WO2023218876A1 - Alkali-soluble resin, photosensitive resin composition, and cured product thereof - Google Patents

Alkali-soluble resin, photosensitive resin composition, and cured product thereof Download PDF

Info

Publication number
WO2023218876A1
WO2023218876A1 PCT/JP2023/015488 JP2023015488W WO2023218876A1 WO 2023218876 A1 WO2023218876 A1 WO 2023218876A1 JP 2023015488 W JP2023015488 W JP 2023015488W WO 2023218876 A1 WO2023218876 A1 WO 2023218876A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
soluble resin
acid
group
epoxy
Prior art date
Application number
PCT/JP2023/015488
Other languages
French (fr)
Japanese (ja)
Inventor
信章 大槻
拓真 寺田
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2023218876A1 publication Critical patent/WO2023218876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to an alkali-soluble resin and a photosensitive resin composition. More specifically, the present invention relates to an alkali-soluble resin, a photosensitive resin composition, and a cured product thereof, which can provide a cured product with excellent solvent resistance even under low-temperature curing conditions.
  • Alkali-soluble resins are compounds used in various fields ranging from the civil engineering and construction field to the electronic information field. Among them, alkali-soluble resins that are hardened by light or electron beam irradiation have the property that the parts irradiated with light or electron beams harden, while other parts remain soluble. It is preferably used as a material for resist compositions (also referred to as photosensitive resin compositions). Such resist compositions can be used in various applications such as color filters, inks, printing plates, printed wiring boards, semiconductor devices, photoresists, organic insulating films, and organic protective films used in liquid crystal display devices, solid-state image sensors, etc. It has been applied to optical components, electric/electronic equipment, etc., or various applications are being considered.
  • Patent Document 1 a photocurable type containing a compound having an epoxy group, a photobase generator, a curing agent having a thiol group, a monomer having an unsaturated bond, and a radical generator that generates radicals when exposed to light.
  • a resin composition has been disclosed, and a photocurable resin composition that does not have tackiness when formed into a coating film before exposure has been discovered.
  • Patent Document 2 a copolymer containing three types of (meth)acrylate repeating units categorized by the type of functional group present at the terminal and having all of alkali-soluble, photocurable, and thermosetting properties;
  • the photosensitive resin composition used is disclosed.
  • This pattern film has excellent thermosetting properties at relatively low temperatures, can also be photocured by light irradiation, has improved degree of curing, and has excellent durability and chemical resistance. is obtained.
  • the present invention was made in view of the above-mentioned current situation, and is an alkali that can provide a cured product with excellent solvent resistance even under low temperature curing conditions and can be suitably used for various uses such as color filters.
  • the present invention aims to provide a soluble resin and a photosensitive resin composition containing the resin.
  • an alkali having a specific epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure and having an epoxy equivalent of 50,000 g/equivalent or less Having obtained the knowledge that the above problems can be solved by using a soluble resin and further by using a photosensitive resin composition containing such a specific alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator, The present invention has now been completed.
  • ⁇ 1> At least one epoxy group-containing structure selected from the structure represented by the following formula (1) and the structure represented by the following formula (2), and the structure represented by the following formulas (3) to (4') at least one carboxyl group-containing structure selected from the structure represented by the following formula (5) and at least one polymerizable unsaturated bond-containing structure selected from the structure represented by the following formula (5')
  • An alkali-soluble resin having the following structure and having an epoxy equivalent of 50,000 g/equivalent or less.
  • R 1 is the same or different represents a divalent organic group.
  • R 2 and R 3 are the same or different and are a hydrogen atom or a group represented by formula (6), and R 2 is a group represented by formula (6).
  • R 4 is the same or different and represents a trivalent organic group.
  • R 5 , R 6 and R 7 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 8 and R 9 are the same or different and represent a direct bond or represents a divalent organic group.
  • R10 represents a divalent organic group.
  • the alkali-soluble resin according to ⁇ 1> which has an acid value of 30 to 200 mgKOH/g.
  • a photosensitive resin composition comprising the alkali-soluble resin described in ⁇ 1> or ⁇ 2> above, a polymerizable compound, and a photopolymerization initiator.
  • ⁇ 4> A cured product obtained by curing the alkali-soluble resin described in ⁇ 1> or ⁇ 2> above, or the photosensitive resin composition described in ⁇ 3>.
  • a member for a display device comprising the cured product according to ⁇ 4>.
  • a display device comprising the member for a display device according to ⁇ 5> above.
  • a method for producing an alkali-soluble resin comprising: The production method includes a first step in which an epoxy resin (a) having two or more epoxy groups in one molecule is reacted with a monobasic acid (b) having a primary alcoholic hydroxyl group and an unsaturated monocarboxylic acid (c).
  • a method for producing an alkali-soluble resin characterized in that the method is carried out by adjusting the method.
  • a method for producing a photosensitive resin composition comprising: The manufacturing method includes a step of manufacturing an alkali-soluble resin by the method for manufacturing an alkali-soluble resin according to ⁇ 7>; A method for producing a photosensitive resin composition, comprising the step of mixing an alkali-soluble resin having an epoxy equivalent of 50,000 g/equivalent or less, a polymerizable compound, and a photopolymerization initiator.
  • the alkali-soluble resin and photosensitive resin composition of the present invention can provide a cured product with excellent solvent resistance even under relatively low-temperature curing conditions.
  • the cured product of the present invention can be used in various applications such as various optical members used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc., and structural members of electrical and electronic devices. It can be suitably used for.
  • Alkali-soluble resin The alkali-soluble resin of the present invention has at least one epoxy group-containing structure selected from the structure represented by the above formula (1) and the structure represented by the above formula (2), and the above formula (3). at least one carboxyl group-containing structure selected from the structures represented by (4') and at least one carboxyl group-containing structure selected from the structures represented by the above formula (5) and the above formula (5').
  • the resin has one polymerizable unsaturated bond-containing structure in the side chain of the polymer, and has an epoxy equivalent of 50,000 g/equivalent or less.
  • the alkali-soluble resin of the present invention When the alkali-soluble resin of the present invention is used as a resist material, the polymerizable unsaturated bonds react with light and the exposed area is cured, and then the epoxy group and carboxyl group react with each other through baking treatment. Then, post-curing is performed.
  • the alkali-soluble resin of the present invention has excellent alkali developability because the carboxyl group is located at a position distant from the main chain.
  • carboxyl groups located away from the main chain have good reactivity with epoxy groups, so during post-curing, the reaction with epoxy groups is good even under relatively low-temperature curing conditions (for example, below 160°C). The process progresses and a cured product with excellent solvent resistance can be obtained.
  • the alkali-soluble resin of the present invention has at least one epoxy group-containing structure selected from the structure represented by the above formula (1) and the structure represented by the above formula (2).
  • m in the above formula (2) is an integer of 1 to 10, preferably 2 to 8. More preferably, it is 3-6. The same applies to m in the above formulas (3'), (4') and (5').
  • the alkali-soluble resin of the present invention is selected from the structures represented by the above formulas (3) to (4') (that is, the above formulas (3), (3'), (4) and (4')). It has at least one carboxyl group-containing structure.
  • R 1 in formulas (3) and (3') are the same or different and represent a divalent organic group, and as a divalent organic group, the following formula (7):
  • R 11 represents a divalent hydrocarbon group which may have a substituent.
  • R 12 represents any structure of formula (8) or a direct bond.
  • the structures depicted are preferred.
  • the hydrocarbon group for R 11 is preferably a hydrocarbon group having 1 to 12 carbon atoms. More preferably, it is a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain part and a cyclic part.
  • the cyclic structure may be an alicyclic structure or an aromatic ring.
  • the substituent for R 11 include halogen atoms such as fluorine atom, chlorine atom, and bromine atom, and cyano group.
  • R 11 in the above formula (7) it is preferable that the end opposite to the R 12 side is a methylene group.
  • a structure in which R 2 is represented by formula (6) is preferable. That is, the terminal -R 1 -O-R 2 of the structure represented by formulas (3) and (3') is represented by the following formula (9)
  • R 11 ' represents a hydrocarbon group having 1 to 11 carbon atoms or a direct bond.
  • R 12 is the same as formula (7).
  • R 10 is the same as formula (6) ) is one of the preferred embodiments of the carboxyl group-containing structure represented by formulas (3) and (3'). This structure will be explained in "2. Method for producing alkali-soluble resin” below.
  • R 2 and R 3 in formulas (3) to (4') are the same or different and are a hydrogen atom or a group represented by the above formula (6), and at least one of R 2 is a group represented by the formula (6). is the group represented. That is, when the alkali-soluble resin of the present invention has only the structure represented by the above formula (3) or only the structure represented by (3') as the carboxyl group-containing structure, the alkali-soluble resin has the structure represented by the formula (3).
  • R 2 in the structure represented by formula (3) or the structure represented by (3') is a group represented by formula (6), and the alkali-soluble resin has a structure represented by formula (3) above and (3').
  • R 2 of either or both of the structure represented by the above formula (3) and the structure represented by (3') is a group represented by the formula (6).
  • the alkali-soluble resin has only the structure represented by the above formula (4) or only the structure represented by (4') as a carboxyl group-containing structure
  • the structure represented by the formula (4) that the alkali-soluble resin has or Either or both of the two R 2's in the structure represented by (4') are groups represented by formula (6)
  • the alkali-soluble resin has a structure represented by formula (4) above and (4 )
  • at least one of the four R2s in the structure represented by the above formula (4) and the structure represented by (4') is represented by the formula (6). This is the base.
  • the alkali-soluble resin has a structure represented by (3) and/or (3') as a carboxyl group-containing structure, and a structure represented by formula (4) and/or (4').
  • R2 present in the structure represented by formula (4) and/or is a group represented by formula (6).
  • R 3 may be a hydrogen atom or a group represented by formula (6).
  • R 4 in the above formulas (4) and (4') represents a trivalent organic group, and the trivalent organic group is represented by the following formula (10):
  • R 13 represents a trivalent hydrocarbon group which may have a substituent.
  • R 14 represents any structure of the above formula (8) or a direct bond.
  • p , q are the same or different integers of 0 to 3.
  • the hydrocarbon group for R 13 is preferably a hydrocarbon group having 1 to 10 carbon atoms. More preferred is a hydrocarbon group having 1 to 6 carbon atoms.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain portion and a cyclic portion.
  • the cyclic structure may be an alicyclic structure or an aromatic ring. Examples of the substituent in the hydrocarbon group of R 13 include those similar to the substituents in the hydrocarbon group of R 11 described above.
  • R 15 represents a hydrogen atom or a monovalent hydrocarbon group that may have a substituent.
  • R 14 , p, and q are the same as in formula (10).
  • Examples include groups represented by:
  • the monovalent hydrocarbon group for R 15 is preferably a hydrocarbon group having 1 to 7 carbon atoms. More preferred is a hydrocarbon group having 1 to 3 carbon atoms.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain portion and a cyclic portion.
  • the cyclic structure may be an alicyclic structure or an aromatic ring.
  • Examples of the substituent for the hydrocarbon group of R 15 include the same substituents as for the hydrocarbon group of R 11 described above.
  • the carboxyl group-containing structure represented by the above formula (4) or formula (4') is a structure in which R 4 is represented by the above formula (10), and either p or q is 1 or more.
  • a structure in which R 2 is represented by formula (6) is preferable. That is, the terminal structure after R4 of the structure represented by formula (4) or formula (4') is the following formula (12):
  • R 2 is the same as in formulas (3) to (4').
  • R 10 is the same as in formula (6).
  • R 13 and R 14 are as in formula (10) p is a number of 1 or more, and q is a number of 0 or more. This is one of the embodiments. This structure will be explained in "2. Method for producing alkali-soluble resin” below.
  • the alkali-soluble resin of the present invention further has at least one polymerizable unsaturated bond-containing structure selected from the structure represented by the above formula (5) and the structure represented by the formula (5').
  • R 3 in formula (5) and formula (5') may be a hydrogen atom or a group represented by formula (6).
  • R 5 , R 6 and R 7 in formula (5) and formula (5′) are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • the above hydrocarbon group having 1 to 6 carbon atoms includes a chain or cyclic hydrocarbon group having 1 to 6 carbon atoms, preferably a chain hydrocarbon group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms. -6 alkyl groups are more preferred.
  • R 5 , R 6 and R 7 are preferably the same or different and are hydrogen atoms or methyl groups, and R 5 and R 6 are hydrogen atoms. It is more preferable that R 7 is a hydrogen atom or a methyl group.
  • R 8 and R 9 in formula (5) and formula (5') are the same or different and represent a direct bond or a divalent organic group. Examples of divalent organic groups include hydrocarbon groups having 1 to 12 carbon atoms, -O-, -CO-, -NH-, -S-, -SO-, -SO 2 -, etc., and substituents bonded to these. The following can be mentioned. Examples of the substituent include the same substituents that the hydrocarbon group of R 11 above may have.
  • R 10 in the above formula (6) is a divalent organic group.
  • Examples of the divalent organic group include the same divalent organic groups as R 8 and R 9 in formula (5).
  • the alkali-soluble resin of the present invention may have the above-mentioned epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure at the end of the main chain structure of the resin (polymer) structure, although it may be included in the side chain, it is preferably included in the side chain.
  • the structure of the main chain of the polymer is not particularly limited, but the alkali-soluble resin of the present invention is preferably obtained by modifying an epoxy resin.
  • the alkali-soluble resin of the present invention has a structure in which the epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure are bonded as side chains to the main chain structure derived from the epoxy resin. is preferred.
  • the epoxy resin forming the main chain will be described later.
  • the alkali-soluble resin of the present invention has an epoxy equivalent of 50,000 g/equivalent or less.
  • the epoxy equivalent of the alkali-soluble resin is preferably 30,000 g/equivalent or less. More preferably, it is 10000 g/equivalent or less, and still more preferably 5000 g/equivalent or less.
  • the amount is more preferably 3000 g/equivalent or less, particularly preferably 2000 g/equivalent or less, and most preferably 1500 g/equivalent or less.
  • the alkali-soluble resin preferably has an epoxy equivalent of 400 g/equivalent or more, more preferably 550 g/equivalent or more, and even more preferably 700 g/equivalent or more. That is, the epoxy equivalent of the alkali-soluble resin is preferably 400 to 50,000 g/equivalent, more preferably 550 to 30,000 g/equivalent, still more preferably 700 to 10,000 g/equivalent, even more preferably 700 to 5,000 g/equivalent. equivalent, more preferably 700 to 3000 g/equivalent, particularly preferably 700 to 2000 g/equivalent, most preferably 700 to 1500 g/equivalent.
  • the epoxy equivalent of the alkali-soluble resin can be determined by dividing the resin solid content by the number of moles of epoxy groups contained in the resin. Moreover, the above-mentioned epoxy equivalent can also be determined by a method based on JIS K7236:2001.
  • the alkali-soluble resin of the present invention preferably has an acid value of 30 to 200 mgKOH/g.
  • the acid value is 30 mgKOH/g or more, the alkali-soluble resin has excellent curability during post-curing and the alkali resistance and solvent resistance of the cured product.
  • the acid value is preferably 200 mgKOH/g or less.
  • the acid value of the alkali-soluble resin is more preferably 35 to 160 mgKOH/g, and still more preferably 40 to 140 mgKOH/g.
  • the acid value of the alkali-soluble resin can be measured by the method described in Examples below.
  • the alkali-soluble resin of the present invention preferably has a double bond equivalent (weight per chemical equivalent of a radically polymerizable double bond) of 100 to 3000 g/equivalent.
  • the double bond equivalent is 3000 g/equivalent or less, the alkali-soluble resin has better developability during exposure.
  • the double bond equivalent is preferably 100 g/equivalent or more.
  • the double bond equivalent of the alkali-soluble resin is more preferably 250 to 2000 g/equivalent, and even more preferably 400 to 1000 g/equivalent.
  • the double bond equivalent of the alkali-soluble resin can be measured by the method described in the Examples below. Alternatively, it may be calculated by measuring the number of ethylenic double bonds contained per gram of alkali-soluble resin in accordance with the iodine number test method described in JIS K 0070:1992.
  • the alkali-soluble resin of the present invention may have structures other than those represented by the above formulas (1) to (5') in the side chain of the polymer, but the proportion of the other structures is as follows: It is preferably 60 mol% or less based on the total number of moles of the structures represented by formulas (1) to (5') above, 100 mol%. More preferably, it is 40 mol% or less.
  • the alkali-soluble resin of the present invention has a carboxyl group, an epoxy group, and a radically polymerizable double bond, and since crosslinking reactions and polymerization reactions involving these are possible, it can be used alone as an alkali-soluble photosensitive resin. can do. In particular, it can be suitably used as a negative-type alkali-soluble photosensitive resin.
  • the method for producing the alkali-soluble resin is not particularly limited as long as an alkali-soluble resin having the above-mentioned structure can be obtained, but a method of producing the alkali-soluble resin by modifying the epoxy resin is preferred.
  • the alkali-soluble resin of the present invention can be produced by adjusting the amounts of the monobasic acid (b) and unsaturated monocarboxylic acid (c) used.
  • a monobasic acid (b) having a primary alcoholic hydroxyl group it is preferable to use as the monobasic acid (b) having a hydroxyl group.
  • the reaction product obtained is a polybasic acid anhydride compared to the secondary alcoholic hydroxyl group normally produced by the reaction between an epoxy group and a carboxylic acid. It has a primary alcohol with high reactivity. For this reason, the subsequent reaction with the polybasic acid anhydride progresses well, and acid groups can be introduced away from the main chain, making the resulting alkali-soluble resin superior in alkali solubility and curability. can do.
  • a method for producing such an alkali-soluble resin that is, a method for producing an alkali-soluble resin, in which an epoxy resin (a) having two or more epoxy groups in one molecule is mixed with a primary alcohol.
  • the monobasic acid (b) having a primary alcoholic hydroxyl group and the unsaturated monocarboxylic acid is Another aspect of the present invention.
  • Another aspect of the present invention is a method for producing an alkali-soluble resin, which is carried out by adjusting the amount of c) used.
  • the starting material epoxy resin (a) having two or more epoxy groups in one molecule is not particularly limited; Any known epoxy resin can be used as long as it has a bisphenol type epoxy resin; biphenyl type epoxy resin; alicyclic epoxy resin; polyfunctional glycidyl amine resin such as tetraglycidylamino diphenylmethane; tetraphenyl glycidyl ether ethane.
  • Polyfunctional glycidyl ether resins such as; phenol novolac type epoxy resins and cresol novolac type epoxy resins; condensation of phenolic compounds such as phenol, o-cresol, m-cresol, naphthol, and aromatic aldehydes having phenolic hydroxyl groups.
  • a reaction product between a polyphenol compound obtained by the reaction and epichlorohydrin a reaction product between a polyphenol compound obtained by an addition reaction between a phenol compound and a diolefin compound such as divinylbenzene or dicyclopentadiene, and epichlorohydrin; 4-vinylcyclohexene- Examples include ring-opening polymers of 1-oxide epoxidized with peracids; epoxy resins having a heterocycle such as triglycidyl isocyanurate; and the like.
  • those obtained by bonding two or more molecules of these epoxy resins with a chain extender such as a polybasic acid, a polyphenol compound, a polyfunctional amino compound, or a polyvalent thiol to extend the chain can also be used.
  • a chain extender such as a polybasic acid, a polyphenol compound, a polyfunctional amino compound, or a polyvalent thiol to extend the chain
  • it may be a homopolymer or copolymer of a monomer having an epoxy group such as glycidyl (meth)acrylate or 3,4-epoxycyclohexylmethyl (meth)acrylate.
  • novolac type epoxy resin is used as a raw material. It is preferable.
  • the above-mentioned starting material epoxy resin (a) having two or more epoxy groups in one molecule should have an epoxy equivalent of 500 g in order to make the resulting alkali-soluble resin more excellent in developability and low-temperature curability. / equivalent or less is preferable. More preferably, the epoxy equivalent is 400 g/equivalent or less, and even more preferably, the epoxy equivalent is 300 g/equivalent or less.
  • the monobasic acid (b) having a hydroxyl group is not particularly limited as long as it has a hydroxyl group and an acid group, but those having 2 to 12 carbon atoms are preferred. More preferably, it has 3 to 10 carbon atoms, and still more preferably 4 to 8 carbon atoms.
  • Examples of the acid group of the monobasic acid (b) having a hydroxyl group include a carboxyl group, a phenolic hydroxyl group, a phosphoric acid group, a sulfonic acid group, etc.
  • a carboxyl group or a phenolic hydroxyl group is preferable, and a carboxyl group is more preferable. preferable.
  • monobasic acids (b) having a hydroxyl group monocarboxylic acids having a hydroxyl group such as glycolic acid, hydroacrylic acid, glyceric acid, dimethylolpropionic acid, dimethylolbutanoic acid, lactic acid, and tartaric acid. can be mentioned.
  • those having a primary alcoholic hydroxyl group include monocarboxylic acids having one or more primary alcoholic hydroxyl groups such as glycolic acid, hydroacrylic acid, glyceric acid, dimethylolpropionic acid, and dimethylolbutanoic acid.
  • monocarboxylic acids having one or more primary alcoholic hydroxyl groups such as glycolic acid, hydroacrylic acid, glyceric acid, dimethylolpropionic acid, and dimethylolbutanoic acid.
  • glycolic acid, dimethylolbutanoic acid, and dimethylolpropionic acid are preferred. These can be used alone or in combination of two or more.
  • the unsaturated monocarboxylic acid (c) is not particularly limited as long as it has an unsaturated bond and a carboxyl group, but those having 3 to 20 carbon atoms are preferred. More preferably, it has 3 to 10 carbon atoms, and still more preferably 3 to 4 carbon atoms.
  • Examples of the unsaturated monocarboxylic acid (c) include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, ⁇ -acryloxypropionic acid, and hydroxyalkyl having one hydroxyl group and one (meth)acryloyl group.
  • a reaction product of a (meth)acrylate and a dibasic acid anhydride, a reaction product of a polyfunctional (meth)acrylate having one hydroxyl group and two or more (meth)acryloyl groups and a dibasic acid anhydride, etc. Can be mentioned. Among these, preferred are those having a (meth)acryloyl group, such as acrylic acid and methacrylic acid.
  • Methacrylic acid is particularly preferred from the viewpoint of producing a cured product of the resulting alkali-soluble resin with particularly excellent solvent resistance. These can be used alone or in combination of two or more.
  • an epoxy resin (a) having two or more epoxy groups in one molecule is reacted with a monobasic acid (b) having a hydroxyl group and an unsaturated monocarboxylic acid (c).
  • the epoxy resin (a) and the unsaturated monocarboxylic acid (c) may be reacted, and then the monobasic acid (b) having a hydroxyl group may be reacted with the epoxy resin (a).
  • the monocarboxylic acid (c) and the monobasic acid (b) having a hydroxyl group may be reacted all at once, or the epoxy resin (a) and the monobasic acid (b) having a hydroxyl group may be reacted, and then the unsaturated monocarboxylic acid (b) is reacted with the monobasic acid (b) having a hydroxyl group. It may be reacted with acid (c).
  • the total amount of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) used is 0.2 to 1 chemical equivalent (mole equivalent) of the epoxy group in the epoxy resin.
  • the amount is preferably 0.79 mol. When used in such a ratio, it becomes easier to improve the curability of the alkali-soluble resin finally obtained and the physical properties of the cured product.
  • the amount is preferably 0.3 to 0.76 mol, more preferably 0.4 to 0.73 mol.
  • the amount of the monobasic acid (b) having a hydroxyl group to be used is 0.01 to 0.5 mol, assuming that the total amount of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) is 1 mol. It is preferable that By using it in such a ratio, it is possible to more fully exhibit the effect of using the monobasic acid (b) having a hydroxyl group, while also ensuring a sufficient amount of polymerizable unsaturated double bonds to be introduced. This makes it possible to make the alkali-soluble resin finally obtained more excellent in curability and physical properties of the cured product.
  • the reaction of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) with respect to the epoxy resin (a) is carried out first.
  • the reaction may be carried out separately or at the same time.
  • These reactions are carried out using polymerization inhibitors such as hydroquinone and oxygen, and tertiary amines, trimethylphosphine, tributylphosphine, triphenylphosphine, etc., in the presence or absence of diluents such as polymerizable compounds and solvents, which will be described later.
  • reaction catalyst such as tertiary phosphine, lithium chloride, quaternary ammonium salt, or quaternary phosphonium salt.
  • reaction catalyst tertiary phosphine is preferred from the viewpoint of reaction efficiency, stability during reaction, and storage stability of the alkali-soluble resin, and triphenylphosphine is particularly preferred.
  • the amount of the reaction catalyst is not particularly limited, but it is preferably 0.05 to 5 parts by weight based on 100 parts by weight of the epoxy resin (a) having two or more epoxy groups in one molecule. More preferably, it is 0.1 to 3 parts by mass, and even more preferably 0.2 to 2 parts by mass.
  • a polymerization inhibitor may be used.
  • the polymerization inhibitor is not particularly limited, and known ones can be used, such as benzoquinone, hydroquinones (e.g., hydroquinone, hydroquinone monomethyl ether, p-tert-butylhydroquinone, p-benzoquinone, etc.), phenol, etc.
  • catechols e.g., p-tert-butylcatechol, etc.
  • amines e.g., N,N-diethylhydroxylamine, etc.
  • 1,1-diphenyl-2-picrylhydrazyl tri-p-nitrophenyl Methyl, phenothiazine, piperidine 1-oxyls (eg, 2,2,6,6-tetramethylpiperidine 1-oxyl, etc.), oxygen, and the like can be used.
  • the amount of the polymerization inhibitor used is 0.001 to 1% by mass based on 100% by mass of the epoxy resin (a) having two or more epoxy groups in one molecule. It is preferable that it is mass %. More preferably, it is 0.01 to 0.5% by mass.
  • the reaction temperature in the first step is not particularly limited as long as the reaction proceeds, but is preferably 80 to 140°C. By carrying out the reaction at such a temperature, the reaction can proceed efficiently.
  • the reaction temperature is more preferably 85 to 135°C, even more preferably 90 to 130°C.
  • the reaction product obtained by the reaction in the first step may be referred to as a "modified epoxy resin intermediate."
  • polybasic acid anhydride (d) is present in the modified epoxy resin intermediate by reacting the polybasic acid anhydride (d) with the modified epoxy resin intermediate.
  • the alkali-soluble resin of the present invention into which a carboxyl group has been introduced can be obtained by reacting with the hydroxyl group. Since the resulting alkali-soluble resin can be developed with alkali, it can be used as an alkali-developable curable resin for image formation and the like.
  • the modified epoxy resin intermediate contains a monobasic acid having a primary alcoholic hydroxyl group.
  • the epoxy group is opened by reacting the primary hydroxyl group derived from the acid (b), the monobasic acid (b) having a primary alcoholic hydroxyl group, and the unsaturated monocarboxylic acid (c) with the epoxy group in the epoxy resin.
  • a hydroxyl group formed by a ring is present.
  • the polybasic acid anhydride (d) can react with any hydroxyl group, but the monobasic acid (b) having a primary alcoholic hydroxyl group is used as the monobasic acid (b) having a hydroxyl group.
  • the primary hydroxyl group derived from the monobasic acid (b) having a primary alcoholic hydroxyl group has less steric hindrance than the hydroxyl group generated by ring opening of the epoxy group. It is thought that the polybasic acid anhydride (d) reacts preferentially with the primary hydroxyl group derived from the monobasic acid (b) having a primary alcoholic hydroxyl group.
  • the terminal -R 1 -O-R 2 has a structure represented by the above formula (9), and in the formulas (4) and (4'), R A structure in which the terminal structure after 4 is a structure represented by the above formula (12) is an example of a structure obtained by such a reaction.
  • the alkali-soluble resin obtained the double bond moiety introduced by the reaction with the remaining epoxy group or unsaturated monocarboxylic acid (c) and the polybasic acid anhydride (d) are removed.
  • the alkali-soluble resin has better curability and alkali developability because the carboxyl groups are present at a sufficient distance from each other and the functions of each functional group are more likely to be effectively exhibited.
  • the polybasic acid anhydride (d) is not particularly limited, but those having 3 to 30 carbon atoms are preferred. More preferably, it has 4 to 20 carbon atoms, even more preferably 4 to 10 carbon atoms.
  • polybasic acid anhydride (d) examples include phthalic anhydride, succinic anhydride, octenyl succinic anhydride, pentadecenyl succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, Dibasic acid anhydrides such as 3,6-endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, tetrabromophthalic anhydride, trimellitic acid; biphenyltetracarboxylic dianhydride, diphenyl ethertetracarboxylic dianhydride , butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, and other ali
  • polybasic acid anhydrides can be used. Among these, it is preferable to use dibasic acid anhydrides.
  • alkali-soluble resins such as phthalic anhydride, which have a cyclic structure in their structure, may be used.
  • the polybasic acid anhydride (d) is added from 0.1 mol to 1.1 mol to 1 chemical equivalent of hydroxyl group in the modified epoxy resin intermediate obtained by the reaction in the first step. It is preferable to react at a ratio of .
  • the temperature of the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step is not particularly limited as long as the reaction proceeds, but is preferably 45 to 75°C. By performing the reaction at such a temperature, the reaction can proceed efficiently and while suppressing the formation of high molecular weight products and gelation due to the reaction between the epoxy group and the introduced carboxyl group.
  • the reaction temperature is more preferably 50 to 70°C, even more preferably 55 to 65°C.
  • the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step is carried out in the presence or absence of a diluent such as a polymerizable compound or a solvent, which will be described later, to inhibit the polymerization of hydroquinone, oxygen, etc. It is preferable to carry out the reaction in the presence of an agent. Further, at this time, if necessary, the reaction catalyst used in obtaining the modified epoxy resin intermediate may be added, and here too, tertiary phosphine is preferred, and triphenylphosphine is particularly preferred. Note that the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) is carried out by adding the polybasic acid anhydride (d) to the reaction solution following the reaction for producing the modified epoxy resin intermediate. is simple.
  • a tertiary amine may be added to the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step.
  • a tertiary amine By adding a tertiary amine, the reaction efficiency is improved and the second step can be performed in a shorter time.
  • the tertiary amine one or more of trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, etc. can be used.
  • the amount of the tertiary amine used is 0.05 to 5 parts by mass per 100 parts by mass of the epoxy resin (a) having two or more epoxy groups in one molecule. Preferably. More preferably, it is 0.1 to 3 parts by weight, and even more preferably 0.15 to 1 part by weight.
  • the method for producing an alkali-soluble resin may include other steps as long as it includes the first step and second step.
  • Other steps include a step of linking molecules.
  • the alkali-soluble resin of the present invention can be used alone as a resist material, but the resin composition preferably contains at least an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator. Then, a coating film having a crosslinked structure is obtained through heat and photoreaction.
  • a photosensitive resin composition containing at least the alkali-soluble resin, polymerizable compound, and photopolymerization initiator of the present invention is also one of the present invention.
  • the alkali-soluble resin of the present invention is also referred to as alkali-soluble resin (A) in the photosensitive resin composition.
  • the content of the alkali-soluble resin (A) is not particularly limited, and may be appropriately set depending on the use and the combination of other components. It is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and even more preferably 80% by mass or less, based on 100% by mass of the total solid content of the product. It is preferably 75% by mass or less, more preferably 70% by mass or less. That is, the content of the alkali-soluble resin (A) is preferably 5 to 80% by mass, and preferably 10 to 75% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. The content is more preferably 15 to 70% by mass.
  • total solid content refers to the total amount of components forming the cured product, that is, the total amount of components (solid content, nonvolatile content) excluding solvents etc. that volatilize during formation of the cured product.
  • total solid of the alkali-soluble resin, polymerizable compound, photopolymerization initiator, and other cured product forming components for example, coloring material, dispersant, etc.
  • total solid of the alkali-soluble resin, polymerizable compound, photopolymerization initiator, and other cured product forming components for example, coloring material, dispersant, etc.
  • the polymerizable compound contained in the photosensitive resin composition of the present invention is a polymerizable unsaturated bond that can be polymerized by free radicals, electromagnetic waves (e.g., infrared rays, ultraviolet rays, X-rays, etc.), irradiation with active energy rays such as electron beams, etc. (also referred to as a polymerizable unsaturated group), examples of which include monofunctional compounds having one polymerizable unsaturated group in the molecule and polyfunctional compounds having two or more polymerizable unsaturated groups.
  • electromagnetic waves e.g., infrared rays, ultraviolet rays, X-rays, etc.
  • active energy rays such as electron beams, etc.
  • Examples of the above-mentioned monofunctional compounds include N-substituted maleimide monomers; (meth)acrylic esters; (meth)acrylamides; unsaturated monocarboxylic acids; unsaturated polycarboxylic acids; unsaturated groups and carboxyl Unsaturated monocarboxylic acids with chain extension between groups; unsaturated acid anhydrides; aromatic vinyls; conjugated dienes; vinyl esters; vinyl ethers; N-vinyl compounds; unsaturated isocyanates; etc. can be mentioned. Furthermore, monomers having an active methylene group or an active methine group can also be used.
  • polyfunctional compound examples include the following compounds. Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol Bifunctional (meth)acrylate compounds such as di(meth)acrylate, bisphenol A alkylene oxide di(meth)acrylate, and bisphenol F alkylene oxide di(meth)acrylate; Trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate,
  • Ethylene glycol divinyl ether diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, ditri Methylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, ethylene oxide trimethylolpropane trivinyl ether, ethylene oxide ditrimethylolpropane tetravinyl ether, ethylene oxide pentaerythritol tetravinyl
  • Ethylene glycol diallyl ether diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol F alkylene oxide diallyl ether, trimethylolpropane triallyl ether, Ditrimethylolpropane tetraallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide added trimethylolpropane triallyl ether, ethylene oxide added ditrimethylolpropane tetraallyl ether, Polyfunctional allyl ethers such as ethylene oxide-added pentaerythritol te
  • Polyfunctional urethane (meth)acrylates obtained by the reaction of polyfunctional isocyanate with hydroxyl group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; Polyfunctional aromatic vinyls such as divinylbenzene; etc. These polymerizable compounds may be used alone or in combination of two or more.
  • polyfunctional polymerizable compounds are preferred as the polymerizable compound contained in the photosensitive resin composition of the present invention, from the viewpoint of further enhancing the curability of the photosensitive resin composition.
  • the functional number (number of functional groups) of the polyfunctional polymerizable compound is preferably 3 or more, more preferably 4 or more. Further, the functional number is preferably 10 or less, more preferably 8 or less. From the viewpoint of reactivity, economy, availability, etc., the polyfunctional polymerizable compound is preferably a polyfunctional (meth)acrylate compound, a polyfunctional urethane (meth)acrylate compound, or a (meth)acryloyl group-containing isocyanurate compound.
  • Examples include compounds having a (meth)acryloyl group such as, and more preferably polyfunctional (meth)acrylate compounds.
  • a compound having a (meth)acryloyl group By including a compound having a (meth)acryloyl group, the photosensitive resin composition becomes more excellent in photosensitivity and curability, and a cured product with even higher hardness and higher transparency can be obtained.
  • the polyfunctional polymerizable compound it is more preferable to use a trifunctional or more polyfunctional (meth)acrylate compound.
  • the above-mentioned polymerizable compounds include those with various structures, and their molecular weights are not particularly limited, but from the viewpoint of handling, the polymerizable compounds contained in the photosensitive resin composition of the present invention, for example, have a molecular weight of 2000 or less. Preferably.
  • a polymer having a vinyl ether group in its side chain improves the curability of the resin composition, but may reduce storage stability. It is preferable that the polymerizable compound does not contain a polymer having a vinyl ether group in its side chain.
  • the content of the polymerizable compound is not particularly limited and may be set as appropriate as long as the effects of the present invention are exhibited.
  • viscosity it is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition.
  • the photopolymerization initiator contained in the photosensitive resin composition of the present invention is preferably a radically polymerizable photopolymerization initiator.
  • a radically polymerizable photopolymerization initiator is one that generates polymerization initiation radicals by irradiation with active energy rays such as electromagnetic waves and electron beams.
  • the photopolymerization initiator examples include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one ("IRGACURE907", manufactured by BASF), 2-benzyl -2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 ("IRGACURE369", manufactured by BASF), 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholinophenyl) Aminoketone compounds such as phosphorus-4-yl-phenyl)-butan-1-one ("IRGACURE379", manufactured by BASF); 2,2-dimethoxy-1,2-diphenylethan-1-one ("IRGACURE651", Benzyl ketal compounds such as phenylglyoxylic acid methyl ester (“DAROCUR MBF”, manufactured by BASF); 1-hydroxy-cyclohexyl-phenyl-ketone (“IRGACURE184”, manufactured by BASF), 2- Hydroxy-2
  • the content of the photopolymerization initiator is not particularly limited and may be set appropriately as long as the effects of the present invention are exhibited.
  • the total solid content of the photosensitive resin composition of the present invention is 100 It is preferably 0.3 to 20% by mass, more preferably 0.5 to 10% by mass, and even more preferably 1 to 8% by mass.
  • the photosensitive resin composition (also simply referred to as a resin composition) of the present invention has an epoxy group-containing structure, a carboxyl group-containing structure, and a polymerizable unsaturated bond-containing structure, and has an epoxy equivalent of 50,000 g/equivalent or less.
  • a resin composition has an epoxy equivalent of 50,000 g/equivalent or less.
  • the photosensitive resin composition of the present invention further contains a photoacid generator.
  • a photoacid generator By further containing a photoacid generator, the curability of the photosensitive resin composition can be further improved.
  • Photoacid generators are compounds that generate acids when exposed to active energy rays such as radiation, and include strong acids such as toluenesulfonic acid or boron tetrafluoride, sulfonium salts, ammonium salts, phosphonium salts, and iodonium salts.
  • Onium salts such as salts or selenium salts; iron-alene complexes; silanol-metal chelate complexes; sulfones such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, benzoinsulfonates
  • sulfones such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, benzoinsulfonates
  • acids include acid derivatives; organic halogen compounds; and the like.
  • the content of the photoacid generator is preferably 0.3 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. It is preferably 1 to 8% by mass, and more preferably 1 to 8% by mass.
  • the photosensitive resin composition of the present invention preferably contains a solvent.
  • a solvent By including a solvent, it becomes possible to apply the photosensitive resin composition onto a base material to form a film.
  • the solvent is not particularly limited, and includes hydrocarbons such as toluene and xylene; cellosolves such as cellosolve and butyl cellosolve; carbitols such as carbitol and butyl carbitol; cellosolve acetate, carbitol acetate, (di)propylene glycol monomethyl Esters such as ether acetate, (di)methyl glutarate, (di)methyl succinate, (di)methyl adipate; Ketones such as methyl isobutyl ketone and methyl ethyl ketone; Ethers such as (di)ethylene glycol dimethyl ether, etc. Can be mentioned.
  • the content of the above-mentioned solvent is not particularly limited, and is preferably set appropriately depending on the usage form (for example, application, etc.) of the photosensitive resin composition.
  • the total solid content in 100% by mass of the photosensitive resin composition is more preferably 5 to 70% by mass, particularly preferably 10 to 50% by mass.
  • the photosensitive resin composition of the present invention may further contain, if necessary, a phosphoric acid derivative, a coloring material, a photoacid generator, a photobase generator, a polyfunctional thiol compound, a dispersant, talc, clay, barium sulfate, silica, etc.
  • a phosphoric acid derivative a coloring material
  • a photoacid generator a photobase generator
  • a polyfunctional thiol compound a dispersant
  • talc clay
  • barium sulfate silica
  • additives may also be added.
  • various reinforcing fibers can be used as reinforcing fibers to produce a fiber-reinforced composite material.
  • the content of the above-mentioned known additive in the photosensitive resin composition of the present invention is preferably 70% by mass or less based on 100% by mass of the photosensitive resin composition. More preferably, it is 60% by mass or less, and still more preferably 50% by mass or less.
  • the lower limit can be set depending on the application, but is 0% by mass or more, more preferably 0.1% by mass or more, and even more preferably 1% by mass or more. That is, the content of the above additive is preferably 0 to 70% by mass, more preferably 0.1 to 60% by mass, and even more preferably 1 to 60% by mass, based on 100% by mass of the photosensitive resin composition. It is 50% by mass.
  • the method for preparing the photosensitive resin composition of the present invention is not particularly limited, and any known method may be used. For example, there is a method of mixing and dispersing the above-mentioned components using various mixers and dispersers. Further, the method for preparing the photosensitive resin composition of the present invention may include steps other than the step of mixing and dispersing each component. Other steps include, for example, a coloring material dispersion treatment step when the photosensitive resin composition contains a coloring material.
  • the film thickness is preferably 0.1 ⁇ m or more. When the film thickness is 0.1 ⁇ m or more, even more excellent solvent resistance can be exhibited.
  • the film thickness is more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • the upper limit of the film thickness is not particularly limited and may be set appropriately depending on the purpose and use of the cured film, but for example, it is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and 10 ⁇ m or less. It is even more preferable that there be. That is, the film thickness is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 15 ⁇ m, and even more preferably 1 to 10 ⁇ m.
  • the thickness of the cured film can be measured using a commercially available film thickness measuring device.
  • the method for obtaining the cured product is not particularly limited, and any known method may be used.
  • the above-mentioned alkali-soluble resin (solution) or photosensitive resin composition is applied or molded onto a base material and cured by drying, heating, irradiation with energy rays such as ultraviolet rays, or a combination thereof.
  • a method for obtaining a cured product can be mentioned.
  • the method for producing a cured product includes a step of coating the photosensitive resin composition on a substrate to form a coating film, a step of irradiating the formed coating film with light, and a step of exposing the irradiated coating film to light.
  • a method including a step of heating at 160° C. or lower is preferred.
  • the base material include those similar to the color filter substrate described below.
  • the method of coating the photosensitive resin composition on a substrate to form a coating film is not particularly limited, and can be performed by known methods such as spin coating, slit coating, roll coating, and cast coating.
  • the above-mentioned drying can be performed by a known method, and specifically, it can be performed by a method similar to the drying method described in "Arrangement step" of "Color filter manufacturing method” described below.
  • the method of irradiating the formed coating film with light is not particularly limited and can be carried out by any known method. Specifically, the method described in "Light irradiation step" in “Production method of color filter” described below This can be done in a similar way.
  • the irradiation may be performed through a photomask.
  • the photomask it is preferable to use a mask in which a light-shielding portion is formed according to the intended pattern.
  • light irradiation is performed through a photomask, it is preferable to perform a development step after that. By performing the development process, a desired pattern can be formed in the coating film.
  • the developing method is not particularly limited and can be carried out by any known method. Specifically, it can be carried out by the same method as described in "Developing step” in "Color filter manufacturing method” described below. can.
  • the above manufacturing method also includes a step of heating the light-irradiated coating film at 160° C. or lower. Since the above-mentioned manufacturing method uses the above-described photosensitive resin composition, the heating step (post-curing step) after irradiation with light can be performed under relatively low-temperature conditions such as 160° C. or lower.
  • the heating temperature is preferably 155°C or lower, more preferably 150°C or lower.
  • the lower limit of the heating temperature is preferably 70° C. or higher, more preferably 90° C. or higher in terms of maintaining curability. That is, the heating temperature is preferably 70 to 160°C, more preferably 90 to 155°C, even more preferably 90 to 150°C.
  • the above-mentioned heating method other than temperature is not particularly limited and can be carried out by any known method, for example, by the same method as described in "Heating step” of "Color filter manufacturing method” described below. I can do it.
  • the alkali-soluble resin of the present invention and the photosensitive resin composition containing the same have excellent alkali developability. Furthermore, even under low-temperature curing conditions of 160° C. or lower, for example about 90° C., the curing reaction can proceed sufficiently and a cured product with excellent solvent resistance can be obtained. Therefore, it can be suitably used in applications that require sufficient curing under low-temperature conditions and applications that require solvent resistance.
  • the alkali-soluble resin and photosensitive resin composition of the present invention are used in color filters used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc.
  • the photosensitive resin composition of the present invention is suitably used as an optical material, and also suitably used as a negative type.
  • a color filter having a cured product of the above-mentioned photosensitive resin composition on a substrate is also one of the preferred uses of the alkali-soluble resin of the present invention and the photosensitive resin composition containing the same.
  • the cured product formed from the photosensitive resin composition of the present invention is particularly suitable for use as a black matrix or segments that require coloring such as red, green, blue, yellow, etc. pixels.
  • it is also suitable as a material for segments that do not necessarily require coloring, such as photo spacers, protective layers, and alignment control ribs.
  • Substrates used in the above color filters include, for example, glass substrates such as white glass, blue glass, alkali-strengthened glass, and silica-coated blue glass; ring-opening polymers of polyester, polycarbonate, polyolefin, polysulfone, and cyclic olefin, and their hydrogen Sheets, films, or substrates made of thermoplastic resins such as additives; Sheets, films, or substrates made of thermosetting resins such as epoxy resins and unsaturated polyester resins; Metal substrates such as aluminum plates, copper plates, nickel plates, and stainless steel plates.
  • glass substrates such as white glass, blue glass, alkali-strengthened glass, and silica-coated blue glass
  • Ceramic substrates Semiconductor substrates having photoelectric conversion elements; Members made of various materials such as glass substrates with coloring material layers on their surfaces (for example, color filters for LCDs); and the like.
  • glass substrates and sheets, films, or substrates made of heat-resistant resin are preferred.
  • the substrate is a transparent substrate.
  • the substrate may be subjected to corona discharge treatment, ozone treatment, chemical treatment using a silane coupling agent, etc., as necessary.
  • a step (also referred to as an arrangement step) of disposing the above-mentioned photosensitive resin composition on a substrate for each pixel of one color (that is, for each pixel of one color), and a step of disposing the above-mentioned photosensitive resin composition on the substrate.
  • a step of irradiating the placed photosensitive resin composition with light also referred to as a light irradiation step
  • a step of developing with a developer also referred to as a developing step
  • a step of heat treatment also referred to as a heating step. It is preferable to adopt a manufacturing method in which the same method is repeated for each color. Note that the order in which pixels of each color are formed is not particularly limited. Each step will be explained below.
  • Placement process (preferably coating process)
  • the above-mentioned arrangement step is preferably performed by coating.
  • methods for applying the photosensitive resin composition onto the substrate include spin coating, slit coating, roll coating, and cast coating, and any of these methods can be preferably used.
  • the coating film can be dried using, for example, a hot plate, an IR oven, a convection oven, or the like. Drying conditions are appropriately selected depending on the boiling point of the solvent component contained, the type of curing component, the film thickness, the performance of the dryer, etc., but it is usually carried out at a temperature of 50 to 160°C for about 10 seconds to 60 minutes. is suitable.
  • the active energy light source used includes, for example, a xenon lamp, a halogen lamp, a tungsten lamp, a high pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a medium pressure mercury lamp, and a low pressure mercury lamp.
  • a lamp light source such as a carbon arc or a fluorescent lamp
  • a laser light source such as an argon ion laser, a YAG laser, an excimer laser, a nitrogen laser, a helium cadmium laser, or a semiconductor laser.
  • the method of the exposure machine there are a proximity method, a mirror projection method, and a stepper method, and the proximity method is preferably used.
  • active energy light may be irradiated through a predetermined mask pattern depending on the application.
  • the exposed area is cured, and the cured area is made insoluble or poorly soluble in the developer.
  • the development process is a process in which, after the light irradiation process described above, development is performed using a developer to remove unexposed areas and form a pattern. Thereby, a patterned cured film can be obtained.
  • the development treatment can be carried out usually at a development temperature of 10 to 50° C. by methods such as immersion development, spray development, brush development, and ultrasonic development.
  • the developer used in the above development step is not particularly limited as long as it dissolves the photosensitive resin composition, but organic solvents and alkaline aqueous solutions are usually used, and mixtures thereof may also be used.
  • organic solvent and alkaline aqueous solution include those described in JP-A No. 2015-157909.
  • the heating process is a process (also referred to as a "post-curing process") of further curing the exposed area (cured area) by baking after the above-described development process.
  • Examples include a process of post-exposure at a light intensity of 0.5 to 5 J/cm 2 using a light source such as a high-pressure mercury lamp, and a process of post-heating at a temperature of 60 to 200°C for 10 seconds to 120 minutes. It will be done.
  • a post-curing step it is possible to further increase the hardness and adhesion of the patterned cured film.
  • the above heating step is generally carried out at a temperature of about 200 to 260°C, but if the above photosensitive resin composition is used, it can be carried out at a relatively low temperature of 200°C or lower, preferably 160°C or lower. Sufficient curing can be achieved. Therefore, a product with excellent solvent resistance can be obtained without impairing the properties held by the substrate or the cured product.
  • the heating temperature is preferably 160°C or lower, more preferably 155°C or lower, and even more preferably 150°C or lower.
  • the heating temperature is preferably 70°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher.
  • the heating temperature is preferably 70 to 160°C, more preferably 90 to 155°C, and even more preferably 95 to 150°C.
  • the heating time in the heating step is not particularly limited, but is preferably 5 to 60 minutes, for example.
  • the heating method is not particularly limited, but it can be performed using a heating device such as a hot plate, a convection oven, or a high-frequency heater.
  • the thickness of the cured film obtained by the heating step is preferably 0.1 to 20 ⁇ m.
  • the film thickness is more preferably 0.5 to 15 ⁇ m, and even more preferably 1 to 10 ⁇ m.
  • the color filter described above can be suitably used in a display device. That is, the cured product obtained by curing the alkali-soluble resin and photosensitive resin composition of the present invention can be suitably used as a member for a display device.
  • a display device member including a cured product obtained by curing the alkali-soluble resin and photosensitive resin composition of the present invention, and a display device including the display device member are also part of the present invention.
  • the cured product (cured film) formed from the above photosensitive resin composition is stable, has excellent adhesion and solvent resistance, and has high hardness, as well as high smoothness and high transmittance. Therefore, it is particularly suitable as a transparent member, and is also useful as a protective film or an insulating film in various display devices.
  • the display device for example, a liquid crystal display device, a solid-state image sensor, a touch panel type display device, etc. are suitable.
  • the above-mentioned cured product (cured film) is used as a member for a display device
  • the member may be a film-like single-layer or multi-layer member composed of the above-mentioned cured film, or the above-mentioned single-layer or multi-layer member. It may be a member in which another layer is combined with the above member, or it may be a member that includes the above-mentioned cured film in its structure.
  • the alkali-soluble resin and photosensitive resin composition of the present invention have excellent alkali developability and can provide a cured product with excellent solvent resistance even under low temperature curing conditions.
  • the alkali-soluble resin and photosensitive resin composition of the present invention can be used as various optical members and structural members used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc. It can be suitably used in various applications such as electrical machinery and electronic equipment.
  • Double bond equivalent (g/equivalent) It was determined by dividing the mass (g) of the resin solid content by the double bond amount (mol) of the resin.
  • (4) Alkali Solubility Using each alkali soluble resin solution, the formulations shown in Table 1 were prepared to obtain photosensitive resin compositions. It was applied onto a glass plate by spin coating, dried at 80°C for 30 minutes, cooled to room temperature, immersed in a 1% by mass sodium carbonate aqueous solution at 30°C for 30 seconds, and the presence of the remaining coating film was visually checked using the following criteria. evaluated.
  • Example 1 Synthesis of alkali-soluble resin solution A-1
  • a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet 118.8 parts of propylene glycol monomethyl ether acetate and cresol novolac type epoxy resin YDCN- were added.
  • 207.6 parts of 704A manufactured by Nippon Steel Chemical & Materials Co., Ltd., epoxy equivalent: 207.6 g/equivalent
  • 0.4 part of triphenylphosphine as a reaction catalyst
  • Antige W-400 Korean Chemical Industry Co., Ltd.
  • Example 2 Synthesis of alkali-soluble resin solution A-2 109.8 parts of propylene glycol monomethyl ether acetate used in Example 1 was placed in a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet. 207.6 parts of the same cresol novolac type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.2 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 20.2 parts of acrylic acid were added to carry out an addition reaction.
  • Example 3 Synthesis of alkali-soluble resin solution A-3 123.6 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 38.7 parts of methacrylic acid were added to carry out an addition reaction.
  • Example 4 Synthesis of alkali-soluble resin solution A-4 129.1 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 31.3 parts of acrylic acid were added to carry out an addition reaction.
  • Example 5 Synthesis of alkali-soluble resin solution A-5 Into a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, 112.4 parts of propylene glycol monomethyl ether acetate was added, and biphenyl-type epoxy resin YX4000 (Mitsubishi 187 parts of epoxy equivalent (manufactured by Chemical Co., Ltd., epoxy equivalent: 187 g/equivalent), 0.4 part of triphenylphosphine as a reaction catalyst, and 0.2 part of Antige W-400 as a polymerization inhibitor were charged, and the mixture was heated to 110°C.
  • biphenyl-type epoxy resin YX4000 Mitsubishi 187 parts of epoxy equivalent (manufactured by Chemical Co., Ltd., epoxy equivalent: 187 g/equivalent)
  • triphenylphosphine as a reaction catalyst
  • Antige W-400 as a polymerization inhibitor
  • Example 6 Synthesis of alkali-soluble resin solution A-6 118.8 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 40.4 parts of acrylic acid were added to carry out an addition reaction.
  • Example 7 Synthesis of alkali-soluble resin solution A-7
  • a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet add 115 parts of propylene glycol monomethyl ether acetate, the same as that used in Example 1.
  • 207.6 parts of cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. . While maintaining the same temperature, 14.8 parts of dimethylolpropionic acid and 44.7 parts of acrylic acid were added to carry out an addition reaction.
  • Example 8 Synthesis of alkali-soluble resin solution A-8 In a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, add 123 parts of propylene glycol monomethyl ether acetate, the same as that used in Example 1. 207.6 parts of cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. . While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 49.9 parts of methacrylic acid were added to carry out an addition reaction.
  • Comparative example 1 Synthesis of Comparative Alkali-Soluble Resin Solution B-1 129.7 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. The temperature rose to . While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 58.4 parts of acrylic acid were added to carry out an addition reaction.
  • Comparative example 2 Synthesis of comparative alkali-soluble resin solution B-2 115 parts of propylene glycol monomethyl ether acetate used in Example 1 was placed in a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 52.1 parts of acrylic acid was added to carry out an addition reaction.
  • Examples 9 to 16, Comparative Examples 3 and 4 Using the alkali-soluble resins A-1 to A-8 synthesized in Examples 1 to 8 and the comparative alkali-soluble resin solutions B-1 and B-2 synthesized in Comparative Examples 1 and 2, the Photosensitive resin compositions of Examples 9 to 16 and Comparative Examples 3 and 4 were prepared by mixing a polymerizable compound (polyfunctional monomer), a photopolymerization initiator, and the like. Table 2 shows the results of various characteristic evaluations of the obtained photosensitive resin composition.
  • a polymerizable compound polyfunctional monomer
  • Table 2 shows the results of various characteristic evaluations of the obtained photosensitive resin composition.
  • the photosensitive resin composition containing an alkali-soluble resin having a specific structure and an epoxy equivalent of 50,000 g/equivalent or less has good alkali solubility and photocurability, and is also resistant to curing at a low temperature of 90°C. It was found that a cured product with excellent solvent resistance can be obtained even when using the same method. Furthermore, since the photosensitive resin compositions of Examples 11, 12, and 16 showed particularly excellent solvent resistance, by using methacrylic acid as the unsaturated monocarboxylic acid and tetrahydrophthalic anhydride as the polybasic acid anhydride, It was suggested that the solvent resistance was more markedly expressed and that the alkali-soluble resin having an alkyl group and a cyclic structure had more superior properties.
  • the photosensitive resin composition of the present invention has excellent curability and alkali developability, is suitable for resists for forming members in the electronic information field, such as plating resists and resists for color filters, and has excellent solvent resistance. Therefore, it is particularly suitable for forming pixels (colored layers) of color filters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides: an alkali-soluble resin that can give highly solvent-resistant cured products even under low-temperature curing conditions and can be suitably used for various applications such as color filters; and a photosensitive resin composition containing said resin. The present invention pertains to an alkali-soluble resin having a specific structure of an epoxy group-containing structure, a carboxyl group-containing structure, and a polymerizable unsaturated bond-containing structure, and having an epoxy equivalent weight of 50000 g/eq or less.

