WO2023216164A1 - 一种智能超表面的预编码方法及装置 - Google Patents

一种智能超表面的预编码方法及装置 Download PDF

Info

Publication number
WO2023216164A1
WO2023216164A1 PCT/CN2022/092318 CN2022092318W WO2023216164A1 WO 2023216164 A1 WO2023216164 A1 WO 2023216164A1 CN 2022092318 W CN2022092318 W CN 2022092318W WO 2023216164 A1 WO2023216164 A1 WO 2023216164A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
precoding
pmi
phase shift
reference signal
Prior art date
Application number
PCT/CN2022/092318
Other languages
English (en)
French (fr)
Inventor
池连刚
杨立
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/092318 priority Critical patent/WO2023216164A1/zh
Priority to PCT/CN2022/107535 priority patent/WO2023216419A1/zh
Publication of WO2023216164A1 publication Critical patent/WO2023216164A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a precoding method and device for an intelligent metasurface.
  • the wireless environment is an uncontrollable factor, and its uncontrollability usually has a negative effect on communication efficiency and reduces service quality.
  • signal attenuation limits the propagation distance of wireless signals, and multipath effects, reflection and refraction from large objects cause signal fading.
  • intelligent metasurfaces (reconfigurable intelligence surfaces, RIS) are deployed on the surfaces of various objects in a wireless transmission environment, and precoding the RIS is used to reflect signals incident on the surface to a specific direction. This enables channel control.
  • Embodiments of the present disclosure provide an intelligent metasurface precoding method and device.
  • the network equipment can control the precoding of the RIS through the PMI corresponding to some channels based on the RIS. On the basis of ensuring that the RIS achieves accurate precoding, The complexity of RIS precoding is reduced.
  • embodiments of the present disclosure provide a precoding method for intelligent metasurfaces.
  • the method is executed by a network device.
  • the method includes: receiving a precoding matrix indication PMI sent by a terminal device, where the PMI is the terminal device. Determined based on the reference signal sent by the smart metasurface RIS; based on the PMI, precoding indication information is sent to the RIS.
  • the network device may receive the precoding matrix indication PMI sent by the terminal device and determined based on the reference signal sent by the smart metasurface RIS, and then may send the precoding indication information to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • sending precoding indication information to the RIS based on the PMI includes:
  • the arrangement information of the first array element and the first phase shift determine the second phase shift used by the second array element in the RIS except the first array element;
  • sending precoding indication information to the RIS based on the PMI includes:
  • the arrangement information of the first array element and the first phase shift determine the second phase shift of the second array element in the RIS except the first array element;
  • phase shift matrix index is sent to the RIS.
  • the second phase shift used by the second array element in the RIS except the first array element is determined based on the arrangement information of the first array element and the first phase shift, include:
  • the two adjacent first array elements are determined according to the number of second array elements spaced between the two adjacent first array elements and the first phase shifts respectively used by the two adjacent first array elements.
  • Optional also includes:
  • the reference signal and/or,
  • embodiments of the present disclosure provide a precoding method for a smart metasurface RIS.
  • the method is executed by the RIS.
  • the method includes: receiving precoding indication information sent by a network device, wherein the precoding indication information is the The network device determines the PMI based on the precoding matrix indication sent by the terminal device, and the PMI is determined by the reference signal sent by the terminal device based on the RIS; the signal is reflected and transmitted based on the precoding indication information.
  • the RIS after receiving the precoding indication information sent by the network device and determined based on the precoding matrix indication PMI sent by the terminal device, the RIS can perform signal reflection and transmission according to the precoding indication information.
  • the PMI is determined by the terminal device based on the reference signal sent by the RIS. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • Optional also includes:
  • Optional also includes:
  • the first antenna port, the designated time-frequency domain position and the reference signal are determined.
  • embodiments of the present disclosure provide a precoding method for a smart metasurface RIS.
  • the method is executed by a terminal device.
  • the method includes: receiving a reference signal sent by the smart metasurface RIS; and determining a precoding matrix according to the reference signal.
  • the terminal device after receiving the reference signal sent by the smart metasurface RIS, the terminal device can determine the precoding matrix indication PMI based on the reference signal, and send the PMI to the network device. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • the reference signal received by the intelligent metasurface RIS includes:
  • the reference signal sent by the RIS is received.
  • Optional also includes:
  • the specified time-frequency domain position is determined.
  • an embodiment of the present disclosure provides a communication device, which on the network device side includes:
  • a transceiver module configured to receive a precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device;
  • a processing module configured to send precoding indication information to the RIS based on the PMI.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • processing module is used for:
  • the RIS transmitting reference signal and the PMI determine the first phase shift used by the first array element in the RIS that transmits the reference signal
  • the arrangement information of the first array element and the first phase shift determine the second phase shift used by the second array element in the RIS except the first array element;
  • processing module is used for:
  • the arrangement information of the first array element and the first phase shift determine the second phase shift of the second array element in the RIS except the first array element;
  • phase shift matrix index is sent to the RIS.
  • processing module is used for:
  • the two adjacent first array elements are determined.
  • the above transceiver module is also used for:
  • the reference signal and/or,
  • embodiments of the present disclosure provide a communication device, which on the RIS side includes:
  • a transceiver module configured to receive precoding indication information sent by the network device, where the precoding indication information is determined by the network device based on the precoding matrix indication PMI sent by the terminal device, and the PMI is determined by the terminal device based on Determined by the reference signal sent by the RIS;
  • a processing module configured to perform signal reflection and transmission according to the precoding indication information.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • the above transceiver module is also used for:
  • the above transceiver module is also used for:
  • the first antenna port, the designated time-frequency domain position and the reference signal are determined.
  • an embodiment of the present disclosure provides a communication device, which on the terminal device side includes:
  • Transceiver module used to receive the reference signal sent by the intelligent metasurface RIS
  • a processing module configured to determine the precoding matrix indicator PMI according to the reference signal
  • the above-mentioned transceiver module is also used to send the PMI to the network device.
  • the above transceiver module is used for:
  • the reference signal sent by the RIS is received.
  • processing module is also used for:
  • the specified time-frequency domain position is determined.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the third aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Perform the method described in the third aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause The device performs the method described in the third aspect above.
  • embodiments of the present disclosure provide a smart metasurface precoding system, which system includes the communication device described in the fourth aspect, the communication device described in the fifth aspect, and the communication device described in the sixth aspect, Alternatively, the system includes the communication device described in the seventh aspect, the communication device described in the eighth aspect, and the communication device described in the ninth aspect, or the system includes the communication device described in the tenth aspect, the communication device described in the eleventh aspect.
  • the communication device and the communication device according to the twelfth aspect, or the system includes the communication device according to the thirteenth aspect, the communication device according to the fourteenth aspect and the communication device according to the fifteenth aspect. .
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal device. When the instructions are executed, the terminal device is caused to execute the method described in the first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the third aspect. .
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the third aspect.
  • the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface for supporting network equipment to implement the functions involved in the first aspect, for example, determining or processing the functions involved in the above method. At least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting an auxiliary communication device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. at least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the second aspect, for example, determining or processing the functions involved in the above method. at least one of data and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in the third aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a precoding method for smart metasurfaces provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • FIG 11 is a schematic flowchart of another smart metasurface precoding method provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 14 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • PMI Precoding matrix indicator
  • the precoding matrix indication indicates the precoding matrix used for the closed-loop spatial multiplexing operation of the downlink multiple input multiple output system (multiple input multiple output, MIMO).
  • MIMO multiple input multiple output
  • the precoding codebook has different sizes. For example, in the case of 4 antennas, the codebook size is equal to 16, and the corresponding PMI feedback uses 4 bits; in the case of 2 antennas, the codebook sizes of 1/2 streams are 4 and 2 respectively, and the corresponding PMI feedback uses 2 or 1 bits.
  • Smart metasurface RIS is also called "reconfigurable smart surface” or “smart reflective surface”. From the outside, RIS is an ordinary thin plate. However, it can be flexibly deployed in the wireless communication propagation environment and control the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, thereby achieving the purpose of reshaping the wireless channel. Specifically, RIS can use precoding technology to reflect signals incident on its surface to a specific direction, thereby enhancing the signal strength at the receiving end and achieving channel control.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network device, a smart metasurface and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. Practical applications may include two One or more network devices, two or more intelligent relays, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11, a terminal device 12 and an intelligent metasurface 13 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • precoding at RIS and network equipment can be jointly designed through alternating optimization techniques.
  • this joint design method requires channel information of the entire RIS and is highly complex.
  • RIS precoding is performed based on the channel information of partial array elements in the RIS, thereby reducing the precoding complexity.
  • Figure 2 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • the RIS may contain some active array elements for sending reference signals for channel estimation, etc.
  • the terminal equipment can receive and measure the reference signal sent by the active array element of the RIS at a specified time-frequency domain position. Then, the precoding matrix indication PMI corresponding to the reference signal can be determined based on the reference signal. Then, the terminal The device can send the PMI to the network device so that the network device can control the RIS channel based on the PMI, that is, precode the RIS based on the active array element information of the RIS.
  • Step 202 Based on the PMI, send precoding indication information to the RIS.
  • the precoding indication information may include any of the following: PMI and incident angle information, first precoding matrix index and incident angle information, and phase shift matrix index.
  • the first precoding matrix index is the index of the precoding matrix generated based on PMI.
  • the first precoding matrix can reflect the reflection angle information corresponding to the entire RIS
  • the phase shift matrix index is the precoding phase generated based on PMI and incident angle information.
  • the index of the shift matrix which is the phase shift matrix corresponding to the entire RIS array.
  • the network device can directly send the PMI and the corresponding incident angle information to the RIS, so that the RIS can determine the first precoding matrix corresponding to the entire array based on the PMI, and then determine the first precoding matrix corresponding to the entire array based on the incident angle information and the first precoding Matrix, determine the phase shift matrix corresponding to the entire RIS, and then perform reflection or transmission of the signal based on the phase shift matrix.
  • the network device can also determine the first precoding matrix of the RIS based on the PMI, and then send the first precoding matrix index and incident angle information to the RIS, and then the RIS can determine the first precoding matrix and incident angle information based on the first precoding matrix and incident angle information. , determine the phase shift matrix corresponding to the entire RIS, and then perform reflection or transmission of the signal based on the phase shift matrix.
