WO2023216377A1 - 多元共掺杂钠离子正极材料及其制备方法与应用 - Google Patents

多元共掺杂钠离子正极材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023216377A1
WO2023216377A1 PCT/CN2022/100733 CN2022100733W WO2023216377A1 WO 2023216377 A1 WO2023216377 A1 WO 2023216377A1 CN 2022100733 W CN2022100733 W CN 2022100733W WO 2023216377 A1 WO2023216377 A1 WO 2023216377A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound containing
cathode material
preparation
sodium
metal
Prior art date
Application number
PCT/CN2022/100733
Other languages
English (en)
French (fr)
Inventor
庄志
邓城
吴惠康
袁远
郑田瑞
卢鹏
崔如玉
程跃
Original Assignee
上海恩捷新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技有限公司 filed Critical 上海恩捷新材料科技有限公司
Publication of WO2023216377A1 publication Critical patent/WO2023216377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of material technology, and in particular to a multi-element co-doped sodium ion positive electrode material and its preparation method and application.
  • lithium-ion batteries have experienced explosive growth, and demand in the 3C, energy storage and power fields is increasing day by day.
  • lithium-ion batteries face problems such as lack of lithium resources and nickel and cobalt ores.
  • the price of lithium ores is rising year by year.
  • the distribution of global lithium resources is extremely uneven. 80% of my country's lithium ore needs to be imported from South America, which brings serious risks to the country's energy security. Therefore, we began to search for other alkali metal element batteries with large resource abundance, wide distribution, low price, and good electrochemical performance.
  • sodium-ion batteries are also perfectly compatible with lithium-ion batteries. Most of the auxiliary materials and processes are the same or similar.
  • Sodium-ion batteries are mainly composed of positive electrodes, negative electrodes, separator electrolytes and other auxiliary materials.
  • the performance of the positive electrode determines the performance of the battery.
  • Commonly used sodium ion cathode materials generally have shortcomings such as low specific capacity (less than 135mAh/g), poor structural stability and air stability.
  • the main ways to obtain higher capacity include: broadening the voltage range, introducing active lattice oxygen, and electrochemically active element doping (mainly increasing Ni content).
  • the former two will sacrifice the cycle life of the material, and it is often difficult to achieve both structural stability and high capacity, which may cause a decrease in discharge voltage distribution.
  • the latter will greatly increase the cost of raw materials, which is contrary to the concept of low-cost sodium ion cathode materials.
  • Common sodium ion cathodes mainly include three types: oxide, Prussian blue, and polyanionic. Oxides have gradually become a technological hotspot in academia and industry due to their advantages of high specific capacity, low cost, high voltage, wide sources of raw materials, and environmental friendliness. However, oxide cathode materials face problems such as poor structural stability, rapid capacity fading, and poor air stability caused by phase change, resulting in slow large-scale commercialization.
  • the purpose of the present invention is to achieve the synergistic effect of multiple elements through multi-element co-doping to jointly improve the structure and electrochemical performance of the cathode material.
  • M is one, two or three kinds of Ni, Mn and Fe.
  • the present invention also proposes a method for preparing the above-mentioned multi-component co-doped sodium ion cathode material, which is characterized in that the method includes: Na element, M element, Li according to the chemical formula Na ⁇ M a Li b Cu c Ti d O 2+ ⁇
  • the atomic number ratio of the element, Cu element, and Ti element is to weigh an appropriate amount of a compound containing Na element, a compound containing M element, a compound containing Li element, a compound containing Cu element, and a compound containing Ti element, and mix them to obtain a mixture. ; and calcining the mixture to obtain a multi-element co-doped sodium ion cathode material.
  • the compound containing M element, the compound containing Li element, the compound containing Cu element, and the compound containing Ti element are independently metal oxide, metal nitrate, metal sulfate, metal carbonate, and metal At least one of the chlorides.
  • the compound containing Na element is at least one of sodium carbonate, sodium hydroxide, and sodium bicarbonate.
  • the weighed amount of the compound containing Na element is 100% to 110% of the theoretical amount calculated based on the atomic ratio of Na element, M element, Li element, Cu element, and Ti element.
  • the weighed amount of the compound containing Na element is 102% to 106% of the theoretical amount.
  • the weighed amount of the compound containing Li element is 100% to 110% of the theoretical amount.
  • the weighed amount of the compound containing Li element is 102% to 106% of the theoretical amount.
  • the mixing step includes mixing a compound containing Na element, a compound containing M element, a compound containing Li element, a compound containing Cu element, and a compound containing Ti element, and mechanically ball milling to obtain a mixture.
  • the speed of mechanical ball milling is 100 to 1000 rpm, and the time is 1 to 48 hours.
  • the calcination temperature is 700 to 1050°C, the time is 6 to 36 hours, and the heating rate is 1 to 20°C/minute.
  • the present invention also proposes a method for preparing the above-mentioned multi-component co-doped sodium ion cathode material, which is characterized in that the method includes: weighing an appropriate amount of M-containing elements according to the atomic number ratio of the M element in the chemical formula MCO 3 or M(OH) 2 The nitrate or sulfate containing M element is dissolved in water, and the pH is adjusted with a precipitant and a complexing agent to uniformly precipitate.
  • the precursor MCO 3 or M(OH) 2 is obtained; according to the chemical formula Na ⁇ M a Li b
  • the atomic number ratio of Na element, M element, Li element, Cu element and Ti element in Cu c Ti d O 2+ ⁇ is weighed and appropriate amounts of compounds containing Na element, compounds containing Li element, compounds containing Cu element and compounds containing
  • the compound of Ti element is mixed with the precursor MCO 3 or M(OH) 2 to obtain a mixture; and the mixture is calcined to obtain a multi-component co-doped sodium ion positive electrode material.
  • the compound containing Li element, the compound containing Cu element, and the compound containing Ti element are independently at least one of metal oxide, metal nitrate, metal sulfate, metal carbonate, and metal chloride. kind.
  • the compound containing Na element is at least one of sodium carbonate, sodium hydroxide, and sodium bicarbonate.
