WO2023216549A1 - 下行信号同步方法及*** - Google Patents

下行信号同步方法及*** Download PDF

Info

Publication number
WO2023216549A1
WO2023216549A1 PCT/CN2022/133487 CN2022133487W WO2023216549A1 WO 2023216549 A1 WO2023216549 A1 WO 2023216549A1 CN 2022133487 W CN2022133487 W CN 2022133487W WO 2023216549 A1 WO2023216549 A1 WO 2023216549A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
state
synchronization
management channel
channel signal
Prior art date
Application number
PCT/CN2022/133487
Other languages
English (en)
French (fr)
Inventor
李棨政
张德智
Original Assignee
中国电信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电信股份有限公司 filed Critical 中国电信股份有限公司
Publication of WO2023216549A1 publication Critical patent/WO2023216549A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the embodiments of the present disclosure relate to the technical field of passive optical networks, and specifically, to a downlink signal synchronization method and system.
  • the high-speed Passive Optical Network (PON) technology that has been widely deployed in the current network mainly uses time division multiplexing EPON (Ethernet Passive Optical Network, Ethernet Passive Optical Network) or GPON (Gigabit-Capable PON) ) system, the uplink and downlink work on a single wavelength, and are transmitted through a mechanism that allocates respective transmission times.
  • the wavelength division multiplexing passive optical network (Wavelength Division Multiplexing PON, WDM-PON) uses wavelength division multiplexing (WDM) technology.
  • the PON port of the central office optical line terminal (Optical Line Terminal, OLT) equipment and the user-side terminal optical Network unit (Optical Network Unit, ONU) equipment each occupies a pair of wavelength channels point-to-point.
  • the number of accessible users is several times that of traditional time-division PON. It mainly provides network connections for government and enterprise customers, wireless bearers, etc., especially in the 5G fronthaul field.
  • WDM-PON can save backbone optical fiber resources and reduce network installation, maintenance and operation costs and difficulties.
  • the process of ONU registration and activation in traditional PON involves states such as ranging and time slot allocation due to the characteristics of time division multiplexing. These states are not required in WDM-PON based on wavelength division multiplexing.
  • the basic framework follows traditional PON. When the ONU activates the state machine in the running state, the state machine only specifies the state migration method for the situation where the data channel loses synchronization.
  • a downlink signal synchronization method which is applied to a wavelength division multiplexing passive optical network.
  • the method includes:
  • the optical network unit ONU When the optical network unit ONU is in the running state, detect whether the synchronization loss of the downlink signal occurs; the downlink signal includes the management channel signal and the data channel signal;
  • the ONU switches from the running state to the management channel synchronization loss management channel synchronization loss sub-state;
  • the ONU If the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally, the ONU returns to the running state from the management channel synchronization loss sub-state, so that the ONU Continue working in the stated operating state.
  • the method further includes: monitoring the first recovery time for the ONU to recover the management channel signal synchronization in the management channel synchronization loss sub-state,
  • the ONU switches from the management channel synchronization loss sub-state to the temporary data channel synchronization loss LODS state.
  • the method further includes: monitoring the first recovery time for the ONU to recover the management channel signal synchronization in the management channel synchronization loss sub-state,
  • the ONU switches from the management channel synchronization loss sub-state to the temporary data channel synchronization loss LODS state.
  • the method further includes:
  • the ONU If the second recovery time exceeds the second preset time threshold, the ONU enters the initial state of downlink signal synchronization.
  • the data channel signal synchronization of the ONU works normally.
  • a downlink signal synchronization system which is applied to a wavelength division multiplexing passive optical network.
  • the system includes:
  • a detection module used to detect whether the downlink signal synchronization is lost when the optical network unit ONU is in a running state;
  • the downlink signal includes a management channel signal and a data channel signal;
  • a first switching module configured to switch the ONU from the running state to the management channel synchronization loss management channel synchronization loss sub-state when the management channel signal synchronization is lost but the data channel signal is normally synchronized;
  • a first monitoring module configured to monitor the first recovery time of the ONU to restore the management channel signal synchronization in the management channel synchronization loss sub-state;
  • a first return module configured to return the ONU from the management channel synchronization loss substate to the management channel synchronization loss substate if the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally. running state, so that the ONU continues to work in the running state.
  • system further includes:
  • the second switching module is used to switch the ONU from the management channel synchronization loss sub-state to the temporary data channel synchronization loss LODS if the data channel signal synchronization loss occurs within the first preset time threshold. state.
  • system further includes:
  • the second switching module is configured to switch the ONU from the management channel synchronization loss sub-state to the temporary data channel synchronization loss LODS state if the first recovery time exceeds the first preset time threshold.
  • system further includes:
  • the second monitoring module is used to monitor the second recovery time of the management channel signal and the data channel signal of the ONU in the temporary LODS state; if the second recovery time does not exceed the second preset time if the second recovery time exceeds the second preset time threshold, the ONU enters the initial state of downlink signal synchronization.
  • the data channel signal synchronization of the ONU works normally.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, any one of the above downlink signal synchronization methods is implemented.
  • Figure 1 is an ONU registration activation process of a wavelength division multiplexing passive optical network system in related technologies.
  • Figure 2 is a step flow chart of a downlink signal synchronization method provided by some embodiments of the present disclosure.
  • Figure 3 is an ONU synchronization recovery flow chart provided by some embodiments of the present disclosure.
  • Figure 4 is a block diagram of a downlink signal synchronization system provided by some embodiments of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • numerous specific details are provided to provide a thorough understanding of embodiments of the disclosure.
  • those skilled in the art will appreciate that the technical solutions of the present disclosure may be practiced without one or more of the specific details described, or other methods, components, devices, steps, etc. may be adopted.
  • well-known technical solutions have not been shown or described in detail to avoid obscuring aspects of the disclosure.
  • the user data path (User data path) and the management client channel (management TC data path) pass through the transmission convergence layer (TC) separately in the transmission convergence layer.
  • TC transmission convergence layer
  • user data is not processed by the TC layer, but management data is processed by the TC layer in a specific way.
  • the transmission mode is divided into two modes: transcoded and transparent. Therefore, in the ONU registration activation process of wavelength division multiplexing passive optical network (WDM-PON), the embodiment of the present disclosure mainly includes the following states: initial state (Initial state), serial number state (Serial Number state), Operation state, Intermittent LODS state.
  • the initial state (O1) can be when the ONU is powered on for the first time or when it is restarted.
  • the ONU enters the initial state (O1).
  • the initial state (O1) can also include an unsynchronized substate (Off-Sync, O1.1) and a configuration template learning substate (Profile Learning, O1.2).
