WO2023216809A1 - 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法 - Google Patents

一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法 Download PDF

Info

Publication number
WO2023216809A1
WO2023216809A1 PCT/CN2023/088577 CN2023088577W WO2023216809A1 WO 2023216809 A1 WO2023216809 A1 WO 2023216809A1 CN 2023088577 W CN2023088577 W CN 2023088577W WO 2023216809 A1 WO2023216809 A1 WO 2023216809A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
nanoporous
blown
melt
temperature
Prior art date
Application number
PCT/CN2023/088577
Other languages
English (en)
French (fr)
Inventor
黄文胜
刘雨佳
谢国东
张卫东
孙松
李凯
孙伟峰
范小杰
Original Assignee
东营俊富净化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东营俊富净化科技有限公司 filed Critical 东营俊富净化科技有限公司
Publication of WO2023216809A1 publication Critical patent/WO2023216809A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C15/00Calendering, pressing, ironing, glossing or glazing textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0208Single-component fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown

Definitions

  • the invention relates to the technical field of liquid filtration materials, and in particular to a preparation method of high-throughput PP melt-blown nano-microporous pleated liquid filtration materials.
  • Liquid filtration materials have made significant contributions to solving health, environment, food, drinking water, national security and other issues faced by the world.
  • non-woven liquid filtration materials based on melt-blown ultrafine fibers as the main structure have small pore sizes. And it has a uniform and isotropic porous structure. Compared with other filter materials, it has significant structural advantages and excellent application prospects.
  • the liquid filter materials produced are significantly different from foreign imported products in terms of technical indicators such as filtration efficiency, performance stability, and service life.
  • the new filter material developed by Finetex Technology Company in the United States uses nanofibers. It is a composite structural product using electrospun nanofiber mesh and traditional nonwoven fabrics. Finetex's Coats TM series is used for liquid filtration and can effectively remove 1-2 ⁇ m particles. , and the nanoporous nonwoven membrane material produced by the company in cooperation with Roki has also been used in the field of liquid material separation. Domestic Tianjin TEDA has been doing research in this field earlier. At present, 5-10 ⁇ m products have been industrialized, while 1-2 ⁇ m materials have folding molding.
  • the present invention provides a method for preparing high-throughput PP melt-blown nano-microporous pleated liquid filter materials, which can improve the folding forming stability, dirt holding capacity, and service life of the liquid filter materials. , improve the filtration efficiency of 1-2 ⁇ m particles.
  • a method for preparing high-throughput PP melt-blown nanoporous pleated liquid filter materials including preparing mixture, spinning, hot air blowing, web forming, surface treatment, and calendering.
  • the mixture is prepared by mixing polypropylene resin, high surface energy particles and induced nanoparticles evenly to obtain the mixture;
  • the mass ratio of polypropylene resin, high surface energy particles, and induced nanoparticles is 100-110:5-8:3-5;
  • the melt index of the polypropylene resin is 100-120g/10min
  • the preparation method of the high surface energy particles is: after setting the temperature of the reaction kettle to 2-5°C, add acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, and deionized Add water to the reaction kettle, start stirring and control the stirring speed to 250-300 rpm, then heat up at a heating rate of 1.2-1.5°C/min. When the temperature reaches 65-70°C, stir at 65-70°C for 30-40 minutes. Then add sodium persulfate and isopropyl alcohol, continue stirring at 65-70°C for 20-30 minutes, and then increase the temperature of the reaction kettle.
  • the weight of acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, deionized water, sodium persulfate, isopropyl alcohol, sodium hydroxide, and sodium lauryl sulfate is 100-110:10-12:13-15:1-2:2-3:280-300:0.1-0.3:2-3:1-2:1-1.5;
  • the weight ratio of the primary particles to liquid carbon dioxide is 1:1.3-1.5;
  • the preparation method of the induced nanoparticles is as follows: immersing nanosilica in a surfactant at 45-50°C, leaving it standing at 45-50°C for 20-30 minutes to obtain a surface-activated nanoparticle liquid, and The surface-activated nanoparticle liquid is placed in a closed container for pressure treatment.
  • the pressure of the closed container is controlled to 1-1.2MPa and the temperature is controlled to 150-160°C.
  • filter bake the filter residue at 50-60°C for 3-3.5h to obtain induced nanoparticles;
  • the particle size of the nanosilica is 300-350nm
  • composition of the surfactant includes: 100-110 parts of deionized water, 5-7 parts of stearic acid, 2-3 parts of xanthan gum, 1-3 parts of sodium thiosulfate, 0.3- 0.5 part betaine;
  • the weight ratio of the nano-silica to the surfactant is 1:1.3-1.5.
  • the spinning process For the spinning process, add the mixture into the twin-screw extruder through a metering pump, control the temperature of the twin-screw extruder to 230-240°C, and after extrusion, send the molten mixture through the metering pump and filter.
  • the spinneret control the die temperature of the spinneret at 260-270°C to extrude primary polymer filaments;
  • the rotation speed of the metering pump is 14-15 rpm.
  • the primary polymer filaments are blown with hot air, and the polymer filaments become thinner and elongated under the impact of high-speed hot air flows on both sides to obtain polymer filaments after hot air blowing;
  • the flow rate of the high-speed hot air flow is 680-730m 3 /h, and the hot air temperature is 270-280°C.
  • the polymer filaments blown by hot air are sprayed onto the web-forming curtain for web-forming, air suction, cooling, and solidification to obtain a liquid filtration base material;
  • the air suction flow rate is 2400-2500m 3 /h, and the web forming speed is 9-10m/min.
  • the liquid filter substrate is subjected to ultraviolet irradiation, the ultraviolet wavelength is controlled to 260-300nm, the ultraviolet irradiation time is 35-40 minutes, the temperature during ultraviolet irradiation is 45-50°C, and the base fabric is obtained after the ultraviolet irradiation is completed.
  • the calendering speed is controlled to be 5.5-6.5m/min, the calendering temperature is 90-95°C, and the calendering pressure is 2.0-2.5MPa. After the light is finished, the microporous liquid filter material is obtained.
  • the preparation method of the high-throughput PP melt-blown nanoporous pleated liquid filter material of the present invention can improve the hydrostatic pressure, longitudinal stiffness, transverse stiffness, air permeability, and dirt holding capacity of the liquid filter material.
