である。
 本発明の紫外線透過ガラスは、厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧69であることが好ましい。ここで、「波長200nmにおける透過率」は、市販の分光光度計(例えば、島津製作所製UV―3100PC)で測定可能である。
 本発明の紫外線透過ガラスは、厚みが0.2~2mmであり、管状であることが好ましい。
 本発明の紫外線透過ガラスは、ガラス組成として、質量%で、SiO 55~75%、Al 1~10%、B 10~30%、CaO 0~5 %、 BaO 0~5%、LiO+NaO+KO 1~15%、TiO 0~0.001%、Fe 0~0.001%、F 0.5~7%を含有することが好ましい。なお、「A+B+C」とは、成分A、成分B及び成分Cの合量を指す。例えば、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。
 本発明の紫外線透過ガラスは、炎センサ用であることが好ましい。
 本発明の紫外線透過ガラスの製造方法は、ガラスを管状に成形した後、酸溶液中に管状ガラスを浸漬してエッチングすることを特徴とする。
 本発明によれば、深紫外域において従来品よりも高い透過率を有するガラスを得ることができる。
 本発明の紫外線透過ガラスにおいて、ガラス表面から15μm深さのFの含有量をx(質量%)、ガラス表面から1μm深さのFの含有量をy(質量%)とした場合、y/xが0.8以上であり、0.85以上、特に0.9以上であることが好ましい。y/xが小さ過ぎると、ガラス表面近傍に含まれるFe3+が還元され難く、深紫外域の透過率が低下し易くなる。なお、y/xの上限値は特に限定されないが、現実的には1.2以下である。また、y/xの具体的な数値は下記の通りである。
 xは0.5~7%、0.6~5%、特に0.7~3%であることが好ましい。xが小さ過ぎると、ガラス内部のFの含有量が少なくなり、ガラス内部に含まれるFe3+が還元され難く、深紫外域の透過率が低下し易くなる。一方、xが大き過ぎると、ガラス化し難くなる。
 yは0.4~8.4%、0.45~6%、0.5~5%、特に0.6~3%であることが好ましい。yが小さ過ぎると、ガラス表面近傍のFの含有量が少なくなり、ガラス表面近傍に含まれるFe3+が還元され難く、深紫外域の透過率が低下し易くなる。一方、yが大き過ぎると、ガラス化し難くなる。
 本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧69、特にT200≧70であることが好ましい。厚み0.5mm、波長200nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。
 本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長220nmにおける透過率(%)をT220とした場合、T220≧79、特にT220≧80であることが好ましい。厚み0.5mm、波長220nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。
 本発明の紫外線透過ガラスにおいて、厚み0.5mm、波長250nmにおける透過率(%)をT250とした場合、T250≧87、特にT250≧88であることが好ましい。厚み0.5mm、波長250nmにおける透過率が低過ぎると、紫外光が透過し難くなり、搭載される光源やデバイスの性能が低下し易くなる。
 本発明の紫外線透過ガラスの歪点は、400℃以上、410℃以上、特に415℃以上であることが好ましい。紫外線透過ガラスの歪点が低過ぎる場合、例えば、表面に機能性膜を成膜する際に、高温の成膜工程においてガラスに意図しない変形が生じ易くなる。なお、歪点の上限は特に限定されないが、現実的には600℃以下である。
 本発明の紫外線透過ガラスの軟化点は、850℃以下、800℃以下、750℃以下、特に700℃以下であることが好ましい。軟化点が高過ぎると、ガラスの再熱加工がし難くなる。なお、軟化点の下限は特に限定されないが、現実的には600℃以上である。
 本発明の紫外線透過ガラスの粘度102.5dPa・sにおける温度は、1540℃以下、1520℃以下、1500℃以下、特に1480℃以下であることが好ましい。102.5dPa・sにおける温度が高過ぎると、ガラス溶融窯への負荷が大きくなるとともに、溶融性が低下して、ガラスの製造コストが高騰し易くなる。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定可能である。なお、102.5dPa・sにおける温度の下限は特に限定されないが、現実的には1300℃以上である。
 本発明の紫外線透過ガラスの30~380℃の温度範囲における平均線熱膨張係数は、30×10-7/℃以上、特に35×10-7/℃以上であることが好ましく、また95×10-7/℃以下、特に80×10-7/℃以下であることが好ましい。平均線熱膨張係数が低過ぎると、センサ端子等の各種部材の熱膨張係数に整合させ難くなる。一方、平均線熱膨張係数が高過ぎると、熱衝撃により、ガラスが破損し易くなる。
 本発明の紫外線透過ガラスの液相温度は、1120℃以下、1100℃以下、1080℃以下、1050℃以下、1000℃以下、950℃以下、900℃以下、特に850℃以下であることが好ましい。液相温度における粘度は、104.0dPa・s以上、104.3dPa・s以上、104.5dPa・s以上、104.8dPa・s以上、105.1dPa・s以上、105.3dPa・s以上、特に105.5dPa・s以上であることが好ましい。このようにすれば、耐失透性が向上し、ダウンドロー法、特にオーバーフローダウンドロー法で成形し易くなるため、所望の形状のガラスを作製し易くなる。
 本発明の紫外線透過ガラスのヤング率は、40GPa以上、特に45GPa以上であることが好ましい。ヤング率が低過ぎると、デバイスの製造工程における搬送ラインでガラスが剛性を維持し難くなり、ガラスの変形、反り、破損が発生し易くなる。
 本発明の紫外線透過ガラスは、ガラス組成として、質量%で、SiO 55~75%、Al 1~10%、B 10~30%、CaO 0~5%、 BaO 0~5%、LiO+NaO+KO 1~15%、TiO 0~0.001%、Fe 0~0.001%、F 0.5~7%を含有することが好ましい。