  • the unsynchronized sub-state (O1.1) may be the entrance to the initial state (O1) and may be entered when the ONU attempts to synchronize on the PON wavelength channel.
  • the configuration template learning substate (O1.2) can be used by the ONU to obtain configuration template information through the downlink PLOAM message to determine whether the wavelength channel is available. Once it is determined that the downlink synchronization of the wavelength channel is successful, the ONU can enter the configuration template learning sub-state (O1.2).
  • the serial number status (O2-3) can be the ONU activated transmitter.
  • the serial number status (O2-3) can be used by the ONU to periodically send specific PLOAM (Physical Layer Operations, Administration and Maintenance, physical layer operation management and maintenance) messages to provide authentication information until the OLT CT confirms the allocation of the ONU-ID.
  • PLOAM Physical Layer Operations, Administration and Maintenance, physical layer operation management and maintenance
  • the operating state (O5) can be used for the ONU to receive and send signals through the PON channel.
  • the operating state (O5) may also include a loss of downstream synchronization in the management TC data path (MLODS) substate (O5.1, which may also be called O5.3).
  • MLODS management TC data path
  • O5.3 a loss of downstream synchronization in the management TC data path substate
  • it can be an ONU in the running state (O5). If the data channel signal synchronization is normal but the management channel signal synchronization is lost, the ONU enters the management channel synchronization loss substate (O5.3). After entering the management channel synchronization loss sub-state (O5.3), the ONU can start the timer TO1 (also called TOM). The timer TO1 records the time the ONU is in the management channel synchronization loss sub-state (O5.3).
  • TOM timer TO1
  • the ONU restores management channel signal synchronization before TO1 times out, the ONU returns to the running state (O5). If TO1 times out, the ONU will stop data transmission and enter the temporary data channel synchronization loss state (Intermittent LODS state, O6).
  • the temporary data channel synchronization loss state (O6) can be after the running state (O5), that is, when the ONU in the running state (O5) experiences a data channel signal synchronization loss or the management channel loss state (O5.3) times out , entering the temporary data channel synchronization loss state (O6).
  • the temporary data channel synchronization loss state can be referred to as the temporary LODS state.
  • the ONU After the ONU is connected and powered on, it enters the initial state (O1) and starts ONU activation. That is, the ONU tunes its receiver, searches for the wavelength of the downlink channel, synchronizes with the data and management channels, and collects configuration templates. information and confirm basic parameter operations. After the ONU determines the wavelength of the downstream channel, the ONU tunes the transmitter and declares its presence through a specific message and authenticates it. After the OLT CT successfully authenticates the ONU, it will be confirmed through a specific message, and the ONU will enter the running state (O5). When an ONU in the running state (O5) loses downstream synchronization of the data channel, the ONU will enter the temporary LODS state (O6).
  • O5 When an ONU in the running state (O5) loses downstream synchronization of the data channel, the ONU will enter the temporary LODS state (O6).
  • the ONU In the temporary LODS state (O6), it can be detected whether the time required to restore data channel signal synchronization and management channel signal synchronization is less than the preset threshold. If the required time is less than the preset threshold, that is, the ONU successfully restores the data channel within the preset threshold. signal synchronization and management channel signal synchronization, the ONU can return to the operating state (O5). If the required time is greater than the preset threshold, that is, the ONU cannot successfully restore data channel signal synchronization and management channel signal synchronization within the preset threshold, then The ONU can return to the unsynchronized substate (O1.1) in the initial state (O1) for reactivation. When an ONU in the running state (O5) loses synchronization of the management channel but still sends and receives the data channel normally, there is currently no corresponding state migration method in the relevant technology, which may cause the ONU to go out of management.
  • Figure 1 is the ONU registration activation process of wavelength division multiplexing passive optical network in related technologies.
  • the ONU in the configuration template learning sub-state (O1.2) will experience data channel synchronization loss (LODS).
  • the downlink wavelength channel (DWLCH) is not suitable, it will enter the unsynchronized sub-state (O1.1); 03.
  • the ONU in the serial number state (O2-3) enters the running state (O5) when assigning ONU-ID; 05.
  • the ONU in the running state (O5) suffers from data channel synchronization loss ( Loss of downstream synchronization, LODS), enters the temporary LODS state (O6); 06.
  • the downstream signal is restored to synchronization (DSYNC), that is, the data channel signal and the management channel signal are restored to synchronization , enters the temporary LODS state (O6); 07.
  • DSYNC synchronization
  • the data channel synchronization is lost, the residence time in the serial number state (O2-3) times out, and the ONU-ID request is released.
  • the ONU in the running state (O5) enters the unsynchronized sub-state (O1.1) when the ONU-ID request is released; 09.
  • the ONU in the temporary LODS state (O6) will enter the unsynchronized sub-state (O1.1) if the stay time in the temporary LODS state (O6) times out.
  • Figure 2 is a step flow chart of a downlink signal synchronization method provided by an embodiment of the present disclosure, which is applied to a wavelength division multiplexing passive optical network. As shown in Figure 2, the method may include: steps S101 to S104.
  • step S101 when the optical network unit ONU is in a running state, it is detected whether a downlink signal synchronization loss occurs, where the downlink signal includes a management channel (management TC data path) signal and a data channel (data path) signal.
  • the downlink signal includes a management channel (management TC data path) signal and a data channel (data path) signal.
  • the optical network unit ONU may be activated through the ONU registration process until the running state.
  • the downlink signal needs to be synchronized.
  • the management channel signal synchronization or data may be lost.
  • the channel signal synchronization is lost, and the management channel signal and the data channel signal are both lost simultaneously. Therefore, the problem of signal synchronization loss can be solved in a timely manner by detecting whether the downlink signal synchronization loss occurs, and to avoid the ONU going out of management due to signal synchronization loss. question.
  • step S102 when the management channel signal synchronization is lost and the data channel signal is normally synchronized, the ONU switches from the running state to the management channel synchronization loss management channel synchronization loss sub-state.
  • the ONU since the ONU is currently in a running state, when the management channel signal synchronization is lost but the data channel signal is normally synchronized, the ONU can enter the management channel synchronization loss sub-state from the running state, and the management channel synchronization loss sub-state occurs.
  • the state can be referred to as the MLODS sub-state, and in the MLODS sub-state, the data channel synchronization of the ONU is normal, that is, user data can be sent and received normally and will not be affected by the MLODS sub-state.
  • step S103 monitor the first recovery time for the ONU to restore the management channel signal synchronization in the management channel synchronization loss sub-state.
  • the time of synchronous recovery of the management channel signal can be recorded to obtain the first recovery time, and whether the first recovery time exceeds the first preset time threshold can be monitored in real time.
  • the first recovery time may be to record the time the ONU is in the MLODS sub-state.