Description

アルカリ可溶性樹脂、感光性樹脂組成物及びその硬化物Alkali-soluble resin, photosensitive resin composition and cured product thereof
本発明は、アルカリ可溶性樹脂、感光性樹脂組成物に関する。より詳しくは、低温硬化条件でも耐溶剤性に優れた硬化物を与えることができるアルカリ可溶性樹脂、感光性樹脂組成物及びその硬化物に関する。 The present invention relates to an alkali-soluble resin and a photosensitive resin composition. More specifically, the present invention relates to an alkali-soluble resin, a photosensitive resin composition, and a cured product thereof, which can provide a cured product with excellent solvent resistance even under low-temperature curing conditions.
アルカリ可溶性樹脂は、土木建築分野から電子情報分野に至るまで様々な分野で使用される化合物である。中でも光や電子線照射によって硬化するアルカリ可溶性樹脂は、光や電子線を照射した部分は硬化し、その他の部分は溶解性を示すといった特性を有することから、この特性を利用してアルカリ現像型のレジスト組成物(感光性樹脂組成物とも称す)等の材料として好ましく使用されている。このようなレジスト組成物は、例えば、液晶表示装置や固体撮像素子等に用いられるカラーフィルター、インキ、印刷版、プリント配線板、半導体素子、フォトレジスト、有機絶縁膜、有機保護膜等の、各種の光学部材や電機・電子機器等へ適用され、又は適用が種々検討されている。近年では、光学部材や電機・電子機器等の小型化・薄型化・省エネルギー化が進みつつあり、それに伴って、使用される各種部材等にはより高品位な性能が要望されている。そのような要望に応えるため、各種部材等の材料となる感光性樹脂組成物について研究が行われている。 Alkali-soluble resins are compounds used in various fields ranging from the civil engineering and construction field to the electronic information field. Among them, alkali-soluble resins that are hardened by light or electron beam irradiation have the property that the parts irradiated with light or electron beams harden, while other parts remain soluble. It is preferably used as a material for resist compositions (also referred to as photosensitive resin compositions). Such resist compositions can be used in various applications such as color filters, inks, printing plates, printed wiring boards, semiconductor devices, photoresists, organic insulating films, and organic protective films used in liquid crystal display devices, solid-state image sensors, etc. It has been applied to optical components, electric/electronic equipment, etc., or various applications are being considered. In recent years, optical components, electrical machinery, electronic devices, and the like have become smaller, thinner, and more energy-saving, and as a result, the various components used are required to have higher quality performance. In order to meet such demands, research is being conducted on photosensitive resin compositions that can be used as materials for various members and the like.
感光性樹脂組成物としてはこれまでに、求められる特性に応じた様々なものが開発されている。例えば特許文献1では、エポキシ基を有する化合物、光塩基発生剤、チオール基を有する硬化剤、不飽和結合を有する単量体、及び光照射によりラジカルを発生するラジカル発生剤を含有する光硬化型樹脂組成物が開示されており、露光前に形成される塗膜とした際にタック性の無い光硬化型樹脂組成物を見出している。
また、特許文献2では、末端に存在する官能基種類によって区分される3種の(メタ)アクリレート繰り返し単位を含有してアルカリ可溶性、光硬化性および熱硬化性を全て有する共重合体、これを用いた感光性樹脂組成物が開示されている。これは、相対的に低い温度で優れた熱硬化性を有し、光照射による光硬化も行うことができて、向上した硬化度を有し、優れた耐久性および耐化学性を有するパターンフィルムが得られている。
Various photosensitive resin compositions have been developed so far depending on the required characteristics. For example, in Patent Document 1, a photocurable type containing a compound having an epoxy group, a photobase generator, a curing agent having a thiol group, a monomer having an unsaturated bond, and a radical generator that generates radicals when exposed to light. A resin composition has been disclosed, and a photocurable resin composition that does not have tackiness when formed into a coating film before exposure has been discovered.
Furthermore, in Patent Document 2, a copolymer containing three types of (meth)acrylate repeating units categorized by the type of functional group present at the terminal and having all of alkali-soluble, photocurable, and thermosetting properties; The photosensitive resin composition used is disclosed. This pattern film has excellent thermosetting properties at relatively low temperatures, can also be photocured by light irradiation, has improved degree of curing, and has excellent durability and chemical resistance. is obtained.
特開2013-181991号公報Japanese Patent Application Publication No. 2013-181991 特表2021-521310号公報Special Publication No. 2021-521310
上述のように感光性樹脂組成物について、これまでに種々検討されているが、従来の感光性樹脂組成物を、例えばカラーフィルター等の原料として色材とともに使用すると、カラーフィルターの製造中に原料から洗浄溶剤中に色材が溶出するという問題があった。そのため、感光性樹脂組成物の耐溶剤性の更なる向上が求められていた。
また近年、特にカラーフィルター用途において、カラー液晶表示装置等の高品質化や用途の拡大により、表示パネルの高輝度化、高コントラスト化等、より高度な性能が強く求められている。しかしながら、カラーフィルターの製造では、露光して現像した後の焼成処理工程(後硬化工程)を200℃超の高温で行うと、得られた硬化物に黄変等の変色が生じ、所望の色による高着色化を十分に行うことができないといった問題があった。また、焼成処理工程を高温で行うと、不要な反応が進行して副生物が生じ、基材や硬化膜の特性を低下させるという問題もあった。そのような不要な反応を抑制し、所望の特性を有するカラーフィルターを効率良く得るには、200℃以下の比較的低温な加熱条件下でも硬化反応が十分に進行することが望ましい。また、感光性樹脂組成物を比較的低温で硬化させることができると、カラーフィルターの製造効率も向上させることができる。
特許文献1、2に記載の組成物では、硬化性および耐溶剤性において十分ではなく、これらの特性を改善する余地があった。
As mentioned above, various studies have been conducted on photosensitive resin compositions, but when conventional photosensitive resin compositions are used together with colorants as raw materials for color filters, for example, the raw materials are used during the production of color filters. There was a problem that the coloring material was eluted into the cleaning solvent. Therefore, there has been a demand for further improvement in the solvent resistance of photosensitive resin compositions.
Furthermore, in recent years, especially in color filter applications, as the quality of color liquid crystal display devices and the like has increased and applications have expanded, there has been a strong demand for display panels with higher performance, such as higher brightness and higher contrast. However, in the production of color filters, if the baking treatment step (post-curing step) after exposure and development is performed at a high temperature of over 200°C, discoloration such as yellowing occurs in the resulting cured product, resulting in the desired color. There was a problem that high coloring could not be achieved sufficiently. Furthermore, when the firing process is performed at high temperatures, unnecessary reactions proceed and by-products are produced, which causes a problem of deterioration of the properties of the base material and cured film. In order to suppress such unnecessary reactions and efficiently obtain a color filter having desired characteristics, it is desirable that the curing reaction proceed sufficiently even under heating conditions at a relatively low temperature of 200° C. or lower. Furthermore, if the photosensitive resin composition can be cured at a relatively low temperature, the production efficiency of color filters can also be improved.
The compositions described in Patent Documents 1 and 2 were not sufficient in curability and solvent resistance, and there was room for improvement in these properties.
本発明は、上記現状に鑑みてなされたものであり、低温硬化条件下でも、耐溶剤性に優れた硬化物を与えることができ、カラーフィルター等の各種用途に好適に使用することができるアルカリ可溶性樹脂、その樹脂を含む感光性樹脂組成物を提供することを目的とする。 The present invention was made in view of the above-mentioned current situation, and is an alkali that can provide a cured product with excellent solvent resistance even under low temperature curing conditions and can be suitably used for various uses such as color filters. The present invention aims to provide a soluble resin and a photosensitive resin composition containing the resin.
本発明者は上記の課題を解決するために鋭意検討した結果、特定のエポキシ基含有構造、カルボキシル基含有構造及び重合性不飽和結合含有構造を有し、エポキシ当量が50000g/当量以下であるアルカリ可溶性樹脂を用いること、さらにはこのような特定のアルカリ可溶性樹脂、重合性化合物、及び光重合開始剤を含む感光性樹脂組成物を用いることで、上記の課題を解決できることの知見を得て、本発明を完成するに至った。 As a result of extensive studies to solve the above problems, the present inventors found that an alkali having a specific epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure and having an epoxy equivalent of 50,000 g/equivalent or less Having obtained the knowledge that the above problems can be solved by using a soluble resin and further by using a photosensitive resin composition containing such a specific alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator, The present invention has now been completed.
すなわち、本発明の目的は、下記<1>~<8>により達成される。
<1>下記式(1)で表される構造及び下記式(2)で表される構造から選択される少なくとも1つのエポキシ基含有構造と、下記式(3)~(4’)で表される構造から選択される少なくとも1つのカルボキシル基含有構造と、下記式(5)で表される構造及び下記式(5’)で表される構造から選択される少なくとも1つの重合性不飽和結合含有構造とを有し、エポキシ当量が50000g/当量以下であることを特徴とするアルカリ可溶性樹脂。
That is, the objects of the present invention are achieved by the following <1> to <8>.
<1> At least one epoxy group-containing structure selected from the structure represented by the following formula (1) and the structure represented by the following formula (2), and the structure represented by the following formulas (3) to (4') at least one carboxyl group-containing structure selected from the structure represented by the following formula (5) and at least one polymerizable unsaturated bond-containing structure selected from the structure represented by the following formula (5') An alkali-soluble resin having the following structure and having an epoxy equivalent of 50,000 g/equivalent or less.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(2)、(3’)、(4’)及び(5’)中、mは1~10の整数である。式(3)及び(3’)中、Rは、同一又は異なって、2価の有機基を表す。式(3)~(5’)中、R及びRは、同一又は異なって、水素原子又は式(6)で表される基であり、Rの少なくとも一つは式(6)で表される基である。式(4)及び(4’)中、Rは、同一又は異なって、3価の有機基を表す。式(5)及び(5’)中、R、R及びRは、同一又は異なって、水素原子又は炭素数1~6の炭化水素基を表す。R、Rは、同一又は異なって、直接結合又は2価の有機基を表す。式(6)中、R10は、2価の有機基を表す。)
<2>酸価が30~200mgKOH/gであることを特徴とする<1>に記載のアルカリ可溶性樹脂。
<3>前記<1>又は<2>に記載のアルカリ可溶性樹脂、重合性化合物及び光重合開始剤を含むことを特徴とする感光性樹脂組成物。
<4>前記<1>又は<2>に記載のアルカリ可溶性樹脂、又は、<3>に記載の感光性樹脂組成物を硬化してなることを特徴とする硬化物。
<5>前記<4>に記載の硬化物を含むことを特徴とする表示装置用部材。
<6>前記<5>に記載の表示装置用部材を含むことを特徴とする表示装置。
<7>アルカリ可溶性樹脂を製造する方法であって、
該製造方法は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)に1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)を反応させる第一工程と、
該第一工程で得られた反応生成物に多塩基酸無水物(d)を反応させる第二工程とを含み、
得られるアルカリ可溶性樹脂のエポキシ当量が50000g/当量以下となるように、該第一工程での1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)の使用量を調整して行われることを特徴とするアルカリ可溶性樹脂の製造方法。
<8>感光性樹脂組成物を製造する方法であって、
該製造方法は、<7>に記載のアルカリ可溶性樹脂の製造方法でアルカリ可溶性樹脂を製造する工程と、
得られたエポキシ当量が50000g/当量以下のアルカリ可溶性樹脂、重合性化合物及び光重合開始剤を混合する工程とを含むことを特徴とする感光性樹脂組成物の製造方法。
(In formulas (2), (3'), (4') and (5'), m is an integer of 1 to 10. In formulas (3) and (3'), R 1 is the same or different represents a divalent organic group.In formulas (3) to (5'), R 2 and R 3 are the same or different and are a hydrogen atom or a group represented by formula (6), and R 2 is a group represented by formula (6).In formulas (4) and (4'), R 4 is the same or different and represents a trivalent organic group.Formula (5) and In (5'), R 5 , R 6 and R 7 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 8 and R 9 are the same or different and represent a direct bond or represents a divalent organic group.In formula (6), R10 represents a divalent organic group.)
<2> The alkali-soluble resin according to <1>, which has an acid value of 30 to 200 mgKOH/g.
<3> A photosensitive resin composition comprising the alkali-soluble resin described in <1> or <2> above, a polymerizable compound, and a photopolymerization initiator.
<4> A cured product obtained by curing the alkali-soluble resin described in <1> or <2> above, or the photosensitive resin composition described in <3>.
<5> A member for a display device, comprising the cured product according to <4>.
<6> A display device comprising the member for a display device according to <5> above.
<7> A method for producing an alkali-soluble resin, comprising:
The production method includes a first step in which an epoxy resin (a) having two or more epoxy groups in one molecule is reacted with a monobasic acid (b) having a primary alcoholic hydroxyl group and an unsaturated monocarboxylic acid (c). process and
a second step of reacting the reaction product obtained in the first step with a polybasic acid anhydride (d),
The amounts of the monobasic acid (b) having a primary alcoholic hydroxyl group and the unsaturated monocarboxylic acid (c) used in the first step are adjusted so that the epoxy equivalent of the alkali-soluble resin obtained is 50,000 g/equivalent or less. A method for producing an alkali-soluble resin, characterized in that the method is carried out by adjusting the method.
<8> A method for producing a photosensitive resin composition, comprising:
The manufacturing method includes a step of manufacturing an alkali-soluble resin by the method for manufacturing an alkali-soluble resin according to <7>;
A method for producing a photosensitive resin composition, comprising the step of mixing an alkali-soluble resin having an epoxy equivalent of 50,000 g/equivalent or less, a polymerizable compound, and a photopolymerization initiator.
本発明のアルカリ可溶性樹脂および感光性樹脂組成物は、比較的低温な硬化条件であっても耐溶剤性に優れた硬化物を与えることができる。本発明の硬化物は、液晶・有機EL・量子ドット・マイクロLED液晶表示装置や固体撮像素子、タッチパネル式表示装置等に用いられる各種の光学部材や電機・電子機器等の構成部材等の各種用途に好適に使用できる。 The alkali-soluble resin and photosensitive resin composition of the present invention can provide a cured product with excellent solvent resistance even under relatively low-temperature curing conditions. The cured product of the present invention can be used in various applications such as various optical members used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc., and structural members of electrical and electronic devices. It can be suitably used for.
以下に本発明の好ましい形態について具体的に説明するが、本発明は以下の記載のみに限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下に記載される本発明の個々の好ましい形態を2又は3以上組み合わせた形態も、本発明の好ましい形態に該当する。
本明細書において、「(メタ)アクリル酸」は、「アクリル酸及び/又はメタクリル酸」を意味し、「(メタ)アクリレート」は、「アクリレート及び/又はメタクリレート」を意味する。
また、本明細書において、数値範囲「Min~Max」は、最小値Min以上、且つ、最大値Max以下を意味する。さらに、上限値および下限値について、好適な数値を段階的に記載する場合、各々分けて記載した上限値と下限値を、適宜組み合わせた数値範囲も好適な数値範囲である。
Preferred embodiments of the present invention will be specifically described below, but the present invention is not limited to the following description, and can be applied with appropriate modifications within the scope of the gist of the present invention. Note that combinations of two or more of the individual preferred embodiments of the present invention described below also correspond to preferred embodiments of the present invention.
As used herein, "(meth)acrylic acid" means "acrylic acid and/or methacrylic acid", and "(meth)acrylate" means "acrylate and/or methacrylate".
Furthermore, in this specification, the numerical range "Min to Max" means greater than or equal to the minimum value Min and less than or equal to the maximum value Max. Furthermore, when preferable numerical values are described in stages regarding the upper limit value and the lower limit value, a numerical range that is a combination of the upper limit value and lower limit value separately described is also a suitable numerical range.
1.アルカリ可溶性樹脂
本発明のアルカリ可溶性樹脂は、上記式(1)で表される構造及び上記式(2)で表される構造から選択される少なくとも1つのエポキシ基含有構造と、上記式(3)~(4’)で表される構造から選択される少なくとも1つのカルボキシル基含有構造と、上記式(5)で表される構造及び上記式(5’)で表される構造から選択される少なくとも1つの重合性不飽和結合含有構造とを重合体の側鎖に有し、エポキシ当量が50000g/当量以下である樹脂である。
1. Alkali-soluble resin The alkali-soluble resin of the present invention has at least one epoxy group-containing structure selected from the structure represented by the above formula (1) and the structure represented by the above formula (2), and the above formula (3). at least one carboxyl group-containing structure selected from the structures represented by (4') and at least one carboxyl group-containing structure selected from the structures represented by the above formula (5) and the above formula (5'). The resin has one polymerizable unsaturated bond-containing structure in the side chain of the polymer, and has an epoxy equivalent of 50,000 g/equivalent or less.
本発明のアルカリ可溶性樹脂は、レジスト材料として用いられた場合に、露光により重合性不飽和結合が反応して露光部が硬化し、その後に焼成処理を行うことでエポキシ基とカルボキシル基とが反応して後硬化(ポストキュア)が行われる。本発明のアルカリ可溶性樹脂は、主鎖から離間した位置にカルボキシル基があることでアルカリ現像性に優れる。また主鎖から離間した位置のカルボキシル基はエポキシ基との反応性が良好であるため、後硬化時には比較的低温(例えば160℃以下)な硬化条件であってもエポキシ基との反応が良好に進行し、耐溶剤性に優れた硬化物を与えることができる。 When the alkali-soluble resin of the present invention is used as a resist material, the polymerizable unsaturated bonds react with light and the exposed area is cured, and then the epoxy group and carboxyl group react with each other through baking treatment. Then, post-curing is performed. The alkali-soluble resin of the present invention has excellent alkali developability because the carboxyl group is located at a position distant from the main chain. In addition, carboxyl groups located away from the main chain have good reactivity with epoxy groups, so during post-curing, the reaction with epoxy groups is good even under relatively low-temperature curing conditions (for example, below 160°C). The process progresses and a cured product with excellent solvent resistance can be obtained.
本発明のアルカリ可溶性樹脂は、上記式(1)で表される構造及び上記式(2)で表される構造から選択される少なくとも1つのエポキシ基含有構造を有する。
上記式(2)におけるmは1~10の整数であるが、2~8であることが好ましい。より好ましくは、3~6である。上記式(3’)、(4’)及び(5’)におけるmも同様である。
The alkali-soluble resin of the present invention has at least one epoxy group-containing structure selected from the structure represented by the above formula (1) and the structure represented by the above formula (2).
m in the above formula (2) is an integer of 1 to 10, preferably 2 to 8. More preferably, it is 3-6. The same applies to m in the above formulas (3'), (4') and (5').
本発明のアルカリ可溶性樹脂は、上記式(3)~(4’)(すなわち、上記式(3)、(3’)、(4)及び(4’))で表される構造から選択される少なくとも1つのカルボキシル基含有構造を有する。
式(3)、(3’)におけるRは、同一又は異なって、2価の有機基を表すが、2価の有機基としては、下記式(7):
The alkali-soluble resin of the present invention is selected from the structures represented by the above formulas (3) to (4') (that is, the above formulas (3), (3'), (4) and (4')). It has at least one carboxyl group-containing structure.
R 1 in formulas (3) and (3') are the same or different and represent a divalent organic group, and as a divalent organic group, the following formula (7):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(7)中、R11は、置換基を有していてもよい2価の炭化水素基を表す。R12は、式(8)のいずれかの構造又は直接結合を表す。)で表される構造が好ましい。
11の炭化水素基としては、炭素数1~12の炭化水素基が好ましい。より好ましくは、炭素数1~10の炭化水素基である。炭化水素基は飽和炭化水素基であっても不飽和炭化水素基であってもよい。また炭化水素基は、鎖状構造のものであっても環状構造のものであっても、鎖状部分と環状部分の両方を有する構造のものであってもよい。また炭化水素基が環状構造を有する場合の環状構造は、脂環式構造であっても芳香環であってもよい。
またR11における置換基としては、フッ素原子、塩素原子、臭素原子等のハロゲン原子や、シアノ基等が挙げられる。
(In formula (7), R 11 represents a divalent hydrocarbon group which may have a substituent. R 12 represents any structure of formula (8) or a direct bond.) The structures depicted are preferred.
The hydrocarbon group for R 11 is preferably a hydrocarbon group having 1 to 12 carbon atoms. More preferably, it is a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Further, the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain part and a cyclic part. Further, when the hydrocarbon group has a cyclic structure, the cyclic structure may be an alicyclic structure or an aromatic ring.
Examples of the substituent for R 11 include halogen atoms such as fluorine atom, chlorine atom, and bromine atom, and cyano group.
上記式(7)におけるR11としては、R12側と反対側の末端がメチレン基であるものが好ましい。
また式(3)、(3’)で表されるカルボキシル基含有構造としては、Rが式(6)で表される構造であるものが好ましい。すなわち、式(3)、(3’)で表される構造の末端の-R-O-Rが下記式(9)
As R 11 in the above formula (7), it is preferable that the end opposite to the R 12 side is a methylene group.
Further, as the carboxyl group-containing structure represented by formula (3) or (3'), a structure in which R 2 is represented by formula (6) is preferable. That is, the terminal -R 1 -O-R 2 of the structure represented by formulas (3) and (3') is represented by the following formula (9)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(9)中、R11’は、炭素数1~11の炭化水素基、又は、直接結合を表す。R12は、式(7)と同様である。R10は、式(6)と同様である。)で表される構造であることは、式(3)、(3’)で表されるカルボキシル基含有構造の好適な実施形態の1つである。
この構造については、後述する「2.アルカリ可溶性樹脂の製造方法」において説明する。
(In formula (9), R 11 ' represents a hydrocarbon group having 1 to 11 carbon atoms or a direct bond. R 12 is the same as formula (7). R 10 is the same as formula (6) ) is one of the preferred embodiments of the carboxyl group-containing structure represented by formulas (3) and (3').
This structure will be explained in "2. Method for producing alkali-soluble resin" below.
式(3)~(4’)におけるR及びRは、同一又は異なって、水素原子又は上記式(6)で表される基であり、Rの少なくとも一つは式(6)で表される基である。すなわち本発明のアルカリ可溶性樹脂がカルボキシル基含有構造として上記式(3)で表される構造のみ又は(3’)で表される構造のみを有する場合、アルカリ可溶性樹脂が有する式(3)で表される構造又は(3’)で表される構造中のRは式(6)で表される基であり、アルカリ可溶性樹脂が上記式(3)で表される構造と(3’)で表される構造とを有する場合、上記式(3)で表される構造と(3’)で表される構造のいずれか又は両方のRが式(6)で表される基である。
アルカリ可溶性樹脂がカルボキシル基含有構造として上記式(4)で表される構造のみ又は(4’)で表される構造のみを有する場合、アルカリ可溶性樹脂が有する式(4)で表される構造又は(4’)で表される構造中の2つのRのいずれか又は両方が式(6)で表される基であり、アルカリ可溶性樹脂が上記式(4)で表される構造と(4’)で表される構造とを有する場合、上記式(4)で表される構造と(4’)で表される構造中の4つのRのうち少なくとも1つが式(6)で表される基である。
アルカリ可溶性樹脂がカルボキシル基含有構造として上記(3)で表される構造及び/又は(3’)で表される構造と、式(4)で表される構造及び/又は(4’)で表される構造とを有する場合、アルカリ可溶性樹脂が有する式(3)で表される構造び/又は(3’)で表される構造中に存在するRと、式(4)及び/又は(4’)に存在するRのうち1つ以上が式(6)で表される基である。
式(3)~(4’)のいずれにおいてもRは水素原子であってもよく、式(6)で表される基であってもよい。
R 2 and R 3 in formulas (3) to (4') are the same or different and are a hydrogen atom or a group represented by the above formula (6), and at least one of R 2 is a group represented by the formula (6). is the group represented. That is, when the alkali-soluble resin of the present invention has only the structure represented by the above formula (3) or only the structure represented by (3') as the carboxyl group-containing structure, the alkali-soluble resin has the structure represented by the formula (3). R 2 in the structure represented by formula (3) or the structure represented by (3') is a group represented by formula (6), and the alkali-soluble resin has a structure represented by formula (3) above and (3'). In the case where R 2 of either or both of the structure represented by the above formula (3) and the structure represented by (3') is a group represented by the formula (6).
When the alkali-soluble resin has only the structure represented by the above formula (4) or only the structure represented by (4') as a carboxyl group-containing structure, the structure represented by the formula (4) that the alkali-soluble resin has or Either or both of the two R 2's in the structure represented by (4') are groups represented by formula (6), and the alkali-soluble resin has a structure represented by formula (4) above and (4 ), at least one of the four R2s in the structure represented by the above formula (4) and the structure represented by (4') is represented by the formula (6). This is the base.
The alkali-soluble resin has a structure represented by (3) and/or (3') as a carboxyl group-containing structure, and a structure represented by formula (4) and/or (4'). When the alkali-soluble resin has the structure represented by formula (3) and/or the structure represented by (3'), R2 present in the structure represented by formula (4) and/or ( One or more of R 2 present in 4′) is a group represented by formula (6).
In any of formulas (3) to (4'), R 3 may be a hydrogen atom or a group represented by formula (6).
上記式(4)及び式(4’)におけるRは3価の有機基を表すが、3価の有機基が下記式(10): R 4 in the above formulas (4) and (4') represents a trivalent organic group, and the trivalent organic group is represented by the following formula (10):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(10)中、R13は、置換基を有していてもよい3価の炭化水素基を表す。R14は、上記式(8)のいずれかの構造又は直接結合を表す。p、qは、同一又は異なって、0~3の整数である。)で表される基であることは本発明の好適な実施形態の1つである。
13の炭化水素基としては、炭素数1~10の炭化水素基が好ましい。より好ましくは、炭素数1~6の炭化水素基である。炭化水素基は飽和炭化水素基であっても不飽和炭化水素基であってもよい。また炭化水素基としては、鎖状構造のものであっても環状構造のものであっても、鎖状部分と環状部分の両方を有する構造のものであってもよい。また環状構造は、脂環式構造であっても芳香環であってもよい。
13の炭化水素基における置換基としては、上述したR11の炭化水素基における置換基と同様のものが挙げられる。
(In formula (10), R 13 represents a trivalent hydrocarbon group which may have a substituent. R 14 represents any structure of the above formula (8) or a direct bond. p , q are the same or different integers of 0 to 3.) is one of the preferred embodiments of the present invention.
The hydrocarbon group for R 13 is preferably a hydrocarbon group having 1 to 10 carbon atoms. More preferred is a hydrocarbon group having 1 to 6 carbon atoms. The hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Further, the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain portion and a cyclic portion. Further, the cyclic structure may be an alicyclic structure or an aromatic ring.
Examples of the substituent in the hydrocarbon group of R 13 include those similar to the substituents in the hydrocarbon group of R 11 described above.
上記式(10)で表される構造の中の好ましい形態の1つとして下記式(11): One of the preferred forms of the structure represented by the above formula (10) is the following formula (11):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(11)中、R15は、水素原子又は置換基を有していてもよい1価の炭化水素基を表す。R14、p、qは、式(10)と同様である。)で表される基が挙げられる。
15の1価の炭化水素基はとしては炭素数1~7の炭化水素基が好ましい。より好ましくは、炭素数1~3の炭化水素基である。炭化水素基は飽和炭化水素基であっても不飽和炭化水素基であってもよい。また炭化水素基としては、鎖状構造のものであっても環状構造のものであっても、鎖状部分と環状部分の両方を有する構造のものであってもよい。また環状構造は、脂環式構造であっても芳香環であってもよい。
15の炭化水素基における置換基としては、上述したR11の炭化水素基における置換基と同様のものが挙げられる。
(In formula (11), R 15 represents a hydrogen atom or a monovalent hydrocarbon group that may have a substituent. R 14 , p, and q are the same as in formula (10).) Examples include groups represented by:
The monovalent hydrocarbon group for R 15 is preferably a hydrocarbon group having 1 to 7 carbon atoms. More preferred is a hydrocarbon group having 1 to 3 carbon atoms. The hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Further, the hydrocarbon group may have a chain structure, a cyclic structure, or a structure having both a chain portion and a cyclic portion. Further, the cyclic structure may be an alicyclic structure or an aromatic ring.
Examples of the substituent for the hydrocarbon group of R 15 include the same substituents as for the hydrocarbon group of R 11 described above.
上記式(4)、式(4’)で表されるカルボキシル基含有構造としては、Rが上記式(10)で表される構造であって、p、qのいずれかが1以上であり、その先のRが式(6)で表される構造であるものが好ましい。すなわち、式(4)、式(4’)で表される構造のR以降の末端の構造が下記式(12): The carboxyl group-containing structure represented by the above formula (4) or formula (4') is a structure in which R 4 is represented by the above formula (10), and either p or q is 1 or more. , a structure in which R 2 is represented by formula (6) is preferable. That is, the terminal structure after R4 of the structure represented by formula (4) or formula (4') is the following formula (12):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(12)中、Rは式(3)~(4’)と同様である。R10は式(6)と同様である。R13、R14は式(10)と同様である。pは1以上の数であり、qは0以上の数である。)で表される構造であることは、式(4)、式(4’)で表されるカルボキシル基含有構造の好適な実施形態の1つである。