  • the network device can determine the phase shift matrix of the RIS based on the first precoding matrix and the incident angle information, and then directly send the phase shift matrix index to the RIS, and then the RIS The signal can be reflected or transmitted based on the phase shift matrix.
  • the network device may receive the precoding matrix indication PMI sent by the terminal device and determined based on the reference signal sent by the smart metasurface RIS, and then may send the precoding indication information to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • Figure 3 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • step 301 for the specific implementation process of step 301, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • Step 302 Determine the first phase shift used by the first array element in the RIS that transmits the reference signal based on the configuration information and PMI of the RIS transmitting reference signal.
  • the first array element may be an active array element used by the RIS to transmit the reference signal, and the configuration information may include the antenna port for transmitting the reference signal, the location of the time-frequency domain resource for transmitting the reference signal, etc. This disclosure does not limit this.
  • the network device can configure the configuration of transmitting the reference signal for the RIS to instruct the RIS to use the designated RIS array element (such as the first array element) to send the reference signal to the terminal device at the designated time-frequency domain position at the corresponding antenna port. Signal.
  • the designated RIS array element such as the first array element
  • the network device can determine the first phase shift of the first array element corresponding to the antenna port based on the PMI and the antenna port corresponding to the PMI.
  • Step 303 Determine the second phase shift used by the second array element in the RIS except the first array element based on the arrangement information of the first array element and the first phase shift.
  • the second array element may be an array element other than the first array element through which the RIS sends the reference signal.
  • the second array element may or may not contain an active array element.
  • the network device can determine the number of second array elements spaced between two adjacent first array elements and the first phase shift used by the two adjacent first array elements respectively. A second phase shift used for each second element spaced between the first elements.
  • the phase shift of array element 1 is 0°
  • the phase shift of array element 2 is 30°
  • array element 1 and array element 2 There are two second array elements, namely array element 3 and array element 4.
  • the phase shift of array element 3 can be 10°
  • the phase shift of array element 4 can be 20°.
  • Step 304 Determine the first precoding matrix index corresponding to the precoding matrix composed of the first phase shift and the second phase shift according to the preset mapping relationship between the precoding matrix index and the precoding matrix.
  • the network device can combine the first phase shift and the second phase shift according to the position of the corresponding array element in the RIS to determine the first precoding matrix of the entire RIS array. After that, the network device can combine the first phase shift and the second phase shift according to the preset precoding matrix.
  • the mapping relationship between the matrix index and the precoding matrix determines the first precoding matrix index associated with the first precoding matrix.
  • Step 305 Send the first precoding matrix index and incident angle information to the RIS.
  • the network device can send the first precoding matrix index and incident angle information to the RIS, and then the RIS can determine the first precoding matrix index according to the mapping relationship between the preset precoding matrix and the precoding matrix index.
  • the first precoding matrix is associated with the first precoding matrix, and the phase shift matrix corresponding to the entire RIS is determined based on the first precoding matrix and the incident angle information.
  • the network device can determine the sending reference signal in the RIS based on the configuration information and PMI of the reference signal sent by the RIS.
  • the second phase used by the second array element in the RIS except the first array element can be determined based on the arrangement information of the first array element and the first phase shift. shift, and then, according to the preset mapping relationship between the precoding matrix index and the precoding matrix, the first precoding matrix index corresponding to the precoding matrix composed of the first phase shift and the second phase shift can be determined, and sent to the RIS
  • the first precoding matrix index and incident angle information can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • Figure 4 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • Step 402 Determine the first phase shift used by the first array element in the RIS that transmits the reference signal based on the configuration information and PMI of the RIS transmitting reference signal.
  • Step 403 Determine the second phase shift used by the second array element in the RIS except the first array element based on the arrangement information of the first array element and the first phase shift.
  • Step 404 Determine the phase shift matrix based on the first phase shift, the second phase shift and the incident angle information.
  • the network device can combine the first phase shift and the second phase shift to determine a phase shift matrix, and determine another phase shift matrix based on the incident angle information. After that, the network device can determine based on the above two phase shift matrices.
  • the phase shift matrix corresponding to the entire RIS.
  • Step 405 Send the phase shift matrix index to RIS.
  • the network device can determine the phase shift matrix index corresponding to the phase shift matrix according to the preset mapping relationship between the phase shift matrix and the phase shift matrix index. After that, the network device can send the phase shift matrix index to the RIS.
  • the RIS That is, the phase shift matrix corresponding to the entire RIS can be determined based on the mapping relationship between the phase shift matrix index and the preset phase shift matrix and phase shift matrix index.
  • the network device can determine the sending reference signal in the RIS based on the configuration information and PMI of the reference signal sent by the RIS.
  • the second phase used by the second array element in the RIS except the first array element can be determined based on the arrangement information of the first array element and the first phase shift. shift, and then, the phase shift matrix can be determined based on the first phase shift, the second phase shift and the incident angle information, and the phase shift matrix index can be sent to the RIS. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 5 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 Send first instruction information to the RIS, where the first instruction information is used to instruct the RIS to use a designated RIS array element and use the first antenna port to send a reference signal to the terminal device at a designated time-frequency domain position.
  • the first antenna port is a designated array element, that is, the antenna port corresponding to the first array element.
  • the RIS may contain some active array elements for sending reference signals for channel estimation, etc. Therefore, the network device can send the first instruction information to the RIS to instruct the RIS to use the designated RIS array element and the first antenna port at the designated time-frequency domain position to send the reference signal to the terminal device.
  • Step 502 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • Step 503 Based on the PMI, send precoding indication information to the RIS.
  • the network device can send the first instruction information to the RIS to instruct the RIS to use the designated RIS array element and use the first antenna port to send the reference signal to the terminal device at the designated time-frequency domain position.
  • the network device can The precoding matrix indication PMI sent by the terminal device and determined by the terminal device based on the reference signal sent by the smart metasurface RIS is received, and then the precoding indication information can be sent to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 6 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure.
  • the method is executed by a network device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 Send second indication information to the terminal device, where the second indication information is used to indicate the time-frequency domain location of the reference signal sent by the RIS.
  • the network device sends second indication information to the terminal device to instruct the terminal device to receive the time-frequency domain position of the reference signal sent by the RIS. Therefore, the terminal device can receive the reference signal at the time-frequency domain position and respond to The reference signal at the time-frequency domain position is measured to determine the PMI corresponding to the reference signal.
  • Step 602 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • Step 603 Based on the PMI, send precoding indication information to the RIS.
  • the network device can send the second time-frequency domain position indication information used to indicate receiving the reference signal sent by the RIS to the terminal device, and then can receive the reference signal sent by the terminal device according to the smart metasurface RIS.
  • the determined precoding matrix indicates the PMI, and then the precoding indication information can be sent to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 7 is a schematic flowchart of an intelligent metasurface precoding method provided by an embodiment of the present disclosure.
  • the method is executed by a network device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 701 Send the first instruction information to the RIS, where the first instruction information is used to instruct the RIS to use the designated RIS array element and use the first antenna port to send the reference signal to the terminal device at the designated time-frequency domain position.
  • Step 702 Send second indication information to the terminal device, where the second indication information is used to indicate the time-frequency domain location of the reference signal sent by the RIS.
  • Step 703 Receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined based on the reference signal sent by the smart metasurface RIS by the terminal device.
  • Step 704 Based on the PMI, send precoding indication information to the RIS.
  • the network device can send the first instruction information to the RIS.
  • the terminal device sends the second time-frequency domain position indication information used to indicate receipt of the reference signal sent by the RIS, and then can receive the precoding matrix indication PMI sent by the terminal device and determined by the terminal device based on the reference signal sent by the smart metasurface RIS, Then, precoding indication information may be sent to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 8 is a schematic flowchart of a precoding method for an intelligent metasurface RIS provided by an embodiment of the present disclosure. The method is executed by the RIS. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 Receive precoding indication information sent by the network device, where the precoding indication information is determined by the network device based on the precoding matrix indication PMI sent by the terminal device, and the PMI is determined by the reference signal sent by the terminal device based on the RIS.
  • the RIS may contain some active array elements for sending reference signals for channel estimation, etc.
  • the terminal equipment can receive and measure the reference signal sent by the active array element of the RIS at a specified time-frequency domain position. Then, the precoding matrix indication PMI corresponding to the reference signal can be determined based on the reference signal. After that, the terminal The device can send the PMI to the network device, so that the network device sends precoding instruction information to the RIS according to the PMI to control the RIS channel, that is, to precode the RIS according to the active array element information of the RIS.
  • the precoding indication information may include any of the following: PMI and incident angle information, first precoding matrix index and incident angle information, and phase shift matrix index.
  • the first precoding matrix index is the index of the precoding matrix generated based on PMI.
  • the first precoding matrix can reflect the reflection angle information corresponding to the entire RIS.
  • the phase shift matrix index is the index of the precoding matrix generated based on PMI and incident angle information. , this phase shift matrix is the phase shift matrix corresponding to the entire RIS array.
  • the network device can directly send the PMI and the corresponding incident angle information to the RIS.
  • the network device may also determine the first precoding matrix of the RIS based on the PMI, and then send the first precoding matrix index and incident angle information to the RIS.
  • the network device may determine the phase shift matrix of the RIS based on the first precoding matrix and the incident angle information, and then directly send the phase shift matrix index to the RIS.
  • Step 802 Perform signal reflection and transmission according to the precoding instruction information.
  • the RIS can determine the first precoding matrix corresponding to the entire array based on the PMI, and then determine the first precoding matrix based on the incident angle information and the first precoding matrix.
  • the phase shift matrix corresponding to the entire RIS, and then the signal is reflected or transmitted based on the phase shift matrix.
  • the RIS can determine the first precoding matrix corresponding to the entire RIS based on the first precoding matrix index, and then can determine the first precoding matrix corresponding to the entire RIS based on the first precoding matrix and incident angle information.
  • Angle information is used to determine the phase shift matrix corresponding to the entire RIS, and then the signal is reflected or transmitted based on the phase shift matrix.
  • the RIS can determine the phase shift matrix corresponding to the entire RIS based on the phase shift matrix index, and then the signal can be reflected or transmitted based on the phase shift matrix.
