WO2023218626A1 - Magnetic detection device - Google Patents

Magnetic detection device Download PDF

Info

Publication number
WO2023218626A1
WO2023218626A1 PCT/JP2022/020164 JP2022020164W WO2023218626A1 WO 2023218626 A1 WO2023218626 A1 WO 2023218626A1 JP 2022020164 W JP2022020164 W JP 2022020164W WO 2023218626 A1 WO2023218626 A1 WO 2023218626A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
magnetic
section
conductor portion
magnetic flux
Prior art date
Application number
PCT/JP2022/020164
Other languages
French (fr)
Japanese (ja)
Inventor
捷仁 鴫田
幸貴 内田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to PCT/JP2022/020164 priority Critical patent/WO2023218626A1/en
Publication of WO2023218626A1 publication Critical patent/WO2023218626A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present disclosure relates to a magnetic sensing device.
  • Patent Document 1 discloses a current detection device that uses magnetic detection. This current detection device detects currents flowing through a plurality of conductors arranged adjacent to each other. This current detection device includes a detection element for detecting a current flowing through a conductor to be detected among a plurality of conductors via a magnetic field generated due to the current.
  • the detection element can detect the flow through the conductor not to be detected. It is affected by the magnetic field caused by the current.
  • a correction value in advance for correction based on the positional relationship between the detection element and the conductor other than the detection target, and use the correction value to correct the detected value.
  • the positional relationship between the detection element and the conductor other than the detection target may deviate from the expected position, and in this case, a detection error may occur due to the positional deviation.
  • the present disclosure discloses that in a configuration where the magnetic sensing part is affected by a magnetic field caused by a current flowing through a conductor part that is not a detection target, the magnetic field detection part is affected by a magnetic field that is generated due to a current flowing through a conductor part that is not a detection target.
  • the magnetic field detection part is affected by a magnetic field that is generated due to a current flowing through a conductor part that is not a detection target.
  • the magnetic sensing device of the present disclosure includes: A magnetic detection device installed in a vehicle between a battery and a load, A casing and a conductive path provided within the housing and supplying power supplied from the battery to the load side; Equipped with a magnetic detection section that outputs a signal according to the magnetic flux density of the magnetic flux passing through it,
  • the conductive path is a first conductor section that is a detection target of the magnetic detection section and extends along the Z direction; a second conductor portion arranged at intervals in a direction perpendicular to the Z direction with respect to the first conductor portion and extending along the Z direction;
  • the magnetic flux density in the magnetic sensing section caused by the current flowing through the first conductor section is N1
  • the magnetic flux density in the magnetic sensing part caused by the current flowing through the second conductor part is N2, Assuming that the second conductor part is moved to four locations shifted by 1.5 mm in the X direction and Y direction perpendicular to the Z direction, the magnetic flux density at which the error from N
  • the technology according to the present disclosure is directed to a configuration in which the magnetic detection unit is affected by a magnetic field caused by a current flowing through a conductor part that is not a detection target, and in which the magnetic detection unit is affected by a magnetic field generated due to a current flowing through a conductor part that is not a detection target. It is easy to suppress the effects of detection errors caused by
  • FIG. 1 is a configuration diagram schematically illustrating a magnetic detection device according to a first embodiment.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • a magnetic detection device installed in a vehicle between a battery and a load, A casing and a conductive path provided within the housing and supplying power supplied from the battery to the load side; Equipped with a magnetic detection section that outputs a signal according to the magnetic flux density of the magnetic flux passing through it,
  • the conductive path is a first conductor section that is a detection target of the magnetic detection section and extends along the Z direction; a second conductor portion arranged at intervals in a direction perpendicular to the Z direction with respect to the first conductor portion and extending along the Z direction;
  • the magnetic flux density in the magnetic sensing section caused by the current flowing through the first conductor section is N1
  • the magnetic flux density in the magnetic sensing part caused by the current flowing through the second conductor part is N2, Assuming that the second conductor part is moved to four locations shifted by 1.5 mm in the X direction and Y direction perpendicular to the Z direction, the magnetic flux density at which the error from N2 is maximum is set as N3.
  • the degree of influence compared to the expected position is -7 It falls within a range greater than .00% and less than 7.00%. Therefore, according to this configuration, although the magnetic sensing part is placed in a position where it is affected by the magnetic flux generated due to the current flowing through the second conductor part, the positional relationship between the magnetic sensing part and the second conductor part is It is easy to suppress the effects of detection errors caused by
  • N2 is a total value of magnetic flux densities caused by each of the plurality of second conductor parts
  • N3 is the sum of magnetic flux densities at which the error from N2 is maximum when it is assumed that each of the plurality of second conductor parts is moved to four locations shifted by 1.5 mm in the X direction and the Y direction.
  • the magnetic detection device 10 shown in FIG. 1 is installed in a vehicle 1.
  • the magnetic detection device 10 is provided between the battery 2 and the load 3 and is electrically connected to the battery 2 and the load 3.
  • the magnetic detection device 10 is a so-called junction box.
  • the magnetic detection device 10 supplies power supplied from the battery 2 to the load 3 side.
  • the magnetic detection device 10 includes a housing 11, a conductive path 12, a magnetic detection section 13, and a control section 14.
  • the conductive path 12 is provided within the housing 11.
  • the conductive path 12 includes a first conductor portion 21 , a second conductor portion 22 , a first connecting conductor portion 24 , and a second connecting conductor portion 25 .
  • the first conductor part 21, the second conductor part 22, the first connecting conductor part 24, and the second connecting conductor part 25 are made of different members.
  • the first conductor section 21, the second conductor section 22, the first connecting conductor section 24, and the second connecting conductor section 25 are configured as a bus bar.
  • the first conductor portion 21 extends along the Z direction.
  • the first conductor portion 21 has a rectangular parallelepiped shape.
  • the length of the first conductor portion 21 in the X direction is longer than the length in the Y direction.
  • the X direction is a direction perpendicular to the Z direction.
  • the Y direction is a direction perpendicular to the Z direction and the X direction.
  • the second conductor portion 22 extends along the Z direction.
  • the second conductor portion 22 has a rectangular parallelepiped shape.
  • the length of the second conductor portion 22 in the X direction is longer than the length in the Y direction.
  • the second conductor section 22 is arranged at intervals from the first conductor section 21 in a direction perpendicular to the Z direction.
  • a plurality of second conductor portions 22 are provided.
  • the plurality of second conductor parts 22 include second conductor parts 22A and 22B.
  • the second conductor part 22A is arranged on one side in the X direction than the first conductor part 21, and on one side in the Y direction than the first conductor part 21 (see FIG. 2).
  • the second conductor portion 22B is disposed on the other side of the first conductor portion 21 in the X direction, and is disposed on one side of the first conductor portion 21 in the Y direction.
  • the second conductor portion 22B is arranged on the other side in the Y direction than the second conductor portion 22A (see FIG. 2).
  • the first connecting conductor section 24 connects the first conductor section 21 and the second conductor section 22A.
  • the first connecting conductor portion 24 is connected to the first conductor portion 21 and the second conductor portion 22A by, for example, a bolt 30.
  • the first connecting conductor section 24 is electrically connected to the first conductor section 21 and the second conductor section 22A.
  • the first connecting conductor portion 24 extends along the X direction.
  • the first connecting conductor portion 24 has a rectangular parallelepiped shape.
  • the first connecting conductor part 24 has a first connecting part 24A connected to the first conductor part 21 and a second connecting part 24B connected to the second conductor part 22A.
  • the first connecting portion 24A is provided at one end side of the first connecting conductor portion 24.
  • the first connecting portion 24A is connected to one end side of the first conductor portion 21.
  • the first connecting portion 24A is connected to the first conductor portion 21 by, for example, a bolt 30.
  • the second connecting portion 24B is provided on the other end side of the first connecting conductor portion 24.
  • the second connecting portion 24B is connected to one end side of the second conductor portion 22A.
  • the second connecting portion 24B is connected to the second conductor portion 22A by, for example, a bolt 30.
  • the first connecting conductor portion 24 has a first step portion 24C provided between the first connecting portion 24A and the second connecting portion 24B.
  • the first step portion 24C forms a step in the Y direction.
  • the second connecting conductor portion 25 connects the first conductor portion 21 and the second conductor portion 22B.
  • the second connecting conductor portion 25 is connected to the first conductor portion 21 and the second conductor portion 22B by, for example, a bolt 30.
  • the second connecting conductor section 25 is electrically connected to the first conductor section 21 and the second conductor section 22B.
  • the second connecting conductor portion 25 extends along the X direction.
  • the second connecting conductor portion 25 has a rectangular parallelepiped shape.