 上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示は、特に断りがある場合を除き、質量%を表す。
 SiOは、ガラスの骨格を形成する主成分である。SiOの含有量は、55~75%、58~70%、特に65~69%であることが好ましい。SiOの含有量が少な過ぎると、ヤング率、耐酸性が低下し易くなる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなることに加えて、クリストバライト等の失透結晶が析出し易くなって、液相温度が上昇し易くなる。
 Alは、ヤング率を高める成分であると共に、分相、失透を抑制する成分である。Alの含有量は、1~10%、2~9%、特に3~8%であることが好ましい。Alの含有量が少な過ぎると、ヤング率が低下し易くなり、またガラスが分相、失透し易くなる。一方、Alの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなる。
 Bは、溶融性、耐失透性を高める成分であり、また傷の付き易さを改善して、強度を高める成分である。Bの含有量は、10~30%、13~28%、特に15~25%であることが好ましい。Bの含有量が少な過ぎると、溶融性、耐失透性が低下し易くなり、またフッ酸系の薬液に対する耐性が低下し易くなる。一方、Bの含有量が多過ぎると、ヤング率、耐酸性が低下し易くなる。
 CaOは、高温粘性を下げて、溶融性を高める成分である。またアルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は、0~5%、0.01~1%、特に0.1~0.8%であることが好ましい。CaOの含有量が多過ぎると、ガラスが失透し易くなる。
 BaOは、耐失透性を高める成分である。BaOの含有量は、0~5%、0.1~3%、特に0.5~1.5%であることが好ましい。BaOの含有量が多過ぎると、ガラスが失透し易くなる。
 LiO、NaO及びKOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与するアルカリ金属酸化物成分である。LiO+NaO+KOの含有量は、1~15%、2~10%、特に3~6%であることが好ましい。LiO+NaO+KOの含有量が少な過ぎると、溶融性が低下し易くなる。一方、LiO+NaO+KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 LiOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。LiOの含有量は、0~5%、0~3%、特に0.1~1.2%であることが好ましい。LiOの含有量が多過ぎると、ガラスが分相し易くなる。
 NaOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。NaOの含有量は、0~10%、0~8%、1~5%、特に1~3%であることが好ましい。NaOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 KOは、高温粘性を下げて、溶融性を顕著に高めると共に、ガラス原料の初期の溶融に寄与する成分である。また熱膨張係数を調整するための成分である。KOの含有量は、0~10%、0.1~5%、特に0.5~3%であることが好ましい。KOの含有量が多過ぎると、熱膨張係数が不当に高くなる虞がある。
 TiOは、深紫外域での透過率を低下させる成分である。TiOの含有量は、0.001%以下、0.0008%以下、特に0.0001~0.0006%であることが好ましい。TiOの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。
 Feは、深紫外域での透過率を低下させる成分である。Feの含有量は、0.001%以下、0.0001~0.0009%、特に0.00001~0.0008%であることが好ましい。Feの含有量が多過ぎると、ガラスが着色して、深紫外域での透過率が低下し易くなる。
 酸化鉄中のFeイオンは、Fe2+又はFe3+の状態で存在する。Fe2+の割合が少な過ぎると、深紫外線での透過率が低下し易くなる。よって、本発明の紫外線透過ガラスに含まれる酸化鉄中のFe2+/(Fe2++Fe3+)の質量割合は、0.1以上、0.2以上、0.3以上、0.4以上、特に0.5以上であることが好ましい。
 Fは、ガラスに含まれるFe3+を還元し、深紫外域の透過率を向上させる成分である。また、粘性を下げて溶融性を高める成分である。Fの含有量は、0.5~7%、0.6~5%、特に0.7~3%であることが好ましい。Fの含有量が少な過ぎると、上記効果を得難くなる。一方、Fの含有量が多過ぎると、逆にガラス化し難くなる。
 上記成分以外にも、以下の成分を導入してもよい。
 SrOは、耐失透性を高める成分である。SrOの含有量は、0~7%、0~5%、0~3%、特に0~1%であることが好ましい。SrOの含有量が多過ぎると、ガラスが失透し易くなる。
 ZrOは、耐酸性を高める成分であるが、ガラス組成中に多量に含有させると、ガラスが失透し易くなる。よって、ZrOの含有量は、0.1%以下、0.001~0.02%、特に0.0001~0.01%であることが好ましい。
 MoOは、生産時に炉内からの不純物として含有する成分であるが、ガラス組成中に多量に含有すると、深紫外域の透過率を低下させる虞がある。よって、MoOの含有量は0.05%以下、0.005~0.001%、特に0.0001~0.0005%であることが好ましい。
 本発明の紫外線透過ガラスの形状は任意に設定可能である。本発明の紫外線透過ガラスの形状は、例えば、平板状、曲板状、直管状、曲管状、棒状、球状、容器状、ブロック状とすることができる。
 炎センサ用途に好適に用いるためには、紫外線透過ガラスの厚みは、0.2~2mm、特に0.25~1.9mmであることが好ましく、直管状、曲管状等の管状であることが好ましい。なお、一般的に紫外線透過率はガラスの厚みが厚いほど低下するが、本発明の紫外線透過ガラスは250nm以下の波長領域において高い透過率を有するために、従来品に比べ厚みを増加させても同波長域において高い透過率を維持可能である。
 本発明の紫外線透過ガラスの表面の表面粗さRaは、10nm以下、9nm以下、8nm以下、7nm以下、6nm以下、5nm以下、4nm以下、3nm以下、2nm以下、特に1nm以下であることが好ましい。表面の表面粗さRaが大き過ぎると、深紫外線での透過率が減少する傾向がある。