  • the RIS after receiving the precoding indication information sent by the network device and determined based on the precoding matrix indication PMI sent by the terminal device, the RIS can perform signal reflection and transmission according to the precoding indication information.
  • the PMI is determined by the terminal device based on the reference signal sent by the RIS. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • Figure 9 is a schematic flowchart of a precoding method for a smart metasurface RIS provided by an embodiment of the present disclosure. The method is executed by the RIS. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 Determine the first antenna port, the designated time-frequency domain position and the reference signal according to the configuration information of the transmission reference signal sent by the network device.
  • the first antenna port is a designated array element, that is, the antenna port corresponding to the first array element.
  • the configuration information may include the antenna port for transmitting the reference signal, the time-frequency domain resource location for transmitting the reference signal, etc. This disclosure does not make any reference to this. limit.
  • the RIS may contain some active array elements for sending reference signals for channel estimation, etc. Therefore, the network device can send the configuration information for transmitting the reference signal to the RIS to instruct the RIS to use the designated RIS array element and the first antenna port to transmit the reference signal to the terminal device at the designated time-frequency domain position.
  • RIS can also determine the first antenna port, designated time-frequency domain position and reference signal according to the protocol agreement.
  • Step 902 Use the designated RIS array element and use the first antenna port to send the reference signal to the terminal device at the designated time-frequency domain position.
  • Step 903 Receive precoding indication information sent by the network device, where the precoding indication information is determined by the network device based on the precoding matrix indication PMI sent by the terminal device, and the PMI is determined by the reference signal sent by the terminal device based on the RIS.
  • Step 904 Perform signal reflection and transmission according to the precoding instruction information.
  • RIS determines the first antenna port, the designated time-frequency domain position and the reference signal according to the configuration information of the transmission reference signal sent by the network device, it can use the designated RIS array element and use the first antenna port to
  • the reference signal is sent to the terminal device at the specified time-frequency domain position.
  • the precoding indication information sent by the network device based on the precoding matrix indication PMI sent by the terminal device can be sent, and the signal is reflected and reflected based on the precoding indication information. transmission.
  • the PMI is determined by the terminal device based on the reference signal sent by the RIS. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 10 is a schematic flowchart of a precoding method for a smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is executed by a terminal device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • Step 1001 Receive the reference signal sent by the smart metasurface RIS.
  • the RIS may contain some active array elements for sending reference signals for channel estimation, etc. Therefore, the RIS can determine the first antenna port and the designated time-frequency domain according to the protocol agreement or the instruction information sent by the network device to instruct the RIS to use the active array element to send the reference signal to the terminal device at the designated time-frequency domain position. Domain position and reference signal, and then the RIS can use the first antenna port to send the reference signal to the terminal device at the specified time-frequency domain position.
  • Step 1002 Determine the precoding matrix indicator PMI according to the reference signal.
  • the terminal equipment can receive and measure the reference signal sent by the active array element of the RIS at a specified time-frequency domain position, and then determine the precoding matrix indication PMI corresponding to the reference signal based on the reference signal.
  • Step 1003 Send PMI to the network device.
  • the terminal device can send the PMI to the network device.
  • the network device controls the precoding of the RIS according to the configuration information and PMI of the reference signal transmitted by the RIS. That is, based on the active array element information of the RIS, the network device controls the precoding of the RIS. Perform precoding.
  • the terminal device after receiving the reference signal sent by the smart metasurface RIS, the terminal device can determine the precoding matrix indication PMI based on the reference signal, and send the PMI to the network device. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • Figure 11 is a schematic flowchart of a precoding method for a smart metasurface RIS provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 Determine the designated time-frequency domain location according to the instruction information sent by the network device.
  • the network device sends instruction information to the terminal device to instruct the terminal device to receive the time-frequency domain position of the reference signal sent by the RIS. Therefore, the terminal device can determine the time-frequency domain position of the reference signal sent by the RIS as the designated time-frequency domain position.
  • the terminal device can also determine the designated time-frequency domain position according to the protocol agreement.
  • Step 1102 Receive the reference signal sent by the RIS at a designated time-frequency domain position.
  • Step 1103 Determine the precoding matrix indicator PMI according to the reference signal.
  • Step 1104 Send the PMI to the network device.
  • the terminal device after the terminal device determines the designated time-frequency domain position according to the instruction information sent by the network device, it can receive the reference signal sent by the RIS at the designated time-frequency domain position, and then determine the precoding based on the reference signal.
  • the matrix indicates the PMI and sends the PMI to the network device. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present disclosure.
  • the communication device 1200 shown in FIG. 12 may include a processing module 1201 and a transceiver module 1202.
  • the transceiving module 1202 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1202 may implement the sending function and/or the receiving function.
  • the communication device 1200 may be a network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • the communication device 1200 is on the network device side, where:
  • the transceiver module 1202 is configured to receive the precoding matrix indication PMI sent by the terminal device, where the PMI is determined according to the reference signal sent by the smart metasurface RIS by the terminal device;
  • the processing module 1201 is configured to send precoding indication information to the RIS based on the PMI.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • processing module 1201 is used for:
  • the arrangement information of the first array element and the first phase shift determine the second phase shift used by the second array element in the RIS except the first array element;
  • processing module 1201 is used for:
  • the arrangement information of the first array element and the first phase shift determine the second phase shift of the second array element in the RIS except the first array element;
  • phase shift matrix index is sent to the RIS.
  • processing module 1201 is used for:
  • the two adjacent first array elements are determined according to the number of second array elements spaced between the two adjacent first array elements and the first phase shifts respectively used by the two adjacent first array elements.
  • transceiver module 1201 is also used for:
  • the reference signal and/or,
  • the network device may receive the precoding matrix indication PMI sent by the terminal device and determined based on the reference signal sent by the smart metasurface RIS, and then may send the precoding indication information to the RIS based on the PMI. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to the partial channel based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • the communication device 1200 may be a RIS, a device in the RIS, or a device that can be used in conjunction with the RIS.
  • the transceiver module 1202 is configured to receive precoding indication information sent by the network device, where the precoding indication information is determined by the network device based on the precoding matrix indication PMI sent by the terminal device, and the PMI is the terminal device. Determined based on the reference signal sent by the RIS;
  • the processing module 1202 is configured to perform signal reflection and transmission according to the precoding indication information.
  • the precoding indication information includes any of the following:
  • the PMI and incident angle information the first precoding matrix index and incident angle information, and the phase shift matrix index;
  • the first precoding matrix index is an index of a precoding matrix generated based on the PMI
  • the phase shift matrix index is an index of a precoding phase shift matrix generated based on the PMI and incident angle information.
  • transceiver module 1201 is also used for:
  • transceiver module 1202 is also used for:
  • the first antenna port, the designated time-frequency domain position and the reference signal are determined.
  • the RIS after receiving the precoding indication information sent by the network device and determined based on the precoding matrix indication PMI sent by the terminal device, the RIS can perform signal reflection and transmission according to the precoding indication information.
  • the PMI is determined by the terminal device based on the reference signal sent by the RIS. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • the communication device 1200 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • Transceiver module 1202 used to receive the reference signal sent by the intelligent metasurface RIS;
  • Processing module 1201 configured to determine the precoding matrix indicator PMI according to the reference signal
  • the above-mentioned transceiving module 1202 is also used to send the PMI to the network device.
  • transceiver module 1202 is used for:
  • the reference signal sent by the RIS is received.
  • processing module 1201 is also used for:
  • the specified time-frequency domain position is determined.
  • the terminal device after receiving the reference signal sent by the smart metasurface RIS, the terminal device can determine the precoding matrix indication PMI based on the reference signal, and send the PMI to the network device. Therefore, the network equipment can control the precoding of RIS through the PMI corresponding to some channels based on RIS, which reduces the complexity of RIS precoding on the basis of ensuring that RIS achieves accurate precoding.
  • FIG 13 is a schematic structural diagram of another communication device 1300 provided by an embodiment of the present disclosure.
  • the communication device 1300 may be a network device, a smart metasurface, a terminal device, a chip, a chip system, or a processor that supports network equipment to implement the above method, or a smart metasurface that supports the above method.
  • the chip, chip system, or processor of the method may also be a chip, chip system, or processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1300 may include one or more processors 1301.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1300 may also include one or more memories 1302, on which a computer program 1304 may be stored.
  • the processor 1301 executes the computer program 1304, so that the communication device 1300 performs the steps described in the above method embodiments. method.
  • data may also be stored in the memory 1302.
  • the communication device 1300 and the memory 1302 can be provided separately or integrated together.
  • the communication device 1300 may also include a transceiver 1305 and an antenna 1306.
  • the transceiver 1305 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1305 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1300 may also include one or more interface circuits 1307.
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 executes the code instructions to cause the communication device 1300 to perform the method described in the above method embodiment.
  • the communication device 1300 is a network device: the processor 1301 is used to execute step 202 in Figure 2; step 302, step 303, step 304, and step 305 in Figure 3; step 402, step 403, step 404, and step in Figure 4 405; step 503 in Figure 5; step 603 in Figure 6; step 704 in Figure 7, etc.
  • the communication device 1300 is a smart metasurface: the transceiver 1305 is used to perform step 801 in Figure 8; step 901, step 902, and step 903 in Figure 9.
  • the communication device 1300 is a terminal device: the transceiver 1305 is used to perform steps 1001 and 1003 in Figure 10; steps 1102 and 1104 in Figure 11.
  • the processor 1301 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1301 may store a computer program 1303, and the computer program 1303 runs on the processor 1301, causing the communication device 1300 to perform the method described in the above method embodiment.
  • the computer program 1303 may be solidified in the processor 1301, in which case the processor 1301 may be implemented by hardware.
  • the communication device 1300 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or an intelligent relay, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 13 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 14 refer to the schematic structural diagram of the chip shown in FIG. 14 .
  • the chip shown in Figure 14 includes a processor 1401 and an interface 1403.
  • the number of processors 1401 may be one or more, and the number of interfaces 1403 may be multiple.
  • Interface 1403 is used to execute step 801 in Figure 8; step 901, step 902, step 903, etc. in Figure 9.
  • Interface 1403 is used to execute step 1001 and step 1003 in Figure 10; step 1102 and step 1104 in Figure 11, etc.
  • the chip also includes a memory 1403, which is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开实施例公开了一种智能超表面的预编码方法,可应用于通信技术领域,其中,由网络设备执行的方法包括:可以接收终端设备发送的根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,之后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。