  • the second connecting conductor part 25 has a third connecting part 25A connected to the first conductor part 21 and a fourth connecting part 25B connected to the second conductor part 22B.
  • the third connecting portion 25A is provided on one end side of the second connecting conductor portion 25.
  • the third connecting portion 25A is connected to the other end side of the first conductor portion 21.
  • the third connecting portion 25A is connected to the first conductor portion 21 by, for example, a bolt 30.
  • the fourth connecting portion 25B is provided on the other end side of the second connecting conductor portion 25.
  • the fourth connecting portion 25B is connected to one end side of the second conductor portion 22B.
  • the fourth connecting portion 25B is connected to the second conductor portion 22B by, for example, a bolt 30.
  • the second connecting conductor portion 25 has a second step portion 25C provided between the third connecting portion 25A and the fourth connecting portion 25B.
  • the second step portion 25C forms a step in the Y direction.
  • the solid arrow shown in FIG. 1 indicates the direction in which the current flows from the battery 2 side to the load 3 side. Specifically, a current flows from the battery 2 side to the second conductor portion 22B, and then flows through the second connecting conductor portion 25, the first conductor portion 21, the first connecting conductor portion 24, and the second conductor portion 22A in this order.
  • the second conductor portion 22B current flows from one side to the other side in the Z direction.
  • the second connecting conductor portion 25 current flows from the other side to the one side in the X direction.
  • the first connecting conductor portion 24 current flows from the other side to the one side in the X direction.
  • the second conductor portion 22A current flows from one side to the other side in the Z direction.
  • the same current flows through the second conductor portion 22B, the second connecting conductor portion 25, the first conductor portion 21, the first connecting conductor portion 24, and the second conductor portion 22A.
  • the direction of the current flowing through the second conductor portions 22A, 22B is opposite to the direction of the current flowing through the first conductor portion 21. In other words, if the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the first conductor section 21 is positive, the magnetic flux density in the magnetic sensing section 13 due to the current flowing through the second conductor sections 22A and 22B is negative. .
  • the magnetic detection section 13 functions as a current sensor for detecting the current flowing through the first conductor section 21.
  • the magnetic detection section 13 is provided in the first conductor section 21 .
  • the magnetic detection section 13 is provided between the first connecting conductor section 24 and the second connecting conductor section 25 in the Z direction.
  • the magnetic detection section 13 is installed on the other surface of the first conductor section 21 in the Y direction.
  • the magnetic detection section 13 is fixed to the first conductor section 21 with adhesive, for example.
  • the first conductor portion 21 is fixed to the first conductor portion 21 via, for example, a substrate (not shown).
  • the substrate has insulating properties and is made of resin, for example.
  • the magnetic detection section 13 is, for example, a Hall element.
  • the magnetic detection section 13 outputs a signal according to the magnetic flux density of the magnetic flux passing through itself in the Y direction. This signal is input to the control section 14.
  • the control unit 14 is configured as, for example, an MCU (Micro Controller Unit).
  • the control section 14 specifies the value of the current flowing through the first conductor section 21 based on the signal output from the magnetic detection section 13.
  • the output value of the magnetic detection section 13 is influenced not only by the current flowing through the first conductor section 21 but also by the current flowing through the second conductor section 22. For this reason, the control unit 14 stores in advance a correction value that takes into account the positional relationship between the magnetic detection unit 13 and the second conductor unit 22, and uses this correction value to correct the output value of the magnetic detection unit 13. .
  • the correction value is, for example, a theoretical value of the magnetic flux density in the magnetic detection section 13 due to the current flowing through the second conductor section 22.
  • the control unit 14 corrects the output value of the magnetic detection unit 13 by subtracting the correction value.
  • the theoretical value of the magnetic flux density in the magnetic detection unit 13 is calculated as follows, for example. Below, the magnetic flux density in the magnetic sensing part 13 resulting from the current flowing through the first conductor part 21 will be explained as an example.
  • I[A] is the expected current value flowing through the first conductor portion 21.
  • A[m] is a value that is half the length of the cross section of the first conductor portion 21 in the X direction.
  • the cross-sectional area refers to a cross section cut along a virtual plane that passes through the detection position of the magnetic detection unit 13 and is perpendicular to the Z direction.
  • B[m] is a value that is half the length of the cross section of the first conductor portion 21 in the Y direction.
  • C1 to C4 are calculated using the following formulas (B), (C), (D), and (E).
  • C1 A+X...Formula (B)
  • C2 AX...Formula (C)
  • C3 B+Y...Formula (D)
  • C4 BY...Formula (E)
  • F1 to F8 are calculated by the following equations (F1) (F2) (F3) (F4) (F5) (F6) (F7) (F8).
  • F71 and F72 in formula (F7) are calculated by the following formulas (F71) and (F72).
  • F81 and F82 in formula (F8) are calculated by the following formulas (F81) and (F82).
  • Magnetic flux density ⁇ ⁇ (F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8) / 2 ...
  • the first conductor portion 21 and the second conductor portion 22 are configured as separate members. Therefore, the positional relationship between the magnetic sensing section 13 provided in the first conductor section 21 and the second conductor section 22 may deviate from the expected position. Furthermore, the installation position of the magnetic detection unit 13 may deviate from the expected position. In these cases, detection errors may occur due to positional deviation.
  • the magnetic detection device 10 is configured as follows in order to suppress the influence of such detection errors.
  • the magnetic detection device 10 is configured such that the degree of influence determined by the following equation (1) satisfies the condition of the following equation (2).
  • Influence degree [%] (((N1+N3)/(N1+N2))-1) ⁇ 100...Formula (1) -7.00[%] ⁇ Influence [%] ⁇ 7.00[%] ...Formula (2)
  • N1 is the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the first conductor section 21.
  • N2 is the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the second conductor section 22.
  • N3 is the magnetic flux density at which the error from N2 is maximum when it is assumed that the second conductor portion 22 is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. Specifically, the above four locations are a position where the second conductor part 22 is shifted by 1.5 mm to one side in the X direction, a position where the second conductor part 22 is shifted by 1.5 mm to one side in the Y direction, and a position where the second conductor part 22 is shifted to one side in the X direction.
  • the method for calculating the magnetic flux density is as described above.
  • N2 is the sum of the magnetic flux densities caused by each of the second conductor portions 22A and 22B.
  • N3 is the sum of magnetic flux densities at which the error from N2 is maximum when it is assumed that each of the second conductor parts 22A and 22B is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. .
  • N3 is the sum value of the magnetic flux densities in the combination that gives the maximum error when summed.
  • this magnetic sensing device 10 is also applicable to a configuration in which a plurality of second conductor portions 22A and 22B exist.
  • the magnetic sensing device 10 includes a first connecting conductor section 24 that is arranged at a distance from the magnetic sensing section 13 in the Z direction and connects the first conductor section 21 and the second conductor section 22A.
  • a first connecting conductor section 24 that is arranged at a distance from the magnetic sensing section 13 in the Z direction and connects the first conductor section 21 and the second conductor section 22A.
  • the magnetic sensing device 10 includes a second connecting conductor section 25 that is spaced apart from the magnetic sensing section 13 in the Z direction and connects the first conductor section 21 and the second conductor section 22B.
  • the magnetic detection part 13 and the second conductor part 22B are It is easy to suppress the effects of detection errors.
  • the same current flows through the first conductor portion 21 and the second conductor portion 22A via the first connecting conductor portion 24.
  • the positional relationship between the magnetic sensing section 13 and the second conductor section 22A is It is easy to suppress the effects of detection errors caused by misalignment.
  • the same current flows through the first conductor portion 21 and the second conductor portion 22B via the second connecting conductor portion 25.
  • the positional relationship between the magnetic sensing portion 13 and the second conductor portion 22B is It is easy to suppress the effects of detection errors caused by misalignment.
  • the configuration is such that two second conductor parts are provided, but the configuration may be such that only one second conductor part is provided, or the configuration may be such that three or more second conductor parts are provided.
  • the first conductor part and the second conductor part are connected, but they may be unconnected.
  • the same current flows through the first conductor portion and the second conductor portion, but a configuration may be adopted where different currents flow through the first conductor portion and the second conductor portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

In a magnetic detection device (10), an influence rate determined in accordance with Expression (1) shown below satisfies a condition represented by Expression (2) shown below. Expression (1): Influence rate [%] = (((N1 + N3)/(N1 + N2)) − 1) × 100 Expression (2): −7.00 [%] < Influence rate [%] < 7.00 [%] N1 represents a magnetic flux density in a magnetic detection unit (13) due to a current flowing through a first conductor unit (21). N2 represents a magnetic flux density in the magnetic detection unit (13) due to a current flowing through a second conductor unit (22). N3 represents a magnetic flux density where an error between N3 and N2 is maximum, assuming that the second conductor unit (22) is moved to four different locations each with a 1.5 mm shift in X and Y directions.