  • the weighed amount of the compound containing Na element is 100% to 110% of the theoretical amount calculated based on the atomic ratio of Na element, M element, Li element, Cu element, and Ti element.
  • the weighed amount of the compound containing Na element is 102% to 106% of the theoretical amount.
  • the weighed amount of the compound containing Li element is 100% to 110% of the theoretical amount.
  • the weighed amount of the compound containing Li element is 102% to 106% of the theoretical amount.
  • the pH in the step of obtaining the precursor is 7.5 to 13
  • the precipitating agent is sodium hydroxide or sodium carbonate
  • the complexing agent is ammonia water
  • the drying temperature is 80 to 150°C
  • the drying time is 6 to 48 hours.
  • the mixing step includes mixing a compound containing Na element, a compound containing Li element, a compound containing Cu element, a compound containing Ti element, and a precursor MCO 3 or M(OH) 2 , and mechanically ball milling to obtain a mixture. .
  • the speed of mechanical ball milling is 100 to 1000 rpm, and the time is 1 to 48 hours.
  • the calcination temperature is 700 to 1050°C, the time is 6 to 36 hours, and the heating rate is 1 to 20°C/minute.
  • the present invention also provides a sodium ion battery, which is characterized in that the sodium ion battery includes the above-mentioned multi-component co-doped sodium ion positive electrode material.
  • sodium-ion batteries are used in large-scale energy storage equipment for low-speed two-wheeled vehicles, electric vehicles, wind power generation, smart grid peak shaving, solar power generation, household power supplies, or communication base stations.
  • Li + has a larger ionic radius and stronger Li-O binding energy, so that lattice oxygen can be activated under high voltage, allowing the O 2- /O n- pair to achieve reversible capacity;
  • Ti 4+ Improves the Ni 2+ /Ti 4+ -O 2- covalent bond properties, making the structure more stable, reducing cation mixing, inhibiting multi-phase transformation and stabilizing the layered structure of the material;
  • Cu 2+ can significantly enhance the material's Air stability, and Cu 2+ /Cu 3+ can also provide partial capacity.
  • the cathode material of the present invention is endowed with high structural stability and high electrochemical performance.
  • Figure 1 is the SEM morphology picture of Example 1
  • Figure 2 is an SEM morphology picture of Example 3
  • Figure 3 is the XRD pattern of Example 3 and Example 4;
  • Figure 4 is a first-cycle electrochemical performance diagram of Example 4 and Example 5;
  • Figure 5 is a performance diagram of the first 100 cycles of Example 1, Example 4 and Example 5.
  • the first embodiment of the present invention proposes a multi-component co-doped sodium ion cathode material, which is an O3 phase, has a space group of R-3m, and a chemical formula of Na ⁇ M a Li b Cu c Ti d O 2+ ⁇ , which satisfies the requirements of the electrical neutral.
  • M is at least one of Ni, Co, Mn, Cr, V, Al, Fe, B, Si, Mg, and Zn. Specifically, it can be but is not limited to one or two of Ni, Mn, and Fe.
  • a+b+c can satisfy but is not limited to the following conditions: 0.05 ⁇ a+b+c ⁇ 1.
  • the second embodiment of the present invention provides a method for preparing a multi-component co-doped sodium ion cathode material.
  • the multi-component co-doped sodium ion cathode material is as described above and will not be described in detail here.
  • This method is a high-temperature solid phase method, and the detailed steps are as follows:
  • the compound containing M element is at least one of an oxide containing M element, a nitrate containing M element, a sulfate containing M element, a carbonate containing M element, and a chloride containing M element.
  • the compound containing Li element is at least one of an oxide containing Li element, a nitrate containing Li element, a sulfate containing Li element, a carbonate containing Li element, and a chloride containing Li element
  • the compound containing Cu element is at least one of an oxide containing Cu element, a nitrate containing Cu element, a sulfate containing Cu element, a carbonate containing Cu element, and a chloride containing Cu element; containing Ti
  • the compound of the element is at least one of an oxide containing Ti element, a nitrate containing Ti element, a sulfate containing Ti element, a carbonate containing Ti element, and a chloride containing Ti element.
  • the compound containing Na element may be, but is not limited to, at least one of sodium carbonate, sodium hydroxide, and sodium bicarbonate.
  • the compound containing Na element, the compound containing M element, the compound containing Li element, the compound containing Cu element, and the compound containing Ti element can be mixed and mechanically ball milled to obtain a mixture; the speed of mechanical ball milling can be but is not limited to 100 to 1000rpm, the mechanical ball milling time can be but not limited to 1 to 48 hours.
  • the weighing amounts of compounds containing Na element, compounds containing M element, compounds containing Li element, compounds containing Cu element, and compounds containing Ti element can be measured according to Na element, M element, Li element, Cu element, and Ti element
  • the atomic number ratio is adjusted to the calculated theoretical quantity.
  • the theoretical quantity can be expressed by the following formula:
  • the theoretical amount of a compound containing M element (a) x (molecular weight of a compound containing M element) x any constant / (number of M element atoms in a compound containing M element);
  • the weighed amounts of compounds containing Na element, compounds containing M element, compounds containing Li element, compounds containing Cu element, and compounds containing Ti element can be but are not limited to 100% to 110% of the theoretical amount, preferably The ground is 102% to 106%, preferably 103%.
  • the weighed amounts of compounds containing M element, compounds containing Cu element, and compounds containing Ti element can be 100% of the theoretical amount, while the compounds containing Na element, and compounds containing Li element
  • the weighed amount can be 100% to 110% of the theoretical amount, preferably 102% to 106%, and more preferably 103%.
  • the mixture is calcined to obtain a multi-component co-doped sodium ion cathode material.
  • the calcination temperature may be, but is not limited to, 700 to 1050°C
  • the calcination time may be, but is not limited to, 6 to 36 hours
  • the heating rate may be, but is not limited to, 1 to 20°C/minute.
  • the positive electrode material in order to make the positive electrode material have an appropriate particle size, it can be cooled, ground, and passed through a 300-mesh sieve after calcination.
  • the third embodiment of the present invention provides a method for preparing a multi-component co-doped sodium ion cathode material.
  • the multi-component co-doped sodium ion cathode material is as described above and will not be described in detail here.