  • the present invention The prepared liquid filter material has a gram weight of 80-90g/m 2 , an average pore diameter of 1.0-2.0 ⁇ m, a thickness of 0.19-0.20mm, a hydrostatic pressure of 159-164cmH 2 O, a longitudinal stiffness of 94-98N, and a transverse stiffness of 94-98N.
  • the density is 52-58N
  • the fiber fineness is 1.8-2.2 ⁇ m
  • the air permeability is 1.5-2.5mm/s
  • the dirt holding capacity is 79-85g/m 2 ;
  • the preparation method of the high-flux PP melt-blown nanoporous pleated liquid filter material of the present invention can improve the pure water flux of the liquid filter material and the filtration efficiency of particles with a particle size of 1-2 ⁇ m.
  • the method prepared by the present invention The pure water flux of the liquid filter material is 5450-5550L ⁇ m -2 ⁇ h -1 , and the filtration efficiency for particles with a particle size of 1-2 ⁇ m is 95.5-96.2%.
  • the pure water flux after treatment at 70°C for 24 hours is 5350-5500L ⁇ m -2 ⁇ h -1 , and the filtration efficiency for particles with a particle size of 1-2 ⁇ m is 94.2-95.1% after treatment at 70°C for 24 hours;
  • the preparation method of the high-flux PP melt-blown nanoporous pleated liquid filtration material of the present invention can improve the folding forming stability of the liquid filtration material and improve the pure water flux of the pleated filter element made of the liquid filtration material of the present invention.
  • the filtration efficiency for particles with a particle size of 1-2 ⁇ m is 95.1-95.7%
  • the pure water flux after treatment at 70°C for 24 hours is 5300-5400L ⁇ m -2 ⁇ h -1
  • the filtration efficiency for particles with a particle size of 1-2 ⁇ m is 94.0-94.9%
  • the pure water flux after 6 months of normal use is 5200-5300L ⁇ m -2 ⁇ h -1
  • the filtration efficiency for particles with a particle size of 1-2 ⁇ m is 92.9-93.8% after 6 months of normal use;
  • the high-throughput PP melt-blown nanoporous pleated liquid filter material prepared by the present invention has neatly arranged surface fibers and good fiber uniformity. Through precise control of pressure and temperature during calendering, the process is balanced. The relationship between filtration accuracy, flux and dirt holding capacity.
  • Figure 1 is a scanning electron microscope picture of the base fabric with a basis weight of 40g/ m2 prepared in Example 1;
  • Figure 2 is a scanning electron microscope picture of the base fabric with a basis weight of 45g/ m2 prepared in Example 2.
  • a method for preparing high-throughput PP melt-blown nano-microporous pleated liquid filtration materials specifically:
  • the mass ratio of polypropylene resin, high surface energy particles, and induced nanoparticles is 100:5:3;
  • the melt index of the polypropylene resin is 100g/10min
  • the preparation method of the high surface energy particles is as follows: after setting the temperature of the reaction kettle to 2°C, add acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, and deionized water. In the reaction kettle, start stirring and control the stirring speed to 250 rpm, then heat up at a heating rate of 1.2°C/min. When the temperature reaches 65°C, stir at 65°C for 30 minutes, then add sodium persulfate and isopropyl alcohol, and continue to stir.
  • the weight of acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, deionized water, sodium persulfate, isopropyl alcohol, sodium hydroxide, and sodium lauryl sulfate is 100:10:13:1:2:280:0.1:2:1:1;
  • the weight ratio of the primary particles to liquid carbon dioxide is 1:1.3;
  • the preparation method of the induced nanoparticles is as follows: immersing nanosilica in a surfactant at 45°C, leaving it standing at 45°C for 20 minutes to obtain a surface-activated nanoparticle liquid, and then immersing the surface-activated nanoparticles into The liquid is placed in a closed container for pressure treatment.
  • the pressure of the closed container is controlled to 1MPa and the temperature is controlled to 150°C. After pressure treatment in the closed container for 30 minutes, it is filtered. The filter residue is dried at 50°C for 3 hours to obtain induced nanoparticles. particle;
  • the particle size of the nano-silica is 300nm;
  • composition of the surfactant includes: 100 parts of deionized water, 5 parts of stearic acid, 2 parts of xanthan gum, 1 part of sodium thiosulfate, and 0.3 parts of betaine;
  • the weight ratio of the nano-silica to the surfactant is 1:1.3.
  • the rotation speed of the metering pump is 14 rpm.
  • Hot air blowing The primary polymer filaments are blown with hot air.
  • the polymer filaments become thinner and elongated under the impact of high-speed hot air flow on both sides, and the polymer filaments after hot air blowing are obtained;
  • the flow rate of the high-speed hot air flow is 680m 3 /h, and the hot air temperature is 270°C.
  • Web forming After high-pressure blowing, the polymer filaments blown by hot air are sprayed onto the web forming curtain to form a web, which is followed by air suction, cooling, and solidification to obtain a liquid filtration base material;
  • the air suction flow rate is 2400m 3 /h, and the web forming speed is 9m/min.
  • the liquid filter base material is irradiated with ultraviolet rays, the ultraviolet wavelength is controlled to 260nm, the ultraviolet irradiation time is 35 minutes, the temperature during ultraviolet irradiation is 45°C, and the base fabric is obtained after the ultraviolet irradiation is completed.
  • the weight of the base fabric 40g/m 2 , the base fabric was subjected to electron microscopy scanning analysis. The analysis results are shown in Figure 1. It can be seen from Figure 1 that the surface fibers of the prepared base fabric are arranged neatly and have good fiber uniformity.
  • Calendering Laminate two layers of the base fabric prepared in step 5 and perform calendering. Control the calendering speed to 5.5m/min, the calendering temperature to 90°C, and the calendering pressure to 2.5MPa. After the calendering is completed, Obtain microporous liquid filter material.
  • a method for preparing high-throughput PP melt-blown nano-microporous pleated liquid filtration materials specifically:
  • the mass ratio of polypropylene resin, high surface energy particles, and induced nanoparticles is 105:7:4;
  • the melt index of the polypropylene resin is 110g/10min
  • the preparation method of the high surface energy particles is as follows: after setting the temperature of the reaction kettle to 3°C, add acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, and deionized water. In the reaction kettle, start stirring and control the stirring speed to 270 rpm, then heat up at a heating rate of 1.3°C/min. When the temperature reaches 67°C, stir at 67°C for 35 minutes, add sodium persulfate and isopropyl alcohol, and continue to stir.