この構造については、後述する「2.アルカリ可溶性樹脂の製造方法」において説明する。
(In formula (12), R 2 is the same as in formulas (3) to (4'). R 10 is the same as in formula (6). R 13 and R 14 are as in formula (10) p is a number of 1 or more, and q is a number of 0 or more. This is one of the embodiments.
This structure will be explained in "2. Method for producing alkali-soluble resin" below.
本発明のアルカリ可溶性樹脂は更に、上記式(5)で表される構造及び式(5’)で表される構造から選択される少なくとも1つの重合性不飽和結合含有構造を有する。
式(5)及び式(5’)におけるRは水素原子であってもよく、式(6)で表される基であってもよい。
式(5)及び式(5’)におけるR、R及びRは、同一又は異なって、水素原子又は炭素数1~6の炭化水素基を表す。
上記炭素数1~6の炭化水素基としては、炭素数1~6の鎖状又は環状の炭化水素基が挙げられるが、炭素数1~6の鎖状の炭化水素基が好ましく、炭素数1~6のアルキル基がより好ましい。
中でも、不飽和二重結合の反応性が良好な点から、R、R及びRは、同一又は異なって、水素原子又はメチル基であることが好ましく、R、Rが水素原子であり、Rが水素原子又はメチル基であることがより好ましい。
式(5)及び式(5’)におけるR、Rは、同一又は異なって、直接結合又は2価の有機基を表す。2価の有機基としては炭素数1~12の炭化水素基、-O-、-CO-、-NH-、-S-、-SO-、-SO-等や、これらに置換基が結合したものが挙げられる。置換基としては、上記R11の炭化水素基が有していてもよい置換基と同様のものが挙げられる。
The alkali-soluble resin of the present invention further has at least one polymerizable unsaturated bond-containing structure selected from the structure represented by the above formula (5) and the structure represented by the formula (5').
R 3 in formula (5) and formula (5') may be a hydrogen atom or a group represented by formula (6).
R 5 , R 6 and R 7 in formula (5) and formula (5′) are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
The above hydrocarbon group having 1 to 6 carbon atoms includes a chain or cyclic hydrocarbon group having 1 to 6 carbon atoms, preferably a chain hydrocarbon group having 1 to 6 carbon atoms, and 1 to 6 carbon atoms. -6 alkyl groups are more preferred.
Among these, from the viewpoint of good reactivity of unsaturated double bonds, R 5 , R 6 and R 7 are preferably the same or different and are hydrogen atoms or methyl groups, and R 5 and R 6 are hydrogen atoms. It is more preferable that R 7 is a hydrogen atom or a methyl group.
R 8 and R 9 in formula (5) and formula (5') are the same or different and represent a direct bond or a divalent organic group. Examples of divalent organic groups include hydrocarbon groups having 1 to 12 carbon atoms, -O-, -CO-, -NH-, -S-, -SO-, -SO 2 -, etc., and substituents bonded to these. The following can be mentioned. Examples of the substituent include the same substituents that the hydrocarbon group of R 11 above may have.
上記式(6)におけるR10は、2価の有機基である。2価の有機基としては式(5)におけるR、Rの2価の有機基と同様のものが挙げられる。 R 10 in the above formula (6) is a divalent organic group. Examples of the divalent organic group include the same divalent organic groups as R 8 and R 9 in formula (5).
本発明のアルカリ可溶性樹脂は、上記エポキシ基含有構造、カルボキシル基含有構造、及び、重合性不飽和結合含有構造を樹脂(重合体)の構造の主鎖構造の末端に有していてもよく、側鎖に有していてもよいが、側鎖に有することが好ましい。これらの構造を側鎖に有する場合、重合体の主鎖の構造は特に制限されないが、本発明のアルカリ可溶性樹脂はエポキシ樹脂を変性して得られたものであることが好ましい。したがって、本発明のアルカリ可溶性樹脂は、エポキシ樹脂由来の主鎖構造に上記エポキシ基含有構造、カルボキシル基含有構造、及び、重合性不飽和結合含有構造が側鎖として結合した構造のものであることが好ましい。
主鎖を形成するエポキシ樹脂については後述する。
The alkali-soluble resin of the present invention may have the above-mentioned epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure at the end of the main chain structure of the resin (polymer) structure, Although it may be included in the side chain, it is preferably included in the side chain. When the side chain has these structures, the structure of the main chain of the polymer is not particularly limited, but the alkali-soluble resin of the present invention is preferably obtained by modifying an epoxy resin. Therefore, the alkali-soluble resin of the present invention has a structure in which the epoxy group-containing structure, carboxyl group-containing structure, and polymerizable unsaturated bond-containing structure are bonded as side chains to the main chain structure derived from the epoxy resin. is preferred.
The epoxy resin forming the main chain will be described later.
本発明のアルカリ可溶性樹脂はエポキシ当量が50000g/当量以下である。エポキシ当量が50000g/当量以下となるような割合でエポキシ基を有することで、後硬化時に良好な硬化性を発揮することができ、得られる硬化物が耐溶剤性にも優れたものとなる。アルカリ可溶性樹脂はエポキシ当量は、30000g/当量以下であることが好ましい。より好ましくは、10000g/当量以下であり、更に好ましくは、5000g/当量以下である。中でも更に好ましくは、3000g/当量以下であり、特に好ましくは、2000g/当量以下であり、最も好ましくは、1500g/当量以下である。
またアルカリ可溶性樹脂は、貯蔵安定性の点で、エポキシ当量が400g/当量以上であることが好ましく、550g/当量以上であることがより好ましく、700g/当量以上であることが更に好ましい。
すなわち、アルカリ可溶性樹脂のエポキシ当量は、好ましくは400~50000g/当量であり、より好ましくは550~30000g/当量であり、更に好ましくは700~10000g/当量であり、より更に好ましくは700~5000g/当量であり、より更に好ましくは700~3000g/当量であり、特に好ましくは700~2000g/当量であり、最も好ましくは700~1500g/当量である。
アルカリ可溶性樹脂のエポキシ当量は、樹脂固形分量を樹脂中に含まれるエポキシ基のモル数で除すことで求めることができる。また、上記エポキシ当量は、JIS K7236:2001に準拠した方法でも求めることができる。
The alkali-soluble resin of the present invention has an epoxy equivalent of 50,000 g/equivalent or less. By having epoxy groups in a proportion such that the epoxy equivalent is 50,000 g/equivalent or less, good curability can be exhibited during post-curing, and the resulting cured product also has excellent solvent resistance. The epoxy equivalent of the alkali-soluble resin is preferably 30,000 g/equivalent or less. More preferably, it is 10000 g/equivalent or less, and still more preferably 5000 g/equivalent or less. Among these, the amount is more preferably 3000 g/equivalent or less, particularly preferably 2000 g/equivalent or less, and most preferably 1500 g/equivalent or less.
In addition, in terms of storage stability, the alkali-soluble resin preferably has an epoxy equivalent of 400 g/equivalent or more, more preferably 550 g/equivalent or more, and even more preferably 700 g/equivalent or more.
That is, the epoxy equivalent of the alkali-soluble resin is preferably 400 to 50,000 g/equivalent, more preferably 550 to 30,000 g/equivalent, still more preferably 700 to 10,000 g/equivalent, even more preferably 700 to 5,000 g/equivalent. equivalent, more preferably 700 to 3000 g/equivalent, particularly preferably 700 to 2000 g/equivalent, most preferably 700 to 1500 g/equivalent.
The epoxy equivalent of the alkali-soluble resin can be determined by dividing the resin solid content by the number of moles of epoxy groups contained in the resin. Moreover, the above-mentioned epoxy equivalent can also be determined by a method based on JIS K7236:2001.
本発明のアルカリ可溶性樹脂は、酸価が30~200mgKOH/gであることが好ましい。酸価が30mgKOH/g以上であることで、アルカリ可溶性樹脂が後硬化時の硬化性や硬化物の耐アルカリ性、耐溶剤性により優れたものとなる。露光現像の工程において、露光部分が現像液に溶解しなくなるための重合性不飽和結合含有構造の必要性を考慮すると、酸価は200mgKOH/g以下であることが好ましい。アルカリ可溶性樹脂の酸価は、より好ましくは35~160mgKOH/gであり、更に好ましくは、40~140mgKOH/gである。
アルカリ可溶性樹脂の酸価は後述する実施例に記載の方法により測定することができる。
The alkali-soluble resin of the present invention preferably has an acid value of 30 to 200 mgKOH/g. When the acid value is 30 mgKOH/g or more, the alkali-soluble resin has excellent curability during post-curing and the alkali resistance and solvent resistance of the cured product. In consideration of the need for a polymerizable unsaturated bond-containing structure to prevent the exposed portion from dissolving in the developer during the exposure and development process, the acid value is preferably 200 mgKOH/g or less. The acid value of the alkali-soluble resin is more preferably 35 to 160 mgKOH/g, and still more preferably 40 to 140 mgKOH/g.
The acid value of the alkali-soluble resin can be measured by the method described in Examples below.
本発明のアルカリ可溶性樹脂は、二重結合当量(ラジカル重合性二重結合1化学当量当たりの重量)が100~3000g/当量であることが好ましい。二重結合当量が3000g/当量以下であることで、アルカリ可溶性樹脂が露光時の現像性により優れたものとなる。また、後硬化時の硬化性のためのエポキシ基含有構造やカルボキシル基含有構造の必要性を考慮すると、二重結合当量は100g/当量以上であることが好ましい。アルカリ可溶性樹脂は、二重結合当量は、より好ましくは250~2000g/当量であり、更に好ましくは、400~1000g/当量である。
アルカリ可溶性樹脂の二重結合当量は後述する実施例に記載の方法により測定することができる。また、JIS K 0070:1992に記載のよう素価の試験方法に準拠して、アルカリ可溶性樹脂1gあたりに含まれるエチレン性二重結合の数を測定することにより算出してもよい。
The alkali-soluble resin of the present invention preferably has a double bond equivalent (weight per chemical equivalent of a radically polymerizable double bond) of 100 to 3000 g/equivalent. When the double bond equivalent is 3000 g/equivalent or less, the alkali-soluble resin has better developability during exposure. Further, considering the necessity of an epoxy group-containing structure or a carboxyl group-containing structure for curability during post-curing, the double bond equivalent is preferably 100 g/equivalent or more. The double bond equivalent of the alkali-soluble resin is more preferably 250 to 2000 g/equivalent, and even more preferably 400 to 1000 g/equivalent.
The double bond equivalent of the alkali-soluble resin can be measured by the method described in the Examples below. Alternatively, it may be calculated by measuring the number of ethylenic double bonds contained per gram of alkali-soluble resin in accordance with the iodine number test method described in JIS K 0070:1992.
本発明のアルカリ可溶性樹脂は、上記式(1)~(5’)で表される構造以外のその他の構造を重合体の側鎖に有していてもよいが、その他の構造の割合は、上記式(1)~(5’)で表される構造のモル数の合計100モル%に対して、60モル%以下であることが好ましい。より好ましくは、40モル%以下である。 The alkali-soluble resin of the present invention may have structures other than those represented by the above formulas (1) to (5') in the side chain of the polymer, but the proportion of the other structures is as follows: It is preferably 60 mol% or less based on the total number of moles of the structures represented by formulas (1) to (5') above, 100 mol%. More preferably, it is 40 mol% or less.
本発明のアルカリ可溶性樹脂は、カルボキシル基、エポキシ基及びラジカル重合性二重結合を有しており、これらが関与する架橋反応や重合反応が可能であることから、単独でもアルカリ可溶性感光性樹脂とすることができる。特に、ネガ型のアルカリ可溶性感光性樹脂として好適に用いることができる。 The alkali-soluble resin of the present invention has a carboxyl group, an epoxy group, and a radically polymerizable double bond, and since crosslinking reactions and polymerization reactions involving these are possible, it can be used alone as an alkali-soluble photosensitive resin. can do. In particular, it can be suitably used as a negative-type alkali-soluble photosensitive resin.
2.アルカリ可溶性樹脂の製造方法
本発明においては、上述した構造を有するアルカリ可溶性樹脂が得られる限り、アルカリ可溶性樹脂の製造方法は特に制限されないが、エポキシ樹脂を変性して製造する方法が好ましい。この場合、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)に水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)を反応させる第一工程と、第一工程で得られた反応生成物にさらに多塩基酸無水物(d)を反応させる第二工程とを含む方法を用いることが好ましく、得られる樹脂のエポキシ当量が50000g/当量以下となるように水酸基を有する一塩基酸(b)及び不飽和モノカルボン酸(c)の使用量を調整することで、本発明のアルカリ可溶性樹脂を製造することができる。
この場合、水酸基を有する一塩基酸(b)として1級アルコール性水酸基を有する一塩基酸(b)を使用することが好ましい。1級アルコール性水酸基を有する一塩基酸(b)を使用することで、得られる反応生成物が、通常エポキシ基とカルボン酸の反応で生じる2級アルコール性水酸基に比べて多塩基酸無水物との反応性が高い1級アルコールを有するものとなる。このため、その後の多塩基酸無水物との反応が良好に進行し、また主鎖から離間して酸基が導入できることから、得られるアルカリ可溶性樹脂をアルカリ溶解性、硬化性により優れたものとすることができる。
このようなアルカリ可溶性樹脂の製造方法、すなわち、アルカリ可溶性樹脂を製造する方法であって、該製造方法は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)に1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)を反応させる第一工程と、第一工程で得られた反応生成物にさらに多塩基酸無水物(d)を反応させる第二工程とを含み、得られるアルカリ可溶性樹脂のエポキシ当量が50000g/当量以下となるように、該第一工程での1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)の使用量を調整して行われることを特徴とするアルカリ可溶性樹脂の製造方法もまた、本発明の1つである。
2. Method for producing alkali-soluble resin In the present invention, the method for producing the alkali-soluble resin is not particularly limited as long as an alkali-soluble resin having the above-mentioned structure can be obtained, but a method of producing the alkali-soluble resin by modifying the epoxy resin is preferred. In this case, a first step of reacting an epoxy resin (a) having two or more epoxy groups in one molecule with a monobasic acid (b) having a hydroxyl group and an unsaturated monocarboxylic acid (c); It is preferable to use a method that includes a second step of further reacting the reaction product obtained in step with a polybasic acid anhydride (d), and the hydroxyl groups are added so that the epoxy equivalent of the resulting resin is 50,000 g/equivalent or less. The alkali-soluble resin of the present invention can be produced by adjusting the amounts of the monobasic acid (b) and unsaturated monocarboxylic acid (c) used.
In this case, it is preferable to use a monobasic acid (b) having a primary alcoholic hydroxyl group as the monobasic acid (b) having a hydroxyl group. By using a monobasic acid (b) having a primary alcoholic hydroxyl group, the reaction product obtained is a polybasic acid anhydride compared to the secondary alcoholic hydroxyl group normally produced by the reaction between an epoxy group and a carboxylic acid. It has a primary alcohol with high reactivity. For this reason, the subsequent reaction with the polybasic acid anhydride progresses well, and acid groups can be introduced away from the main chain, making the resulting alkali-soluble resin superior in alkali solubility and curability. can do.
A method for producing such an alkali-soluble resin, that is, a method for producing an alkali-soluble resin, in which an epoxy resin (a) having two or more epoxy groups in one molecule is mixed with a primary alcohol. A first step of reacting a monobasic acid (b) having a hydroxyl group with an unsaturated monocarboxylic acid (c), and a second step of reacting a polybasic acid anhydride (d) with the reaction product obtained in the first step. In the first step, the monobasic acid (b) having a primary alcoholic hydroxyl group and the unsaturated monocarboxylic acid ( Another aspect of the present invention is a method for producing an alkali-soluble resin, which is carried out by adjusting the amount of c) used.
本発明のアルカリ可溶性樹脂の製造方法において、出発原料となる1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)としては、特に限定されず、1分子中に2個以上のエポキシ基を有する公知のエポキシ樹脂であればいずれも用いることができ、ビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂;脂環式エポキシ樹脂;テトラグリシジルアミノジフェニルメタン等の多官能性グリシジルアミン樹脂;テトラフェニルグリシジルエーテルエタン等の多官能性グリシジルエーテル樹脂;フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂;フェノール、o-クレゾール、m-クレゾール、ナフトール等のフェノール化合物と、フェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合反応により得られるポリフェノール化合物と、エピクロルヒドリンとの反応物;フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応により得られるポリフェノール化合物と、エピクロルヒドリンとの反応物;4-ビニルシクロヘキセン-1-オキサイドの開環重合物を過酸でエポキシ化したもの;トリグリシジルイソシアヌレート等の複素環を有するエポキシ樹脂;等が挙げられる。また、これらのエポキシ樹脂の2分子以上を、多塩基酸、ポリフェノール化合物、多官能アミノ化合物あるいは多価チオール等の鎖延長剤との反応によって結合して鎖延長したものも使用できる。あるいは、グリシジル(メタ)アクリレートや3,4-エポキシシクロヘキシルメチル(メタ)アクリレートのようなエポキシ基を有する単量体の単独重合体や共重合体であってもよい。中でもアルカリ可溶性樹脂(A)の一分子中のエチレン性不飽和結合(重合性不飽和二重結合)の存在数を多くし、光硬化性を向上させるために、ノボラック型エポキシ樹脂を原料とすることが好ましい。 In the method for producing an alkali-soluble resin of the present invention, the starting material epoxy resin (a) having two or more epoxy groups in one molecule is not particularly limited; Any known epoxy resin can be used as long as it has a bisphenol type epoxy resin; biphenyl type epoxy resin; alicyclic epoxy resin; polyfunctional glycidyl amine resin such as tetraglycidylamino diphenylmethane; tetraphenyl glycidyl ether ethane. Polyfunctional glycidyl ether resins such as; phenol novolac type epoxy resins and cresol novolac type epoxy resins; condensation of phenolic compounds such as phenol, o-cresol, m-cresol, naphthol, and aromatic aldehydes having phenolic hydroxyl groups. A reaction product between a polyphenol compound obtained by the reaction and epichlorohydrin; a reaction product between a polyphenol compound obtained by an addition reaction between a phenol compound and a diolefin compound such as divinylbenzene or dicyclopentadiene, and epichlorohydrin; 4-vinylcyclohexene- Examples include ring-opening polymers of 1-oxide epoxidized with peracids; epoxy resins having a heterocycle such as triglycidyl isocyanurate; and the like. Furthermore, those obtained by bonding two or more molecules of these epoxy resins with a chain extender such as a polybasic acid, a polyphenol compound, a polyfunctional amino compound, or a polyvalent thiol to extend the chain can also be used. Alternatively, it may be a homopolymer or copolymer of a monomer having an epoxy group such as glycidyl (meth)acrylate or 3,4-epoxycyclohexylmethyl (meth)acrylate. Among them, in order to increase the number of ethylenically unsaturated bonds (polymerizable unsaturated double bonds) in one molecule of the alkali-soluble resin (A) and improve photocurability, novolac type epoxy resin is used as a raw material. It is preferable.
上記出発原料となる1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)としては、得られるアルカリ可溶性樹脂を現像性、低温硬化性により優れたものとする点から、エポキシ当量が500g/当量以下のものが好ましい。より好ましくは、エポキシ当量が400g/当量以下のものであり、更に好ましくは、エポキシ当量が300g/当量以下のものである。 The above-mentioned starting material epoxy resin (a) having two or more epoxy groups in one molecule should have an epoxy equivalent of 500 g in order to make the resulting alkali-soluble resin more excellent in developability and low-temperature curability. / equivalent or less is preferable. More preferably, the epoxy equivalent is 400 g/equivalent or less, and even more preferably, the epoxy equivalent is 300 g/equivalent or less.
上記水酸基を有する一塩基酸(b)としては水酸基と酸基とを有するものであれば特に制限されないが、炭素数2~12のものが好ましい。より好ましくは、炭素数3~10のものであり、更に好ましくは、炭素数4~8のものである。 The monobasic acid (b) having a hydroxyl group is not particularly limited as long as it has a hydroxyl group and an acid group, but those having 2 to 12 carbon atoms are preferred. More preferably, it has 3 to 10 carbon atoms, and still more preferably 4 to 8 carbon atoms.
上記水酸基を有する一塩基酸(b)の酸基としては、例えば、カルボキシル基、フェノール性水酸基、リン酸基、スルホン酸基等が挙げられ、カルボキシル基またはフェノール性水酸基が好ましく、カルボキシル基がより好ましい。 Examples of the acid group of the monobasic acid (b) having a hydroxyl group include a carboxyl group, a phenolic hydroxyl group, a phosphoric acid group, a sulfonic acid group, etc. A carboxyl group or a phenolic hydroxyl group is preferable, and a carboxyl group is more preferable. preferable.
水酸基を有する一塩基酸(b)のうち、カルボキシル基を有するものとしてはグリコール酸、ヒドロアクリル酸、グリセリン酸、ジメチロールプロピオン酸、ジメチロールブタン酸、乳酸、酒石酸等の水酸基を有するモノカルボン酸が挙げられる。 Among the monobasic acids (b) having a hydroxyl group, monocarboxylic acids having a hydroxyl group such as glycolic acid, hydroacrylic acid, glyceric acid, dimethylolpropionic acid, dimethylolbutanoic acid, lactic acid, and tartaric acid. can be mentioned.
このうち、1級アルコール性水酸基を有するものとしてはグリコール酸、ヒドロアクリル酸、グリセリン酸、ジメチロールプロピオン酸、ジメチロールブタン酸等の1個以上の1級アルコール性水酸基を有するモノカルボン酸が挙げられ、中でもグリコール酸、ジメチロールブタン酸、ジメチロールプロピオン酸が好ましい。これらは、1種または2種以上を用いることができる。 Among these, those having a primary alcoholic hydroxyl group include monocarboxylic acids having one or more primary alcoholic hydroxyl groups such as glycolic acid, hydroacrylic acid, glyceric acid, dimethylolpropionic acid, and dimethylolbutanoic acid. Among them, glycolic acid, dimethylolbutanoic acid, and dimethylolpropionic acid are preferred. These can be used alone or in combination of two or more.
上記不飽和モノカルボン酸(c)としては不飽和結合とカルボキシル基とを有するものであれば特に制限されないが、炭素数3~20のものが好ましい。より好ましくは、炭素数3~10のものであり、更に好ましくは、炭素数3~4のものである。 The unsaturated monocarboxylic acid (c) is not particularly limited as long as it has an unsaturated bond and a carboxyl group, but those having 3 to 20 carbon atoms are preferred. More preferably, it has 3 to 10 carbon atoms, and still more preferably 3 to 4 carbon atoms.
上記不飽和モノカルボン酸(c)としては、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸、β-アクリロキシプロピオン酸、1個のヒドロキシル基と1個の(メタ)アクリロイル基を有するヒドロキシアルキル(メタ)アクリレートと二塩基酸無水物との反応物、1個のヒドロキシル基と2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートと二塩基酸無水物との反応物等が挙げられる。中でも好ましいのは、アクリル酸、メタクリル酸等の(メタ)アクリロイル基を有するものである。得られるアルカリ可溶性樹脂を耐溶剤性に特に優れた硬化物を与えるものとする点からは、メタクリル酸が特に好ましい。これらは、1種または2種以上を用いることができる。 Examples of the unsaturated monocarboxylic acid (c) include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, β-acryloxypropionic acid, and hydroxyalkyl having one hydroxyl group and one (meth)acryloyl group. A reaction product of a (meth)acrylate and a dibasic acid anhydride, a reaction product of a polyfunctional (meth)acrylate having one hydroxyl group and two or more (meth)acryloyl groups and a dibasic acid anhydride, etc. Can be mentioned. Among these, preferred are those having a (meth)acryloyl group, such as acrylic acid and methacrylic acid. Methacrylic acid is particularly preferred from the viewpoint of producing a cured product of the resulting alkali-soluble resin with particularly excellent solvent resistance. These can be used alone or in combination of two or more.
本発明のアルカリ可溶性樹脂の製造方法において、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)に水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)を反応させる第一工程では、エポキシ樹脂(a)と不飽和モノカルボン酸(c)を反応させ、次いで水酸基を有する一塩基酸(b)を反応させてもよく、エポキシ樹脂(a)に対して不飽和モノカルボン酸(c)と水酸基を有する一塩基酸(b)を一括して反応させてもよく、エポキシ樹脂(a)と水酸基を有する一塩基酸(b)を反応させ、次いで不飽和モノカルボン酸(c)と反応させてもよい。 In the method for producing an alkali-soluble resin of the present invention, an epoxy resin (a) having two or more epoxy groups in one molecule is reacted with a monobasic acid (b) having a hydroxyl group and an unsaturated monocarboxylic acid (c). In the first step, the epoxy resin (a) and the unsaturated monocarboxylic acid (c) may be reacted, and then the monobasic acid (b) having a hydroxyl group may be reacted with the epoxy resin (a). The monocarboxylic acid (c) and the monobasic acid (b) having a hydroxyl group may be reacted all at once, or the epoxy resin (a) and the monobasic acid (b) having a hydroxyl group may be reacted, and then the unsaturated monocarboxylic acid (b) is reacted with the monobasic acid (b) having a hydroxyl group. It may be reacted with acid (c).
上記第一工程においては、エポキシ樹脂中のエポキシ基1化学当量(モル当量)に対し、水酸基を有する一塩基酸(b)および不飽和モノカルボン酸(c)の総使用量を0.2~0.79モルとすることが好ましい。このような割合で使用することで、得られる最終的に得られるアルカリ可溶性樹脂の硬化性、硬化物物性を良好なものとしやすくなる。好ましくは0.3~0.76モル、より好ましくは0.4~0.73モルである。 In the first step, the total amount of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) used is 0.2 to 1 chemical equivalent (mole equivalent) of the epoxy group in the epoxy resin. The amount is preferably 0.79 mol. When used in such a ratio, it becomes easier to improve the curability of the alkali-soluble resin finally obtained and the physical properties of the cured product. The amount is preferably 0.3 to 0.76 mol, more preferably 0.4 to 0.73 mol.
また、水酸基を有する一塩基酸(b)の使用量は、水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)の総量を1モルとすると、0.01~0.5モルであることが好ましい。このような割合で使用することで、水酸基を有する一塩基酸(b)を使用することの効果をより充分に発揮させつつ、重合性不飽和二重結合の導入量も充分に確保することができ、最終的に得られるアルカリ可溶性樹脂をより硬化性、硬化物物性に優れたものとすることができる。 Further, the amount of the monobasic acid (b) having a hydroxyl group to be used is 0.01 to 0.5 mol, assuming that the total amount of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) is 1 mol. It is preferable that By using it in such a ratio, it is possible to more fully exhibit the effect of using the monobasic acid (b) having a hydroxyl group, while also ensuring a sufficient amount of polymerizable unsaturated double bonds to be introduced. This makes it possible to make the alkali-soluble resin finally obtained more excellent in curability and physical properties of the cured product.
本発明のアルカリ可溶性樹脂の製造方法の第一工程におけるエポキシ樹脂(a)に対する水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)の反応は、前述したように、いずれを先に行っても、同時に反応させてもよい。
これらの反応は、後述する重合性化合物や溶剤等の希釈剤の存在下あるいは非存在下で、ハイドロキノンや酸素等の重合禁止剤、および三級アミン、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の三級ホスフィン、塩化リチウム、四級アンモニウム塩、四級ホスホニウム塩等の反応触媒の共存下、通常80~130℃で行うことができる。
反応触媒としては、反応効率、反応中の安定性、アルカリ可溶性樹脂の保存安定性の点から三級ホスフィンが好ましく、特にトリフェニルホスフィンが好ましい。
As mentioned above, in the first step of the method for producing an alkali-soluble resin of the present invention, the reaction of the monobasic acid (b) having a hydroxyl group and the unsaturated monocarboxylic acid (c) with respect to the epoxy resin (a) is carried out first. The reaction may be carried out separately or at the same time.
These reactions are carried out using polymerization inhibitors such as hydroquinone and oxygen, and tertiary amines, trimethylphosphine, tributylphosphine, triphenylphosphine, etc., in the presence or absence of diluents such as polymerizable compounds and solvents, which will be described later. It can be carried out usually at 80 to 130°C in the presence of a reaction catalyst such as tertiary phosphine, lithium chloride, quaternary ammonium salt, or quaternary phosphonium salt.
As the reaction catalyst, tertiary phosphine is preferred from the viewpoint of reaction efficiency, stability during reaction, and storage stability of the alkali-soluble resin, and triphenylphosphine is particularly preferred.
上記反応触媒の量は、特に限定されないが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)100質量部に対して、0.05~5質量部であることが好ましい。より好ましくは、0.1~3質量部であり、更に好ましくは、0.2~2質量部である。 The amount of the reaction catalyst is not particularly limited, but it is preferably 0.05 to 5 parts by weight based on 100 parts by weight of the epoxy resin (a) having two or more epoxy groups in one molecule. More preferably, it is 0.1 to 3 parts by mass, and even more preferably 0.2 to 2 parts by mass.
また第一工程においては、重合禁止剤を用いてもよい。重合禁止剤としては、特に限定されず、公知のものを使用することができ、例えば、ベンゾキノン、ヒドロキノン類(例えば、ヒドロキノン、ヒドロキノンモノメチルエーテル、p-tert-ブチルヒドロキノン、p-ベンゾキノン等)、フェノール類(例えば、2,6-ジ-t-ブチル-4-メチルフェノール、6-t-ブチル-2,4-ジメチルフェノール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)等)、カテコール類(例えば、p-tert-ブチルカテコール等)、アミン類(例えば、N,N-ジエチルヒドロキシルアミン等)、1,1-ジフェニル-2-ピクリルヒドラジル、トリ-p-ニトロフェニルメチル、フェノチアジン、ピペリジン1-オキシル類(例えば、2,2,6,6-テトラメチルピペリジン1-オキシル等)、酸素等を用いることができる。 Moreover, in the first step, a polymerization inhibitor may be used. The polymerization inhibitor is not particularly limited, and known ones can be used, such as benzoquinone, hydroquinones (e.g., hydroquinone, hydroquinone monomethyl ether, p-tert-butylhydroquinone, p-benzoquinone, etc.), phenol, etc. (e.g., 2,6-di-t-butyl-4-methylphenol, 6-t-butyl-2,4-dimethylphenol, 2,2'-methylenebis(4-methyl-6-t-butylphenol), etc.) ), catechols (e.g., p-tert-butylcatechol, etc.), amines (e.g., N,N-diethylhydroxylamine, etc.), 1,1-diphenyl-2-picrylhydrazyl, tri-p-nitrophenyl Methyl, phenothiazine, piperidine 1-oxyls (eg, 2,2,6,6-tetramethylpiperidine 1-oxyl, etc.), oxygen, and the like can be used.
第一工程において上記重合禁止剤を使用する場合、重合禁止剤の使用量は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)100質量%に対して、0.001~1質量%であることが好ましい。より好ましくは、0.01~0.5質量%である。 When the above polymerization inhibitor is used in the first step, the amount of the polymerization inhibitor used is 0.001 to 1% by mass based on 100% by mass of the epoxy resin (a) having two or more epoxy groups in one molecule. It is preferable that it is mass %. More preferably, it is 0.01 to 0.5% by mass.
