WO2023216824A1 - 一种电解液及电池 - Google Patents

一种电解液及电池 Download PDF

Info

Publication number
WO2023216824A1
WO2023216824A1 PCT/CN2023/089160 CN2023089160W WO2023216824A1 WO 2023216824 A1 WO2023216824 A1 WO 2023216824A1 CN 2023089160 W CN2023089160 W CN 2023089160W WO 2023216824 A1 WO2023216824 A1 WO 2023216824A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
electrolyte
unsubstituted
lithium
additive
Prior art date
Application number
PCT/CN2023/089160
Other languages
English (en)
French (fr)
Inventor
于智力
王海
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2023216824A1 publication Critical patent/WO2023216824A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte

Definitions

  • the present disclosure relates to an electrolyte and a battery including the electrolyte, and belongs to the technical field of batteries.
  • a lithium-ion battery is a rechargeable battery that relies primarily on the movement of lithium ions between the positive and negative electrodes to work.
  • Li + intercalates and deintercalates back and forth between the two electrodes: during charging, Li + deintercalates from the positive electrode and embeds into the negative electrode through the electrolyte, and the negative electrode is in a lithium-rich state; during discharge, the opposite is true.
  • lithium-ion batteries have the advantages of large specific energy density and long cycle life, they are widely used in various electronic products. In recent years, they have also been widely used in electric vehicles, various power tools, and energy storage devices.
  • the electrolyte enters the inside of the cathode material, destroying the structure of the cathode material, and the release of active oxygen further accelerates electrolysis. Oxidation and decomposition of the liquid, in addition, the protective film on the surface of the negative electrode will continue to be damaged, eventually causing serious attenuation of battery capacity.
  • oxide coatings are generally used to modify the surface of cathode materials, or cathode materials of different shapes and structures are prepared.
  • the process is complex, costly, and has poor protection effect.
  • the purpose of the present disclosure is to provide an electrolyte and a battery including the electrolyte, which can increase the high voltage (such as the normal temperature cycle performance, high temperature cycle performance and the oxidation resistance of the electrolyte under the conditions of 4.5V and above), obtaining an oxidation resistant electrolyte and a battery with more outstanding normal and high temperature cycle performance, and the preparation process of the electrolyte is simple. , low cost and good protection effect.
  • An electrolyte solution the electrolyte solution includes an organic solvent, an electrolyte salt and additives, wherein the additives include additive A, and the additive A is selected from at least one tetranitrile compound containing at least one ester group.
  • the nitrile functional group in the additive A in the electrolyte can interact with the surface of the positive electrode. It performs complexation, effectively inhibits the dissolution of metal ions and further oxidative decomposition of the electrolyte, improves the oxidation resistance of the electrolyte, reduces the volume expansion of the cathode material, and improves the normal temperature cycle performance and high temperature cycle performance of the battery.
  • the additive A is selected from at least one tetranitrile compound containing at least two ester groups, preferably at least one type tetranitrile compound containing four ester groups.
  • the tetranitrile compound refers to a compound containing four nitrile groups (-CN).
  • the structure of the ester group is -COO-R, and R is an alkyl group, an alkylene group or an alkylene group.
  • the ester group is connected to the cyano group through a connecting group, that is, NC-Ra-COO-R, and Ra is defined as follows.
  • the additive A is selected from at least one compound having the structural formula shown in formula (1):
  • the substituted substituent is C 1-9 alkyl, halogen, where * and ** are both connection sites, and the * end is optionally connected to -CN Or -CO- is connected, preferably, the * end is connected to -CN, and the ** end is connected to -CO-.
  • the additive A has a symmetrical structural formula and includes ester and nitrile functional groups, which makes the additive A have better kinetic properties and oxidation resistance, thereby improving the electrolyte
  • the oxidation resistance improves the normal temperature cycle performance and high temperature cycle performance of the battery.
  • Ra are the same or different, and are independently selected from substituted or unsubstituted C 1-6 alkylene; the substituted substituent is C 1-3 alkyl, F.
  • the oxidation resistance of the entire structure can be further improved, thereby further improving the oxidation resistance of the electrolyte.
  • Ra are the same or different, and are independently selected from substituted or unsubstituted methylene, substituted or unsubstituted ethylene, substituted or unsubstituted propylene, substituted or unsubstituted butylene, Substituted or unsubstituted pentylene, substituted or unsubstituted hexylene; the substituted substituent is C 1-3 alkyl, F.
  • Ra are the same or different, and are independently selected from the following groups represented by R1 to R10:
  • * is the connection site, and the * end is optionally connected to -CN or -CO-.
  • the additive A can be prepared using methods known in the art, or can be purchased commercially.
  • the weight content of the additive A is 0.1wt%-5wt%, such as 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5 wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt%, 1wt%, 1.2wt%, 1.3wt%, 1.5wt%, 1.6wt%, 1.8wt%, 2wt%, 2.2wt%, 2.4 wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt%, 4wt%, 4.2wt%, 4.5wt%, 4.8wt% or 5wt%.
  • the electrolyte salt is selected from at least one electrolyte lithium salt, electrolyte sodium salt, electrolyte aluminum salt, electrolyte magnesium salt, etc.
  • the electrolyte lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), lithium difluorophosphate (LiPO 2 F 2 ), lithium difluorooxalate borate (LiDFOB), lithium bistrifluoromethylsulfonyl imide, lithium difluorophosphate Lithium fluorobisoxalate phosphate, lithium tetrafluoroborate, lithium bisoxaloborate, lithium hexafluoroantimonate, lithium hexafluoroarsenate, lithium bis(trifluoromethylsulfonyl)imide, bis(pentafluoroethylsulfonyl) One or more of lithium imide, tris(trifluoromethanesulfonyl)methyllithium or bis(trifluoromethanesulfonyl)lithium imide.
  • the weight content of the electrolyte salt is 8wt%-20wt%, such as 8wt%, 9wt%, 10wt%, 11wt%, 12wt%, 13wt%, 14wt%, 15wt%, 16wt%, 17wt%, 18wt%, 19wt% or 20wt%.
  • the organic solvent is selected from carbonate and/or carboxylic acid ester
  • the carbonate is selected from one or more of the following fluorinated or unsubstituted organic solvents: ethylene carbonate (EC) , propylene carbonate (PC), dimethyl carbonate, diethyl carbonate (DEC), ethyl methyl carbonate
  • the carboxylic acid ester is selected from one or more of the following fluorinated or unsubstituted organic solvents : Propyl acetate, n-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, propyl propionate (PP), ethyl propionate (EP), methyl butyrate, ethyl n-butyrate ester.
  • the weight content of the organic solvent is 65wt%-80wt%, such as 65wt%, 66wt%, 67wt%, 68wt%, 69wt%, 70wt%, 71wt%, 72wt%, 73wt%, 74wt%, 75wt%, 76wt%, 77wt%, 78wt%, 79wt% or 80wt%.
  • the electrolyte further includes additive B, and the additive B is selected from lithium bisfluorosulfonyl imide.
  • Lithium bisfluorosulfonyl imide as Additive B is more stable than the anionic group in LiPF 6 , and produces less HF and water in a high voltage system.
  • Additive B and Additive A Through the synergistic combination of Additive B and Additive A, it can be further The stability of Additive A is improved, and lithium bisfluorosulfonyl imide will also participate in film formation on the surface of the positive electrode together with the nitrile functional group to protect the surface of the positive electrode, further improving the normal temperature cycle performance and performance of the battery under high voltage systems. High temperature cycle performance.
  • the weight content of the additive B is 1wt%-4wt%, such as 1wt%, 1.2wt%, 1.3wt%, 1.5wt%, 1.6wt% , 1.8wt%, 2wt%, 2.2wt%, 2.4wt%, 2.5wt%, 2.6wt%, 2.8wt%, 3wt%, 3.3wt%, 3.5wt%, 3.8wt% or 4wt%.
  • the weight ratio of the additive A to the weight of the additive B is (0.25-5):1, for example, 0.25:1, 0.5:1, 1:1, 1.5:1, 2:1 , 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1 or 5:1.
  • the electrolyte further includes additive C, and the additive C is selected from the group consisting of 1,3-propane sultone, 1,3-propene sultone, succinonitrile, glyceryl trinitrile, difluoride At least one of lithium oxaloborate, lithium difluorophosphate, and lithium difluorodioxalophosphate.
  • the weight content of the additive C is 2wt%-8wt%, such as 2wt%, 3wt%, 4wt%, 5wt%, 6wt%, 7wt% or 8wt%.
  • the electrolyte is used in lithium-ion batteries.
  • the present disclosure also provides a battery, which includes the above-mentioned electrolyte.
  • the battery is a lithium-ion battery.
  • the charge and discharge range of the battery is 3V-4.5V.
  • the battery further includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on one or both sides of the positive electrode current collector.
  • the positive electrode active material layer includes a positive electrode active material, a conductive agent, and a binder.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer coated on one or both sides of the negative electrode current collector.
  • the negative electrode active material layer includes a negative electrode active material, a conductive agent, and a binder.
  • the mass percentage of each component in the positive active material layer is: 80-99.8wt% positive active material, 0.1-10wt% conductive agent, and 0.1-10wt% binder.
  • the mass percentage of each component in the positive active material layer is: 90-99.6wt% positive active material, 0.2-5wt% conductive agent, and 0.2-5wt% binder.
  • the mass percentage of each component in the negative active material layer is: 80-99.8wt% negative active material, 0.1-10wt% conductive agent, and 0.1-10wt% binder.
  • the mass percentage of each component in the negative active material layer is: 90-99.6wt% negative active material, 0.2-5wt% conductive agent, and 0.2-5wt% binder.
  • the conductive agent is selected from at least one of conductive carbon black, acetylene black, Ketjen black, conductive graphite, conductive carbon fiber, carbon nanotubes, and metal powder.
  • the binder is selected from at least one selected from sodium carboxymethylcellulose, styrene-butadiene latex, polytetrafluoroethylene, and polyethylene oxide.