  • This method is a co-precipitation method, and the detailed steps are as follows:
  • MCO 3 or M(OH) 2 take an appropriate amount of nitrate containing M element or sulfate containing M element and dissolve it in water, and adjust the pH with precipitant and complexing agent. It precipitates uniformly, and after drying, the precursor MCO 3 or M(OH) 2 is obtained.
  • a precipitant and a complexing agent are used to adjust the pH to, but not limited to, 7.5 to 13.
  • the precipitating agent may be, but are not limited to, sodium hydroxide or sodium carbonate.
  • the complexing agent may be, but are not limited to, ammonia water. Dry The temperature may be, but is not limited to, 80 to 150°C, and the drying time may be, but is not limited to, 6 to 48 hours.
  • the compound containing Li element, the compound containing Cu element, and the compound containing Ti element can independently be, but are not limited to, metal oxides, metal nitrates, metal sulfates, metal carbonates, and metal chlorides. of at least one.
  • the compound containing Li element is at least one of an oxide containing Li element, a nitrate containing Li element, a sulfate containing Li element, a carbonate containing Li element, and a chloride containing Li element.
  • the compound containing Cu element is at least one of an oxide containing Cu element, a nitrate containing Cu element, a sulfate containing Cu element, a carbonate containing Cu element, and a chloride containing Cu element
  • the compound containing Ti element is at least one of an oxide containing Ti element, a nitrate containing Ti element, a sulfate containing Ti element, a carbonate containing Ti element, and a chloride containing Ti element.
  • the compound containing Na element is at least one of sodium carbonate, sodium hydroxide, and sodium bicarbonate.
  • the compound containing Na element, the compound containing Li element, the compound containing Cu element, the compound containing Ti element can be mixed with the precursor MCO 3 or M(OH) 2 to obtain a mixture by mechanical ball milling; while the mechanical ball milling
  • the speed may be, but is not limited to, 100 to 1000 rpm, and the mechanical ball milling time may be, but is not limited to, 1 to 48 hours.
  • the weighing amounts of Na element-containing compounds, Li element-containing compounds, Cu element-containing compounds, Ti element-containing compounds, and the precursor MCO 3 or M(OH) 2 can be measured according to Na element, M element, Li element, The atomic number of Cu element and Ti element is adjusted to the calculated theoretical quantity.
  • the theoretical quantity can be expressed by the following formula:
  • the weighing amount of the compound containing Na element, the compound containing Li element, the compound containing Cu element, the compound containing Ti element, and the precursor MCO 3 or M(OH) 2 can be 100% to 110% of the theoretical amount, Preferably it is 102% to 106%, more preferably 103%.
  • the weighing amounts of compounds containing Cu elements, compounds containing Ti elements, and precursors MCO 3 or M(OH) 2 can be 100% of the theoretical amount, while compounds containing Na elements, and
  • the weighed amount of the compound containing Li element can be 100% to 110% of the theoretical amount, preferably 102% to 106%, and more preferably 103%.
  • the mixture is calcined to obtain a multi-component co-doped sodium ion cathode material.
  • the calcination temperature may be, but is not limited to, 700 to 1050°C
  • the calcination time may be, but is not limited to, 6 to 36 hours
  • the heating rate may be, but is not limited to, 1 to 20°C/minute.
  • the positive electrode material in order to make the positive electrode material have an appropriate particle size, it can be cooled, ground, and passed through a 300-mesh sieve after calcination.
  • the fourth embodiment of the present invention provides a sodium-ion battery, which includes a multi-component co-doped sodium ion cathode material, and the multi-component co-doped sodium ion cathode material is as described above.
  • the multi-component co-doped sodium ion positive electrode material can be mixed with a binder to form the positive electrode of the battery.
  • examples of the binder may be, but are not limited to, at least one of SP and PVDF.
  • the mass ratio between the multi-element co-doped sodium ion cathode material and the binder can be but is not limited to (70 to 95): (5 to 30), preferably 90:10.
  • sodium-ion batteries can be used in, but are not limited to, large-scale energy storage equipment for low-speed two-wheeled vehicles, electric vehicles, wind power generation, smart grid peak shaving, solar power generation, household power supplies, or communication base stations.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.05 Cu 0.1 Ti 0.1 O 2 is prepared. The description is as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained (as shown in Figure 1). .
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.05 Cu 0.15 Ti 0.05 O 2 is prepared. The description is as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.075 Cu 0.1 Ti 0.075 O 2 is prepared. The description is as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained (as shown in Figure 2). .
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.075 Cu 0.1 Ti 0.075 O 2 is prepared. The description is as follows:
  • Mn 0.667 Ni 0.333 (OH) 2 weigh an appropriate amount of nickel sulfate and manganese sulfate and dissolve it in a certain amount of water according to the stoichiometric ratio of the chemical formula Mn 0.667 Ni 0.333 (OH) 2. Use sodium hydroxide and ammonia to adjust the pH to make it precipitate evenly. After drying at 100°C, the precursor is obtained. Mn 0.667 Ni 0.333 (OH) 2 .
  • the ball-milled mixture is calcined in a high-temperature furnace at 850°C.
  • the calcining time is 15 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.4 Ni 0.2 Fe 0.15 Li 0.075 Cu 0.1 Ti 0.075 O 2 is prepared.
  • the description is as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • After cooling, grinding, and passing through a 300-mesh sieve, the cathode material is obtained.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.25 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Cu 0.25 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Ti 0.25 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.125 Cu 0.125 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Li 0.125 Ti 0.125 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • the cathode material NaMn 0.5 Ni 0.25 Cu 0.125 Ti 0.125 O 2 is prepared.
  • the instructions are as follows:
  • the ball-milled mixture is calcined in a high-temperature furnace at 875°C.
  • the calcining time is 12 hours and the temperature rise rate is 5°C/minute.
  • the cathode material is obtained after cooling, grinding, and passing through a 300-mesh sieve.
  • the cathode material prepared above was pulped with SP and PVDF at a mass ratio of 90:5:5. After coating, drying, and cutting, it was used as a cathode, and assembled into a button cell to evaluate its electrochemical performance.