上記第一工程の反応の温度は、反応が進行する限り特に制限されないが、80~140℃が好ましい。このような温度で行うことで、反応を効率的に進めることができる。反応温度は、より好ましくは、85~135℃であり、更に好ましくは、90~130℃である。 The reaction temperature in the first step is not particularly limited as long as the reaction proceeds, but is preferably 80 to 140°C. By carrying out the reaction at such a temperature, the reaction can proceed efficiently. The reaction temperature is more preferably 85 to 135°C, even more preferably 90 to 130°C.
以下においては、第一工程の反応で得られる反応生成物を、「変性エポキシ樹脂中間物」と称する場合がある。
上記アルカリ可溶性樹脂の製造方法の第二工程では、変性エポキシ樹脂中間物に多塩基酸無水物(d)を反応させることにより、多塩基酸無水物(d)が変性エポキシ樹脂中間物中に存在するヒドロキシル基と反応して、カルボキシル基が導入された本発明のアルカリ可溶性樹脂を得ることができる。得られるアルカリ可溶性樹脂はアルカリ現像が可能となるので、画像形成用等のアルカリ現像型硬化性樹脂として利用することができる。
In the following, the reaction product obtained by the reaction in the first step may be referred to as a "modified epoxy resin intermediate."
In the second step of the above method for producing an alkali-soluble resin, polybasic acid anhydride (d) is present in the modified epoxy resin intermediate by reacting the polybasic acid anhydride (d) with the modified epoxy resin intermediate. The alkali-soluble resin of the present invention into which a carboxyl group has been introduced can be obtained by reacting with the hydroxyl group. Since the resulting alkali-soluble resin can be developed with alkali, it can be used as an alkali-developable curable resin for image formation and the like.
上記第一工程において水酸基を有する一塩基酸(b)として1級アルコール性水酸基を有する一塩基酸(b)を用いた場合、変性エポキシ樹脂中間物には、1級アルコール性水酸基を有する一塩基酸(b)由来の1級ヒドロキシル基と、1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)がエポキシ樹脂中のエポキシ基と反応することによりエポキシ基が開環して生成したヒドロキシル基が存在している。
この場合、第二工程において多塩基酸無水物(d)はいずれのヒドロキシル基とも反応し得るが、水酸基を有する一塩基酸(b)として1級アルコール性水酸基を有する一塩基酸(b)を用いた場合、第二工程では、エポキシ基が開環して生成したヒドロキシル基よりも1級アルコール性水酸基を有する一塩基酸(b)由来の1級ヒドロキシル基の方が立体障害が少ないことから、多塩基酸無水物(d)は1級アルコール性水酸基を有する一塩基酸(b)由来の1級ヒドロキシル基に優先的に反応すると考えられる。上記式(3)、(3’)において、末端の-R-O-Rが上記式(9)で表される構造であるものや、式(4)、(4’)において、R以降の末端の構造が上記式(12)で表される構造であるものは、そのような反応で得られる構造の例である。この場合、得られるアルカリ可溶性樹脂では、残存するエポキシ基や不飽和モノカルボン酸(c)との反応により導入された二重結合部分と、多塩基酸無水物(d)との反応により導入されたカルボキシル基とが十分に離れて存在し、それぞれの官能基の機能が効果的に発揮されやすくなるため、アルカリ可溶性樹脂は硬化性やアルカリ現像性により優れたものとなる。
When the monobasic acid (b) having a primary alcoholic hydroxyl group is used as the monobasic acid (b) having a hydroxyl group in the first step, the modified epoxy resin intermediate contains a monobasic acid having a primary alcoholic hydroxyl group. The epoxy group is opened by reacting the primary hydroxyl group derived from the acid (b), the monobasic acid (b) having a primary alcoholic hydroxyl group, and the unsaturated monocarboxylic acid (c) with the epoxy group in the epoxy resin. A hydroxyl group formed by a ring is present.
In this case, in the second step, the polybasic acid anhydride (d) can react with any hydroxyl group, but the monobasic acid (b) having a primary alcoholic hydroxyl group is used as the monobasic acid (b) having a hydroxyl group. When used, in the second step, the primary hydroxyl group derived from the monobasic acid (b) having a primary alcoholic hydroxyl group has less steric hindrance than the hydroxyl group generated by ring opening of the epoxy group. It is thought that the polybasic acid anhydride (d) reacts preferentially with the primary hydroxyl group derived from the monobasic acid (b) having a primary alcoholic hydroxyl group. In the above formulas (3) and (3'), the terminal -R 1 -O-R 2 has a structure represented by the above formula (9), and in the formulas (4) and (4'), R A structure in which the terminal structure after 4 is a structure represented by the above formula (12) is an example of a structure obtained by such a reaction. In this case, in the alkali-soluble resin obtained, the double bond moiety introduced by the reaction with the remaining epoxy group or unsaturated monocarboxylic acid (c) and the polybasic acid anhydride (d) are removed. The alkali-soluble resin has better curability and alkali developability because the carboxyl groups are present at a sufficient distance from each other and the functions of each functional group are more likely to be effectively exhibited.
上記多塩基酸無水物(d)としては特に制限されないが、炭素数3~30のものが好ましい。より好ましくは、炭素数4~20のものであり、更に好ましくは、炭素数4~10のものである。 The polybasic acid anhydride (d) is not particularly limited, but those having 3 to 30 carbon atoms are preferred. More preferably, it has 4 to 20 carbon atoms, even more preferably 4 to 10 carbon atoms.
上記多塩基酸無水物(d)としては、無水フタル酸、無水コハク酸、オクテニル無水コハク酸、ペンタドデセニル無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、3,6-エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸、トリメリット酸等の二塩基酸無水物;ビフェニルテトラカルボン酸二無水物、ジフェニルエーテルテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物等の脂肪族あるいは芳香族四塩基酸二無水物等が挙げられる。これらの多塩基酸無水物は、1種または2種以上を使用することができる。これらの中でも、二塩基酸無水物を用いることが好ましい。また得られるアルカリ可溶性樹脂を耐溶剤性に特に優れた硬化物を与えるものとする点からは、無水フタル酸等のような、アルカリ可溶性樹脂が構造中に環状構造を有するものとなるような多塩基酸無水物が特に好ましい。 Examples of the polybasic acid anhydride (d) include phthalic anhydride, succinic anhydride, octenyl succinic anhydride, pentadecenyl succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, Dibasic acid anhydrides such as 3,6-endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, tetrabromophthalic anhydride, trimellitic acid; biphenyltetracarboxylic dianhydride, diphenyl ethertetracarboxylic dianhydride , butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, and other aliphatic or aromatic tetrabasic acid dianhydrides. One type or two or more types of these polybasic acid anhydrides can be used. Among these, it is preferable to use dibasic acid anhydrides. In addition, from the point of view of producing a cured product with particularly excellent solvent resistance from the resulting alkali-soluble resin, alkali-soluble resins such as phthalic anhydride, which have a cyclic structure in their structure, may be used. Particularly preferred are basic acid anhydrides.
上記第二工程では、多塩基酸無水物(d)を、第一工程の反応で得られる変性エポキシ樹脂中間物中のヒドロキシル基1化学当量に対して、0.1モル以上1.1モル以下の割合で反応させることが好ましい。このように多塩基酸無水物(d)を反応させることにより、多塩基酸無水物(d)の付加反応を効率的に行うことができ、また得られるアルカリ可溶性樹脂にカルボキシル基を好適に導入することができる。 In the second step, the polybasic acid anhydride (d) is added from 0.1 mol to 1.1 mol to 1 chemical equivalent of hydroxyl group in the modified epoxy resin intermediate obtained by the reaction in the first step. It is preferable to react at a ratio of . By reacting the polybasic acid anhydride (d) in this way, the addition reaction of the polybasic acid anhydride (d) can be carried out efficiently, and carboxyl groups can be suitably introduced into the resulting alkali-soluble resin. can do.
上記第二工程における変性エポキシ樹脂中間物と多塩基酸無水物(d)の反応の温度は、反応が進行する限り特に制限されないが、45~75℃が好ましい。このような温度で行うことで、反応を効率的に、かつ、エポキシ基と導入されたカルボキシル基との反応による高分子量物生成やゲル化を抑制しつつ反応を進めることができる。反応温度は、より好ましくは、50~70℃であり、さらに好ましくは55~65℃である。 The temperature of the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step is not particularly limited as long as the reaction proceeds, but is preferably 45 to 75°C. By performing the reaction at such a temperature, the reaction can proceed efficiently and while suppressing the formation of high molecular weight products and gelation due to the reaction between the epoxy group and the introduced carboxyl group. The reaction temperature is more preferably 50 to 70°C, even more preferably 55 to 65°C.
上記第二工程における変性エポキシ樹脂中間物と多塩基酸無水物(d)の反応は、後述する重合性化合物や溶剤等の希釈剤の存在下または非存在下で、ハイドロキノンや酸素等の重合禁止剤の存在下で行うことが好ましい。
またこのとき必要に応じて、変性エポキシ樹脂中間物を得る際に用いた反応触媒を添加してもよく、ここでも三級ホスフィンが好ましく、特にトリフェニルホスフィンが好ましい。なお、変性エポキシ樹脂中間物と多塩基酸無水物(d)の反応は、変性エポキシ樹脂中間物の生成反応に引き続いて、反応溶液中に多塩基酸無水物(d)を添加して行うのが簡便である。
The reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step is carried out in the presence or absence of a diluent such as a polymerizable compound or a solvent, which will be described later, to inhibit the polymerization of hydroquinone, oxygen, etc. It is preferable to carry out the reaction in the presence of an agent.
Further, at this time, if necessary, the reaction catalyst used in obtaining the modified epoxy resin intermediate may be added, and here too, tertiary phosphine is preferred, and triphenylphosphine is particularly preferred. Note that the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) is carried out by adding the polybasic acid anhydride (d) to the reaction solution following the reaction for producing the modified epoxy resin intermediate. is simple.
上記第二工程における変性エポキシ樹脂中間物と多塩基酸無水物(d)の反応は、三級アミンを添加してもよい。三級アミンを添加して行うことで、反応効率が向上し、第二工程をより短時間で行うことができる。
三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の1種又は2種以上を用いることができる。
A tertiary amine may be added to the reaction between the modified epoxy resin intermediate and the polybasic acid anhydride (d) in the second step. By adding a tertiary amine, the reaction efficiency is improved and the second step can be performed in a shorter time.
As the tertiary amine, one or more of trimethylamine, triethylamine, tributylamine, tripropylamine, trihexylamine, etc. can be used.
上記第二工程において三級アミンを用いる場合、三級アミンの使用量は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)100質量部に対して、0.05~5質量部であることが好ましい。より好ましくは、0.1~3質量部であり、更に好ましくは、0.15~1質量部である。 When using a tertiary amine in the second step, the amount of the tertiary amine used is 0.05 to 5 parts by mass per 100 parts by mass of the epoxy resin (a) having two or more epoxy groups in one molecule. Preferably. More preferably, it is 0.1 to 3 parts by weight, and even more preferably 0.15 to 1 part by weight.
上記アルカリ可溶性樹脂の製造方法は、上記第一工程、第二工程を含む限り、その他の工程を含んでいてもよい。その他の工程としては、分子間を連結する工程等が挙げられる。 The method for producing an alkali-soluble resin may include other steps as long as it includes the first step and second step. Other steps include a step of linking molecules.
3.感光性樹脂組成物
上述したとおり、本発明のアルカリ可溶性樹脂は、単独でもレジスト材料として使用することができるが、アルカリ可溶性樹脂、重合性化合物及び光重合開始剤を少なくとも含む樹脂組成物とすることで、熱や光反応を経て架橋構造を有する塗膜が得られることとなる。
このような、本発明のアルカリ可溶性樹脂、重合性化合物及び光重合開始剤を少なくとも含む感光性樹脂組成物もまた、本発明の1つである。
本明細書中、本発明のアルカリ可溶性樹脂は、感光性樹脂組成物中ではアルカリ可溶性樹脂(A)とも称する。
3. Photosensitive resin composition As mentioned above, the alkali-soluble resin of the present invention can be used alone as a resist material, but the resin composition preferably contains at least an alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator. Then, a coating film having a crosslinked structure is obtained through heat and photoreaction.
Such a photosensitive resin composition containing at least the alkali-soluble resin, polymerizable compound, and photopolymerization initiator of the present invention is also one of the present invention.
In this specification, the alkali-soluble resin of the present invention is also referred to as alkali-soluble resin (A) in the photosensitive resin composition.
本発明の感光性樹脂組成物において、上記アルカリ可溶性樹脂(A)の含有量は、特に限定されず、用途や他成分の配合等に応じて適宜設定すればよいが、例えば、感光性樹脂組成物の固形分総量100質量%に対して、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましく、また、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
すなわち、上記アルカリ可溶性樹脂(A)の含有量は、感光性樹脂組成物の固形分総量100質量%に対して、5~80質量%であることが好ましく、10~75質量%であることがより好ましく、15~70質量%であることが更に好ましい。
本明細書中、「固形分総量」とは、硬化物を形成する成分の総量、すなわち硬化物の形成時に揮発する溶剤等を除く成分(固形分、不揮発分)の総量を意味する。具体的には、アルカリ可溶性樹脂と、重合性化合物と、光重合開始剤と、更に他の硬化物形成成分(例えば、色材、分散剤等)を含む場合は当該成分と、の合計の固形分質量を意味する。
In the photosensitive resin composition of the present invention, the content of the alkali-soluble resin (A) is not particularly limited, and may be appropriately set depending on the use and the combination of other components. It is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and even more preferably 80% by mass or less, based on 100% by mass of the total solid content of the product. It is preferably 75% by mass or less, more preferably 70% by mass or less.
That is, the content of the alkali-soluble resin (A) is preferably 5 to 80% by mass, and preferably 10 to 75% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. The content is more preferably 15 to 70% by mass.
As used herein, "total solid content" refers to the total amount of components forming the cured product, that is, the total amount of components (solid content, nonvolatile content) excluding solvents etc. that volatilize during formation of the cured product. Specifically, the total solid of the alkali-soluble resin, polymerizable compound, photopolymerization initiator, and other cured product forming components (for example, coloring material, dispersant, etc.) if such components are included. means partial mass.
[重合性化合物]
本発明の感光性樹脂組成物が含む重合性化合物は、フリーラジカル、電磁波(例えば赤外線、紫外線、X線等)、電子線等の活性エネルギー線の照射等により重合し得る、重合性不飽和結合(重合性不飽和基とも称す)を有する低分子化合物であり、例えば、重合性不飽和基を分子中に1つ有する単官能の化合物と、2個以上有する多官能の化合物が挙げられる。
上記単官能の化合物としては、例えば、N置換マレイミド系単量体;(メタ)アクリル酸エステル類;(メタ)アクリルアミド類;不飽和モノカルボン酸類;不飽和多価カルボン酸類;不飽和基とカルボキシル基の間が鎖延長されている不飽和モノカルボン酸類;不飽和酸無水物類;芳香族ビニル類;共役ジエン類;ビニルエステル類;ビニルエーテル類;N-ビニル化合物類;不飽和イソシアネート類;等が挙げられる。また、活性メチレン基や活性メチン基を有する単量体等を用いることもできる。
[Polymerizable compound]
The polymerizable compound contained in the photosensitive resin composition of the present invention is a polymerizable unsaturated bond that can be polymerized by free radicals, electromagnetic waves (e.g., infrared rays, ultraviolet rays, X-rays, etc.), irradiation with active energy rays such as electron beams, etc. (also referred to as a polymerizable unsaturated group), examples of which include monofunctional compounds having one polymerizable unsaturated group in the molecule and polyfunctional compounds having two or more polymerizable unsaturated groups.
Examples of the above-mentioned monofunctional compounds include N-substituted maleimide monomers; (meth)acrylic esters; (meth)acrylamides; unsaturated monocarboxylic acids; unsaturated polycarboxylic acids; unsaturated groups and carboxyl Unsaturated monocarboxylic acids with chain extension between groups; unsaturated acid anhydrides; aromatic vinyls; conjugated dienes; vinyl esters; vinyl ethers; N-vinyl compounds; unsaturated isocyanates; etc. can be mentioned. Furthermore, monomers having an active methylene group or an active methine group can also be used.
上記多官能の化合物としては、例えば、下記の化合物等が挙げられる。
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;
トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン付加トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン付加ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン付加ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレートコハク酸変性物、ペンタエリスリトールトリアクリレートコハク酸変性物、ジペンタエリスリトールペンタアクリレートフタル酸変性物、ペンタエリスリトールトリアクリレートフタル酸変性物等の3官能以上の多官能(メタ)アクリレート化合物;
Examples of the polyfunctional compound include the following compounds.
Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol Bifunctional (meth)acrylate compounds such as di(meth)acrylate, bisphenol A alkylene oxide di(meth)acrylate, and bisphenol F alkylene oxide di(meth)acrylate;
Trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, Dipentaerythritol hexa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, tripentaerythritol octa(meth)acrylate, ethylene oxide trimethylolpropane tri(meth)acrylate, ethylene oxide ditrimethylolpropane tetra(meth)acrylate, ethylene oxide Added pentaerythritol tetra(meth)acrylate, ethylene oxide added dipentaerythritol hexa(meth)acrylate, propylene oxide added trimethylolpropane tri(meth)acrylate, propylene oxide added ditrimethylolpropane tetra(meth)acrylate, propylene oxide added pentaerythritol tetra(meth)acrylate (meth)acrylate, propylene oxide added dipentaerythritol hexa(meth)acrylate, ε-caprolactone added trimethylolpropane tri(meth)acrylate, ε-caprolactone added ditrimethylolpropane tetra(meth)acrylate, ε-caprolactone added pentaerythritol tetra (meth)acrylate, ε-caprolactone added dipentaerythritol hexa(meth)acrylate, dipentaerythritol pentaacrylate succinic acid modified product, pentaerythritol triacrylate succinic acid modified product, dipentaerythritol pentaacrylate phthalic acid modified product, pentaerythritol triacrylate Trifunctional or higher functional (meth)acrylate compounds such as acrylate modified with phthalic acid;
エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、エチレンオキシド付加トリメチロールプロパントリビニルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラビニルエーテル、エチレンオキシド付加ペンタエリスリトールテトラビニルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサビニルエーテル等の多官能ビニルエーテル類;
(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル等のビニルエーテル基含有(メタ)アクリル酸エステル類;
Ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, bisphenol F alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, ditri Methylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, ethylene oxide trimethylolpropane trivinyl ether, ethylene oxide ditrimethylolpropane tetravinyl ether, ethylene oxide pentaerythritol tetravinyl ether, ethylene oxide Polyfunctional vinyl ethers such as added dipentaerythritol hexavinyl ether;
2-vinyloxyethyl (meth)acrylate, 3-vinyloxypropyl (meth)acrylate, 1-methyl-2-vinyloxyethyl (meth)acrylate, 2-vinyloxypropyl (meth)acrylate, 4-vinyloxy(meth)acrylate - Vinyloxybutyl, 4-vinyloxycyclohexyl (meth)acrylate, 5-vinyloxypentyl (meth)acrylate, 6-vinyloxyhexyl (meth)acrylate, 4-vinyloxymethylcyclohexylmethyl (meth)acrylate, ( Vinyl ether group-containing (meth)acrylics such as p-vinyloxymethylphenylmethyl meth)acrylate, 2-(vinyloxyethoxy)ethyl (meth)acrylate, and 2-(vinyloxyethoxyethoxyethoxy)ethyl (meth)acrylate. Acid esters;
エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、エチレンオキシド付加トリメチロールプロパントリアリルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラアリルエーテル、エチレンオキシド付加ペンタエリスリトールテトラアリルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサアリルエーテル等の多官能アリルエーテル類;
(メタ)アクリル酸アリル等のアリル基含有(メタ)アクリル酸エステル類;トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(メタクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ(メタクリロイルオキシエチル)イソシアヌレート等の多官能(メタ)アクリロイル基含有イソシアヌレート類;トリアリルイソシアヌレート等の多官能アリル基含有イソシアヌレート類;トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の多官能イソシアネートと(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の水酸基含有(メタ)アクリル酸エステル類との反応で得られる多官能ウレタン(メタ)アクリレート類;ジビニルベンゼン等の多官能芳香族ビニル類;等。
これらの重合性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol F alkylene oxide diallyl ether, trimethylolpropane triallyl ether, Ditrimethylolpropane tetraallyl ether, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide added trimethylolpropane triallyl ether, ethylene oxide added ditrimethylolpropane tetraallyl ether, Polyfunctional allyl ethers such as ethylene oxide-added pentaerythritol tetraallyl ether and ethylene oxide-added dipentaerythritol hexaallyl ether;
Allyl group-containing (meth)acrylic acid esters such as allyl (meth)acrylate; tri(acryloyloxyethyl)isocyanurate, tri(methacryloyloxyethyl)isocyanurate, alkylene oxide addition tri(acryloyloxyethyl)isocyanurate, alkylene Polyfunctional (meth)acryloyl group-containing isocyanurates such as oxidized tri(methacryloyloxyethyl) isocyanurate; polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate; tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, etc. Polyfunctional urethane (meth)acrylates obtained by the reaction of polyfunctional isocyanate with hydroxyl group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; Polyfunctional aromatic vinyls such as divinylbenzene; etc.
These polymerizable compounds may be used alone or in combination of two or more.
本発明の感光性樹脂組成物が含む重合性化合物としては、上記の化合物の中でも、感光性樹脂組成物の硬化性をより高める観点から、多官能の重合性化合物が好ましい。上記多官能の重合性化合物の官能数(官能基の数)としては、3以上が好ましく、4以上がより好ましい。また、上記官能数は10以下が好ましく、8以下がより好ましい。
多官能の重合性化合物としては、反応性、経済性、入手性等の観点から、好ましくは多官能(メタ)アクリレート化合物、多官能ウレタン(メタ)アクリレート化合物、(メタ)アクリロイル基含有イソシアヌレート化合物等の、(メタ)アクリロイル基を有する化合物が挙げられ、より好ましくは多官能(メタ)アクリレート化合物が挙げられる。(メタ)アクリロイル基を有する化合物を含むことにより、感光性樹脂組成物が感光性及び硬化性により優れたものとなり、より一層高硬度で高透明性の硬化物を得ることができる。上記多官能の重合性化合物としては、3官能以上の多官能(メタ)アクリレート化合物を用いることが更に好ましい。
Among the above-mentioned compounds, polyfunctional polymerizable compounds are preferred as the polymerizable compound contained in the photosensitive resin composition of the present invention, from the viewpoint of further enhancing the curability of the photosensitive resin composition. The functional number (number of functional groups) of the polyfunctional polymerizable compound is preferably 3 or more, more preferably 4 or more. Further, the functional number is preferably 10 or less, more preferably 8 or less.
From the viewpoint of reactivity, economy, availability, etc., the polyfunctional polymerizable compound is preferably a polyfunctional (meth)acrylate compound, a polyfunctional urethane (meth)acrylate compound, or a (meth)acryloyl group-containing isocyanurate compound. Examples include compounds having a (meth)acryloyl group such as, and more preferably polyfunctional (meth)acrylate compounds. By including a compound having a (meth)acryloyl group, the photosensitive resin composition becomes more excellent in photosensitivity and curability, and a cured product with even higher hardness and higher transparency can be obtained. As the polyfunctional polymerizable compound, it is more preferable to use a trifunctional or more polyfunctional (meth)acrylate compound.
上記重合性化合物には様々な構造のものが含まれ、その分子量は特に限定されないが、本発明の感光性樹脂組成物が含む重合性化合物としては、取り扱いの観点から、例えば、分子量が2000以下のものが好ましい。 The above-mentioned polymerizable compounds include those with various structures, and their molecular weights are not particularly limited, but from the viewpoint of handling, the polymerizable compounds contained in the photosensitive resin composition of the present invention, for example, have a molecular weight of 2000 or less. Preferably.
一方、ビニルエーテル基を側鎖に有する重合体は、樹脂組成物の硬化性を向上させるが、保存安定性を低下させることがあるので、保存安定性の点では、上記感光性樹脂組成物は、重合性化合物としてビニルエーテル基を側鎖に有する重合体を含まないことが好ましい。 On the other hand, a polymer having a vinyl ether group in its side chain improves the curability of the resin composition, but may reduce storage stability. It is preferable that the polymerizable compound does not contain a polymer having a vinyl ether group in its side chain.
本発明の感光性樹脂組成物において、上記重合性化合物の含有量は、本発明の効果が発揮される範囲であれば特に制限されず適宜設定すればよいが、感光性樹脂組成物を適切な粘度にできる点から、感光性樹脂組成物の固形分総量100質量%に対して、好ましくは5~60質量%であり、より好ましくは10~50質量%である。 In the photosensitive resin composition of the present invention, the content of the polymerizable compound is not particularly limited and may be set as appropriate as long as the effects of the present invention are exhibited. In terms of viscosity, it is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition.
[光重合開始剤]
本発明の感光性樹脂組成物が含む光重合開始剤としては、ラジカル重合性の光重合開始剤が好ましい。ラジカル重合性の光重合開始剤とは、電磁波や電子線等の活性エネルギー線の照射により重合開始ラジカルを発生させるものである。
上記光重合開始剤の具体例としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(「IRGACURE907」、BASF社製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(「IRGACURE369」、BASF社製)、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン(「IRGACURE379」、BASF社製)等のアミノケトン系化合物;2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(「IRGACURE651」、BASF社製)、フェニルグリオキシリックアシッドメチルエステル(「DAROCUR MBF」、BASF社製)等のベンジルケタール系化合物;1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(「IRGACURE184」、BASF社製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(「DAROCUR1173」、BASF社製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(「IRGACURE2959」、BASF社製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(「IRGACURE127」、BASF社製)、[1-ヒドロキシ-シクロヘキシル-フェニル-ケトン+ベンゾフェノン](「IRGACURE500」、BASF社製)等のハイドロケトン系化合物;等の他、特開2013-227485号公報段落[0084]~[0086]に例示された、他のアルキルフェノン系化合物;1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)(「OXE01」、BASF社製)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(「OXE02」、BASF社製)、1,2-オクタンジオン、1-[4-(フェニルチオ)-,2-,(O-ベンゾイルオキシム)]、エタノン(「OXE03」、BASF社製)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(「OXE04」、BASF社製)等のオキシムエステル系化合物;ベンゾフェノン系化合物;ベンゾイン系化合物;チオキサントン系化合物;ハロメチル化トリアジン系化合物;ハロメチル化オキサジアゾール系化合物;ビイミダゾール系化合物;チタノセン系化合物;安息香酸エステル系化合物;アクリジン系化合物等;ホスフィンオキシド系化合物;等が挙げられる。中でも、アミノケトン系化合物、オキシムエステル系化合物が好ましい。
上記光重合開始剤は、1種又は2種以上を用いることができる。
[Photopolymerization initiator]
The photopolymerization initiator contained in the photosensitive resin composition of the present invention is preferably a radically polymerizable photopolymerization initiator. A radically polymerizable photopolymerization initiator is one that generates polymerization initiation radicals by irradiation with active energy rays such as electromagnetic waves and electron beams.
Specific examples of the photopolymerization initiator include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one ("IRGACURE907", manufactured by BASF), 2-benzyl -2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 ("IRGACURE369", manufactured by BASF), 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholinophenyl) Aminoketone compounds such as phosphorus-4-yl-phenyl)-butan-1-one ("IRGACURE379", manufactured by BASF); 2,2-dimethoxy-1,2-diphenylethan-1-one ("IRGACURE651", Benzyl ketal compounds such as phenylglyoxylic acid methyl ester (“DAROCUR MBF”, manufactured by BASF); 1-hydroxy-cyclohexyl-phenyl-ketone (“IRGACURE184”, manufactured by BASF), 2- Hydroxy-2-methyl-1-phenyl-propan-1-one (“DAROCUR1173”, manufactured by BASF), 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1- Propan-1-one ("IRGACURE2959", manufactured by BASF), 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propane In addition to hydroketone compounds such as -1-one ("IRGACURE127", manufactured by BASF), [1-hydroxy-cyclohexyl-phenyl-ketone + benzophenone] ("IRGACURE500", manufactured by BASF); etc., JP-A-2013 Other alkylphenone compounds exemplified in paragraphs [0084] to [0086] of Publication No.-227485; 1,2-octanedione, 1-[4-(phenylthio)phenyl]-,2-(O-benzoyloxime) ) ("OXE01", manufactured by BASF), ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime) ("OXE02") ”, manufactured by BASF), 1,2-octanedione, 1-[4-(phenylthio)-,2-,(O-benzoyloxime)], ethanone (“OXE03”, manufactured by BASF), 1-[9 Oxime ester compounds such as -ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(O-acetyloxime) ("OXE04", manufactured by BASF); benzophenone compounds; Benzoin-based compounds; thioxanthone-based compounds; halomethylated triazine-based compounds; halomethylated oxadiazole-based compounds; biimidazole-based compounds; titanocene-based compounds; benzoic acid ester-based compounds; acridine-based compounds, etc.; phosphine oxide-based compounds; It will be done. Among these, aminoketone compounds and oxime ester compounds are preferred.