Description

磁気検知装置magnetic detection device
 本開示は、磁気検知装置に関する。 The present disclosure relates to a magnetic sensing device.
 特許文献1には、磁気検知を利用した電流検出装置が開示されている。この電流検出装置は、互いに隣り合って配置された複数の導体を流れる電流を検出する。この電流検出装置は、複数の導体のうち検出対象の導体を流れる電流を、当該電流に起因して生じた磁界を介して検出するための検出素子を備える。 Patent Document 1 discloses a current detection device that uses magnetic detection. This current detection device detects currents flowing through a plurality of conductors arranged adjacent to each other. This current detection device includes a detection element for detecting a current flowing through a conductor to be detected among a plurality of conductors via a magnetic field generated due to the current.
特表2021-515194号公報Special Publication No. 2021-515194 特開2013-90474号公報Japanese Patent Application Publication No. 2013-90474
 特許文献1の装置のように、複数の導体が隣り合って配置される構成では、検出対象の導体と検出対象外の導体との間隔を狭くすると、検出素子が、検出対象外の導体を流れる電流に起因して生じた磁界の影響を受けてしまう。その対策として、検出素子と検出対象外の導体との位置関係に基づいて補正するための補正値を予め設定しておき、その補正値を用いて検出値を補正することが考えられる。しかし、実際に導体を設置したとき、検出素子と検出対象外の導体との位置関係が想定とずれることもあり、この場合、位置ずれに起因した検知誤差が生じうる。 In a configuration in which a plurality of conductors are arranged next to each other, as in the device of Patent Document 1, when the distance between the conductor to be detected and the conductor not to be detected is narrowed, the detection element can detect the flow through the conductor not to be detected. It is affected by the magnetic field caused by the current. As a countermeasure, it is possible to set a correction value in advance for correction based on the positional relationship between the detection element and the conductor other than the detection target, and use the correction value to correct the detected value. However, when the conductor is actually installed, the positional relationship between the detection element and the conductor other than the detection target may deviate from the expected position, and in this case, a detection error may occur due to the positional deviation.
 本開示は、磁気検知部が検知対象外の導体部を流れる電流に起因して生じた磁界の影響を受ける構成において、磁気検知部と検知対象外の導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい技術を提供する。 The present disclosure discloses that in a configuration where the magnetic sensing part is affected by a magnetic field caused by a current flowing through a conductor part that is not a detection target, the magnetic field detection part is affected by a magnetic field that is generated due to a current flowing through a conductor part that is not a detection target. Provide technology that easily suppresses the effects of detection errors.
 本開示の磁気検知装置は、
 車両に設置され、バッテリと負荷との間に設けられる磁気検知装置であって、
 筐体と、
 前記筐体内に設けられ、前記バッテリから供給される電力を前記負荷側に供給する導電路と、
 自身を通る磁束の磁束密度に応じた信号を出力する磁気検知部と、を備え、
 前記導電路は、
 前記磁気検知部の検知対象とされ、Z方向に沿って延びる第1導体部と、
 前記第1導体部に対し前記Z方向に直交する方向に間隔をあけて配置され、前記Z方向に沿って延びる第2導体部と、を有し、
 前記第1導体部を流れる電流に起因した前記磁気検知部における磁束密度をN1とし、
 前記第2導体部を流れる電流に起因した前記磁気検知部における磁束密度をN2とし、
 前記第2導体部を前記Z方向に直交するX方向及びY方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度をN3とした場合に、
 以下の式(1)によって求められる影響度が、以下の式(2)の条件を満たす。
   影響度[%]=(((N1+N3)/(N1+N2))-1)×100 ・・・式(1)
   -7.00[%]<影響度[%]<7.00[%] ・・・式(2)
The magnetic sensing device of the present disclosure includes:
A magnetic detection device installed in a vehicle between a battery and a load,
A casing and
a conductive path provided within the housing and supplying power supplied from the battery to the load side;
Equipped with a magnetic detection section that outputs a signal according to the magnetic flux density of the magnetic flux passing through it,
The conductive path is
a first conductor section that is a detection target of the magnetic detection section and extends along the Z direction;
a second conductor portion arranged at intervals in a direction perpendicular to the Z direction with respect to the first conductor portion and extending along the Z direction;
The magnetic flux density in the magnetic sensing section caused by the current flowing through the first conductor section is N1,
The magnetic flux density in the magnetic sensing part caused by the current flowing through the second conductor part is N2,
Assuming that the second conductor part is moved to four locations shifted by 1.5 mm in the X direction and Y direction perpendicular to the Z direction, the magnetic flux density at which the error from N2 is maximum is set as N3. ,
The degree of influence determined by the following equation (1) satisfies the condition of the following equation (2).
Influence degree [%] = (((N1+N3)/(N1+N2))-1)×100...Formula (1)
-7.00[%]<Influence [%]<7.00[%] ...Formula (2)
 本開示に係る技術は、磁気検知部が検知対象外の導体部を流れる電流に起因して生じた磁界の影響を受ける構成において、磁気検知部と検知対象外の導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい。 The technology according to the present disclosure is directed to a configuration in which the magnetic detection unit is affected by a magnetic field caused by a current flowing through a conductor part that is not a detection target, and in which the magnetic detection unit is affected by a magnetic field generated due to a current flowing through a conductor part that is not a detection target. It is easy to suppress the effects of detection errors caused by
図1は、第1実施形態に係る磁気検知装置を概略的に例示する構成図である。FIG. 1 is a configuration diagram schematically illustrating a magnetic detection device according to a first embodiment. 図2は、図1のA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG.
 以下では、本開示の実施形態が列記されて例示される。 Below, embodiments of the present disclosure are listed and illustrated.
 〔1〕車両に設置され、バッテリと負荷との間に設けられる磁気検知装置であって、
 筐体と、
 前記筐体内に設けられ、前記バッテリから供給される電力を前記負荷側に供給する導電路と、
 自身を通る磁束の磁束密度に応じた信号を出力する磁気検知部と、を備え、
 前記導電路は、
 前記磁気検知部の検知対象とされ、Z方向に沿って延びる第1導体部と、
 前記第1導体部に対し前記Z方向に直交する方向に間隔をあけて配置され、前記Z方向に沿って延びる第2導体部と、を有し、
 前記第1導体部を流れる電流に起因した前記磁気検知部における磁束密度をN1とし、
 前記第2導体部を流れる電流に起因した前記磁気検知部における磁束密度をN2とし、
 前記第2導体部を前記Z方向に直交するX方向及びY方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度をN3とした場合に、
 以下の式(1)によって求められる影響度が、以下の式(2)の条件を満たす磁気検知装置。
   影響度[%]=(((N1+N3)/(N1+N2))-1)×100 ・・・式(1)
   -7.00[%]<影響度[%]<7.00[%] ・・・式(2)
[1] A magnetic detection device installed in a vehicle between a battery and a load,
A casing and
a conductive path provided within the housing and supplying power supplied from the battery to the load side;
Equipped with a magnetic detection section that outputs a signal according to the magnetic flux density of the magnetic flux passing through it,
The conductive path is
a first conductor section that is a detection target of the magnetic detection section and extends along the Z direction;
a second conductor portion arranged at intervals in a direction perpendicular to the Z direction with respect to the first conductor portion and extending along the Z direction;
The magnetic flux density in the magnetic sensing section caused by the current flowing through the first conductor section is N1,
The magnetic flux density in the magnetic sensing part caused by the current flowing through the second conductor part is N2,
Assuming that the second conductor part is moved to four locations shifted by 1.5 mm in the X direction and Y direction perpendicular to the Z direction, the magnetic flux density at which the error from N2 is maximum is set as N3. ,
A magnetic sensing device in which the degree of influence determined by the following equation (1) satisfies the condition of the following equation (2).
Influence degree [%] = (((N1+N3)/(N1+N2))-1)×100...Formula (1)
-7.00[%]<Influence [%]<7.00[%] ...Formula (2)
 この磁気検知装置は、磁気検知部と第2導体部とのX方向及びY方向の位置関係がそれぞれ想定位置よりも1.5mmずれていたとしても、想定位置と比較した影響度が、-7.00%よりも大きく且つ7.00%よりも小さい範囲内に収まる。したがって、この構成によれば、磁気検知部を、第2導体部を流れる電流に起因して生じる磁束の影響を受ける位置に置きつつも、磁気検知部と第2導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい。 In this magnetic sensing device, even if the positional relationship between the magnetic sensing part and the second conductor part in the X direction and the Y direction is deviated from the expected position by 1.5 mm, the degree of influence compared to the expected position is -7 It falls within a range greater than .00% and less than 7.00%. Therefore, according to this configuration, although the magnetic sensing part is placed in a position where it is affected by the magnetic flux generated due to the current flowing through the second conductor part, the positional relationship between the magnetic sensing part and the second conductor part is It is easy to suppress the effects of detection errors caused by
 〔2〕前記第2導体部は、複数設けられ、
 N2は、複数の前記第2導体部の各々に起因した磁束密度の合算値であり、
 N3は、複数の前記第2導体部の各々を前記X方向及び前記Y方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度の合算値である〔1〕に記載の磁気検知装置。
[2] A plurality of the second conductor portions are provided,
N2 is a total value of magnetic flux densities caused by each of the plurality of second conductor parts,
N3 is the sum of magnetic flux densities at which the error from N2 is maximum when it is assumed that each of the plurality of second conductor parts is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. The magnetic detection device according to [1].
 この構成によれば、第2導体部が複数存在する構成においても、磁気検知部と第2導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい。 According to this configuration, even in a configuration in which there are a plurality of second conductor parts, it is easy to suppress the influence of detection errors caused by misalignment of the positional relationship between the magnetic sensing part and the second conductor part.