  • the first time threshold may be preset according to the actual situation to limit the time the ONU stays in the MLODS sub-state and attempts to restore management channel synchronization, thereby avoiding The management channel synchronization loss state occurs for too long, causing the ONU to become out of management in the MLODS substate.
  • the ONU only fails to synchronize the management channel signal, but the data channel signal synchronization is normal. Therefore, the data channel can still work normally in the MLODS sub-state, that is, user data transmission and reception still work normally.
  • the ONU starts the first timer (such as the TOM in the previous embodiment), where the duration of the first timer is configured as the first preset time threshold; when the ONU determines that the management channel signal synchronization is restored, Whether the first timer times out is used to determine whether the first recovery time for the ONU to restore management channel signal synchronization in the management channel synchronization loss substate exceeds a first preset time threshold.
  • the first timer such as the TOM in the previous embodiment
  • step S104 if the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally, the ONU returns to the running state from the management channel synchronization loss sub-state. , so that the ONU continues to work in the running state.
  • the ONU if the first recovery time does not exceed the first preset time threshold, that is, if the management channel signal recovers synchronization within the first preset time threshold, and the data channel signal is still synchronized normally, then Return the ONU from the MLODS sub-state to the running state, so that the ONU can continue to work normally in the running state and perform normal sending and receiving operations on downlink signals.
  • the downlink signal synchronization method is applied to the wavelength division multiplexing passive optical network, and can detect whether the downlink signal synchronization loss occurs when the optical network unit ONU is in the running state.
  • the downlink signal includes: Management channel signal and data channel signal, when the management channel signal synchronization is lost and the data channel signal is normally synchronized, the ONU switches from the running state to the management channel synchronization loss management channel synchronization loss sub-state, and monitors the ONU synchronization in the management channel The first recovery time to restore the management channel signal synchronization in the lost sub-state.
  • the ONU If the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally, the ONU returns to the running state from the management channel synchronization lost sub-state. , so that the ONU can continue to work normally in the running state. In this way, by introducing a sub-state that only management channel synchronization is lost in the running state, it makes up for the situation that the existing ONU registration activation state mechanism does not consider the management channel signal synchronization loss, and avoids the state migration method when there is no corresponding situation in the original state machine. This leads to the problem of ONU being out of control.
  • the method further includes: monitoring the ONU to restore the management channel signal synchronization after the first recovery time in the management channel synchronization loss MLODS sub-state, if after the first preset If the data channel signal synchronization loss occurs within the time threshold, the ONU switches from the management channel synchronization loss (MLODS) sub-state to the temporary data channel synchronization loss (LODS) state.
  • MLODS management channel synchronization loss
  • LODS temporary data channel synchronization loss
  • the ONU may be in the MLODS sub-state and the data channel signal synchronization is lost. That is to say, the data channel signal synchronization is lost within the first preset time threshold. Due to the ONU data If both channel signal synchronization and management channel signal synchronization are lost, the ONU can directly switch to the temporary LODS state and try to restore the downlink signal synchronization.
  • the method further includes: monitoring the first recovery time for the ONU to recover the management channel signal synchronization in the management channel synchronization loss MLODS sub-state, if the first recovery time exceeds the After the first preset time threshold, the ONU is switched from the management channel synchronization loss (MLODS) sub-state to the temporary data channel synchronization loss (LODS) state.
  • MLODS management channel synchronization loss
  • LODS temporary data channel synchronization loss
  • the first recovery time to restore the management channel signal synchronization may exceed the first preset time threshold, that is, if the management channel signal synchronization fails to be restored within the first preset time threshold, the ONU may be removed from the The MLODS sub-state returns to the temporary LODS state so that the ONU can attempt to restore downlink signal synchronization in the temporary LODS state.
  • the above-mentioned downlink signal synchronization method in the embodiment of the present disclosure also includes: monitoring the second recovery time of the management channel signal and the data channel signal of the ONU in the temporary LODS state; if If the second recovery time does not exceed the second preset time threshold, the ONU is returned to the operating state and continues to work; if the second recovery time exceeds the second preset time threshold, the ONU enters The initial state of downlink signal synchronization.
  • the time when the ONU recovers the management channel signal and the data channel signal is recorded to obtain the second recovery time, and the second recovery time is detected to determine the second recovery time. Whether the time exceeds the second preset time threshold.
  • the second recovery time may be the time during which the ONU is in the temporary LODS state
  • the second preset time threshold may be the time used to limit the ONU to stay in the LODS state. The specific value may be set according to the actual situation.
  • the ONU starts a second timer (TOL), where the duration of the second timer is configured as a second preset time threshold; when the ONU determines that the management channel signal and the data channel signal have recovered, the second timer Whether the timer times out is used to determine whether the ONU's second recovery time for the management channel signal and the data channel signal exceeds the second preset time threshold in the temporary LODS state.
  • TOL second timer
  • the ONU can recover from The temporary LODS state returns to the running state and continues normal operation. If the second recovery time exceeds the second preset time threshold, that is, within the second preset time threshold, the ONU's management channel signal and data channel signal synchronization cannot be restored, then the ONU can directly enter the initial state of downlink signal synchronization. .
  • Figure 3 is an ONU synchronization recovery flow chart provided by an embodiment of the present disclosure.
  • the management channel synchronization is lost, but the data channel works normally.
  • the MLODS sub-state O5.3
  • try to restore synchronization within a certain period of time At this time, user data transmission and reception are still carried out normally and will not be affected;
  • ONU in the MLODS sub-state O5.3
  • the management channel synchronization recovery exceeds the second preset time threshold , or if the data channel synchronization is lost within the second preset time threshold, the temporary LODS state (O6) will be entered to restore the data channel synchronization; 14.
  • the ONU in the running state (O5) will lose the data channel synchronization. In this case, since normal user data transmission and reception cannot be guaranteed at this time, it directly enters the temporary LODS state (O6) to restore the data channel synchronization; 15.
  • the ONU in the temporary LODS state (O6) successfully restores the data channel and management channel. Synchronous, it returns to running status (O5).
  • Table 1 represents the events that can be used for state migration in the embodiment of the present disclosure. If the ONU is in the running state O5 and the management channel signal synchronization is lost, the first preset time threshold is turned on and switches to the MLODS sub-state. , while the management channel synchronization loss state O5.3 and LODS state O6 are not applicable to the MLODS substate; in the management channel synchronization loss state O5.3, if management channel synchronization recovery (MDSYNC) occurs, the first preset time threshold can be stopped.