One type or two or more types of the above photopolymerization initiators can be used.
上記光重合開始剤の含有量は、本発明の効果が発揮される範囲であれば、特に制限されず、適宜設定すればよいが、例えば、本発明の感光性樹脂組成物の固形分総量100質量%に対し、0.3~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、1~8質量%であることが更に好ましい。 The content of the photopolymerization initiator is not particularly limited and may be set appropriately as long as the effects of the present invention are exhibited. For example, the total solid content of the photosensitive resin composition of the present invention is 100 It is preferably 0.3 to 20% by mass, more preferably 0.5 to 10% by mass, and even more preferably 1 to 8% by mass.
本発明の感光性樹脂組成物(単に樹脂組成物とも称す)は、エポキシ基含有構造、カルボキシル基含有構造、及び、重合性不飽和結合含有構造を有し、エポキシ当量が50000g/当量以下である特定のアルカリ可溶性樹脂、重合性化合物及び光重合開始剤を少なくとも含むが、必要に応じ、更に他の成分を1種又は2種以上含んでいてもよく、各含有成分はそれぞれ1種又は2種以上を使用することができる。
以下に、他の成分について説明する。
The photosensitive resin composition (also simply referred to as a resin composition) of the present invention has an epoxy group-containing structure, a carboxyl group-containing structure, and a polymerizable unsaturated bond-containing structure, and has an epoxy equivalent of 50,000 g/equivalent or less. Contains at least a specific alkali-soluble resin, a polymerizable compound, and a photopolymerization initiator, but may also contain one or more other components if necessary, and each component may contain one or two types, respectively. or more can be used.
Other components will be explained below.
[光酸発生剤]
本発明の感光性樹脂組成物は、更に、光酸発生剤を含むことが好ましい。光酸発生剤を更に含むことにより、感光性樹脂組成物の硬化性がより一層向上しうる。 
光酸発生剤は、放射線等の活性エネルギー線に暴露されることにより酸を発生する化合物であり、例えば、トルエンスルホン酸または四フッ化ホウ素などの強酸、スルホニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩またはセレニウム塩などのオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類などのスルホン酸誘導体;有機ハロゲン化合物類;等が挙げられる。 
[Photoacid generator]
It is preferable that the photosensitive resin composition of the present invention further contains a photoacid generator. By further containing a photoacid generator, the curability of the photosensitive resin composition can be further improved.
Photoacid generators are compounds that generate acids when exposed to active energy rays such as radiation, and include strong acids such as toluenesulfonic acid or boron tetrafluoride, sulfonium salts, ammonium salts, phosphonium salts, and iodonium salts. Onium salts such as salts or selenium salts; iron-alene complexes; silanol-metal chelate complexes; sulfones such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, benzoinsulfonates Examples include acid derivatives; organic halogen compounds; and the like.
上記光酸発生剤の含有量は、感光性樹脂組成物の固形分総量100質量%に対し、0.3~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、1~8質量%であることが更に好ましい。  The content of the photoacid generator is preferably 0.3 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of the total solid content of the photosensitive resin composition. It is preferably 1 to 8% by mass, and more preferably 1 to 8% by mass.​
[溶剤]
本発明の感光性樹脂組成物は、溶剤を含むことが好ましい。溶剤を含むことで基材上に感光性樹脂組成物を塗布して製膜することが可能となる。
溶剤としては特に限定されず、トルエン、キシレン等の炭化水素類;セロソルブ、ブチルセロソルブ等のセロソルブ類;カルビトール、ブチルカルビトール等のカルビトール類;セロソルブアセテート、カルビトールアセテート、(ジ)プロピレングリコールモノメチルエーテルアセテート、グルタル酸(ジ)メチル、コハク酸(ジ)メチル、アジピン酸(ジ)メチル等のエステル類;メチルイソブチルケトン、メチルエチルケトン等のケトン類;(ジ)エチレングリコールジメチルエーテル等のエーテル類等が挙げられる。
[solvent]
The photosensitive resin composition of the present invention preferably contains a solvent. By including a solvent, it becomes possible to apply the photosensitive resin composition onto a base material to form a film.
The solvent is not particularly limited, and includes hydrocarbons such as toluene and xylene; cellosolves such as cellosolve and butyl cellosolve; carbitols such as carbitol and butyl carbitol; cellosolve acetate, carbitol acetate, (di)propylene glycol monomethyl Esters such as ether acetate, (di)methyl glutarate, (di)methyl succinate, (di)methyl adipate; Ketones such as methyl isobutyl ketone and methyl ethyl ketone; Ethers such as (di)ethylene glycol dimethyl ether, etc. Can be mentioned.
上記溶剤の含有量は特に限定されず、感光性樹脂組成物の使用形態(例えば塗布等)に応じて適宜設定することが好ましい。例えば、感光性樹脂組成物100質量%中の固形分総量(固形分濃度)が1~90質量%になるように、溶剤の含有割合を設定することが好ましい。感光性樹脂組成物100質量%中の固形分総量は、より好ましくは5~70質量%、特に好ましくは10~50質量%である。 The content of the above-mentioned solvent is not particularly limited, and is preferably set appropriately depending on the usage form (for example, application, etc.) of the photosensitive resin composition. For example, it is preferable to set the content ratio of the solvent so that the total solid content (solid content concentration) in 100% by mass of the photosensitive resin composition is 1 to 90% by mass. The total solid content in 100% by mass of the photosensitive resin composition is more preferably 5 to 70% by mass, particularly preferably 10 to 50% by mass.
本発明の感光性樹脂組成物は、さらに必要に応じて、リン酸誘導体、色材、光酸発生剤、光塩基発生剤、多官能チオール化合物、分散剤、タルク、クレー、硫酸バリウム、シリカ等の充填材、消泡剤、カップリング剤、レベリング剤、増感剤、離型剤、滑剤、可塑剤、酸化防止剤、紫外線吸収剤、難燃剤、重合抑制剤、増粘剤等の公知の添加剤を添加してもよい。また、各種強化繊維を補強用繊維として用い、繊維強化複合材料とすることができる。 The photosensitive resin composition of the present invention may further contain, if necessary, a phosphoric acid derivative, a coloring material, a photoacid generator, a photobase generator, a polyfunctional thiol compound, a dispersant, talc, clay, barium sulfate, silica, etc. Known fillers, antifoaming agents, coupling agents, leveling agents, sensitizers, mold release agents, lubricants, plasticizers, antioxidants, ultraviolet absorbers, flame retardants, polymerization inhibitors, thickeners, etc. Additives may also be added. Further, various reinforcing fibers can be used as reinforcing fibers to produce a fiber-reinforced composite material.
本発明の感光性樹脂組成物における上記公知の添加剤の含有量は感光性樹脂組成物100質量%に対して、70質量%以下であることが好ましい。より好ましくは、60質量%以下であり、更に好ましくは、50質量%以下である。下限値は用途に応じて設定できるが、0質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上である。
すなわち、上記添加剤の含有量は、感光性樹脂組成物100質量%に対して、好ましくは0~70質量%であり、より好ましくは0.1~60質量%であり、更に好ましくは1~50質量%である。
The content of the above-mentioned known additive in the photosensitive resin composition of the present invention is preferably 70% by mass or less based on 100% by mass of the photosensitive resin composition. More preferably, it is 60% by mass or less, and still more preferably 50% by mass or less. The lower limit can be set depending on the application, but is 0% by mass or more, more preferably 0.1% by mass or more, and even more preferably 1% by mass or more.
That is, the content of the above additive is preferably 0 to 70% by mass, more preferably 0.1 to 60% by mass, and even more preferably 1 to 60% by mass, based on 100% by mass of the photosensitive resin composition. It is 50% by mass.
4.感光性樹脂組成物の調製方法
本発明の感光性樹脂組成物を調製する方法は特に制限されず、公知の方法を用いればよい。例えば、上述した各含有成分を、各種の混合機や分散機を用いて混合・分散する方法が挙げられる。
また本発明の感光性樹脂組成物を調製する方法は、各含有成分を混合・分散する工程以外の他の工程を含んでいてもよい。他の工程としては例えば、感光性樹脂組成物が色材を含む場合における、色材の分散処理工程等が挙げられる。
4. Method for Preparing Photosensitive Resin Composition The method for preparing the photosensitive resin composition of the present invention is not particularly limited, and any known method may be used. For example, there is a method of mixing and dispersing the above-mentioned components using various mixers and dispersers.
Further, the method for preparing the photosensitive resin composition of the present invention may include steps other than the step of mixing and dispersing each component. Other steps include, for example, a coloring material dispersion treatment step when the photosensitive resin composition contains a coloring material.
5.硬化物
本発明のアルカリ可溶性樹脂、アルカリ可溶性樹脂溶液、又は感光性樹脂組成物を用いると、低温硬化条件でも耐溶剤性に優れた硬化物を与えることができる。そのような本発明のアルカリ可溶性樹脂、又は感光性樹脂組成物の硬化物もまた、本発明の1つである。
5. Cured product When the alkali-soluble resin, alkali-soluble resin solution, or photosensitive resin composition of the present invention is used, a cured product with excellent solvent resistance can be obtained even under low-temperature curing conditions. Such a cured product of the alkali-soluble resin or photosensitive resin composition of the present invention is also one of the present invention.
上記硬化物が硬化膜である場合、その膜厚は0.1μm以上であることが好ましい。上記膜厚が0.1μm以上であると、より一層優れた耐溶剤性を発揮することができる。上記膜厚は、0.5μm以上であることがより好ましく、1μm以上であることが更に好ましい。上記膜厚の上限値は、特に限定されず、硬化膜の目的、用途に応じて適宜設定すればよいが、例えば20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることが更に好ましい。
すなわち、上記膜厚は、0.1~20μmであることが好ましく、0.5~15μmであることがより好ましく、1~10μmであることが更に好ましい。
硬化膜の膜厚は、市販の膜厚測定装置により測定することができる。
When the cured product is a cured film, the film thickness is preferably 0.1 μm or more. When the film thickness is 0.1 μm or more, even more excellent solvent resistance can be exhibited. The film thickness is more preferably 0.5 μm or more, and even more preferably 1 μm or more. The upper limit of the film thickness is not particularly limited and may be set appropriately depending on the purpose and use of the cured film, but for example, it is preferably 20 μm or less, more preferably 15 μm or less, and 10 μm or less. It is even more preferable that there be.
That is, the film thickness is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and even more preferably 1 to 10 μm.
The thickness of the cured film can be measured using a commercially available film thickness measuring device.
上記硬化物を得る方法は特に制限されず、公知の方法を用いればよい。例えば、上述したアルカリ可溶性樹脂(溶液)、又は感光性樹脂組成物を基材上に塗布、又は成形したものを乾燥、加熱、又は紫外線等のエネルギー線の照射、あるいはこれらの組み合わせにより硬化させて硬化物を得る方法が挙げられる。中でも硬化物の製造方法としては、基材上に上記感光性樹脂組成物を塗布して塗布膜を形成する工程、形成された塗布膜に光照射する工程、及び、光照射された塗布膜を160℃以下で加熱する工程を含む方法が好ましい。
上記基材としては、後述するカラーフィルターの基板と同様のものが挙げられる。
The method for obtaining the cured product is not particularly limited, and any known method may be used. For example, the above-mentioned alkali-soluble resin (solution) or photosensitive resin composition is applied or molded onto a base material and cured by drying, heating, irradiation with energy rays such as ultraviolet rays, or a combination thereof. A method for obtaining a cured product can be mentioned. Among these, the method for producing a cured product includes a step of coating the photosensitive resin composition on a substrate to form a coating film, a step of irradiating the formed coating film with light, and a step of exposing the irradiated coating film to light. A method including a step of heating at 160° C. or lower is preferred.
Examples of the base material include those similar to the color filter substrate described below.
上記感光性樹脂組成物を基材上に塗布して塗布膜を形成する方法は特に制限されず、スピン塗布、スリット塗布、ロール塗布、流延塗布等の公知の方法で行うことができる。
上記製造方法においては、感光性樹脂組成物を基材上に塗布した後、塗布物を乾燥させて塗布膜を形成することが好ましい。上記乾燥は、公知の方法で行うことができ、具体的には、後述する[カラーフィルターの製造方法]の「配置工程」に記載の乾燥方法と同様の方法で行うことができる。
The method of coating the photosensitive resin composition on a substrate to form a coating film is not particularly limited, and can be performed by known methods such as spin coating, slit coating, roll coating, and cast coating.
In the above manufacturing method, it is preferable to form a coating film by coating the photosensitive resin composition on the substrate and then drying the coating. The above-mentioned drying can be performed by a known method, and specifically, it can be performed by a method similar to the drying method described in "Arrangement step" of "Color filter manufacturing method" described below.
上記形成された塗布膜に光照射する方法は特に制限されず、公知の方法で行うことができ、具体的には、後述する[カラーフィルターの製造方法]の「光照射工程」に記載の方法と同様の方法で行うことができる。
上記塗布膜に光照射する場合、フォトマスクを介して光照射を行ってもよい。フォトマスクとして、目的とするパターンに応じて遮光部が形成されたマスクを用いるとよい。フォトマスクを介して光照射を行った場合、その後に現像工程を行うことが好ましい。現像工程を行うことで、塗布膜に目的とするパターンを形成することができる。
現像方法としては、特に制限されず、公知の方法で行うことができ、具体的には、後述する[カラーフィルターの製造方法]の「現像工程」に記載の方法と同様の方法で行うことができる。
The method of irradiating the formed coating film with light is not particularly limited and can be carried out by any known method. Specifically, the method described in "Light irradiation step" in "Production method of color filter" described below This can be done in a similar way.
When the coating film is irradiated with light, the irradiation may be performed through a photomask. As the photomask, it is preferable to use a mask in which a light-shielding portion is formed according to the intended pattern. When light irradiation is performed through a photomask, it is preferable to perform a development step after that. By performing the development process, a desired pattern can be formed in the coating film.
The developing method is not particularly limited and can be carried out by any known method. Specifically, it can be carried out by the same method as described in "Developing step" in "Color filter manufacturing method" described below. can.
上記製造方法はまた、光照射された塗布膜を160℃以下で加熱する工程を含む。上記製造方法は、上述した感光性樹脂組成物を用いるので、光照射後の加熱工程(後硬化工程)を160℃以下のような比較的低温条件下で行うことができる。
加熱温度は、155℃以下であることが好ましく、150℃以下であることがより好ましい。加熱温度の下限としては、硬化性が維持できる点で、70℃以上であることが好ましく、90℃以上であることがより好ましい。
すなわち、加熱温度は、70~160℃であることが好ましく、90~155℃であることがより好ましく、90~150℃であることが更に好ましい。
温度以外の上記加熱方法については、特に制限されず、公知の方法で行うことができ、例えば、後述する[カラーフィルターの製造方法]の「加熱工程」に記載の方法と同様の方法で行うことができる。
The above manufacturing method also includes a step of heating the light-irradiated coating film at 160° C. or lower. Since the above-mentioned manufacturing method uses the above-described photosensitive resin composition, the heating step (post-curing step) after irradiation with light can be performed under relatively low-temperature conditions such as 160° C. or lower.
The heating temperature is preferably 155°C or lower, more preferably 150°C or lower. The lower limit of the heating temperature is preferably 70° C. or higher, more preferably 90° C. or higher in terms of maintaining curability.
That is, the heating temperature is preferably 70 to 160°C, more preferably 90 to 155°C, even more preferably 90 to 150°C.
The above-mentioned heating method other than temperature is not particularly limited and can be carried out by any known method, for example, by the same method as described in "Heating step" of "Color filter manufacturing method" described below. I can do it.
6.用途
本発明のアルカリ可溶性樹脂、及びこれを含む感光性樹脂組成物は、アルカリ現像性に優れる。また、160℃以下、例えば90℃程度の低温硬化条件でも、硬化反応が十分に進行し、耐溶剤性に優れた硬化物を与えることができる。そのため、低温条件で充分に硬化させる必要がある用途や、耐溶剤性が必要とされる用途に好適に使用することができる。
本発明のアルカリ可溶性樹脂、及び感光性樹脂組成物は、具体的には、例えば、液晶・有機EL・量子ドット・マイクロLED液晶表示装置や固体撮像素子、タッチパネル式表示装置等に用いられるカラーフィルター、ブラックマトリクス、フォトスペーサー、ブラックカラムスペーサー、インキ、印刷版、プリント配線板、半導体素子、フォトレジスト、絶縁膜、フィルム、有機保護膜等の、各種の光学部材や電機・電子機器等の構成部材の用途に好適に使用することができる。なかでも、カラーフィルター用途に好ましく使用される。
本発明の感光性樹脂組成物は、光学材料用として好適に使用され、また、ネガ型用として好適に使用される。
6. Applications The alkali-soluble resin of the present invention and the photosensitive resin composition containing the same have excellent alkali developability. Furthermore, even under low-temperature curing conditions of 160° C. or lower, for example about 90° C., the curing reaction can proceed sufficiently and a cured product with excellent solvent resistance can be obtained. Therefore, it can be suitably used in applications that require sufficient curing under low-temperature conditions and applications that require solvent resistance.
Specifically, the alkali-soluble resin and photosensitive resin composition of the present invention are used in color filters used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc. , black matrix, photo spacer, black column spacer, ink, printing plate, printed wiring board, semiconductor element, photoresist, insulating film, film, organic protective film, etc., various optical members and constituent members of electrical and electronic equipment, etc. It can be suitably used for the following purposes. Among these, it is preferably used for color filter applications.
The photosensitive resin composition of the present invention is suitably used as an optical material, and also suitably used as a negative type.
[カラーフィルター]
基板上に、上述の感光性樹脂組成物の硬化物を有するカラーフィルターも、本発明のアルカリ可溶性樹脂、及びこれを含む感光性樹脂組成物の好ましい用途の一つである。
カラーフィルターにおいて、本発明の感光性樹脂組成物により形成される硬化物は、例えば、ブラックマトリクスや、赤色、緑色、青色、黄色等の各画素のような着色が必要なセグメントとして特に好適であるが、フォトスペーサー、保護層、配向制御用リブ等の着色を必ずしも必要としないセグメントの材料としても好適である。
[Color filter]
A color filter having a cured product of the above-mentioned photosensitive resin composition on a substrate is also one of the preferred uses of the alkali-soluble resin of the present invention and the photosensitive resin composition containing the same.
In a color filter, the cured product formed from the photosensitive resin composition of the present invention is particularly suitable for use as a black matrix or segments that require coloring such as red, green, blue, yellow, etc. pixels. However, it is also suitable as a material for segments that do not necessarily require coloring, such as photo spacers, protective layers, and alignment control ribs.
上記カラーフィルターに使用される基板としては、例えば、白板ガラス、青板ガラス、アルカリ強化ガラス、シリカコート青板ガラス等のガラス基板;ポリエステル、ポリカーボネート、ポリオレフィン、ポリスルホン、環状オレフィンの開環重合体やその水素添加物等の熱可塑性樹脂からなるシート、フィルム又は基板;エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂からなるシート、フィルム又は基板;アルミニウム板、銅板、ニッケル板、ステンレス板等の金属基板;セラミック基板;光電変換素子を有する半導体基板;表面に色材層を備えるガラス基板(例えばLCD用カラーフィルター)等の各種材料から構成される部材;等が挙げられる。なかでも、耐熱性の点から、ガラス基板や、耐熱性樹脂からなるシート、フィルム又は基板が好ましい。また、上記基板は透明基板であることが好適である。
また上記基板には、必要に応じて、コロナ放電処理、オゾン処理、シランカップリング剤等による薬品処理等を行ってもよい。
Substrates used in the above color filters include, for example, glass substrates such as white glass, blue glass, alkali-strengthened glass, and silica-coated blue glass; ring-opening polymers of polyester, polycarbonate, polyolefin, polysulfone, and cyclic olefin, and their hydrogen Sheets, films, or substrates made of thermoplastic resins such as additives; Sheets, films, or substrates made of thermosetting resins such as epoxy resins and unsaturated polyester resins; Metal substrates such as aluminum plates, copper plates, nickel plates, and stainless steel plates. Ceramic substrates; Semiconductor substrates having photoelectric conversion elements; Members made of various materials such as glass substrates with coloring material layers on their surfaces (for example, color filters for LCDs); and the like. Among these, from the viewpoint of heat resistance, glass substrates and sheets, films, or substrates made of heat-resistant resin are preferred. Further, it is preferable that the substrate is a transparent substrate.
Further, the substrate may be subjected to corona discharge treatment, ozone treatment, chemical treatment using a silane coupling agent, etc., as necessary.
[カラーフィルターの製造方法]
上記カラーフィルターを得るには、例えば、画素一色につき(すなわち、一色の画素ごとに)、基板上に、上述の感光性樹脂組成物を配置する工程(配置工程とも称す)と、当該基板上に配置された感光性樹脂組成物に光を照射する工程(光照射工程とも称す)と、現像液により現像処理する工程(現像工程とも称す)と、加熱処理する工程(加熱工程とも称す)とを含む手法を採用し、これと同じ手法を各色で繰り返す製造方法を採用することが好適である。なお、各色の画素の形成順序は、特に限定されるものではない。
以下に各工程について説明する。
[Manufacturing method of color filter]
In order to obtain the above color filter, for example, a step (also referred to as an arrangement step) of disposing the above-mentioned photosensitive resin composition on a substrate for each pixel of one color (that is, for each pixel of one color), and a step of disposing the above-mentioned photosensitive resin composition on the substrate. A step of irradiating the placed photosensitive resin composition with light (also referred to as a light irradiation step), a step of developing with a developer (also referred to as a developing step), and a step of heat treatment (also referred to as a heating step). It is preferable to adopt a manufacturing method in which the same method is repeated for each color. Note that the order in which pixels of each color are formed is not particularly limited.
Each step will be explained below.
(1)配置工程(好ましくは塗布工程)
上記配置工程は、塗布により行うことが好適である。基板上に感光性樹脂組成物を塗布する方法としては、例えば、スピン塗布、スリット塗布、ロール塗布、流延塗布等が挙げられ、いずれの方法も好ましく用いることができる。
上記配置工程ではまた、感光性樹脂組成物を基板上に塗布した後、塗膜を乾燥することが好適である。塗膜の乾燥は、例えば、ホットプレート、IRオーブン、コンベクションオーブン等を用いて行うことができる。乾燥条件は、含まれる溶剤成分の沸点、硬化成分の種類、膜厚、乾燥機の性能等に応じて適宜選択されるが、通常、50~160℃の温度で10秒~60分程度行うことが好適である。
(1) Placement process (preferably coating process)
The above-mentioned arrangement step is preferably performed by coating. Examples of methods for applying the photosensitive resin composition onto the substrate include spin coating, slit coating, roll coating, and cast coating, and any of these methods can be preferably used.
In the above arrangement step, it is also preferable to dry the coating film after coating the photosensitive resin composition on the substrate. The coating film can be dried using, for example, a hot plate, an IR oven, a convection oven, or the like. Drying conditions are appropriately selected depending on the boiling point of the solvent component contained, the type of curing component, the film thickness, the performance of the dryer, etc., but it is usually carried out at a temperature of 50 to 160°C for about 10 seconds to 60 minutes. is suitable.
(2)光照射工程
上記光照射工程において、使用される活性エネルギー光線の光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク、蛍光ランプ等のランプ光源、アルゴンイオンレーザー、YAGレーザー、エキシマレーザー、窒素レーザー、ヘリウムカドミニウムレーザー、半導体レーザー等のレーザー光源等が使用される。また、露光機の方式としては、プロキシミティー方式、ミラープロジェクション方式、ステッパー方式が挙げられるが、プロキシミティー方式が好ましく用いられる。
なお、光照射工程では、用途によっては、所定のマスクパターンを介して活性エネルギー光線を照射することとしてもよい。この場合、露光部が硬化し、硬化部が現像液に対して不溶化又は難溶化されることになる。
(2) Light irradiation step In the above light irradiation step, the active energy light source used includes, for example, a xenon lamp, a halogen lamp, a tungsten lamp, a high pressure mercury lamp, an ultra-high pressure mercury lamp, a metal halide lamp, a medium pressure mercury lamp, and a low pressure mercury lamp. , a lamp light source such as a carbon arc or a fluorescent lamp, a laser light source such as an argon ion laser, a YAG laser, an excimer laser, a nitrogen laser, a helium cadmium laser, or a semiconductor laser. Further, as the method of the exposure machine, there are a proximity method, a mirror projection method, and a stepper method, and the proximity method is preferably used.
Note that in the light irradiation step, active energy light may be irradiated through a predetermined mask pattern depending on the application. In this case, the exposed area is cured, and the cured area is made insoluble or poorly soluble in the developer.
(3)現像工程
上記現像工程は、上述した光照射工程の後、現像液によって現像処理し、未露光部を除去しパターンを形成する工程である。これにより、パターン化された硬化膜を得ることができる。現像処理は、通常、10~50℃の現像温度で、浸漬現像、スプレー現像、ブラシ現像、超音波現像等の方法で行うことができる。
上記現像工程で使用される現像液は、感光性樹脂組成物を溶解するものであれば特に限定されないが、通常、有機溶剤やアルカリ性水溶液が用いられ、これらの混合物を用いてもよい。なお、現像液としてアルカリ性水溶液を用いる場合には、現像後、水で洗浄することが好ましい。有機溶剤やアルカリ性水溶液としては、特開2015-157909号公報に記載のものと同様のものが挙げられる。
(3) Development process The development process is a process in which, after the light irradiation process described above, development is performed using a developer to remove unexposed areas and form a pattern. Thereby, a patterned cured film can be obtained. The development treatment can be carried out usually at a development temperature of 10 to 50° C. by methods such as immersion development, spray development, brush development, and ultrasonic development.
The developer used in the above development step is not particularly limited as long as it dissolves the photosensitive resin composition, but organic solvents and alkaline aqueous solutions are usually used, and mixtures thereof may also be used. In addition, when using an alkaline aqueous solution as a developer, it is preferable to wash|clean with water after image development. Examples of the organic solvent and alkaline aqueous solution include those described in JP-A No. 2015-157909.
(4)加熱工程
上記加熱工程は、上述した現像工程の後、焼成によって露光部(硬化部)を更に硬化させる工程(「後硬化工程」とも称す)である。例えば、高圧水銀灯等の光源を使用して、0.5~5J/cmの光量で後露光する工程や、例えば60~200℃の温度で10秒~120分間にわたって後加熱する工程等が挙げられる。このような後硬化工程を行うことにより、パターン化された硬化膜の硬度及び密着性を更に強固なものとすることが可能になる。
(4) Heating process The heating process is a process (also referred to as a "post-curing process") of further curing the exposed area (cured area) by baking after the above-described development process. Examples include a process of post-exposure at a light intensity of 0.5 to 5 J/cm 2 using a light source such as a high-pressure mercury lamp, and a process of post-heating at a temperature of 60 to 200°C for 10 seconds to 120 minutes. It will be done. By performing such a post-curing step, it is possible to further increase the hardness and adhesion of the patterned cured film.
上記加熱工程は、一般的には、200~260℃程度の温度で行われるが、上記感光性樹脂組成物を使用すれば、200℃以下、好ましくは160℃以下の比較的低温な条件下で十分な硬化を行うことができる。そのため、基板や硬化物が保持する特性を損なうことなく、耐溶剤性に優れたものを得ることができる。
上記加熱工程において、加熱温度は、160℃以下が好ましく、155℃以下がより好ましく、150℃以下が更に好ましい。また、加熱温度は、70℃以上が好ましく、90℃以上がより好ましく、95℃以上が更に好ましい。すなわち、加熱温度としては、70~160℃が好ましく、90~155℃がより好ましく、95~150℃が更に好ましい。
上記加熱工程における加熱時間は特に限定されないが、例えば、5~60分間とすることが好適である。また、加熱方法も特に限定されないが、例えば、ホットプレート、コンベクションオーブン、高周波加熱機等の加熱機器を用いて行うことができる。
The above heating step is generally carried out at a temperature of about 200 to 260°C, but if the above photosensitive resin composition is used, it can be carried out at a relatively low temperature of 200°C or lower, preferably 160°C or lower. Sufficient curing can be achieved. Therefore, a product with excellent solvent resistance can be obtained without impairing the properties held by the substrate or the cured product.
In the heating step, the heating temperature is preferably 160°C or lower, more preferably 155°C or lower, and even more preferably 150°C or lower. Moreover, the heating temperature is preferably 70°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher. That is, the heating temperature is preferably 70 to 160°C, more preferably 90 to 155°C, and even more preferably 95 to 150°C.
The heating time in the heating step is not particularly limited, but is preferably 5 to 60 minutes, for example. Further, the heating method is not particularly limited, but it can be performed using a heating device such as a hot plate, a convection oven, or a high-frequency heater.