Description

一种智能超表面的预编码方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种智能超表面的预编码方法及装置。
背景技术
传统通信中无线环境是不可控因素,其不可控性通常对通信效率有负面作用,会降低服务质量。比如,信号衰减限制了无线信号的传播距离,多径效应、大型物体的反射和折射导致信号衰落。
相关技术中,通过将智能超表面(reconfigurable intelligence surface,RIS)部署在无线传输环境中各类物体的表面,并通过对RIS进行预编码,来使入射到其表面的信号反射到特定的方向,从而实现对信道的控制。
发明内容
本公开实施例提供一种智能超表面的预编码方法及装置,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
第一方面,本公开实施例提供一种智能超表面的预编码方法,该方法由网络设备执行,方法包括:接收终端设备发送的预编码矩阵指示PMI,其中,所述PMI为所述终端设备根据智能超表面RIS发送的参考信号确定的;基于所述PMI,向所述RIS发送预编码指示信息。
本公开中,网络设备可以接收终端设备发送的根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,之后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,所述基于所述PMI,向所述RIS发送预编码指示信息,包括:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元使用的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移;
根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由所述第一相移及所述第二相移组成的预编码矩阵对应的第一预编码矩阵索引;
向所述RIS发送所述第一预编码矩阵索引及入射角信息。
可选的,所述基于所述PMI,向所述RIS发送预编码指示信息,包括:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元的第二相移;
根据所述第一相移、所述第二相移及入射角信息,确定相移矩阵;
向所述RIS发送所述相移矩阵索引。
可选的,所述根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移,包括:
根据相邻的两个第一阵元之间间隔的第二阵元数量、及所述相邻的两个第一阵元分别使用的第一相移,确定所述相邻的两个第一阵元之间间隔的每个第二阵元使用的第二相移。
可选的,还包括:
向所述RIS发送第一指示信息,其中,所述第一指示信息用于指示所述RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送所述参考信号;和/或,
向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示接收RIS发送的所述参考信号的时频域位置。
第二方面,本公开实施例提供一种智能超表面RIS的预编码方法,该方法由RIS执行,方法包括:接收网络设备发送的预编码指示信息,其中,所述预编码指示信息为所述网络设备基于终端设备发送的预编码矩阵指示PMI确定的,所述PMI为所述终端设备根据所述RIS发送的参考信号确定的;根据所述预编码指示信息,进行信号的反射和透射。
本公开中,RIS在接收网络设备发送的基于终端设备发送的预编码矩阵指示PMI确定的预编码指示信息后,可以根据预编码指示信息,进行信号的反射和透射。其中,PMI为终端设备根据RIS发送的参考信号确定的。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,还包括:
使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
可选的,还包括:
根据所述网络设备发送的发射参考信号的配置信息,确定所述第一天线端口、指定的时频域位置及所述参考信号;或者,
根据协议约定,确定所述第一天线端口、指定的时频域位置及所述参考信号。
第三方面,本公开实施例提供一种智能超表面RIS的预编码方法,该方法由终端设备执行,方法包括:接收智能超表面RIS发送的参考信号;根据所述参考信号,确定预编码矩阵指示PMI;向网络设备发送所述PMI。
本公开中,终端设备在接收智能超表面RIS发送的参考信号后,可以根据参考信号,确定预编码矩阵指示PMI,并向网络设备发送PMI。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
可选的,所述接收智能超表面RIS发送的参考信号,包括:
在指定的时频域位置,接收所述RIS发送的参考信号。
可选的,还包括:
根据所述网络设备发送的指示信息,确定所述指定的时频域位置;或者,
根据协议约定,确定所述指定的时频域位置。
第四方面,本公开实施例提供一种通信装置,在网络设备侧,包括:
收发模块,用于接收终端设备发送的预编码矩阵指示PMI,其中,所述PMI为所述终端设备根据智能超表面RIS发送的参考信号确定的;
处理模块,用于基于所述PMI,向所述RIS发送预编码指示信息。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,上述处理模块,用于:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵 元使用的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移;
根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由所述第一相移及所述第二相移组成的预编码矩阵对应的第一预编码矩阵索引;
向所述RIS发送所述第一预编码矩阵索引及入射角信息。
可选的,上述处理模块,用于:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元的第二相移;
根据所述第一相移、所述第二相移及入射角信息,确定相移矩阵;
向所述RIS发送所述相移矩阵索引。
可选的,上述处理模块,用于:
根据相邻的两个第一阵元之间间隔的第二天线端口数量、及所述相邻的两个第一阵元分别使用的第一相移,确定所述相邻的两个第一阵元之间间隔的每个第二阵元使用的第二相移。
可选的,上述收发模块,还用于:
向所述RIS发送第一指示信息,其中,所述第一指示信息用于指示所述RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送所述参考信号;和/或,
向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示接收RIS发送的所述参考信号的时频域位置。
第五方面,本公开实施例提供一种通信装置,在RIS侧,包括:
收发模块,用于接收网络设备发送的预编码指示信息,其中,所述预编码指示信息为所述网络设备基于终端设备发送的预编码矩阵指示PMI确定的,所述PMI为所述终端设备根据所述RIS发送的参考信号确定的;
处理模块,用于根据所述预编码指示信息,进行信号的反射和透射。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,上述收发模块,还用于:
使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
可选的,上述收发模块,还用于:
根据所述网络设备发送的发射参考信号的配置信息,确定所述第一天线端口、指定的时频域位置及所述参考信号;或者,
根据协议约定,确定所述第一天线端口、指定的时频域位置及所述参考信号。
第六方面,本公开实施例提供一种通信装置,在终端设备侧,包括:
收发模块,用于接收智能超表面RIS发送的参考信号;
处理模块,用于根据所述参考信号,确定预编码矩阵指示PMI;
上述收发模块,还用于向网络设备发送所述PMI。
可选的,上述收发模块,用于:
在指定的时频域位置,接收所述RIS发送的参考信号。
可选的,上述处理模块,还用于:
根据所述网络设备发送的指示信息,确定所述指定的时频域位置;或者,
根据协议约定,确定所述指定的时频域位置。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的 计算机程序时,执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第三方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第十一方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第十二方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第三方面所述的方法。
第十三方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十四方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十五方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第三方面所述的方法。
第十六方面,本公开实施例提供一种智能超表面的预编码***,该***包括第四方面所述的通信装置、第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置、第八方面所述的通信装置以及第九方面所述的通信装置,或者,该***包括第十方面所述的通信装置、第十一方面所述的通信装置以及第十二方面所述的通信装置,或者,该***包括第十三方面所述的通信装置、第十四方面所述的通信装置以及第十五方面所述的通信装置。
第十七方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十八方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十九方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第三方面所述的方法。
第二十方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第二十一方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第二十二方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面所述的方法。
第二十三方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十四方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持辅助通信设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十五方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。 在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十六方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第二十七方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第二十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第三方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开实施例提供的一种智能超表面的预编码方法的流程示意图;