  • MDSYNC management channel synchronization recovery
  • running state O5 and LODS state O6 are not applicable to MDSYNC; in the management channel synchronization loss state O5.3, if LODS appears, that is, the data channel signal synchronization is lost, the second preset can be turned on Time threshold, and switch to LODS state O6.
  • LODS state O6 is not applicable to LODS; recovery of downlink synchronization (DSYNC) and running state O5, management channel synchronization loss state O5.3 is not applicable.
  • LODS state O6 if DSYNC appears, it can Stop the second preset time threshold and switch to running state O5; in the management channel synchronization loss state O5.3, if the first preset time threshold times out, you can turn on the second preset time threshold and switch to LODS state O6 , and the first preset time threshold timeout is not applicable to operating state O5 and LODS state O6; in LODS state O6, if the second preset time threshold timeout occurs, the ONU-ID value can be discarded and switched to unsynchronized O1. 1 (i.e. reactivation).
  • Figure 4 is a downlink signal synchronization system provided by an embodiment of the present disclosure.
  • the system 30 may include: a detection module 301, a first switching module 302, a first monitoring module 303, and a first return module 304.
  • the detection module 301 is used to detect whether synchronization loss of downlink signals occurs when the optical network unit ONU is in a running state, where the downlink signals include management channel signals and data channel signals.
  • the first switching module 302 is configured to switch the ONU from the running state to the management channel synchronization loss sub-state when the management channel signal synchronization is lost but the data channel signal is normally synchronized.
  • the first monitoring module 303 is configured to monitor the first recovery time of the ONU to restore the management channel signal synchronization in the management channel synchronization loss sub-state.
  • the first return module 304 is configured to return the ONU from the management channel synchronization loss sub-state to the desired state if the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally.
  • the operating state is described so that the ONU continues to work in the operating state.
  • the downlink signal synchronization system provided by the embodiment of the present invention is applied to the wavelength division multiplexing passive optical network, and can detect whether the downlink signal synchronization loss occurs when the optical network unit ONU is in the running state.
  • the downlink signal includes: Management channel signal and data channel signal, when the management channel signal synchronization is lost and the data channel signal is normally synchronized, the ONU switches from the running state to the management channel synchronization loss management channel synchronization loss sub-state, and monitors the ONU synchronization in the management channel The first recovery time to restore the management channel signal synchronization in the lost sub-state.
  • the ONU If the first recovery time does not exceed the first preset time threshold and the data channel signal is still synchronized normally, the ONU returns to the running state from the management channel synchronization lost sub-state. , so that the ONU can continue to work normally in the running state. In this way, by introducing a sub-state that only management channel synchronization is lost in the running state, it makes up for the situation that the existing ONU registration activation state mechanism does not consider the management channel signal synchronization loss, and avoids the state migration method when there is no corresponding situation in the original state machine. This leads to the problem of ONU being out of control.
  • the system 30 further includes: a second switching module, configured to remove the ONU from the management if synchronization loss of the data channel signal occurs within the first preset time threshold.
  • the channel synchronization loss substate switches to the temporary data channel synchronization loss LODS state.
  • the system 30 further includes: a second switching module, configured to synchronize the ONU from the management channel to the lost sub-state if the first recovery time exceeds the first preset time threshold. Switch to temporary data channel synchronization loss LODS state.
  • the system 30 further includes: a second monitoring module for monitoring the second recovery time of the management channel signal and the data channel signal of the ONU in the temporary LODS state; if If the second recovery time does not exceed the second preset time threshold, the ONU is returned to the operating state to continue working; if the second recovery time exceeds the second preset time threshold, the ONU Enter the initial state of downlink signal synchronization.
  • a second monitoring module for monitoring the second recovery time of the management channel signal and the data channel signal of the ONU in the temporary LODS state; if If the second recovery time does not exceed the second preset time threshold, the ONU is returned to the operating state to continue working; if the second recovery time exceeds the second preset time threshold, the ONU Enter the initial state of downlink signal synchronization.
  • the data channel signal synchronization of the ONU works normally.
  • the specific details of each module in the above downlink signal synchronization system have been described in detail in the corresponding downlink signal synchronization method, so they will not be described again here.
  • an electronic device capable of implementing the above method is also provided.
  • the example embodiments described here can be implemented by software, or can be implemented by software combined with necessary hardware. Therefore, the technical solution according to the embodiment of the present disclosure can be embodied in the form of a software product, which can be stored in a non-volatile storage medium (which can be a CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to cause a computing device (which may be a personal computer, a server, a terminal device, a network device, etc.) to execute a method according to an embodiment of the present disclosure.
  • a computing device which may be a personal computer, a server, a terminal device, a network device, etc.
  • a computer-readable storage medium is also provided, on which a program product capable of implementing the method described above in this specification is stored.
  • various aspects of the present disclosure can also be implemented in the form of a program product, which includes program code.
  • the program product is run on a terminal device, the program code is used to cause the The terminal device performs the steps according to various exemplary embodiments of the present disclosure described in the above "Example Method" section of this specification.
  • the program product for implementing the above method according to an embodiment of the present disclosure may adopt a portable compact disk read-only memory (CD-ROM) and include program code, and may be run on a terminal device, such as a personal computer.
  • a readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the program product may take the form of any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a readable signal medium may also be any readable medium other than a readable storage medium that can send, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a readable medium may be transmitted using any suitable medium, including but not limited to wireless, wireline, optical cable, RF, etc., or any suitable combination of the foregoing.
  • Program code for performing operations of the present disclosure may be written in any combination of one or more programming languages, including object-oriented programming languages such as Java, C++, etc., as well as conventional procedural Programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computing device may be connected to the user computing device through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computing device, such as provided by an Internet service. (business comes via Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开是关于一种下行信号同步方法及***,涉及无源光网络技术领域,该方法应用于波分复用无源光网络,具体地,可以在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,下行信号包括管理通道信号和数据通道信号,当出现管理通道信号同步丢失而数据通道信号正常同步的情况,则ONU从运行状态切换至管理通道同步丢失管理通道同步丢失子状态,监测ONU在管理通道同步丢失子状态中恢复管理通道信号同步的第一恢复时间,若第一恢复时间未超过第一预设时间阈值,且数据通道信号仍正常同步,则ONU从管理通道同步丢失子状态返回至运行状态。这样,可以避免因原状态机中没有相应情况下的状态迁移方式而导致的ONU脱管的问题。