上記加熱工程によって得られる硬化膜(すなわち、上記感光性樹脂組成物を熱硬化して得られる硬化塗膜)の膜厚は、0.1~20μmであることが好適である。上記膜厚は、より好ましくは0.5~15μm、更に好ましくは1~10μmである。 The thickness of the cured film obtained by the heating step (ie, the cured coating film obtained by thermally curing the photosensitive resin composition) is preferably 0.1 to 20 μm. The film thickness is more preferably 0.5 to 15 μm, and even more preferably 1 to 10 μm.
[表示装置]
上述したカラーフィルターは、表示装置に好適に用いることができる。すなわち、本発明のアルカリ可溶性樹脂、感光性樹脂組成物を硬化してなる硬化物は表示装置用部材として好適に用いることができる。このような本発明のアルカリ可溶性樹脂、感光性樹脂組成物を硬化してなる硬化物を含む表示装置用部材、及び、該表示装置用部材を含む表示装置もまた、本発明の1つである。
上記感光性樹脂組成物により形成される硬化物(硬化膜)は、安定して、密着性、耐溶剤性に優れ、かつ高硬度であるうえ、高平滑性を示し、高い透過率を有するものであるから、透明部材として特に好適であり、また、各種表示装置における保護膜や絶縁膜としても有用である。
[Display device]
The color filter described above can be suitably used in a display device. That is, the cured product obtained by curing the alkali-soluble resin and photosensitive resin composition of the present invention can be suitably used as a member for a display device. A display device member including a cured product obtained by curing the alkali-soluble resin and photosensitive resin composition of the present invention, and a display device including the display device member are also part of the present invention. .
The cured product (cured film) formed from the above photosensitive resin composition is stable, has excellent adhesion and solvent resistance, and has high hardness, as well as high smoothness and high transmittance. Therefore, it is particularly suitable as a transparent member, and is also useful as a protective film or an insulating film in various display devices.
上記表示装置としては、例えば、液晶表示装置、固体撮像素子、タッチパネル式表示装置等が好適である。
なお、上記硬化物(硬化膜)を表示装置用部材として用いる場合、当該部材は、上記硬化膜から構成されるフィルム状の単層又は多層の部材であってもよいし、上記単層又は多層の部材に更に他の層が組み合わされた部材であってもよいし、また、上記硬化膜を構成中に含む部材であってもよい。
As the display device, for example, a liquid crystal display device, a solid-state image sensor, a touch panel type display device, etc. are suitable.
In addition, when the above-mentioned cured product (cured film) is used as a member for a display device, the member may be a film-like single-layer or multi-layer member composed of the above-mentioned cured film, or the above-mentioned single-layer or multi-layer member. It may be a member in which another layer is combined with the above member, or it may be a member that includes the above-mentioned cured film in its structure.
本発明のアルカリ可溶性樹脂、及び感光性樹脂組成物は、アルカリ現像性に優れ、低温硬化条件下であっても耐溶剤性に優れた硬化物を与えることができる。
本発明のアルカリ可溶性樹脂、及び感光性樹脂組成物は、液晶・有機EL・量子ドット・マイクロLED液晶表示装置や固体撮像素子、タッチパネル式表示装置等に用いられる各種の光学部材や構成部材として、電機・電子機器等の各種用途に好適に使用することができる。
The alkali-soluble resin and photosensitive resin composition of the present invention have excellent alkali developability and can provide a cured product with excellent solvent resistance even under low temperature curing conditions.
The alkali-soluble resin and photosensitive resin composition of the present invention can be used as various optical members and structural members used in liquid crystal, organic EL, quantum dot, micro LED liquid crystal display devices, solid-state image sensors, touch panel display devices, etc. It can be suitably used in various applications such as electrical machinery and electronic equipment.
以下、実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に包含される。
本発明に関し、実施例、比較例および特性評価により具体的に示す。なお、実施例および比較例では、特に記載しない限り%、wt%は質量%を、部は質量部を意味する。
以下の実施例等において、各種物性等は以下のようにして評価した。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples do not limit the present invention, and all modifications and implementations within the scope of the invention are within the technical scope of the present invention. be done.
The present invention will be specifically illustrated by Examples, Comparative Examples, and Characteristic Evaluations. In Examples and Comparative Examples, unless otherwise specified, % and wt% mean % by mass, and parts mean parts by mass.
In the Examples below, various physical properties were evaluated as follows.
[評価方法]
(1)酸価
樹脂溶液を3g精秤し、アセトン90gと水10gの混合溶剤に溶解させ、0.1NのKOH水溶液を滴定液として用いて滴定した。滴定は、自動滴定装置(商品名:COM-555、平沼産業社製)を用いて行い、樹脂溶液の酸価と樹脂固形分含有率から固形分1g当たりの酸価(mgKOH/g)を求めた。
なお、樹脂溶液の固形分は以下の方法で求めた。すなわち、樹脂溶液をアルミカップに約1gはかり取り、アセトン約3gを加えて溶解させた後、常温で自然乾燥させた。そして、真空乾燥機(EYELA社製、商品名:VOS-301SD)を用い、真空下140℃で1.5時間乾燥した後、デシケータ内で放冷し、質量を測定した。その質量減少量から、樹脂溶液の固形分(質量%)を計算した。
(2)エポキシ当量(g/当量)
樹脂固形分の質量(g)を樹脂中に含まれるエポキシ基のモル数(mol)で除することにより求めた。
(3)二重結合当量(g/当量)
樹脂固形分の質量(g)を樹脂の二重結合量(mol)で除することにより求めた。
(4)アルカリ溶解性
各アルカリ可溶性樹脂溶液を用い、表1に示す配合物を調製し、感光性樹脂組成物を得た。スピンコートにてガラス板上に塗布し、80℃で30分乾燥後に室温まで冷却し、30℃の1質量%炭酸ナトリウム水溶液に30秒浸漬して残存する塗膜の存在を下記基準で目視で評価した。
○:溶解性良好(塗膜が全くない)
×:溶解性不良(塗膜が残る)
(5)光硬化性
上記で得たアルカリ溶解性評価用試験板に500mJ/cmの光を照射した後、30℃の1質量%炭酸ナトリウム水溶液に30秒浸漬し、下記基準で目視で評価した。
○:硬化性良好(塗膜に剥がれなし)
×:硬化性不良(塗膜に剥がれあり)
(6)耐溶剤性
上記の光硬化性評価を行った後、90℃で1時間熱処理(後硬化)を行い、N-メチル-2-ピロリドンに室温で30秒浸漬した後に水洗し、下記基準で目視で評価した。
◎:耐溶剤性きわめて良好(塗膜に白化認められず)
○:耐溶剤性良好(塗膜にごく僅かな白化が見られる)
△:耐溶剤性やや劣る(塗膜に僅かな白化が見られる)
×:耐溶剤性不良(塗膜に顕著な白化が見られる)
(7)貯蔵安定性
10ccスクリュー管に各アルカリ可溶性樹脂溶液を8gに分取して40℃恒温槽中に静置し、24時間毎にスクリュー管を転倒して、下記基準で目視で評価した。
◎:1ヶ月経過時点、底面にゲル物生成確認されず
〇:2週間経過時点、底面にゲル物生成確認されず
△:1~2週間で底面にゲル物生成を確認
×:1週間以内に底面にゲル物生成を確認
[Evaluation method]
(1) 3 g of acid value resin solution was accurately weighed, dissolved in a mixed solvent of 90 g of acetone and 10 g of water, and titrated using a 0.1N aqueous KOH solution as a titrant. Titration was performed using an automatic titration device (product name: COM-555, manufactured by Hiranuma Sangyo Co., Ltd.), and the acid value per 1 g of solid content (mgKOH/g) was determined from the acid value of the resin solution and the resin solid content. Ta.
In addition, the solid content of the resin solution was determined by the following method. That is, about 1 g of the resin solution was weighed into an aluminum cup, about 3 g of acetone was added thereto to dissolve it, and then air-dried at room temperature. Then, it was dried under vacuum at 140° C. for 1.5 hours using a vacuum dryer (manufactured by EYELA, trade name: VOS-301SD), and then allowed to cool in a desiccator, and its mass was measured. The solid content (mass %) of the resin solution was calculated from the amount of mass loss.
(2) Epoxy equivalent (g/equivalent)
It was determined by dividing the mass (g) of the resin solid content by the number of moles (mol) of epoxy groups contained in the resin.
(3) Double bond equivalent (g/equivalent)
It was determined by dividing the mass (g) of the resin solid content by the double bond amount (mol) of the resin.
(4) Alkali Solubility Using each alkali soluble resin solution, the formulations shown in Table 1 were prepared to obtain photosensitive resin compositions. It was applied onto a glass plate by spin coating, dried at 80°C for 30 minutes, cooled to room temperature, immersed in a 1% by mass sodium carbonate aqueous solution at 30°C for 30 seconds, and the presence of the remaining coating film was visually checked using the following criteria. evaluated.
○: Good solubility (no coating film at all)
×: Poor solubility (paint remains)
(5) Photocurability After irradiating the test plate for alkali solubility evaluation obtained above with 500 mJ/cm 2 of light, it was immersed in a 1% by mass sodium carbonate aqueous solution at 30°C for 30 seconds, and evaluated visually according to the following criteria. did.
○: Good curability (no peeling of coating film)
×: Poor curing (paint peels off)
(6) Solvent resistance After carrying out the above photocuring evaluation, heat treatment (post-curing) was performed at 90°C for 1 hour, immersed in N-methyl-2-pyrrolidone for 30 seconds at room temperature, and then washed with water. It was visually evaluated.
◎: Very good solvent resistance (no whitening observed on the coating)
○: Good solvent resistance (slight whitening can be seen on the coating film)
△: Slightly poor solvent resistance (slight whitening can be seen on the coating film)
×: Poor solvent resistance (remarkable whitening is seen in the coating film)
(7) Storage stability 8 g of each alkali-soluble resin solution was placed in a 10 cc screw tube and placed in a constant temperature bath at 40°C.The screw tube was turned over every 24 hours and evaluated visually according to the following criteria. .
◎: Gel formation was not confirmed on the bottom after 1 month ○: No gel formation was confirmed on the bottom after 2 weeks △: Gel formation was confirmed on the bottom after 1 to 2 weeks ×: Within 1 week Confirmed gel formation on the bottom surface
実施例1
アルカリ可溶性樹脂溶液A-1の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを118.8部、クレゾールノボラック型エポキシ樹脂YDCN-704A(日鉄ケミカル&マテリアル社製、エポキシ当量207.6g/当量)を207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400(川口化学工業株式会社製、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール))を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を20.1部、アクリル酸を40.4部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。
その後、プロピレングリコールモノメチルエーテルアセテートを79.2部を投入し室温まで冷却した後、無水コハク酸を28.8部投入して60℃で9時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを247.4部加えてアルカリ可溶性樹脂溶液A-1を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 1
Synthesis of alkali-soluble resin solution A-1 In a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, 118.8 parts of propylene glycol monomethyl ether acetate and cresol novolac type epoxy resin YDCN- were added. 207.6 parts of 704A (manufactured by Nippon Steel Chemical & Materials Co., Ltd., epoxy equivalent: 207.6 g/equivalent), 0.4 part of triphenylphosphine as a reaction catalyst, Antige W-400 (Kawaguchi Chemical Industry Co., Ltd.) as a polymerization inhibitor. 0.3 part of 2,2'-methylenebis(4-methyl-6-t-butylphenol), manufactured by Kosher, Inc., was added and heated to 110°C. While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 40.4 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid.
Thereafter, 79.2 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 28.8 parts of succinic anhydride was added and the reaction was continued at 60°C for 9 hours to add 247 parts of propylene glycol monomethyl ether acetate. 4 parts were added to obtain an alkali-soluble resin solution A-1. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例2
アルカリ可溶性樹脂溶液A-2の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを109.8部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.2部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を20.1部、アクリル酸を20.2部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に5時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを73.2部投入し室温まで冷却した後、無水コハク酸を26.6部投入して60℃で8時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを228.8部加えてアルカリ可溶性樹脂溶液A-2を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 2
Synthesis of alkali-soluble resin solution A-2 109.8 parts of propylene glycol monomethyl ether acetate used in Example 1 was placed in a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet. 207.6 parts of the same cresol novolac type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.2 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 20.2 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 5 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. After that, 73.2 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 26.6 parts of succinic anhydride was added and the reaction was continued at 60°C for 8 hours, and 228.8 parts of propylene glycol monomethyl ether acetate was added. In addition, an alkali-soluble resin solution A-2 was obtained. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例3
アルカリ可溶性樹脂溶液A-3の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを123.6部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を26.8部、メタクリル酸を38.7部投入し、付加反応を行った。メタクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、メタクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを82.4部投入し室温まで冷却した後、無水コハク酸を35.8部投入して60℃で10時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを257.5部加えてアルカリ可溶性樹脂溶液A-3を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 3
Synthesis of alkali-soluble resin solution A-3 123.6 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 38.7 parts of methacrylic acid were added to carry out an addition reaction. One hour after the addition of methacrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and methacrylic acid. After that, 82.4 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 35.8 parts of succinic anhydride was added and the reaction was continued at 60°C for 10 hours, and 257.5 parts of propylene glycol monomethyl ether acetate was added. In addition, an alkali-soluble resin solution A-3 was obtained. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例4
アルカリ可溶性樹脂溶液A-4の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを129.1部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を26.8部、アクリル酸を31.3部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に5時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを86部投入し室温まで冷却した後、テトラヒドロ無水フタル酸を56.9部投入して60℃で10時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを268.9部加えてアルカリ可溶性樹脂溶液A-4を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 4
Synthesis of alkali-soluble resin solution A-4 129.1 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 31.3 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 5 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. Thereafter, 86 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 56.9 parts of tetrahydrophthalic anhydride was added and the reaction was continued at 60°C for 10 hours. In addition, an alkali-soluble resin solution A-4 was obtained. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例5
アルカリ可溶性樹脂溶液A-5の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを112.4部、ビフェニル型エポキシ樹脂YX4000(三菱ケミカル製、エポキシ当量187g/当量)を187部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.2部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を26.8部、アクリル酸を34.6部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを74.9部を投入し室温まで冷却した後、無水コハク酸を32.6部投入して60℃で10時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを234.2部加えてアルカリ可溶性樹脂溶液A-5を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 5
Synthesis of alkali-soluble resin solution A-5 Into a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, 112.4 parts of propylene glycol monomethyl ether acetate was added, and biphenyl-type epoxy resin YX4000 (Mitsubishi 187 parts of epoxy equivalent (manufactured by Chemical Co., Ltd., epoxy equivalent: 187 g/equivalent), 0.4 part of triphenylphosphine as a reaction catalyst, and 0.2 part of Antige W-400 as a polymerization inhibitor were charged, and the mixture was heated to 110°C. While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 34.6 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. After that, 74.9 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 32.6 parts of succinic anhydride was added and the reaction was continued at 60°C for 10 hours, and 234 parts of propylene glycol monomethyl ether acetate was added. 2 parts were added to obtain an alkali-soluble resin solution A-5. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例6
アルカリ可溶性樹脂溶液A-6の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを118.8部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を20.1部、アクリル酸を40.4部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを79.2部を投入し室温まで冷却した後、無水コハク酸を28.8部、反応触媒としてトリエチルアミンを0.4部投入して60℃で5時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを247.4部加えてアルカリ可溶性樹脂溶液A-6を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 6
Synthesis of alkali-soluble resin solution A-6 118.8 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet, as used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 40.4 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. After that, 79.2 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, then 28.8 parts of succinic anhydride and 0.4 parts of triethylamine as a reaction catalyst were added, and the reaction was continued at 60°C for 5 hours. Then, 247.4 parts of propylene glycol monomethyl ether acetate was added to obtain an alkali-soluble resin solution A-6. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例7
アルカリ可溶性樹脂溶液A-7の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを115部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を14.8部、アクリル酸を44.7部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを76.7部を投入し室温まで冷却した後、無水コハク酸を20.5部投入して60℃で9時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを239.6部加えてアルカリ可溶性樹脂溶液A-7を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 7
Synthesis of alkali-soluble resin solution A-7 In a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, add 115 parts of propylene glycol monomethyl ether acetate, the same as that used in Example 1. 207.6 parts of cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. . While maintaining the same temperature, 14.8 parts of dimethylolpropionic acid and 44.7 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. Thereafter, 76.7 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 20.5 parts of succinic anhydride was added and the reaction was continued at 60°C for 9 hours. 6 parts were added to obtain an alkali-soluble resin solution A-7. Table 1 shows various physical properties of the obtained alkali-soluble resin.
実施例8
アルカリ可溶性樹脂溶液A-8の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを123部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を20.1部、メタクリル酸を49.9部投入し、付加反応を行った。メタクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に6時間反応を継続し、ジメチロールプロピオン酸、メタクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを82部投入し室温まで冷却した後、無水コハク酸を29.8部投入して60℃で10時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを256.2部加えてアルカリ可溶性樹脂溶液A-8を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Example 8
Synthesis of alkali-soluble resin solution A-8 In a reaction tank equipped with a thermometer, a stirrer, a gas inlet pipe, a cooling pipe, and a dropping tank inlet, add 123 parts of propylene glycol monomethyl ether acetate, the same as that used in Example 1. 207.6 parts of cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. . While maintaining the same temperature, 20.1 parts of dimethylolpropionic acid and 49.9 parts of methacrylic acid were added to carry out an addition reaction. One hour after the addition of methacrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 6 hours to complete the addition reaction of dimethylolpropionic acid and methacrylic acid. Thereafter, 82 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, then 29.8 parts of succinic anhydride was added and the reaction was continued at 60°C for 10 hours, and 256.2 parts of propylene glycol monomethyl ether acetate was added. An alkali-soluble resin solution A-8 was obtained. Table 1 shows various physical properties of the obtained alkali-soluble resin.
比較例1
比較用アルカリ可溶性樹脂溶液B-1の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを129.7部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらジメチロールプロピオン酸を26.8部、アクリル酸を58.4部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に7時間反応を継続し、ジメチロールプロピオン酸、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを86.5部投入し室温まで冷却した後、無水コハク酸を31.5部投入して60℃で9時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを270.2部加えた。実質的にエポキシ基を有さない比較用アルカリ可溶性樹脂溶液B-1を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Comparative example 1
Synthesis of Comparative Alkali-Soluble Resin Solution B-1 129.7 parts of propylene glycol monomethyl ether acetate was added to a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet used in Example 1. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged and heated to 110°C. The temperature rose to . While maintaining the same temperature, 26.8 parts of dimethylolpropionic acid and 58.4 parts of acrylic acid were added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 7 hours to complete the addition reaction of dimethylolpropionic acid and acrylic acid. After that, 86.5 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 31.5 parts of succinic anhydride was added and the reaction was continued at 60°C for 9 hours, and 270.2 parts of propylene glycol monomethyl ether acetate was added. Added part. A comparative alkali-soluble resin solution B-1 having substantially no epoxy groups was obtained. Table 1 shows various physical properties of the obtained alkali-soluble resin.
比較例2
比較用アルカリ可溶性樹脂溶液B-2の合成
温度計、攪拌機、ガス導入管、冷却管及び滴下槽導入口を備えた反応槽に、プロピレングリコールモノメチルエーテルアセテートを115部、実施例1で用いたものと同じクレゾールノボラック型エポキシ樹脂YDCN-704Aを207.6部、反応触媒としてトリフェニルホスフィンを0.4部、重合禁止剤としてアンテージW-400を0.3部仕込み、加熱して110℃まで昇温した。同温度を維持しながらアクリル酸を52.1部投入し、付加反応を行った。アクリル酸投入から1時間後にトリフェニルホスフィンを0.4部追加投入し、120℃まで昇温して更に5時間反応を継続し、アクリル酸付加反応を完結させた。その後、プロピレングリコールモノメチルエーテルアセテートを76.7部投入し室温まで冷却した後、無水コハク酸を27.9部、トリエチルアミンを0.5部投入して60℃で10時間反応を継続し、プロピレングリコールモノメチルエーテルアセテートを239.7部加えて比較用アルカリ可溶性樹脂溶液B-2を得た。得られたアルカリ可溶性樹脂の各種物性を表1に示す。
Comparative example 2
Synthesis of comparative alkali-soluble resin solution B-2 115 parts of propylene glycol monomethyl ether acetate used in Example 1 was placed in a reaction tank equipped with a thermometer, a stirrer, a gas introduction pipe, a cooling pipe, and a dropping tank inlet. 207.6 parts of the same cresol novolak type epoxy resin YDCN-704A, 0.4 parts of triphenylphosphine as a reaction catalyst, and 0.3 parts of Antige W-400 as a polymerization inhibitor were charged, and heated to 110°C. It was warm. While maintaining the same temperature, 52.1 parts of acrylic acid was added to carry out an addition reaction. One hour after the addition of acrylic acid, 0.4 part of triphenylphosphine was added, the temperature was raised to 120°C, and the reaction was continued for an additional 5 hours to complete the acrylic acid addition reaction. After that, 76.7 parts of propylene glycol monomethyl ether acetate was added and cooled to room temperature, and then 27.9 parts of succinic anhydride and 0.5 parts of triethylamine were added and the reaction was continued at 60°C for 10 hours. 239.7 parts of monomethyl ether acetate was added to obtain comparative alkali-soluble resin solution B-2. Table 1 shows various physical properties of the obtained alkali-soluble resin.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例9~16、比較例3、4
実施例1~8で合成されたアルカリ可溶性樹脂A-1~A-8、比較例1、2で合成された比較用アルカリ可溶性樹脂溶液B-1、B-2を用い、表2に記載の配合で重合性化合物(多官能モノマー)、光重合開始剤等を混合して実施例9~16、比較例3、4の感光性樹脂組成物を調製した。得られた感光性樹脂組成物の各種特性評価の結果を表2に示す。
Examples 9 to 16, Comparative Examples 3 and 4
Using the alkali-soluble resins A-1 to A-8 synthesized in Examples 1 to 8 and the comparative alkali-soluble resin solutions B-1 and B-2 synthesized in Comparative Examples 1 and 2, the Photosensitive resin compositions of Examples 9 to 16 and Comparative Examples 3 and 4 were prepared by mixing a polymerizable compound (polyfunctional monomer), a photopolymerization initiator, and the like. Table 2 shows the results of various characteristic evaluations of the obtained photosensitive resin composition.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
表2より、特定の構造を有し、エポキシ当量が50000g/当量以下のアルカリ可溶性樹脂を含む感光性樹脂組成物はアルカリ溶解性、光硬化性が良好で、さらに90℃の低温硬化条件であっても耐溶剤性に優れた硬化物を与えることがわかった。また実施例11、12及び16の感光性樹脂組成物が特に優れた耐溶剤性を示したことから、不飽和モノカルボン酸としてメタクリル酸、多塩基酸無水物としてテトラヒドロ無水フタル酸を用いることで耐溶剤性がより顕著に発現し、アルカリ可溶性樹脂がアルキル基、環状構造を有することでより特性優位となることが示唆された。更に実施例9~16の感光性樹脂組成物のうち、アルカリ可溶性樹脂を合成する際に使用する合成触媒を三級ホスフィン(トリフェニルホスフィン)のみとしたもの(実施例9~13、15、16)は貯蔵安定性も良好であった。また、実施例6に示すように、アルカリ可溶性樹脂の合成において多塩基酸無水物を付加する際に三級アミン(トリエチルアミン)を添加することで反応効率が向上し、工程を短縮することができた。一方、実質的にエポキシ基を有さないB-1や水酸基を有する一塩基酸(ジメチロールプロピオン酸)を使用しなかったB-2を用いた比較例3、4の組成物では、90℃での熱処理後の耐溶剤性に劣る結果となった。エポキシ基とカルボキシル基のエステル結合が生成しない、あるいはエステル化反応効率が悪いためと考えられる。 From Table 2, the photosensitive resin composition containing an alkali-soluble resin having a specific structure and an epoxy equivalent of 50,000 g/equivalent or less has good alkali solubility and photocurability, and is also resistant to curing at a low temperature of 90°C. It was found that a cured product with excellent solvent resistance can be obtained even when using the same method. Furthermore, since the photosensitive resin compositions of Examples 11, 12, and 16 showed particularly excellent solvent resistance, by using methacrylic acid as the unsaturated monocarboxylic acid and tetrahydrophthalic anhydride as the polybasic acid anhydride, It was suggested that the solvent resistance was more markedly expressed and that the alkali-soluble resin having an alkyl group and a cyclic structure had more superior properties. Furthermore, among the photosensitive resin compositions of Examples 9 to 16, those in which only tertiary phosphine (triphenylphosphine) was used as the synthesis catalyst when synthesizing the alkali-soluble resin (Examples 9 to 13, 15, 16) ) also had good storage stability. Additionally, as shown in Example 6, adding a tertiary amine (triethylamine) when adding a polybasic acid anhydride in the synthesis of an alkali-soluble resin improves reaction efficiency and shortens the process. Ta. On the other hand, in the compositions of Comparative Examples 3 and 4 using B-1 which does not substantially have an epoxy group and B-2 which does not use a monobasic acid having a hydroxyl group (dimethylolpropionic acid), The result was poor solvent resistance after heat treatment. This is considered to be because an ester bond between an epoxy group and a carboxyl group is not formed or the esterification reaction efficiency is low.
本発明の感光性樹脂組成物は、硬化性、アルカリ現像性に優れ、電子情報分野の部材を形成するためのレジスト、例えばめっきレジスト、カラーフィルター用レジストに好適であり、耐溶剤性に優れることから、特にカラーフィルターの画素(着色層)形成用として好適である。 The photosensitive resin composition of the present invention has excellent curability and alkali developability, is suitable for resists for forming members in the electronic information field, such as plating resists and resists for color filters, and has excellent solvent resistance. Therefore, it is particularly suitable for forming pixels (colored layers) of color filters.