  • the negative active material includes a carbon-based negative material.
  • the carbon-based negative electrode material includes at least one of artificial graphite, natural graphite, mesocarbon microspheres, hard carbon, and soft carbon.
  • the negative active material may further include silicon-based negative material.
  • the silicon-based anode material is selected from at least one of nano-silicon (Si), silicon-oxygen anode material (SiO x (0 ⁇ x ⁇ 2)), and silicon-carbon anode material.
  • the positive active material is selected from one or more of transition metal lithium oxide, lithium iron phosphate, and lithium manganate; the chemical formula of the transition metal lithium oxide is Li 1+x Ni y Co z M (1-yz) O 2 , where -0.1 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, and 0 ⁇ y+z ⁇ 1; where M is Mg, Zn, Ga, One or more of Ba, Al, Fe, Cr, Sn, V, Mn, Sc, Ti, Nb, Mo, and Zr.
  • the present disclosure provides an electrolyte solution and a battery including the electrolyte solution.
  • the electrolyte of the present disclosure has high oxidation resistance, and the battery including the electrolyte of the present disclosure has stable normal temperature cycle performance and stable high temperature cycle performance.
  • the lithium ion battery of the present disclosure includes a negative electrode sheet, an electrolyte, a positive electrode sheet, a separator and an outer packaging.
  • the positive electrode sheet, the isolation film and the negative electrode sheet are stacked to obtain a battery core, or the positive electrode sheet, isolation film and negative electrode sheet are stacked and then rolled to obtain the battery core.
  • the battery core is placed in the outer packaging and packaged outward.
  • the lithium ion battery of the present disclosure can be obtained by injecting the electrolyte solution.
  • the lithium ion batteries of Examples 1 to 14 and Comparative Examples 1 to 5 are prepared through the following steps:
  • the positive electrode active materials lithium cobalt oxide (LiCoO 2 ), polyvinylidene fluoride (PVDF), SP (super P) Mix with carbon nanotubes (CNT) at a mass ratio of 96:2:1.5:0.5, add N-methylpyrrolidone (NMP), and stir under the action of a vacuum mixer until the mixed system becomes a uniformly fluid cathode active slurry. ; Apply the positive active slurry evenly on both surfaces of the aluminum foil; dry the coated aluminum foil, and then roll and cut it to obtain the required positive electrode sheets.
  • LiCoO 2 lithium cobalt oxide
  • PVDF polyvinylidene fluoride
  • SP super P
  • CNT carbon nanotubes
  • the negative active materials artificial graphite, silicon oxide, sodium carboxymethylcellulose (CMC-Na), styrene-butadiene rubber, conductive carbon black (SP) and single-walled carbon nanotubes (SWCNTs) were mixed according to the mass ratio of 79.5:15:2.5 :1.5:1:0.5, mix, add deionized water, and obtain the negative active slurry under the action of a vacuum mixer; apply the negative active slurry evenly on both surfaces of the copper foil; place the coated copper foil at room temperature Then dry it in the oven at 80°C for 10 hours, and then cold-press and cut it to obtain the negative electrode sheet.
  • the positive electrode sheet of step 1), the negative electrode sheet and the separator film of step 2) are stacked in the order of the positive electrode sheet, separator film and negative electrode sheet, and then rolled to obtain an electric core; the electric core is placed in the outer packaging aluminum foil.
  • the additives A are all compounds with the structural formula shown in formula (1), and Ra in the structural formulas are all the same, and are respectively selected from the structures shown in Table 1.
  • Ra in the structural formula of Additive A in Example 1 are all groups represented by R1.
  • HTCN is 1,3,6-hexanetrinitrile
  • DENE is 1,2-bis(cyanoethoxy)ethane
  • ADN is adiponitrile
  • the lithium-ion batteries obtained in the examples and comparative examples were respectively subjected to a 25°C cycle performance test and a 45°C cycle performance test.
  • the test results are shown in Table 2.
  • the battery in Table 1 is subjected to charge and discharge cycles at 25°C at a rate of 1C within the charge and discharge cut-off voltage range for 300, 500, and 800 cycles.
  • the discharge capacity in the first week of testing is x1mAh
  • the discharge capacity in the Nth cycle is calculated is y1mAh
  • the battery in Table 1 is subjected to charge and discharge cycles at 45°C at a rate of 1C within the charge and discharge cut-off voltage range for 300, 500, and 800 cycles.
  • the electrolyte after adding Additive A of the present disclosure can complex on the surface of the cathode, preventing the electrolyte from entering the cathode material and damaging the structure.
  • the presence of the ester group improves the transmission efficiency of ions in the electrolyte.
  • the fluorine atoms or The trifluoromethyl group can further improve the oxidation resistance of the ester group.
  • the bisfluorosulfonimide lithium salt and Additive A have a synergistic effect and work together to protect the positive electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本公开提供了一种电解液及包括该电解液的电池,所述电解液包括有机溶剂、电解质盐和添加剂,其中,所述添加剂包括添加剂A,所述添加剂A选自含有至少一个酯基的四腈类化合物中的至少一种。所述电解液中的添加剂A中的腈基官能团可以与正极表面进行络合,有效的抑制金属离子的溶解以及电解液的进一步氧化分解,提高电解液的耐氧化性,降低正极材料的体积膨胀,提升电池的常温循环性能和高温循环性能。