Description

下行信号同步方法及***
相关申请的交叉引用
本申请是以CN申请号为202210498932.8,申请日为2022年5月9日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开实施例涉及无源光网络技术领域,具体而言,涉及一种下行信号同步方法及***。
背景技术
现网中已广泛部署应用的高速无源光网络(Passive Optical Network,PON)技术主要采用的是时分复用的EPON(Ethernet Passive Optical Network,以太网无源光网络)或GPON(Gigabit-Capable PON)的***,上下行工作在单一波长,通过分配各自传输时间的机制进行传输。而波分复用无源光网络(Wavelength Division Multiplexing PON,WDM-PON)采用波分复用(WDM)技术,局端光线路终端(Optical Line Terminal,OLT)设备的PON端口与用户侧终端光网络单元(Optical Network Unit,ONU)设备各自点对点独占一对波长通道,可接入用户数是传统时分PON的数倍,主要为政企客户、无线承载等提供网络连接,尤其在5G前传领域,使用WDM-PON可以节省主干光纤资源,降低网络的装维和运行成本与难度。
传统PON中ONU注册激活的流程由于时分复用的特点涉及到测距、时隙分配等状态,这些状态在基于波分复用的WDM-PON中并不需要。目前现有的WDM-PON***ONU注册激活流程中,基本框架沿用了传统PON。ONU激活状态机在运行状态时,状态机仅针对数据通道丢失同步的情况规范了状态迁移方法。
需要说明的是,在上述背景技术部分发明的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
根据本公开的一个方面,提供一种下行信号同步方法,应用于波分复用无源光网络,该方法包括:
在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况;所述下行信号包括管理通道信号和数据通道信号;
当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态;
监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间;
若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
在一些实施例中,该方法还包括:所述监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间之后,
若在所述第一预设时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,该方法还包括:所述监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间之后,
若所述第一恢复时间超过所述第一预设时间阈值,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,所述方法还包括:
监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;
若所述第二恢复时间未超过第二预设时间阈值,则将所述ONU返回至所述运行状态继续工作;
若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
在一些实施例中,在所述管理通道同步丢失子状态中,所述ONU的所述数据通道信号同步正常工作。
根据本公开的一个方面,提供一种下行信号同步***,应用于波分复用无源光网络,该***包括:
检测模块,用于在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况;所述下行信号包括管理通道信号和数据通道信号;
第一切换模块,用于当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态;
第一监测模块,用于监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间;
第一返回模块,用于若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
在一些实施例中,所述***还包括:
第二切换模块,用于若在所述第一预设时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,所述***还包括:
第二切换模块,用于若所述第一恢复时间超过所述第一预设时间阈值,则将所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,所述***还包括:
第二监测模块,用于监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;若所述第二恢复时间未超过第二预设时间阈值,则将所述ONU返回至所述运行状态继续工作;若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
在一些实施例中,在所述管理通道同步丢失子状态中,所述ONU的所述数据通道信号同步正常工作。
根据本公开的一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任意一项所述的下行信号同步方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是 本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中的波分复用无源光网络***的ONU注册激活流程。
图2是本公开一些实施例提供的一种下行信号同步方法的步骤流程图。
图3是本公开一些实施例提供的一种ONU同步恢复流程图。
图4是本公开一些实施例提供的一种下行信号同步***的框图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知技术方案以避免喧宾夺主而使得本公开的各方面变得模糊。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
在波分复用无源光网络(WDM-PON)中,用户数据通道(User data path)和管理客户端通道(management TC data path)在传输汇聚层中各自分离经过传输汇聚层(TC),其中,用户数据不经TC层处理,而管理数据经TC层通过特定方式处理,其传输方式分为编码传输(transcoded)与透明传输(transparent)两种模式。因此,在波分复用无源光网络(WDM-PON)的ONU注册激活流程中,本公开实施例主要包括以下几个状态:初始状态(Initial state)、序列号状态(Serial Number state)、运行状态(Operation state)、临时数据通道同步丢失状态(Intermittent LODS state)。
初始状态(O1)可以是当ONU首次上电时或者重新启动时,ONU进入初始状态(O1),处于初始状态(O1)时,ONU可以执行开启接收机并关闭发射机的操作。 初始状态(O1)还可以包括未同步子状态(Off-Sync,O1.1)和配置模板学习子状态(Profile Learning,O1.2)。未同步子状态(O1.1)可以是初始状态(O1)的入口,可以是在ONU试图在PON波长通道上进行同步时,进入该未同步子状态(O1.1)。配置模板学习子状态(O1.2)可以是用于ONU通过下行PLOAM消息获取配置模板信息,来判断波长通道是否可用。一旦确定该波长通道的下行同步成功,则ONU可以进入配置模板学习子状态(O1.2)。
序列号状态(O2-3)可以是ONU激活的发射机。序列号状态(O2-3)可以用于ONU定期发送特定PLOAM(Physical Layer Operations,Administration and Maintenance,物理层操作管理和维护)消息,提供认证信息,直至OLT CT确认ONU-ID的分配。当ONU处于序列号状态(O2-3)的时间出现超时情况,则ONU可以从序列号状态(O2-3)返回至初始状态(O1)。
运行状态(O5)可以是用于ONU通过PON通道接收与发送信号。在本公开一些实施例中,运行状态(O5)还可以包括管理通道同步丢失(Loss of downstream synchronization in the management TC data path,MLODS)子状态(O5.1,也可以称为O5.3)。具体的,可以是处于运行状态(O5)的ONU,出现数据通道信号同步正常,而管理通道信号同步丢失的情况下,ONU进入该管理通道同步丢失子状态(O5.3)。在进入管理通道同步丢失子状态(O5.3)后,ONU可以启动定时器TO1(也可以称为TOM),该定时器TO1记录ONU处于管理通道同步丢失子状态(O5.3)的时间,如果ONU在TO1超时前恢复管理通道信号同步,则ONU返回至运行状态(O5),如果TO1超时,ONU将停止数据传输并进入临时数据通道同步丢失状态(Intermittent LODS state,O6)。