  • the weight of acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, deionized water, sodium persulfate, isopropyl alcohol, sodium hydroxide, and sodium lauryl sulfate The ratio is 105:11:14:1.5:2.5:290:0.2:2.5:1.5:1.2;
  • the weight ratio of the primary particles to liquid carbon dioxide is 1:1.4;
  • the preparation method of the induced nanoparticles is as follows: immersing nanosilica in a surfactant at 47°C, leaving it standing at 47°C for 25 minutes to obtain a surface-activated nanoparticle liquid, and then immersing the surface-activated nanoparticles into The liquid is placed in a closed container for pressure treatment.
  • the pressure of the closed container is controlled to 1.1MPa and the temperature is controlled to 155°C.
  • the filter residue is dried at 55°C for 3.2h to obtain induced nanoparticles;
  • the particle size of the nano-silica is 320nm
  • composition of the surfactant includes: 105 parts of deionized water, 6 parts of stearin Acid, 2.5 parts xanthan gum, 2 parts sodium thiosulfate, 0.4 parts betaine;
  • the weight ratio of the nano-silica to the surfactant is 1:1.4.
  • the rotation speed of the metering pump is 14.5 rpm.
  • Hot air blowing The primary polymer filaments are blown with hot air.
  • the polymer filaments become thinner and elongated under the impact of high-speed hot air flow on both sides, and the polymer filaments after hot air blowing are obtained;
  • the flow rate of the high-speed hot air flow is 700m 3 /h, and the hot air temperature is 275°C.
  • Web forming After high-pressure blowing, the polymer filaments blown by hot air are sprayed onto the web forming curtain to form a web, which is followed by air suction, cooling, and solidification to obtain a liquid filtration base material;
  • the air suction flow rate is 2450m 3 /h, and the web forming speed is 9.5m/min.
  • the liquid filter base material is irradiated with ultraviolet rays, the ultraviolet wavelength is controlled to 280nm, the ultraviolet irradiation time is 37 minutes, the temperature during ultraviolet irradiation is 47°C, and the base fabric is obtained after the ultraviolet irradiation is completed.
  • the weight of the base fabric 45g/m 2 , the base fabric was subjected to electron microscope scanning analysis. The analysis results are shown in Figure 2. It can be seen from Figure 2 that the surface fibers of the prepared base fabric are arranged neatly and have good fiber uniformity.
  • Calendering Laminate two layers of the base fabric prepared in step 5 and perform calendering. Control the calendering speed to 6m/min, the calendering temperature to 92°C, and the calendering pressure to 2.3MPa. After the calendering is completed, the Microporous liquid filter material.
  • a method for preparing high-throughput PP melt-blown nano-microporous pleated liquid filtration materials specifically:
  • the mass ratio of polypropylene resin, high surface energy particles, and induced nanoparticles is 110:8:5;
  • the melt index of the polypropylene resin is 120g/10min
  • the preparation method of the high surface energy particles is as follows: after setting the temperature of the reaction kettle to 5°C, add acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, and deionized water. In the reaction kettle, start stirring and control the stirring speed to 300 rpm, then heat up at a heating rate of 1.5°C/min.
  • the weight of acrylic acid, maleic anhydride, nano-alumina, titanate coupling agent TMC-TTS, Tween 80, deionized water, sodium persulfate, isopropyl alcohol, sodium hydroxide, and sodium lauryl sulfate The ratio is 110:12:15:2:3:300:0.3:3:2:1.5;
  • the weight ratio of the primary particles to liquid carbon dioxide is 1:1.5;
  • the preparation method of the induced nanoparticles is as follows: immersing nanosilica in a surfactant at 50°C, leaving it standing at 50°C for 30 minutes to obtain a surface-activated nanoparticle liquid, and then immersing the surface-activated nanoparticles into The liquid is placed in a closed container for pressure treatment.
  • the pressure of the closed container is controlled to 1.2MPa and the temperature is controlled to 160°C.
  • the particle size of the nano-silica is 350nm
  • composition of the surfactant includes: 110 parts of deionized water, 7 parts of stearic acid, 3 parts of xanthan gum, 3 parts of sodium thiosulfate, and 0.5 parts of betaine;
  • the weight ratio of the nano-silica to the surfactant is 1:1.5.
  • the rotation speed of the metering pump is 15 rpm.
  • Hot air blowing The primary polymer filaments are blown with hot air.
  • the polymer filaments become thinner and elongated under the impact of high-speed hot air flow on both sides, and the polymer filaments after hot air blowing are obtained;
  • the flow rate of the high-speed hot air flow is 730m 3 /h, and the hot air temperature is 280°C.
  • Web forming After high-pressure blowing, the polymer filaments blown by hot air are sprayed onto the web forming curtain to form a web, which is followed by air suction, cooling, and solidification to obtain a liquid filtration base material;
  • the air suction flow rate is 2500m 3 /h, and the web forming speed is 10m/min.
  • the liquid filter base material is irradiated with ultraviolet rays, the ultraviolet wavelength is controlled to 300nm, the ultraviolet irradiation time is 40 minutes, the temperature during ultraviolet irradiation is 50°C, and the base fabric is obtained after the ultraviolet irradiation is completed.
  • the weight of the base fabric is 45g/m 2 .
  • Calendering Laminate two layers of the base fabric prepared in step 5 and perform calendering. Control the calendering speed to 6.5m/min, the calendering temperature to 95°C, and the calendering pressure to 2MPa. After the calendering is completed, the Microporous liquid filter material.
  • the preparation method of high-throughput PP melt-blown nanoporous pleated liquid filter material described in Example 1 is used, and the difference is that the addition of high surface energy particles is omitted in the first step of preparing the mixture.
  • the preparation method of high-throughput PP melt-blown nanoporous pleated liquid filtration material described in Example 1 is used, and the difference is that the addition of induced nanoparticles is omitted in the first step of preparing the mixture.
  • the invention provides a method for preparing a high-throughput PP melt-blown nanoporous pleated liquid filter material, which can improve the folding forming stability, dirt holding capacity, and service life of the liquid filter material, and at the same time improve the resistance to 1-2 ⁇ m particles. Filtration efficiency.
  • the invention has broad application prospects and good industrial applicability in the field of liquid filter materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,属于液体过滤材料技术领域,包括制备混合料,喷丝,热风喷吹,成网,表面处理,轧光;该制备混合料,将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为100-110:5-8:3-5;该制备方法能够在提高液体过滤材料的折叠成型稳定性、纳污量、使用寿命的同时,提高对1-2μm粒子的过滤效率。