Description

一种电解液及电池 技术领域
本公开涉及一种电解液及包括该电解液的电池,属于电池技术领域。
发明背景
锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解液嵌入负极,负极处于富锂状态;放电时则相反。由于锂离子电池具备比能量密度较大、循环寿命长等优点,因此被广泛应用于各类电子产品中,近年来还被大量用于电动车辆和各种电动工具、储能装置中。
随着人们生活水平的提高和对更美好生活的向往,对电池能量密度也提出了更高的要求。为了提升电池的能量密度,进一步提升锂离子电池正极材料的电压是一个常用的路径。但是,随着正极材料限制电压的不断提高,正极材料的克容量逐渐增加,电池的高温性能恶化严重,长循环寿命无法保证。尤其是高电压(>4.5V)下,长期循环充放电过程中,正极材料的体积会膨胀并导致严重裂纹,电解液进入正极材料内部,破坏正极材料的结构,同时活性氧的释放进一步加速电解液的氧化分解,此外,负极表面的保护膜也会不断的破损,最终造成电池容量严重衰减的问题。
目前,一般会在正极材料表面使用氧化物涂层进行修饰,或者通过制备不同形态和结构的正极材料,但过程工艺复杂,成本高,保护效果差。
因此,开发一种常温循环性能稳定、高温循环性能稳定的电池非常重要。
发明内容
为了解决现有高电压下电池中正极材料体积膨胀以及活性氧持续释放氧化电解液的问题,本公开目的是提供一种电解液及包括该电解液的电池,所述电解液可以提高高电压(如4.5V以上)下电池的常温循环性能、高温循环性能以及电解液的耐氧化性,获得具有耐氧化的电解液和常高温循环性能更突出的电池,而且所述电解液的制备过程工艺简单,成本低,保护效果好。
本公开目的是通过如下技术方案实现的:
一种电解液,所述电解液包括有机溶剂、电解质盐和添加剂,其中,所述添加剂包括添加剂A,所述添加剂A选自含有至少一个酯基的四腈类化合物中的至少一种。所述电解液中的添加剂A中的腈基官能团可以与正极表面进 行络合,有效的抑制金属离子的溶解以及电解液的进一步氧化分解,提高电解液的耐氧化性,降低正极材料的体积膨胀,提升电池的常温循环性能和高温循环性能。
在一实例中,所述添加剂A选自含有至少两个酯基的四腈类化合物中的至少一种,优选选自含有四个酯基的四腈类化合物中的至少一种。
在本公开中,所述四腈类化合物是指含有四个腈基(-CN)的化合物。
在一实例中,所述酯基的结构为-COO-R,R为烷基、亚烷基或次烷基。
在一优选实例中,所述酯基通过连接基团与氰基连接,即NC-Ra-COO-R,Ra的定义如下所述。
在一实例中,所述添加剂A选自具有式(1)所示结构式的化合物中的至少一种:
式(1)中,Ra相同或不同,彼此独立地选自取代或未取代的C1-9亚烷基、取代或未取代的*-C1-6亚烷基-O-**、取代或未取代的*-C1-6亚烷基-COO-**、取代或未取代的*-C1-6亚烷基-S-**、取代或未取代的*-C1-6亚烷基-S(=O)2-**;所述取代的取代基为C1-9烷基、卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连。从式(1)中可以看出,所述添加剂A具有对称的结构式,且包括酯基和腈基官能团,这使得所述添加剂A具有较好的动力学性能和耐氧化性能,从而提高电解液的耐氧化性,提高电池的常温循环性能和高温循环性能。
在一实例中,Ra相同或不同,彼此独立地选自取代或未取代的C1-8亚烷基、取代或未取代的*-C1-3亚烷基-O-**、取代或未取代的*-C1-3亚烷基-COO-**、取代或未取代的*-C1-3亚烷基-S-**、取代或未取代的*-C1-3亚烷基-S(=O)2-**;所述取代的取代基为C1-3烷基、卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连。
在一实例中,Ra相同或不同,彼此独立地选自取代或未取代的C1-8亚烷 基、取代或未取代的*-CH2-O-**、取代或未取代的*-CH2-COO-**、取代或未取代的*-CH2-S-**、取代或未取代的*-CH2-S(=O)2-**;所述取代的取代基为C1-3烷基、卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连。
在一实例中,Ra相同或不同,彼此独立地选自取代或未取代的C1-6亚烷基;所述取代的取代基为C1-3烷基、F。当连接酯基和腈基的Ra基团上存在的氟原子时,可以进一步提升了该结构整体的耐氧化性,从而进一步提高电解液的耐氧化性。
在一实例中,Ra相同或不同,彼此独立地选自取代或未取代的亚甲基、取代或未取代的亚乙基、取代或未取代的亚丙基、取代或未取代的亚丁基、取代或未取代的亚戊基、取代或未取代的亚己基;所述取代的取代基为C1-3烷基、F。
在一实例中,Ra相同或不同,彼此独立地选自如下R1~R10所示的基团:

其中,*为连接位点,*端任选地与-CN或-CO-相连。
在一实例中,所述添加剂A可以采用本领域已知的方法制备得到,也可以通过商业途径购买获得。
在一实例中,以所述电解液的总重量为基准,所述添加剂A的重量含量为0.1wt%-5wt%,例如为0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、1wt%、1.2wt%、1.3wt%、1.5wt%、1.6wt%、1.8wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%、4wt%、4.2wt%、4.5wt%、4.8wt%或5wt%。
在一实例中,所述电解质盐选自电解质锂盐、电解质钠盐、电解质铝盐、电解质镁盐等中的至少一种。
在一实例中,所述电解质锂盐选自六氟磷酸锂(LiPF6)、二氟磷酸锂(LiPO2F2)、二氟草酸硼酸锂(LiDFOB)、双三氟甲基磺酰亚胺锂、二氟双草酸磷酸锂、四氟硼酸锂、双草酸硼酸锂、六氟锑酸锂、六氟砷酸锂、二(三氟甲基磺酰)亚胺锂、二(五氟乙基磺酰)亚胺锂、三(三氟甲基磺酰)甲基锂或二(三氟甲基磺酰)亚胺锂中的一种或两种以上。
在一实例中,以所述电解液的总重量为基准,所述电解质盐的重量含量为8wt%-20wt%,例如为8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%、17wt%、18wt%、19wt%或20wt%。
在一实例中,所述有机溶剂选自碳酸酯和/或羧酸酯,所述碳酸酯选自氟代或未取代的下述有机溶剂中的一种或几种:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯、碳酸二乙酯(DEC)、碳酸甲乙酯;所述羧酸酯选自氟代或未取代的下述有机溶剂中的一种或几种:乙酸丙酯、乙酸正丁酯、乙酸异丁酯、乙酸正戊酯、乙酸异戊酯、丙酸丙酯(PP)、丙酸乙酯(EP)、丁酸甲酯、正丁酸乙酯。
在一实例中,以所述电解液的总重量为基准,所述有机溶剂的重量含量为65wt%-80wt%,例如为65wt%、66wt%、67wt%、68wt%、69wt%、70wt%、71wt%、72wt%、73wt%、74wt%、75wt%、76wt%、77wt%、78wt%、79wt%或80wt%。
在一实例中,所述电解液还包括添加剂B,所述添加剂B选自双氟磺酰亚胺锂。作为添加剂B的双氟磺酰亚胺锂相比LiPF6中的阴离子基团更加稳定,在高电压体系下产生的HF以及水的量较少,通过添加剂B和添加剂A的协同配合,可以进一步提升了添加剂A的稳定性,而且双氟磺酰亚胺锂还会在正极表面同腈基官能团一同参与成膜,在正极表面进行保护,进一步提升在高电压体系下,电池的常温循环性能和高温循环性能。
在一实例中,以所述电解液的总重量为基准,所述添加剂B的重量含量为1wt%-4wt%,例如为1wt%、1.2wt%、1.3wt%、1.5wt%、1.6wt%、1.8wt%、2wt%、2.2wt%、2.4wt%、2.5wt%、2.6wt%、2.8wt%、3wt%、3.3wt%、3.5wt%、3.8wt%或4wt%。
在一实例中,所述添加剂A的重量与所述添加剂B的重量之比为(0.25-5):1,例如为0.25:1、0.5:1、1:1、1.5:1、2:1、2.5:1、3:1、3.5:1、4:1、4.5:1或5:1。
在一实例中,所述电解液还包括添加剂C,所述添加剂C选自1,3-丙烷磺酸内酯、1,3-丙烯磺酸内酯、丁二腈、甘油三腈、二氟草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂中的至少一种。
在一实例中,以所述电解液的总重量为基准,所述添加剂C的重量含量为2wt%-8wt%,例如为2wt%、3wt%、4wt%、5wt%、6wt%、7wt%或8wt%。
在一实例中,所述电解液用于锂离子电池。
本公开还提供一种电池,所述电池包括上述的电解液。
在一实例中,所述电池为锂离子电池。
在一实例中,所述电池的充放电范围为3V-4.5V。
在一实例中,所述电池还包括正极片、负极片和隔离膜。
在一实例中,所述正极片包括正极集流体和涂覆在正极集流体一侧或两侧表面的正极活性物质层,所述正极活性物质层包括正极活性物质、导电剂和粘结剂。
在一实例中,所述负极片包括负极集流体和涂覆在负极集流体一侧或两侧表面的负极活性物质层,所述负极活性物质层包括负极活性物质、导电剂和粘结剂。