图3是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图4是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图5是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图6是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图7是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图8是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图9是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图10是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图11是本公开实施例提供的另一种智能超表面的预编码方法的流程示意图;
图12是本公开实施例提供的一种通信装置的结构示意图;
图13是本公开实施例提供的另一种通信装置的结构示意图;
图14是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本公开涉及的术语。
1、预编码矩阵指示(precoding matrix indicator,PMI)
预编码矩阵指示,指示了采用的预编码矩阵,用于下行多输入多输出***(multiple input multiple output,MIMO)闭环空间复用的操作。根据天线和流的数目,预编码码本有不同的大小。例如4天线情况下,码本大小等于16,相应的PMI反馈使用4个比特;而2天线情况下,1/2流的码本大小分别为4和2,相应的PMI反馈使用2个或者1个比特。
2、智能超表面(reconfigurable intelligence surface,RIS)
智能超表面RIS,也被称为“可重构智能表面”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
为了更好的理解本公开实施例公开的一种智能超表面的预编码方法,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、一个智能超表面和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的智能中继,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个终端设备12和一个智能 超表面13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
通常,可以通过交替优化技术对RIS和网络设备处的预编码进行联合设计。但是,该联合设计方法需要整个RIS的信道信息,复杂度较高。本公开中,通过基于RIS中部分阵元的信道信息进行RIS预编码,从而降低了预编码的复杂度。
请参见图2,图2是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
本公开中,考虑到RIS中可以包含部分有源阵元,用于发送参考信号以进行信道估计等。由此,终端设备可以接收并测量RIS的有源阵元在某一指定时频域位置发送的参考信号,之后,即可根据该参考信号确定参考信号对应的预编码矩阵指示PMI,然后,终端设备可以将该PMI发送给网络设备,以便网络设备根据PMI实现对RIS信道的控制,即根据RIS的有源阵元信息,对RIS进行预编码。
步骤202,基于PMI,向RIS发送预编码指示信息。
其中,预编码指示信息可以包括以下任一项:PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引。其中,第一预编码矩阵索引为根据PMI生成的预编码矩阵的索引,第一预编码矩阵可以反映整个RIS对应的反射角信息,相移矩阵索引为根据PMI与入射角信息生成的预编码相移矩阵的索引,该相移矩阵为整个RIS阵列对应的相移矩阵。
本公开中,网络设备可以直接将PMI及对应的入射角信息发送给RIS,从而RIS即可根据该PMI,确定整个阵列对应的第一预编码矩阵,进而再根据入射角信息及第一预编码矩阵,确定整个RIS对应的相移矩阵,进而基于相移矩阵进行信号的反射或透射。
或者,网络设备也可以根据PMI确定RIS的第一预编码矩阵,之后即可将第一预编码矩阵索引及入射角信息发送给RIS,之后RIS即可根据该第一预编码矩阵及入射角信息,确定整个RIS对应的相移矩阵,进而再基于相移矩阵进行信号的反射或透射。
或者,网络设备还可以在确定RIS对应的第一预编码矩阵后,根据该第一预编码矩阵及入射角信息确定RIS的相移矩阵,之后直接将相移矩阵索引发送给RIS,之后RIS即可基于相移矩阵进行信号的 反射或透射。
本公开中,网络设备可以接收终端设备发送的根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,之后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图3,图3是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
本公开中,步骤301的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤302,根据RIS发射参考信号的配置信息及PMI,确定RIS中发送参考信号的第一阵元使用的第一相移。
其中,第一阵元可以为RIS发送参考信号的有源阵元,配置信息可以包括发射参考信号的天线端口,及发送参考信号的时频域资源位置等,本公开对此不作限制。
本公开中,网络设备可以为RIS配置发射参考信号的配置,以指示RIS利用指定的RIS阵元(比如第一阵元)在对应的天线端口,在指定的时频域位置向终端设备发送参考信号。此外,发射参考信号的天线端口与有源阵元之间存在对应关系,网络设备可以根据PMI及PMI对应的天线端口,确定该天线端口对应的第一阵元的第一相移。步骤303,根据第一阵元的排布信息及第一相移,确定RIS中除第一阵元外的第二阵元使用的第二相移。
其中,第二阵元可以为RIS发送参考信号的第一阵元之外的其它阵元。可选的,第二阵元中,可能包含有源阵元,也可能未包含有源阵元。
本公开中,网络设备可以根据相邻的两个第一阵元之间间隔的第二阵元数量、及相邻的两个第一阵元分别使用的第一相移,确定相邻的两个第一阵元之间间隔的每个第二阵元使用的第二相移。
比如,假设相邻的两个第一阵元分别为阵元1和阵元2,阵元1的相移为0°,阵元2的相移为30°,且阵元1和阵元2之间存在2个第二阵元为阵元3和阵元4,则通过插值,可以确定阵元3的相移可以为10°,阵元4的相移可以为20°。
步骤304,根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由第一相移及第二相移组成的预编码矩阵对应的第一预编码矩阵索引。
本公开中,网络设备可以将第一相移及第二相移按照对应的阵元在RIS中的位置进行组合,确定整个RIS阵列的第一预编码矩阵,之后,可以根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定该第一预编码矩阵关联的第一预编码矩阵索引。
步骤305,向RIS发送第一预编码矩阵索引及入射角信息。
本公开中,网络设备可以将第一预编码矩阵索引及入射角信息发送给RIS,之后,RIS即可根据预设的预编码矩阵与预编码矩阵索引的映射关系,确定第一预编码矩阵索引关联的第一预编码矩阵,并根据第一预编码矩阵及入射角信息确定整个RIS对应的相移矩阵。
本公开中,网络设备在接收终端设备发送的由终端设备根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI后,可以根据RIS发射参考信号的配置信息及PMI,确定RIS中发送参考信号的第一阵元使用的第一相移,之后,可以根据第一阵元的排布信息及第一相移,确定RIS中除第一阵元外的第二阵元使用的第二相移,然后,可以根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由第一相移及第二相移组成的预编码矩阵对应的第一预编码矩阵索引,并向RIS发送第一预编码矩阵索引及入射角信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图4,图4是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
步骤402,根据RIS发射参考信号的配置信息及PMI,确定RIS中发送参考信号的第一阵元使用的第一相移。
步骤403,根据第一阵元的排布信息及第一相移,确定RIS中除第一阵元外的第二阵元使用的第二相移。
本公开中,步骤401-步骤403的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤404,根据第一相移、第二相移及入射角信息,确定相移矩阵。
本公开中,网络设备可以将第一相移及第二相移进行组合,确定一个相移矩阵,并根据入射角信息确定另一个相移矩阵,之后,可以根据以上两个相移矩阵,确定整个RIS对应的相移矩阵。
步骤405,向RIS发送相移矩阵索引。
本公开中,网络设备可以根据预设的相移矩阵与相移矩阵索引的映射关系,确定相移矩阵对应的相移矩阵索引,之后,可以将相移矩阵索引发送给RIS,由此,RIS即可根据相移矩阵索引,与预设的相移矩阵与相移矩阵索引的映射关系,确定整个RIS对应的相移矩阵。
本公开中,网络设备在接收终端设备发送的由终端设备根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI后,可以根据RIS发射参考信号的配置信息及PMI,确定RIS中发送参考信号的第一阵元使用的第一相移,之后,可以根据第一阵元的排布信息及第一相移,确定RIS中除第一阵元外的第二阵元使用的第二相移,然后,可以根据第一相移、第二相移及入射角信息,确定相移矩阵,并向RIS发送相移矩阵索引。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图5,图5是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,向RIS发送第一指示信息,其中,第一指示信息用于指示RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
其中,第一天线端口为指定的阵元,即第一阵元对应的天线端口。
本公开中,考虑到RIS中可以包含部分有源阵元,用于发送参考信号以进行信道估计等。由此,网络设备可以向RIS发送第一指示信息,以指示RIS利用使用指定的RIS阵元,及第一天线端口在指定的时频域位置,向终端设备发送参考信号。
步骤502,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
步骤503,基于PMI,向RIS发送预编码指示信息。
本公开中,步骤502-步骤503的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备可以向RIS发送用于指示RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号的第一指示信息,之后,可以接收终端设备发送的由终端设备根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,然后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图6,图6是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,向终端设备发送第二指示信息,其中,第二指示信息用于指示接收RIS发送的参考信号的时频域位置。
本公开中,网络设备向终端设备发送第二指示信息,以指示终端设备接收RIS发送的参考信号的时频域位置,由此,终端设备可以在该时频域位置上接收参考信号,并对该时频域位置上的参考信号进行测量,以确定参考信号对应的PMI。
步骤602,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
步骤603,基于PMI,向RIS发送预编码指示信息。
本公开中,步骤602-步骤603的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备可以向终端设备发送用于指示接收RIS发送的参考信号的时频域位置第二指 示信息,之后,可以接收终端设备发送的由终端设备根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,然后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图7,图7是本公开实施例提供的一种智能超表面的预编码方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,向RIS发送第一指示信息,其中,第一指示信息用于指示RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号