Description

一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法
相关申请的交叉引用
本申请要求2022年05月09日提交、申请号为202210498270.4的中国专利申请的优先权,其所公开的内容作为参考全文并入本申请。
技术领域
本发明涉及液体过滤材料技术领域,具体涉及一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法。
背景技术
液体过滤材料为解决全球所面临的健康、环境、食品、饮用水、国家安全等问题做出了重大贡献,特别是基于熔喷超细纤维为主体结构的非织造液体过滤材料,因其孔径小且具有均匀、各向同性的多孔结构,与其它过滤材料相比,具有显著的结构优势和极好的应用前景。但由于我国在该领域的科研与产业布局相较美、日等发达国家启动较晚,所生产的液体滤料在过滤效率、性能稳定性、使用寿命等技术指标方面与国外进口产品存在较大差距,尤其在高精度微孔折叠非织造滤料和亚微米孔折叠滤膜制备领域,滤材加工技术一直被国际跨国公司所垄断,不但价格昂贵,而且在关键时期易受制于人,给我国的战略安全带来巨大隐患。
在大通量微孔非织造液体过滤材料领域,国内产品的主要性能已接近进口产品。比如,美国Finetex技术公司采用纳米纤维开发的新型过滤材料,是使用静电纺纳米纤维网与传统非织造布的复合结构产品,Finetex公司的Coats TM系列用于液体过滤,能有效去除1-2μm粒子,且该公司与Roki公司合作制得的纳米孔非织造膜材,也已应用于液体物料分离领域。国内天津泰达在该领域研究较早,目前5-10μm产品已产业化,而1-2微米材料存在折叠成型 稳定性差、过滤效率和纳污量低、使用寿命短的问题。更重要的是,在高精度微孔折叠非织造滤料和亚微米孔折叠滤膜制备领域,滤材加工技术一直被国际跨国公司所垄断,如3M公司、科德宝、奥斯龙等,不但价格昂贵,而且在关键时期易受制于人。特别是近年来随着中美贸易摩擦加剧,国外高技术高价值产品对我国停止出口或出口收紧,给我国的战略安全带来巨大隐患。
因此,研发一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,提高液体过滤材料的折叠成型稳定性、纳污量、使用寿命的同时,提高对1-2μm粒子的过滤效率,是目前急需解决的技术问题。
发明内容
针对现有技术存在的不足,本发明提供了一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,能够提高液体过滤材料的折叠成型稳定性、纳污量、使用寿命的同时,提高对1-2μm粒子的过滤效率。
为解决以上技术问题,本发明采取的技术方案如下:
一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,包括制备混合料,喷丝,热风喷吹,成网,表面处理,轧光。
所述制备混合料,将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;
其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为100-110:5-8:3-5;
所述聚丙烯树脂的熔融指数为100-120g/10min;
所述高表面能粒子的制备方法为:将反应釜的温度设置为2-5℃后将丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水加入反应釜中,开启搅拌并将搅拌速度控制到250-300rpm,然后以1.2-1.5℃/min的升温速度进行升温,待升温至65-70℃,在65-70℃下搅拌30-40min后加入过硫酸钠,异丙醇,继续在65-70℃下搅拌20-30min后,将反应釜的温度升高 至75-80℃后加入氢氧化钠,十二烷基硫酸钠,在75-80℃下搅拌35-40min后停止搅拌,自然恢复至室温,过滤得到初级粒子,将初级粒子置于40-45℃下烘2.5-3h,然后在-70℃至-65℃下将初级粒子置于液态二氧化碳中处理15-20min后取出,得到高表面能粒子;
其中,丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水,过硫酸钠,异丙醇,氢氧化钠,十二烷基硫酸钠的重量比为100-110:10-12:13-15:1-2:2-3:280-300:0.1-0.3:2-3:1-2:1-1.5;
所述初级粒子与液态二氧化碳的重量比为1:1.3-1.5;
所述诱导纳米粒子的制备方法为:在45-50℃下将纳米二氧化硅浸入表面活化剂中,在45-50℃下静置20-30min后,得到表面活化后的纳米粒子液,将表面活化后的纳米粒子液置于密闭容器中进行加压处理,将密闭容器的压力控制到1-1.2MPa,温度控制到150-160℃,在密闭容器中加压处理30-40min后,过滤,将滤渣置于50-60℃烘3-3.5h,得到诱导纳米粒子;
所述纳米二氧化硅的粒径为300-350nm;
所述表面活化剂的组成,按重量份计,包括:100-110份去离子水,5-7份硬脂酸,2-3份黄原胶,1-3份硫代硫酸钠,0.3-0.5份甜菜碱;
所述纳米二氧化硅与表面活化剂的重量比为1:1.3-1.5。
所述喷丝,将混合料通过计量泵加入双螺杆挤出机中,控制双螺杆挤出机的温度为230-240℃,待挤出后将熔融混合料经由计量泵、过滤器后送入喷丝板中,将喷丝板的模头温度控制在260-270℃,挤出初级聚合物细丝;
所述计量泵转速为14-15rpm。
所述热风喷吹,将初级聚合物细丝进行热风喷吹,聚合物细丝在两侧高速热空气流的冲击下变细伸长,得到热风喷吹后的聚合物细丝;
所述高速热空气流的流量为680-730m3/h,热风温度为270-280℃。
所述成网,经高压喷吹后,将热风喷吹后的聚合物细丝喷到成网帘进行成网,吸风,降温,固化,得到液体过滤基材;
所述吸风流量为2400-2500m3/h,成网速度为9-10m/min。
所述表面处理,将液体过滤基材进行紫外线照射,控制紫外线波长为260-300nm,紫外线照射的时间为35-40min,紫外线照射时的温度为45-50℃,紫外线照射结束得到基布。
所述轧光,将2-3层基布叠合后进行轧光,控制轧光速度为5.5-6.5m/min,轧光温度为90-95℃,轧光压力为2.0-2.5MPa,轧光结束后得到微孔液体过滤材料。
与现有技术相比,本发明的有益效果为:
(1)本发明的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,能够提高液体过滤材料的静水压,纵向硬挺度,横向硬挺度,透气量,纳污量,本发明制备的液体过滤材料的克重为80-90g/m2,平均孔径1.0-2.0μm,厚度为0.19-0.20mm,静水压为159-164cmH2O,纵向硬挺度为94-98N,横向硬挺度为52-58N,纤维细度为1.8-2.2μm,透气量为1.5-2.5mm/s,纳污量为79-85g/m2
(2)本发明的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,能够提高液体过滤材料的纯水通量和对粒径为1-2μm粒子的过滤效率,本发明制备的液体过滤材料的纯水通量为5450-5550L·m-2·h-1,对粒径为1-2μm粒子的过滤效率为95.5-96.2%,在70℃下处理24h后的纯水通量为5350-5500L·m-2·h-1,在70℃下处理24h后对粒径为1-2μm粒子的过滤效率为94.2-95.1%;
(3)本发明的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,能够提高液体过滤材料的折叠成型稳定性,由本发明的液体过滤材料制成的折叠滤芯的纯水通量为5400-5550L·m-2·h-1,对粒径为1-2μm粒子的过滤效率为95.1-95.7%,在70℃下处理24h后的纯水通量为5300-5400L·m-2·h-1,在70℃下处理24h后对粒径为1-2μm粒子的过滤效率为94.0-94.9%,正常使用6个月后的纯水通量为5200-5300L·m-2·h-1,正常使用6个月后对粒径为1-2μm粒子的过滤效率为92.9-93.8%;
(4)本发明制备的高通量PP熔喷纳微孔折叠液体过滤材料,表层纤维排列定向整齐,纤维均匀性好,通过轧光时对压力、温度的精准调控,平衡了过 滤精度、通量和纳污量之间的关系。
附图说明
图1为实施例1制备的克重为40g/m2的基布的扫描电镜图片;
图2为实施例2制备的克重为45g/m2的基布的扫描电镜图片。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现说明本发明的具体实施方式。
实施例1
一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,具体为:
1.制备混合料:将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;
其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为100:5:3;
所述聚丙烯树脂的熔融指数为100g/10min;
所述高表面能粒子的制备方法为:将反应釜的温度设置为2℃后将丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水加入反应釜中,开启搅拌并将搅拌速度控制到250rpm,然后以1.2℃/min的升温速度进行升温,待升温至65℃,在65℃下搅拌30min后加入过硫酸钠,异丙醇,继续在65℃下搅拌20min后,将反应釜的温度升高至75℃后加入氢氧化钠,十二烷基硫酸钠,在75℃下搅拌35min后停止搅拌,自然恢复至室温,过滤得到初级粒子,将初级粒子置于40℃下烘2.5h,然后在-70℃下将初级粒子置于液态二氧化碳中处理15min后取出,得到高表面能粒子;
其中,丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水,过硫酸钠,异丙醇,氢氧化钠,十二烷基硫酸钠的重量比为100:10:13:1:2:280:0.1:2:1:1;
所述初级粒子与液态二氧化碳的重量比为1:1.3;
所述诱导纳米粒子的制备方法为:在45℃下将纳米二氧化硅浸入表面活化剂中,在45℃下静置20min后,得到表面活化后的纳米粒子液,将表面活化后的纳米粒子液置于密闭容器中进行加压处理,将密闭容器的压力控制到1MPa,温度控制到150℃,在密闭容器中加压处理30min后,过滤,将滤渣置于50℃烘3h,得到诱导纳米粒子;
所述纳米二氧化硅的粒径为300nm;
所述表面活化剂的组成,按重量份计,包括:100份去离子水,5份硬脂酸,2份黄原胶,1份硫代硫酸钠,0.3份甜菜碱;
所述纳米二氧化硅与表面活化剂的重量比为1:1.3。
2.喷丝:将混合料通过计量泵加入双螺杆挤出机中,控制双螺杆挤出机的温度为230℃,待挤出后将熔融混合料经由计量泵、过滤器后送入喷丝板中,将喷丝板的模头温度控制在260℃,挤出初级聚合物细丝;
所述计量泵转速为14rpm。
3.热风喷吹:将初级聚合物细丝进行热风喷吹,聚合物细丝在两侧高速热空气流的冲击下变细伸长,得到热风喷吹后的聚合物细丝;
所述高速热空气流的流量为680m3/h,热风温度为270℃。
4.成网:经高压喷吹后,将热风喷吹后的聚合物细丝喷到成网帘进行成网,吸风,降温,固化,得到液体过滤基材;
所述吸风流量为2400m3/h,成网速度为9m/min。
5.表面处理:将液体过滤基材进行紫外线照射,控制紫外线波长为260nm,紫外线照射的时间为35min,紫外线照射时的温度为45℃,紫外线照射结束得到基布,所述基布的克重为40g/m2,对基布进行电镜扫描分析,分析结果如图1所示,由图1可以看出,制备的基布的表层纤维排列定向整齐,纤维均匀性好。
6.轧光:将2层第5步制备的基布叠合后进行轧光,控制轧光速度为5.5m/min,轧光温度为90℃,轧光压力为2.5MPa,轧光结束后得到微孔液体 过滤材料。
实施例2
一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,具体为:
1.制备混合料:将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;
其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为105:7:4;
所述聚丙烯树脂的熔融指数为110g/10min;
所述高表面能粒子的制备方法为:将反应釜的温度设置为3℃后将丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水加入反应釜中,开启搅拌并将搅拌速度控制到270rpm,然后以1.3℃/min的升温速度进行升温,待升温至67℃,在67℃下搅拌35min后加入过硫酸钠,异丙醇,继续在67℃下搅拌25min后,将反应釜的温度升高至77℃后加入氢氧化钠,十二烷基硫酸钠,在77℃下搅拌37min后停止搅拌,自然恢复至室温,过滤得到初级粒子,将初级粒子置于42℃下烘2.7h,然后在-67℃下将初级粒子置于液态二氧化碳中处理17min后取出,得到高表面能粒子;