在一实例中,所述正极活性物质层中各组分的质量百分含量为:80-99.8wt%的正极活性物质、0.1-10wt%的导电剂、0.1-10wt%的粘结剂。
在一优选实例中,所述正极活性物质层中各组分的质量百分含量为:90-99.6wt%的正极活性物质、0.2-5wt%的导电剂、0.2-5wt%的粘结剂。
在一实例中,所述负极活性物质层中各组分的质量百分含量为:80-99.8wt%的负极活性物质、0.1-10wt%的导电剂、0.1-10wt%的粘结剂。
在一优选实例中,所述负极活性物质层中各组分的质量百分含量为:90-99.6wt%的负极活性物质、0.2-5wt%的导电剂、0.2-5wt%的粘结剂。
在一实例中,所述导电剂选自导电炭黑、乙炔黑、科琴黑、导电石墨、导电碳纤维、碳纳米管、金属粉中的至少一种。
在一实例中,所述粘结剂选自羧甲基纤维素钠、丁苯胶乳、聚四氟乙烯、聚氧化乙烯中的至少一种。
在一实例中,所述负极活性物质包括碳基负极材料。
在一实例中,所述碳基负极材料包括人造石墨、天然石墨、中间相碳微球、硬碳、软碳中的至少一种。
在一实例中,所述负极活性物质还可以包括硅基负极材料。
在一实例中,所述硅基负极材料选自纳米硅(Si)、硅氧负极材料(SiOx(0<x<2))和硅碳负极材料中的至少一种。
在一实例中,所述正极活性物质选自过渡金属锂氧化物、磷酸铁锂、锰酸锂中的一种或几种;所述过渡金属锂氧化物的化学式为Li1+xNiyCozM(1-y-z)O2,其中,-0.1≤x≤1;0≤y≤1,0≤z≤1,且0≤y+z≤1;其中,M为Mg、Zn、Ga、Ba、Al、Fe、Cr、Sn、V、Mn、Sc、Ti、Nb、Mo、Zr中的一种或几种。
本公开的有益效果:
本公开提供了一种电解液及包括该电解液的电池。本公开的电解液耐氧化性高,包括本公开电解液的电池常温循环性能稳定,高温循环性能稳定。
具体实施方式
下文将结合具体实施例对本公开做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本公开,而不应被解释为对本公开保护范围的限制。凡基于本公开上述内容所实现的技术均涵盖在本公开旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
可以理解的是,本公开的锂离子电池包括负极片、电解液、正极片、隔离膜和外包装。将正极片、隔离膜和负极片层叠设置得到电芯或将正极片、隔离膜和负极片层叠设置后,再进行卷绕设置得到电芯,将电芯置于外包装中,向外包装中注入电解液可以得到本公开的锂离子电池。
实施例1~14及对比例1~5
实施例1~14及对比例1~5的锂离子电池通过以下步骤制备得到:
1)正极片制备
将正极活性材料钴酸锂(LiCoO2)、聚偏氟乙烯(PVDF)、SP(super P) 和碳纳米管(CNT)按照96:2:1.5:0.5的质量比进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌,直至混合体系成均一流动性的正极活性浆料;将正极活性浆料均匀涂覆于铝箔的两个表面;将涂覆好的铝箔烘干,然后经过辊压、分切得到所需的正极片。
2)负极片制备
将负极活性材料人造石墨、氧化亚硅、羧甲基纤维素钠(CMC-Na)、丁苯橡胶、导电炭黑(SP)和单壁碳纳米管(SWCNTs)按照质量比79.5:15:2.5:1.5:1:0.5进行混合,加入去离子水,在真空搅拌机作用下获得负极活性浆料;将负极活性浆料均匀涂覆在铜箔的两个表面;将涂覆好的铜箔在室温下晾干,随后转移至80℃烘箱干燥10h,然后经过冷压、分切得到负极片。
3)电解液的制备
在充满氩气的手套箱中(H2O<0.1ppm,O2<0.1ppm),将EC/PC/DEC/PP按表1所示的质量比混合均匀,然后往其中快速加入1mol/L的充分干燥的六氟磷酸锂(LiPF6),溶解后加入氟代碳酸乙烯酯(FEC)、添加剂A、添加剂B(双氟磺酰亚胺锂)和添加剂C(1,3-丙烷磺酸内酯),具体电解液配方如表1所述。
4)锂离子电池的制备
将步骤1)的正极片、步骤2)的负极片和隔离膜按照正极片、隔离膜和负极片的顺序层叠设置后,再进行卷绕得到电芯;将电芯置于外包装铝箔中,将步骤3)的电解液注入外包装中,经过真空封装、静置、化成、整形、分选等工序,获得锂离子电池。
表1实施例和对比例的锂离子电池中电解液的组成