  • Example 1 Please refer to Table 1.
  • the preparation processes of Examples 1 to 3 are roughly the same, and the atomic number ratios of the Mn element and the Ni element of the cathode material are the same. From the results, the appropriate atomic number ratios of the Li element, Fe element and Ti element of the cathode material can be obtained .
  • the preparation processes of Examples 3 and 5 are roughly the same. The atomic ratios of Li element, Cu element and Ti element in the cathode material are the same. From the results, it can be seen that when the cathode material contains Fe element, the performance of the battery will be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提出一种多元共掺杂钠离子正极材料,其特征在于,正极材料为O3相,空间群为R-3m,其化学式为NaαMaLibCucTidO2+β,其中M为Ni、Co、Mn、Cr、V、Al、Fe、B、Si、Mg、Zn中的至少一种,且0.5≤α≤1,-0.1≤β≤0.1,0<a<0.95,0<b<0.25,0<c<0.3,0<d<0.6,a+b+c+d=1,且满足电中性。本发明另提出上述多元共掺杂钠离子正极材料的制备方法与应用。

Description

多元共掺杂钠离子正极材料及其制备方法与应用 技术领域
本发明涉及材料技术领域,且特别涉及一种多元共掺杂钠离子正极材料及其制备方法与应用。
背景技术
近年锂离子电池呈爆发性成长,3C、储能与动力领域的需求逐日增加。然而,锂离子电池面临锂资源与镍、钴矿匮乏等问题,尤其是锂矿的价格逐年攀升,即使将全球已勘探的所有锂资源全部开采也不足以满足爆发性成长的锂离子电池需求。此外,全球锂资源分布极为不均,我国80%的锂矿需从南美进口,带给国家能源安全严重隐患。因此开始寻找资源丰度大、分布广、价格低廉、电化学性能好的其他碱金属元素电池。钠离子电池除具备上述优点外,还可与锂离子电池完美兼容,大部分的辅材与工艺是相同或类似的。
钠离子电池主要由正极、负极、隔膜电解液及其他辅材组成。正极的性能决定着电池的性能。常用的钠离子正极材料普遍存在比容量低(小于135mAh/g)、结构稳定性和空气稳定性差等缺点。为获得更高容量的途径主要有:拓宽电压区间、引入活性晶格氧、电化学活性元素掺杂(主要提升Ni含量)。前两者会牺牲材料的循环寿命,而且结构稳定性和高容量往往难以兼得,可能引起放电均压的下降;后者会大大增加原料成本,与钠离子正极材料低成本理念相违背。最 常用解决的方案是通过掺杂优化结构,但单一元素掺杂效果往往有限,无法在结构和性能多方面提升。也就是说,为获得长循环寿命,可通过元素掺杂来稳定结构,然而单一元素掺杂不能兼顾高容量和长循环的设计要求。
常见的钠离子正极主要有氧化物、普鲁士蓝、聚阴离子型等三大类型。氧化物以高比容量、低成本、高电压、原料来源广泛和环境友好等优点,逐渐成为学术界和产业界的技术热点。然而,氧化物正极材料面临相变引起的结构稳定性差、容量衰减快和空气稳定性差等问题,造成大规模商业化进程缓慢。
发明内容
本发明之目的在于通过多元素共掺杂方式,实现多元素的协同作用,达到共同改善正极材料结构和电化学性能的目的。
是以,本发明提出一种多元共掺杂钠离子正极材料,其特征在于:正极材料为O3相,空间群为R-3m,其化学式为Na αM aLi bCu cTi dO 2+β,其中M为Ni、Co、Mn、Cr、V、Al、Fe、B、Si、Mg、Zn中的至少一种,且0.5≤α≤1,-0.1≤β≤0.1,0<a<0.95,0<b<0.25,0<c<0.3,0<d<0.6,a+b+c+d=1,且满足电中性。
较佳地,M为Ni、Mn、Fe中的一种、二种或三种。
较佳地,0.05≤a+b+c<1。
本发明另提出一种上述多元共掺杂钠离子正极材料的制备方法,其特征在于,方法包括:依照化学式Na αM aLi bCu cTi dO 2+β中Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比秤取适量的含Na元 素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物,混合得到混合料;以及将混合料煅烧得到多元共掺杂钠离子正极材料。
较佳地,含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物独立地为金属氧化物、金属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种。
较佳地,含Na元素的化合物为碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。
较佳地,含Na元素的化合物的秤取量为依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量的100%至110%。
较佳地,含Na元素的化合物的秤取量为理论量的102%至106%。
较佳地,含Li元素的化合物的秤取量为理论量的100%至110%。
较佳地,含Li元素的化合物的秤取量为理论量的102%至106%。
较佳地,混合步骤包括将含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物,混合机械球磨得到混合料。
较佳地,机械球磨的速度为100至1000rpm,时间为1至48小时。
较佳地,煅烧温度为700至1050℃,时间为6至36小时,升温速率为1至20℃/分钟。
本发明另提出一种上述多元共掺杂钠离子正极材料的制备方法,其特征在于,方法包括:依照化学式MCO 3或M(OH) 2中M元素的原子数比秤取适量的含M元素的硝酸盐或含M元素的硫酸盐溶于水中,用沉淀剂与络合剂调节pH使其均匀沉淀,干燥后得到前驱物MCO 3或M(OH) 2;依照化学式Na αM aLi bCu cTi dO 2+β中Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比秤取适量的含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2,混合得到混合料;以及将混合料煅烧得到多元共掺杂钠离子正极材料。
较佳地,含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物独立地为金属氧化物、金属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种。
较佳地,含Na元素的化合物为碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。
较佳地,含Na元素的化合物的秤取量为依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量的100%至110%。
较佳地,含Na元素的化合物的秤取量为理论量的102%至106%。
较佳地,含Li元素的化合物的秤取量为理论量的100%至110%。
较佳地,含Li元素的化合物的秤取量为理论量的102%至106%。
较佳地,前驱物得到步骤中的pH为7.5至13,沉淀剂为氢氧化 钠或碳酸钠,络合剂为氨水,干燥温度为80至150℃,干燥时间为6至48小时。