 〔3〕前記磁気検知部とは前記Z方向に間隔をあけて配置され、前記第1導体部と前記第2導体部とをつなぐ連結導体部を備える〔1〕又は〔2〕に記載の磁気検知装置。 [3] The magnetic sensing unit according to [1] or [2], which is arranged at intervals in the Z direction and includes a connecting conductor part that connects the first conductor part and the second conductor part. Detection device.
 この構成によれば、第1導体部と第2導体部とが連結導体部によって繋がれる構成において、磁気検知部と第2導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい。 According to this configuration, in a configuration in which the first conductor part and the second conductor part are connected by the connecting conductor part, it is easy to suppress the influence of detection errors caused by misalignment of the positional relationship between the magnetic sensing part and the second conductor part. .
 〔4〕前記連結導体部を介して、前記第1導体部と前記第2導体部とに同じ電流が流れる〔3〕に記載の磁気検知装置。 [4] The magnetic sensing device according to [3], wherein the same current flows through the first conductor part and the second conductor part via the connecting conductor part.
 この構成によれば、連結導体部を介して第1導体部と第2導体部とに同じ電流が流れる構成において、磁気検知部と第2導体部との位置関係のずれに起因した検知誤差の影響を抑えやすい。 According to this configuration, in a configuration in which the same current flows through the first conductor part and the second conductor part via the connecting conductor part, a detection error due to a misalignment in the positional relationship between the magnetic sensing part and the second conductor part is reduced. It is easy to suppress the impact.
 <第1実施形態>
 1.磁気検知装置10の構成
 図1に示す磁気検知装置10は、車両1に設置される。磁気検知装置10は、バッテリ2と負荷3との間に設けられ、バッテリ2と負荷3とに電気的に接続される。磁気検知装置10は、いわゆるジャンクションボックスである。磁気検知装置10は、バッテリ2から供給される電力を負荷3側に供給する。磁気検知装置10は、筐体11と、導電路12と、磁気検知部13と、制御部14と、を備えている。
<First embodiment>
1. Configuration of Magnetic Detection Device 10 The magnetic detection device 10 shown in FIG. 1 is installed in a vehicle 1. The magnetic detection device 10 is provided between the battery 2 and the load 3 and is electrically connected to the battery 2 and the load 3. The magnetic detection device 10 is a so-called junction box. The magnetic detection device 10 supplies power supplied from the battery 2 to the load 3 side. The magnetic detection device 10 includes a housing 11, a conductive path 12, a magnetic detection section 13, and a control section 14.
 導電路12は、筐体11内に設けられる。導電路12は、第1導体部21と、第2導体部22と、第1連結導体部24と、第2連結導体部25と、を有している。 The conductive path 12 is provided within the housing 11. The conductive path 12 includes a first conductor portion 21 , a second conductor portion 22 , a first connecting conductor portion 24 , and a second connecting conductor portion 25 .
 第1導体部21、第2導体部22、第1連結導体部24、及び第2連結導体部25は、互いに異なる部材によって構成されている。第1導体部21、第2導体部22、第1連結導体部24、及び第2連結導体部25は、バスバーとして構成されている。 The first conductor part 21, the second conductor part 22, the first connecting conductor part 24, and the second connecting conductor part 25 are made of different members. The first conductor section 21, the second conductor section 22, the first connecting conductor section 24, and the second connecting conductor section 25 are configured as a bus bar.
 第1導体部21は、Z方向に沿って延びている。第1導体部21は、直方体状をなしている。第1導体部21のX方向の長さは、Y方向の長さよりも長い。X方向は、Z方向に直交する方向である。Y方向は、Z方向及びX方向に直交する方向である。 The first conductor portion 21 extends along the Z direction. The first conductor portion 21 has a rectangular parallelepiped shape. The length of the first conductor portion 21 in the X direction is longer than the length in the Y direction. The X direction is a direction perpendicular to the Z direction. The Y direction is a direction perpendicular to the Z direction and the X direction.
 第2導体部22は、Z方向に沿って延びている。第2導体部22は、直方体状をなしている。第2導体部22のX方向の長さは、Y方向の長さよりも長い。第2導体部22は、第1導体部21に対しZ方向に直交する方向に間隔をあけて配置されている。 The second conductor portion 22 extends along the Z direction. The second conductor portion 22 has a rectangular parallelepiped shape. The length of the second conductor portion 22 in the X direction is longer than the length in the Y direction. The second conductor section 22 is arranged at intervals from the first conductor section 21 in a direction perpendicular to the Z direction.
 第2導体部22は、複数設けられている。複数の第2導体部22は、第2導体部22A,22Bを含む。第2導体部22Aは、第1導体部21よりもX方向の一方側に配置されており、第1導体部21よりもY方向の一方側に配置されている(図2参照)。第2導体部22Bは、第1導体部21よりもX方向の他方側に配置されており、第1導体部21よりもY方向の一方側に配置されている。第2導体部22Bは、第2導体部22AよりもY方向の他方側に配置されている(図2参照)。 A plurality of second conductor portions 22 are provided. The plurality of second conductor parts 22 include second conductor parts 22A and 22B. The second conductor part 22A is arranged on one side in the X direction than the first conductor part 21, and on one side in the Y direction than the first conductor part 21 (see FIG. 2). The second conductor portion 22B is disposed on the other side of the first conductor portion 21 in the X direction, and is disposed on one side of the first conductor portion 21 in the Y direction. The second conductor portion 22B is arranged on the other side in the Y direction than the second conductor portion 22A (see FIG. 2).
 第1連結導体部24は、第1導体部21と第2導体部22Aとを連結している。第1連結導体部24は、例えばボルト30によって第1導体部21と第2導体部22Aとに連結されている。第1連結導体部24は、第1導体部21と第2導体部22Aとに電気的に接続されている。第1連結導体部24は、X方向に沿って延びている。第1連結導体部24は、直方体状をなしている。 The first connecting conductor section 24 connects the first conductor section 21 and the second conductor section 22A. The first connecting conductor portion 24 is connected to the first conductor portion 21 and the second conductor portion 22A by, for example, a bolt 30. The first connecting conductor section 24 is electrically connected to the first conductor section 21 and the second conductor section 22A. The first connecting conductor portion 24 extends along the X direction. The first connecting conductor portion 24 has a rectangular parallelepiped shape.
 第1連結導体部24は、第1導体部21に連結される第1連結部24Aと、第2導体部22Aに連結される第2連結部24Bと、を有している。第1連結部24Aは、第1連結導体部24の一端側に設けられている。第1連結部24Aは、第1導体部21の一端側に連結されている。第1連結部24Aは、例えばボルト30によって第1導体部21に連結されている。第2連結部24Bは、第1連結導体部24の他端側に設けられている。第2連結部24Bは、第2導体部22Aの一端側に連結されている。第2連結部24Bは、例えばボルト30によって第2導体部22Aに連結されている。 The first connecting conductor part 24 has a first connecting part 24A connected to the first conductor part 21 and a second connecting part 24B connected to the second conductor part 22A. The first connecting portion 24A is provided at one end side of the first connecting conductor portion 24. The first connecting portion 24A is connected to one end side of the first conductor portion 21. The first connecting portion 24A is connected to the first conductor portion 21 by, for example, a bolt 30. The second connecting portion 24B is provided on the other end side of the first connecting conductor portion 24. The second connecting portion 24B is connected to one end side of the second conductor portion 22A. The second connecting portion 24B is connected to the second conductor portion 22A by, for example, a bolt 30.
 第1連結導体部24は、第1連結部24Aと第2連結部24Bとの間に設けられた第1段差部24Cを有している。第1段差部24Cは、Y方向に段差を形成している。 The first connecting conductor portion 24 has a first step portion 24C provided between the first connecting portion 24A and the second connecting portion 24B. The first step portion 24C forms a step in the Y direction.
 第2連結導体部25は、第1導体部21と第2導体部22Bとを連結している。第2連結導体部25は、例えばボルト30によって第1導体部21と第2導体部22Bとに連結されている。第2連結導体部25は、第1導体部21と第2導体部22Bとに電気的に接続されている。第2連結導体部25は、X方向に沿って延びている。第2連結導体部25は、直方体状をなしている。 The second connecting conductor portion 25 connects the first conductor portion 21 and the second conductor portion 22B. The second connecting conductor portion 25 is connected to the first conductor portion 21 and the second conductor portion 22B by, for example, a bolt 30. The second connecting conductor section 25 is electrically connected to the first conductor section 21 and the second conductor section 22B. The second connecting conductor portion 25 extends along the X direction. The second connecting conductor portion 25 has a rectangular parallelepiped shape.
 第2連結導体部25は、第1導体部21に連結される第3連結部25Aと、第2導体部22Bに連結される第4連結部25Bと、を有している。第3連結部25Aは、第2連結導体部25の一端側に設けられている。第3連結部25Aは、第1導体部21の他端側に連結されている。第3連結部25Aは、例えばボルト30によって第1導体部21に連結されている。第4連結部25Bは、第2連結導体部25の他端側に設けられている。第4連結部25Bは、第2導体部22Bの一端側に連結されている。第4連結部25Bは、例えばボルト30によって第2導体部22Bに連結されている。 The second connecting conductor part 25 has a third connecting part 25A connected to the first conductor part 21 and a fourth connecting part 25B connected to the second conductor part 22B. The third connecting portion 25A is provided on one end side of the second connecting conductor portion 25. The third connecting portion 25A is connected to the other end side of the first conductor portion 21. The third connecting portion 25A is connected to the first conductor portion 21 by, for example, a bolt 30. The fourth connecting portion 25B is provided on the other end side of the second connecting conductor portion 25. The fourth connecting portion 25B is connected to one end side of the second conductor portion 22B. The fourth connecting portion 25B is connected to the second conductor portion 22B by, for example, a bolt 30.
 第2連結導体部25は、第3連結部25Aと第4連結部25Bとの間に設けられた第2段差部25Cを有している。第2段差部25Cは、Y方向に段差を形成している。 The second connecting conductor portion 25 has a second step portion 25C provided between the third connecting portion 25A and the fourth connecting portion 25B. The second step portion 25C forms a step in the Y direction.