 本発明の紫外線透過ガラスは、例えば、各種ガラス原料を調合して、ガラスバッチを得た上で、このガラスバッチを溶融し、得られた溶融ガラスを清澄、均質化し、所定形状に成形することで作製することができる。
 本発明の紫外線透過ガラスの製造方法において、ガラス原料の一部として、還元剤を用いることが好ましい。このようにすれば、ガラス中に含まれるFe3+が還元されて、深紫外線での透過率が向上する。還元剤として、木粉、カーボン粉末、金属アルミニウム、金属シリコン、フッ化アルミニウム等の材料が使用可能であるが、その中でも金属シリコン、フッ化アルミニウムが好ましい。
 本発明の紫外線透過ガラスの製造方法において、ガラス原料の一部として、金属シリコンを用いることが好ましく、その添加量は、ガラスバッチの全質量に対して0.001~3質量%、0.005~2質量%、0.01~1質量%、特に0.05~0.75質量%であることが好ましい。金属シリコンの添加量が少な過ぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下し易くなる。一方、金属シリコンの添加量が多過ぎると、ガラスが茶色に着色する傾向がある。
 また、ガラス原料の一部として、フッ化アルミニウム(AlF)を用いることも好ましく、その添加量は、ガラスバッチの全質量に対して、F換算で0.01~2質量%、0.05~1.5質量%、特に0.3~1.5質量%であることが好ましい。フッ化アルミニウムの添加量が少な過ぎると、ガラス中に含まれるFe3+が還元されず、深紫外線での透過率が低下し易くなる。一方、フッ化アルミニウムの添加量が多過ぎると、Fガスがガラス中に泡として残存する虞がある。
 本発明の紫外線透過ガラスの製造方法において、紫外線透過ガラスを平板形状に成形する場合は、ダウンドロー法や、オーバーフローダウンドロー法を用いて成形することが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下頂端で合流させながら、下方に延伸成形してガラス板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、薄型のガラス板を作製し易くなると共に、表面を研磨しなくても、板厚ばらつきを低減することができる。結果として、ガラス板の製造コストを低廉化することができる。なお、樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。
 本発明の紫外線透過ガラスの製造方法において、紫外線透過ガラスを管状に成形する場合は、ダウンドロー法や、ベロー法、ダンナー法等を用いて成形することが好ましい。ダンナー法は、傾斜配置された耐熱性のスリーブ状構造物の上方端側に溶融ガラスを流下して巻き付け、下方端側へ流下した溶融ガラスを延伸成形してガラス管を成形する方法である。
 成形方法として、上記以外にも、例えば、スロットダウン法、リドロー法、フロート法等を採用することもできる。
 紫外線透過ガラスの製造プロセスでは、ガラス表層部のFの含有量が減少し易くなる場合がある。その際は、ガラスを成形した後に、酸溶液中にガラスを浸漬してエッチングし、Fの含有量が減少した表層部を取り除くことにより、ガラス表面近傍のFの含有量を多くすることが可能である。なお、エッチング処理に用いる酸としては、3~50質量%の硝酸、弗酸、硫酸、塩酸、あるいは酸濃度が3~50質量%で少なくとも前述した酸の2種類からなる混酸などが使用可能である。浸漬時間は1分以上、3分以上、特に5分以上であることが好ましい。浸漬時間が短すぎると、エッチングが不十分となり、ガラス表面近傍のFの含有量が多くならない虞がある。浸漬時間の上限は特に限定されないが、現実的には20分以下である。酸の温度は20℃以上、25℃以上、特に30℃以上であることが好ましい。酸の温度が低すぎると、エッチングが不十分となり、ガラス表面近傍のFの含有量が多くならない虞がある。酸の温度の上限は特に限定されないが、現実的には95℃以下である。なお、物理研磨等により、Fの含有量が減少した表層部を取り除くことも可能である。
 以下、本発明を実施例に基づいて説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1は、本発明の実施例(試料No.1~5)及び比較例(試料No.6)を示している。
Figure JPOXMLDOC01-appb-T000001
 まず、表中のガラス組成となるように、表に示すガラス原料を調合したガラスバッチを白金坩堝に入れ、1600℃で6時間溶融した。
 得られた溶融ガラスについて、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、平板形状に成形した後、徐冷点より20℃程度高い温度から室温まで3℃/分の速度で徐冷した後、表に示す条件にてエッチングを行った。
 得られた各試料について透過率を測定した。透過率は、ダブルビーム型分光光度計(島津製作所製UV―3100PC)を用いて、厚み方向の分光透過率を測定した値である。測定試料としては、表1に記載の厚みで両面を光学研磨面(鏡面)に研磨したものを使用した。なお、AFMにより、これらの測定試料の表面の表面粗さRaを測定したところ、測定領域10μm×10μmで0.5~1.0nmであった。
 また、得られた各試料について、ガラス表面から15μm深さのFの含有量x(質量%)、ガラス表面から1μm深さのFの含有量y(質量%)は、試料の断面を電子線マイクロアナライザ(島津製作所製EPMA-1720H)を用いてライン分析を行うことにより測定した。
 表から分かるように、y/xが0.81以上である試料No.1~5は、波長200~250nmの紫外光の透過率が高かった。一方、y/xが0.71と小さい試料No.6は、波長200~250nmの紫外光の透過率が低かった。また、y/xが大きい程、波長200~250nmの紫外光の透過率が高くなることが分かった。
 なお、上記実施例では、溶融ガラスを流し出して平板形状に成形したが、工業的規模で生産する場合には、オーバーフローダウンドロー法等で平板形状に成形し、両表面が未研磨の状態で使用に供することが好ましい。また、管状に形成する場合は、ダウンドロー法やダンナー法等で管状に成形することが好ましい。