较佳地,混合步骤包括将含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素、与前驱物MCO 3或M(OH) 2的化合物,混合机械球磨得到混合料。
较佳地,机械球磨的速度为100至1000rpm,时间为1至48小时。
较佳地,煅烧温度为700至1050℃,时间为6至36小时,升温速率为1至20℃/分钟。
本发明另提供一种钠离子电池,其特征在于,钠离子电池包括上述多元共掺杂钠离子正极材料。
较佳地,钠离子电池用于低速二轮车、电动汽车、风力发电、智能电网调峰、太阳能发电、家用电源、或通信基站的大规模储能设备。
根据本发明,Li +具有更大的离子半径和更强的Li-O结合能,使得在高电压下能激活晶格氧,让O 2-/O n-电对实现可逆容量;Ti 4+改善Ni 2+/Ti 4+-O 2-共价键性质,使结构变得更稳定,且可减少阳离子混排,抑制多相转变和稳定材料层状结构;Cu 2+可明显增强材料的空气稳定性,且Cu 2+/Cu 3+也能提供部分容量。藉此,赋予本发明的正极材料高结构稳定性与高电化学性能。
附图说明
图1为实施例1的SEM形貌图;
图2为实施例3的SEM形貌图;
图3为实施例3和实施例4的XRD图谱;
图4为实施例4和实施例5的首圈电化学性能图;
图5为实施例1、实施例4和实施例5的前100次循环性能图。
具体实施方式
以下对本发明的具体实施方式结合附图进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的第一实施方式提出一种多元共掺杂钠离子正极材料,其为O3相,空间群为R-3m,化学式为Na αM aLi bCu cTi dO 2+β,满足电中性。式中,M为Ni、Co、Mn、Cr、V、Al、Fe、B、Si、Mg、Zn中的至少一种,具体地可为但不限于Ni、Mn、Fe中的一种、二种或三种;α为于1个正极材料下的Na元素原子数,0.5≤α≤1;2+β为于1个正极材料下的O元素原子数,-0.1≤β≤0.1;a为于1个正极材料下的M元素原子数,0<a<0.95;b为于1个正极材料下的Li元素原子数,0<b<0.25;c为于1个正极材料下的Cu元素原子数,0<c<0.3;d为于1个正极材料下的Ti元素原子数,0<d<0.6;a+b+c+d=1。此外,a+b+c可满足但不限于以下条件:0.05≤a+b+c< 1。
本发明的第二实施方式提出一种多元共掺杂钠离子正极材料的制备方法,多元共掺杂钠离子正极材料为如上所述,于此不再赘述。本方法为高温固相法,详细步骤如下:
首先,依照化学式Na αM aLi bCu cTi dO 2+β,中Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比秤取适量的含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物,混合得到混合料。具体地,含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物可独立地为但不限于金属氧化物、金属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种。举例而言,含M元素的化合物为含M元素的氧化物、含M元素的硝酸盐、含M元素的硫酸盐、含M元素的碳酸盐、与含M元素的氯化物中的至少一种;含Li元素的化合物为含Li元素的氧化物、含Li元素的硝酸盐、含Li元素的硫酸盐、含Li元素的碳酸盐、与含Li元素的氯化物中的至少一种;含Cu元素的化合物为含Cu元素的氧化物、含Cu元素的硝酸盐、含Cu元素的硫酸盐、含Cu元素的碳酸盐、与含Cu元素的氯化物中的至少一种;含Ti元素的化合物为含Ti元素的氧化物、含Ti元素的硝酸盐、含Ti元素的硫酸盐、含Ti元素的碳酸盐、与含Ti元素的氯化物中的至少一种。具体地,含Na元素的化合物可为但不限于碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。混合时可将含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、 与含Ti元素的化合物混合机械球磨得到混合料;机械球磨的速度可为但不限于100至1000rpm,机械球磨的时间可为但不限于1至48小时。
含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物的秤取量可依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量进行调整,理论量可分别以下列公式表示:
含Na元素的化合物的理论量=(α)x(含Na元素的化合物的分子量)x任意常数/(1个含Na元素的化合物中的Na元素原子数);
含M元素的化合物的理论量=(a)x(含M元素的化合物的分子量)x任意常数/(1个含M元素的化合物中的M元素原子数);
含Li元素的化合物的理论量=(b)x(含Li元素的化合物的分子量)x任意常数/(1个含Li元素的化合物中的Li元素原子数);
含Cu元素的化合物的理论量=(c)x(含Cu元素的化合物的分子量)x任意常数/(1个含Cu元素的化合物中的Cu元素原子数);
含Ti元素的化合物的理论量=(d)x(含Ti元素的化合物的分子量)x任意常数/(1个含Ti元素的化合物中的Ti元素原子数);
其中所有任意常数为相同的。
含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物的秤取量可为但不限于理论量的100%至110%,较佳地为102%至106%,更佳地为103%。于一较佳例中,含M元素的化合物、含Cu元素的化合物、与含Ti元 素的化合物的秤取量可为理论量的100%,而含Na元素的化合物、与含Li元素的化合物的秤取量可为理论量的100%至110%,较佳地为102%至106%,更佳地为103%。
接着,将混合料煅烧得到多元共掺杂钠离子正极材料。具体地,煅烧温度可为但不限于700至1050℃,煅烧时间可为但不限于6至36小时,升温速率可为但不限于1至20℃/分钟。此外,为使正极材料具有适当粒径,煅烧后更可冷却、研磨、过300目筛。
本发明的第三实施方式提出一种多元共掺杂钠离子正极材料的制备方法,多元共掺杂钠离子正极材料为如上所述,于此不再赘述。本方法为共沉淀法,详细步骤如下:
首先,依照化学式MCO 3或M(OH) 2中M元素的原子数比秤取适量的含M元素的硝酸盐或含M元素的硫酸盐溶于水中,用沉淀剂与络合剂调节pH使其均匀沉淀,干燥后得到前驱物MCO 3或M(OH) 2。具体地,用沉淀剂与络合剂调节pH可为但不限于7.5至13,沉淀剂的实例可为但不限于氢氧化钠或碳酸钠,络合剂的实例可为但不限于氨水,干燥温度可为但不限于80至150℃,干燥时间可为但不限于6至48小时。
其次,依照化学式Na αM aLi bCu cTi dO 2+β中Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比秤取适量的含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2,混合得到混合料。具体地,含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物可独立地为但不限 于金属氧化物、金属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种。举例而言,含Li元素的化合物为含Li元素的氧化物、含Li元素的硝酸盐、含Li元素的硫酸盐、含Li元素的碳酸盐、与含Li元素的氯化物中的至少一种;含Cu元素的化合物为含Cu元素的氧化物、含Cu元素的硝酸盐、含Cu元素的硫酸盐、含Cu元素的碳酸盐、与含Cu元素的氯化物中的至少一种;含Ti元素的化合物为含Ti元素的氧化物、含Ti元素的硝酸盐、含Ti元素的硫酸盐、含Ti元素的碳酸盐、与含Ti元素的氯化物中的至少一种。具体地,含Na元素的化合物为碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。混合时可将含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2混合机械球磨得到混合料;而机械球磨的速度可为但不限于100至1000rpm,机械球磨的时间可为但不限于1至48小时。