 図1に示す実線の矢印は、バッテリ2側から負荷3側に電流が流れるときの電流が流れる向きを示している。具体的には、バッテリ2側から第2導体部22Bに電流が流れ、第2連結導体部25、第1導体部21、第1連結導体部24、第2導体部22Aの順に電流が流れる。第2導体部22Bにおいて、電流は、Z方向の一方側から他方側に流れる。第2連結導体部25において、電流は、X方向の他方側から一方側に流れる。第1導体部21において、電流は、Z方向の他方側から一方側に流れる。第1連結導体部24において、電流は、X方向の他方側から一方側に流れる。第2導体部22Aにおいて、電流は、Z方向の一方側から他方側に流れる。第2導体部22B、第2連結導体部25、第1導体部21、第1連結導体部24、第2導体部22Aには、同じ電流が流れる。第2導体部22A,22Bを流れる電流の向きは、第1導体部21を流れる電流の向きと逆向きである。つまり、第1導体部21を流れる電流に起因した磁気検知部13における磁束密度を正とした場合、第2導体部22A,22Bを流れる電流に起因した磁気検知部13における磁束密度は負となる。 The solid arrow shown in FIG. 1 indicates the direction in which the current flows from the battery 2 side to the load 3 side. Specifically, a current flows from the battery 2 side to the second conductor portion 22B, and then flows through the second connecting conductor portion 25, the first conductor portion 21, the first connecting conductor portion 24, and the second conductor portion 22A in this order. In the second conductor portion 22B, current flows from one side to the other side in the Z direction. In the second connecting conductor portion 25, current flows from the other side to the one side in the X direction. In the first conductor portion 21, current flows from the other side to the one side in the Z direction. In the first connecting conductor portion 24, current flows from the other side to the one side in the X direction. In the second conductor portion 22A, current flows from one side to the other side in the Z direction. The same current flows through the second conductor portion 22B, the second connecting conductor portion 25, the first conductor portion 21, the first connecting conductor portion 24, and the second conductor portion 22A. The direction of the current flowing through the second conductor portions 22A, 22B is opposite to the direction of the current flowing through the first conductor portion 21. In other words, if the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the first conductor section 21 is positive, the magnetic flux density in the magnetic sensing section 13 due to the current flowing through the second conductor sections 22A and 22B is negative. .
 磁気検知部13は、第1導体部21を流れる電流を検出するための電流センサとして機能する。磁気検知部13は、第1導体部21に設けられている。磁気検知部13は、Z方向において、第1連結導体部24と第2連結導体部25との間に設けられている。磁気検知部13は、第1導体部21のY方向の他方側の面に設置されている。磁気検知部13は、例えば接着剤によって第1導体部21に固定されている。第1導体部21は、例えば基板(図示省略)を介して第1導体部21に固定されている。基板は、絶縁性を有し、例えば樹脂製である。 The magnetic detection section 13 functions as a current sensor for detecting the current flowing through the first conductor section 21. The magnetic detection section 13 is provided in the first conductor section 21 . The magnetic detection section 13 is provided between the first connecting conductor section 24 and the second connecting conductor section 25 in the Z direction. The magnetic detection section 13 is installed on the other surface of the first conductor section 21 in the Y direction. The magnetic detection section 13 is fixed to the first conductor section 21 with adhesive, for example. The first conductor portion 21 is fixed to the first conductor portion 21 via, for example, a substrate (not shown). The substrate has insulating properties and is made of resin, for example.
 磁気検知部13は、例えばホール素子である。磁気検知部13は、自身をY方向に通る磁束の磁束密度に応じて信号を出力する。この信号は、制御部14に入力される。 The magnetic detection section 13 is, for example, a Hall element. The magnetic detection section 13 outputs a signal according to the magnetic flux density of the magnetic flux passing through itself in the Y direction. This signal is input to the control section 14.
 制御部14は、例えばMCU(Micro Controller Unit)として構成されている。制御部14は、磁気検知部13から出力された信号に基づいて、第1導体部21を流れる電流値を特定する。磁気検知部13の出力値は、第1導体部21を流れる電流だけでなく、第2導体部22を流れる電流にも影響される。このため、制御部14は、磁気検知部13と第2導体部22との位置関係を考慮した補正値を予め記憶しており、この補正値を用いて磁気検知部13の出力値を補正する。補正値は、例えば、第2導体部22を流れる電流に起因した磁気検知部13における磁束密度の理論値である。制御部14は、磁気検知部13の出力値から補正値を差し引くことで、補正する。 The control unit 14 is configured as, for example, an MCU (Micro Controller Unit). The control section 14 specifies the value of the current flowing through the first conductor section 21 based on the signal output from the magnetic detection section 13. The output value of the magnetic detection section 13 is influenced not only by the current flowing through the first conductor section 21 but also by the current flowing through the second conductor section 22. For this reason, the control unit 14 stores in advance a correction value that takes into account the positional relationship between the magnetic detection unit 13 and the second conductor unit 22, and uses this correction value to correct the output value of the magnetic detection unit 13. . The correction value is, for example, a theoretical value of the magnetic flux density in the magnetic detection section 13 due to the current flowing through the second conductor section 22. The control unit 14 corrects the output value of the magnetic detection unit 13 by subtracting the correction value.
 磁気検知部13における磁束密度の理論値は、例えば以下のように算出される。
 以下では、第1導体部21を流れる電流に起因した磁気検知部13における磁束密度を例に説明する。まず、式(A)によって係数αが算出される。
   α=(μ0×I)/(8π×A×B) ・・・式(A)
 μ0は、真空の透磁率である。
 I[A]は、第1導体部21を流れる想定の電流値である。
 A[m]は、第1導体部21の断面のX方向を長さの半分の値である。なお、本明細書において、断面積とは、磁気検知部13の検知位置を通り且つZ方向に直交する仮想平面で切断した断面のことを意味する。
 B[m]は、第1導体部21の断面のY方向を長さの半分の値である。
The theoretical value of the magnetic flux density in the magnetic detection unit 13 is calculated as follows, for example.
Below, the magnetic flux density in the magnetic sensing part 13 resulting from the current flowing through the first conductor part 21 will be explained as an example. First, the coefficient α is calculated using equation (A).
α=(μ0×I)/(8π×A×B) ...Formula (A)
μ0 is the magnetic permeability of vacuum.
I[A] is the expected current value flowing through the first conductor portion 21.
A[m] is a value that is half the length of the cross section of the first conductor portion 21 in the X direction. Note that in this specification, the cross-sectional area refers to a cross section cut along a virtual plane that passes through the detection position of the magnetic detection unit 13 and is perpendicular to the Z direction.
B[m] is a value that is half the length of the cross section of the first conductor portion 21 in the Y direction.
 続いて、第1導体部21の断面の中心から磁気検知部13の検知位置までのX方向の長さをX[m]とし、Y方向の長さをY[m]とする。なお、X[m]は、X方向の一方側を正とし、他方側を負とする。また、Y[m]は、Y方向の他方側を正とし、一方側を負とする。 Subsequently, let the length in the X direction from the center of the cross section of the first conductor part 21 to the detection position of the magnetic sensing part 13 be X [m], and let the length in the Y direction be Y [m]. Note that for X[m], one side in the X direction is positive and the other side is negative. Further, for Y[m], the other side in the Y direction is positive and the one side is negative.
 以下の式(B)(C)(D)(E)によって、C1~C4が算出される。
   C1=A+X ・・・式(B)
   C2=A-X ・・・式(C)
   C3=B+Y ・・・式(D)
   C4=B-Y ・・・式(E)
C1 to C4 are calculated using the following formulas (B), (C), (D), and (E).
C1=A+X...Formula (B)
C2=AX...Formula (C)
C3=B+Y...Formula (D)
C4=BY...Formula (E)
 以下の式(F1)(F2)(F3)(F4)(F5)(F6)(F7)(F8)によって、F1~F8が算出される。式(F7)のF71,F72は、以下の式(F71),(F72)によって算出される。式(F8)のF81,F82は、以下の式(F81),(F82)によって算出される。
   F1=C2×(-(2×C4)/(C2+C4)-log(C2+C4)) ・・・式(F1)
   F2=C1×(-(2×C4)/(C1+C4)-log(C1+C4)) ・・・式(F2)
   F3=C1×(-(2×C3)/(C1+C3)-log(C1+C3)) ・・・式(F3)
   F4=C2×(-(2×C3)/(C2+C3)-log(C2+C3)) ・・・式(F4)
   F5=(4×B×Y×C2)/(A-2×A×X+B-2×B×Y+X+Y)×(A-2×A×X+B+2×B×Y+X+Y) ・・・式(F5)
   F6=(4×B×Y×C1)/(A+2×A×X+B-2×B×Y+X+Y)×(A+2×A×X+B+2×B×Y+X+Y) ・・・式(F6)
   F7=C4×(F71-F72) ・・・式(F7)
   F71=((C2/(C2/C4+1))+(C1/(C1/C4+1)))/C4 ・・・式(F71)
   F72=2×(actan(C2/C4)+actan(C1/C4)) ・・・式(F72)
   F8=C3×(F82-F81) ・・・式(F8)
   F71=((C2/(C2/C3+1))+(C1/(C1/C3+1)))/C3 ・・・式(F81)
   F72=2×(actan(C2/C3)+actan(C1/C3)) ・・・式(F82)
F1 to F8 are calculated by the following equations (F1) (F2) (F3) (F4) (F5) (F6) (F7) (F8). F71 and F72 in formula (F7) are calculated by the following formulas (F71) and (F72). F81 and F82 in formula (F8) are calculated by the following formulas (F81) and (F82).
F1=C2×(-(2×C4 2 )/(C2 2 +C4 2 )-log(C2 2 +C4 2 )) ...Formula (F1)
F2=C1×(-(2×C4 2 )/(C1 2 +C4 2 )-log(C1 2 +C4 2 )) ...Formula (F2)
F3=C1×(-(2×C3 2 )/(C1 2 +C3 2 )-log(C1 2 +C3 2 )) ...Formula (F3)
F4=C2×(-(2×C3 2 )/(C2 2 +C3 2 )-log(C2 2 +C3 2 )) ...Formula (F4)
F5=(4×B×Y×C2 3 )/(A 2 −2×A×X+B 2 −2×B×Y+X 2 +Y 2 )×(A 2 −2×A×X+B 2 +2×B×Y+X 2 +Y 2 ) ...Formula (F5)
F6=(4×B×Y×C1 3 )/(A 2 +2×A×X+B 2 −2×B×Y+X 2 +Y 2 )×(A 2 +2×A×X+B 2 +2×B×Y+X 2 +Y 2 ) ...Formula (F6)
F7=C4×(F71-F72) ...Formula (F7)
F71=((C2/(C2 2 /C4 2 +1))+(C1/(C1 2 /C4 2 +1)))/C4...Formula (F71)
F72=2×(actan(C2/C4)+actan(C1/C4))...Formula (F72)
F8=C3×(F82-F81) ...Formula (F8)
F71=((C2/(C2 2 /C3 2 +1))+(C1/(C1 2 /C3 2 +1)))/C3...Formula (F81)
F72=2×(actan(C2/C3)+actan(C1/C3))...Formula (F82)
 以下の式(G)によって磁束密度の理論値が算出される。
 磁束密度=α×(F1+F2+F3+F4+F5+F6+F7+F8)/2 ・・・式(G)
The theoretical value of the magnetic flux density is calculated by the following equation (G).
Magnetic flux density = α × (F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8) / 2 ... Formula (G)
 第1導体部21と第2導体部22とは互いに別部材として構成されている。このため、第1導体部21に設けられる磁気検知部13と第2導体部22との位置関係は、想定とずれるおそれがある。また、磁気検知部13の設置位置が、想定の位置からずれる可能性もある。これらの場合、位置ずれに起因した検知誤差が生じうる。磁気検知装置10は、こうした検知誤差の影響を抑えるべく、以下のように構成されている。 The first conductor portion 21 and the second conductor portion 22 are configured as separate members. Therefore, the positional relationship between the magnetic sensing section 13 provided in the first conductor section 21 and the second conductor section 22 may deviate from the expected position. Furthermore, the installation position of the magnetic detection unit 13 may deviate from the expected position. In these cases, detection errors may occur due to positional deviation. The magnetic detection device 10 is configured as follows in order to suppress the influence of such detection errors.