步骤702,向终端设备发送第二指示信息,其中,第二指示信息用于指示接收RIS发送的参考信号的时频域位置。
步骤703,接收终端设备发送的预编码矩阵指示PMI,其中,PMI为终端设备根据智能超表面RIS发送的参考信号确定的。
步骤704,基于PMI,向RIS发送预编码指示信息。
本公开中,步骤701-步骤704的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在向RIS发送用于指示RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号的第一指示信息后,可以向终端设备发送用于指示接收RIS发送的参考信号的时频域位置第二指示信息,之后,可以接收终端设备发送的由终端设备根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,然后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图8,图8是本公开实施例提供的一种智能超表面RIS的预编码方法的流程示意图,该方法由RIS执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,接收网络设备发送的预编码指示信息,其中,预编码指示信息为网络设备基于终端设备发送的预编码矩阵指示PMI确定的,PMI为终端设备根据RIS发送的参考信号确定的。
本公开中,考虑到RIS中可以包含部分有源阵元,用于发送参考信号以进行信道估计等。由此,终端设备可以接收并测量RIS的有源阵元在某一指定时频域位置发送的参考信号,之后,即可根据该参考信号确定参考信号对应的预编码矩阵指示PMI,之后,终端设备可以将该PMI发送给网络设备,以便网络设备根据PMI,向RIS发送预编码指示信息,实现对RIS信道的控制,即根据RIS的有源阵元信息,对RIS进行预编码。
其中,预编码指示信息可以包括以下任一项:PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引。第一预编码矩阵索引为根据PMI生成的预编码矩阵的索引,第一预编码矩阵可以反映整个RIS对应的反射角信息,相移矩阵索引为根据PMI与入射角信息生成的预编码矩阵的索引,该相移矩阵为整个RIS阵列对应的相移矩阵。
本公开中,网络设备可以直接将PMI及对应的入射角信息发送给RIS。
或者,网络设备也可以根据PMI确定RIS的第一预编码矩阵,之后即可将第一预编码矩阵索引及入射角信息发送给RIS。
或者,网络设备还可以在确定RIS对应的第一预编码矩阵后,根据该第一预编码矩阵及入射角信息确定RIS的相移矩阵,之后直接将相移矩阵索引发送给RIS。
步骤802,根据预编码指示信息,进行信号的反射和透射。
本公开中,当指示信息中包含PMI及对应的入射角信息时,RIS可以根据该PMI,确定整个阵列对应的第一预编码矩阵,进而再根据入射角信息及该第一预编码矩阵,确定整个RIS对应的相移矩阵,进而基于相移矩阵进行信号的反射或透射。
或者,当指示信息中包含第一预编码矩阵索引及入射角信息时,RIS可以根据第一预编码矩阵索引确定整个RIS对应的第一预编码矩阵,之后可以根据该第一预编码矩阵及入射角信息,确定整个RIS对应的相移矩阵,进而再基于相移矩阵进行信号的反射或透射。
或者,当指示信息中包含相移矩阵索引时,RIS可以根据相移矩阵索引确定整个RIS对应的相移矩阵,之后,可以基于该相移矩阵进行信号的反射或透射。
本公开中,RIS在接收网络设备发送的基于终端设备发送的预编码矩阵指示PMI确定的预编码指示信息后,可以根据预编码指示信息,进行信号的反射和透射。其中,PMI为终端设备根据RIS发送的参考信号确定的。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图9,图9是本公开实施例提供的一种智能超表面RIS的预编码方法的流程示意图,该方法由RIS执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,根据网络设备发送的发射参考信号的配置信息,确定第一天线端口、指定的时频域位置及参考信号。
其中,第一天线端口为指定的阵元,即第一阵元对应的天线端口,配置信息可以包括发射参考信号的天线端口,及发送参考信号的时频域资源位置等,本公开对此不作限制。
本公开中,考虑到RIS中可以包含部分有源阵元,用于发送参考信号以进行信道估计等。由此,网络设备可以向RIS发送发射参考信号的配置信息,以指示RIS利用利用指定的RIS阵元及第一天线端口,在在指定的时频域位置向终端设备发送参考信号。
可选的,RIS还可以根据协议约定,确定第一天线端口、指定的时频域位置及参考信号。
步骤902,使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
步骤903,接收网络设备发送的预编码指示信息,其中,预编码指示信息为网络设备基于终端设备发送的预编码矩阵指示PMI确定的,PMI为终端设备根据RIS发送的参考信号确定的。
步骤904,根据预编码指示信息,进行信号的反射和透射。
本公开中,步骤903-步骤904的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,RIS在根据网络设备发送的发射参考信号的配置信息,确定第一天线端口、指定的时频域位置及参考信号后,可以使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号,之后,可以网络设备发送的基于终端设备发送的预编码矩阵指示PMI确定的预编码指示信息,并根据预编码指示信息,进行信号的反射和透射。其中,PMI为终端设备根据RIS发送的参考信号确定的。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图10,图10是本公开实施例提供的一种智能超表面RIS的预编码方法的流程示意图,该方法由终端设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,接收智能超表面RIS发送的参考信号。
本公开中,考虑到RIS中可以包含部分有源阵元,用于发送参考信号以进行信道估计等。由此,RIS可以根据协议约定或网络设备发送的用于指示RIS利用有源阵元在指定的时频域位置,向终端设备发送参考信号的指示信息,确定第一天线端口、指定的时频域位置及参考信号,之后,RIS可以利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
步骤1002,根据参考信号,确定预编码矩阵指示PMI。
本公开中,终端设备可以接收并测量RIS的有源阵元在某一指定时频域位置发送的参考信号,之后,即可根据该参考信号确定参考信号对应的预编码矩阵指示PMI。
步骤1003,向网络设备发送PMI。
本公开中,终端设备可以将该PMI发送给网络设备,之后,网络设备根据RIS发射参考信号的配置信息及PMI,对RIS的预编码进行控制,即根据RIS的有源阵元信息,对RIS进行预编码。
本公开中,终端设备在接收智能超表面RIS发送的参考信号后,可以根据参考信号,确定预编码矩阵指示PMI,并向网络设备发送PMI。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图11,图11是本公开实施例提供的一种智能超表面RIS的预编码方法的流程示意图,该方法由终端设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,根据网络设备发送的指示信息,确定指定的时频域位置。
本公开中,网络设备向终端设备发送指示信息,以指示终端设备接收RIS发送的参考信号的时频域位置,由此,终端设备可以将RIS发送的参考信号的时频域位置,确定为指定的时频域位置。
可选的,终端设备还可以根据协议约定,确定指定的时频域位置。
步骤1102,在指定的时频域位置,接收RIS发送的参考信号。
步骤1103,根据参考信号,确定预编码矩阵指示PMI。
步骤1104,向网络设备发送PMI。
本公开中,步骤1103-步骤1104的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,终端设备在根据网络设备发送的指示信息,确定指定的时频域位置后,可以在指定的时频域位置,接收RIS发送的参考信号,之后,可以根据参考信号,确定预编码矩阵指示PMI,并向网络设备发送PMI。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图12,为本公开实施例提供的一种通信装置1200的结构示意图。图12所示的通信装置1200可包括处理模块1201和收发模块1202。收发模块1202可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1202可以实现发送功能和/或接收功能。
可以理解的是,通信装置1200可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1200在网络设备侧,其中:
收发模块1202,用于接收终端设备发送的预编码矩阵指示PMI,其中,所述PMI为所述终端设备根据智能超表面RIS发送的参考信号确定的;
处理模块1201,用于基于所述PMI,向所述RIS发送预编码指示信息。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,上述处理模块1201,用于:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元使用的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移;
根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由所述第一相移及所述第二相移组成的预编码矩阵对应的第一预编码矩阵索引;
向所述RIS发送所述第一预编码矩阵索引及入射角信息。
可选的,上述处理模块1201,用于:
根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元的第一相移;
根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元的第二相移;
根据所述第一相移、所述第二相移及入射角信息,确定相移矩阵;
向所述RIS发送所述相移矩阵索引。
可选的,上述处理模块1201,用于:
根据相邻的两个第一阵元之间间隔的第二阵元数量、及所述相邻的两个第一阵元分别使用的第一相移,确定所述相邻的两个第一阵元之间间隔的每个第二阵元使用的第二相移。
可选的,上述收发模块1201,还用于:
向所述RIS发送第一指示信息,其中,所述第一指示信息用于指示所述RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送所述参考信号;和/或,
向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示接收RIS发送的所述参考信号的时频域位置。
本公开中,网络设备可以接收终端设备发送的根据智能超表面RIS发送的参考信号确定的预编码矩阵指示PMI,之后,可以基于PMI,向RIS发送预编码指示信息。由此,网络设备通过基于RIS的 部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
可以理解的是,通信装置1200可以是RIS,也可以是RIS中的装置,还可以是能够与RIS匹配使用的装置。
通信装置1200,在RIS侧,其中:
收发模块1202,用于接收网络设备发送的预编码指示信息,其中,所述预编码指示信息为所述网络设备基于终端设备发送的预编码矩阵指示PMI确定的,所述PMI为所述终端设备根据所述RIS发送的参考信号确定的;
处理模块1202,用于根据所述预编码指示信息,进行信号的反射和透射。
可选的,所述预编码指示信息,包括以下任一项:
所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
可选的,上述收发模块1201,还用于:
使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
可选的,上述收发模块1202,还用于:
根据所述网络设备发送的发射参考信号的配置信息,确定所述第一天线端口、指定的时频域位置及所述参考信号;或者,
根据协议约定,确定所述第一天线端口、指定的时频域位置及所述参考信号。
本公开中,RIS在接收网络设备发送的基于终端设备发送的预编码矩阵指示PMI确定的预编码指示信息后,可以根据预编码指示信息,进行信号的反射和透射。其中,PMI为终端设备根据RIS发送的参考信号确定的。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
可以理解的是,通信装置1200可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置1200,在终端设备侧,其中:
收发模块1202,用于接收智能超表面RIS发送的参考信号;
处理模块1201,用于根据所述参考信号,确定预编码矩阵指示PMI;
上述收发模块1202,还用于向网络设备发送所述PMI。
可选的,上述收发模块1202,用于:
在指定的时频域位置,接收所述RIS发送的参考信号。
可选的,上述处理模块1201,还用于:
根据所述网络设备发送的指示信息,确定所述指定的时频域位置;或者,
根据协议约定,确定所述指定的时频域位置。
本公开中,终端设备在接收智能超表面RIS发送的参考信号后,可以根据参考信号,确定预编码矩阵指示PMI,并向网络设备发送PMI。由此,网络设备通过基于RIS的部分信道对应的PMI,即可对RIS的预编码进行控制,在保证RIS实现准确预编码的基础上,降低了RIS预编码的复杂度。
请参见图13,图13是本公开实施例提供的另一种通信装置1300的结构示意图。通信装置1300可以是网络设备,也可以是智能超表面,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持智能超表面实现上述方法的芯片、芯片***、或处理器,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1300可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1300中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行所述计算机程序1304,以使得通信装置1300执行上述方法实施例中描述的方法。可选 的,所述存储器1302中还可以存储有数据。通信装置1300和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置1300还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1300中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使通信装置1300执行上述方法实施例中描述的方法。
通信装置1300为网络设备:处理器1301用于执行图2中的步骤202;图3中的步骤302、步骤303、步骤304、步骤305;图4中的步骤402、步骤403、步骤404、步骤405;图5中的步骤503;图6中的步骤603;图7中的步骤704等。
通信装置1300为智能超表面:收发器1305用于执行图8中的步骤801;图9中的步骤901、步骤902、步骤903。
通信装置1300为终端设备:收发器1305用于执行图10中的步骤1001、步骤1003;图11中的步骤1102、步骤1104。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置1300执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置1300可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者智能中继,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1401和接口1403。其中,处理器1401的数量可以是一个或多个,接口1403的数量可以是多个。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1403,用于执行图2中的步骤201;图3中的步骤301;图4中的步骤401;图5中的步骤501、步骤502;图6中的步骤601、步骤602;图7中的步骤701、步骤702、步骤703等。
对于芯片用于实现本公开实施例中智能超表面的功能的情况:
接口1403,用于执行图8中的步骤801;图9中的步骤901、步骤902、步骤903等。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1403,用于执行图10中的步骤1001、步骤1003;图11中的步骤1102、步骤1104等。
可选的,芯片还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种智能超表面的预编码方法,其特征在于,由网络设备执行,所述方法包括:
    接收终端设备发送的预编码矩阵指示PMI,其中,所述PMI为所述终端设备根据智能超表面RIS发送的参考信号确定的;
    基于所述PMI,向所述RIS发送预编码指示信息。
  2. 如权利要求1所述的方法,其特征在于,所述预编码指示信息,包括以下任一项:
    所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
    其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
  3. 权利要求2所述的方法,其特征在于,所述基于所述PMI,向所述RIS发送预编码指示信息,包括:
    根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元使用的第一相移;
    根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移;
    根据预设的预编码矩阵索引与预编码矩阵的映射关系,确定由所述第一相移及所述第二相移组成的预编码矩阵对应的第一预编码矩阵索引;
    向所述RIS发送所述第一预编码矩阵索引及入射角信息。
  4. 如权利要求2所述的方法,其特征在于,所述基于所述PMI,向所述RIS发送预编码指示信息,包括:
    根据所述RIS发射参考信号的配置信息及所述PMI,确定所述RIS中发送所述参考信号的第一阵元的第一相移;
    根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元的第二相移;
    根据所述第一相移、所述第二相移及入射角信息,确定相移矩阵;
    向所述RIS发送所述相移矩阵索引。
  5. 如权利要求3或4所述的方法,其特征在于,所述根据所述第一阵元的排布信息及所述第一相移,确定所述RIS中除所述第一阵元外的第二阵元使用的第二相移,包括:
    根据相邻的两个第一阵元之间间隔的第二阵元数量、及所述相邻的两个第一阵元分别使用的第一相移,确定所述相邻的两个第一阵元之间间隔的每个第二阵元使用的第二相移。
  6. 如权利要求1-5任一所述的方法,其特征在于,还包括:
    向所述RIS发送第一指示信息,其中,所述第一指示信息用于指示所述RIS使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送所述参考信号;和/或,
    向所述终端设备发送第二指示信息,其中,所述第二指示信息用于指示接收RIS发送的所述参考信号的时频域位置。
  7. 一种智能超表面RIS的预编码方法,其特征在于,由所述RIS执行,所述方法包括:
    接收网络设备发送的预编码指示信息,其中,所述预编码指示信息为所述网络设备基于终端设备发送的预编码矩阵指示PMI确定的,所述PMI为所述终端设备根据所述RIS发送的参考信号确定的;
    根据所述预编码指示信息,进行信号的反射和透射。
  8. 如权利要求7所述的方法,其特征在于,所述预编码指示信息,包括以下任一项:
    所述PMI及入射角信息,第一预编码矩阵索引及入射角信息,相移矩阵索引;
    其中,所述第一预编码矩阵索引为根据所述PMI生成的预编码矩阵的索引,所述相移矩阵索引为根据所述PMI与入射角信息生成的预编码相移矩阵的索引。
  9. 如权利要求7所述的方法,其特征在于,还包括:
    使用指定的RIS阵元,并利用第一天线端口在指定的时频域位置,向终端设备发送参考信号。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    根据所述网络设备发送的发射参考信号的配置信息,确定所述第一天线端口、指定的时频域位置及所述参考信号;或者,
    根据协议约定,确定所述第一天线端口、指定的时频域位置及所述参考信号。
  11. 一种智能超表面的预编码方法,其特征在于,由终端设备执行,所述方法包括:
    接收智能超表面RIS发送的参考信号;
    根据所述参考信号,确定预编码矩阵指示PMI;
    向网络设备发送所述PMI。
  12. 如权利要求11所述的方法,其特征在于,所述接收智能超表面RIS发送的参考信号,包括:
    在指定的时频域位置,接收所述RIS发送的参考信号。
  13. 如权利要求12所述的方法,其特征在于,还包括:
    根据所述网络设备发送的指示信息,确定所述指定的时频域位置;或者,
    根据协议约定,确定所述指定的时频域位置。
  14. 一种通信装置,其特征在于,所述装置用于网络设备,所述装置包括:
    收发模块,用于接收终端设备发送的预编码矩阵指示PMI,其中,所述PMI为所述终端设备根据智能超表面RIS发送的参考信号确定的;
    处理模块,用于基于所述PMI,向所述RIS发送预编码指示信息。
  15. 一种通信装置,其特征在于,所述装置用于RIS,所述装置包括:
    收发模块,用于接收网络设备发送的预编码指示信息,其中,所述预编码指示信息为所述网络设备基于终端设备发送的预编码矩阵指示PMI确定的,所述PMI为所述终端设备根据所述RIS发送的参考信号确定的;
    处理模块,用于根据所述预编码指示信息,进行信号的反射和透射。
  16. 一种通信装置,其特征在于,所述装置用于终端设备,所述装置包括:
    收发模块,用于接收智能超表面RIS发送的参考信号;
    处理模块,用于根据所述参考信号,确定预编码矩阵指示PMI;
    所述收发模块,还用于向网络设备发送所述PMI。
  17. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  18. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至10中任一项所述的方法。
  19. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求11至13中任一项所述的方法。
  20. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  21. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至10中任一项所述的方法被实现。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求11至13中任一项所述的方法被实现。
PCT/CN2022/092318 2022-05-11 2022-05-11 一种智能超表面的预编码方法及装置 WO2023216164A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/092318 WO2023216164A1 (zh) 2022-05-11 2022-05-11 一种智能超表面的预编码方法及装置
PCT/CN2022/107535 WO2023216419A1 (zh) 2022-05-11 2022-07-22 一种智能超表面的预编码方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092318 WO2023216164A1 (zh) 2022-05-11 2022-05-11 一种智能超表面的预编码方法及装置