其中,丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水,过硫酸钠,异丙醇,氢氧化钠,十二烷基硫酸钠的重量比为105:11:14:1.5:2.5:290:0.2:2.5:1.5:1.2;
所述初级粒子与液态二氧化碳的重量比为1:1.4;
所述诱导纳米粒子的制备方法为:在47℃下将纳米二氧化硅浸入表面活化剂中,在47℃下静置25min后,得到表面活化后的纳米粒子液,将表面活化后的纳米粒子液置于密闭容器中进行加压处理,将密闭容器的压力控制到1.1MPa,温度控制到155℃,在密闭容器中加压处理35min后,过滤,将滤渣置于55℃烘3.2h,得到诱导纳米粒子;
所述纳米二氧化硅的粒径为320nm;
所述表面活化剂的组成,按重量份计,包括:105份去离子水,6份硬脂 酸,2.5份黄原胶,2份硫代硫酸钠,0.4份甜菜碱;
所述纳米二氧化硅与表面活化剂的重量比为1:1.4。
2.喷丝:将混合料通过计量泵加入双螺杆挤出机中,控制双螺杆挤出机的温度为235℃,待挤出后将熔融混合料经由计量泵、过滤器后送入喷丝板中,将喷丝板的模头温度控制在265℃,挤出初级聚合物细丝;
所述计量泵转速为14.5rpm。
3.热风喷吹:将初级聚合物细丝进行热风喷吹,聚合物细丝在两侧高速热空气流的冲击下变细伸长,得到热风喷吹后的聚合物细丝;
所述高速热空气流的流量为700m3/h,热风温度为275℃。
4.成网:经高压喷吹后,将热风喷吹后的聚合物细丝喷到成网帘进行成网,吸风,降温,固化,得到液体过滤基材;
所述吸风流量为2450m3/h,成网速度为9.5m/min。
5.表面处理:将液体过滤基材进行紫外线照射,控制紫外线波长为280nm,紫外线照射的时间为37min,紫外线照射时的温度为47℃,紫外线照射结束得到基布,所述基布的克重为45g/m2,对基布进行电镜扫描分析,分析结果如图2所示,由图2可以看出,制备的基布的表层纤维排列定向整齐,纤维均匀性好。
6.轧光:将2层第5步制备的基布叠合后进行轧光,控制轧光速度为6m/min,轧光温度为92℃,轧光压力为2.3MPa,轧光结束后得到微孔液体过滤材料。
实施例3
一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,具体为:
1.制备混合料:将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;
其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为110:8:5;
所述聚丙烯树脂的熔融指数为120g/10min;
所述高表面能粒子的制备方法为:将反应釜的温度设置为5℃后将丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水加入反应釜中,开启搅拌并将搅拌速度控制到300rpm,然后以1.5℃/min的升温速度进行升温,待升温至70℃,在70℃下搅拌40min后加入过硫酸钠,异丙醇,继续在70℃下搅拌30min后,将反应釜的温度升高至80℃后加入氢氧化钠,十二烷基硫酸钠,在80℃下搅拌40min后停止搅拌,自然恢复至室温,过滤得到初级粒子,将初级粒子置于45℃下烘3h,然后在-65℃下将初级粒子置于液态二氧化碳中处理20min后取出,得到高表面能粒子;
其中,丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水,过硫酸钠,异丙醇,氢氧化钠,十二烷基硫酸钠的重量比为110:12:15:2:3:300:0.3:3:2:1.5;
所述初级粒子与液态二氧化碳的重量比为1:1.5;
所述诱导纳米粒子的制备方法为:在50℃下将纳米二氧化硅浸入表面活化剂中,在50℃下静置30min后,得到表面活化后的纳米粒子液,将表面活化后的纳米粒子液置于密闭容器中进行加压处理,将密闭容器的压力控制到1.2MPa,温度控制到160℃,在密闭容器中加压处理40min后,过滤,将滤渣置于60℃烘3.5h,得到诱导纳米粒子;
所述纳米二氧化硅的粒径为350nm;
所述表面活化剂的组成,按重量份计,包括:110份去离子水,7份硬脂酸,3份黄原胶,3份硫代硫酸钠,0.5份甜菜碱;
所述纳米二氧化硅与表面活化剂的重量比为1:1.5。
2.喷丝:将混合料通过计量泵加入双螺杆挤出机中,控制双螺杆挤出机的温度为240℃,待挤出后将熔融混合料经由计量泵、过滤器后送入喷丝板中,将喷丝板的模头温度控制在270℃,挤出初级聚合物细丝;
所述计量泵转速为15rpm。
3.热风喷吹:将初级聚合物细丝进行热风喷吹,聚合物细丝在两侧高速热空气流的冲击下变细伸长,得到热风喷吹后的聚合物细丝;
所述高速热空气流的流量为730m3/h,热风温度为280℃。
4.成网:经高压喷吹后,将热风喷吹后的聚合物细丝喷到成网帘进行成网,吸风,降温,固化,得到液体过滤基材;
所述吸风流量为2500m3/h,成网速度为10m/min。
5.表面处理:将液体过滤基材进行紫外线照射,控制紫外线波长为300nm,紫外线照射的时间为40min,紫外线照射时的温度为50℃,紫外线照射结束得到基布,所述基布的克重为45g/m2
6.轧光:将2层第5步制备的基布叠合后进行轧光,控制轧光速度为6.5m/min,轧光温度为95℃,轧光压力为2MPa,轧光结束后得到微孔液体过滤材料。
对比例1
采用实施例1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其不同之处在于:第1步制备混合料步骤中省略高表面能粒子的加入。
对比例2
采用实施例1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其不同之处在于:第1步制备混合料步骤中省略诱导纳米粒子的加入。
对比例3
采用实施例1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其不同之处在于:省略第5步表面处理。
对实施例1-3和对比例1-3制备的液体过滤材料的克重,孔径,厚度,静水压,纵向硬挺度,横向硬挺度,透气量,纳污量进行测试,测试结果如下:

对实施例1-3和对比例1-3制备的液体过滤材料的纯水通量,对粒径为1-2μm粒子的过滤效率,在70℃下处理24h后的纯水通量,在70℃下处理24h后对粒径为1-2μm粒子的过滤效率进行测试,测试结果如下:
将实施例1-3和对比例1-3制备的液体过滤材料制成折叠滤芯后,对折叠滤芯的纯水通量,对粒径为1-2μm粒子的过滤效率,在70℃下处理24h后的纯水通量,在70℃下处理24h后对粒径为1-2μm粒子的过滤效率,正常使用6个月后的纯水通量,正常使用6个月后对粒径为1-2μm粒子的过滤效率进行测试,测试结果如下:

除非另有说明,本发明中所采用的百分数均为质量百分数。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明提供了一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,能够提高液体过滤材料的折叠成型稳定性、纳污量、使用寿命的同时,提高对1-2μm粒子的过滤效率。本发明在液体过滤材料领域具有广阔的应用前景及良好的工业实用性。

Claims (10)

  1. 一种高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,包括制备混合料,喷丝,热风喷吹,成网,表面处理,轧光;
    所述制备混合料,将聚丙烯树脂,高表面能粒子,诱导纳米粒子混合均匀后得到混合料;
    其中,聚丙烯树脂,高表面能粒子,诱导纳米粒子的质量比为100-110:5-8:3-5。
  2. 根据权利要求1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述高表面能粒子的制备方法为:将反应釜的温度设置为2-5℃后将丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水加入反应釜中,开启搅拌并将搅拌速度控制到250-300rpm,然后以1.2-1.5℃/min的升温速度进行升温,待升温至65-70℃,在65-70℃下搅拌30-40min后加入过硫酸钠,异丙醇,继续在65-70℃下搅拌20-30min后,将反应釜的温度升高至75-80℃后加入氢氧化钠,十二烷基硫酸钠,在75-80℃下搅拌35-40min后停止搅拌,自然恢复至室温,过滤得到初级粒子,将初级粒子置于40-45℃下烘2.5-3h,然后在-70℃至-65℃下将初级粒子置于液态二氧化碳中处理15-20min后取出,得到高表面能粒子。
  3. 根据权利要求2所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述高表面能粒子的制备中丙烯酸,马来酸酐,纳米氧化铝,钛酸酯偶联剂TMC-TTS,吐温80,去离子水,过硫酸钠,异丙醇,氢氧化钠,十二烷基硫酸钠的重量比为100-110:10-12:13-15:1-2:2-3:280-300:0.1-0.3:2-3:1-2:1-1.5。
  4. 根据权利要求2所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述高表面能粒子的制备中所述初级粒子与液态二氧化碳的重量比为1:1.3-1.5;
  5. 根据权利要求1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述诱导纳米粒子的制备方法为:在45-50℃下将纳米二 氧化硅浸入表面活化剂中,在45-50℃下静置20-30min后,得到表面活化后的纳米粒子液,将表面活化后的纳米粒子液置于密闭容器中进行加压处理,将密闭容器的压力控制到1-1.2MPa,温度控制到150-160℃,在密闭容器中加压处理30-40min后,过滤,将滤渣置于50-60℃烘3-3.5h,得到诱导纳米粒子。
  6. 根据权利要求5所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述诱导纳米粒子的制备中表面活化剂的组成,按重量份计,包括:100-110份去离子水,5-7份硬脂酸,2-3份黄原胶,1-3份硫代硫酸钠,0.3-0.5份甜菜碱。
  7. 根据权利要求5所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述诱导纳米粒子的制备中纳米二氧化硅与表面活化剂的重量比为1:1.3-1.5。
  8. 根据权利要求1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述喷丝,将混合料通过计量泵加入双螺杆挤出机中,控制双螺杆挤出机的温度为230-240℃,待挤出后将熔融混合料经由计量泵、过滤器后送入喷丝板中,将喷丝板的模头温度控制在260-270℃,挤出初级聚合物细丝。
  9. 根据权利要求1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述表面处理,将液体过滤基材进行紫外线照射,控制紫外线波长为260-300nm,紫外线照射的时间为35-40min,紫外线照射时的温度为45-50℃,紫外线照射结束得到基布。
  10. 根据权利要求1所述的高通量PP熔喷纳微孔折叠液体过滤材料的制备方法,其特征在于,所述轧光,将2-3层基布叠合后进行轧光,控制轧光速度为5.5-6.5m/min,轧光温度为90-95℃,轧光压力为2-2.5MPa,轧光结束后得到微孔液体过滤材料。
PCT/CN2023/088577 2022-05-09 2023-04-17 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法 WO2023216809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210498270.4A CN114934355B (zh) 2022-05-09 2022-05-09 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法
CN202210498270.4 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023216809A1 true WO2023216809A1 (zh) 2023-11-16

Family

ID=82864975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088577 WO2023216809A1 (zh) 2022-05-09 2023-04-17 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法

Country Status (2)