临时数据通道同步丢失状态(O6)可以是在运行状态(O5)之后,即,处于运行状态(O5)的ONU出现数据通道信号同步丢失或处于管理通道丢失状态(O5.3)超时的情况下,进入该临时数据通道同步丢失状态(O6),该临时数据通道同步丢失状态可以简称为临时LODS状态。
具体的,ONU接入并上电后即进入初始状态(O1),开始进行ONU激活,即,该ONU调谐其接收机,执行搜寻下行通道的波长、与数据和管理通道进行同步、收集配置模板的信息、确认基础的参数的操作。当ONU确定下行通道的波长后,该ONU调谐发射机并通过特定消息声明存在并进行认证。待OLT CT成功认证该ONU后,将通过特定消息确认,至此ONU进入运行状态(O5)。当处于运行状态(O5)的 ONU发生丢失数据通道下行同步的情况,该ONU将会进入临时LODS状态(O6)。在临时LODS状态(O6),可以检测恢复数据通道信号同步以及管理通道信号同步所需时间是否小于预设阈值,若所需时间小于预设阈值,即,ONU在预设阈值内成功恢复数据通道信号同步以及管理通道信号同步,则ONU可以返回至运行状态(O5),若所需时间大于预设阈值,即,ONU在预设阈值内不能成功恢复数据通道信号同步以及管理通道信号同步,则ONU可以返回至初始状态(O1)中的未同步子状态(O1.1)进行重新激活。当处于运行状态(O5)的ONU出现管理通道同步丢失而数据通道仍正常收发的情况,相关技术中暂无对应的状态迁移方式,可能会造成ONU的脱管。
图1是相关技术中的波分复用无源光网络的ONU注册激活流程,如图1所示,01、处于未同步子状态(O1.1)的ONU,下行信号恢复同步(DSYNC),即,数据通道信号及管理通道信号均恢复同步,则进入配置模板学习子状态(O1.2);02、处于配置模板学习子状态(O1.2)的ONU,出现数据通道同步丢失(LODS)或者下行波长通道(DWLCH)不适配,则进入未同步子状态(O1.1);03、处于初始状态(O1)的ONU,下行波长通道(DWLCH)可以正常工作时,进入序列号状态(O2-3);04、处于序列号状态(O2-3)的ONU,执行分配ONU-ID时,进入运行状态(O5);05、处于运行状态(O5)的ONU,出现数据通道同步丢失(Loss of downstream synchronization,LODS)的情况,进入临时LODS状态(O6);06、处于临时LODS状态(O6)的ONU,下行信号恢复同步(DSYNC),即,数据通道信号及管理通道信号均恢复同步,进入临时LODS状态(O6);07、处于序列号状态(O2-3)的ONU,出现数据通道同步丢失、在序列号状态(O2-3)的停留时间超时、ONU-ID请求解除中任意一种情况时,进入未同步子状态(O1.1);08、处于运行状态(O5)的ONU,出现ONU-ID请求解除的情况时,进入未同步子状态(O1.1);09、处于临时LODS状态(O6)的ONU,在临时LODS状态(O6)的停留时间超时,则进入未同步子状态(O1.1)。
图2是本公开实施例提供的一种下行信号同步方法的步骤流程图,应用于波分复用无源光网络,如图2所示,该方法可以包括:步骤S101~S104。
在步骤S101中,在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,其中,所述下行信号包括管理通道(management TC data path)信号和数据通道(data path)信号。
本公开一些实施例中,可以是在光网络单元ONU通过ONU注册激活流程直至 运行状态,在运行状态时需要对下行信号同步,而在同步的过程中,可能会出现管理通道信号同步丢失或者数据通道信号同步丢失、管理通道信号和数据通道信号均同步丢失的情况,因此,可以通过检测是否出现下行信号同步丢失,来及时解决信号同步丢失的问题,避免由于信号同步丢失而导致ONU脱管的问题。
在步骤S102中,当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态。
本公开一些实施例中,由于ONU当前处于运行状态,当出现管理通道信号同步丢失而数据通道信号正常同步的情况时,ONU可以从运行状态进入管理通道同步丢失子状态,该管理通道同步丢失子状态可以简称为MLODS子状态,而在MLODS子状态下,ONU的数据通道同步正常,即,用户数据可以正常收发,不会受到MLODS子状态的影响。
在步骤S103中,监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间。
本公开一些实施例中,当ONU处于MLODS子状态下,可以记录对管理通道信号同步恢复的时间,得到第一恢复时间,并实时监测第一恢复时间是否超过第一预设时间阈值。第一恢复时间可以是记录ONU处于MLODS子状态的时间,第一时间阈值可以是根据实际情况预先设定的,用于限制ONU停留在MLODS子状态中尝试恢复管理通道同步的时间,从而可以避免出现管理通道同步丢失状态时间过长,造成ONU在MLODS子状态出现脱管的问题。需要说明的是,在MLODS子状态下,ONU仅是管理通道信号同步失败,而数据通道信号同步正常,因此,在MLODS子状态下数据通道仍可以正常工作,即,用户数据收发仍正常工作。
在一些实施例中,ONU开启第一定时器(如前述实施例的TOM),其中,第一定时器的时长被配置为第一预设时间阈值;ONU判断恢复管理通道信号同步的情况下,第一定时器是否超时,以确定ONU在管理通道同步丢失子状态中恢复管理通道信号同步的第一恢复时间是否超过第一预设时间阈值。
在步骤S104中,若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
本公开一些实施例中,若第一恢复时间未超过第一预设时间阈值,即,管理通道 信号在第一预设时间阈值内恢复同步,而数据通道信号仍正常同步的情况下,则可以将ONU从MLODS子状态返回至运行状态,使得ONU可以继续在运行状态中正常工作,对下行信号进行正常收发操作。
综上所述,本公开实施例提供的下行信号同步方法,应用于波分复用无源光网络,可以在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,下行信号包括管理通道信号和数据通道信号,当出现管理通道信号同步丢失而数据通道信号正常同步的情况,则ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态,监测ONU在管理通道同步丢失子状态中恢复管理通道信号同步的第一恢复时间,若第一恢复时间未超过第一预设时间阈值,且数据通道信号仍正常同步,则ONU从管理通道同步丢失子状态返回至运行状态,以便ONU继续在运行状态中正常工作。这样,通过在运行状态中引入了仅管理通道同步丢失的子状态,弥补了现有ONU注册激活状态机制未考虑管理通道信号同步丢失的情况,避免因原状态机中没有相应情况下的状态迁移方式而导致的ONU脱管的问题。
在一些实施例中,该方法还包括:所述监测所述ONU在所述管理通道同步丢失MLODS子状态中恢复所述管理通道信号同步的第一恢复时间之后,若在所述第一预设时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失(MLODS)子状态切换至临时数据通道同步丢失(LODS)状态。
本公开一些实施例中,可以是ONU处于MLODS子状态下,出现数据通道信号同步丢失的情况,也就是说,在第一预设时间阈值内出现数据通道信号同步丢失的情况,由于ONU的数据通道信号同步与管理通道信号同步均丢失,则ONU可以直接切换至临时LODS状态,尝试对下行信号同步恢复。
在一些实施例中,该方法还包括:监测所述ONU在所述管理通道同步丢失MLODS子状态中恢复所述管理通道信号同步的第一恢复时间之后,若所述第一恢复时间超过所述第一预设时间阈值,则将所述ONU从所述管理通道同步丢失(MLODS)子状态切换至临时数据通道同步丢失(LODS)状态。
本公开一些实施例中,可以是恢复管理通道信号同步的第一恢复时间超过第一预设时间阈值,即,在第一预设时间阈值内未能恢复管理通道信号同步,则可以将ONU从MLODS子状态返回至临时LODS状态,以便ONU在临时LODS状态中尝试对下行信号同步的恢复。
在一些实施例中,本公开实施例中上述下行信号同步方法还包括:监测所述ONU 在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;若所述第二恢复时间未超过第二预设时间阈值,则将所述ONU返回至所述运行状态继续工作;若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