Publications (1)

Publication Number Publication Date
WO2023216164A1 true WO2023216164A1 (zh) 2023-11-16

Family

ID=88729426

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/092318 WO2023216164A1 (zh) 2022-05-11 2022-05-11 一种智能超表面的预编码方法及装置
PCT/CN2022/107535 WO2023216419A1 (zh) 2022-05-11 2022-07-22 一种智能超表面的预编码方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107535 WO2023216419A1 (zh) 2022-05-11 2022-07-22 一种智能超表面的预编码方法及装置

Country Status (1)

Country Link
WO (2) WO2023216164A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411115A (zh) * 2021-06-15 2021-09-17 河南科技大学 智能反射表面辅助的毫米波物理层安全通信联合优化方法
CN113726695A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 基于可重构全息超表面的无线通信信道估计方法及***
CN113746764A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全向超表面的无线通信信道估计方法及***
WO2022049112A1 (en) * 2020-09-01 2022-03-10 Vestel Elektronik Sanayi ve Ticaret A. S. Channel estimation for configurable surfaces
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818533B (zh) * 2020-06-04 2021-08-17 浙江大学 一种基于智能反射面的无线通信***设计方法
CN114124173A (zh) * 2020-08-25 2022-03-01 华为技术有限公司 信道信息获取的方法、设备和存储介质
CN113965234B (zh) * 2021-10-21 2022-07-12 西安邮电大学 基于ris使能的上行随机扰动对齐预编码空间调制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049112A1 (en) * 2020-09-01 2022-03-10 Vestel Elektronik Sanayi ve Ticaret A. S. Channel estimation for configurable surfaces
CN113411115A (zh) * 2021-06-15 2021-09-17 河南科技大学 智能反射表面辅助的毫米波物理层安全通信联合优化方法
CN113726695A (zh) * 2021-08-30 2021-11-30 杭州腓腓科技有限公司 基于可重构全息超表面的无线通信信道估计方法及***
CN113746764A (zh) * 2021-09-03 2021-12-03 杭州腓腓科技有限公司 基于可重构全向超表面的无线通信信道估计方法及***
CN114245391A (zh) * 2021-11-26 2022-03-25 中国信息通信研究院 一种无线通信信息传送方法和设备

Also Published As

Publication number Publication date
WO2023216419A1 (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023216164A1 (zh) 一种智能超表面的预编码方法及装置
WO2023184435A1 (zh) 一种确定波束信息的方法及装置
WO2023077311A1 (zh) 一种智能超表面ris的预编码方法及其装置
WO2023216165A1 (zh) 一种控制智能超表面ris发射参考信号的方法及装置
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2024036570A1 (zh) 基于智能超表面的预编码方法及装置
WO2024044990A1 (zh) 基于智能超表面的预编码方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023150918A1 (zh) 一种波束管理的方法及其装置
WO2024055324A1 (zh) 基于智能超表面的预编码方法及装置
WO2023197187A1 (zh) 一种信道状态信息的处理方法及装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024031719A1 (zh) 支持8Tx的基于码本的PUSCH传输的预编码指示方法及装置
WO2024020904A1 (zh) 智能反射表面irs的相移配置的发送、接收方法及装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941122

Country of ref document: EP

Kind code of ref document: A1