含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2的秤取量可依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量进行调整,理论量可分别以下列公式表示:
含Na元素的化合物的理论量=(α)x(含Na元素的化合物的分子量)x任意常数/(1个含Na元素的化合物中的Na元素原子数);
含Li元素的化合物的理论量=(b)x(含Li元素的化合物的分子量)x任意常数/(1个含Li元素的化合物中的Li元素原子数);
含Cu元素的化合物的理论量=(c)x(含Cu元素的化合物的分 子量)x任意常数/(1个含Cu元素的化合物中的Cu元素原子数);
含Ti元素的化合物的理论量=(d)x(含Ti元素的化合物的分子量)x任意常数/(1个含Ti元素的化合物中的Ti元素原子数);
前驱物MCO 3或M(OH) 2的理论量=(a)x(前驱物MCO 3或M(OH) 2的分子量)x任意常数;
其中所有任意常数为相同的。
含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2的秤取量可为理论量的100%至110%,较佳地为102%至106%,更佳地为103%。于一较佳例中,含Cu元素的化合物、含Ti元素的化合物、与前驱物MCO 3或M(OH) 2的秤取量可为理论量的100%,而含Na元素的化合物、与含Li元素的化合物的秤取量可为理论量的100%至110%,较佳地为102%至106%,更佳地为103%。
接着,将混合料煅烧得到多元共掺杂钠离子正极材料。具体地,煅烧温度可为但不限于700至1050℃,煅烧时间可为但不限于6至36小时,升温速率可为但不限于1至20℃/分钟。此外,为使正极材料具有适当粒径,煅烧后更可冷却、研磨、过300目筛。
本发明的第四实施方式提出一种钠离子电池,其包括多元共掺杂钠离子正极材料,而多元共掺杂钠离子正极材料为如上所述。具体地,可将多元共掺杂钠离子正极材料与粘结剂混合形成电池的正极。具体地,粘结剂的实例可为但不限于SP、PVDF中的至少一种。另外,多元共掺杂钠离子正极材料与粘结剂之间的质量比可为但不限于(70 至95):(5至30),较佳地为90:10。再者,钠离子电池可用于但不限于低速二轮车、电动汽车、风力发电、智能电网调峰、太阳能发电、家用电源、或通信基站的大规模储能设备。
利用以下实施例例示说明本发明:
实施例1
本实施例制备正极材料NaMn 0.5Ni 0.25Li 0.05Cu 0.1Ti 0.1O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.05Cu 0.1Ti 0.1O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂、氧化铜、与二氧化钛,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料(如图1所示)。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
实施例2
本实施例制备正极材料NaMn 0.5Ni 0.25Li 0.05Cu 0.15Ti 0.05O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.05Cu 0.15Ti 0.05O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂、氧化铜、二氧化钛,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中 机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
实施例3
本实施例制备正极材料NaMn 0.5Ni 0.25Li 0.075Cu 0.1Ti 0.075O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.075Cu 0.1Ti 0.075O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂、氧化铜、与二氧化钛,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料(如图2所示)。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
实施例4
本实施例制备正极材料NaMn 0.5Ni 0.25Li 0.075Cu 0.1Ti 0.075O 2,说明如 下:
依照化学式Mn 0.667Ni 0.333(OH) 2的化学计量比称取适量的硫酸镍和硫酸锰溶于一定量的水中,用氢氧化钠和氨水调节pH使其均匀沉淀,100℃干燥后得到前驱体Mn 0.667Ni 0.333(OH) 2
依照化学式NaMn 0.5Ni 0.25Li 0.075Cu 0.1Ti 0.075O 2的化学计量比称取适量的上述前驱体、碳酸钠、碳酸锂、氧化铜和二氧化钛并置于磨机中机械球磨8小时后得到混合料,球磨速率为200rpm。
将球磨后的混合料置于高温炉中以850℃煅烧,煅烧时间为15小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
实施例5
本实施例制备正极材料NaMn 0.4Ni 0.2Fe 0.15Li 0.075Cu 0.1Ti 0.075O 2,说明如下:
依照化学式NaMn 0.4Ni 0.2Fe 0.15Li 0.075Cu 0.1Ti 0.075O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、三氧化二铁、碳酸锂、氧化铜、二氧化钛,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极 材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例1
本对照例制备正极材料NaMn 0.5Ni 0.25Li 0.25O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.25O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例2
本对照例制备正极材料NaMn 0.5Ni 0.25Cu 0.25O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Cu 0.25O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、氧化铜,其中碳酸钠为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12 小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例3
本对照例制备正极材料NaMn 0.5Ni 0.25Ti 0.25O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Ti 0.25O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、氧化铜,其中碳酸钠为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例4
本对照例制备正极材料NaMn 0.5Ni 0.25Li 0.125Cu 0.125O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.125Cu 0.125O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂、氧化铜,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例5