Claims (6)

  1.  ガラス表面から15μm深さのFの含有量をx(質量%)、ガラス表面から1μm深さのFの含有量をy(質量%)とした場合、y/xが0.8以上であることを特徴とする紫外線透過ガラス。
  2.  厚み0.5mm、波長200nmにおける透過率(%)をT200とした場合、T200≧69であることを特徴とする請求項1に記載の紫外線透過ガラス。
  3.  厚みが0.2~2.0mmであり、管状であることを特徴とする請求項1又は2に記載の紫外線透過ガラス。
  4.  ガラス組成として、質量%で、SiO 55~75%、Al 1~10%、B 10~30%、CaO 0~5 %、 BaO 0~5%、LiO+NaO+KO 1~15%、TiO 0~0.001%、Fe 0~0.001%、F 0.5~7%を含有することを特徴とする請求項1又は2に記載の紫外線透過ガラス。
  5.  炎センサ用であることを特徴とする請求項1又は2に記載の紫外線透過ガラス。
  6.  ガラスを管状に成形した後、酸溶液中に管状ガラスを浸漬してエッチングすることを特徴とする紫外線透過ガラスの製造方法。
PCT/JP2023/016202 2022-05-13 2023-04-25 紫外線透過ガラス WO2023218938A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-079187 2022-05-13
JP2022079187 2022-05-13
JP2022-167700 2022-10-19
JP2022167700A JP2023168201A (ja) 2022-05-13 2022-10-19 紫外線透過ガラス