Claims (8)

  1. 下記式(1)で表される構造及び下記式(2)で表される構造から選択される少なくとも1つのエポキシ基含有構造と、
    下記式(3)~(4’)で表される構造から選択される少なくとも1つのカルボキシル基含有構造と、
    下記式(5)で表される構造及び下記式(5’)で表される構造から選択される少なくとも1つの重合性不飽和結合含有構造とを有し、
    エポキシ当量が50000g/当量以下であることを特徴とするアルカリ可溶性樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(2)、(3’)、(4’)及び(5’)中、mは1~10の整数である。式(3)及び(3’)中、Rは、同一又は異なって、2価の有機基を表す。式(3)~(5’)中、R及びRは、同一又は異なって、水素原子又は式(6)で表される基であり、Rの少なくとも一つは式(6)で表される基である。式(4)及び(4’)中、Rは、同一又は異なって、3価の有機基を表す。式(5)及び(5’)中、R、R及びRは、同一又は異なって、水素原子又は炭素数1~6の炭化水素基を表す。R、Rは、同一又は異なって、直接結合又は2価の有機基を表す。式(6)中、R10は、2価の有機基を表す。)
    At least one epoxy group-containing structure selected from the structure represented by the following formula (1) and the structure represented by the following formula (2),
    At least one carboxyl group-containing structure selected from the structures represented by the following formulas (3) to (4'),
    It has at least one polymerizable unsaturated bond-containing structure selected from the structure represented by the following formula (5) and the structure represented by the following formula (5'),
    An alkali-soluble resin having an epoxy equivalent of 50,000 g/equivalent or less.
    Figure JPOXMLDOC01-appb-C000001
    (In formulas (2), (3'), (4') and (5'), m is an integer of 1 to 10. In formulas (3) and (3'), R 1 is the same or different represents a divalent organic group.In formulas (3) to (5'), R 2 and R 3 are the same or different and are a hydrogen atom or a group represented by formula (6), and R 2 is a group represented by formula (6).In formulas (4) and (4'), R 4 is the same or different and represents a trivalent organic group.Formula (5) and In (5'), R 5 , R 6 and R 7 are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 8 and R 9 are the same or different and represent a direct bond or represents a divalent organic group.In formula (6), R10 represents a divalent organic group.)
  2. 酸価が30~200mgKOH/gであることを特徴とする請求項1に記載のアルカリ可溶性樹脂。 The alkali-soluble resin according to claim 1, having an acid value of 30 to 200 mgKOH/g.
  3. 請求項1に記載のアルカリ可溶性樹脂、重合性化合物、及び、光重合開始剤を含むことを特徴とする感光性樹脂組成物。 A photosensitive resin composition comprising the alkali-soluble resin according to claim 1, a polymerizable compound, and a photopolymerization initiator.
  4. 請求項1又は2に記載のアルカリ可溶性樹脂、又は、請求項3に記載の感光性樹脂組成物を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the alkali-soluble resin according to claim 1 or 2 or the photosensitive resin composition according to claim 3.
  5. 請求項4に記載の硬化物を含むことを特徴とする表示装置用部材。 A member for a display device, comprising the cured product according to claim 4.
  6. 請求項5に記載の表示装置用部材を含むことを特徴とする表示装置。 A display device comprising the member for a display device according to claim 5.
  7. アルカリ可溶性樹脂を製造する方法であって、
    該製造方法は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂(a)に1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)を反応させる第一工程と、
    該第一工程で得られた反応生成物に多塩基酸無水物(d)を反応させる第二工程とを含み、
    得られるアルカリ可溶性樹脂のエポキシ当量が50000g/当量以下となるように、該第一工程での1級アルコール性水酸基を有する一塩基酸(b)と不飽和モノカルボン酸(c)の使用量を調整して行われることを特徴とするアルカリ可溶性樹脂の製造方法。
    A method for producing an alkali-soluble resin, the method comprising:
    The production method includes a first step in which an epoxy resin (a) having two or more epoxy groups in one molecule is reacted with a monobasic acid (b) having a primary alcoholic hydroxyl group and an unsaturated monocarboxylic acid (c). process and
    a second step of reacting the reaction product obtained in the first step with a polybasic acid anhydride (d),
    The amounts of the monobasic acid (b) having a primary alcoholic hydroxyl group and the unsaturated monocarboxylic acid (c) used in the first step are adjusted so that the epoxy equivalent of the alkali-soluble resin obtained is 50,000 g/equivalent or less. A method for producing an alkali-soluble resin, characterized in that the method is carried out by adjusting the method.
  8. 感光性樹脂組成物を製造する方法であって、
    該製造方法は、請求項7に記載のアルカリ可溶性樹脂の製造方法でアルカリ可溶性樹脂を製造する工程と、
    得られたエポキシ当量が50000g/当量以下のアルカリ可溶性樹脂、重合性化合物及び光重合開始剤を混合する工程とを含むことを特徴とする感光性樹脂組成物の製造方法。
     