本对照例制备正极材料NaMn 0.5Ni 0.25Li 0.125Ti 0.125O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Li 0.125Ti 0.125O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、碳酸锂、二氧化钛,其中碳酸钠和碳酸锂为理论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
对照例6
本对照例制备正极材料NaMn 0.5Ni 0.25Cu 0.125Ti 0.125O 2,说明如下:
依照化学式NaMn 0.5Ni 0.25Cu 0.125Ti 0.125O 2的化学计量比称取适量的碳酸钠、三氧化二锰、氧化镍、氧化铜、二氧化钛,其中碳酸钠为理 论添加量的103%,将上述原料放入球磨机中机械球磨6小时,球磨转速350rpm。
将球磨后的混合料置于高温炉中以875℃煅烧,煅烧时间为12小时,升温速率为5℃/分钟,经冷却、研磨、过300目筛后得到正极材料。
将上述制备的正极材料与SP、PVDF按质量比90:5:5制浆,经涂布、烘干、裁切后作为正极,并组装成扣式电池评估其电化学性能。
请参看图3,与标准品JCPDS 54-0887比较后,可看出此等实施例得到的正极材料具有R3-m的空间群。请参看图4,可看出此等实施例均可赋予电池立即的充放电效应。请参看图5,可看出此等实施例于100次充放电循环后仍赋予电池高容量保持。
请参看表1,实施例1至3的制备过程大致相同,且正极材料的Mn元素与Ni元素原子数比相同,由结果可得正极材料的Li元素、Fe元素与Ti元素的适当原子数比。实施例3与5的制备过程大致相同,正极材料的Li元素、Cu元素、与Ti元素原子数比相同,由结果可知正极材料含有Fe元素时会降低电池的性能。
请续参看表1,对比例1至3与实施例1的制备过程大致相同,且正极材料的Mn元素与Ni元素原子数比相同,由结果可得Li元素、Cu元素与Ti元素共同对电池产生的性能优于Li元素、Cu元素与Ti元素中任意一者,表示Li元素、Cu元素与Ti元素可对电池的性能产生协同作用。
请续参看表1,对比例4至6与实施例1的制备过程大致相同,且正极材料的Mn元素与Ni元素原子数比相同,由结果可得Li元素、Cu元素与Ti元素共同对电池产生的性能优于Li元素、Cu元素与Ti元素中任意二者,表示Li元素、Cu元素与Ti元素可对电池的性能产生协同作用。
表1、电化学测试结果
Figure PCTCN2022100733-appb-000001
以上涉及到公知常识的内容不作详细描述,本领域的技术人员能够理解。
以上所述仅为本发明的一些具体实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (15)

  1. 一种多元共掺杂钠离子正极材料,其特征在于,
    所述正极材料为O3相,空间群为R-3m,其化学式为Na αM aLi bCu cTi dO 2+β,其中M为Ni、Co、Mn、Cr、V、Al、Fe、B、Si、Mg、Zn中的至少一种,且0.5≤α≤1,-0.1≤β≤0.1,0<a<0.95,0<b<0.25,0<c<0.3,0<d<0.6,a+b+c+d=1,且满足电中性。
  2. 依据权利要求1所述的正极材料,其特征在于,M为Ni、Mn、Fe中的一种、二种或三种。
  3. 依据权利要求1所述的正极材料,其特征在于,0.05≤a+b+c<1。
  4. 一种依据权利要求1所述的正极材料的制备方法,其特征在于,所述方法包括:
    依照化学式Na αM aLi bCu cTi dO 2+β中Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比秤取适量的含Na元素的化合物、含M元素的化合物、含Li元素的化合物、含Cu元素的化合物、与含Ti元素的化合物,混合得到混合料;以及
    将所述混合料煅烧得到所述多元共掺杂钠离子正极材料。
  5. 依据权利要求4所述的制备方法,其特征在于,
    所述含M元素的化合物、所述含Li元素的化合物、所述含Cu元素的化合物、与所述含Ti元素的化合物独立地为金属氧化物、金 属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种;且/或
    所述含Na元素的化合物为碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。
  6. 依据权利要求4或5所述的制备方法,其特征在于,
    所述含Na元素的化合物的秤取量为依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量的100%至110%;且/或
    所述含Li元素的化合物的秤取量为理论量的100%至110%。
  7. 依据权利要求4所述的制备方法,其特征在于,
    所述混合步骤包括:将所述含Na元素的化合物、所述含M元素的化合物、所述含Li元素的化合物、所述含Cu元素的化合物、与所述含Ti元素的化合物,混合机械球磨得到所述混合料,其中机械球磨的速度为100至1000rpm,时间为1至48小时。
  8. 依据权利要求4所述的制备方法,其特征在于,煅烧温度为700至1050℃,时间为6至36小时,升温速率为1至20℃/分钟。
  9. 一种依据权利要求1所述的正极材料的制备方法,其特征在于,所述方法包括:
    依照化学式MCO 3或M(OH) 2中M元素的原子数比秤取适量的含M元素的硝酸盐或含M元素的硫酸盐溶于水中,用沉淀剂与络合剂调节pH使其均匀沉淀,干燥后得到前驱物MCO 3或M(OH) 2
    依照化学式Na αM aLi bCu cTi dO 2+β中Na元素、M元素、Li元素、 Cu元素、Ti元素的原子数比秤取适量的含Na元素的化合物、含Li元素的化合物、含Cu元素的化合物、含Ti元素的化合物、与所述前驱物MCO 3或M(OH) 2,混合得到混合料;以及
    将所述混合料煅烧得到所述多元共掺杂钠离子正极材料。
  10. 依据权利要求9所述的制备方法,其特征在于,
    所述含Li元素的化合物、所述含Cu元素的化合物、与所述含Ti元素的化合物独立地为金属氧化物、金属硝酸盐、金属硫酸盐、金属碳酸盐、与金属氯化物中的至少一种;且/或
    所述含Na元素的化合物为碳酸钠、氢氧化钠、与碳酸氢钠中的至少一种。
  11. 依据权利要求9或10所述的制备方法,其特征在于,
    所述含Na元素的化合物的秤取量为依照Na元素、M元素、Li元素、Cu元素、Ti元素的原子数比所计算取得的理论量的100%至110%;且/或
    所述含Li元素的化合物的秤取量为理论量的100%至110%。
  12. 依据权利要求9所述的制备方法,其特征在于,所述前驱物得到步骤中的pH为7.5至13,所述沉淀剂为氢氧化钠或碳酸钠,所述络合剂为氨水,所述干燥温度为80至150℃,且/或所述干燥时间为6至48小时。
  13. 依据权利要求9所述的制备方法,其特征在于,
    所述混合步骤包括:将所述含Na元素的化合物、所述含M元素的化合物、所述含Li元素的化合物、所述含Cu元素的化合物、与所 述含Ti元素的化合物,混合机械球磨得到所述混合料,其中机械球磨的速度为100至1000rpm,时间为1至48小时。
  14. 依据权利要求9所述的制备方法,其特征在于,煅烧温度为700至1050℃,时间为6至36小时,升温速率为1至20℃/分钟。
  15. 一种钠离子电池,其特征在于,所述电池包括:依据权利要求1所述的正极材料。
PCT/CN2022/100733 2022-05-13 2022-06-23 多元共掺杂钠离子正极材料及其制备方法与应用 WO2023216377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210524985.2 2022-05-13