 磁気検知装置10は、以下の式(1)によって求められる影響度が、以下の式(2)の条件を満たすように構成されている。
   影響度[%]=(((N1+N3)/(N1+N2))-1)×100 ・・・式(1)
   -7.00[%]<影響度[%]<7.00[%] ・・・式(2)
The magnetic detection device 10 is configured such that the degree of influence determined by the following equation (1) satisfies the condition of the following equation (2).
Influence degree [%] = (((N1+N3)/(N1+N2))-1)×100...Formula (1)
-7.00[%]<Influence [%]<7.00[%] ...Formula (2)
 N1は、第1導体部21を流れる電流に起因した磁気検知部13における磁束密度である。N2は、第2導体部22を流れる電流に起因した磁気検知部13における磁束密度である。N3は、第2導体部22をX方向及びY方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度である。上記4カ所は、具体的には、第2導体部22をX方向の一方側に1.5mm、Y方向の一方側に1.5mmずらした位置と、第2導体部22をX方向の一方側に1.5mm、Y方向の他方側に1.5mmずらした位置と、第2導体部22をX方向の他方側に1.5mm、Y方向の一方側に1.5mmずらした位置と、第2導体部22をX方向の他方側に1.5mm、Y方向の他方側に1.5mmずらした位置である。磁束密度の算出方法は、上述した通りである。 N1 is the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the first conductor section 21. N2 is the magnetic flux density in the magnetic sensing section 13 caused by the current flowing through the second conductor section 22. N3 is the magnetic flux density at which the error from N2 is maximum when it is assumed that the second conductor portion 22 is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. Specifically, the above four locations are a position where the second conductor part 22 is shifted by 1.5 mm to one side in the X direction, a position where the second conductor part 22 is shifted by 1.5 mm to one side in the Y direction, and a position where the second conductor part 22 is shifted to one side in the X direction. A position where the second conductor portion 22 is shifted by 1.5 mm to the other side in the X direction and 1.5 mm to the other side in the Y direction, and a position where the second conductor portion 22 is shifted by 1.5 mm to the other side in the This is a position where the second conductor portion 22 is shifted by 1.5 mm to the other side in the X direction and by 1.5 mm to the other side in the Y direction. The method for calculating the magnetic flux density is as described above.
 本実施形態では、複数の第2導体部22A,22Bが設けられている。このため、N2は、第2導体部22A,22Bの各々に起因した磁束密度の合算値である。N3は、第2導体部22A,22Bの各々をX方向及びY方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度の合算値である。換言すると、N3は、合算したときの誤差が最大となる組み合わせでの磁束密度の合算値である。 In this embodiment, a plurality of second conductor portions 22A, 22B are provided. Therefore, N2 is the sum of the magnetic flux densities caused by each of the second conductor portions 22A and 22B. N3 is the sum of magnetic flux densities at which the error from N2 is maximum when it is assumed that each of the second conductor parts 22A and 22B is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. . In other words, N3 is the sum value of the magnetic flux densities in the combination that gives the maximum error when summed.
 この磁気検知装置10は、磁気検知部13と第2導体部22とのX方向及びY方向の位置関係がそれぞれ想定位置よりも1.5mmずれていたとしても、想定位置と比較した影響度が、-7.00%よりも大きく且つ7.00%よりも小さい範囲内に収まる。したがって、この構成によれば、磁気検知部13を、第2導体部22を流れる電流に起因して生じる磁束の影響を受ける位置に置きつつも、磁気検知部13と第2導体部22との位置関係のずれに起因した検知誤差の影響を抑えやすい。 In this magnetic sensing device 10, even if the positional relationship between the magnetic sensing section 13 and the second conductor section 22 in the X direction and the Y direction is shifted by 1.5 mm from the assumed position, the degree of influence compared to the assumed position is still small. , -7.00% and less than 7.00%. Therefore, according to this configuration, although the magnetic sensing section 13 is placed in a position where it is affected by the magnetic flux generated due to the current flowing through the second conductor section 22, the magnetic sensing section 13 and the second conductor section 22 are It is easy to suppress the effects of detection errors caused by positional deviations.
 更に、この磁気検知装置10は、第2導体部22A,22Bが複数存在する構成においても適用可能である。 Furthermore, this magnetic sensing device 10 is also applicable to a configuration in which a plurality of second conductor portions 22A and 22B exist.
 更に、磁気検知装置10は、磁気検知部13とはZ方向に間隔をあけて配置され、第1導体部21と第2導体部22Aとをつなぐ第1連結導体部24を備えている。この構成によれば、第1導体部21と第2導体部22Aとが第1連結導体部24によって繋がれる構成において、磁気検知部13と第2導体部22Aとの位置関係のずれに起因した検知誤差の影響を抑えやすい。 Further, the magnetic sensing device 10 includes a first connecting conductor section 24 that is arranged at a distance from the magnetic sensing section 13 in the Z direction and connects the first conductor section 21 and the second conductor section 22A. According to this configuration, in the configuration in which the first conductor part 21 and the second conductor part 22A are connected by the first connecting conductor part 24, the magnetic detection part 13 and the second conductor part 22A are It is easy to suppress the effects of detection errors.
 また、磁気検知装置10は、磁気検知部13とはZ方向に間隔をあけて配置され、第1導体部21と第2導体部22Bとをつなぐ第2連結導体部25を備えている。この構成によれば、第1導体部21と第2導体部22Bとが第2連結導体部25によって繋がれる構成において、磁気検知部13と第2導体部22Bとの位置関係のずれに起因した検知誤差の影響を抑えやすい。 Furthermore, the magnetic sensing device 10 includes a second connecting conductor section 25 that is spaced apart from the magnetic sensing section 13 in the Z direction and connects the first conductor section 21 and the second conductor section 22B. According to this configuration, in the configuration in which the first conductor part 21 and the second conductor part 22B are connected by the second connecting conductor part 25, the magnetic detection part 13 and the second conductor part 22B are It is easy to suppress the effects of detection errors.
 更に、磁気検知装置10は、第1連結導体部24を介して、第1導体部21と第2導体部22Aとに同じ電流が流れる。この構成によれば、第1連結導体部24を介して第1導体部21と第2導体部22Aとに同じ電流が流れる構成において、磁気検知部13と第2導体部22Aとの位置関係のずれに起因した検知誤差の影響を抑えやすい。 Further, in the magnetic sensing device 10, the same current flows through the first conductor portion 21 and the second conductor portion 22A via the first connecting conductor portion 24. According to this configuration, in a configuration in which the same current flows through the first conductor section 21 and the second conductor section 22A via the first connecting conductor section 24, the positional relationship between the magnetic sensing section 13 and the second conductor section 22A is It is easy to suppress the effects of detection errors caused by misalignment.
 また、磁気検知装置10は、第2連結導体部25を介して、第1導体部21と第2導体部22Bとに同じ電流が流れる。この構成によれば、第2連結導体部25を介して第1導体部21と第2導体部22Bとに同じ電流が流れる構成において、磁気検知部13と第2導体部22Bとの位置関係のずれに起因した検知誤差の影響を抑えやすい。 Furthermore, in the magnetic sensing device 10, the same current flows through the first conductor portion 21 and the second conductor portion 22B via the second connecting conductor portion 25. According to this configuration, in a configuration in which the same current flows through the first conductor portion 21 and the second conductor portion 22B via the second connecting conductor portion 25, the positional relationship between the magnetic sensing portion 13 and the second conductor portion 22B is It is easy to suppress the effects of detection errors caused by misalignment.
 <他の実施形態>
 本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。
<Other embodiments>
The present disclosure is not limited to the embodiments described above and illustrated in the drawings. For example, the features of the embodiments described above or below can be combined in any combination without contradicting each other. Furthermore, any feature of the embodiments described above or below may be omitted unless explicitly stated as essential. Furthermore, the embodiment described above may be modified as follows.
 上記実施形態では、第2導体部が、2つ設けられる構成であったが、1つのみ設けられる構成であってもよいし、3つ以上設けられる構成であってもよい。 In the above embodiment, the configuration is such that two second conductor parts are provided, but the configuration may be such that only one second conductor part is provided, or the configuration may be such that three or more second conductor parts are provided.
 上記実施形態では、第1導体部と第2導体部とがつながれた構成であったが、つながれていない構成であってもよい。 In the above embodiment, the first conductor part and the second conductor part are connected, but they may be unconnected.
 上記実施形態では、第1導体部と第2導体部とに同じ電流が流れる構成であったが、異なる電流が流れる構成であってもよい。 In the above embodiment, the same current flows through the first conductor portion and the second conductor portion, but a configuration may be adopted where different currents flow through the first conductor portion and the second conductor portion.
 なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。 It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is not limited to the embodiments disclosed herein, and is intended to include all modifications within the scope indicated by the claims or within the range equivalent to the claims. be done.
1   :車両
2   :バッテリ
3   :負荷
10  :磁気検知装置
11  :筐体
12  :導電路
13  :磁気検知部
14  :制御部
21  :第1導体部
22  :第2導体部
22A :第2導体部
22B :第2導体部
24  :第1連結導体部(連結導体部)
24A :第1連結部
24B :第2連結部
24C :第1段差部
25  :第2連結導体部(連結導体部)
25A :第3連結部
25B :第4連結部
25C :第2段差部
30  :ボルト
1: Vehicle 2: Battery 3: Load 10: Magnetic detection device 11: Housing 12: Conductive path 13: Magnetic detection section 14: Control section 21: First conductor section 22: Second conductor section 22A: Second conductor section 22B : Second conductor part 24 : First connecting conductor part (connecting conductor part)
24A: First connecting portion 24B: Second connecting portion 24C: First step portion 25: Second connecting conductor portion (connecting conductor portion)
25A: Third connecting portion 25B: Fourth connecting portion 25C: Second step portion 30: Bolt