Country Link
CN (1) CN114934355B (zh)
WO (1) WO2023216809A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934355B (zh) * 2022-05-09 2023-04-07 东营俊富净化科技有限公司 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078366A1 (zh) * 2014-11-19 2016-05-26 深圳中纺滤材科技有限公司 一种高效低阻纤维复合过滤材料的生产方法
CN111068404A (zh) * 2019-11-27 2020-04-28 东营俊富净化科技有限公司 一种抗菌液体过滤材料制备方法
US20210187428A1 (en) * 2017-06-13 2021-06-24 Shenzhen Senior Technology Material Co., Ltd. Uniformly structured high-permeability microporous membrane for filtering and method for preparing the same, flat filtering element and gas filtering article
CN113842707A (zh) * 2021-09-17 2021-12-28 兴源环境科技股份有限公司 一种蓝藻泥脱水用高通量、抗粘滤布及其制备方法
CN114086323A (zh) * 2021-11-12 2022-02-25 东营俊富净化科技有限公司 一种杀毒抑菌口罩用无纺布及其制备方法
CN114934355A (zh) * 2022-05-09 2022-08-23 东营俊富净化科技有限公司 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338927B1 (ko) * 2004-01-22 2013-12-10 다우 코닝 코포레이션 첨가양생재에 대한 부착성을 향상시킨 조성물과 이 조성물과 일체화된 복합물
CN100562541C (zh) * 2007-04-20 2009-11-25 佛山市华联有机硅有限公司 阻燃型有机硅改性丙烯酸树脂乳液及其制备方法
US8873918B2 (en) * 2008-02-14 2014-10-28 The Curators Of The University Of Missouri Organosilica nanoparticles and method for making
SG175043A1 (en) * 2009-04-13 2011-11-28 Entegris Inc Porous composite membrane
JP2018140494A (ja) * 2015-07-23 2018-09-13 コニカミノルタ株式会社 機能性フィルム及びこれを備えた電子デバイス
CN106310971B (zh) * 2016-10-09 2019-10-29 天津工业大学 含氯共聚物中空纤维膜的制膜配方及制备方法
CN109233265B (zh) * 2018-06-07 2021-07-20 盐城神威制绳有限公司 一种超韧耐寒纳米粒子改性尼龙复合材料的制备方法
CN111035993A (zh) * 2019-11-27 2020-04-21 东营俊富净化科技有限公司 一种纳米纤维复合液体过滤材料制备方法
CN114213591B (zh) * 2022-02-24 2022-05-06 山东三义集团股份有限公司 一种氯化聚乙烯接枝共聚物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078366A1 (zh) * 2014-11-19 2016-05-26 深圳中纺滤材科技有限公司 一种高效低阻纤维复合过滤材料的生产方法
US20210187428A1 (en) * 2017-06-13 2021-06-24 Shenzhen Senior Technology Material Co., Ltd. Uniformly structured high-permeability microporous membrane for filtering and method for preparing the same, flat filtering element and gas filtering article
CN111068404A (zh) * 2019-11-27 2020-04-28 东营俊富净化科技有限公司 一种抗菌液体过滤材料制备方法
CN113842707A (zh) * 2021-09-17 2021-12-28 兴源环境科技股份有限公司 一种蓝藻泥脱水用高通量、抗粘滤布及其制备方法
CN114086323A (zh) * 2021-11-12 2022-02-25 东营俊富净化科技有限公司 一种杀毒抑菌口罩用无纺布及其制备方法
CN114934355A (zh) * 2022-05-09 2022-08-23 东营俊富净化科技有限公司 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法

Also Published As

Publication number Publication date
CN114934355A (zh) 2022-08-23
CN114934355B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN110528314B (zh) 一种含熔喷聚苯硫醚超细纤维的复合片材及其制备方法和应用
WO2023216809A1 (zh) 一种高通量pp熔喷纳微孔折叠液体过滤材料的制备方法
EP3626758A1 (en) Graphene composite material and preparation method therefor
CN107137979B (zh) 一种微米纤维三维骨架/聚合物纳米纤维复合过滤材料及其制备方法
CN111334931A (zh) 一种新型聚丙烯熔喷布配方及其加工工艺
CN109433024B (zh) 含有金属有机骨架纳米纤维的膜材料或气凝胶材料及其制备方法与应用
CN111676594B (zh) 抗菌、耐高温型聚丙烯熔喷非织造材料
CN113368712B (zh) 一种高效空气过滤复合纳米纤维膜及其制备方法
CN112522856A (zh) 一种金属有机骨架和电纺纳米纤维复合防护罩覆膜及制备
CN112626641A (zh) 无模板法一步制备蓬松柔性三维二氧化硅纳米纤维的方法
CN108176256A (zh) 一种耐高温复合纳米纤维过滤膜制备方法
CN105709502A (zh) 一种防静电夹心净化材料
CN111719246A (zh) 一种橄榄抗衰减高强pp纺粘无纺布
WO2017084621A1 (zh) 一种功能性合成材料及其制备方法、制品
KR20140080275A (ko) 셀룰로오스 나노섬유와 열가소성 합성고분자 섬유를 이용한 열가소성 나노섬유 컴포지트 제조 방법
CN108993177A (zh) 一种膜蒸馏用凹凸非织造布的制备方法
Tan et al. Synthesis of TiO2 nanofiber by solution blow spinning (SBS) method
KR101319558B1 (ko) 나노그물망 구조의 보헤마이트를 포함하는 나노복합체 및 그 제조 방법
CN113862818B (zh) 一种可降解树脂用驻极材料的制备及应用方法
CN114941207A (zh) 一种碳气凝胶熔喷布及其制备方法
CN113882185B (zh) 一种用于制备浆粕的pbo沉析纤维的制备方法
CN114990787A (zh) 一种闪蒸无纺布及其制备方法
KR101005038B1 (ko) 나노섬유 망상 구조물 및 그의 제조방법
CN113957703A (zh) 一种串珠状纳米纤维材料及其制备方法
TWI445571B (zh) 過濾材的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802584

Country of ref document: EP

Kind code of ref document: A1