Publications (1)

Publication Number Publication Date
WO2023218938A1 true WO2023218938A1 (ja) 2023-11-16

Family

ID=88730302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016202 WO2023218938A1 (ja) 2022-05-13 2023-04-25 紫外線透過ガラス

Country Status (1)

Country Link
WO (1) WO2023218938A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187706A (ja) * 1993-10-15 1995-07-25 Jenaer Glaswerk Gmbh 改良された紫外線透過性及び加水分解安定性を有する還元溶融ホウケイ酸ガラス及びその利用法
JP2005247598A (ja) * 2004-03-01 2005-09-15 Hoya Corp 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2009023898A (ja) * 2007-06-20 2009-02-05 Asahi Glass Co Ltd 合成石英ガラス体、その製造方法、光学素子および光学装置
JP2013095619A (ja) * 2011-10-28 2013-05-20 Olympus Corp ガラス製光学素子
JP2019099414A (ja) * 2017-12-01 2019-06-24 クアーズテック株式会社 シリカガラス部材及びシリカガラス部材の製造方法
JP2019147722A (ja) * 2018-02-28 2019-09-05 日本電気硝子株式会社 紫外線透過ガラス及びその製造方法
WO2021070707A1 (ja) * 2019-10-07 2021-04-15 日本電気硝子株式会社 紫外線透過ガラス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187706A (ja) * 1993-10-15 1995-07-25 Jenaer Glaswerk Gmbh 改良された紫外線透過性及び加水分解安定性を有する還元溶融ホウケイ酸ガラス及びその利用法
JP2005247598A (ja) * 2004-03-01 2005-09-15 Hoya Corp 精密プレス成形用プリフォームの製造方法および光学素子の製造方法
JP2009023898A (ja) * 2007-06-20 2009-02-05 Asahi Glass Co Ltd 合成石英ガラス体、その製造方法、光学素子および光学装置
JP2013095619A (ja) * 2011-10-28 2013-05-20 Olympus Corp ガラス製光学素子
JP2019099414A (ja) * 2017-12-01 2019-06-24 クアーズテック株式会社 シリカガラス部材及びシリカガラス部材の製造方法
JP2019147722A (ja) * 2018-02-28 2019-09-05 日本電気硝子株式会社 紫外線透過ガラス及びその製造方法
WO2021070707A1 (ja) * 2019-10-07 2021-04-15 日本電気硝子株式会社 紫外線透過ガラス

Similar Documents

Publication Publication Date Title
JP6777893B2 (ja) 紫外線透過ガラス
JP7512893B2 (ja) 光学ガラスおよび光学部品
TWI838347B (zh) 化學強化用玻璃
US11203549B2 (en) Chemically temperable glass sheet
US6537937B1 (en) Alkali-free glass
JP3396835B2 (ja) アルカリ金属を含有しないアルミノ硼珪酸ガラスとその用途
KR100262115B1 (ko) 무알칼리유리기판
JP3666610B2 (ja) 無アルカリガラス基板
JP3666608B2 (ja) 無アルカリガラス基板
JP2012072054A (ja) カバーガラスおよびその製造方法
WO2009157297A1 (ja) 強化ガラスおよびその製造方法
JP5888326B2 (ja) 基板用無アルカリガラスの製造方法
WO2010084670A1 (ja) 強化ガラスおよびガラス
JPWO2015088009A1 (ja) 化学強化用ガラスおよび化学強化ガラス並びに化学強化ガラスの製造方法
WO2013183681A1 (ja) 無アルカリガラスおよびこれを用いた無アルカリガラス板
JP4756856B2 (ja) ガラス組成物およびその製造方法
TW201402510A (zh) 無鹼玻璃基板、及無鹼玻璃基板之薄板化方法
JPWO2010125981A1 (ja) 基板用ガラス板
CN105992749B (zh) 无碱玻璃基板及无碱玻璃基板的减薄方法
JPS63176332A (ja) 電子機器の基板用ガラス
WO2019167399A1 (ja) 紫外線透過ガラス及びその製造方法
WO2020021933A1 (ja) 強化ガラス及び強化用ガラス
WO2023218938A1 (ja) 紫外線透過ガラス
JP2021075407A (ja) 紫外線透過ガラス
JP2023168201A (ja) 紫外線透過ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803420

Country of ref document: EP

Kind code of ref document: A1