Claims (4)

  1.  車両に設置され、バッテリと負荷との間に設けられる磁気検知装置であって、
     筐体と、
     前記筐体内に設けられ、前記バッテリから供給される電力を前記負荷側に供給する導電路と、
     自身を通る磁束の磁束密度に応じた信号を出力する磁気検知部と、を備え、
     前記導電路は、
     前記磁気検知部の検知対象とされ、Z方向に沿って延びる第1導体部と、
     前記第1導体部に対し前記Z方向に直交する方向に間隔をあけて配置され、前記Z方向に沿って延びる第2導体部と、を有し、
     前記第1導体部を流れる電流に起因した前記磁気検知部における磁束密度をN1とし、
     前記第2導体部を流れる電流に起因した前記磁気検知部における磁束密度をN2とし、
     前記第2導体部を前記Z方向に直交するX方向及びY方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度をN3とした場合に、
     以下の式(1)によって求められる影響度が、以下の式(2)の条件を満たす磁気検知装置。
       影響度[%]=(((N1+N3)/(N1+N2))-1)×100 ・・・式(1)
       -7.00[%]<影響度[%]<7.00[%] ・・・式(2)
    A magnetic detection device installed in a vehicle between a battery and a load,
    A casing and
    a conductive path provided within the housing and supplying power supplied from the battery to the load side;
    Equipped with a magnetic detection section that outputs a signal according to the magnetic flux density of the magnetic flux passing through it,
    The conductive path is
    a first conductor section that is a detection target of the magnetic detection section and extends along the Z direction;
    a second conductor portion arranged at intervals in a direction perpendicular to the Z direction with respect to the first conductor portion and extending along the Z direction;
    The magnetic flux density in the magnetic sensing section caused by the current flowing through the first conductor section is N1,
    The magnetic flux density in the magnetic sensing part caused by the current flowing through the second conductor part is N2,
    Assuming that the second conductor part is moved to four locations shifted by 1.5 mm in the X direction and Y direction perpendicular to the Z direction, the magnetic flux density at which the error from N2 is maximum is set as N3. ,
    A magnetic sensing device in which the degree of influence determined by the following equation (1) satisfies the condition of the following equation (2).
    Influence degree [%] = (((N1+N3)/(N1+N2))-1)×100...Formula (1)
    -7.00[%]<Influence [%]<7.00[%] ...Formula (2)
  2.  前記第2導体部は、複数設けられ、
     N2は、複数の前記第2導体部の各々に起因した磁束密度の合算値であり、
     N3は、複数の前記第2導体部の各々を前記X方向及び前記Y方向に1.5mmずつずれた4カ所に移動させたと仮定したときにN2との誤差が最大となる磁束密度の合算値である請求項1に記載の磁気検知装置。
    The second conductor portion is provided in plurality,
    N2 is a total value of magnetic flux densities caused by each of the plurality of second conductor parts,
    N3 is the sum of magnetic flux densities at which the error from N2 is maximum when it is assumed that each of the plurality of second conductor parts is moved to four locations shifted by 1.5 mm in the X direction and the Y direction. The magnetic sensing device according to claim 1.
  3.  前記磁気検知部とは前記Z方向に間隔をあけて配置され、前記第1導体部と前記第2導体部とをつなぐ連結導体部を備える請求項1又は請求項2に記載の磁気検知装置。 The magnetic sensing device according to claim 1 or 2, wherein the magnetic sensing portion includes a connecting conductor portion that is arranged at intervals in the Z direction and connects the first conductor portion and the second conductor portion.
  4.  前記連結導体部を介して、前記第1導体部と前記第2導体部とに同じ電流が流れる請求項3に記載の磁気検知装置。 The magnetic sensing device according to claim 3, wherein the same current flows through the first conductor part and the second conductor part via the connecting conductor part.
PCT/JP2022/020164 2022-05-13 2022-05-13 Magnetic detection device WO2023218626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020164 WO2023218626A1 (en) 2022-05-13 2022-05-13 Magnetic detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020164 WO2023218626A1 (en) 2022-05-13 2022-05-13 Magnetic detection device