实施例中添加剂A均为具有式(1)所示结构式的化合物,其结构式中的Ra均相同,分别选自表1所示的结构。例如,实施例1中的添加剂A的结构式中的Ra均为R1所示的基团。
其中,HTCN为1,3,6-己烷三腈,DENE为1,2-双(氰乙氧基)乙烷,ADN为己二腈。
对实施例和对比例获得的锂离子电池分别进行25℃循环性能测试和45℃循环性能测试,测试结果见表2。
1)25℃循环性能测试
将表1的电池在25℃下按照1C的倍率在充放电截止电压范围内进行充放电循环300周、500、800周,测试第1周的放电容量计为x1mAh,第N圈的放电容量计为y1mAh;第N周的容量除以第1周的容量,得到第N周的循环容量保持率R1=y1/x1。
2)45℃循环性能测试
将表1的电池在45℃下按照1C的倍率在充放电截止电压范围内进行充放电循环300周、500周、800周,测试第1周的放电容量计为x2mAh,第N圈的放电容量计为y2mAh;第N周的容量除以第1周的容量,得到第N周的循环容量保持率R2=y2/x2。
表2实施例和对比例的锂离子电池的性能测试结果

从表2对比例1~2和实施例1~14的测试结果可以看出,添加剂A对电池的常温循环和高温循环性能有着明显的改善提升。通过对比例3~5和实施例1~14,可以发现,添加剂A相比于AND、DENE、HTCN常规腈类添加剂对电池的长循环性能改善更加明显。此外,从对比例1和对比例2可以看出双氟磺酰亚胺锂盐对循环的作用较明显。
综上,添加本公开的添加剂A后的电解液可以在正极表面络合,阻止电解液进入正极材料破坏结构,同时酯基的存在提升了离子在电解液中的传输效率,含有的氟原子或三氟甲基可以进一步提升酯基的耐氧化性,同时双氟磺酰亚胺锂盐和添加剂A具有协同作用,共同作用保护正极。
以上,对本公开的实施方式进行了说明。但是,本公开不限定于上述实施方式。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (15)

  1. 一种电解液,其特征在于,所述电解液包括有机溶剂、电解质盐和添加剂,其中,所述添加剂包括添加剂A,所述添加剂A选自含有至少一个酯基的四腈类化合物中的至少一种。
  2. 根据权利要求1所述的电解液,其特征在于,所述添加剂A选自含有至少两个酯基的四腈类化合物中的至少一种;
    优选地,所述添加剂A选自含有四个酯基的四腈类化合物中的至少一种。
  3. 根据权利要求1或2所述的电解液,其特征在于,所述酯基的结构为-COO-R,R为烷基、亚烷基或次烷基;
    优选地,所述酯基通过连接基团Ra与氰基连接,即NC-Ra-COO-R。
  4. 根据权利要求1-3任一项所述的电解液,其特征在于,所述添加剂A选自具有式(1)所示结构式的化合物中的至少一种:
    式(1)中,Ra相同或不同,彼此独立地选自取代或未取代的C1-9亚烷基、取代或未取代的*-C1-6亚烷基-O-**、取代或未取代的*-C1-6亚烷基-COO-**、取代或未取代的*-C1-6亚烷基-S-**、取代或未取代的*-C1-6亚烷基-S(=O)2-**;所述取代的取代基为C1-9烷基、卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连;
    优选地,Ra相同或不同,彼此独立地选自取代或未取代的C1-8亚烷基、取代或未取代的*-C1-3亚烷基-O-**、取代或未取代的*-C1-3亚烷基-COO-**、取代或未取代的*-C1-3亚烷基-S-**、取代或未取代的*-C1-3亚烷基-S(=O)2-**;所述取代的取代基为C1-3烷基、卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连;
    优选地,Ra相同或不同,彼此独立地选自取代或未取代的C1-8亚烷基、取代或未取代的*-CH2-O-**、取代或未取代的*-CH2-COO-**、取代或未取代的*-CH2-S-**、取代或未取代的*-CH2-S(=O)2-**;所述取代的取代基为C1-3烷基、 卤素,其中,*和**均为连接位点,*端任选地与-CN或-CO-相连,优选地,*端与-CN相连,**端与-CO-相连;
    优选地,Ra相同或不同,彼此独立地选自取代或未取代的C1-6亚烷基;所述取代的取代基为C1-3烷基、F;
    优选地,Ra相同或不同,彼此独立地选自取代或未取代的亚甲基、取代或未取代的亚乙基、取代或未取代的亚丙基、取代或未取代的亚丁基、取代或未取代的亚戊基、取代或未取代的亚己基;所述取代的取代基为C1-3烷基、F。
  5. 根据权利要求3或4所述的电解液,其特征在于,Ra选自如下R1~R10所示的基团:
    其中,*为连接位点,*端任选地与-CN或-CO-相连。
  6. 根据权利要求1-5任一项所述的电解液,其特征在于,以所述电解液的 总重量为基准,所述添加剂A的重量含量为0.1wt%-5wt%。
  7. 根据权利要求1-6任一项所述的电解液,其特征在于,所述电解液还包括添加剂B,所述添加剂B选自双氟磺酰亚胺锂;
    和/或,以所述电解液的总重量为基准,所述添加剂B的重量含量为1wt%-4wt%。
  8. 根据权利要求7任一项所述的电解液,其特征在于,所述添加剂A的重量与所述添加剂B的重量之比为(0.25-5):1。
  9. 根据权利要求1-8任一项所述的电解液,其特征在于,所述电解液还包括添加剂C,所述添加剂C选自1,3-丙烷磺酸内酯、1,3-丙烯磺酸内酯、丁二腈、甘油三腈、二氟草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂中的至少一种;
    和/或,以所述电解液的总重量为基准,所述添加剂C的重量含量为2wt%-8wt%。
  10. 根据权利要求1-9任一项所述的电解液,其特征在于,所述电解质盐选自电解质锂盐、电解质钠盐、电解质铝盐、电解质镁盐等中的至少一种;
    优选地,电解质锂盐选自六氟磷酸锂、二氟磷酸锂、二氟草酸硼酸锂、双三氟甲基磺酰亚胺锂、二氟双草酸磷酸锂、四氟硼酸锂、双草酸硼酸锂、六氟锑酸锂、六氟砷酸锂、二(三氟甲基磺酰)亚胺锂、二(五氟乙基磺酰)亚胺锂、三(三氟甲基磺酰)甲基锂或二(三氟甲基磺酰)亚胺锂中的一种或两种以上。
  11. 根据权利要求1-10任一项所述的电解液,其特征在于,以所述电解液的总重量为基准,所述电解质盐的重量含量为8wt%-20wt%。
  12. 根据权利要求1-11任一项所述的电解液,其特征在于,所述有机溶剂选自碳酸酯和/或羧酸酯;
    优选地,所述碳酸酯选自氟代或未取代的下述有机溶剂中的一种或几种:碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯;
    优选地,所述羧酸酯选自氟代或未取代的下述有机溶剂中的一种或几种:乙酸丙酯、乙酸正丁酯、乙酸异丁酯、乙酸正戊酯、乙酸异戊酯、丙酸丙酯、丙酸乙酯、丁酸甲酯、正丁酸乙酯。
  13. 根据权利要求1-12任一项所述的电解液,其特征在于,以所述电解液的总重量为基准,所述有机溶剂的重量含量为65wt%-80wt%。
  14. 一种电池,其特征在于,所述电池包括权利要求1-13任一项所述的电解液。
  15. 根据权利要求14所述的电池,其特征在于,所述电池为锂离子电池。
PCT/CN2023/089160 2022-05-12 2023-04-19 一种电解液及电池 WO2023216824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210519583.3A CN117096419A (zh) 2022-05-12 2022-05-12 一种电解液及包括该电解液的电池
CN202210519583.3 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023216824A1 true WO2023216824A1 (zh) 2023-11-16