本公开一些实施例中,可以是对处于临时LODS状态的ONU,记录ONU恢复管理通道信号和数据通道信号的时间,得到第二恢复时间,并对该第二恢复时间进行检测,确定第二恢复时间是否超过第二预设时间阈值。其中,第二恢复时间可以是ONU处于临时LODS状态的时间,第二预设时间阈值可以是用于限制ONU停留在LODS状态的时间,具体数值可以根据实际情况具体设置。
在一些实施例中,ONU开启第二定时器(TOL),其中,第二定时器的时长被配置为第二预设时间阈值;ONU判断管理通道信号和数据通道信号恢复的情况下,第二定时器是否超时,以确定ONU在临时LODS状态中,对管理通道信号和数据通道信号的第二恢复时间是否超过第二预设时间阈值。
本公开一些实施例中,若第二恢复时间未超过第二预设时间阈值,即,在第二预设时间阈值之内,ONU的管理通道信号和数据通道信号同步恢复成功,则ONU可以从临时LODS状态返回至运行状态继续正常工作。若第二恢复时间超过第二预设时间阈值,即,在第二预设时间阈值之内,ONU的管理通道信号和数据通道信号同步未能恢复,则ONU可以直接进入下行信号同步的初始状态。
示例的,图3是本公开实施例提供的一种ONU同步恢复流程图,如图3所示,11、处于运行状态(O5)的ONU,出现管理通道同步丢失,而数据通道正常工作的情况,则进入MLODS子状态(O5.3),并在一定时间内尝试恢复同步,此时用户数据收发仍正常进行,不会收到影响;12、处于MLODS子状态(O5.3)的ONU,成功恢复管理通道信号同步,且数据通道信号同步仍正常工作,则返回至运行状态(O5);13、处于MLODS子状态(O5.3)的ONU,管理通道同步恢复超过第二预设时间阈值,或在第二预设时间阈值内发生数据通道同步的丢失的情况,则进入临时LODS状态(O6)进行数据通道同步的恢复;14、处于运行状态(O5)的ONU,发生数据通道同步丢失的情况,由于此时正常用户数据收发已无法保证,则直接进入临时LODS状态(O6)进行数据通道同步的恢复;15、处于临时LODS状态(O6)的ONU,成功恢复数据通道和管理通道的同步,则返回运行状态(O5)。
表1
Figure PCTCN2022133487-appb-000001
示例的,表1是表征本公开实施例中可以用于状态迁移的事件,若ONU处于运行状态O5时,出现管理通道信号同步丢失,则开启第一预设时间阈值,并切换至MLODS子状态,而管理通道同步丢失状态O5.3和LODS状态O6与MLODS子状态不适用;在管理通道同步丢失状态O5.3下,出现管理通道同步恢复(MDSYNC),则可以停止第一预设时间阈值,并切换至运行状态O5,而运行状态O5和LODS状态 O6与MDSYNC不适用;在管理通道同步丢失状态O5.3下,出现LODS,即,数据通道信号同步丢失,则可以开启第二预设时间阈值,并切换至LODS状态O6LODS状态O6与LODS不适用;恢复下行同步(DSYNC)与运行状态O5、管理通道同步丢失状态O5.3并不适用,在LODS状态O6下,出现DSYNC,则可以停止第二预设时间阈值,切换至运行状态O5;在管理通道同步丢失状态O5.3下,出现第一预设时间阈值超时,则可以开启第二预设时间阈值,并切换至LODS状态O6,而第一预设时间阈值超时与运行状态O5、LODS状态O6并不适用;LODS状态O6下,出现第二预设时间阈值超时,则可以丢弃ONU-ID值,并切换至未同步O1.1(即重新激活)。
图4是本公开实施例提供的一种下行信号同步***,如图4所示,该***30可以包括:检测模块301,第一切换模块302,第一监测模块303,第一返回模块304。
检测模块301,用于在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,其中,所述下行信号包括管理通道信号和数据通道信号。
第一切换模块302,用于当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失子状态。
第一监测模块303,用于监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间。
第一返回模块304,用于若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
综上所述,本发明实施例提供的下行信号同步***,应用于波分复用无源光网络,可以在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,下行信号包括管理通道信号和数据通道信号,当出现管理通道信号同步丢失而数据通道信号正常同步的情况,则ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态,监测ONU在管理通道同步丢失子状态中恢复管理通道信号同步的第一恢复时间,若第一恢复时间未超过第一预设时间阈值,且数据通道信号仍正常同步,则ONU从管理通道同步丢失子状态返回至运行状态,以便ONU继续在运行状态中正常工作。这样,通过在运行状态中引入了仅管理通道同步丢失的子状态,弥补了现有ONU注册激活状态机制未考虑管理通道信号同步丢失的情况,避免因原状态机中没有相应情况下的状态迁移方式而导致的ONU脱管的问题。
在一些实施例中,所述***30还包括:第二切换模块,用于若在所述第一预设 时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,所述***30还包括:第二切换模块,用于若所述第一恢复时间超过所述第一预设时间阈值,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
在一些实施例中,所述***30还包括:第二监测模块,用于监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;若所述第二恢复时间未超过第二预设时间阈值,则将所述ONU返回至所述运行状态继续工作;若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
在一些实施例中,在所述管理通道同步丢失子状态中,所述ONU的所述数据通道信号同步正常工作。上述下行信号同步***中各模块的具体细节已经在对应的下行信号同步方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供了一种能够实现上述方法的电子设备。
所属技术领域的技术人员能够理解,本公开的各个方面可以实现为***、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件方面结合的实施方式,这里可以统称为“电路”、“模块”或“***”。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在 一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。
在本公开的示例性实施例中,还提供了一种计算机可读存储介质,其上存储有能够实现本说明书上述方法的程序产品。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在终端设备上运行时,所述程序代码用于使所述终端设备执行本说明书上述“示例性方法”部分中描述的根据本公开各种示例性实施方式的步骤。
根据本公开的实施方式的用于实现上述方法的程序产品,其可以采用便携式紧凑盘只读存储器(CD-ROM)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行***、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以为但不限于电、磁、光、电磁、红外线、或半导体的***、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行***、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、C++等,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以 完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
此外,上述附图仅是根据本公开示例性实施例的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。
本领域技术人员在考虑说明书及实践这里发明的发明后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。