Publications (1)

Publication Number Publication Date
WO2023218626A1 true WO2023218626A1 (en) 2023-11-16

Family

ID=88730096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020164 WO2023218626A1 (en) 2022-05-13 2022-05-13 Magnetic detection device

Country Status (1)

Country Link
WO (1) WO2023218626A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151976A (en) * 1997-08-06 1999-02-26 Toyo Commun Equip Co Ltd Photo-current sensor
JP2005061940A (en) * 2003-08-11 2005-03-10 Jfe Steel Kk Method and device for calibrating array-type magnetometric sensor
JP2009276359A (en) * 2009-08-27 2009-11-26 Toyota Motor Corp Current detecting device
JP2013024571A (en) * 2011-07-15 2013-02-04 Sumitomo Wiring Syst Ltd Bus bar
JP2020173152A (en) * 2019-04-10 2020-10-22 Tdk株式会社 Current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151976A (en) * 1997-08-06 1999-02-26 Toyo Commun Equip Co Ltd Photo-current sensor
JP2005061940A (en) * 2003-08-11 2005-03-10 Jfe Steel Kk Method and device for calibrating array-type magnetometric sensor
JP2009276359A (en) * 2009-08-27 2009-11-26 Toyota Motor Corp Current detecting device
JP2013024571A (en) * 2011-07-15 2013-02-04 Sumitomo Wiring Syst Ltd Bus bar
JP2020173152A (en) * 2019-04-10 2020-10-22 Tdk株式会社 Current sensor

Similar Documents

Publication Publication Date Title
JP6350785B2 (en) Inverter device
US6512359B1 (en) Current detector using magnetic-electric conversion element and electric connection box using the same
JP5732679B2 (en) Current sensor
US7821252B2 (en) Three-phase current sensor
JP5659389B2 (en) Current sensor
US10746821B2 (en) Current sensor
US20130169267A1 (en) Current sensor
US11041887B2 (en) Current sensor
WO2006090769A1 (en) Current measuring instrument
JP4839393B2 (en) Current detector
US11519940B2 (en) Current sensor
JP6268128B2 (en) Switch box and overcurrent prevention method
US20200025803A1 (en) Current sensor
JP2018072299A (en) Current sensor
US9778287B2 (en) Current sensor
WO2023218626A1 (en) Magnetic detection device
US20130106175A1 (en) Control device
JP4506641B2 (en) Current sensor device
JP4543007B2 (en) Current differential protection system
JP6572744B2 (en) Current sensor
JP2020148484A (en) Current detection device
WO2018163685A1 (en) Current sensor
JP2020071100A (en) Current detection method and current detection structure
JP2013257293A (en) Current sensor
US20230029921A1 (en) Current measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940960

Country of ref document: EP

Kind code of ref document: A1