    A method for producing a photosensitive resin composition, comprising:
    The manufacturing method includes a step of manufacturing an alkali-soluble resin by the method for manufacturing an alkali-soluble resin according to claim 7;
    A method for producing a photosensitive resin composition, comprising the step of mixing an alkali-soluble resin having an epoxy equivalent of 50,000 g/equivalent or less, a polymerizable compound, and a photopolymerization initiator.
PCT/JP2023/015488 2022-05-13 2023-04-18 Alkali-soluble resin, photosensitive resin composition, and cured product thereof WO2023218876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-079629 2022-05-13
JP2022079629 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023218876A1 true WO2023218876A1 (en) 2023-11-16

Family

ID=88730271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015488 WO2023218876A1 (en) 2022-05-13 2023-04-18 Alkali-soluble resin, photosensitive resin composition, and cured product thereof

Country Status (1)

Country Link
WO (1) WO2023218876A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053890A1 (en) * 2000-01-17 2001-07-26 Showa Highpolymer Co., Ltd. Photosensitive resin composition
WO2009025190A1 (en) * 2007-08-21 2009-02-26 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, active-energy-ray-curable resin composition utilizing the same, and use of the same
JP2009116110A (en) * 2007-11-07 2009-05-28 Taiyo Ink Mfg Ltd Photocurable resin composition, its cured product pattern, and printed wiring board with cured product pattern
JP2012159657A (en) * 2011-01-31 2012-08-23 Asahi Kasei E-Materials Corp Photocurable resin composition and method for manufacturing patterned base material using the same, and electronic component having the base material
WO2022107508A1 (en) * 2020-11-19 2022-05-27 Dic株式会社 (meth)acrylate resin having acid group, curable resin composition, cured product, insulating amterial and resist member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053890A1 (en) * 2000-01-17 2001-07-26 Showa Highpolymer Co., Ltd. Photosensitive resin composition
WO2009025190A1 (en) * 2007-08-21 2009-02-26 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, active-energy-ray-curable resin composition utilizing the same, and use of the same
JP2009116110A (en) * 2007-11-07 2009-05-28 Taiyo Ink Mfg Ltd Photocurable resin composition, its cured product pattern, and printed wiring board with cured product pattern
JP2012159657A (en) * 2011-01-31 2012-08-23 Asahi Kasei E-Materials Corp Photocurable resin composition and method for manufacturing patterned base material using the same, and electronic component having the base material
WO2022107508A1 (en) * 2020-11-19 2022-05-27 Dic株式会社 (meth)acrylate resin having acid group, curable resin composition, cured product, insulating amterial and resist member

Similar Documents

Publication Publication Date Title
KR101930099B1 (en) Oxime ester compound and photoinitiator containing said compound
KR101963931B1 (en) Black photosensitive resin composition, black matrix and image display device comprising thereof
JP2010262028A (en) Photosensitive resin composition for black matrix
JP5133658B2 (en) Photosensitive resin composition for black matrix, cured product and color filter using the same
KR100736294B1 (en) Photosensitive resin composition, cured products thereof and spacer made from these cured products for display panel
WO2016121394A1 (en) Resin containing carboxyl group, photosensitive resin composition, dry film, printed wiring board, and method for producing resin containing carboxyl group
WO2017077662A1 (en) Photosensitive resin composition, dry film and printed wiring board
CN111032720B (en) Resin, photosensitive resin composition, resin cured film, and image display device
WO2021235299A1 (en) Polymerizable-unsaturated-group-containing alkali-soluble resin, method for producing same, photosensive resin composition, and cured product thereof
TWI656163B (en) Liquid solder resist composition and coated printed wiring board (2)
JP2008233605A (en) Photosensitive resist composition for color filter and color filter
JP2014153411A (en) Photosensitive resin composition and cured product of the same
KR101574535B1 (en) Novel biphenyl oxime ester compounds, photoinitiator and photoresist composition containing the same
WO2019188897A1 (en) Production method for polymerizable-unsaturated-group-containing alkali-soluble resin, polymerizable-unsaturated-group-containing alkali-soluble resin, photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient, and cured film of photosensitive resin composition including polymerizable-unsaturated-group-containing alkali-soluble resin as essential ingredient
JP7205553B2 (en) Alkali-soluble, photocurable and thermosetting copolymer, photosensitive resin composition, photosensitive resin film, and color filter using the same
WO2023218876A1 (en) Alkali-soluble resin, photosensitive resin composition, and cured product thereof
JP6172816B2 (en) Photosensitive resin composition, dry film, printed wiring board, and method for producing photosensitive resin composition
CN110709435B (en) Photocurable and thermally curable copolymer, and photosensitive resin composition, photosensitive resin film and color filter using the same
JP2017088842A (en) Carboxyl group-containing resin, photosensitive resin composition, dry film, printed wiring board, and method for producing carboxyl group-containing resin
JP2011093970A (en) Photosensitive resin
KR102466525B1 (en) Novel biphenyl oxime ester compounds, photopolymerization initiator and photoresist composition containing the same
KR101478292B1 (en) Novel biphenyl β-oxime ester compounds, photoinitiator and photoresist composition containing the same
KR102450676B1 (en) Diketoxime compound, photosensitive resin composition containing thereof and preparing method of diketoxime compound
JP6755007B2 (en) Unsaturated group-containing alkali-soluble resin
WO2023120355A1 (en) Alkali-soluble resin, photosensitive resin composition, and cured object therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803358

Country of ref document: EP

Kind code of ref document: A1