Claims (16)

  1. 一种下行信号同步方法,应用于波分复用无源光网络,包括:
    在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,其中,所述下行信号包括管理通道信号和数据通道信号;
    当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失子状态;
    监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间;
    若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
  2. 根据权利要求1所述的方法,还包括:所述监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间之后,
    若在所述第一预设时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
  3. 根据权利要求1所述的方法,还包括:所述监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间之后,
    若所述第一恢复时间超过所述第一预设时间阈值,则将所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
  4. 根据权利要求2或3所述的方法,还包括:
    监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;
    若所述第二恢复时间未超过第二预设时间阈值,则所述ONU返回至所述运行状态继续工作。
  5. 根据权利要求4所述的方法,还包括:
    若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
  6. 根据权利要求1所述的方法,其中,在所述管理通道同步丢失子状态中,所述ONU的所述数据通道信号同步正常工作。
  7. 根据权利要求1所述的方法,其中,所述监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间包括:
    所述ONU开启第一定时器,其中,所述第一定时器的时长被配置为所述第一预设时间阈值;
    所述ONU判断恢复所述管理通道信号同步的情况下,所述第一定时器是否超时,以确定所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间是否超过所述第一预设时间阈值。
  8. 根据权利要求4或5所述的方法,其中,所述监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间包括:
    所述ONU开启第二定时器,其中,所述第二定时器的时长被配置为所述第二预设时间阈值;
    所述ONU判断所述管理通道信号和所述数据通道信号恢复的情况下,所述第二定时器是否超时,以确定所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间是否超过所述第二预设时间阈值。
  9. 一种下行信号同步***,应用于波分复用无源光网络,包括:
    检测模块,用于在光网络单元ONU处于运行状态时,检测是否出现下行信号同步丢失的情况,其中,所述下行信号包括管理通道信号和数据通道信号;
    第一切换模块,用于当出现所述管理通道信号同步丢失而所述数据通道信号正常同步的情况,则所述ONU从所述运行状态切换至管理通道同步丢失管理通道同步丢失子状态;
    第一监测模块,用于监测所述ONU在所述管理通道同步丢失子状态中恢复所述管理通道信号同步的第一恢复时间;
    第一返回模块,用于若所述第一恢复时间未超过第一预设时间阈值,且所述数据通道信号仍正常同步,则所述ONU从所述管理通道同步丢失子状态返回至所述运行状态,以便所述ONU继续在所述运行状态中工作。
  10. 根据权利要求9所述的***,其中,所述***还包括:
    第二切换模块,用于若在所述第一预设时间阈值内出现所述数据通道信号同步丢失的情况,则所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
  11. 根据权利要求9所述的***,其中,所述***还包括:
    第二切换模块,用于若所述第一恢复时间超过所述第一预设时间阈值,则将所述ONU从所述管理通道同步丢失子状态切换至临时数据通道同步丢失LODS状态。
  12. 根据权利要求10或11所述的***,其中,所述***还包括:
    第二监测模块,用于监测所述ONU在所述临时LODS状态中,所述管理通道信号和所述数据通道信号的第二恢复时间;若所述第二恢复时间未超过第二预设时间阈值,则所述ONU返回至所述运行状态继续工作;若所述第二恢复时间超过所述第二预设时间阈值,则所述ONU进入所述下行信号同步的初始状态。
  13. 根据权利要求9所述的***,其中,在所述管理通道同步丢失子状态中,所述ONU的所述数据通道信号同步正常工作。
  14. 一种下行信号同步装置,包括:
    处理器;以及
    耦接至所述处理器的存储器,用于存储指令,所述指令被所述处理器执行时,使所述处理器执行如权利要求1-8任一项所述的方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-8任一项所述的方法。
  16. 一种计算机程序,包括:指令,所述指令被所述处理器执行时,使所述处理器执行如权利要求1-8任一项所述的方法。
PCT/CN2022/133487 2022-05-09 2022-11-22 下行信号同步方法及*** WO2023216549A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210498932.8A CN117081696A (zh) 2022-05-09 2022-05-09 下行信号同步方法及***
CN202210498932.8 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023216549A1 true WO2023216549A1 (zh) 2023-11-16

Family

ID=88718074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133487 WO2023216549A1 (zh) 2022-05-09 2022-11-22 下行信号同步方法及***

Country Status (2)

Country Link
CN (1) CN117081696A (zh)
WO (1) WO2023216549A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895189B1 (en) * 1998-10-20 2005-05-17 Lucent Technologies Inc. Optical synchronization system
CN108259118A (zh) * 2018-01-12 2018-07-06 烽火通信科技股份有限公司 Wdm pon***的辅助管理控制装置及方法
CN108990083A (zh) * 2017-05-31 2018-12-11 ***通信有限公司研究院 一种进行同步告警的方法及设备
US20210320743A1 (en) * 2020-04-10 2021-10-14 Nokia Solutions And Networks Oy Method, apparatus and system for channel management in passive optical network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895189B1 (en) * 1998-10-20 2005-05-17 Lucent Technologies Inc. Optical synchronization system
CN108990083A (zh) * 2017-05-31 2018-12-11 ***通信有限公司研究院 一种进行同步告警的方法及设备
CN108259118A (zh) * 2018-01-12 2018-07-06 烽火通信科技股份有限公司 Wdm pon***的辅助管理控制装置及方法
US20210320743A1 (en) * 2020-04-10 2021-10-14 Nokia Solutions And Networks Oy Method, apparatus and system for channel management in passive optical network

Also Published As

Publication number Publication date
CN117081696A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
JP6360181B2 (ja) チャネル切り替え方法、装置、光ネットワークユニット及び時間・波長分割多重システム
US8687960B2 (en) Communication method, optical communication system, station-side optical-line terminal apparatus, and user-side optical-line terminal apparatus
JP6400111B2 (ja) 光回線終端/光ネットワークユニット波長調節方法及び装置
CN101877611A (zh) 降低无源光网络线路功耗的方法、光网络单元设备及终端
US20080240714A1 (en) Station terminating device, subscriber terminating device, communication system, control method of the devices, and recording medium recorded with program
WO2011038591A1 (zh) 一种无源光网络的主备切换方法、装置和***
CN102611519A (zh) 一种对无源光网络进行链路保护的方法和装置
WO2008037178A1 (fr) Unite de reseau optique et procede d'acces a ladite unite, terminal de ligne optique et systeme de reseau optique passif
WO2023216549A1 (zh) 下行信号同步方法及***
WO2010133065A1 (zh) 基于无源光网络的保护***和方法
US8165173B2 (en) Data transmission method, system and terminal
JPH10304437A (ja) 無線区間同期監視方式及び該方式による無線基地局装置
CN117156323A (zh) Fttr***重启快速恢复业务方法和***
JP2012095089A (ja) 局側装置、宅側装置、光通信システム、および光通信システムの制御方法
WO2015095995A1 (zh) ***升级的方法和设备
US20180359235A1 (en) Transmission apparatus and communication method
JP4642996B2 (ja) 光多分岐通信システムおよびその伝送路切替復旧制御方法
EP3734986A1 (en) Method, device and computer-readable medium of managing a clock circuit
JP7496794B2 (ja) 光通信装置
US20130322880A1 (en) Clock and data recovery unit and power control method therefor and pon system
WO2016184225A1 (zh) 一种时间同步消息发送方法和装置
WO2017032136A1 (zh) 一种吉比特无源光网络***的倒换方法、装置、光网络单元及光线路终端
JP2014135679A (ja) 端末側通信装置、局側装置、通信障害復旧方法
EP4213493A1 (en) Service management method and apparatus for passive optical network, optical line terminal and medium
JP2018148482A (ja) 子局装置及び光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941484

Country of ref document: EP

Kind code of ref document: A1