Family

ID=88729611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089160 WO2023216824A1 (zh) 2022-05-12 2023-04-19 一种电解液及电池

Country Status (2)

Country Link
CN (1) CN117096419A (zh)
WO (1) WO2023216824A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766995A (zh) * 2015-03-31 2015-07-08 宁德新能源科技有限公司 一种电解液添加剂及其在锂离子电池中的应用
CN104852087A (zh) * 2015-04-15 2015-08-19 宁德时代新能源科技有限公司 一种电解液添加剂及应用了该添加剂的锂离子电池
CN109309226A (zh) * 2017-07-27 2019-02-05 宁德时代新能源科技股份有限公司 电化学储能装置
CN113161601A (zh) * 2021-02-22 2021-07-23 宁德新能源科技有限公司 电化学装置和包含该电化学装置的电子装置
CN114267880A (zh) * 2021-12-10 2022-04-01 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池
CN114464884A (zh) * 2022-01-21 2022-05-10 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的含硅基负极的电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766995A (zh) * 2015-03-31 2015-07-08 宁德新能源科技有限公司 一种电解液添加剂及其在锂离子电池中的应用
CN104852087A (zh) * 2015-04-15 2015-08-19 宁德时代新能源科技有限公司 一种电解液添加剂及应用了该添加剂的锂离子电池
CN109309226A (zh) * 2017-07-27 2019-02-05 宁德时代新能源科技股份有限公司 电化学储能装置
CN113161601A (zh) * 2021-02-22 2021-07-23 宁德新能源科技有限公司 电化学装置和包含该电化学装置的电子装置
CN114267880A (zh) * 2021-12-10 2022-04-01 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池
CN114464884A (zh) * 2022-01-21 2022-05-10 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的含硅基负极的电池

Also Published As

Publication number Publication date
CN117096419A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
CN116565322A (zh) 一种电解液及包含其的电池
WO2024099377A1 (zh) 一种电解液及包括该电解液的电池
WO2024078357A1 (zh) 一种电解液及包括该电解液的电池
WO2024041206A1 (zh) 电池电解液及电池
WO2024082979A1 (zh) 一种电解液及包括该电解液的电池
WO2024041150A1 (zh) 一种电解液及包括该电解液的电池
WO2023216928A1 (zh) 一种电池
CN116914245A (zh) 一种电解液及包括该电解液的电池
CN111640987A (zh) 一种高功率电解液及含有该电解液的锂离子电池
CN114899476A (zh) 一种电解液及包括该电解液的电池
CN116130764A (zh) 一种电解液和电池
CN115312861A (zh) 一种电解液包括该电解液的电池
CN113054258B (zh) 取代硅基磷酸酯类化合物的新用途及电解液、锂离子电池
CN115602925A (zh) 一种电解液及包括该电解液的电池
CN114267880A (zh) 一种电解液及包括该电解液的电池
WO2022099542A1 (zh) 一种电解液、电化学装置以及电子装置
WO2023216824A1 (zh) 一种电解液及电池
CN114243109B (zh) 一种电解液及包括该电解液的电池
CN117673467A (zh) 一种电解液及包括该电解液的电池
CN114944511A (zh) 一种电解液及包括该电解液的电池
CN116344940A (zh) 一种电解液及包含其的电池
CN116722218A (zh) 一种电解液及包括该电解液的电池
CN116666758A (zh) 一种电解液及包含其的电池
CN116365030A (zh) 一种电解液及包括该电解液的电池
CN117059897A (zh) 一种锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802599

Country of ref document: EP

Kind code of ref document: A1