CN202210524985.2A CN114899390B (zh) 2022-05-13 2022-05-13 多元共掺杂钠离子正极材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023216377A1 true WO2023216377A1 (zh) 2023-11-16

Family

ID=82721245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100733 WO2023216377A1 (zh) 2022-05-13 2022-06-23 多元共掺杂钠离子正极材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114899390B (zh)
WO (1) WO2023216377A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115275180A (zh) * 2022-08-26 2022-11-01 上海恩捷新材料科技有限公司 空位型钠离子正极材料及其制备方法与应用
CN116544417B (zh) * 2023-07-06 2024-03-19 宁波容百新能源科技股份有限公司 正极活性材料及其制备方法、正极片和钠离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673075A (zh) * 2017-01-03 2017-05-17 中国科学院化学研究所 一种改性o3型钠离子电池层状正极材料及其制备方法和应用
CN111370664A (zh) * 2020-03-18 2020-07-03 溧阳中科海钠科技有限责任公司 降低钠离子电池层状正极材料表面残碱含量的方法及应用
CN111435741A (zh) * 2019-01-11 2020-07-21 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及钠离子电池
CN112670497A (zh) * 2019-09-27 2021-04-16 宁德时代新能源科技股份有限公司 钠离子电池用正极活性材料、由该活性材料制成的钠离子电池、电池模块、电池包及装置
CN113764669A (zh) * 2021-08-23 2021-12-07 北京理工大学 高电压钠离子电池层状氧化物正极材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162250A (zh) * 2018-11-07 2020-05-15 中国科学院物理研究所 纯阳离子变价的高钠含量p2相层状氧化物材料、制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673075A (zh) * 2017-01-03 2017-05-17 中国科学院化学研究所 一种改性o3型钠离子电池层状正极材料及其制备方法和应用
CN111435741A (zh) * 2019-01-11 2020-07-21 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及钠离子电池
CN112670497A (zh) * 2019-09-27 2021-04-16 宁德时代新能源科技股份有限公司 钠离子电池用正极活性材料、由该活性材料制成的钠离子电池、电池模块、电池包及装置
CN111370664A (zh) * 2020-03-18 2020-07-03 溧阳中科海钠科技有限责任公司 降低钠离子电池层状正极材料表面残碱含量的方法及应用
CN113764669A (zh) * 2021-08-23 2021-12-07 北京理工大学 高电压钠离子电池层状氧化物正极材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG JIN; ZHOU ZHAOFU; LI YUSHAN; LI MENG; WANG FENG; YAO QINGRONG; WANG ZHONGMIN; ZHOU HUAIYING; DENG JIANQIU: "High-rate performance O3-NaNi0.4Mn0.4Cu0.1Ti0.1O2as a cathode for sodium ion batteries", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 792, 1 January 1900 (1900-01-01), CH , pages 1054 - 1060, XP085681754, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2019.04.053 *

Also Published As

Publication number Publication date
CN114899390A (zh) 2022-08-12
CN114899390B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US10446830B2 (en) High-voltage ternary positive electrode material for lithium-ion battery and preparation method thereof
CN109336193B (zh) 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN102983326B (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN103066275B (zh) 一种球形高电压镍锰酸锂正极材料的制备方法
WO2023216377A1 (zh) 多元共掺杂钠离子正极材料及其制备方法与应用
CN106229476B (zh) 一种阴阳离子复合掺杂尖晶石锰酸锂及其制备方法
CN103840148A (zh) 一种通过二次烧结制备多元复合锂离子电池正极材料的方法
CN102386394B (zh) 一种高电压锂离子正极材料镍锰酸锂的制备方法
CN104779385B (zh) 一种高比容量锂离子电池正极材料及其制备方法
CN105810934A (zh) 一种稳定富锂层状氧化物材料晶畴结构方法
CN113087025B (zh) 锂电池复合正极材料的前驱体及复合正极材料的制备方法
CN103633314A (zh) 一种复合改性锂离子电池用的正极材料锰酸锂制备方法
CN115000399A (zh) 一种类球状钠离子电池正极材料及其制备方法和钠离子电池
CN110459764B (zh) 一种锂离子电池正极材料及其制备方法与应用
CN103022471B (zh) 改善高镍三元正极材料电化学性能的方法
WO2024040925A1 (zh) 空位型钠离子正极材料及其制备方法与应用
CN111769286A (zh) 一种高电压镍锰酸锂正极材料及其制备方法
CN112952085A (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
CN115520910A (zh) 一种钠离子电池氧化物正极材料的制备方法
CN114804235A (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN106025256B (zh) 一种“双晶畴”富锂层状氧化物材料及制备方法
CN1750299A (zh) 一种锂二次电池正极材料及其制备方法
CN111342008A (zh) 一种氟化钾掺杂富锂锰基材料及其制备方法和应用
CN103413928B (zh) 高容量高压实金属氧化物正极材料及其制备方法
CN109037669A (zh) 一种改性镍钴铝酸锂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941323

Country of ref document: EP

Kind code of ref document: A1